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Empirical problem: Class size and educational output
I What?

I What is the effect of reducing class size by one student per
class?

I Why?
I Economic rationale? Smaller classes promote student learning

(Educational production function, Angrist and Lavy, 1999)
I How?

I Secondary school micro-data on students’ achievements and
class size

I Model: yisc = X ′
sβ + nscα + πc + ηs + εisc

I i : student (i = 1, ...,N), c : class (c = 1, ...,C ), s: school
(s = 1, ...,S)

I y : pupil’s test score
I X : school characteristics
I n: size of class
I π: random class attributes (i.i.d.)
I ε: disturbance term
I Other dep vars: parent satisfaction, student personal

development, future adult welfare and/or earnings,
performance on standardized tests



4/51

Case study: The California Test Score Data Set

I All K-6 and K-8 California school districts (n = 420)
I Relationship of interest (Dependent and Independent

Variables)
I 5th grade test scores (Stanford-9 achievement test, combined

math and reading), district average
I Student-teacher ratio (STR) = no. of students in the district

divided by no. full-time equivalent teachers

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003
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Do districts with smaller classes have higher test scores?

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003
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Numerical evidence on whether districts with low STRs
have higher test scores

I Compare average test scores in districts with low STRs to
those with high STRs (“estimation”)

I Test the hypothesis that the mean test scores in the two types
of districts are the same, against the alternative hypothesis
that they differ (“hypothesis testing”)

I Estimate an interval for the difference in the mean test scores,
high v. low STR districts (“confidence interval”)
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Compare districts with “small” (STR > 20) and “large”
(STR ≥ 20) class sizes

Class Size Average score (ȳ) Standard deviation (s̄y ) n

Small 657.4 19.4 238
Large 650.0 17.9 182

I Estimation of ∆= difference between group means

I Test the hypothesis ∆ = 0

I Construct a confidence interval for ∆
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Estimation

Ȳsmall − Ȳlarge = 657.4− 650.0 = 7.4

I Ȳsmall = 1
nsmall

∑nsmall
i=1 Yi

I Ȳlarge = 1
nlarge

∑nlarge
i=1 Yi

I How big is the stdev across districts? 19.1

I What is the diff between 60th and 75th percentile of test
score distribution: 667-6559.4=8.2

I Is that a big difference? In practical terms yes (parents and
school administration should worry about this!)
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Hypothesis testing

Difference-in-means test: compute the t-statistic

t = Ȳs−Ȳl√
s2
s
ns

+
s2
l
nl

= Ȳs−Ȳl

SE(Ȳs−Ȳl )

I SE (Ȳs − Ȳl) is the “standard error” of Ȳs − Ȳl

I subscripts s and l refer to “small” and “large” STR districts,
respectively

I s2
s = 1

ns−1

∑ns
i=1(Yi − Ȳs)2

I s2
l = 1

nl−1

∑nl
i=1(Yi − Ȳl)

2
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Compute the difference-of-means t-statistic

Size (Ȳ ) (s̄Y ) n

small 657.4 19.4 238
large 650.0 17.9 182

I t = Ȳs−Ȳl√
s2
s
ns

+
s2
l
nl

= 657.4−650.0√
19.42

238
+ 17.92

182

= 7.4
1.83 = 4.05

I |t| > 1.96 Reject (at 5% significance level) then null
hypothesis that the two mean are the same (equal)
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Confidence interval

A 95% confidence interval for the difference between the means is

I (Ȳs−Ȳl)±1.96×SE (Ȳs−Ȳl) = 7.4±1.96×1.83 = (3.8, 11.0)
I Two equivalent statements:

I The 95% confidence interval for ∆ doesn’t include 0
I The hypothesis that ∆ = 0 is rejected at the 5% level
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Review of statistics

I What is the underlying framework (statistical inference)?

I Estimation: Why estimate ∆ = (Ȳs − Ȳl)?

I Testing: Why reject ∆ = 0 if |t| > 1.96?

I Confidence Intervals: What is a confidence interval?



13/51

The class size/test score policy question

I What is the effect on test scores of reducing STR by one
student/class?

