

Konstantinos Kounetas
 School of Business Administration
 Department of Economics
 Master of Science in Applied Economic Analysis

muggle

SPSS and SAS users are like muggles. They are limited in their ability to change their environment. They have to rely on algorithms that have been developed for them. The way they approach a problem is constrained by how SAS/SPSS employed programmers thought to approach them. And they have to pay money to use these constraining algorithms.

wizard

R users are like wizards. They can rely on functions (spells) that have been developed for them by statistical researchers, but they can also create their own. They don't have to pay for the use of them, and once experienced enough (like Dumbledore), they are almost unlimited in their ability to change their environment.

S was developed at Bell Labs, starting in the 1970s
R was created in the 1990s by Ross Ihaka and Robert Gentleman R was based on S , with code written in C
S largely was used to make good graphs - not an easy thing in 1975. R, like S, is quite good for graphing. For lots of examples, sंee http://rgraphgallery.blogspot.com/ or http://www.r-graph-gallery.com

See ggplot2-cheatsheet-2.0.pdf

Outline

- Introduction:
- Historical development
- S, Splus
- Capability
- Statistical Analysis
- References
- Calculator
- Data Type
- Resources
- Simulation and Statistical Tables
- Probability distributions
- Grouping, loops and conditional execution
- Function
- Reading and writing data from files
- Modeling
- Regression
- ANOVA
- Data Analysis on Association
- Lottery
- Geyser
- Smoothing
- Programming

ii,samuif-plus

- S: an interactive environment for data analysis developed at Bell Laboratories since 1976
- 1988 - S2: RA Becker, JM Chambers, A Wilks
- 1992 - S3: JM Chambers, TJ Hastie
- 1998 - S4: JM Chambers
- Exclusively licensed by $A T \& T / L u c e n t$ to Insightful Corporation, Seattle WA. Product name: "S-plus".
- Implementation languages C, Fortran.
- See:
http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html
- R: initially written by Ross Ihaka and Robert Gentleman at Dep. of Statistics of U of Auckland, New Zealand during 1990s.
- Since 1997: international "R-core" team of ca. 15 people with access to common CVS archive.
$\cdot \mathrm{R}$ is "GNU S" - A language and environment for data manipulation, calculation and graphical display.
- R is similar to the award-winning S system, which was developed at Bell Laboratories by John Chambers et al.
- a suite of operators for calculations on arrays, in particular matrices,
- a large, coherent, integrated collection of intermediate tools for interactive data analysis,
- graphical facilities for data analysis and display either directly at the computer or on hardcopy
- a well developed programming language which includes conditionals, loops, user defined recursive functions and input and output facilities.
-The core of R is an interpreted computer language.
- It allows branching and looping as well as modular programming using functions.
- Most of the user-visible functions in R are written in R , calling upon a smaller set of internal primitives.
- It is possible for the user to interface to procedures written in C, C++ or FORTRAN languages for efficiency, and also to write additional primitives.

What R does and does not

o data handling and storage: numeric, textual
o matrix algebra
o hash tables and regular expressions
o high-level data analytic and statistical functions
o classes ("OO")
o graphics
o programming language: loops, branching, subroutines
ois not a database, but connects to DBMSs
o has no graphical user interfaces, but connects to Java, TclTk
o language interpreter can be very slow, but allows to call own $\mathrm{C} / \mathrm{C}++$ code
o no spreadsheet view of data, but connects to Excel/MsOffice
o no professional / commercial support

Getting Started-Installing R

To install R on your MAC or PC you first need to go to http:/ /www.rproject.org/.

About R
What is R?
Contributors
Screenshots
What's new?
Download, Packages
CRAN
R Project
Foundation
Members \& Donors
Mailing Lists
Bug Tracking
Developer Page
Conferences
Search
Documentation
Manuals
FAQs
The R Journal
Wiki
Books
Certification
Other
Misc
Bioconductor Related Projects
User Groups
Links

The R Project for Statistical Computing

Getting Started:

- R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.
- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News:

- R version 2.15.1 (Roasted Marshmallows) has been released on 2012-06-22.
- The R Journal Vol.4/1 is available.
- useR! 2012, took place at Vanderbilt University, Nashville Tennessee, USA, June 12-15, 2012.
- useR! 2013, will take place at the University of Castilla-La Mancha, Albacete, Spain, July 10-12 2013. .

