Lecture 7: Logit/Probit

Review of Linear Estimation

So far, we know how to handle <u>linear</u> estimation models of the type:

$$Y = \beta_0 + \beta_1^* X_1 + \beta_2^* X_2 + ... + \epsilon \equiv X\beta + \epsilon$$

- Sometimes we had to transform or add variables to get the equation to be linear:
 - □ Taking logs of Y and/or the X's
 - □ Adding squared terms
 - □ Adding interactions
- Then we can run our estimation, do model checking, visualize results, etc.

Nonlinear Estimation

- In all these models Y, the dependent variable, was continuous.
 - Independent variables could be dichotomous (dummy variables), but not the dependent var.
- This week we'll start our exploration of nonlinear estimation with dichotomous Y vars.
- These arise in many social science problems
 - □ Legislator Votes: Aye/Nay
 - □ Regime Type: Autocratic/Democratic
 - Involved in an Armed Conflict: Yes/No

Link Functions

- Before plunging in, let's introduce the concept of a <u>link function</u>
 - ☐ This is a function linking the actual Y to the estimated Y in an econometric model
- We have one example of this already: logs
 - □ Start with $Y = X\beta + ε$
 - □ Then change to log(Y) \equiv Y' = Xβ + ε
 - □ Run this like a regular OLS equation
 - □ Then you have to "back out" the results

Link Functions

- Before plunging in, let's introduce the concept of a <u>link function</u>
 - ☐ This is a function linking the actual Y to the estimated Y in an econometric model
- We have one example of this already: logs

Different

β's here

- □ Start with Y = **X**β + ε
- □ Then change to log(Y) \equiv Y' = Xβ + ε
- □ Run this like a regular OLS equation
- □ Then you have to "back out" the results

Ŋ4

Link Functions

■ If the coefficient on some particular X is β , then a 1 unit $\Delta X \rightarrow \beta \cdot \Delta(Y') = \beta \cdot \Delta[\log(Y))]$

$$= e^{\beta} \cdot \Delta(Y)$$

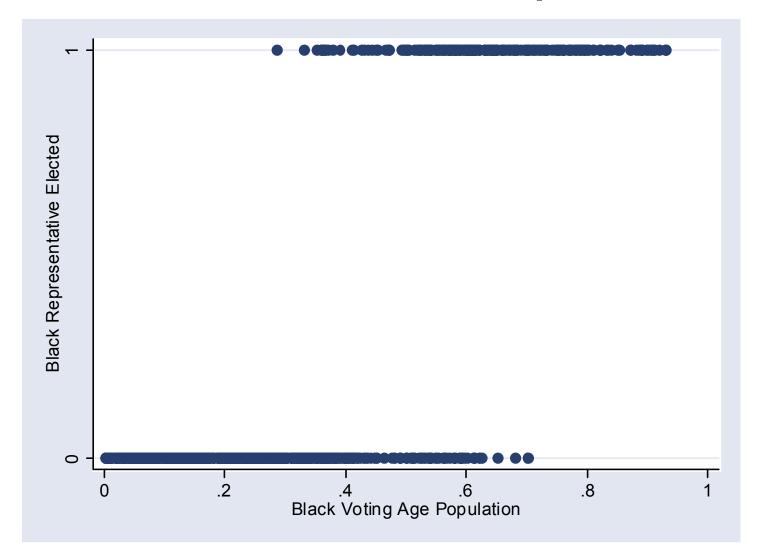
- □ Since for small values of β, $e^β ≈ 1+β$, this is almost the same as saying a β% increase in Y
- ☐ (This is why you should use natural log transformations rather than base-10 logs)
- In general, a link function is some F(·) s.t.
 - $\Box F(Y) = X\beta + \varepsilon$
- In our example, F(Y) = log(Y)

ÞΑ

Dichotomous Independent Vars.

- How does this apply to situations with dichotomous dependent variables?
 - \square I.e., assume that $Y_i \in \{0,1\}$
- First, let's look at what would happen if we tried to run this as a linear regression
- As a specific example, take the election of minorities to the Georgia state legislature
 - ☐ Y = 0: Non-minority elected
 - ☐ Y = 1: Minority elected

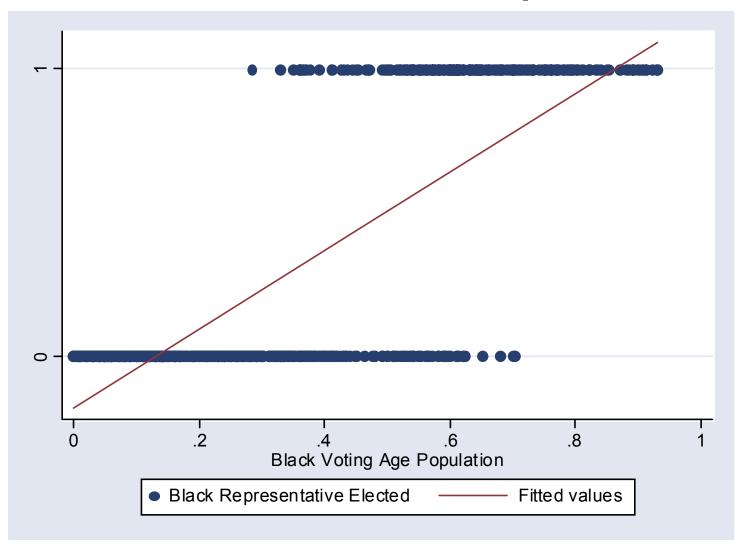
Dichotomous Independent Vars.



The data look like this.

The only values Y can have are 0 and 1

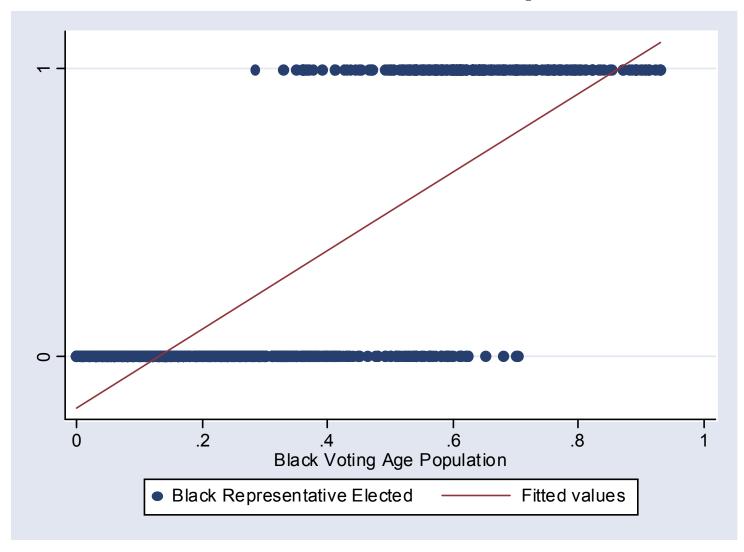
Dichotomous Independent Vars.



And here's a linear fit of the data

Note that the line goes below 0 and above 1

Dichotomous Independent Vars.



The line doesn't fit the data very well.

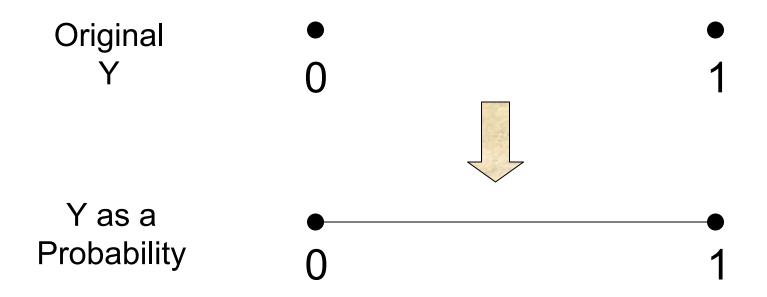
And if we take values of Y between 0 and 1 to be probabilities, this doesn't make sense

M

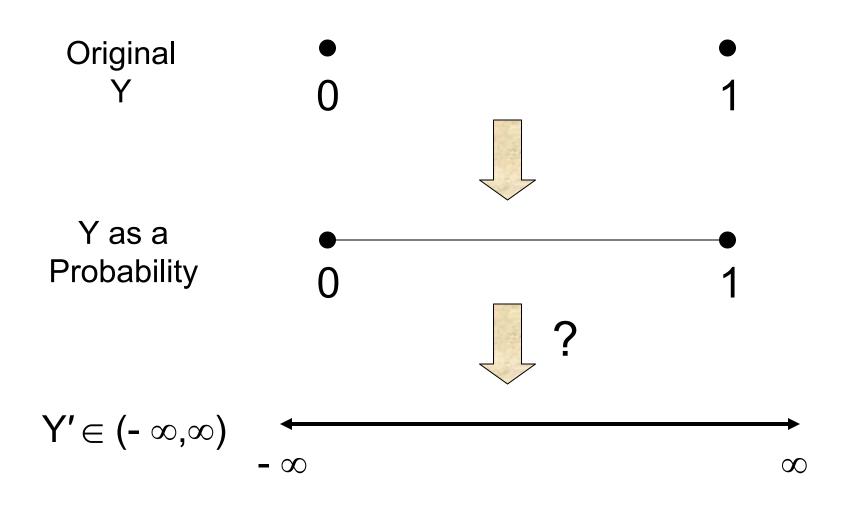
- How to solve this problem?
- We need to transform the dichotomous Y into a continuous variable Y' ∈ (-∞,∞)
- So we need a <u>link function</u> F(Y) that takes a dichotomous Y and gives us a continuous, real-valued Y'
- Then we can run

$$F(Y) = Y' = X\beta + \varepsilon$$

Original • 0 1



b/A



- What function F(Y) goes from the [0,1] interval to the real line?
- Well, we know at least one function that goes the other way around.
 - □ That is, given any real value it produces a number (probability) between 0 and 1.
- This is the...

