

Productivity and Efficiency Analysis Basic Commands in STATA

Gatomati Foteini (StN 1050418) Konti Georgia (StN 1017785) Loukeri Aspasia (StN 1017684) Nikolakaki Ifigeneia (StN 1050617) Spanou Sotiria (StN 1017098) Tzinovits Vlantana (StN 1040402)

Instructor: Kounetas Konstantinos

Recapping... (Textbook: Coelli - Rao - O'Donell - Battese)

* For Decision-Making Units (DMUs): Productivity: Output /Input Efficiency: Productivity /(Benchmark Productivity), where Output: variables (measures of Y, e.g. #items, TR) Input: variables (measures of X, e.g. K, L, E, N, H)

* Methods of Analysis:

for **Productivity**: Total Factor Productivity, Partial Indicators for **Efficiency**: Non-Parametric (NP) & Parametric (P) ways NP: **DEA**, FDH P: COLS, **SFA** (FE, GLS, RE)

DEA (Data Envelopment Analysis) in Stata

* Get do-file "dea"

which dea : confirming local (in)existence of package findit dea : looking for the .ado file in Stata websites net install st0193 : installing (Or put **dea.ado** in c:/ado)

- * Prepare your dataset keep variables in columns
 use (filename OR w.d. filename) : choosing dataset
 generate dmu= _n : numbering our DMUs
- * Apply the dea syntax

DEA (Data Envelopment Analysis) in Stata - continued

* Choose your arguments

- ivars = input variable list, e.g. workHours rndExpenses
- ovars = output variable list, e.g. totalRevenues numberItems
- rts = returns to scale (const., var., decr., non incr.)
- ort = orientation (input, output)
- stage = number of stages (1, 2)
- trace = saving intermediate results in the dea.log file
- saving = specifying a (filename).dta file for storing final results

* Results in memory

r(dearslt) = n x m matrix, where n is the number of DMUs
and m includes all used inputs, outputs, slacks, ranks (DMU
scores), theta (efficiency scores), reference DMUs etc

DEA: Example

. use "C:\res-dea.dta", clear

. dea weight Volume = fuel consumption, rts(crs) ort(out)

options: RTS(CRS) ORT(OUT) STAGE(2) CRS-OUTPUT Oriented DEA Efficiency Results:

			ref:	ref:	ref:
	rank	theta	1	2	3
dmu:1	4	1.50865	0	0	7.845
dmu:2	5	2.91765	0	0	1.13524
dmu:3	1	1	0	0	1
dmu:4	1	1	0	0	0
dmu:5	3	1.16987	0	0	1.23709
	ref:	ref:	islack:	islack:	oslack:
	4	5	weight	Volume	fuel consumption
dmu:1	0	0	0	20.1971	0
dmu:2	5.5632	0	0	0	0
dmu:3	0	0	0	0	0
dmu:4	1	0	0	0	0
dmu:5	.733069	0	0	0	0

theta : efficiency score -> rank=1 : highest theta (most efficient DMU) 1-theta : optimization margin <- slacks : additional individual i/o margins reference weights : calculated for most efficient DMUs

SFA (Stochastic Frontier Analysis) in Stata

* Get package "frontier" and apply the frontier syntax which frontier : (included in the Stata base .ado folder) frontier depvar indepvars [weight] [, options]

* Choose your arguments

depvar = dependent variable, indepvars = independent variables option vhet(varlist) : idiosyncratic-error explanatory variables option uhet(varlist) : technical-inefficiency explan. variables option distribution(hnormal, exponential, tnormal) : for uhet option cost (if it's a frontier for cost instead of productivity), etc

* Alternatives

help xtreg, xtfrontier

SFA: Example

. frontier fuel_consumption weight Volume, distribution(hnormal)

Stoc. frontier normal/half-normal model	Number of obs	=	5
	Wald chi2(2)	=	2.75e+08
Log likelihood = -13.937211	Prob > chi2	=	0.0000

fuel_consumption	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
weight	.2130523	.2618734	0.81	0.416	30021	.7263147
Volume	.2169887	.0218704	9.92	0.000	.1741235	.259854
_cons	24.06524	1.630157	14.76	0.000	20.8702	27.26029
/lnsig2v	-26.26117	560.2429	-0.05	0.963	-1124.317	1071.795
/lnsig2u	4.123302	.6324557	6.52	0.000	2.883711	5.362892
sigma_v sigma_u sigma2 lambda	1.98e-06 7.858933 61.76283 3961901	.0005557 2.485213 39.06225 2.485213			7.2e-245 4.228535 -14.79777 3961897	5.5e+232 14.6062 138.3234 3961906

Likelihood-ratio test of sigma_u=0: chibar2(01) = 3.63 Prob>=chibar2 = 0.028

s...- _v, _u, 2; l... : stdev(v), stdev(u), var(v)+var(u); stdev(u)/stdev(v) H0 vs Ha (Model) : all coefficients are zero vs at least one being non-zero H0 vs Ha (sigma_u) : s..._u =0 vs >0 (absent & present technical inefficiency) Prob : if <0.05, reject the corresponding H0 with 95% confidence

Malmquist Productivity Indicator

* Get do-file "malmq" - Prepare your dataset

which malmq : confirming local (in)existence of package ... (find and put **malmq.ado** in c:/ado)

use (filename OR w.d. filename) : choosing dataset generate dmu= _n : numbering our DMUs

- * Apply the malmq syntax (arguments like in dea) malmq ivars = ovars, period(time-varname) ort(in|out) trace saving(results-filename)
- * For Partial Productivity...

help orderm, orderalpha

MPI: Example

. malmq i AC = O SPI O CPI, ort(o) period(period)

Cross CRS-DEA	Result:			
	from	thru	t	t1
dmu:DMU101	38869	38899	128.007	2.54674
dmu:DMU115	38869	38899	.514718	7.78878
dmu:DMU118	38869	38899	64.6469	21.4819

Malmquist efficiency OUTPUT Oriented DEA Results:

	period	dmu	CRS_eff	VRS_eff	
1.	38869	DMU101	1.83388	1	
2.	38869	DMU115	4.51366	1.12252	
з.	38869	DMU118	12.8484	1.02734	.

Malmquist productvity index OUTPUT Oriented DEA Results:

	period	dmu	tfpch	effch	techch	pech	sech
2.	38869~38899 38869~38899 38869~38899 38869~38899	DMU115	.121	.22155	.546153	.890857	.248693

CRS_eff, VRS_eff : efficiency scores for CRS and VRS tfpch, pech, effch, techch, sech : changes in TFP, in technical efficiency relative to VRS (pure) and CRS, technical and in scale efficiency, respectively.

Thank you!