The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R :

- Download R for Linux
- Download R for MacOS
- Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above. Source Code for all Platforms
Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The source have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!

- The latest release (2012-06-22, Roasted Marshmallows): R-2.15.1.tar.gz, read what's new in the latest version.
- Sources of \underline{R} alpha and beta releases (daily snapshots, created only in time periods before a planned release).
- Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes before filing corresponding feature requests or bug reports.
- Source code of older versions of R is available here.
- Contributed extension packages

uestions About R

- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

Download R 2.15.1 for Windows (47 megabytes, $32 / 64$ bit)
Installation and other instruction New features in this version

If you want to double-check that the package you have downloaded exactly matches the package distributed by R, you can compare the $m 6$ sum of the exe to the true fingerprint. You will need a version of mdSsum for windows: both eraphical and command line versions are available.

Frequently asked questions

- How do I install R when using Windows Vista?

How do I update packages in my previous version of R ?
Should I run 32 -bit or 64 -bit R?
Please see the \underline{R} FAQ for general information about R and the $\underline{\mathrm{R}}$ Windows FAQ for Windows-specific information.
Other builds

- Patches to this release are incorporated in the r-patched snapshot build.

A build of the development version (which will eventually become the next major release of R) is available in the r-devel snapshot build.

- Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is CRAN MIRROR>/bin/windows/base/release.htm.

Last change: 2012-06-22, by Duncan Murdoch

泡 Setup - R for Windows 2.15.1

Information

Please read the following important information before continuing.

When you are ready to continue with Setup, click Next.

GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software

```
ifol}\mathrm{ Setup - R for Windows 2.15.1
```


Select Destination Location

Where should R for Windows 2.15 .1 be installed?

Setup will install R for Windows 2.15 .1 into the following folder.
To continue, click Next. If you would like to select a different folder, click Browse.

C:IProgram Files RRR-2.15.1

At least 1.2 MB of free disk space is required.

Select the components you want to install; clear the components you do not want to install. Click Next when you are ready to continue.

User installation	
∇ Core Files	61.9 MB
∇ 32-bit Files	12.5 MB
∇ 64-bit Files	14.4 MB

Startup options

Do you want to customize the startup options?

Current selection requires at least 89.8 MB of disk space.
Yes (customized startup)
No (accept defaults)

Display Mode

Do you prefer the MDI or SDI interface?

Please specify MDI or SDI, then click Next.
(O) MDI (one big window)SDI (separate windows)

抱 Setup - R for Windows 2.15.1

Help Style
Which form of help display do you prefer?

Please specify plain text or HTML help, then click Next.

- Plain text
(O) HTML help

Internet Access

Do you want to use internet2．dll，to make use of Internet Explorer proxy settings？

Please specify Standard or Internet2，then click Next．
（0）Standard
－Internet2

设 Setup－R for Windows 2．15．1

Select Start Menu Folder

Where should Setup place the program＇s shortcuts？

辰見
Setup will create the program＇s shortcuts in the following Start Menu folder．

To continue，click Next．If you would like to select a different folder，click Browse．
?

Browse．．．Don＇t create a Start Menu folder

Select Additional Tasks

Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing R for Windows 2.15.1, then click Next.

Additional icons:
(Create a desktop iconCreate a Quick Launch icon
Registry entries:
V Save version number in registry
(Associate R with . RData files

脯 Setup - R for Windows 2.15.1

Installing

Please wait while Setup installs R for Windows 2.15.1 on your computer.

