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Investigate and quantify the
relationship between variables in a
dataset using an existing dataset.

In particular, investigate the effects of one
(or more) variable(s) of the dataset onto the
value of another variable in the dataset.

How does the value of one variable change
If other variable(s) change value®?
Goal: come up with a model (i.e. o
function) that predicts and explains the
value of one variable based on the
values of other variables.



In regression, the relationship expressed is
between one variable -called the
dependent variable- and one or more
independent variables

Important! In regression, dependent
variable takes continuous values

Independent variables can be of any type

Relationship between variables take the
form of a function/equation: Aims at
expressing the value of the dependent
variable as a function of the values of other
Independent variables.

Funcftion also referred fo as “regression model”,
“regression equation” or plain “regression’.



Regression analysis

Regression equations can take many
different forms

But does not

Examples of regression equations/models

FoodConsumption = 0.78 Income + 1459

e.g. for quantifying the relationship between
annual FoodConsumption (dependent variable)) of
families and their annual income (independent

CarValue = PurchaseValue - e(0.88*age) e.g.

E.g for quantitying the relationship between the
present value of a car (dependent variable) and
the variables purchase value and age

(independent variables). /



Purpose of regression models

Explain the variance in the dependent
variable based on the values of the
independent variables(s) of the existing
dataset

Predict the value of the dependent variable
based on the values of the independent
variable(s)



Regression analysis requires a training set
with observations on these variables from
which the relationship between the
Intferested variables will be quantified.

A regression model tries to come up with an
equation that best “fits” the training set.

There can be many regression equations that fif
the data, but we require the one that fit the best

This “fit" can assessed and the usefulness of the
model can be determined.
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Regression analysis

® Terminoloc

varY = b,varX, + b,varX, + byvarX; +...+ b,

-




In a regression model, the unknowns are
the coefficients which must be estimated

from the training set
Estimation of coefficients is done using the
existing fraining dataset

Values of the independent variables are not
unknowns-known from the training set



Types of regression models

Based on how the value of the dependent
variable changes when the values of the
mdependen’r variables or coefficients change
(That's very, very important and always to keep

IN Mind — determines the form of the regression
model)

l.e. how a change in the coefficients/parameters

and independent variables affect the dependent
variable.

Expressed as rate of change: aY &Y

AX ’ Ab
Two types
Linear regression models
Nonlinear regression models



Regression analysis

Types of regression models

Linear regression models

In linear regression models the dependent variable
depends linearly on all the coefficients/parameters
(and only the coefficients!)

“Depends linearly” means that the rate of change
of the dependent variable -if the coefficient
changes- is independent of the value of the
coefficient (i.e. constant wrt coefficient).

Linear regression models do not need to depend

linearly on the independent variqbles!/




Regression analysis

Types of regression models

Linear regression models

The model Consumption = b,Income + b, is a linear
model because the value of consumption
depends linearly on all coefficients b of the model:
(e.g. assuming coefficient b, increases by 1):

AConsumption (b + 1)Income + by — byIncome — b,

= Income

Ab, 1 /

Independent of the value of coefficient b, that
changed. Hence the model is linear. Model
happens to be also linear with respect to
independent variable Income.




Types of regression models

Linear regression models

Dependent variable does not need to be linear on
the independent variables (can be but not is not
required). This means linear regression models —
when plofted- can form curves.

This means that all the following regression models
are also linear although they are not linear with
respect to the variables.

/ Consumption = byIncome + b,FamiltySize3 + b,

BloodPresure = by;Sex + b,./Age + by

These are
considered

linear models . .
becalse you In (Income) = by{Experience + sz;vcperlence2 +

may substituie | haYearsEducation + b
FamilySize3 with

a new variable ,
say Z /




Regression analysis

Types of regression models

Nonlinear regression models

In nonlinear regression models the dependent
variable does not depend linearly on all the
coefficients (and only the coefficients!)

“Does not depend linearly” means that the
rate of change of the dependent variable -if
one of the coefficient changes- is dependent

of the value of the coefficient.




eg =1le]aNelale ‘y SIS

® Types of regression models

> Nonlinear regression models

- The following examples are nonlinear
regression models

b,Concentratio

Rate of reaction =
/ b, + Concentration

1

Crop yield =



The notion of error in regression models

Regression model are approximations that
try to fit in the best way possible the real
values of the dependent variable in the

training set.

