

 Investigate and quantify the
relationship between variables in a
dataset using an existing dataset.
› In particular, investigate the effects of one

(or more) variable(s) of the dataset onto the
value of another variable in the dataset.

 How does the value of one variable change
if other variable(s) change value?

 Goal: come up with a model (i.e. a
function) that predicts and explains the
value of one variable based on the
values of other variables.

 In regression, the relationship expressed is
between one variable -called the
dependent variable- and one or more
independent variables

 Important! In regression, dependent
variable takes continuous values
› Independent variables can be of any type

 Relationship between variables take the
form of a function/equation: Aims at
expressing the value of the dependent
variable as a function of the values of other
independent variables.
› Function also referred to as “regression model”,

“regression equation” or plain “regression”.

 Regression equations can take many
different forms
› But does not

 Examples of regression equations/models
› FoodConsumption = 0.78 Income + 1459

 e.g. for quantifying the relationship between
annual FoodConsumption (dependent variable) of
families and their annual income (independent)

› CarValue = PurchaseValue - e(0.88*age) e.g.

 E.g for quantifying the relationship between the
present value of a car (dependent variable) and
the variables purchase value and age
(independent variables).

 Purpose of regression models

› Explain the variance in the dependent

variable based on the values of the

independent variables(s) of the existing

dataset

› Predict the value of the dependent variable

based on the values of the independent

variable(s)

 Regression analysis requires a training set

with observations on these variables from

which the relationship between the

interested variables will be quantified.

 A regression model tries to come up with an

equation that best “fits” the training set.

› There can be many regression equations that fit

the data, but we require the one that fit the best

› This “fit” can assessed and the usefulness of the

model can be determined.

 Terminology

varY = b1varX1 + b2varX2 + b3varX3 +…+ b0

Dependent

variable
Coefficients/

parameters

Independent

variables/Predictors/Regressors

Intercept/bias

 In a regression model, the unknowns are

the coefficients which must be estimated

from the training set

› Estimation of coefficients is done using the

existing training dataset

› Values of the independent variables are not

unknowns-known from the training set

 Types of regression models
› Based on how the value of the dependent

variable changes when the values of the
independent variables or coefficients change
(That’s very, very important and always to keep
in mind – determines the form of the regression
model)
 i.e. how a change in the coefficients/parameters

and independent variables affect the dependent
variable.

 Expressed as rate of change:
ΔY

ΔΧ
,
ΔY

Δb

› Two types
 Linear regression models

 Nonlinear regression models

 Types of regression models

› Linear regression models

 In linear regression models the dependent variable

depends linearly on all the coefficients/parameters

(and only the coefficients!)

 “Depends linearly” means that the rate of change

of the dependent variable -if the coefficient

changes- is independent of the value of the

coefficient (i.e. constant wrt coefficient).

 Linear regression models do not need to depend

linearly on the independent variables!

 Types of regression models

› Linear regression models

 The model Consumption = b1Income + b0 is a linear

model because the value of consumption

depends linearly on all coefficients b of the model:

(e.g. assuming coefficient b1 increases by 1):

𝚫𝐂𝐨𝐧𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧

𝚫𝒃𝟏
=

𝒃𝟏 + 𝟏 𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟎 − 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 − 𝒃𝟎
𝟏

= 𝑰𝒏𝒄𝒐𝒎𝒆

Independent of the value of coefficient b1 that

changed. Hence the model is linear. Model

happens to be also linear with respect to

independent variable Income.

 Types of regression models
› Linear regression models

 Dependent variable does not need to be linear on
the independent variables (can be but not is not
required). This means linear regression models –
when plotted- can form curves.

 This means that all the following regression models
are also linear although they are not linear with
respect to the variables.

𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟐𝑭𝒂𝒎𝒊𝒍𝒕𝒚𝑺𝒊𝒛𝒆𝟑 + 𝒃𝟎

𝑩𝒍𝒐𝒐𝒅𝑷𝒓𝒆𝒔𝒖𝒓𝒆 = 𝒃𝟏𝑺𝒆𝒙 + 𝒃𝟐 𝑨𝒈𝒆 + 𝒃𝟎

𝐥𝐧 𝑰𝒏𝒄𝒐𝒎𝒆 = 𝒃𝟏𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆 + 𝒃𝟐𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆
𝟐 +

𝒃𝟑𝒀𝒆𝒂𝒓𝒔𝑬𝒅𝒖𝒄𝒂𝒕𝒊𝒐𝒏 + 𝒃𝟎

These are

considered

linear models

because you

may substitute

FamilySize3 with

a new variable

say Z

 Types of regression models

› Nonlinear regression models

 In nonlinear regression models the dependent

variable does not depend linearly on all the

coefficients (and only the coefficients!)