Extracting files..
C:|Program Files\E\R-2.15.1 bin\x64\Rlapack.dll

Installing Packages I
 CRAN mirror

Argentina (La Plata)

Argentina (Mendoza)
Australia (Canberra)
Australia (Melbourne)
Austria
Belgium
Brazil (PR)
Brazil (R)
Brazil (SP 1)
Brazil (SP 2)
Canada (BC)
Canada (NS)
Canada (ON)
Canada (QC1)
Canada (QC 2)
Chile
China (Beijing 1)
China (Beijing 2)
China (Beijing 3)
China (Guangzhou)
China (Hefei)
China (Xiamen)
Colombia (Bogota)
Colombia (Cali)
Denmark
Ecuador
France (Lyon 1)
France (Lyon 2)
Germany (Berlin)
Germany (Goettingen)
Greece
Hungary

USIIII RIE|J HOUIIIIIEIII

R R Console

trying URL 'http://lib.stat.cmu.edu/R/CRAN/bin/windows, mean \{base\}
Content type 'application/zip' length 61074 bytes (59 1
\square
opened URL
downloaded 59 Kb
Description
Generic function for the (trimmed) arithmetic mean.
trying URL 'http://lib.stat.cmu.edu/R/CRAN/bin/windows, Usage
Content type 'application/zip' length 1305669 bytes (1
opened URL
downloaded 1.2 Mb
trying URL 'http://lib.stat.cmu.edu/R/CRAN/bin/windows

\#\# Default s3 method:
mean $(\mathrm{x}, \mathrm{trim}=0$, na.rm $=$ FALSE
Arguments
 opened URL
downloaded 1.3 Mb
r im the fraction $(0$ to 0.5$)$ of observations to be trimmed from each end of x before the mean is computed. Values of trim outside that range are taken as the nearest endpoint.
$\mathrm{na} . \mathrm{rm}$ a logical value indicating whether NA values should be stripped before the computation proceeds.
further arguments passed to or from other methods.
package 'gee' successfully unpacked and MD5 sums checki package 'ape' successfully unpacked and MD5 sums check package 'phyclust' successfully unpacked and MD5 sums (
trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer) or complex, NA_real_ is returned, with a warning.
trim is non-ero, a symmetrically
C: \Users\Danielle McElhiney \backslash AppData \Local \Temp\RtmpsbZDEO\downloaded_paS
The downloaded packages are in
> help(mean)
starting httpd help server ... done
>1

- ?solve
- help.search or ??
- allows searching for help in various ways

The base R has two major types of windows R console and editor windows.