Because regression models approximate the
value of the dependent variable, they never
succeed in predicting the real value of the

dependent variable.
But what is the real value of the dependent variable?

e



Regression analysis

The notion of error in regression models

Two types of errors in regression models
Errors/disturbance

The difference between the (unobserved) real value of
the dependent variable in the population and the
observed value in the fraining set. This error can never be
observed or measured because we are unaware of the
real value of the dependent variable in the population.

Residuals/fitting deviations

The difference between the dependent value in the
training set and the predicted/estimated value by the
regression model. This can be observed and measured

.




The notion of error in regression models

Errors and residuals are included in the
regression models.

Adding term ¢ (for error) when showing the
general model or g (for residuals) when

Full specification of a regression model
Includes error term e.g.

Consumption = b;Income + b,FamiltySize> + by + ¢

If the error term is not explicitly included in the
regression model, it's implied.

This means, there always is an error term!

7



More types of regression models

Simple regression models

When the regression model includes only 2
variables: one dependent and one
Independent variable

E.g. Income = b,Education + b,

Multiple regression models

When the regression model includes more
than 2 variables
E.g. Income = b,Education + b,Experience + b,



Who comes up with regression models and
how?

Domain experts (economist, statisticians,
engineers, etc)

Theory

Read the relevant literature and identify factors that
affect the value of the dependent variable

Look at the data and how it changes

From existing data, see how the dependent variable
changes when the independent variables change

Trial and error

Begin by trying simple regression models and assess the
results. Continue by modifying the model if results are not
appropriate.

P
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Regression analysis

® Who comes up with regression models?

> Don’t forget: Regression models are
approximations that try to fit the best way
possible the data in the training set.







Estimating parameters

In a regression model, the problem is
estimating the coefficients/parameters that
will indicate the relationships between the
variables

Coefficients/parameters are estimated from an
existing dataset (training set) which is required.

Tid House Marital Income

Price  Status m2House
Single Income = b,m2House + b,
Married
Training Single Unknowns are the parameters b
set — EEe (independent variables known from

training set). The parameters b of this

Divorced regression model are estimated

using the training set. The goal: find
the best values of b which best fit the
values of the dependent variable in
the training set.

Married

Divorced




Different methods to estimate
parameters based on the type of the
regression model

Linear vs Nonlinear

The general idea: Estimation of
parameters in regression model (linear or
nonlinear) involves a Cost function (also
called “Loss function”) that needs to be
minimized.



Cost function tries to measure how big
the error of the regression model is when
estimating the value of the dependent
variable

Essentially, this is the sum of residuals which is
to be minimized

Cost functions can have many different
forms
Depending on the purpose

The form of the cost function defermines the
type of regression: Ordinary Least Squares
(OLS), LASSO, Quantile etc

P






Estimating parameters

© Linear regression models have the
following general form:

Y = b1X1+b2X2+ 3+°°'kak+bO+£




Estimating parameters

- Sincé“““““"“‘i‘“n~-eOr regression models try to fit the
available training data, the linear regression
model can CI|SO be written in the form:

Yi — leli ~+ bZXZi +b X3i + -+ kaki T bO + €




\

Estimating parameters

@ If there are n observations in the fraining
sef, then there will be n equations, one
for each observation, of the form:

Yi = b1X1i + bZXZi + b3X3i + --- + kaki + b() + €;




Estimating parameters

® Because parameters are estimated from the
training set and not the truly real values of
the variables (remember: the training set is
just a sample), the estimates are mentioned
INn The regression model

?i . leli A BZXZi + BBX3i ++ Bkai + BO + €




Regression model in matrix notation

It's customary to represent these n regression
equation in matrix notation. It we define:

Matrix of values of
independent variablesin | ———

fraining set. 1 X11 X21 Xk1_ —’BO— ey
Yy 1 Xi2 Xz - Xi2|  |by e,

? = YZ X=|1 X13 X23 Xk3 b = BZ e=|€3

| 1 Xln in aas an_ —Bk— —en—

Then the n linear regression equations, derived from
the training set, can be written in matrix form:

’Y\ — XB _|_ e If you carry out the operations, you'll
get tne n linear regression equations

as vectors.
The matrix form makes it easier to
calculate the parameters.




Two methods for estimating the
parameters of linear regression models
Ordinary Least Squares (OLS)
Gradient Descent and its variations

Each of the above method appropriate
INn specific situations.