 “Does not depend linearly” means that the

rate of change of the dependent variable -if

one of the coefficient changes- is dependent

of the value of the coefficient.

 Types of regression models
› Nonlinear regression models

 The following examples are nonlinear
regression models

𝑹𝒂𝒕𝒆 𝒐𝒇 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒃𝟏𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

𝒃𝟐 + 𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏

Rate of a chemical
reaction and the
concentration of

substance

𝑪𝒓𝒐𝒑 𝒚𝒊𝒆𝒍𝒅 =
𝟏

𝒃𝟏 + 𝒃𝟐𝑪𝒓𝒐𝒑𝑺𝒑𝒂𝒄𝒊𝒏𝒈
𝒃𝟑

 The notion of error in regression models

› Regression model are approximations that

try to fit in the best way possible the real
values of the dependent variable in the

training set.

 Because regression models approximate the

value of the dependent variable, they never

succeed in predicting the real value of the

dependent variable.

 But what is the real value of the dependent variable?

 The notion of error in regression models

› Two types of errors in regression models

 Errors/disturbance

 The difference between the (unobserved) real value of

the dependent variable in the population and the
observed value in the training set. This error can never be

observed or measured because we are unaware of the

real value of the dependent variable in the population.

 Residuals/fitting deviations

 The difference between the dependent value in the

training set and the predicted/estimated value by the
regression model. This can be observed and measured

 The notion of error in regression models
› Errors and residuals are included in the

regression models.

 Adding term ε (for error) when showing the
general model or εi (for residuals) when

› Full specification of a regression model
includes error term e.g.

𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 = 𝒃𝟏𝑰𝒏𝒄𝒐𝒎𝒆 + 𝒃𝟐𝑭𝒂𝒎𝒊𝒍𝒕𝒚𝑺𝒊𝒛𝒆𝟑 + 𝒃𝟎 + 𝜺

› If the error term is not explicitly included in the
regression model, it’s implied.

 This means, there always is an error term!

 More types of regression models

› Simple regression models

 When the regression model includes only 2

variables: one dependent and one

independent variable

 E.g. Income = b1Education + b0

› Multiple regression models

 When the regression model includes more

than 2 variables

 E.g. Income = b1Education + b2Experience + b0

 Who comes up with regression models and
how?
› Domain experts (economist, statisticians,

engineers, etc)

 Theory
 Read the relevant literature and identify factors that

affect the value of the dependent variable

 Look at the data and how it changes
 From existing data, see how the dependent variable

changes when the independent variables change

 Trial and error
 Begin by trying simple regression models and assess the

results. Continue by modifying the model if results are not
appropriate.

 Who comes up with regression models?

› Don’t forget: Regression models are

approximations that try to fit the best way

possible the data in the training set.

 In a regression model, the problem is
estimating the coefficients/parameters that
will indicate the relationships between the
variables
› Coefficients/parameters are estimated from an

existing dataset (training set) which is required.

Tid House
Price

Marital
Status

Income
m2House

1 190K Single 125K 180

2 145K Married 100K 154

3 101K Single 70K 110

4 187K Married 120K 167

5 109K Divorced 95K 110

6 96K Married 60K 90

7 200K Divorced 220K 190
10

Training

set.

Income = b1m
2House + b0

Unknowns are the parameters b

(independent variables known from

training set). The parameters b of this

regression model are estimated

using the training set. The goal: find

the best values of b which best fit the

values of the dependent variable in

the training set.

 Different methods to estimate

parameters based on the type of the

regression model

› Linear vs Nonlinear

 The general idea: Estimation of

parameters in regression model (linear or

nonlinear) involves a Cost function (also

called “Loss function”) that needs to be

minimized.