File \rightarrow new script or File \rightarrow open script.
A saved file has an r extension i.e logit1.r

```
|R RGui (64-bit)
File Edit Packages Win
R
x<- 1:5;
me- (x)
|
```



```
    SRTS
    [1] "vrs
    Sprima
    NULI
    Sdual
    sux

\section*{R Commander}
- Loading R Commander
- Packages -> Install Packages -> Cran

Mirror Selection \(\rightarrow\) Rcmdr or
install.packages('Rcmdr')

Rcell
Rcgmin
rChoiceDialogs
Rclusterpp
Rcmdr

\section*{Opening R}

\section*{Commander}

\section*{7/ R Commander}

Open R -> Packages > Load Packages -> Rcmdr

\author{
\(\mathbf{R}\) File Edit Data Statistics Graphs Models Distributions Tools He \\ R_mdx Data set: <No active dataset> Edit data set View data set Model \\ <No active model> \\ Script Window
}

\section*{Loading Data with R Commander}

\section*{- Data -> Load data}

\begin{tabular}{|r|l|l|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ Data Editor } \\
\cline { 2 - 7 } & var1 & var2 & var3 & var4 & var5 & var6 \\
\hline 1 & & & & & & \\
\hline 2 & & & & & & \\
\hline 3 & & & & & & \\
\hline 4 & & & & & & \\
\hline 5 & & & & & & \\
\hline 6 & & & & & & \\
\hline 7 & & & & & & \\
\hline 8 & & & & & & \\
\hline 9 & & & & & & \\
\hline 10 & & & & & & \\
\hline 11 & & & & & & \\
\hline 12 & & & & & & \\
\hline 13 & & & & & & \\
\hline 14 & & & & & & \\
\hline 15 & & & & & & \\
\hline 16 & & & & & & \\
\hline 17 & & & & & & \\
\hline 18 & & & & & & \\
\hline 19 & & & & & & \\
\hline
\end{tabular}

\section*{Active Data with R Commander}

Data ->Active data set -> Select active data set
File Edit Data Statistics Graphs Models Distributions Tools Help
Data set: \(T<\) No active dataset> \(\quad\) Edit data set \(\quad \mathrm{M}\) View data set M

Script Window


\section*{File/Edit Options}


\section*{Summaries}


\section*{Descriptive Statistics}


\section*{ Skewness, Kurtosis}



\section*{Contingency Tables}


\section*{76 Enter Two-Way Table}
\begin{tabular}{l} 
Number of Rows: \(\square \square\) \\
Number of Columns: \(\square \square\) \\
\hline\(\square\)
\end{tabular}

Enter counts:
\begin{tabular}{l|l|l} 
& 1 & 2 \\
\hline 1 & & \\
\hline 2 & & \\
\hline
\end{tabular}

Compute Percentages
Row percentages
Column percentages \(\bigcirc\)
Percentages of total \(\bigcirc\)
No percentages
Hypothesis Tests
Chi-square test of independence
Components of chi-square statistic \(\Gamma\)
Print expected frequencies
Fisher"s exact test \(\quad\)
\(\square\) OK Cancel Res Help

\section*{Script Window}
```

library(abind, pos=4)
.Table <- matrix(c(13,412,399,15), 2, 2, byrow=TRUE)
rownames(.Table) <- c('1', '2')
colnames(.Table) <- c('1', '2')
.Table \# Counts
.Test <- chisq.test(.Table, correct=FALSE)
.Test
remove(.Test)
remove(.Table)

```

Output Window
```

> .Table \# Counts
1 2
1 13 412
2 399 15
> .Test <- chisq.test(.Table, correct=FALSE)
> .Test

```
    Pearson's Chi-squared test
data: .Table
X-squared \(=730.7299, \mathrm{df}=1, \mathrm{p}\)-value \(<2.2 \mathrm{e}-16\)
> remove (.Test)
> remove (.Table)

\section*{Correlations in R Commander}


\section*{Correlations in R Commander}


\section*{Independent T-Test}

Statistics ->
Independent T Test


\section*{Script Window}
```

load("C:/Users/Shannon/Documents/R/binge.Rdata")
t.test(awdu~fac.gen, alternative='two.sided', conf.level=.95,
var.equal=FALSE, data=binge.final)
tapply(binge.final$awdu, binge.final$fac.gen, var, na.rm=TRUE)
leveneTest(binge.final$awdu, binge.final$fac.gen, center=median)
4 \square
Output Window
> load("C:/Users/Shannon/Documents/R/binge.Rdata")
> t.test(awdu~fac.gen, alternative='two.sided', conf.level=.95,

+ var.equal=FALSE, data=binge.final)
Welch Two Sample t-test
data: awdu by fac.gen
t = -1.1991, df = 33.405, p-value = 0.2389
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.9636463 0.7650749
sample estimates:
mean in group 0 mean in group 1
8.360714 9.460000
> tapply(binge.final$awdu, binge.final$fac.gen, var, na.rm=TRUE)
0
1

```

לcrıpt VVIndow
```

load("C:/Users/Shannon/Documents/R/binge.Rdata")
t.test(awdu~fac.gen, alternative='two.sided', conf.level=.95,
var.equal=FALSE, data=binge.final)
tapply(binge.final$awdu, binge.final$fac.gen, var, na.rm=TRUE)
leveneTest(binge.final$awdu, binge.final$fac.gen, center=median)
1\square
Output Window
Submit
alternative hypothesis: true difference in means is not equal to 0
9 5 percent confidence interval:
-2.9636463 0.7650749
sample estimates:
mean in group 0 mean in group 1
8.360714 9.460000
tapply(binge.final$awdu, binge.final$fac.gen, var, na.rm=TRUE)
0
> leveneTest(binge.final$awdu, binge.final$fac.gen, center=median)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr (>F)
group 1 3.8056 0.05719.
46

