


 Investigate and quantify the 
relationship between variables in a 
dataset using an existing dataset. 
› In particular, investigate the effects of one 

(or more) variable(s) of the dataset onto the 
value of another variable in the dataset.

 How does the value of one variable change 
if other variable(s) change value?

 Goal: come up with a model (i.e. a 
function) that predicts and explains the 
value of one variable based on the 
values of other variables.



 In regression, the relationship expressed is 
between one variable -called the 
dependent variable- and one or more 
independent variables

 Important! In regression, dependent 
variable takes continuous values
› Independent variables can be of any type

 Relationship between variables take the 
form of a function/equation: Aims at 
expressing the value of the dependent 
variable as a function of the values of other 
independent variables.
› Function also referred to as “regression model”, 

“regression  equation” or plain “regression”.



 Regression equations can take many 
different forms
› But does not 

 Examples of regression equations/models
› FoodConsumption = 0.78 Income + 1459

 e.g. for quantifying the relationship between 
annual FoodConsumption (dependent variable) of 
families and their annual income (independent)

› CarValue = PurchaseValue - e(0.88*age) e.g. 

 E.g for quantifying the relationship between the 
present value of a car (dependent variable) and 
the variables purchase value and age 
(independent variables).



 Purpose of regression models

› Explain the variance in the dependent 

variable based on the values of the 

independent variables(s) of the existing 

dataset

› Predict the value of the dependent variable 

based on the values of the independent 

variable(s)



 Regression analysis requires a training set 

with observations on these variables from 

which the relationship between the 

interested variables will be quantified.

 A regression model tries to come up with an 

equation that best “fits” the training set.

› There can be many regression equations that fit 

the data, but we require the one that fit the best 

› This “fit” can assessed and the usefulness of the 

model can be determined.



 Terminology

varY = b1varX1 + b2varX2 + b3varX3 +…+ b0

Dependent 

variable
Coefficients/

parameters

Independent 

variables/Predictors/Regressors

Intercept/bias



 In a regression model, the unknowns are 

the coefficients which must be estimated

from the training set

› Estimation of coefficients is done using the 

existing training dataset

› Values of the independent variables are not 

unknowns-known from the training set



 Types of regression models
› Based on how the value of the dependent 

variable changes when the values of the 
independent variables or coefficients change 
(That’s very, very important and always to keep 
in mind – determines the form of the regression 
model)
 i.e. how a change in the coefficients/parameters 

and independent variables affect the dependent 
variable. 

 Expressed as rate of change: 
ΔY

ΔΧ
,
ΔY

Δb

› Two types
 Linear regression models

 Nonlinear regression models



 Types of regression models

› Linear regression models

 In linear regression models the dependent variable 

depends linearly on all the coefficients/parameters 

(and only the coefficients!)

 “Depends linearly” means that the rate of change 

of the dependent variable -if the coefficient 

changes- is independent of the value of the 

coefficient (i.e. constant wrt coefficient).

 Linear regression models do not need to depend 

linearly on the independent variables!



 Types of regression models

› Linear regression models

 The model Consumption = b1Income + b0 is a linear 

model because the value of consumption 

depends linearly on all coefficients b of the model: 

(e.g. assuming coefficient b1 increases by 1):

𝚫𝐂𝐨𝐧𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧

𝚫𝒃𝟏
=

𝒃𝟏 + 𝟏 𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟎 − 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 − 𝒃𝟎
𝟏

= 𝑰𝒏𝒄𝒐𝒎𝒆

Independent of the value of coefficient b1 that 

changed. Hence the model is linear. Model 

happens to be also linear with respect to 

independent variable Income. 



 Types of regression models
› Linear regression models

 Dependent variable does not need to be linear on 
the independent variables (can be but not is not 
required). This means linear regression models –
when plotted- can form curves.

 This means that all the following regression models 
are also linear although they are not linear with 
respect to the variables.

𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟐𝑭𝒂𝒎𝒊𝒍𝒕𝒚𝑺𝒊𝒛𝒆𝟑 + 𝒃𝟎

𝑩𝒍𝒐𝒐𝒅𝑷𝒓𝒆𝒔𝒖𝒓𝒆 = 𝒃𝟏𝑺𝒆𝒙 + 𝒃𝟐 𝑨𝒈𝒆 + 𝒃𝟎

𝐥𝐧 𝑰𝒏𝒄𝒐𝒎𝒆 = 𝒃𝟏𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆 + 𝒃𝟐𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆
𝟐 +

𝒃𝟑𝒀𝒆𝒂𝒓𝒔𝑬𝒅𝒖𝒄𝒂𝒕𝒊𝒐𝒏 + 𝒃𝟎

These are 

considered 

linear models 

because you 

may substitute 

FamilySize3 with 

a new variable 

say Z



 Types of regression models

› Nonlinear regression models

 In nonlinear regression models the dependent 

variable does not depend linearly on all the 

coefficients (and only the coefficients!)

 “Does not depend linearly” means that the

rate of change of the dependent variable -if 

one of the coefficient changes- is dependent 

of the value of the coefficient.



 Types of regression models
› Nonlinear regression models

 The following examples are nonlinear 
regression models

𝑹𝒂𝒕𝒆 𝒐𝒇 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒃𝟏𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

𝒃𝟐 + 𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

Rate of a chemical 
reaction and the 
concentration of 

substance

𝑪𝒓𝒐𝒑 𝒚𝒊𝒆𝒍𝒅 =
𝟏

𝒃𝟏 + 𝒃𝟐𝑪𝒓𝒐𝒑𝑺𝒑𝒂𝒄𝒊𝒏𝒈
𝒃𝟑



 The notion of error in regression models

› Regression model are approximations that 

try to fit in the best way possible the real 
values of the dependent variable in the 

training set.

 Because regression models approximate the 

value of the dependent variable, they never 

succeed  in predicting the real value of the 

dependent variable.

 But what is the real value of the dependent variable?



 The notion of error in regression models

› Two types of errors in regression models

 Errors/disturbance

 The difference between the (unobserved) real value of 

the dependent variable in the population and  the 
observed value in the training set. This error can never be 

observed or measured because we are unaware of the 

real value of the dependent variable in the population.

 Residuals/fitting deviations

 The difference between the dependent value in the 

training set and the predicted/estimated value by the 
regression model. This can be observed and measured



 The notion of error in regression models
› Errors and residuals are included in the 

regression models.

 Adding term ε (for error) when showing the 
general model or εi (for residuals) when 

› Full specification of a regression model 
includes error term e.g.

𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟐𝑭𝒂𝒎𝒊𝒍𝒕𝒚𝑺𝒊𝒛𝒆𝟑 + 𝒃𝟎 + 𝜺

› If the error term is not explicitly included in the 
regression model, it’s implied.

 This means, there always is an error term!



 More types of regression models

› Simple regression models

 When the regression model includes only 2 

variables: one dependent and one 

independent variable

 E.g. Income = b1Education + b0

› Multiple regression models

 When the regression model includes more 

than 2 variables

 E.g. Income = b1Education + b2Experience + b0



 Who comes up with regression models and 
how?
› Domain experts (economist, statisticians, 

engineers, etc)

 Theory
 Read the relevant literature and identify factors that 

affect the value of the dependent variable

 Look at the data and how it changes
 From existing data, see how the dependent variable 

changes when the independent variables change

 Trial and error
 Begin by trying simple regression models and assess the 

results. Continue by modifying the model if results are not 
appropriate.



 Who comes up with regression models?

› Don’t forget: Regression models are 

approximations that try to fit the best way 

possible the data in the training set.





 In a regression model, the problem is 
estimating the coefficients/parameters that 
will indicate the relationships between the 
variables
› Coefficients/parameters are estimated from an 

existing dataset (training set) which is required.

Tid House 
Price 

Marital 
Status 

Income 
m2House 

1 190K Single 125K 180 

2 145K Married 100K 154 

3 101K Single 70K 110 

4 187K Married 120K 167 

5 109K Divorced 95K 110 

6 96K Married 60K 90 

7 200K Divorced 220K 190 
10 

 

Training 

set.

Income = b1m
2House + b0

Unknowns are the parameters b 

(independent variables known from 

training set). The parameters b of this 

regression model are estimated 

using the training set. The goal: find 

the best values of b which best fit the 

values of the dependent variable in 

the training set.



 Different methods to estimate 

parameters based on the type of the 

regression model

› Linear vs Nonlinear

 The general idea: Estimation of 

parameters in regression model (linear or 

nonlinear) involves a Cost function (also 

called “Loss function”) that needs to be 

minimized.