 Cost function tries to measure how big
the error of the regression model is when
estimating the value of the dependent
variable
› Essentially, this is the sum of residuals which is

to be minimized

› Cost functions can have many different
forms

 Depending on the purpose

 The form of the cost function determines the
type of regression: Ordinary Least Squares
(OLS), LASSO, Quantile etc

 Linear regression models have the

following general form:

𝒀 = 𝒃𝟏𝑿𝟏 + 𝒃𝟐𝑿𝟐 + 𝒃𝟑𝑿𝟑 +⋯𝒃𝒌𝑿𝒌 + 𝒃𝟎 + 𝜺

Where:

Y: Dependent variable
Xi : Independent variable i

bi: Parameter to be estimated

ε: Error term

 Since linear regression models try to fit the

available training data, the linear regression

model can also be written in the form:

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

Where:
Yi : Value of dependent variable in observation i in training set

Xki : Value of independent variable k in observation i of the

training set
bi: Parameter to be estimated

ei : Residual of the i-th observation in the training set

 If there are n observations in the training

set, then there will be n equations, one

for each observation, of the form:

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

 Because parameters are estimated from the
training set and not the truly real values of
the variables (remember: the training set is
just a sample), the estimates are mentioned
in the regression model

𝒀𝒊 = 𝒃𝟏𝑿𝟏𝒊 + 𝒃𝟐𝑿𝟐𝒊 + 𝒃𝟑𝑿𝟑𝒊 +⋯+ 𝒃𝒌𝑿𝒌𝒊 + 𝒃𝟎 + 𝒆𝒊

Where:
𝒀𝒊 : The estimated value of the dependent variable
𝒃𝒊 : The estimated value of the parameter i.

 Regression model in matrix notation

› It’s customary to represent these n regression

equation in matrix notation. If we define:

𝒀 =

𝒀𝟏
𝒀𝟐…
𝒀𝒏

𝑿 =

𝟏 𝑿𝟏𝟏 𝑿𝟐𝟏 … 𝑿𝒌𝟏
𝟏 𝑿𝟏𝟐 𝑿𝟐𝟐 … 𝑿𝒌𝟐
𝟏 𝑿𝟏𝟑 𝑿𝟐𝟑 … 𝑿𝒌𝟑
… … … … …
𝟏 𝑿𝟏𝒏 𝑿𝟐𝒏 … 𝑿𝒌𝒏

𝒃 =

𝒃𝟎
𝒃𝟏
𝒃𝟐
…
𝒃𝒌

𝒆 =

𝒆𝟏
𝒆𝟐
𝒆𝟑
…
𝒆𝒏

› Then the n linear regression equations, derived from

the training set, can be written in matrix form:

𝒀 = 𝑿𝒃 + 𝒆 If you carry out the operations, you’ll

get tne n linear regression equations

as vectors.

The matrix form makes it easier to

calculate the parameters.

Matrix of values of

independent variables in

training set.

 Two methods for estimating the

parameters of linear regression models

› Ordinary Least Squares (OLS)

› Gradient Descent and its variations

 Each of the above method appropriate

in specific situations.

 Ordinary Least Square (OLS) Regression

› In OLS the cost function is the Sum of

Squared Errors (SSE) i.e. sum of residuals

which must be minimized:

𝑺𝑺𝑬 =

𝒊=𝟏

𝒏

𝒆𝒊
𝟐 =

𝒊=𝟏

𝒏

𝒀𝒊 − 𝒀𝒊
𝟐

› The parameters b which minimize the above

SSE are the parameter estimates of the linear

regression model that best fit the training data.

𝒀𝒊 = Value of the dependent variable in observation i of the training set
𝒀𝒊 = Estimated value by the linear regression model for the values of the

independent variables in observation i in the training set.

 Ordinary Least Square (OLS) Regression

› How is the Cost function (SSE) minimized in OLS?

› First write SSE in matrix notation as a function of

the vector b

𝑺𝑺𝑬 𝒃 = 𝒆𝑻𝒆 = 𝒀 − 𝑿𝒃
𝑻
(𝒀 − 𝑿𝒃)

› And then minimize the Cost function (SSE) by
solving the equation of partial derivatives:

𝝏𝑺𝑺𝑬 𝒃

𝝏𝒃
= 𝟎

This equation has a closed form
solution due to the form of the
linear regression. Solving this will
calculate the vector b that
minimizes the SSE and hence
finds the parameters we are
looking for.

 Ordinary Least Square (OLS) Regression

› The closed form solution derived from the

previous equation for estimating the parameters

b of a linear regression model in matrix form is:

› The above closed form formula – called normal
equation - gives you the vector of parameters
estimates b, based on the matrix of values of the
independent variables X and the matrix of the
values of the dependent variable Y in the training
set, which minimize SSE and hence what we were
looking for.

