
Lecture 7: Logit/Probit



Review of Linear Estimation
So far, we know how to handle linear
estimation models of the type:

Y = β0 + β1*X1 + β2*X2 + … + ε ≡ Xβ + ε

Sometimes we had to transform or add 
variables to get the equation to be linear:

Taking logs of Y and/or the X’s
Adding squared terms
Adding interactions

Then we can run our estimation, do model 
checking, visualize results, etc.



Nonlinear Estimation
In all these models Y, the dependent 
variable, was continuous. 

Independent variables could be dichotomous 
(dummy variables), but not the dependent var.

This week we’ll start our exploration of non-
linear estimation with dichotomous Y vars.
These arise in many social science problems

Legislator Votes: Aye/Nay
Regime Type: Autocratic/Democratic
Involved in an Armed Conflict: Yes/No



Link Functions
Before plunging in, let’s introduce the 
concept of a link function

This is a function linking the actual Y to the 
estimated Y in an econometric model

We have one example of this already: logs
Start with Y = Xβ + ε
Then change to log(Y) ≡ Y′ = Xβ + ε
Run this like a regular OLS equation
Then you have to “back out” the results



Link Functions
Before plunging in, let’s introduce the 
concept of a link function

This is a function linking the actual Y to the 
estimated Y in an econometric model

We have one example of this already: logs
Start with Y = Xβ + ε
Then change to log(Y) ≡ Y′ = Xβ + ε
Run this like a regular OLS equation
Then you have to “back out” the results

Different
β’s here



Link Functions
If the coefficient on some particular X is β, 
then a 1 unit ∆X β⋅∆(Y′) = β⋅∆[log(Y))]

= eβ ⋅∆(Y) 
Since for small values of β, eβ ≈ 1+β , this is 
almost the same as saying a β% increase in Y
(This is why you should use natural log 
transformations rather than base-10 logs)

In general, a link function is some F(⋅) s.t.
F(Y) = Xβ + ε

In our example, F(Y) = log(Y)



Dichotomous Independent Vars.
How does this apply to situations with 
dichotomous dependent variables?

I.e., assume that Yi œ {0,1}
First, let’s look at what would happen if we 
tried to run this as a linear regression
As a specific example, take the election of 
minorities to the Georgia state legislature

Y = 0: Non-minority elected
Y = 1: Minority elected



Dichotomous Independent Vars.
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The data 
look like 
this.

The only 
values Y 
can have 
are 0 and 1



Dichotomous Independent Vars.

And here’s 
a linear fit 
of the data

Note that 
the line 
goes below 
0 and
above 1
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Dichotomous Independent Vars.
The line 
doesn’t fit 
the data 
very well.

And if we 
take values 
of Y 
between 0 
and 1 to be 
probabilities, 
this doesn’t 
make sense
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Redefining the Dependent Var.

How to solve this problem?
We need to transform the dichotomous Y 
into a continuous variable Y′ œ (-∞,∞)
So we need a link function F(Y) that takes 
a dichotomous Y and gives us a 
continuous, real-valued Y′
Then we can run

F(Y) = Y′ = Xβ + ε



Redefining the Dependent Var.

0 1
Original

Y



Redefining the Dependent Var.
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Redefining the Dependent Var.
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Redefining the Dependent Var.

What function F(Y) goes from the [0,1] 
interval to the real line?
Well, we know at least one function that 
goes the other way around.

That is, given any real value it produces a 
number (probability) between 0 and 1.

This is the…



Redefining the Dependent Var.

What function F(Y) goes from the [0,1] 
interval to the real line?
Well, we know at least one function that 
goes the other way around.

That is, given any real value it produces a 
number (probability) between 0 and 1.