 Cost function tries to measure how big 
the error of the regression model is when 
estimating the value of the dependent 
variable
› Essentially, this is the sum of residuals which is 

to be minimized

› Cost functions can have many different 
forms

 Depending on the purpose

 The form of the cost function determines the 
type of regression: Ordinary Least Squares 
(OLS), LASSO, Quantile etc





 Linear regression models have the 

following general form:

𝒀 = 𝒃𝟏𝑿𝟏 + 𝒃𝟐𝑿𝟐 + 𝒃𝟑𝑿𝟑 +⋯𝒃𝒌𝑿𝒌 + 𝒃𝟎 + 𝜺

Where: 

Y: Dependent variable
Xi : Independent variable i

bi: Parameter to be estimated

ε: Error term  



 Since linear regression models try to fit the 

available training data, the linear regression 

model can also be written in the form:

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

Where: 
Yi : Value of dependent variable in observation i in training set

Xki : Value of independent variable k in observation i of the 

training set
bi: Parameter to be estimated

ei : Residual of the i-th observation in the training set



 If there are n observations in the training 

set, then there will be n equations, one 

for each observation, of the form:

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊



 Because parameters are estimated from the 
training set and not the truly real values of 
the variables (remember: the training set is 
just a sample), the estimates are mentioned 
in the regression model

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

Where: 
𝒀𝒊 : The estimated value of the dependent variable
𝒃𝒊 : The estimated value of the parameter i.



 Regression model in matrix notation

› It’s customary to represent these n regression 

equation in matrix notation. If we define:

𝒀 =

𝒀𝟏
𝒀𝟐…
𝒀𝒏

𝑿 =

𝟏 𝑿𝟏𝟏 𝑿𝟐𝟏 … 𝑿𝒌𝟏
𝟏 𝑿𝟏𝟐 𝑿𝟐𝟐 … 𝑿𝒌𝟐
𝟏 𝑿𝟏𝟑 𝑿𝟐𝟑 … 𝑿𝒌𝟑
… … … … …
𝟏 𝑿𝟏𝒏 𝑿𝟐𝒏 … 𝑿𝒌𝒏

𝒃 =

𝒃𝟎
𝒃𝟏
𝒃𝟐
…
𝒃𝒌

𝒆 =

𝒆𝟏
𝒆𝟐
𝒆𝟑
…
𝒆𝒏

› Then the n linear regression equations, derived from 

the training set, can be written in matrix form:

𝒀 = 𝑿𝒃 + 𝒆 If you carry out the operations, you’ll 

get tne n linear regression equations 

as vectors. 

The matrix form makes it easier to 

calculate the parameters.

Matrix of values of 

independent variables in 

training set.



 Two methods for estimating the 

parameters of linear regression models

› Ordinary Least Squares (OLS)

› Gradient Descent and its variations

 Each of the above method appropriate 

in specific situations.





 Ordinary Least Square (OLS) Regression

› In OLS the cost function is the Sum of 

Squared Errors (SSE) i.e. sum of residuals

which must be minimized:

𝑺𝑺𝑬 = 

𝒊=𝟏

𝒏

𝒆𝒊
𝟐 = 

𝒊=𝟏

𝒏

𝒀𝒊 − 𝒀𝒊
𝟐

› The parameters b which minimize the above 

SSE are the parameter estimates of the linear 

regression model that best fit the training data.

𝒀𝒊 = Value of the dependent variable in observation i of the training set
𝒀𝒊 = Estimated value by the linear regression model for the values of the 

independent variables in observation i in the training set.



 Ordinary Least Square (OLS) Regression

› How is the Cost function (SSE) minimized in OLS?

› First write SSE in matrix notation as a function of 

the vector b

𝑺𝑺𝑬 𝒃 = 𝒆𝑻𝒆 = 𝒀 − 𝑿𝒃
𝑻
(𝒀 − 𝑿𝒃)

› And then minimize the Cost function (SSE) by 
solving the equation of partial derivatives:

𝝏𝑺𝑺𝑬 𝒃

𝝏𝒃
= 𝟎

This equation has a closed form 
solution due to the form of the 
linear regression. Solving this  will 
calculate the vector b that 
minimizes the SSE and hence 
finds the parameters we are 
looking for.