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mes
> leveneTest(binge.final$awdu, binge.final$fac.gen, center=median)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 3.8056 0.05719 .
4 6

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

\section*{One Way ANOVA}


\section*{Script Window}


\section*{Factor Analysis}



\section*{Script Window}
```

.FA <- factanal(~aap+awdu+bda1, factors=1, rotation="varimax",
scores="none", data=binge.orig)
.FA
remove (.FA)
library(sem, pos=4)

```
```

>.FA <- factanal(~aap+awdu+bdal, factors=1, rotation="varimax",

+ scores="none", data=binge.orig)
> .FA
Call:
factanal(x = ~aap + awdu + bda1, factors = 1, data = binge.orig, scores = "none", rotation = "varimax")
Uniquenesses:
aap awdu bda1
0.849 0.324 0.596
Loadings:
Factor1
aap 0.388
awdu 0.822
bda1 0.636

```
```

 Factor1
 SS loadings 1.231
Proportion Var 0.410
The degrees of freedom for the model is 0 and the fit was 0
> remove (.FA)
> library(sem, pos=4)

```

\section*{Graphs in R Commander Box Plot}


\section*{Graphs in R Commander Scatter Plot}

Graphs -> Scatter Plot


\section*{Linear regression}
\begin{tabular}{|c|}
\hline \(\mathbb{R}\) RGui (64-bit) \\
\hline File Edit View Misc Packages Windows Help \\
\hline  \\
\hline \(\mathbb{R}\) Untitled - R Editor \\
\hline
\end{tabular}



\section*{Data Inputs and creation in R}
- BB <read.csv(file="heisenberg.csv",head=TRUE,sep=",")
- dir()
- getwd()
- BB <read.csv(file="heisenberg.csv",head=TRUE,sep=",")
- library(nonparaeff)
- data(heisenberg)
- attributes(heisenberg)
- is.data.frame(heisenberg)
- 1 s()
- remove( \(x, y, \ldots\) )
- \(\quad \mathrm{rm}(\mathrm{x})\)
- \(\mathrm{x}=\mathrm{c}(1.2,2,3,4,5,6)\)
- dat<-data.frame \((x=c(1: 10,1: 10), y=1: 20)\)
- attach(dat)
- \(x+y\)
- \(r m(x)\)
- X
- setwd("f:/temp")
- getwd()
- plot(x

\section*{Data Inputs and creation in R}

\section*{StIIILIALIOI JAta III h}
- set.seed(40); rnorm(n=2)
- set. \(\operatorname{seed}(40) ; \operatorname{rnorm}(n=3\), mean=\(=0, s d=1)\)
- set.seed(40); runif(n=4, min=0, \(\max =1\) )
- set.seed(40); mb<- sample(x=11:15, size=3)
- mb
- wri<-data.frame(inc=1:5, year=2001:2005)
- wri
- \(\operatorname{set} . \operatorname{seed}(40) ;\) sam<- \(\operatorname{sample}(x=1: n r o w(w r i)\), size=nrow(wri)-2)
- wri1<-wri[sam,]
- wri; sam; wril

\section*{Reading External data in R}
- \(\mathrm{BB}<-\) read.csv(file="heisenberg.csv",head=TRUE,sep=",")
- \(\operatorname{dir}()\)
- getwd()
- \(\mathrm{BB}<-\) read.csv(file="heisenberg.csv",head=TRUE,sep=",")
- library(nonparaeff)
- data(heisenberg)
- attributes(heisenberg)
- is.data.frame(heisenberg)