This is the cumulative normal distribution Φ
That is, given any Z-score, Φ(Z) œ [0,1]



Redefining the Dependent Var.
So we would say that

Y = Φ(Xβ + ε)
Φ−1(Y) = Xβ + ε

Y′ = Xβ + ε
Then our link function is F(Y) = Φ−1(Y) 
This link function is known as the Probit link

This term was coined in the 1930’s by 
biologists studying the dosage-cure rate link
It is short for “probability unit”



Probit Estimation

After estimation, you can back out probabilities using the standard normal dist.
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Probit Estimation

Say that for a given observation, Xβ = -1
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Probit Estimation

Say that for a given observation, Xβ = -1
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Probit Estimation

Say that for a given observation, Xβ = -1

Prob(Y=1)
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Probit Estimation

Say that for a given observation, Xβ = 2
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Say that for a given observation, Xβ = 2
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Probit Estimation

Say that for a given observation, Xβ = 2

Prob(Y=1)



Probit Estimation
In a probit model, the value of Xβ is taken to 
be the z-value of a normal distribution

Higher values of Xβ mean that the event is 
more likely to happen 

Have to be careful about the interpretation 
of estimation results here

A one unit change in Xi leads to a βi change in 
the z-score of Y (more on this later…)

The estimated curve is an S-shaped 
cumulative normal distribution



Probit Estimation

• This fits the data much better than the linear estimation
• Always lies between 0 and 1
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Probit Estimation

• Can estimate, for instance, the BVAP at which Pr(Y=1) = 50%
• This is the “point of equal opportunity”
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Probit Estimation

• This occurs at about 48% BVAP
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Redefining the Dependent Var.
Let’s return to the problem of transforming Y from 
{0,1} to the real line
We’ll look at an alternative approach based on the 
odds ratio
If some event occurs with probability p, then the 
odds of it happening are O(p) = p/(1-p)

p = 0  O(p) = 0
p = ¼ O(p) = 1/3 (“Odds are 1-to-3 against”)
p = ½ O(p) = 1 (“Even odds”)
p = ¾ O(p) = 3 (“Odds are 3-to-1 in favor”)
p = 1  O(p) = ∞



Redefining the Dependent Var.

So taking the odds of Y occuring moves us from the [0,1] 
interval…
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Redefining the Dependent Var.

So taking the odds of Y occuring moves us from the [0,1] 
interval to the half-line [0, ∞) 
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Redefining the Dependent Var.
Original

Y

The odds ratio is always non-negative
As a final step, then, take the log of the odds ratio
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Redefining the Dependent Var.
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Logit Function
This is called the logit function

logit(Y) = log[O(Y)] = log[y/(1-y)]
Why would we want to do this?

At first, this was computationally easier than 
working with normal distributions
Now, it still has some nice properties that we’ll 
investigate next time with multinomial dep. vars.

The density function associated with it is very 
close to a standard normal distribution



Logit vs. Probit
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The logit function is similar, but has thinner tails than the normal distribution



Logit Function

This translates back to the original Y as:
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Latent Variables

For the rest of the lecture we’ll talk in terms of probits, but 
everything holds for logits too
One way to state what’s going on is to assume that there 
is a latent variable Y* such that

( )2* ,0~    , σεεβ NY += X



Latent Variable Formulation

For the rest of the lecture we’ll talk in terms of probits, but 
everything holds for logits too
One way to state what’s going on is to assume that there 
is a latent variable Y* such that

( )2* ,0~    , σεεβ NY += X Normal = Probit



Latent Variables

For the rest of the lecture we’ll talk in terms of probits, but 
everything holds for logits too
One way to state what’s going on is to assume that there 
is a latent variable Y* such that

In a linear regression we would observe Y* directly
In probits, we observe only
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Latent Variables

For the rest of the lecture we’ll talk in terms of probits, but 
everything holds for logits too
One way to state what’s going on is to assume that there 
is a latent variable Y* such that

In a linear regression we would observe Y* directly
In probits, we observe only
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These could be any
constant. Later we’ll
set them to ½. 



Latent Variables

This translates to possible values for the error term:

Similarly,
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Latent Variables

Look again at the expression for Pr(Yi=1):

We can’t estimate both β and σ, since they enter the 
equation as a ratio
So we set σ=1, making the distribution on ε a 
standard normal density.
One (big) question left: how do we actually estimate 
the values of the b coefficients here?