 Ordinary Least Square (OLS) Regression

› The closed form solution derived from the 

previous equation for estimating the parameters 

b of a linear regression model in matrix form is:

› The above closed form formula – called normal 
equation - gives you the vector of parameters 
estimates b, based on the matrix of values of the 
independent variables X and the matrix of the 
values of the dependent variable Y in the training 
set, which minimize SSE and hence what we were 
looking for.

𝒃 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀





 Gradient descent
› While OLS minimizes the SSE in a very specific way (by 

finding the values of b who yield the partial 
derivative to zero) leading to a closed form formula 
(the normal equation) for estimating the parameters, 
Gradient descent minimizes the cost function in a 
very different way.

› Gradient descent is an iterative, numerical 
optimization method for minimizing the cost function 
and thus finding the parameter estimates.

 i.e. Gadient descent does not offer a closed form 
formula like the normal equation in OLS for calculating 
the parameters.

 “iterative” ? Tries to guess the proper values of the 
parameters that lead to minimizing the cost function



 Gradient descent

› Why Gradient descent?

 OLS has one big concern: The normal equation 

requires inversion of a matrix:

𝒃 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀

Matrix inversion

 Matrix inversion is a very expensive operation. If 
the XTX matrix has 100 variables (is an 100x100 
matrix), since an inversion requires n3 operations 
(n=dimension of matrix) on average, it would 
require ~1000000 operations to invert the matrix.

 OLS not suitable for big data!



 Gradient descent
› Why Gradient descent?

 Gradient descent performs much better –in 
terms of execution times/number of 
operations- in big data contexts than OLS and 
in such situations it’s exclusively used.
 There are even versions that increase the 

performance of the algorithm

› Warning! Gradient descent uses a different 
notation for the multiple linear regression 
model:

𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

𝜽𝒋 = Parameter j (to be estimated) 𝒙𝒋
(𝒊)

= Value of independent variable j in 

observation i in training set



 Cost function in Gradient descent

› In Gradient descent the cost function is 

called the mean squared error, J(θ)

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎


𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Where:

𝜽𝒊 = (Unknown) parameter i of the linear regression model from a total of 

k+1 parameters

𝒎 = Number of observation in training set

𝒉𝜽() = The estimated value of the linear regression model for the values of 

the independent variables at observation i in training set. 

𝒙(𝒊) = The values of the independent variables of observation i in training set

𝒚(𝒊) = The value of the dependent variable of observation i in training set



 Cost function in Gradient descent

› Gradient descent attempts to minimize the 

cost function J(θ) by finding/estimating the 

proper values of parameters θ.

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎


𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Often abbreviated simply 

as J(θ).



 Cost function in Gradient descent

› Cost function has things in common with the 

cost function (i.e. SSE) in OLS.

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎


𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Sum of squared errors in OLS

Why divide by 2m? m because of 
two reasons: i) it’s the mean squared 
error and ii) it yields to smaller 
numbers which is important due to 

the numerical nature of the method.
Also, include the constant 2 in 
denominator to make things simpler 
as it’s shown later on (hint: it will be 
eliminated).  However, these terms 
do not affect the minimization 
process.

𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

Form of the linear regression model, with 

θ the unknown parameters, is:



 Cost function in Gradient descent

› Cost function in matrix form

𝑱 𝜽 =
𝟏

𝟐𝒎
𝑿𝜽 − 𝒚 𝑻 𝑿𝜽 − 𝒚 =

𝟏

𝟐𝒎
𝑿𝜽 − 𝒚 𝟐

𝒚 =

𝒚𝟏
𝒚𝟐…
𝒚𝒏

𝑿 =

𝟏 𝑿𝟏𝟏 𝑿𝟐𝟏 … 𝑿𝒌𝟏
𝟏 𝑿𝟏𝟐 𝑿𝟐𝟐 … 𝑿𝒌𝟐
𝟏 𝑿𝟏𝟑 𝑿𝟐𝟑 … 𝑿𝒌𝟑
… … … … …
𝟏 𝑿𝟏𝒏 𝑿𝟐𝒏 … 𝑿𝒌𝒏

𝜽 =

𝜽𝟎
𝜽𝟏
𝜽𝟐
…
𝜽𝒌

Vector of dependent variables

Matrix of independent variables 
with first columns all 1s

Vector of estimated parameters

Where:

Note: square each 
element of vector

Sum of all elements 
to get pure number 
of J(θ).