- What function F(Y) goes from the [0,1] interval to the real line?
- Well, we know at least one function that goes the other way around.
 - □ That is, given any real value it produces a number (probability) between 0 and 1.
- lacktriangle This is the cumulative normal distribution Φ
 - □ That is, given any Z-score, $\Phi(Z) \in [0,1]$

b/A

Redefining the Dependent Var.

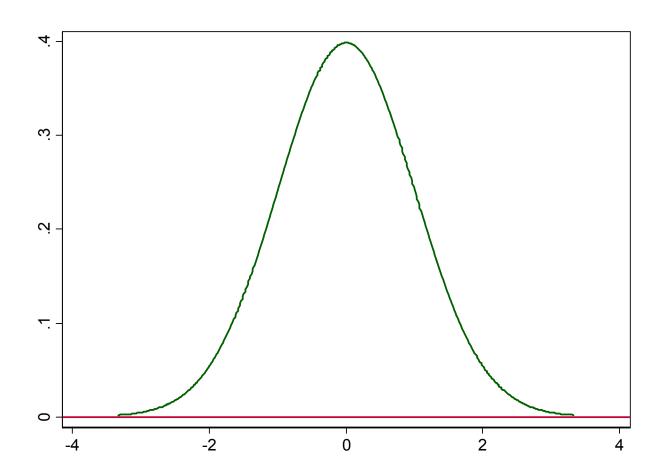
So we would say that

$$Y = \Phi(X\beta + \varepsilon)$$

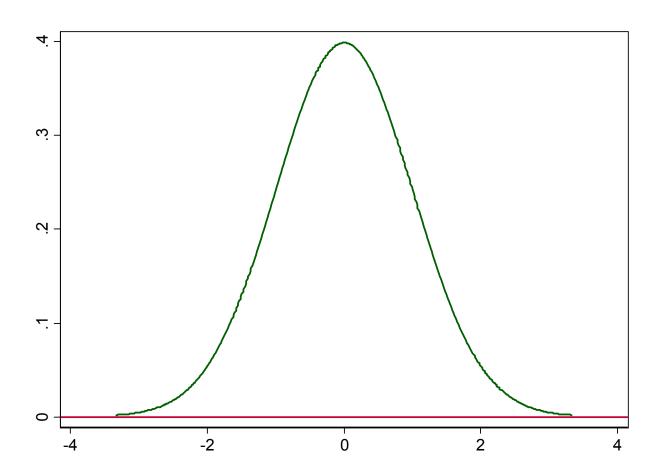
$$\Phi^{-1}(Y) = X\beta + \varepsilon$$

$$Y' = X\beta + \varepsilon$$

- Then our link function is $F(Y) = \Phi^{-1}(Y)$
- This link function is known as the <u>Probit</u> link
 - ☐ This term was coined in the 1930's by biologists studying the dosage-cure rate link
 - □ It is short for "probability unit"



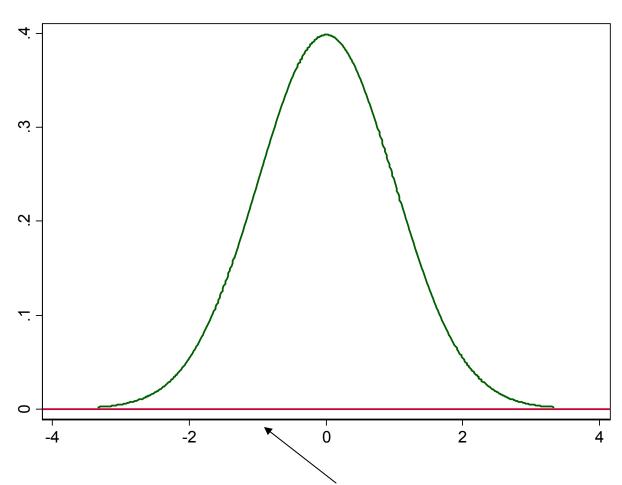
After estimation, you can back out probabilities using the standard normal dist.



Say that for a given observation, $X\beta = -1$

b/A

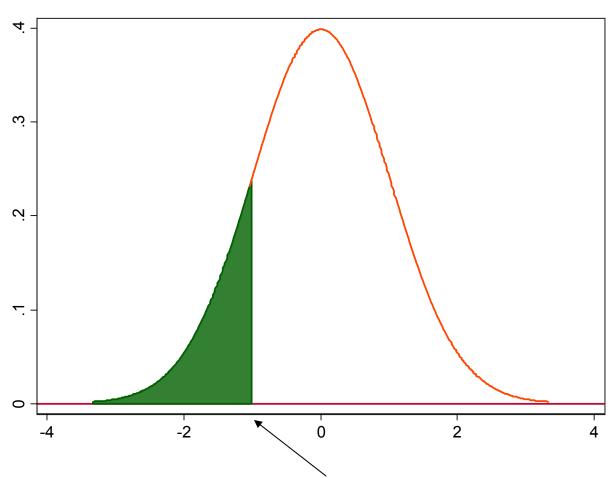
Probit Estimation



Say that for a given observation, $X\beta = -1$

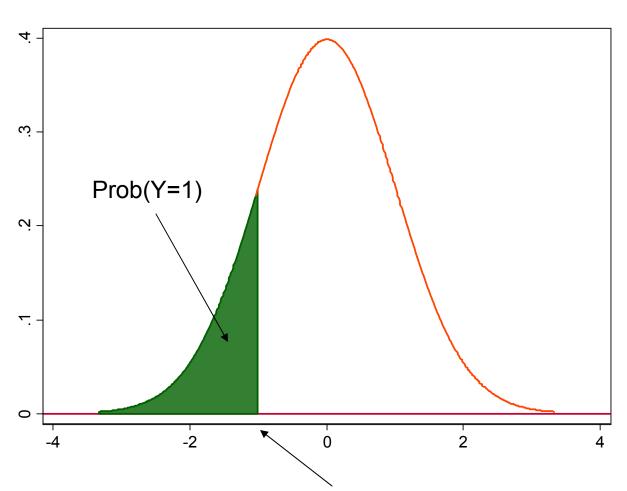
r,e

Probit Estimation

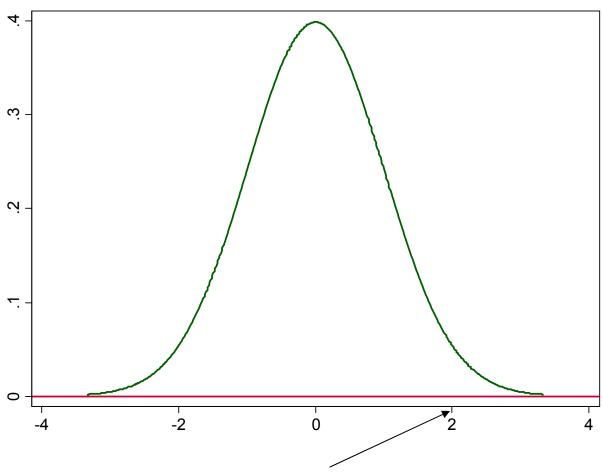


Say that for a given observation, $X\beta = -1$

NA.