(Other than just issuing the “probit” command in Stata!)
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Maximum Likelihood Estimation

Say we’re estimating Y=Xβ+ε as a probit
And say we’re given some trial coefficients β′.

Then for each observation yi, we can plug 
in xi and β′ to get Pr(yi=1)=Φ(xi β′).

For example, let’s say Pr(yi=1) = 0.8
Then if the actual observation was yi=1, 
we can say its likelihood (given β′) is 0.8
But if yi=0, then its likelihood was only 0.2

And conversely for Pr(yi=0)



Let L(yi | β) be the likelihood of yi given β
For any given trial set of β′ coefficients, we can 
calculate the likelihood of each yi.
Then the likelihood of the entire sample is:

Maximum likelihood estimation finds the β’s that 
maximize this expression.
Here’s the same thing in visual form

Maximum Likelihood Estimation
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Maximum Likelihood Estimation
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P(y=1) = Probit(y*)

Maximum Likelihood Estimation

Given estimates β′ of β, the distance 
from yi to the line P(y=1) is 1-L(yi | β′)
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y* = xβ′ + ε, Probit: ℜ1#[0,1]
P(y=1) = Probit(y*)

Maximum Likelihood Estimation

1-L(y3)

Given estimates β′ of β, the distance 
from y3 to the line P(y=1) is 1-L(y3 | β′)

y3



0

½

1
y* = xβ′ + ε, Probit: ℜ1#[0,1]
P(y=1) = Probit(y*)

Maximum Likelihood Estimation

1-L(y3)

1-L(y9)

Given estimates β′ of β, the distance 
from y9 to the line P(y=1) is 1-L(y9 | β′)

y9
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation

Impact of changing β′ to β′′
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Maximum Likelihood Estimation

Remember, the object is to maximize 
the product of the likelihoods L(yi | β)
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Maximum Likelihood Estimation

Using β′′may bring regression line closer 
to some observations, further from others
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Maximum Likelihood Estimation

Recall that a likelihood function is:

To maximize this, use the trick of taking the log first
Since maximizing the log(L) is the same as maximizing L
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Maximum Likelihood Estimation
Let’s see how this works on some simple examples
Take a coin flip, so that Yi=0 for tails, Yi=1 for heads

Say you toss the coin n times and get p heads
Then the proportion of heads is p/n

Since Yi is 1 for heads and 0 for tails, p/n is also the sample mean
Intuitively, we’d think that the best estimate of p is p/n

If the true probability of heads for this coin is ρ, then 
the likelihood of observation Yi is:

( )

( ) ii yy

i

i
i y

y
y

−−⋅=

⎩
⎨
⎧

=−
=

=

11

0 if 1
1 if 

ρρ

ρ
ρ

L



Maximum Likelihood Estimation
Maximizing the log-likelihood, we get

To maximize this, take the derivative with respect to ρ
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Maximum Likelihood Estimation
Finally, set this derivative to 0 and solve for ρ
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Maximum Likelihood Estimation
Finally, set this derivative to 0 and solve for ρ
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Magically, the value 
of ρ that maximizes 
the likelihood 
function is the 
sample mean, just 
as we thought.



Maximum Likelihood Estimation
Can do the same exercise for OLS regression

The set of β coefficients that maximize the likelihood would 
then minimize the sum of squared residuals, as before

This works for logit/probit as well
In fact, it works for any estimation equation

Just look at the likelihood function L you’re trying to 
maximize and the parameters β you can change 
Then search for the values of β that maximize L
(We’ll skip the details of how this is done.)