 Cost function

› A note on notation: cost function in gradient 

descent uses different notation (θ instead of 

b for parameters, hθ() for linear regression 

model, J(θ) for cost function)

› This is because Gradient descent originated 

from a different field. One of the first 

algorithms which founded the area of 
machine learning in applied mathematics

› We use the same notation used by 

contemporary literature. 



 General idea of estimating the 

parameters θ with Gradient descent 

which minimize the cost function J(θ)

› Start with initial, random values for the 

parameters θ

› Update/Change the values of the 
parameters θ in a way that yield to smaller 

value of the cost function J(θ)

› Continue changing values of θ iteratively

until the smallest value of J(θ) is attained.



The general idea of 

Gradient descent.

Assume a simple linear 

regression model hθ(x) = θ0

+ θ1x

The cost function of such 

linear regression model,

J(θ), will be convex and an 

example cost function is 

depicted on the left.

Gradient descent tries to 

modify the values of all the 

parameters θ iteratively, 

towards the smallest value 

of J(θ).



 How to change the values of parameters θ in 
order to minimize J(θ)?
› The value of the first partial derivative of the cost 

function J(θ) with respect to a parameter θj will tell us 
how we need to modify the parameter θj (leaving all 
other parameters constant) to achieve a smaller 
value of J(θ). 

 Remember from your math:
› If the value of the first derivative of a function f(x) with 

respect to x is at some point x0 

 positive (>0), an increase of x0 leads to an increase of 
f(x). A decrease of x0 leads to decrease of f(x)

 negative (<0), an increase of x0 leads to an decrease of 
f(x). A decrease of x0 leads to increase of f(x)

 is equal to zero (=0), an increase of x0 leads to an 
increase or decrease of f(x) (has a point of deflection at 
x0).



 How to change the values of parameters 

θ in order to minimize J(θ)?

› In essence, the value of the first derivative 

with respect to some x tells us if x needs to 

increase or decrease in order to achieve a 

smaller value of the function f(x). 

 Value of the first derivative tells us the direction 

of change of variable x (increase or 

decrease).



 How to change the values of parameters θ 
in order to minimize J(θ)?
› J(θ) is a multivariate function, where the 

parameters θj are the unknown variables.

› To apply the derivative technique, we will use 
the first partial derivative wrt to one θj parameter 
and leaving other θs constant i.e. calculate the 

value of 
𝝏𝑱 𝜽

𝝏𝜽𝒋
. If this value is positive, a decrease 

of θj will decrease the cost function, if it’s 
negative, an increase of θj will decrease the 
cost function J(θ).

 Do this for all parameters θ to see how they need 
to change i.e. calculate 𝜵𝑱 𝜽

 Do this iteratively to get an even smaller value J(θ)



 How to change the values of parameters θ 
in order to minimize J(θ)?
› A more clear example

 if initial parameters of θ = (θ0, θ1, θ2, ..., θk) and at 
that point the cost function is J(θ), then if the value 

of 
𝝏𝑱 𝜽

𝝏𝜽𝟐
is negative, this means that a small increase

(update/change) of parameter θ2 leading to 
parameters θ’ = (θ0, θ1, θ2+ε ..., θk) (leaving all other 
θs the same) will decrease J(θ). If it’s positive, 
decrease θ2 to get θ’ = (θ0, θ1, θ2-ε ..., θk) , to get a 
smaller J(θ).
 i.e. J(θ’) < J(θ)

 Do the same for each and all θs in the linear 
regression model and update their values 
accordingly. 

 Do such update for each θ iteratively (i.e. many 
times over).



 How to change the values of parameters 

θ in order to minimize J(θ)?

› In Gradient descent, each parameter is 

updated/changed, at each iteration, using 

the following formula:

𝜽𝒋 ≔ 𝜽𝒋 − 𝜶
𝝏𝑱 𝜽

𝝏𝜽𝒋
α  is a real value > 0, called the learning rate. It is a constant 
given as input to gradient descent. While the partial 
derivative will give us the direction in which the cost function 
will decrease, it does not specify how big the increase of θ 
should be.  This is specified by the value of the learning rate 
α. Can be imagined as the step by which the θ will change. 