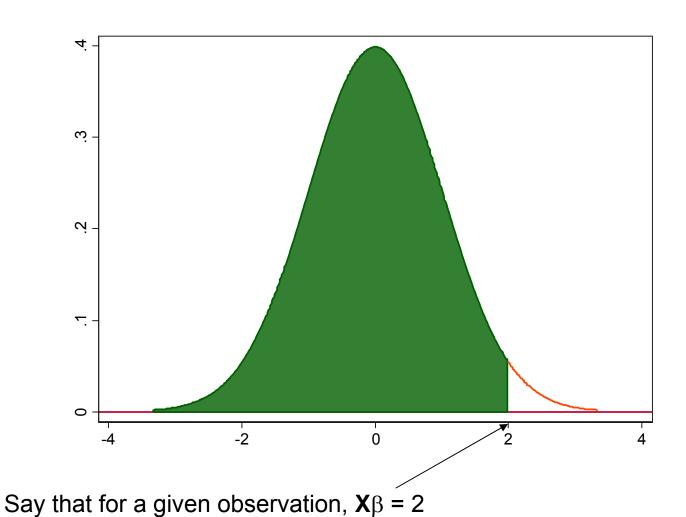


Say that for a given observation, $X\beta$ = -1



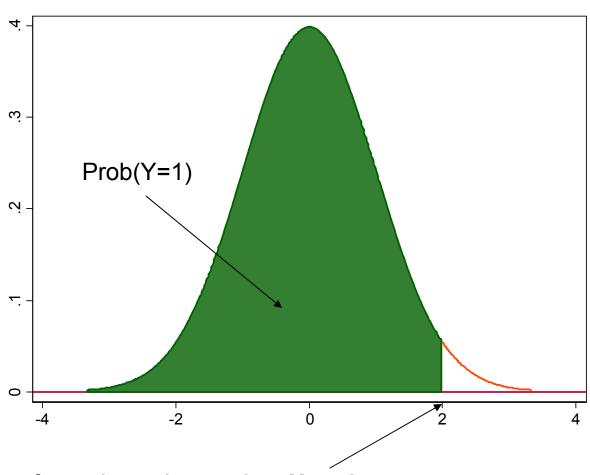
Say that for a given observation, $X\beta = 2$

re.



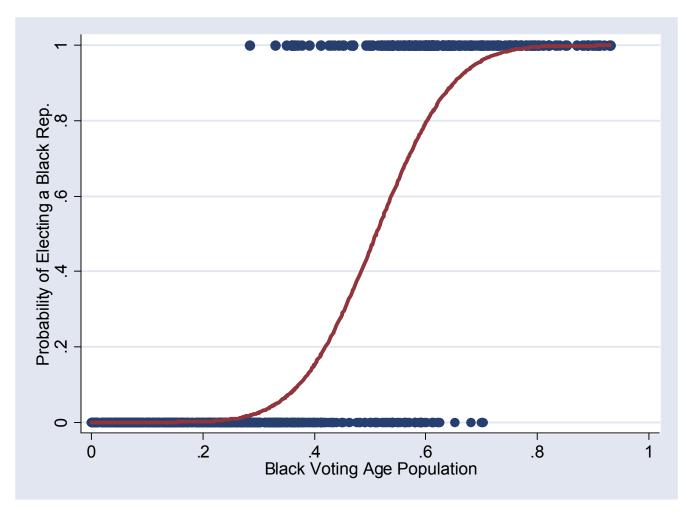
be.

Probit Estimation

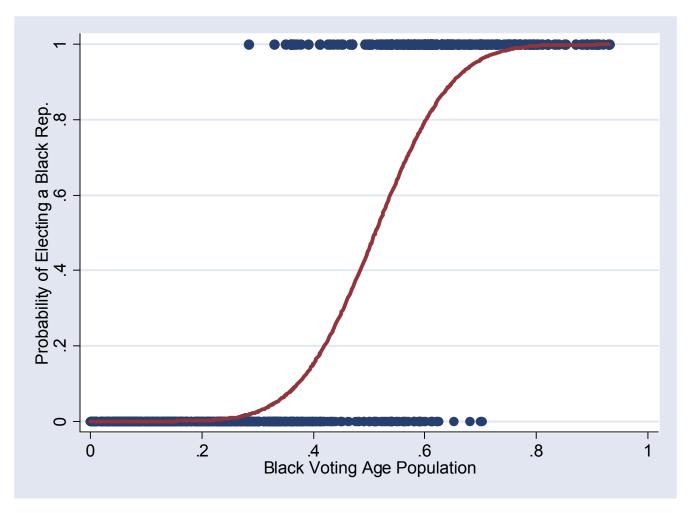


Say that for a given observation, $X\beta = 2$

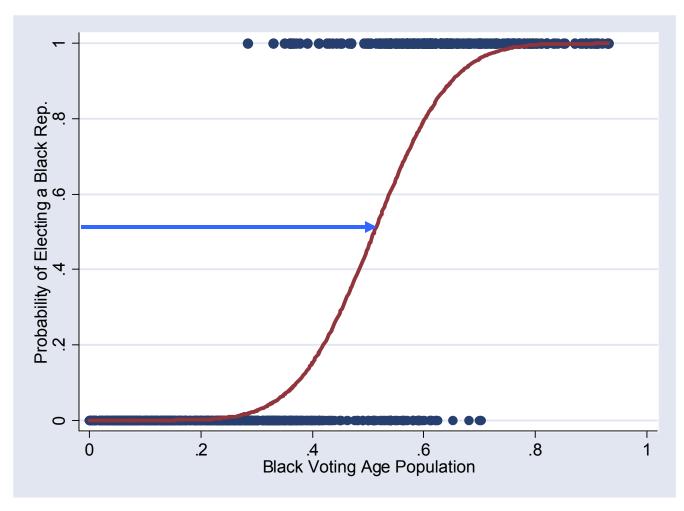
- In a probit model, the value of Xβ is taken to be the z-value of a normal distribution
 - Higher values of Xβ mean that the event is more likely to happen
- Have to be careful about the interpretation of estimation results here
 - \square A one unit change in X_i leads to a β_i change in the <u>z-score</u> of Y (more on this later...)
- The estimated curve is an S-shaped cumulative normal distribution



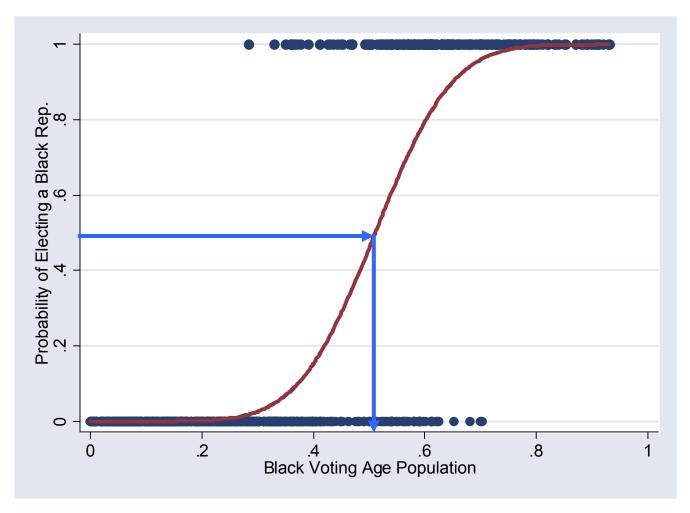
- This fits the data much better than the linear estimation
- Always lies between 0 and 1



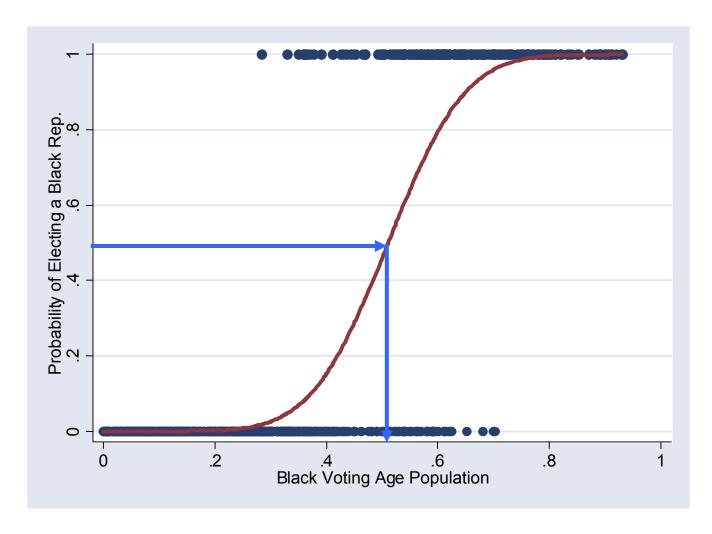
- Can estimate, for instance, the BVAP at which Pr(Y=1) = 50%
- This is the "point of equal opportunity"



- Can estimate, for instance, the BVAP at which Pr(Y=1) = 50%
- This is the "point of equal opportunity"