𝒃 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀

 Gradient descent
› While OLS minimizes the SSE in a very specific way (by

finding the values of b who yield the partial
derivative to zero) leading to a closed form formula
(the normal equation) for estimating the parameters,
Gradient descent minimizes the cost function in a
very different way.

› Gradient descent is an iterative, numerical
optimization method for minimizing the cost function
and thus finding the parameter estimates.

 i.e. Gadient descent does not offer a closed form
formula like the normal equation in OLS for calculating
the parameters.

 “iterative” ? Tries to guess the proper values of the
parameters that lead to minimizing the cost function

 Gradient descent

› Why Gradient descent?

 OLS has one big concern: The normal equation

requires inversion of a matrix:

𝒃 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀

Matrix inversion

 Matrix inversion is a very expensive operation. If
the XTX matrix has 100 variables (is an 100x100
matrix), since an inversion requires n3 operations
(n=dimension of matrix) on average, it would
require ~1000000 operations to invert the matrix.

 OLS not suitable for big data!

 Gradient descent
› Why Gradient descent?

 Gradient descent performs much better –in
terms of execution times/number of
operations- in big data contexts than OLS and
in such situations it’s exclusively used.
 There are even versions that increase the

performance of the algorithm

› Warning! Gradient descent uses a different
notation for the multiple linear regression
model:

𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

𝜽𝒋 = Parameter j (to be estimated) 𝒙𝒋
(𝒊)

= Value of independent variable j in

observation i in training set

 Cost function in Gradient descent

› In Gradient descent the cost function is

called the mean squared error, J(θ)

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Where:

𝜽𝒊 = (Unknown) parameter i of the linear regression model from a total of

k+1 parameters

𝒎 = Number of observation in training set

𝒉𝜽() = The estimated value of the linear regression model for the values of

the independent variables at observation i in training set.

𝒙(𝒊) = The values of the independent variables of observation i in training set

𝒚(𝒊) = The value of the dependent variable of observation i in training set

 Cost function in Gradient descent

› Gradient descent attempts to minimize the

cost function J(θ) by finding/estimating the

proper values of parameters θ.

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Often abbreviated simply

as J(θ).

 Cost function in Gradient descent

› Cost function has things in common with the

cost function (i.e. SSE) in OLS.

𝑱(𝜽𝟎, 𝜽𝟏, … , 𝜽𝜿) =
𝟏

𝟐𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)
𝟐

Sum of squared errors in OLS

Why divide by 2m? m because of
two reasons: i) it’s the mean squared
error and ii) it yields to smaller
numbers which is important due to

the numerical nature of the method.
Also, include the constant 2 in
denominator to make things simpler
as it’s shown later on (hint: it will be
eliminated). However, these terms
do not affect the minimization
process.

𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

Form of the linear regression model, with

θ the unknown parameters, is:

 Cost function in Gradient descent

› Cost function in matrix form

𝑱 𝜽 =
𝟏

𝟐𝒎
𝑿𝜽 − 𝒚 𝑻 𝑿𝜽 − 𝒚 =

𝟏

𝟐𝒎
𝑿𝜽 − 𝒚 𝟐

𝒚 =

𝒚𝟏
𝒚𝟐…
𝒚𝒏

𝑿 =

𝟏 𝑿𝟏𝟏 𝑿𝟐𝟏 … 𝑿𝒌𝟏
𝟏 𝑿𝟏𝟐 𝑿𝟐𝟐 … 𝑿𝒌𝟐
𝟏 𝑿𝟏𝟑 𝑿𝟐𝟑 … 𝑿𝒌𝟑
… … … … …
𝟏 𝑿𝟏𝒏 𝑿𝟐𝒏 … 𝑿𝒌𝒏

𝜽 =

𝜽𝟎
𝜽𝟏
𝜽𝟐
…
𝜽𝒌

Vector of dependent variables

Matrix of independent variables
with first columns all 1s

Vector of estimated parameters

Where:

Note: square each
element of vector

Sum of all elements
to get pure number
of J(θ).