Setting the appropriate value for α is very important and 
affects the significantly the algorithm.



 How to change the values of parameters θ in 
order to minimize J(θ)?
› For a multiple linear regression model, you can actually 

calculate 
𝝏𝑱 𝜽

𝝏𝜽
for all θs, resulting in the following 

update formulas for the parameters θ:

𝜽𝟎 ∶= 𝜽𝟎 − 𝜶
𝟏

𝒎


𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊

𝜽𝒋 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎


𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝒋
𝒊

Update for the 
constant 
term/intercept

Form of linear regression model: 𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

Update for all 
other parameters 
in the linear 
regression model

Where

m: number of observations in training set

hθ(x(i)) : value of linear regression model for the values of independent variables in observation i of the training set

y(i) : value of the dependent variable in observation i of the training set

α : learning rate

xj
(i): value of independent variable xj in observation i of the training set



 How to change the values of parameters 

θ in order to minimize J(θ)?

› In matrix form, the previous update formulas 

for parameters θ can be written as 

𝜽 ∶= 𝜽 − 𝜶
𝟏

𝒎
𝑿𝑻 𝑿𝜽 − 𝜰

Where:
m: Number of observations in training set 
𝜽 : The vector of (k+1) parameters of the linear regression model

𝑿 : The mx(k+1) matrix of values of independent variables in the 
linear regression model, with the first column all 1 (ones).

𝒀 : The vector of m values of the dependent variables in the 

training set

α : the learning rate, given as input



 Gradient descent algorithm

› Pseudocode

Initialize vector of parameters θ with random values

Initialize costVector # We will store the value of the cost function for each 

iteration in this vector.

α = 0.01 # Set learning rate. See later how to come up with an appropriate value.

# Start iterations of Gradient descent

while termination conditions not met {

update θ vector with                     

calculate value of cost function J(θ) for the newly calculated values of θ

Store value of cost function into vector costVector

}

# Vector θ will contain the estimated parameters which minimize J(θ)

print θ vector # Print the estimated parameters

plot costVector # Plot the costVector

𝜃 ∶= 𝜃 − 𝛼
1

𝑚
𝑋𝑇 𝑋𝜃 − 𝛶



 Gradient descent usually depicted as a 

contour plot
Convergence of θs to 

the values which 

minimize J(θ) is 

usually depicted as 

Contour plot.

In a Contour plot, 

each circle represents 

the values of θ that 

lead to the same 

value of J(θ).



 When does Gradient descent terminate?
› 3 possible termination conditions

 When a predefined number of iterations have 
been completed. Typical number of iterations 
are n=50, 20000 or greater depending how fast 
the algorithm converges

 When the improvement of the cost function is 
smaller than a predefined value

 Early stopping. With the current “version” of 
the cost function, calculate the cost on a 
validation set (different from training set) at 
each iteration. Compare the two consecutive 
values of J(θ) and if J(θ) starts to increase, 
terminate the algorithm. Used to address 
overfitting.



 Gradient descent algorithm with predefined 

number of iterations as termination condition

Initialize vector of parameters θ with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration 

here

α = 0.01 # Setting the learning rate

numIterations = 10000 # Number of iterations to carry out

n = 0 # How many iterations we have done

while n < numIterations {

update θ vector with                     

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

n = n + 1   # Next iteration

}

# Vector θ will contain the estimated parameters which minimize J(θ)

print θ vector

plot costVector

𝜃 ∶= 𝜃 − 𝛼
1

𝑚
𝑋𝑇 𝑋𝜃 − 𝛶



 The learning rate α

› Setting the learning rate α to the proper value is 

critical!

 Determines if and how fast Gradient descent

converges to the minimum of the cost function.

 If the value of the learning parameter is too small, 

Gradient descent may converge very slowly

 If the value of the learning parameter is too large, 

Gradient descent may not converge at all to the 

proper values of θ which minimize J(θ)

› How to check if learning parameter α is too 

small, too big or just appropriate?

 Empirically, plot the cost function and see its shape



 The learning rate α

› Appropriate value of learning rate

If the value of the 

learning rate is 

appropriate, the cost 

function J(θ) plotted 

against the number of 

iterations will have 

such shape. Cost 

function shows a 

steep drop and then a 

gradual improvement.

To check if the 

selected value is 

appropriate, run 

Gradient descent and 

plot the cost function.