\section*{Exporting data in R}
- Tables can be saved with write,table() command. The write.table function allows you to export data to a wider range of file formats, including tab-delimited files. Use the sep argument to specify which character should be used to separate the values. To export a dataset to a tab-delimited file, set the sep argument to "lt" (which denotes the tab symbol), as shown below.
- write.table(mydata, "c:/mydata.txt", sep="\t")
- To save the file somewhere other than in the working directory, enter the full path for the file as shown.
- write.csv(dataset, "C:/folder/filename.csv")
- library(xlsx)
write.xlsx(mydata, "c:/mydata.xlsx")
- export data frame to Stata binary format library(foreign)
write.dta(mydata, "c:/mydata.dta")
- \(3+5\)
- "+" \((3,5)\)
- \(3 * 5\)
- \(3 \% \% 5\)
- \(\mathrm{aa}<-3+c(5,6)\)
- \(b b<-"+"(3, c(5,6))^{*} a a\)
- bb
- my.score<-95
- my.score
- \(x<-1: 8\)
- mean(x)
- \(y<-c(1,2,3,4,5,6,7,8)\)
- mean(y)
- \(\mathrm{y} 1<-\mathrm{c}(1,2,3,4,5,6,7,8, \mathrm{NA})\)
- mean(y1)
- mean(y1,na.rm=TRUE)
- dog<-c(1,3,5,2^4,70,100\%\%8)
- \(\mathrm{pig}<-\mathrm{c}(1,2,6)+1\)
- cow<-70
- \(\mathrm{r} 1<-\mathrm{dog}==\mathrm{pig}\); \(\mathrm{r} 2<-\mathrm{dog}<\) cow
- r3<-r1 \& r2;r4<-r1+r2

\section*{Numbers and expressions}
- \(x=c(1,2,3,4,5)\)
- x
- length(x)
- mode(x)
- names(x)
- \(x[2]\)
- \(x>10\)
- names <-c("A","B","C","D","E")
- names(x)<-names
- x
- x["A"]
- rep(NA,8)
- 1:100
- \(\mathrm{B}<-\) matrix<-rep(1:4,rep(3,4))
- \(\operatorname{dim}(B)<-c(3,4)\)
- C -seq(-2,2,length=25)
- C
- D<-rbind(c(1,2,-1),c(-3,1,5))
- D
- \(\mathrm{E}<-\mathrm{cbind}(\mathrm{B}, \mathrm{C})\)
- \(\mathrm{A}=\operatorname{matrix}(\mathrm{c}(2,4,3,1,5,7)\), nrow=2, ncol=3,byrow = TRUE \() ; \mathrm{A}\)
- \(\mathrm{wq}<-\) matrix \(((1: 30)\),nrow=30, ncol=1, byrow=TRUE);wq
- wq<- matrix((1:30),nrow=30,ncol=100, byrow=TRUE);wq
- length(wq)
- \(\operatorname{dim}(w q)\)
- mode(wq)
- dimnames(wq)
- Aarray<-c(1:8, 11:18, 111:118);Aarray
- \(\operatorname{arr} 1<-\operatorname{array}(\mathrm{c}(2: 9,12: 19,112: 119), \operatorname{dim}=\mathrm{c}(2,4,3))\)
- arr1
- \(\operatorname{arr} 1[,, 2]\)
- \(\operatorname{arr} 1[1,\),
- \(\operatorname{arr} 1[1,2]\)
- length(arr1)
- \(\operatorname{dim}(\operatorname{arr} 1)\)
- mode(arr1)
- dimnames(arr1)