I Policy interest: ∆Test score
∆STR

I Slope of the line relating test score and STR
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Population regression line

Test Score = β0 + β1STR

I β1 = ∆Test score
∆STR : slope of population regression line

I β0 and β1 are population parameters

I Since we don’t know β1 we must estimate it using data

I Use the least squares (“Ordinary Least Squares” or “OLS”)
estimator of the unknown parameters β0 and β1

I The OLS estimator minimizes the average squared difference
between the actual values of Yi and the prediction (predicted
value) based on the estimated line

I Solving the minimization problem yields the OLS estimators
of β0 and β1
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Why use OLS, rather than some other estimator?

I OLS is a generalization of the sample average: if the “line” is
just an intercept (no X ), then the OLS estimator is just the
sample average of Y1, ...,Yn, i.e., Ȳ

I Like Ȳ the OLS estimator has some desirable properties:
under certain assumptions, it is unbiased i.e., E (β̂1) = β1
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OLS Estimator, Predicted Values and Residuals

The OLS estimators of the slople β1 and the intercept β0 are:

β̂1 =

∑n
i=1(Xi − X̄ )(Yi − Ȳ )∑n

i=1(Xi − X̄ )2
=

SXY
S2
X

(1)

β̂0 = Ȳ − β̂1X̄ (2)

The OLS predicted values Ŷi and the residuals ûi are:

Ŷi = β̂0 + β̂1Xi , i = 1, ..., n (3)

ûi = Yi − Ŷi , i = 1, ..., n (4)

The estimated intercept (β̂0), slope (β̂1) and residual (ûi ) are
computed from a sample of n observations of Xi and Yi , where
i = 1, ..., n. These are estimates of the unknown true population
intercept (β0), slope (β1) and error term (ui ).



17/51

Application to the California Test Score (TS)-Class Size
data (STR)

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

I Estimated slope β̂1 = −2.28

I Estimated intercept β̂0 = 698.9

I Estimated regression line T̂S = 698.9− 2.28STR
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Interpretation

T̂S = 698.9− 2.28STR

I Districts with one more student per teacher on average have
test scores that are 2.28 points lower

I The intercept means that, districts with zero students per
teacher would have a (predicted) test score of 698.9

I This interpretation of the intercept makes no sense - it
extrapolates the line outside the range of the data - in this
application, the intercept is not itself economically meaningful
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Predicted values & residuals

T̂S = 698.9− 2.28STR

I One of the districts in the data set is Antelope, CA, for which
STR = 19.33 and TS = 657.8

I predicted value: ŶAntelope = 698.6− 2.28× 19.33 = 654.8

I residual: ûAntelope = 657.8− 654.8 = 3.0
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Review OLS

I The OLS regression line is an estimate, computed using our
sample of data; a different sample would have given a
different value of β̂1

I How can we:
I quantify the sampling uncertainty associated with β̂1?
I use β̂1 to test the hypothesis β1 = 0?
I construct a confidence interval for β1 = 0?

I Like estimation of the mean
I The probability framework for linear regression
I Estimation
I Hypothesis Testing
I Confidence intervals
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OLS estimate of the TS/STR relation

T̂S = 698.9
(10.4)

− 2.28
(0.52)

STR, R2 = .05, SER = 18.6

Is this a credible estimate of the causal effect on test scores of a
change in the student-teacher ratio?

I No!

I There are omitted confounding factors (family income;
whether the students are native English speakers) that bias
the OLS estimator: STR could be “picking up” the effect of
these confounding factors

I The bias in the OLS estimator that occurs as a result of an
omitted factor is called omitted variable bias

I Include English Language Ability (EL) as additional covariate
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Additional Covariates: Review Multiple Regression

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

1. Districts with fewer English Learners have higher test scores

2. Districts with lower percent EL (PctEL) have smaller classes

3. Among districts with comparable PctEL the effect of class size
is small (recall overall “test score gap” = 7.4)
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Additional Covariates: Review Multiple Regression

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003
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Non-linear relations between dependent and independent
vars

1. The approximation that the regression function is linear might
be good for some variables, but not for others.

2. The multiple regression framework can be extended to handle
regression functions that are nonlinear in one or more Xs

3. e.g., the Test Score – average district income relation
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Linear and Non-linear relatioships

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003
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Non-linear relations between dependent and independent
vars

If a relation between Y and X is nonlinear:

1. the effect on Y of a change in X depends on the value of X -
that is, the marginal effect of X is not constant

2. the linear regression is misspecified - the functional form is
wrong

3. the estimator of the effect on Y of X is biased - it needn’t
even be right on average

4. the solution to this is to estimate a regression function that is
nonlinear in X
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The General Nonlinear Population Regression Function