Estimating parameters

Ordinary Least Square (OLS) Regression

In OLS the cost function is the Sum of
Squared Errors (SSE) i.e. sum of residuals
which must be minimized:

n n
SSE = 2 e% — E(Yl — ?i)z
=1 =1

Y; = Value of the dependent variable in observation i of the training set
Y; = Estimated value by the linear regression model for the values of the
independent variables in observation i in the fraining set.

The parameters b which minimize the above

SSE are the parameter estimates of the linear
regression model that best fit the training data.



Ordinary Least Square (OLS) Regression
How is the Cost function (SSE) minimized in OLS?

First write SSE in matrix notation as a function of
the vector b

SSE(D) = eTe = (Y — Xb) (Y — Xb)

And then minimize the Cost function (SSE) by
solving the equation of parfial derivatives:

This equation has a closed form

N solution due to the form of the
GSSE(b) linear regression. Solving this will
— — O calculate the vector b that
ab minimizes the SSE and hence

finds the parameters we are
looking for.




Ordinary Least Square (OLS) Regression

The closed form solution derived from the
previous equation for estimating the parameters
b of a linear regression model in matrix form is:

b=(X"X) X"y

The above closed form formula - called normal
equation - gives you the vector of parameters
estimates b, based on the mafrix of values of the
iIndependent variables X and the matrix of the
values of the dependent variable Y in the training
set, which minimize SSE and hence what we were

looking for.







Estimating paramefters

Gradient descent

While OLS minimizes the SSE in a very specific way (by
finding the values of b who yield the partial
derivative to zero) leading to a closed form formula
(the normal equation) for estimating the parameters,
Gradient descent minimizes the cost function in a
very different way.

Gradient descent is an iterative, numerical
optimization method for minimizing the cost function
and thus finding the parameter estimates.

l.e. Gadient descent does not offer a closed form

formula like the normal equation in OLS for calculating
the parameters.

“iterative” ¢ Tries to guess the proper values of the
parameters that lead fo minimizing the cost function

.




Estimating paramefters

Gradient descent

Why Gradient descente

OLS has one big concern: The normal equation
requires inversion of a mafrix:

b=(X"X) X'y

Y
Maftrix inversion

Matrix inversion is a very expensive operation. If
the XT™X matrix has 100 variables (is an 100x100
maltrix), since an inversion requires N3 operations
(h=dimension of matrix) on average, it would

require ~1000000 operations to invert the matrix.
OLS not suitable for big data!




Gradient descent

Why Gradient descente

Gradient descent performs much better —in
terms of execution times/number of
operations- in big data contexts than OLS and
In such situations it’s exclusively used.

There are even versions that increase the
performance of the algorithm

Warning! Gradient descent uses a different
notation for the multiple linear regression
model:

ho(x®) = 0,29+ 0,2 + -+ 0,2 + 0y + £

0; = Parameter j (to be estimated) x](.i) = Value of independent variable jin
observation iin Trg)}rﬂ/ng set



Estimating paramefters

Cost function in Gradient descent

In Gradient descent the cost function is
called the mean squared error, J(O)

](001 011 2(’19 (x(l)) y(l))

Where:

= (Unknown) parameter i of the linear regression model from a total of
k+1 parameters
m = Number of observation in training set
hge() = The estimated value of the linear regression model for the values of
the independent variables at observation i in training set.
x® =The values of the independent variables of observation iin training set
y® =The value of the dependent variable of observofionMining set

e



Estimating paramefters

Cost function in Gradient descent

Gradient descent attempts to minimize the
cost function J(0) by finding/estimating the
proper values of parameters O.

](901 911 Z(he (x(l)) y(l))

.

I

Often abbreviated simply
as J(0).



Estimating parameters

® Cost function in Gradient descent

> Cost function has things in common with the
cost function (i.e. SSE) in OLS.

m
1 _ |
](00; 91, 200 BK) — ﬁ z(he (x(l)) . y(l))z




Estimating parameters
® Cost function in Gradient descent

> Cost function in matrix form _

1
J(8) = - (X6~ ) (X6~ y) = - (X6 — y)?

1 Xy1 X1 o Xu]  [Oo -
1 X12 XZZ sz (2]

X=|1 X13 X23 Xk3 0= ﬁ?\
0

Where:

Y1

y =2

Yn




Cost function

A note on notation: cost function in gradient
descent uses different notation (0 instead of
b for parameters, hg() for linear regression
model, J(0) for cost function)

This is because Gradient descent originated
from a different field. One of the first
algorithms which founded the area of
machine learning in applied mathematics

We use the same notation used by
contemporary literature.

e



Estimating paramefters

General idea of estimating the
parameters 6 with Gradient descent
which minimize the cost function J(0O)

Start with initial, random values for the
parameters 6

Update/Change the values of the
parameters © in a way that yield to smaller
value of the cost function J(0)

Contfinue changing values of O iteratively
until the smallest value of J(0) is affained.