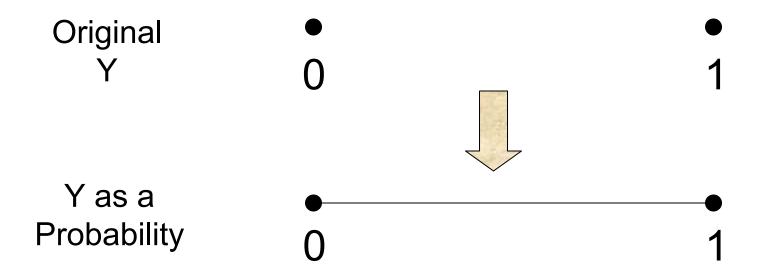
- Can estimate, for instance, the BVAP at which Pr(Y=1) = 50%
- This is the "point of equal opportunity"



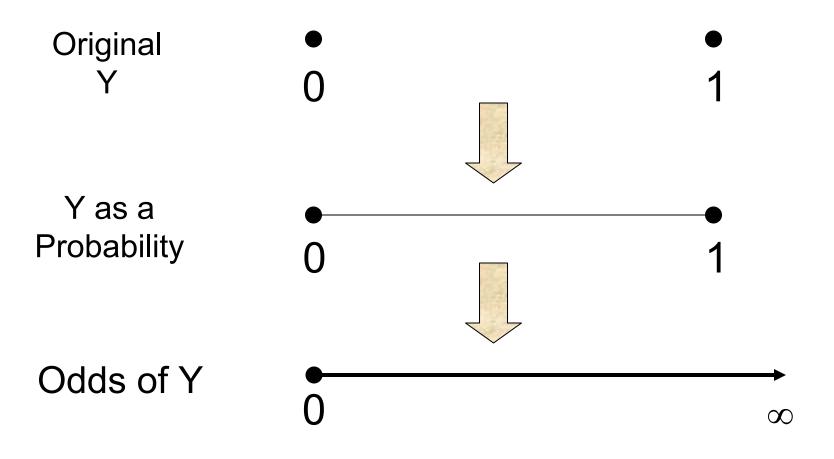
• This occurs at about 48% BVAP

b/A

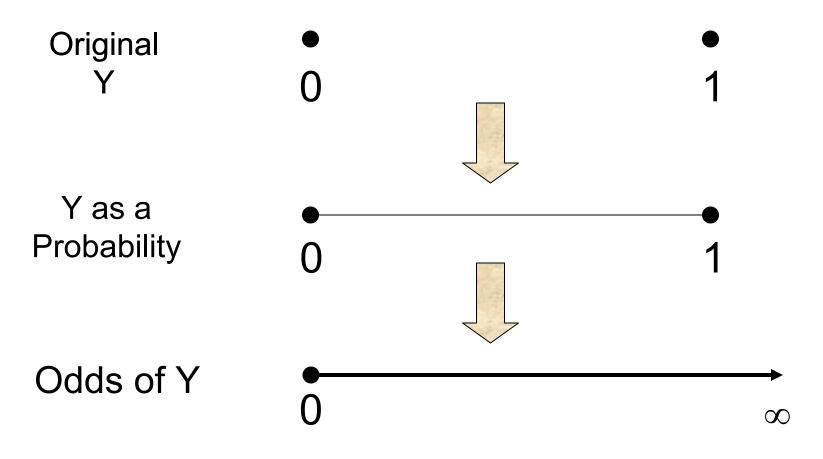
- Let's return to the problem of transforming Y from {0,1} to the real line
- We'll look at an alternative approach based on the odds ratio
- If some event occurs with probability p, then the odds of it happening are O(p) = p/(1-p)
 - \Box p = 0 \rightarrow O(p) = 0
 - \Box p = $\frac{1}{4}$ \rightarrow O(p) = 1/3 ("Odds are 1-to-3 against")
 - \square p = $\frac{1}{2}$ \rightarrow O(p) = 1 ("Even odds")
 - \Box p = $\frac{3}{4}$ \rightarrow O(p) = 3 ("Odds are 3-to-1 in favor")
 - \square p = 1 \rightarrow O(p) = ∞



So taking the odds of Y occurring moves us from the [0,1] interval...

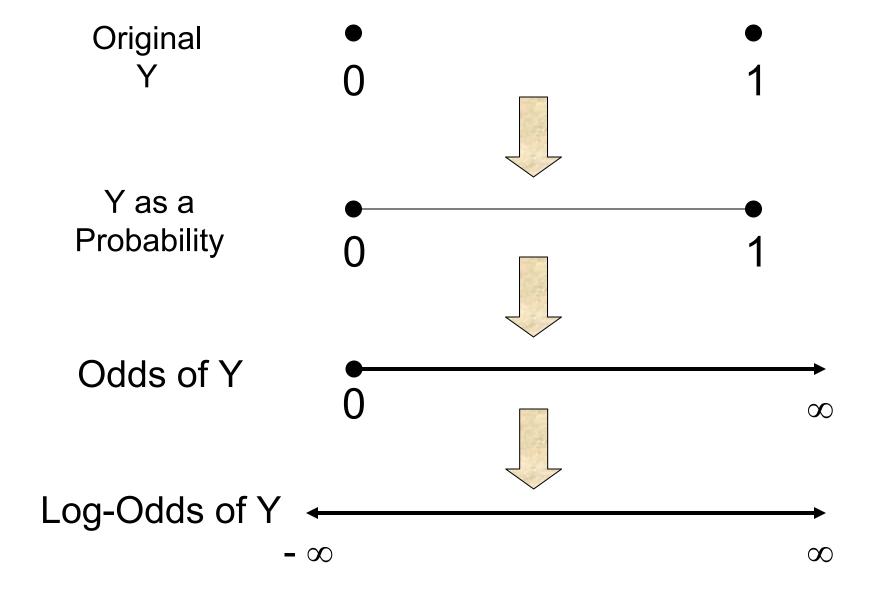


So taking the odds of Y occurring moves us from the [0,1] interval to the half-line [0, ∞)



- The odds ratio is always non-negative
- As a final step, then, take the <u>log</u> of the odds ratio

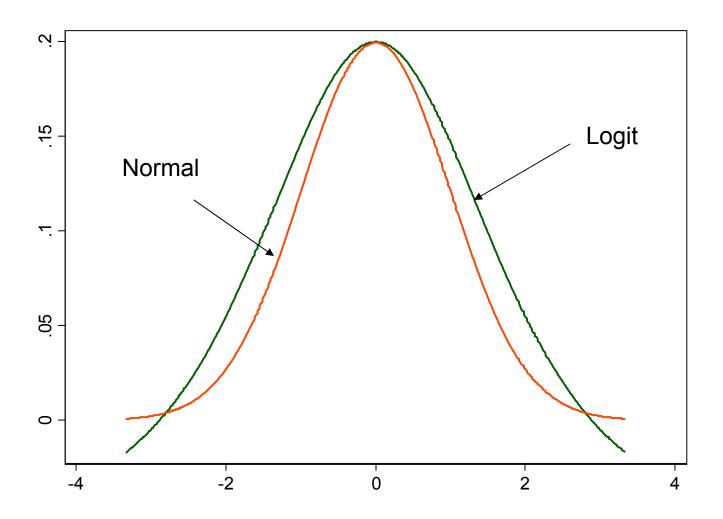
ħΑ



Logit Function

- This is called the logit function
- Why would we want to do this?
 - At first, this was computationally easier than working with normal distributions
 - □ Now, it still has some nice properties that we'll investigate next time with multinomial dep. vars.
- The density function associated with it is very close to a standard normal distribution

Logit vs. Probit



The logit function is similar, but has thinner tails than the normal distribution

NA.

Logit Function

This translates back to the original Y as:

$$\log\left(\frac{Y}{1-Y}\right) = \mathbf{X}\beta$$

$$\frac{Y}{1-Y} = e^{\mathbf{X}\beta}$$

$$Y = (1-Y)e^{\mathbf{X}\beta}$$

$$Y = e^{\mathbf{X}\beta} - e^{\mathbf{X}\beta}Y$$

$$Y + e^{\mathbf{X}\beta}Y = e^{\mathbf{X}\beta}$$

$$(1+e^{\mathbf{X}\beta})Y = e^{\mathbf{X}\beta}$$

$$Y = \frac{e^{\mathbf{X}\beta}}{1+e^{\mathbf{X}\beta}}$$

Latent Variables

- For the rest of the lecture we'll talk in terms of probits, but everything holds for logits too
- One way to state what's going on is to assume that there
 is a latent variable Y* such that

$$Y^* = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim N(0, \sigma^2)$$

Latent Variable Formulation

- For the rest of the lecture we'll talk in terms of probits, but everything holds for logits too
- One way to state what's going on is to assume that there
 is a latent variable Y* such that

$$Y^* = \mathbf{X}\beta + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2)$ Normal = Probit

Latent Variables

- For the rest of the lecture we'll talk in terms of probits, but everything holds for logits too
- One way to state what's going on is to assume that there
 is a latent variable Y* such that

$$Y^* = \mathbf{X}\beta + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2)$ Normal = Probit

- In a linear regression we would observe Y* directly
- In probits, we observe only

$$y_i = \begin{cases} 0 & \text{if } y_i^* \le 0 \\ 1 & \text{if } y_i^* > 0 \end{cases}$$

Latent Variables

- For the rest of the lecture we'll talk in terms of probits, but everything holds for logits too
- One way to state what's going on is to assume that there
 is a latent variable Y* such that

$$Y^* = \mathbf{X}\beta + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2)$ Normal = Probit

- In a linear regression we would observe Y* directly
- In probits, we observe only

$$y_i = \begin{cases} 0 \text{ if } y_i^* \leq 0 \\ 1 \text{ if } y_i^* > 0 \end{cases}$$
 These could be any constant. Later we'll set them to ½.