 Cost function

› A note on notation: cost function in gradient

descent uses different notation (θ instead of

b for parameters, hθ() for linear regression

model, J(θ) for cost function)

› This is because Gradient descent originated

from a different field. One of the first

algorithms which founded the area of
machine learning in applied mathematics

› We use the same notation used by

contemporary literature.

 General idea of estimating the

parameters θ with Gradient descent

which minimize the cost function J(θ)

› Start with initial, random values for the

parameters θ

› Update/Change the values of the
parameters θ in a way that yield to smaller

value of the cost function J(θ)

› Continue changing values of θ iteratively

until the smallest value of J(θ) is attained.

The general idea of

Gradient descent.

Assume a simple linear

regression model hθ(x) = θ0

+ θ1x

The cost function of such

linear regression model,

J(θ), will be convex and an

example cost function is

depicted on the left.

Gradient descent tries to

modify the values of all the

parameters θ iteratively,

towards the smallest value

of J(θ).

 How to change the values of parameters θ in
order to minimize J(θ)?
› The value of the first partial derivative of the cost

function J(θ) with respect to a parameter θj will tell us
how we need to modify the parameter θj (leaving all
other parameters constant) to achieve a smaller
value of J(θ).

 Remember from your math:
› If the value of the first derivative of a function f(x) with

respect to x is at some point x0

 positive (>0), an increase of x0 leads to an increase of
f(x). A decrease of x0 leads to decrease of f(x)

 negative (<0), an increase of x0 leads to an decrease of
f(x). A decrease of x0 leads to increase of f(x)

 is equal to zero (=0), an increase of x0 leads to an
increase or decrease of f(x) (has a point of deflection at
x0).

 How to change the values of parameters

θ in order to minimize J(θ)?

› In essence, the value of the first derivative

with respect to some x tells us if x needs to

increase or decrease in order to achieve a

smaller value of the function f(x).

 Value of the first derivative tells us the direction

of change of variable x (increase or

decrease).

 How to change the values of parameters θ
in order to minimize J(θ)?
› J(θ) is a multivariate function, where the

parameters θj are the unknown variables.

› To apply the derivative technique, we will use
the first partial derivative wrt to one θj parameter
and leaving other θs constant i.e. calculate the

value of
𝝏𝑱 𝜽

𝝏𝜽𝒋
. If this value is positive, a decrease

of θj will decrease the cost function, if it’s
negative, an increase of θj will decrease the
cost function J(θ).

 Do this for all parameters θ to see how they need
to change i.e. calculate 𝜵𝑱 𝜽

 Do this iteratively to get an even smaller value J(θ)

 How to change the values of parameters θ
in order to minimize J(θ)?
› A more clear example

 if initial parameters of θ = (θ0, θ1, θ2, ..., θk) and at
that point the cost function is J(θ), then if the value

of
𝝏𝑱 𝜽

𝝏𝜽𝟐
is negative, this means that a small increase

(update/change) of parameter θ2 leading to
parameters θ’ = (θ0, θ1, θ2+ε ..., θk) (leaving all other
θs the same) will decrease J(θ). If it’s positive,
decrease θ2 to get θ’ = (θ0, θ1, θ2-ε ..., θk) , to get a
smaller J(θ).
 i.e. J(θ’) < J(θ)

 Do the same for each and all θs in the linear
regression model and update their values
accordingly.

 Do such update for each θ iteratively (i.e. many
times over).

 How to change the values of parameters

θ in order to minimize J(θ)?

› In Gradient descent, each parameter is

updated/changed, at each iteration, using

the following formula:

𝜽𝒋 ≔ 𝜽𝒋 − 𝜶
𝝏𝑱 𝜽

𝝏𝜽𝒋
α is a real value > 0, called the learning rate. It is a constant
given as input to gradient descent. While the partial
derivative will give us the direction in which the cost function
will decrease, it does not specify how big the increase of θ
should be. This is specified by the value of the learning rate
α. Can be imagined as the step by which the θ will change.

Setting the appropriate value for α is very important and
affects the significantly the algorithm.