 The learning rate α

› Too small value of the learning rate α

If the value of the 

learning rate is too 

small, the cost 

function J(θ) plotted 

against the number of 

iterations will have 

such shape.

This means Gradient 

descent will converge 

very, very slowly to 

the appropriate 

values of θs that 

minimize J(θ).



 The learning rate α

› Too big value of the learning rate α

If the value of the 

learning rate is too 

big, the cost function 

J(θ) plotted against 

the number of 

iterations will have 

such a shape. The 

cost function 

increases with each 

iteration.



 The learning rate α

› Too big value of the learning rate α

If the value of the learning 

rate α is too big, Gradient 

descent may overshoot the 

proper values of θ that 

minimize the cost function.

Overshooting happens 

because the value of α is too 

big and hence the update θj

= θj - α 
𝝏𝑱 𝜽

𝝏𝒋
the new values of 

θj may increase by too 

much, missing the values for 

which J(θ) is minimized. 

Gradient descent then 

diverges from the proper 
values of θs.



 The learning rate α

› Appropriate values for learning rate?

 Typical values of the learning rate α are 0.001, 0.01, 

0.1

 Execute Gradient descent with such values of the 

learning rate α and plot the cost function J(θ) as a 

function of the number of iterations. Compare the 

shape of the plot with the plots shown previously.

 If learning rate is too small, increase it by some 

amount e.g. from 0.01 to 0.03. Execute Gradient 

descent again and plot the cost function. Stop if 

the  plot of the cost function has the appropriate 

shape.



 The version of Gradient descent 

discussed previously is the “plain vanilla” 

style of the algorithm also known as 

“Batch Gradient Descent”

 Two other versions of Gradient Descent

available that improve performance 

dramatically in Big data settings:

› Stochastic gradient descent - SGD

› Mini-Batch gradient descent - MBGD



 Why the need to improve the performance 

of Gradient descent?

› If number of observations in training set is large

(e.g. 10000000 observations/records or more), 

there are two main concerns with Batch Gradient 

descent:

 Entire training set must be stored into memory (RAM)

 Update formulas must iterate over the entire training 

set to calculate on step for all parameters in each 

iteration.

 In such settings, Batch Gradient descent is 

computationally expensive!



 Concern: Entire training set into memory
› Looking at the matrix form of the update 

formula: Does is fit into memory?

𝜽 ∶= 𝜽 − 𝜶
𝟏

𝒎
𝑿𝑻 𝑿𝜽 − 𝜰

To execute this calculation, the entire matrix of the values of 
the independent variables X must be loaded into the main 
memory (RAM). What if it does not fit into RAM? E.g. if there 
are 10000000 observations and 50 numeric variables, you’ll 
need to store 10000000 * 50 = 500000000 numbers and since 
each number requires at least 4 bytes you need 500000000 * 
4= 2000000000 bytes of data in RAM or ~1.8GB of RAM. Do 
you have it? 



 Concern: Iterate over the entire training set at 
each iteration
› Looking at the analytic formula indicates better the 

problem (Note: the same argument holds for the 
matrix form, but it’s clearer in the analytic form of the 
update formula): Can be slow in  big data contexts

If the training set has m=10000000 observations, we iterate 
over all 10000000 observations just make one (1) update to 
one (1) parameter at one (1) iteration! Considering that we 
have many parameters, we traverse the 10000000 
observations many times at each iteration. This makes Batch 
Gradient descent slow. 

𝜽𝒋 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎


𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝒋
𝒊



 Why the need to improve the 

performance of Gradient descent?

› The solution in such big data environments is 

simply not to iterate over the entire training set 

at each iteration!

› The two other versions of Bath Gradient 

descent treat/scan the training set differently



 Stochastic Gradient Descent - SGD
› At each iteration, SGD uses only one observation

of the training set to update the parameters 
(instead of the entire training set in GD) 

Initialize all parameters θj with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration here

α = 0.01 # Setting the learning rate

Randomly shuffle the training set # To ensure that the observations do not have some kind of order

while termination criteria not met{

Calculate cost function and store its value in costVector

for each observation i in training set {  

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗

𝑖

}  

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj
n = n + 1   # Next iteration

}

# Vector θ will contain the estimated parameters which minimize J(θ)

print θj
plot costVector



 Pros/Cons of SGD
› Pros

 It’s a so-called online algorithm – you see the 
update of parameters immediately, in a 
sequential fashion, during their estimation i.e. in 
real time. That’s not possible with Batch GD

 Does not require entire training set in memory

 Avoids local minima of J(θ)

› Cons

 Can be noisy i.e. parameters jump around at 
each epoch with greater variance between 
epochs (epoch = one update of all 
parameters)



 Mini-Batch Gradient Descent - MBGD
› MBGD does not use one single observation of the 

training set to update the parameters. It uses a 
“small batch” of training set observations –
typically between 2 and 100 observation in each 
batch.