Latent Variables

This translates to possible values for the error term:

$$y_{i}^{*} > 0 \Rightarrow \beta' \mathbf{x}_{i} + \varepsilon_{i} > 0 \Rightarrow \varepsilon_{i} > -\beta' \mathbf{x}_{i}$$

$$\Pr(y_{i}^{*} > 0 \mid \mathbf{x}_{i}) = \Pr(y_{i} = 1 \mid \mathbf{x}_{i}) = \Pr(\varepsilon_{i} > -\beta' \mathbf{x}_{i})$$

$$= \Pr\left(\frac{\varepsilon_{i}}{\sigma} > \frac{-\beta' \mathbf{x}_{i}}{\sigma}\right)$$

$$= \Phi\left(\frac{-\beta' \mathbf{x}_{i}}{\sigma}\right)$$

Similarly,

$$\Pr(y_i = 0 \mid \mathbf{x}_i) = 1 - \Phi\left(\frac{-\beta' \mathbf{x}_i}{\sigma}\right)$$

Latent Variables

■ Look again at the expression for Pr(Y_i=1):

$$\Pr(y_i = 1 \mid \mathbf{x}_i) = \Phi\left(\frac{-\beta'\mathbf{x}_i}{\sigma}\right)$$

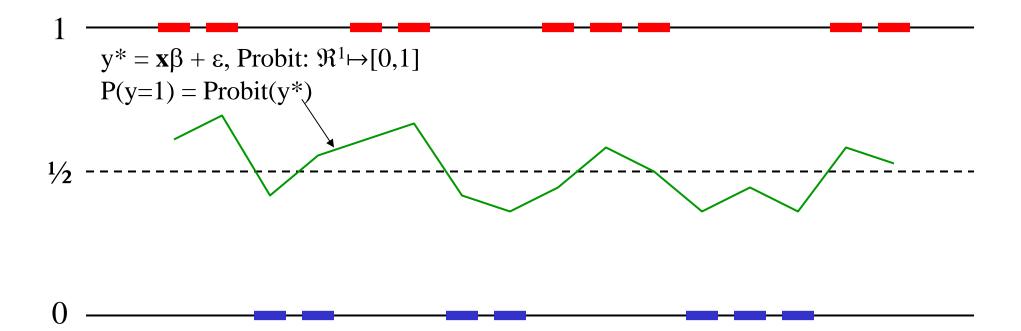
- We can't estimate both β and σ , since they enter the equation as a ratio
- So we set σ =1, making the distribution on ϵ a standard normal density.
- One (big) question left: how do we actually estimate the values of the b coefficients here?
 - □ (Other than just issuing the "probit" command in Stata!)

- Say we're estimating $Y=X\beta+\epsilon$ as a probit
 - \square And say we're given some trial coefficients β' .
- Then for each observation y_i, we can plug in x_i and β' to get Pr(y_i=1)=Φ(x_i β').
 - □ For example, let's say $Pr(y_i=1) = 0.8$
- Then if the actual observation was y_i=1, we can say its <u>likelihood</u> (given β') is 0.8
- But if y_i=0, then its likelihood was only 0.2
 - \square And conversely for $Pr(y_i=0)$

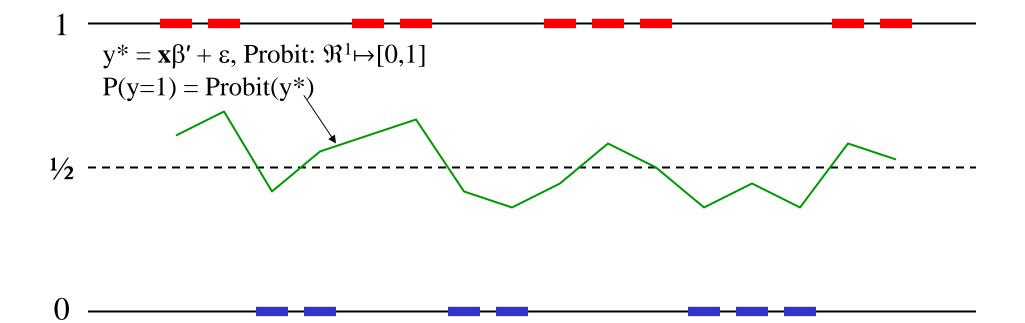
- Let $\mathcal{L}(y_i | \beta)$ be the likelihood of y_i given β
- For any given trial set of β' coefficients, we can calculate the likelihood of each y_i.
- Then the likelihood of the entire sample is:

$$\mathcal{L}(y_1)\cdot\mathcal{L}(y_2)\cdot\mathcal{L}(y_3)\cdot\ldots\cdot\mathcal{L}(y_n)=\prod_{i=1}^n\mathcal{L}(y_i)$$

- Maximum likelihood estimation finds the β 's that maximize this expression.
- Here's the same thing in visual form

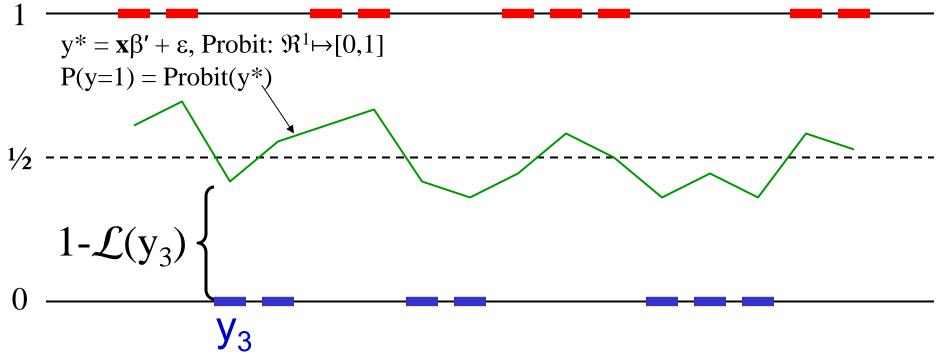


Maximum Likelihood Estimation



Given estimates β' of β , the distance from y_i to the line P(y=1) is $1-\mathcal{L}(y_i \mid \beta')$

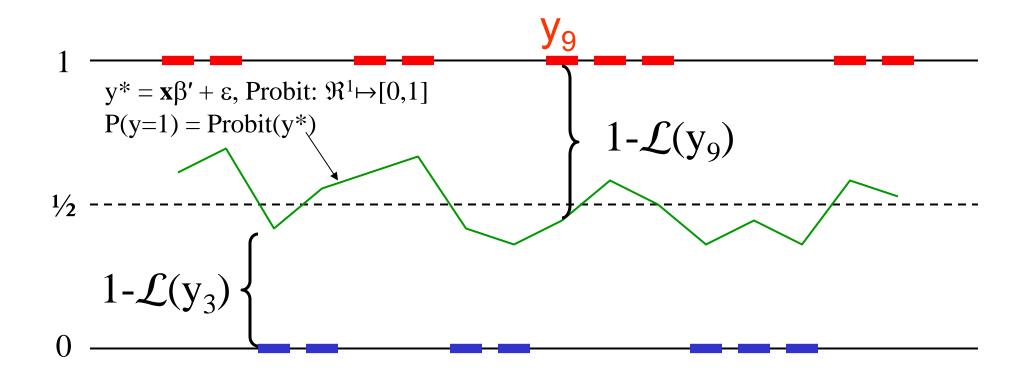
Maximum Likelihood Estimation



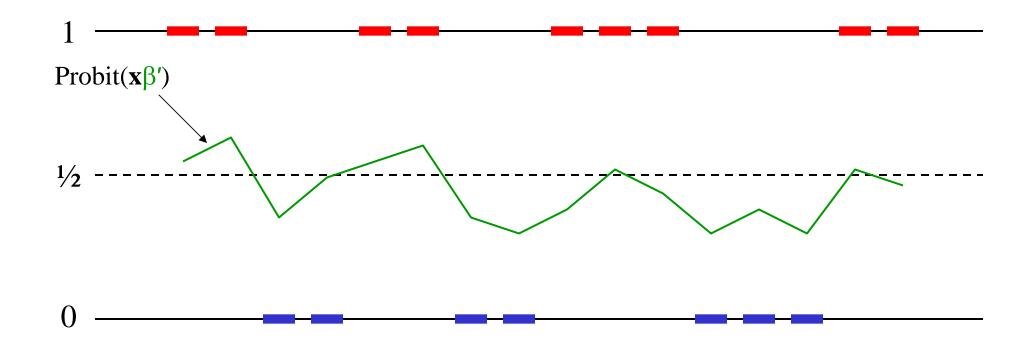
Given estimates β' of β , the distance from y_3 to the line P(y=1) is $1-\mathcal{L}(y_3 \mid \beta')$