 How to change the values of parameters θ in
order to minimize J(θ)?
› For a multiple linear regression model, you can actually

calculate
𝝏𝑱 𝜽

𝝏𝜽
for all θs, resulting in the following

update formulas for the parameters θ:

𝜽𝟎 ∶= 𝜽𝟎 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊

𝜽𝒋 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝒋
𝒊

Update for the
constant
term/intercept

Form of linear regression model: 𝒉𝜽 𝒙 𝒊 = 𝜽𝟏𝒙𝟏
(𝒊)

+ 𝜽𝟐𝒙𝟐
(𝒊)
+⋯+ 𝜽𝒌𝒙𝒌

𝒊
+ 𝜽𝟎 + 𝜺

Update for all
other parameters
in the linear
regression model

Where

m: number of observations in training set

hθ(x(i)) : value of linear regression model for the values of independent variables in observation i of the training set

y(i) : value of the dependent variable in observation i of the training set

α : learning rate

xj
(i): value of independent variable xj in observation i of the training set

 How to change the values of parameters

θ in order to minimize J(θ)?

› In matrix form, the previous update formulas

for parameters θ can be written as

𝜽 ∶= 𝜽 − 𝜶
𝟏

𝒎
𝑿𝑻 𝑿𝜽 − 𝜰

Where:
m: Number of observations in training set
𝜽 : The vector of (k+1) parameters of the linear regression model

𝑿 : The mx(k+1) matrix of values of independent variables in the
linear regression model, with the first column all 1 (ones).

𝒀 : The vector of m values of the dependent variables in the

training set

α : the learning rate, given as input

 Gradient descent algorithm

› Pseudocode

Initialize vector of parameters θ with random values

Initialize costVector # We will store the value of the cost function for each

iteration in this vector.

α = 0.01 # Set learning rate. See later how to come up with an appropriate value.

Start iterations of Gradient descent

while termination conditions not met {

update θ vector with

calculate value of cost function J(θ) for the newly calculated values of θ

Store value of cost function into vector costVector

}

Vector θ will contain the estimated parameters which minimize J(θ)

print θ vector # Print the estimated parameters

plot costVector # Plot the costVector

𝜃 ∶= 𝜃 − 𝛼
1

𝑚
𝑋𝑇 𝑋𝜃 − 𝛶

 Gradient descent usually depicted as a

contour plot
Convergence of θs to

the values which

minimize J(θ) is

usually depicted as

Contour plot.

In a Contour plot,

each circle represents

the values of θ that

lead to the same

value of J(θ).

 When does Gradient descent terminate?
› 3 possible termination conditions

 When a predefined number of iterations have
been completed. Typical number of iterations
are n=50, 20000 or greater depending how fast
the algorithm converges

 When the improvement of the cost function is
smaller than a predefined value

 Early stopping. With the current “version” of
the cost function, calculate the cost on a
validation set (different from training set) at
each iteration. Compare the two consecutive
values of J(θ) and if J(θ) starts to increase,
terminate the algorithm. Used to address
overfitting.

 Gradient descent algorithm with predefined

number of iterations as termination condition

Initialize vector of parameters θ with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration

here

α = 0.01 # Setting the learning rate

numIterations = 10000 # Number of iterations to carry out

n = 0 # How many iterations we have done

while n < numIterations {

update θ vector with

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

n = n + 1 # Next iteration

}

Vector θ will contain the estimated parameters which minimize J(θ)

print θ vector

plot costVector

𝜃 ∶= 𝜃 − 𝛼
1

𝑚
𝑋𝑇 𝑋𝜃 − 𝛶

 The learning rate α

› Setting the learning rate α to the proper value is

critical!

 Determines if and how fast Gradient descent

converges to the minimum of the cost function.

 If the value of the learning parameter is too small,

Gradient descent may converge very slowly

 If the value of the learning parameter is too large,

Gradient descent may not converge at all to the

proper values of θ which minimize J(θ)

› How to check if learning parameter α is too

small, too big or just appropriate?

 Empirically, plot the cost function and see its shape

 The learning rate α

› Appropriate value of learning rate

If the value of the

learning rate is

appropriate, the cost

function J(θ) plotted

against the number of

iterations will have

such shape. Cost

function shows a

steep drop and then a

gradual improvement.

To check if the

selected value is

appropriate, run

Gradient descent and

plot the cost function.

 The learning rate α

› Too small value of the learning rate α

If the value of the

learning rate is too

small, the cost

function J(θ) plotted

against the number of

iterations will have

such shape.

This means Gradient

descent will converge

very, very slowly to

the appropriate

values of θs that

minimize J(θ).

 The learning rate α

› Too big value of the learning rate α

If the value of the

learning rate is too

big, the cost function

J(θ) plotted against

the number of

iterations will have

such a shape. The

cost function

increases with each

iteration.