Yi = f (X1i ,X2i ,X3i , ..,Xki ) + ui , i = 1, ..., n

I Assumptions

1. E (ui |X1i ,X2i ,X3i , ..,Xki ) = 0: f is the conditional expectation
of Y given Xs

2. (X1i ,X2i ,X3i , ..,Xki ,Yi ) are i.i.d
3. “enough” moments exist but depend on specific f
4. no perfect multicollinearity: depend on specific f
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Non-linear relatioships: The expected effect on Y of a
change in a specific X

The expected change in Y (i.e., ∆Y ) associated with the change
in X1 (i.e., ∆X1) holding X2, ...,Xk constant, is the difference
between the value of the population regression function before and
after changing X1, holding X2, ...,Xk constant. That is, the
expected change in Y is the difference:

∆Y = f (X1 + ∆X1,X2, ...,Xk)− f (X1,X2, ...,Xk) (5)

The estimator of this unknown population difference is the
difference between the predicted values of these two cases if we
assume that f (X1,X2, ...,Xk) is the predicted values of Y based on
the estimator f̂ of the population regression function. Then the
predicted change in Y is:

∆Ŷ = f̂ (X1 + ∆X1,X2, ...,Xk)− f̂ (X1,X2, ...,Xk) (6)
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Two complementary approaches

I Polynomials in X
I The population regression function is approximated by a

quadratic, cubic, or higher-degree polynomial

I Logarithmic transformations
I Y and/or X is transformed by taking its logarithm
I this gives a “percentages” interpretation that makes sense in

many applications
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Polynomials in X

Yi = β0 + β1Xi + β2X
2
i + ...+ βrX

r
i + ui

I This is just the linear multiple regression model – except that
the regressors are powers of X

I Estimation, hypothesis testing, etc. proceeds as in the
multiple regression model using OLS

I The coefficients are difficult to interpret, but the regression
function itself is interpretable
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Example: the TestScore – Income relation

I Incomei= average district income in the ith district (in
thousdand dollars per capita)

I Quadratic specification:
I Incomei = β0 + β1Incomei + β2(Incomei )

2 + ui
I Cubic specification:

I Incomei = β0 + β1Incomei + β2(Incomei )
2 + β3(Incomei )

3 + ui
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Non-linear relatioships
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Non-linear relatioships: estimated regression function

Plot predicted values

T̂S = 607.3
(2.9)

+ 3.85
(0.27)

Incomei − 0.042
(0.005)

Income2
i

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003
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Non-linear relatioships: Review polynomial regression
functions

Compute “effects” for different values of X
I Predicted change in TS for a change in income to $6,000

from $5,000 per capita:
I ∆T̂S =

607.3+3.85×6−0.042×62−(607.3+3.85×5−0.042×52) = 3.4

I Predicted change in TS for a change in income to $26,000
from $25,000 per capita:
I ∆T̂S = 1.7

I Predicted change in TS for a change in income to $46,000
from $45,000 per capita:
I ∆T̂S = 0.0

I The “effect” of a change in income is greater at low than high
income levels (perhaps, a declining marginal benefit of an
increase in school budgets?) Caution! What about a change
from 65 to 66? Don’t extrapolate outside the range of the
data
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Logarithmic functions of Y and/or X

I ln(X ): natural logarithm of X

I Logarithmic transforms permit modeling relations in
“percentage” terms (like elasticities), rather than linearly.

I Why?
I ln(x + ∆x)− ln(x) = ln(1 + ∆x

x ) ≡ ∆x
x , calculus dln(x)

dx = 1
x

I Numerically
I ln(1.01) = .00995 ≡ .01, ln(1.10) = .0953 ≡ .10
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Non-linear relatioships: estimated regression function

Plot predicted values: Logarithmic transformation

T̂S = 557.8 + 36.42× lnIncomei

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003
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Logarithmic transformations of variables

Yi = β0 + β1Xi + ui

I Logarithmic transformations: four possible combinations
I Linear (no transformations)
I Linear-Log model
I Log-Linear model
I Log-Log model
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Logarithmic transformations of variables

Figure 1: Combinations of logarithmic transformations

Variable X

Variable Y X logX

Y Linear Linear-Log

Estimated model Ŷi = β0 + β1Xi Ŷi = β0 + β1logXi

logY Log-Linear Log-Log

Estimated model logŶi = β0 + β1Xi logŶi = β0 + β1logXi
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Logarithmic transformations of variables