b/A

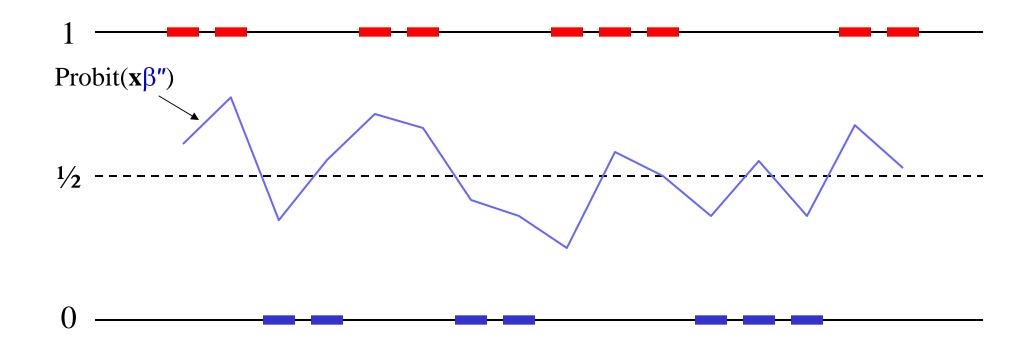
Maximum Likelihood Estimation



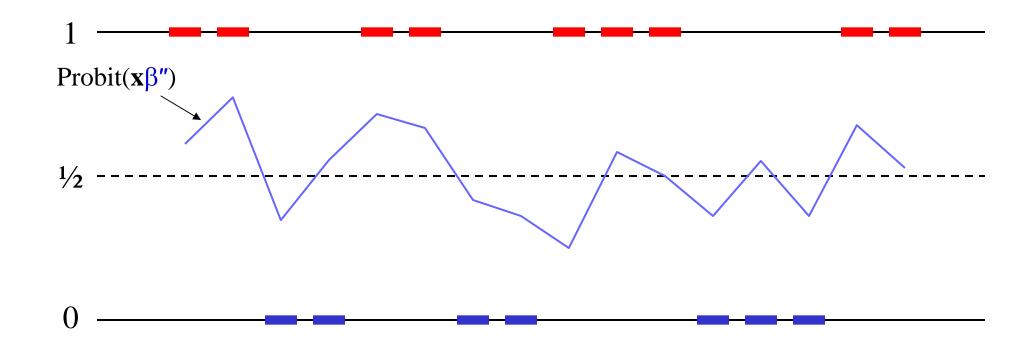
Given estimates β' of β , the distance from y_9 to the line P(y=1) is $1-\mathcal{L}(y_9 \mid \beta')$



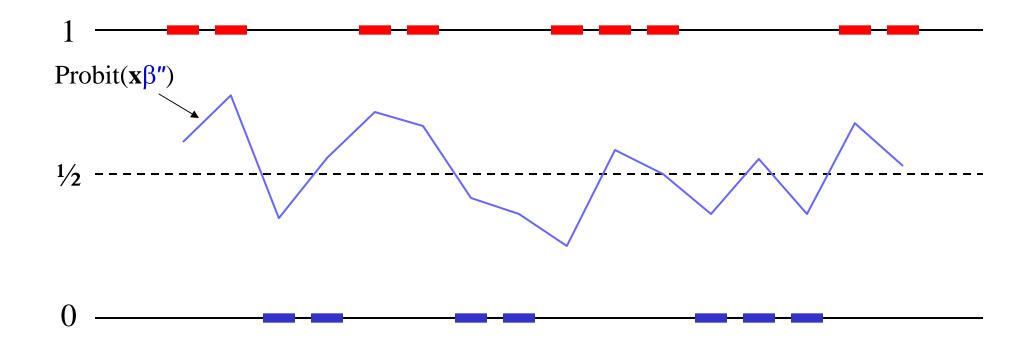
Impact of changing β' ...



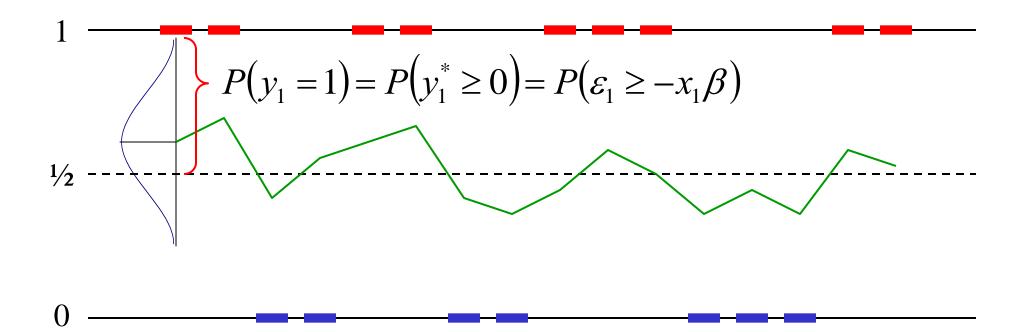
Impact of changing β' to β''



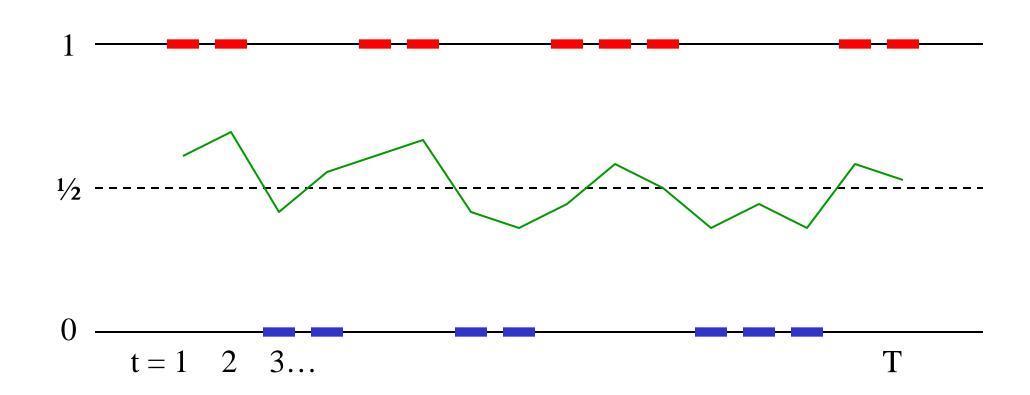
Remember, the object is to maximize the product of the likelihoods $\mathcal{L}(y_i \mid \beta)$



Using β'' may bring regression line closer to some observations, further from others