 To do this, we cut the large training set into smaller 
training subsets, and use these to update the 
parameters at each step

 It’s a method “between” the extremes of Batch 
Gradient descent (which uses entire training  set for 
each parameter update) and Stochastic Gradient 
descent which uses only one observation to update 
the parameters.



 Mini-Batch Gradient descent

Initialize all parameters θj with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration here

α = 0.01 # Setting the learning rate

Randomly shuffle the training set # To ensure that the observations do not have some kind of order

Cut the training set into batches/subsets bi each of size nb such that bi*nb =m # Note: last batch 
might be smaller than nb
while termination criteria not met{

Calculate cost function and store its value in costVector

for each batch bi {  

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 σ𝜄=1

𝑛𝑏 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗
𝑖

}  

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj # update all parameters with new values

n = n + 1   # Next iteration

}

# Vector θ will contain the estimated parameters which minimize J(θ)

print print θj
plot costVector



OLS Gradient descent

Estimates the same, unbiased parameters for the 

same training set if the linear regression 

assumptions hold (No or little multicollinearity, No  

of auto-correlation of residuals, Homoscedasticity 

etc)

Estimates of parameters are approximations and 

biased. May result in different parameter 

estimates for the same training set and regression 

model.

Computationally expensive in big data contexts. Suitable in big data contexts where number of 

variables and number of observation are very 

large

Can be used to estimate parameters only for 

linear regression models

Can be used (and is used) to estimate 

parameters in nonlinear regression models.

Offers closed formulas (the normal equation) for 

calculating the parameters

Does not offer closed formula. Parameter 

estimates are iteratively calculated

Requires entire training set in RAM Versions of Gradient descent do not require entire 

training set in RAM (e.g. Stochastic Gradient 

descent)

Belongs to the field of linear algebra Belongs to the field of machine learning

Taught and used mainly in social sciences Taught and used mainly in computer science and 

engineering





 We will derive as an example the update 

for parameter θ1 (parameter for an 

independent variable) - the same 

analysis holds for all other parameters

𝝏𝑱 𝜽

𝝏𝜽𝟏
=

𝝏
𝟏
𝟐𝒎

σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)

𝟐

𝝏𝜽𝟏
=

𝟏
𝟐𝒎𝝏σ𝒊=𝟏

𝒎 𝒉𝜽 𝒙(𝒊)
𝟐
− 𝟐𝒉𝜽 𝒙 𝒊 𝒚 𝒊 + 𝒚(𝒊)

𝟐

𝝏𝜽𝟏

=
𝟏

𝟐𝒎

𝝏σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊)

𝟐

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏
+
𝝏σ𝜾=𝟏

𝝁
𝒚(𝒊)

𝟐

𝝏𝜽𝟏
= < 𝒔𝒆𝒆 𝒏𝒆𝒙𝒕 𝒔𝒍𝒊𝒅𝒆 >



=
𝟏

𝟐𝒎

𝝏σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊)

𝟐

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏

=
𝟏

𝟐𝒎
𝟐

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊
𝝏𝒉𝜽 𝒙 𝒊

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏

=
𝟏

𝟐𝒎
𝟐

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 𝒙𝟏
(𝒊)
− 𝟐

𝒊=𝟏

𝒎

𝒙𝟏
(𝒊)
𝒚(𝒊) =

𝟏

𝒎


𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
(𝒊)

𝜽𝟏 ∶= 𝜽𝟏 − 𝜶
𝟏

𝒎


𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
𝒊

Thus the update formula for parameter θ1 becomes

Now do the same for all other 
parameters θ0, θ2, θ3,.... and  
from this we get the closed 
form formulas for the updates 
of all parameters θ.