—



The general idea of
Gradient descent.

Initial values of
parameters 8o, 8™\ .

Assume a simple linear
Updated/changed values of .
parameters 6o, 61 Ns- regression model he(X) = GO
s + 0,X

The cost function of such
linear regression model,
A% J(6), will be convex and an
sV v”[/ / 5 .
X, DA% example cost function is
depicted on the left.

’1’/,

N iy,

7] 1} [’////5(/

O IOK T/
ey s iligrly 4

Gradient descent tries to

modify the values of all the
fanction o) parameters O iteratively,
towards the smallest value
of J(0).




How fo change the values of paramefers 6 in
order to minimize J(B)<¢

The value of the first partial derivative of the cost
function J(0) with respect to a parameter 6, will fell us
how we need to modify the parameter 6, (leaving all
other parameters constant) o achieve a smaller
value of J(0).

Remember from your math:
If the value of the first derivative of a function f(x) with
respect fo x is af some point x,

positive (>0), an increase of x, leads to an increase of
f(x). A decrease of x, leads ’ro decrease of f(x)

negative (<0), an increase of x, leads to an decrease of
f(x). A decrease of x, leads to i mcreose of f(x)

is equal to zero (=0), an increase of X, leads to an
increase or decrease of f(x) (has a pom’r of deflection at

Xo)-
/



How to change the values of parameters
O In order o minimize J(O)¢

In essence, the value of the first derivative
with respect to some x tells us if x needs to
INncrease or decrease in order to achieve a
smaller value of the function f(x).
Value of the first derivative tells us the direction
of change of variable x (increase or
decrease).



How to change the values of parameters 6
INn order to minimize J(B)¢

J(©) is a multivariate function, where the
parameters 6, are the unknown variables.

To apply the derivative technigue, we will use
the first partial derivative wrt to one 6. parameter
and leaving other Bs constant i.e. CCI|JCU|C!Te the

value of ﬂ:) If this value is positive, a decrease

of ©; will de]crease the cost function, if it's
nego’nve an increase of 6, will decrease the
cost function J(©).

Do this for all parameters © to see how they need
to change i.e. calculate VJ(0)

Do this iteratively 1o get an even smaller value J(6)

o2



How to change the values of parameters ©
INn order to minimize J(6)¢

A more clear example

if inifial parameters of 6 = (6,, 6,, © | KelaleRel
that pom’r the cost function is J(9), 2rher\ nﬁhe value

of 28 negative, this means that a small increase

(updo’re/chongeg of parameter 6, leading fo
parameters 8' = (,, ©,, ©,%¢ .. f (leaving all other
Os the same) will decrease J 9 |FIT S posmve
decrease 6, to get 8’ = (0, 0,-¢....0,),fogeta
smaller J(©).

i.e. J(0') < J(O)

Do the same for each and all ©s in the linear
regression model and update their values
accordingly.

Do such update for each O iteratively (i.e. many

times over). /



Estimating parameters

® How to change the values of parameters
O in order fo minimize J(0)?

> In Gradient descent, each parameter is
updated/changed, at each iteration, using
the following formula:

aJ (o

H] = 0.

—




Estimating parameters

© How to change the values of parameters 6 in
order to minimize J(B)<¢

> Fora mulhglle linear regression model, you can actually

calculate —— for all Bs, resulting in the following
20
update formulas for the parameters 6:

0y = a—Z(he(x(‘)) y(‘))

0;,:=0;—a —Z(hg(x(‘)) y(‘))x\ -




Estimating parameters
® How to change the values of parameters
O in order fo minimize J(0)?

> In matrix form, the previous update formulas
for parameters © can be written as




Estimating parameters

® Gradient descent algorithm
> Pseudocode

Initialize vector of parameters 6 with random values

Initialize costVector # We will store the value of the cost function for each
iteration in this ctor.

a = 0.01 # Set learning rate. See later how to come up with an appropriate value.
# Start iterations of Gradient descent
while termination conditions not met ({

1
update 6 vector with 6:=6-— aEXT X6 -Y)
calculate value of cost function J(6) for the newly calculated values of 6

Store value of




Gradient descent usually depicted as o
contfour plot

Convergence of 6s to
the values which
minimize J(O) is
usually depicted as

ny,
,’,‘W’ ,,’/ Contour plot.
,ﬁ"b';“':":':”ll 5/

&

D
4

0
L

(]
[

In a Contour plot,
each circle represents
the values of 6 that
lead to the same

i SR owoipreT value of J(0).