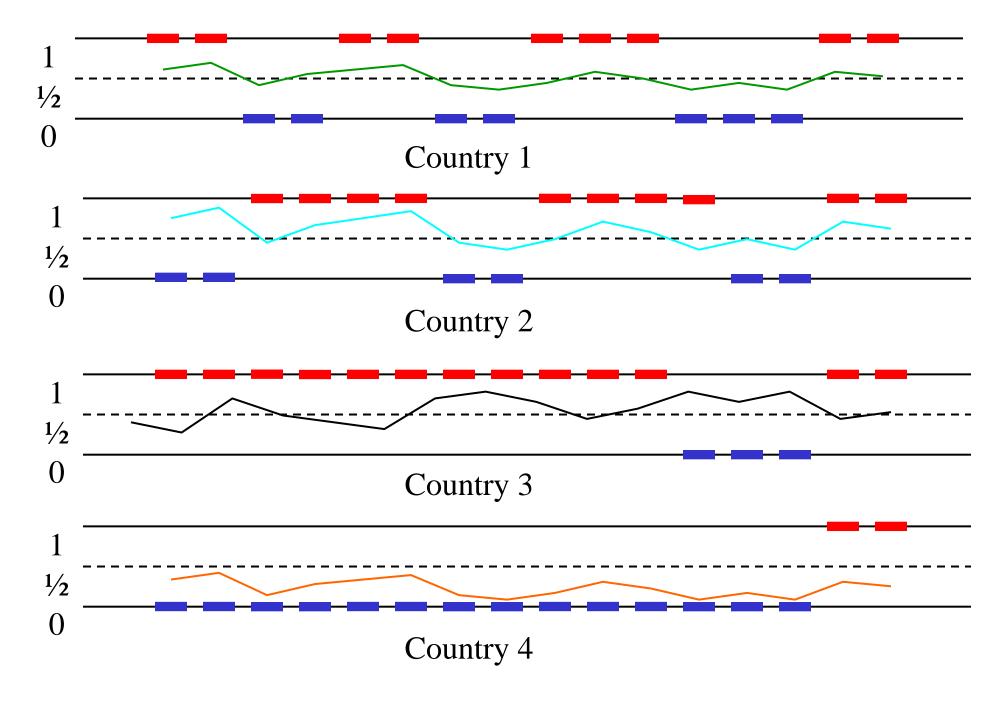


Error Terms for MLE



Time Series

Time Series Cross Section



Maximum Likelihood Estimation

Recall that a likelihood function is:

$$\mathcal{L}(y_1) \cdot \mathcal{L}(y_2) \cdot \mathcal{L}(y_3) \cdot \ldots \cdot \mathcal{L}(y_n) = \prod_{i=1}^n \mathcal{L}(y_i) \equiv \mathcal{L}$$

- To maximize this, use the trick of taking the log first
 - \square Since maximizing the log(\mathcal{L}) is the same as maximizing \mathcal{L}

$$\log(\mathcal{L}) = \log \prod_{i=1}^{n} \mathcal{L}(y_i)$$
$$= \sum_{i=1}^{n} \log[\mathcal{L}(y_i)]$$

- Let's see how this works on some simple examples
- Take a coin flip, so that Y_i=0 for tails, Y_i=1 for heads
 - □ Say you toss the coin n times and get p heads
 - □ Then the proportion of heads is p/n
 - Since Y_i is 1 for heads and 0 for tails, p/n is also the sample mean
 - □ Intuitively, we'd think that the best estimate of p is p/n
- If the true probability of heads for this coin is ρ, then the likelihood of observation Y_i is:

$$\mathcal{L}(y_i) = \begin{cases} \rho \text{ if } y_i = 1\\ 1 - \rho \text{ if } y_i = 0 \end{cases}$$
$$= \rho^{y_i} \cdot (1 - \rho)^{1 - y_i}$$

b/A

Maximum Likelihood Estimation

Maximizing the log-likelihood, we get

$$\max_{\rho} \sum_{i=1}^{n} [\log \mathcal{L}(y_{i}|\rho)] = \sum_{i=1}^{n} \log [\rho^{y_{i}} \cdot (1-\rho)^{1-y_{i}}]$$

$$= \sum_{i=1}^{n} y_{i} \log(\rho) + (1-y_{i}) \log(1-\rho)$$

To maximize this, take the derivative with respect to ρ

$$\frac{\mathrm{d}\log \mathcal{L}}{\rho} = \frac{\mathrm{d}\left[\sum_{i=1}^{n} y_{i} \log(\rho) + (1 - y_{i}) \log(1 - \rho)\right]}{\rho}$$
$$= \sum_{i=1}^{n} y_{i} \frac{1}{\rho} - (1 - y_{i}) \frac{1}{1 - \rho}$$

ÞΑ

Maximum Likelihood Estimation

Finally, set this derivative to 0 and solve for ρ

$$\sum_{i=1}^{n} \left[\frac{y_i}{\rho} - \frac{(1 - y_i)}{1 - \rho} \right] = 0$$

$$\sum_{i=1}^{n} \left[y_i (1 - \rho) - (1 - y_i) \rho \right]$$

$$\rho (1 - \rho)$$

$$\sum_{i=1}^{n} \left[y_i - y_i \rho - \rho + (1 - y_i) \rho \right] = 0$$

$$n\rho = \sum_{i=1}^{n} y_i$$

$$\rho = \frac{\sum_{i=1}^{n} y_i}{n}$$

NA.

Maximum Likelihood Estimation

Finally, set this derivative to 0 and solve for ρ

$$\sum_{i=1}^{n} \left[\frac{y_i}{\rho} - \frac{(1-y_i)}{1-\rho} \right] = 0$$

$$\frac{\sum_{i=1}^{n} [y_i (1-\rho) - (1-y_i)\rho]}{\rho (1-\rho)} = 0$$

$$\sum_{i=1}^{n} [y_i - y_i \rho - \rho + (1 - y_i) \rho] = 0$$

$$n\rho = \sum_{i=1}^{n} y_{i}$$

$$\rho = \frac{\sum_{i=1}^{n} y_{i}}{n}$$

Magically, the value of ρ that maximizes the likelihood function is the sample mean, just as we thought.

- Can do the same exercise for OLS regression
 - \Box The set of β coefficients that maximize the likelihood would then minimize the sum of squared residuals, as before
- This works for logit/probit as well
- In fact, it works for <u>any</u> estimation equation
 - □ Just look at the likelihood function \mathcal{L} you're trying to maximize and the parameters β you can change
 - \Box Then search for the values of β that maximize \mathcal{L}
 - ☐ (We'll skip the details of how this is done.)
- Maximizing \mathcal{L} can be computationally intense, but with today's computers it's usually not a big problem

Maximum Likelihood Estimation

This is what Stata does when you run a probit:

```
. probit black byap
Iteration 0:
             log likelihood = -735.15352
             log likelihood = -292.89815
Iteration 1:
Iteration 2:
             log likelihood = -221.90782
Iteration 3:
             log likelihood = -202.46671
Iteration 4:
             log likelihood = -198.94506
Iteration 5:
             log likelihood = -198.78048
             log likelihood = -198.78004
Iteration 6:
Probit estimates
                                            Number of obs =
                                                                 1507
                                            LR chi2(1) = 1072.75
                                            Prob > chi2 = 0.0000
Log likelihood = -198.78004
                                            Pseudo R2 = 0.7296
      black | Coef. Std. Err. z P>|z| [95% Conf. Interval]
      bvap | 0.092316 .5446756 16.95 0.000
                                                  0.081641
                                                              0.102992
                                          0.000 -0.052619
                        0.027917 -16.89
              -0.047147
      _cons
```

Maximum Likelihood Estimation

This is what Stata does when you run a probit:

```
. probit black bvap
```

```
Iteration 0: log likelihood = -735.15352
Iteration 1: log likelihood = -292.89815
Iteration 2: log likelihood = -221.90782
Iteration 3: log likelihood = -202.46671
Iteration 4: log likelihood = -198.94506
Iteration 5: log likelihood = -198.78048
Iteration 6: log likelihood = -198.78004
```

Maximizing the log-likelihood function!

```
Probit estimates
```

```
Log likelihood = -198.78004
```

Number of obs	=	1507
LR chi2(1)	=	1072.75
Prob > chi2	=	0.0000
Pseudo R2	=	0.7296

black					[95% Conf.	
bvap	0.092316 -0.047147	.5446756	16.95	0.000	0.081641 -0.052619	0.102992

ŊΑ

Maximum Likelihood Estimation

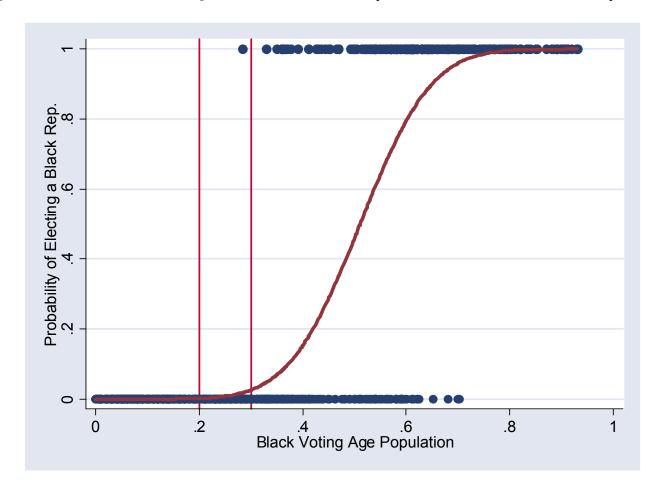
This is what Stata does when you run a probit:

```
. probit black byap
              log likelihood = -735.15352
Iteration 0:
              log likelihood = -292.89815
Iteration 1:
                                                Maximizing the
Iteration 2:
              log likelihood = -221.90782
                                                log-likelihood
              log likelihood = -202.46671
Iteration 3:
Iteration 4:
              log likelihood = -198.94506
                                                function!
Iteration 5:
              log likelihood = -198.78048
              log likelihood = -198.78004
Iteration 6:
Probit estimates
                                                Number of obs
                                                                       1507
                                                LR chi2(1)
                                                               = 1072.75
                                                Prob > chi2
                                                                    0.0000
Log likelihood = -198.78004
                                                Pseudo R2
                                                                    0.7296
                                              P > |z|
      black
                 Coef. Std. Err.
                                                        [95% Conf. Interval]
                                     16.95
                                              0.000
                0.092316 .5446756
                                                        0.081641
                                                                   0.102992
                           0.027917
               -0.047147
                                              0.000
                                                                  -0.041676
      _cons
```