\section*{Arrays}
- \(\operatorname{iris}[c(1: 3,147: 150)\), , ]
- names(iris)
- \(\mathrm{z}<\)-iris\$Sepal.Width
- \(\mathrm{z}<\)-iris[[2]]z
- z
- \(c(\) mean \(=\) mean \((z)\), st_dev=sd(z) \()\)
- table(iris\$Species)
- attach(iris)
- \(\mathrm{x} 1<-\) Sepal.Length[1:50];x2=Sepal.Length[51:100];x3=Sepal.Length[101:150]
- summary(x1)
- summary(x2)
- summary(x3)
- myf<-sample(c(T,F), size \(=20\), replace \(=T)\)
- myf
- myl<-rnorm(20)+runif(20)*1i
- myl
- mym<-matrix(rnorm(40),ncol=2)
- mym
- mydataframe<-data.frame(myf,myl,mym)
- mydataframe

\section*{Data Frames}
- cars \(<-\mathrm{c}(1,3,6,4,9,11,22,32,44,54,123,32,45,67,89,112)\)
- plot(cars)
- plot(cars, type="o", col="blue")
- \# Create a title with a red, bold/italic font
- title(main="Autos", col.main="red", font.main=4)
- \# Define 2 vectors
- cars \(<-c(1,3,6,4,9,18,22,32,34,54,43,56,65,11,12,23,45,67,112)\)
- trucks <-c(2,5,4,5,12,32,34,32,35,34,56,76,65,45,45,64,43,23,112)
- plot(cars, type="o", col="blue", ylim=c(0,250))
- lines(trucks, type="o", pch=22, 1ty=2, col="red")
- title(main="Autos", col.main="red", font.main=4)
- \#\#BoxPlot\#\#
- cars \(<-\mathrm{c}(1,3,6,4,9,18,22,32,34,54,43,56,65,11,12,23,45,67,112)\)
- trucks <-c(2, 5, 4, 5, 12,32,34,32,35,34,56,76,65,45,45,64,43,23,112)
- barplot(cars)
- barplot(trucks)
- \#\#Histograms\#\#
- cars \(<-\mathrm{c}(1,3,6,4,9,18,22,32,34,54,43,56,65,11,12,23,45,67,112)\)
- trucks <-c(2,5, 4, 5, 12,32,34,32,35,34,56,76,65,45,45,64,43,23,112)
- \(\quad\) hist(cars, col="lightblue", ylim=c( 0,120\()\) )
- max_num <- max(cars)
- hist(cars, col=heat.colors(max_num), breaks=max_num,
- \(\quad x \lim =c\left(0, \max \_n u m\right)\), right=F, main="Autos Histogram", las=1)

\section*{Plotting in R}

From Erer library download the daLaw archive. First explore this file. Second, the first column of daLaw[ ""Y"] has the mode of numeric. Please converted into a factor mode. Third, the labels of the four levels need to be strict liability for the value of 0 , uncertain liability for the value of 1 , simple negligence for 2 and gross negligence for 3 . The factor needs to be ordered. Save the new data frame as Law1. Fourth, sort daLaw by the column of Y and STATE and save the data as Law2. Fifht, extract a subset and save it as Law3 (with the condition of value Y is 2 and the value of FYNIP >15).Finally, merge the Law3 and Law2 files and Law1 with Law2.
Things to dol

Create the two matrices \(A=\left[\begin{array}{cc}10 & 98 \\ 24 & 30\end{array}\right], B=\left[\begin{array}{cc}5 & 33 \\ 14 & 28\end{array}\right]\).
Please calculate the addition, subtraction, multiplications and division. Put the A matrix before the arithmetic operator. Finally, calculate the inversion, determinant, trace, transpose and ranks of matrix A and B .

\section*{Things to do Il}

\section*{Helpful Resources}

Fox, J. (2005). R commander: A basic-statistics user interface to R. Journal of Statistical Software. 14, (9), 1-42.
Teetor, P. (2011). 25 Recipes for Getting Started with R. Sebastopol, CA: O'Reilly Media Inc.
Teetor, P. (2011). R cookbook. Sebastopol, CA: O’Reilly Media Inc. Crowley, M. J. (2007). The R Book. Chichester, New England: John Wiley \& Sons, Ltd
https://www.youtube.com/watch?v=9f2g7RN5N0I
https://stat.ethz.ch/mailman/listinfo/r-help```