Contour plot




When does Gradient descent terminatee

3 possible fermination conditions

When a predefined number of iterations have
been completed. Typical number of iterations
are n=50, 20000 or greater depending how fast
the algorithm converges

When the improvement of the cost function is
smaller than a predefined value

Early stopping. With the current “version” of
the cost function, calculate the cost on a
validation set (different from training set) at
each iteration. Compare the two consecutive
values of J(B) and if J(B) starts to increase,
ferminate the algorithm. Used to address

overfitting. /



i ciing porameters

® Gradient descent algorithm with predefined
number of iterations as termination condition

Initialize vector of parameters 6 with random values

Initialize costVector # We will store the value of the cost function J(6) for each iteration
here

o = 0.01 # Setting the learning rate

numIterations = 10000 # Number of iterations to rry out

n = 0 # How many iterations we have done

while n < numIterations {

1
update 6 vector with 6:=60-— CZEXT (X6 —-Y)
calculate value of cost function J(6) for the newly estimated values of 6
Store value of cost function into vector costVector

n=n+ 1 # Next i1teration




The learning rate a
Setting the learning rate a to the proper value is
criticall

Determines if and how fast Gradient descent
converges to the minimum of the cost function.

If the value of the learning parameter is too smaill,
Gradient descent may converge very slowly

If the value of the learning parameter is too large,
Gradient descent may not converge at all to the
proper values of 6 which minimize J(0)

How to check if learning parameter a is oo
small, too big or just appropriate?

Empirically, plot the cost function and see its shape

e



The learning rate a
Appropriate value of learning rate

If the value of the
learning rate is
appropriate, the cost
function J(6) plotted
against the number of
iterations will have
such shape. Cost
function shows a
steep drop and then a
gradual improvement.

To check if the
selected value is
appropriate, run
Gradient descent and
plot the cost function.

MAnBog emavaiiyewv




The learning rate a
Too small value of the learning rate a

If the value of the
learning rate is too
small, the cost
function J(O) plotted
against the number of
iterations will have
such shape.

This means Gradient
descent will converge
very, very slowly to
the appropriate
values of Bs that
minimize J(O).

MANGog emavaiiwewy



The learning rate a
Too big value of the learning rate a

If the value of the
learning rate is too
big, the cost function
J(©) plotted against
the number of
iterations will have
such a shape. The
cost function
increases with each
iteration.

MAnBog enmavainyewy



The learning rate a
Too big value of the learning rate a

If the value of the learning
rate a is too big, Gradient
descent may overshoot the
P—— | proper values of © that
OUVTEAEGTGV 80, 1 minimize the cost function.

Overshooting happens
because the value of a is too

big and hence the update 6,

- Gj - a %}9) the new values of

6, may increase by too
much, missing the values for
which J(0) is minimized.
Gradient descent then

EAdxioT Tipi J(60, 81) diverges from the proper
values of ©s.

7



The learning rate a

Appropriate values for learning rate?

Typical values of the learning rate a are 0.001, 0.01,
0.1

Execute Gradient descent with such values of the
learning rate a and plot the cost function J(0) as @
function of the number of iterations. Compare the
shape of the plot with the plots shown previously.

If learning rate is too small, increase it by some
amount e.g. from 0.01 to 0.03. Execute Gradient
descent again and plot the cost function. Stop if
the plot of the cost function has the appropriate
shape.



The version of Gradient descent
discussed previously is the “plain vanilla™
style of the algorithm also known as
“Batch Gradient Descent”

Two other versions of Gradient Descent
available that improve performance
dramatically in Big data seffings:

Stochastic gradient descent - SGD
Mini-Batch gradient descent - MBGD

e



Versions of Gradient descent

Why the need to improve the performance
of Gradient descente

If number of observations in training set is large
(e.g. 10000000 observations/records or more),
there are two main concerns with Batch Gradient
descent:

Enfire training set must be stored into memory (RAM)

Update formulas must iterate over the entire training
set to calculate on step for all parameters in each
iteration.