Coefficients are significant

- In linear regression, if the coefficient on x is β, then a 1-unit increase in x increases Y by β.
- But what exactly does it mean in probit that the coefficient on BVAP is 0.0923 and significant?
 - □ It means that a 1% increase in BVAP will raise the z-score of Pr(Y=1) by 0.0923.
 - □ And this coefficient is different from 0 at the 5% level.
- So raising BVAP has a constant effect on Y'.
- But this <u>doesn't</u> translate into a constant effect on the original Y.
 - □ This depends on your starting point.

 For instance, raising BVAP from .2 to .3 has little appreciable impact on Pr(Black Elected)



But increasing BVAP from .5 to .6 does have a big impact on the probability



Ŋ.

Marginal Effects in Probit

- So lesson 1 is that the marginal impact of changing a variable is not constant.
- Another way of saying the same thing is that in the linear model

$$Y = \beta_0 + \beta_1 x_1 + \beta_1 x_1 + \dots + \beta_n x_n, \text{ so}$$

$$\frac{\partial Y}{\partial x_i} = \beta_i$$

In the probit model

$$Y = \Phi(\beta_0 + \beta_1 x_1 + \beta_1 x_1 + \dots + \beta_n x_n), \text{ so}$$

$$\frac{\partial Y}{\partial x_i} = \beta_i \phi(\beta_0 + \beta_1 x_1 + \beta_1 x_1 + \dots + \beta_n x_n)$$

- This expression depends on not just β_i , but on the value of x_i and <u>all other variables</u> in the equation
- So to even calculate the impact of x_i on Y you have to choose values for all other variables x_i.
 - Typical options are to set all variables to their means or their medians
- Another approach is to fix the x_j and let x_i vary from its minimum to maximum values
 - □ Then you can plot how the marginal effect of x_i changes across its observed range of values

Example: Vote Choice

Model voting for/against incumbent as

Probit $(Y) = \mathbf{X}\beta + \varepsilon$, where

 $x_{1i} = Constant$

 x_{2i} = Party ID same as incumbent

 x_{3i} = National economic conditions

 x_{4i} = Personal financial situation

 x_{5i} = Can recall incumbent's name

 x_{6i} = Can recall challenger's name

 x_{7i} = Quality challenger

Table 6.1: Probability of Voting for the Incumbent Member of Congress

variable	Probit MLEs
Intercept	.184
	(.058)
Party identification	1.35
	(.056)
National economic performance	114
(Retrospective Judgment)	(.069)
Personal financial situation	.095
(Retrospective Judgment)	(.068)
Recall incumbent's name	.324
	(.0808)
Recall challenger's name	677
recease chances got a manne	(.109)
Quality of challenger	339
•	(.073)

Notes: Standard errors in parentheses. $N=3341.~-2\ln L=760.629$ Percent correctly predicted = 78.5%

Table 6.1: Probability of Voting for the Incumbent Member of Congress

variable	Probit MLEs	
Intercept	.184 (.058)	
Party identification	1.35 (.056)	
National economic performance (Retrospective Judgment)	114 (.069)	Significant
Personal financial situation (Retrospective Judgment)	.095 (.068)	Coefficients
Recall incumbent's name	.324 (.0808)	
Recall challenger's name	677 (.109)	
Quality of challenger	339 (.073)	

Notes: Standard errors in parentheses. $N=3341.~-2\ln L=760.629$ Percent correctly predicted = 78.5%

Table 6.2: Marginal Effects on Probability of Voting for the Incumbent Member of Congress

variable	$\hat{\beta}_j \phi(\hat{\boldsymbol{\beta}}' \mathbf{x}_i)$
Party identification	.251
National economic performance (Retrospective Judgment)	021
Personal financial situation (Retrospective Judgment)	.018
Recall incumbent's name	.060
Recall challenger's name	126
Quality of challenger	063

Notes: Explanatory variables are set equal to their medians in the sample. This backs out the marginal impact of a 1-unit change in the variable on the probability of voting for the incumbent.

Table 6.2: Marginal Effects on Probability of Voting for the Incumbent Member of Congress

9	
variable	$\hat{\beta}_j \phi(\hat{\boldsymbol{\beta}}' \mathbf{x}_i)$
Party identification	.251
National economic performance (Retrospective Judgment)	021 big
Personal financial situation (Retrospective Judgment)	.018
Recall incumbent's name	.060 big
Recall challenger's name	126
Quality of challenger	063

This backs out the marginal impact of a 1-unit change in the variable on the probability of voting for the incumbent.

Notes: Explanatory variables are set equal to their medians in the sample.

10

Example: Vote Choice

 Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

$$Pr(y_i = 1 | x_{7i} = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i})$$

$$= \Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5 + .324 \times 0 - .677 \times 0 - .339 \times 0)$$

$$= .936$$

Example: Vote Choice

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

$$Pr(y_i = 1 | x_{7i} = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i})$$

$$= \Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5 + .324 \times 0 - .677 \times 0 - .339 \times 0)$$

$$= .936$$

$$\Phi(1.52)$$

Example: Vote Choice

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

$$\Pr(y_i = 1 | x_{7i} = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i})$$

$$= \Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5$$

$$+ .324 \times 0 - .677 \times 0 - .339 \times 0)$$

$$= .936$$
From standard normal table

Or, calculate the impact of facing a quality challenger by hand, keeping all other variables at their median.

$$\Pr(y_i = 1 | x_{7i} = 0) = \Phi(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \beta_6 x_{6i} + \beta_7 x_{7i})$$

$$= \Phi(.184 + 1.355 \times 1 - .114 \times .5 + .095 \times .5$$

$$+ .324 \times 0 - .677 \times 0 - .339 \times 0)$$

$$= .936$$
From standard normal table
$$\Pr(y_i = 1 | x_{7i} = 1) = .881$$

$$\Phi(1.52 - .339)$$

So there's an increase of .936 - .881 = 5.5% votes in favor of incumbents who avoid a quality challengers.

Example: Senate Obstruction

- Model the probability that a bill is passed in the Senate (over a filibuster) based on:
 - The coalition size preferring the bill be passed
 - □ An interactive term: size of coalition X end of session

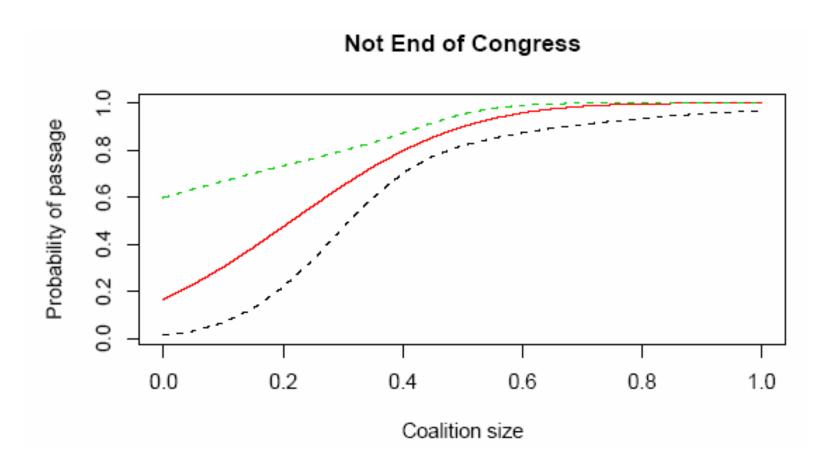
Table 6.3: Probit analysis of passage of obstructed measures, 1st-64th Congresses

Variable	Coefficient	Std. Err.
Constant	-1.671	0.962
Coalition size	6.155	2.224
Coalition size \times end of session	-1.944	0.690
Likelihood ratio test	12.84	(p = 0.002)
% correctly predicted	72	

Note: N = 114.

Example: Senate Obstruction

Graph the results for end of session = 0



Example: Senate Obstruction

Graph the results for end of session = 1

End of Congress