Maximizing L can be computationally intense, but 
with today’s computers it’s usually not a big problem



Maximum Likelihood Estimation
This is what Stata does when you run a probit:
. probit black bvap

Iteration 0:   log likelihood = -735.15352
Iteration 1:   log likelihood = -292.89815
Iteration 2:   log likelihood = -221.90782
Iteration 3:   log likelihood = -202.46671
Iteration 4:   log likelihood = -198.94506
Iteration 5:   log likelihood = -198.78048
Iteration 6:   log likelihood = -198.78004

Probit estimates                                  Number of obs =       1507
LR chi2(1)    =    1072.75
Prob > chi2     =     0.0000

Log likelihood = -198.78004                       Pseudo R2       =     0.7296

------------------------------------------------------------------------------
black |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
bvap |   0.092316   .5446756    16.95   0.000     0.081641    0.102992

_cons |  -0.047147   0.027917   -16.89   0.000    -0.052619   -0.041676
------------------------------------------------------------------------------
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log-likelihood
function!



Maximum Likelihood Estimation
This is what Stata does when you run a probit:
. probit black bvap

Iteration 0:   log likelihood = -735.15352
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------------------------------------------------------------------------------
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-------------+----------------------------------------------------------------
bvap |   0.092316   .5446756    16.95   0.000     0.081641    0.102992

_cons |  -0.047147   0.027917   -16.89   0.000    -0.052619   -0.041676
------------------------------------------------------------------------------

Maximizing the 
log-likelihood
function!

Coefficients are
significant



Marginal Effects in Probit
In linear regression, if the coefficient on x is β, 
then a 1-unit increase in x increases Y by β.
But what exactly does it mean in probit that the 
coefficient on BVAP is 0.0923 and significant?

It means that a 1% increase in BVAP will raise the 
z-score of Pr(Y=1) by 0.0923.
And this coefficient is different from 0 at the 5% level.

So raising BVAP has a constant effect on Y′.
But this doesn’t translate into a constant effect on 
the original Y.

This depends on your starting point.



Marginal Effects in Probit
For instance, raising BVAP from .2 to .3 has little 
appreciable impact on Pr(Black Elected)
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Marginal Effects in Probit
But increasing BVAP from .5 to .6 does have a 
big impact on the probability
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Marginal Effects in Probit
So lesson 1 is that the marginal impact of 
changing a variable is not constant.
Another way of saying the same thing is that in 
the linear model

In the probit model
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Marginal Effects in Probit
This expression depends on not just βi, but on the 
value of xi and all other variables in the equation
So to even calculate the impact of xi on Y you 
have to choose values for all other variables xj.

Typical options are to set all variables to their means 
or their medians

Another approach is to fix the xj and let xi vary 
from its minimum to maximum values

Then you can plot how the marginal effect of xi

changes across its observed range of values



Example: Vote Choice

Model voting for/against incumbent as
( )

challengerQuality  
name s'challenger recallCan  
name sincumbent' recallCan  

situation financial Personal 
conditions economic National 

incumbent as ame IDParty  
Constant 

 where, Probit

7

6

5

4

3

2

1

=
=
=
=
=
=
=

+=

i

i

i

i

i

i

i

x
x
x
x
x

sx
x

Y εβX



Example: Vote Choice



Example: Vote Choice

Significant
Coefficients



Example: Vote Choice

This backs out the 
marginal impact 
of a 1-unit change 
in the variable on 
the probability of 
voting for the 
incumbent.
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of a 1-unit change 
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Example: Vote Choice
Or, calculate the impact of facing a quality challenger 
by hand, keeping all other variables at their median. 
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Example: Vote Choice
Or, calculate the impact of facing a quality challenger 
by hand, keeping all other variables at their median. 

Φ(1.52)
From standard
normal table

Φ(1.52-.339)

So there’s an increase of .936 - .881 = 5.5% votes in 
favor of incumbents who avoid a quality challengers.



Example: Senate Obstruction
Model the probability that a bill is passed in the 
Senate (over a filibuster) based on:

The coalition size preferring the bill be passed
An interactive term: size of coalition X end of session



Example: Senate Obstruction
Graph the results for end of session = 0



Example: Senate Obstruction
Graph the results for end of session = 1