In such settings, Batch Gradient descent is

compuvutationally expensive! /



Versions of Gradient descent

@ Concern: Entire fraining set info memory

> Looking at the matrix form of the update
formula: Does is fit info memory?

|
0:=0—a—X! (X0 -1)

m




Concern: Iterate over the entire training set at
each iteration

Looking at the analytic formula indicates better the
problem (Note: the same argument holds for the
maftrix form, but it's clearer in the analytic form of the
update formula): Can be slow in big data contexts

If the training set has m=10000000 observations, we iterate
over all 10000000 observations just make one (1) update to
one (1) parameter at one (1) iteration! Considering that we
have many parameters, we traverse the 10000000
observations many times at each iteration. This makes Batch
Gradient descent slow.

m

1 . N

0j:=0j—a EZ("O("(‘)) —y®) x;®
=



Why the need to improve the
performance of Gradient descent?

The solution in such big data environments is
simply not to iterate over the entire training set
at each iteration!

The two other versions of Bath Gradient
descent freat/scan the training set differently



Versions of Gradient descent

Stochastic Gradient Descent - SGD

At each iteration, SGD uses only one observation
of the training set to update the parameters
(instead of the entire training set in GD)

Initialize all parameters 6; with random values
Initialize costVector # We will store the value of the cost function J(8) for each iteration here

o = 0.01 # Setting the learning rate
Randomly shuffle the training set # To ensure that the observations do not have some kind of order

while termination criteria not met/{
Calculate cost function and store its wvalue in costVector
for each observation i in training set {
for each parameter ej {
Set new value of parameter newy;:= Hj—-a(hg(xUX)—)ﬂD)fo

}
calculate value of cost function J(6) for the newly estimated values of ©

Store value of cost function into vector costVector

}
0, := newgy,
n=n+ 1 # Next iteration

}

# Vector 6 will contain the estimated parameters which minimize J(8)

print Oy
plot costVector




Pros/Cons of SGD

Pros

It's a so-called online algorithm - you see the
update of parameters immediately, in @
sequential fashion, during their estimation i.e. in
real time. That's not possible with Batch GD

Does not require entire training set in memory
Avoids local minima of J(0)

Cons

Can be noisy i.e. parameters jump around at
each epoch with greater variance between
epochs (epoch = one update of all

parameters)



Mini-Batch Gradient Descent - MBGD

MBGD does not use one single observation of the
training set to update the parameters. It uses a
“small batch” of fraining set observations —
typically between 2 and 100 observation in each
batch.

To do this, we cut the large fraining set info smaller
training subsets, and use these to update the
parameters at each step

It's a method “between” the exiremes of Batch
Gradient descent (which uses entire training set for
each parameter update) and Stochastic Gradient
descent which uses only one observation to update
the parameters.



Versions of Gradient descent

® Mini-B h Gradient descent

Initialize all parameters 6, with random values
Initialize costVector # We will store the value of the cost function J(©)
a = 0.01 # Setting the learning rate
Randomly shuffle the training set # To en
Cut the training set into batches/subsets b,
might be smaller than ny
while termination criteria not met/{
Calculate cost function and store its value in
for each batch b;
for each parameter ej{

for each iteration here

re that the observations do not have some kind of order
ach of size n, such that b;*n, =m # Note: last batch

ostVector

Set new value of parameter neW@j:= Qi—-a Zﬁg(hg(x -—}Kﬂ)xfo

}

calculate value of cost function J(©)
Store value of cost function into vector costVector

for the newly estimated values of 6




OLS

Estimates the same, unbiased parameters for the
same fraining set if the linear regression
assumptions hold (No or little multicollinearity, No
of auto-correlation of residuals, Homoscedasticity
etc)

Computationally expensive in big data contexts.

Can be used to estimate parameters only for
linear regression models

Offers closed formulas (the normal equation) for
calculating the parameters

Requires entire training set in RAM

Belongs to the field of linear algebra

Taught and used mainly in social sciences

Gradient descent

Estimates of parameters are approximations and
biased. May result in different parameter
estimates for the same training set and regression
model.

Suitable in big data contexts where number of
variables and number of observation are very
large

Can be used (and is used) to estimate
parameters in nonlinear regression models.

Does not offer closed formula. Parameter
estimates are iteratively calculated

Versions of Gradient descent do not require entire
training set in RAM (e.g. Stochastic Gradient
descent)

Belongs to the field of machine learning

Taught and used mainly in computer science and
engineering
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Thus the update formula for parameter 61 becomes