 The learning rate α

› Too big value of the learning rate α

If the value of the learning

rate α is too big, Gradient

descent may overshoot the

proper values of θ that

minimize the cost function.

Overshooting happens

because the value of α is too

big and hence the update θj

= θj - α
𝝏𝑱 𝜽

𝝏𝒋
the new values of

θj may increase by too

much, missing the values for

which J(θ) is minimized.

Gradient descent then

diverges from the proper
values of θs.

 The learning rate α

› Appropriate values for learning rate?

 Typical values of the learning rate α are 0.001, 0.01,

0.1

 Execute Gradient descent with such values of the

learning rate α and plot the cost function J(θ) as a

function of the number of iterations. Compare the

shape of the plot with the plots shown previously.

 If learning rate is too small, increase it by some

amount e.g. from 0.01 to 0.03. Execute Gradient

descent again and plot the cost function. Stop if

the plot of the cost function has the appropriate

shape.

 The version of Gradient descent

discussed previously is the “plain vanilla”

style of the algorithm also known as

“Batch Gradient Descent”

 Two other versions of Gradient Descent

available that improve performance

dramatically in Big data settings:

› Stochastic gradient descent - SGD

› Mini-Batch gradient descent - MBGD

 Why the need to improve the performance

of Gradient descent?

› If number of observations in training set is large

(e.g. 10000000 observations/records or more),

there are two main concerns with Batch Gradient

descent:

 Entire training set must be stored into memory (RAM)

 Update formulas must iterate over the entire training

set to calculate on step for all parameters in each

iteration.

 In such settings, Batch Gradient descent is

computationally expensive!

 Concern: Entire training set into memory
› Looking at the matrix form of the update

formula: Does is fit into memory?

𝜽 ∶= 𝜽 − 𝜶
𝟏

𝒎
𝑿𝑻 𝑿𝜽 − 𝜰

To execute this calculation, the entire matrix of the values of
the independent variables X must be loaded into the main
memory (RAM). What if it does not fit into RAM? E.g. if there
are 10000000 observations and 50 numeric variables, you’ll
need to store 10000000 * 50 = 500000000 numbers and since
each number requires at least 4 bytes you need 500000000 *
4= 2000000000 bytes of data in RAM or ~1.8GB of RAM. Do
you have it?

 Concern: Iterate over the entire training set at
each iteration
› Looking at the analytic formula indicates better the

problem (Note: the same argument holds for the
matrix form, but it’s clearer in the analytic form of the
update formula): Can be slow in big data contexts

If the training set has m=10000000 observations, we iterate
over all 10000000 observations just make one (1) update to
one (1) parameter at one (1) iteration! Considering that we
have many parameters, we traverse the 10000000
observations many times at each iteration. This makes Batch
Gradient descent slow.

𝜽𝒋 ∶= 𝜽𝒋 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝒋
𝒊

 Why the need to improve the

performance of Gradient descent?

› The solution in such big data environments is

simply not to iterate over the entire training set

at each iteration!

› The two other versions of Bath Gradient

descent treat/scan the training set differently

 Stochastic Gradient Descent - SGD
› At each iteration, SGD uses only one observation

of the training set to update the parameters
(instead of the entire training set in GD)

Initialize all parameters θj with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration here

α = 0.01 # Setting the learning rate

Randomly shuffle the training set # To ensure that the observations do not have some kind of order

while termination criteria not met{

Calculate cost function and store its value in costVector

for each observation i in training set {

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗

𝑖

}

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj
n = n + 1 # Next iteration

}

Vector θ will contain the estimated parameters which minimize J(θ)

print θj
plot costVector

 Pros/Cons of SGD
› Pros

 It’s a so-called online algorithm – you see the
update of parameters immediately, in a
sequential fashion, during their estimation i.e. in
real time. That’s not possible with Batch GD

 Does not require entire training set in memory

 Avoids local minima of J(θ)

› Cons

 Can be noisy i.e. parameters jump around at
each epoch with greater variance between
epochs (epoch = one update of all
parameters)

 Mini-Batch Gradient Descent - MBGD
› MBGD does not use one single observation of the

training set to update the parameters. It uses a
“small batch” of training set observations –
typically between 2 and 100 observation in each
batch.

 To do this, we cut the large training set into smaller
training subsets, and use these to update the
parameters at each step

 It’s a method “between” the extremes of Batch
Gradient descent (which uses entire training set for
each parameter update) and Stochastic Gradient
descent which uses only one observation to update
the parameters.

 Mini-Batch Gradient descent

Initialize all parameters θj with random values

Initialize costVector # We will store the value of the cost function J(θ) for each iteration here

α = 0.01 # Setting the learning rate

Randomly shuffle the training set # To ensure that the observations do not have some kind of order

Cut the training set into batches/subsets bi each of size nb such that bi*nb =m # Note: last batch
might be smaller than nb
while termination criteria not met{

Calculate cost function and store its value in costVector

for each batch bi {

for each parameter θj {

Set new value of parameter 𝑛𝑒𝑤𝜃𝑗
∶= 𝜃𝑗 − 𝛼 σ𝜄=1

𝑛𝑏 ℎ𝜃 𝑥 𝑖 − 𝑦 𝑖 𝑥𝑗
𝑖

}

calculate value of cost function J(θ) for the newly estimated values of θ

Store value of cost function into vector costVector

}

θj := newΘj # update all parameters with new values

n = n + 1 # Next iteration

}

Vector θ will contain the estimated parameters which minimize J(θ)

print print θj
plot costVector

OLS Gradient descent

Estimates the same, unbiased parameters for the

same training set if the linear regression

assumptions hold (No or little multicollinearity, No

of auto-correlation of residuals, Homoscedasticity

etc)

Estimates of parameters are approximations and

biased. May result in different parameter

estimates for the same training set and regression

model.

Computationally expensive in big data contexts. Suitable in big data contexts where number of

variables and number of observation are very

large

Can be used to estimate parameters only for

linear regression models

Can be used (and is used) to estimate

parameters in nonlinear regression models.

Offers closed formulas (the normal equation) for

calculating the parameters

Does not offer closed formula. Parameter

estimates are iteratively calculated

Requires entire training set in RAM Versions of Gradient descent do not require entire

training set in RAM (e.g. Stochastic Gradient

descent)

Belongs to the field of linear algebra Belongs to the field of machine learning

Taught and used mainly in social sciences Taught and used mainly in computer science and

engineering

 We will derive as an example the update

for parameter θ1 (parameter for an

independent variable) - the same

analysis holds for all other parameters

𝝏𝑱 𝜽

𝝏𝜽𝟏
=

𝝏
𝟏
𝟐𝒎

σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊) − 𝒚(𝒊)

𝟐

𝝏𝜽𝟏
=

𝟏
𝟐𝒎𝝏σ𝒊=𝟏

𝒎 𝒉𝜽 𝒙(𝒊)
𝟐
− 𝟐𝒉𝜽 𝒙 𝒊 𝒚 𝒊 + 𝒚(𝒊)

𝟐

𝝏𝜽𝟏

=
𝟏

𝟐𝒎

𝝏σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊)

𝟐

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏
+
𝝏σ𝜾=𝟏

𝝁
𝒚(𝒊)

𝟐

𝝏𝜽𝟏
= < 𝒔𝒆𝒆 𝒏𝒆𝒙𝒕 𝒔𝒍𝒊𝒅𝒆 >

=
𝟏

𝟐𝒎

𝝏σ𝒊=𝟏
𝒎 𝒉𝜽 𝒙(𝒊)

𝟐

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏

=
𝟏

𝟐𝒎
𝟐

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊
𝝏𝒉𝜽 𝒙 𝒊

𝝏𝜽𝟏
− 𝟐

𝝏σ𝜾=𝟏
𝝁

𝒉𝜽 𝒙 𝒊 𝒚 𝒊

𝝏𝜽𝟏

=
𝟏

𝟐𝒎
𝟐

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 𝒙𝟏
(𝒊)
− 𝟐

𝒊=𝟏

𝒎

𝒙𝟏
(𝒊)
𝒚(𝒊) =

𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
(𝒊)

𝜽𝟏 ∶= 𝜽𝟏 − 𝜶
𝟏

𝒎

𝒊=𝟏

𝒎

𝒉𝜽 𝒙 𝒊 − 𝒚 𝒊 𝒙𝟏
𝒊

Thus the update formula for parameter θ1 becomes

Now do the same for all other
parameters θ0, θ2, θ3,.... and
from this we get the closed
form formulas for the updates
of all parameters θ.