Review: Properties of logarithms and exponential functions

I log(e) = 1

I log(1) = 0

I log(xA) = Alog(x)

I log(e)A = A

I e log(A) = A

I log(A× B) = log(A) + log(B)

I log(A
B ) = log(A)− log(B)

I eA×B = (eA)B

I eA+B = (eA)× (eB)

I eA−B = eA

eB
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Logarithmic transformations of variables

I capture non-linear relationship between the independent and dependent
variables (e.g., Yi = β0 + β1logXi + ui )

I transform a highly skewed variable into an approximately normal variable

(a) skewed (b) normal
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Logarithmic transformations of variables

Interpretation: Linear model

I Yi = β0 + β1Xi + ui
I β̂1

I Change in Y for a one-unit change in X
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Logarithmic transformations of variables

Interpretation: Linear-Log model

I Yi = β0 + β1logXi + ui
I β̂1

I A one-unit increase in logX will produce an expected increase
in Y of β̂1 units.

I Example
I Ŷi = 450.2 + 65.32logXi , where Y is the average math SAT

score and X is the expenditure per student (i = 1, ...,N
schools).

I β̂1 = 65.32: a 1 percent increase in expenditure per student
increases the average math SAT score by 0.65 points (i.e.,
β̂1/100 or 65.32/100).
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Logarithmic transformations of variables

Interpretation: Log-Linear model

I logYi = β0 + β1Xi + ui
I β̂1

I A one-unit increase in X will produce an expected increase in
logY of β̂1 units.

I Example
I Ŷi = 10.5 + 0.08logXi , where Y is the annual earnings and X

is the years of completed schooling per worker (i = 1, ...,N
workers).

I β̂1 = 0.08: a 1 unit increase in years of schooling (1 more year)
increases annual earnings by 8% (i.e., β̂1 × 100 or 0.08× 100).
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Logarithmic transformations of variables

Interpretation: Log-Log model

I logYi = β0 + β1logXi + ui
I β̂1

I Expected percentage change in Y when X increases by some
percentage (e.g., 1% or 10%). Directly estimate elasticities.

I Example
I Ŷi = 7.09− 0.50logXi , where Y is the percentage of urban

population and X is the per capita GDP per country
(i = 1, ...,N countries).

I 1% increase in X: β̂1 = 0.50: a 1% increase GDP reduces
urban population by 0.5% (i.e., β̂1 × 1 or 0.50× 1).

I 10% increase in X: β̂1 = 0.50: a 10% increase GDP reduces
urban population by 5.0% (i.e., β̂1 × 10 or 0.50× 10).
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Higher order polynomials

Quadratic transformation
Yi = β0 + β1Xi + β2X

2
i + ui

(c) β1 > 0 & β2 < 0 (d) β1 > 0 & β2 > 0
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Higher order polynomials

Cubic transformation
Yi = β0 + β1Xi + β2X

2
i + β3X

3
i + ui
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Interaction effects

Model
Yi = β0 + β1X1i + β2X2i + β3X1iX2i + ui

I “main terms”: X1i and X2i

I “interaction terms”: X1iX2i

I partial derivative of Y wrt X1: β1 + β3X2i

I if X2i = 0 then Y depends on X

I test β1 = 0: no effect of X1 on Y when X2 = 0



49/51

Interaction effects

In models with multiplicative terms, the regression coefficients for
X1 and X2 reflect conditional relationships. β1 of the effect of X1

on Y when X2 = 0. Similarly, β2 is the effect of X2 on Y when
X1 = 0. For example, we get

Y = α + β1X1 + β2X2 + β3(X1X2) + ε

= α + β1X1 + β20 + β3(X10) + ε

= α + β1X1 + ε

So, we can say that, for a person with X2 = 0, a 1 unit increase in
X1 will produce, on average, a β1 unit increase in Y .
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Interaction effects

However, suppose that someone has a score of 3 on X2. The effect
X1 is then

Y = α + β1X1 + β2X2 + β3(X1X2) + ε

= α + β1X1 + β23 + β3(X13) + ε

= α + β1X1 + 3β2 + 3β3X1 + ε

= α + 3β2 + (β1 + 3β3)X1 + ε

So, when X2 = 3, a 1 unit increase in X1 will produce, on average,
a β1 + 3β3 unit increase in Y .
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Interaction effects: Review

1. Perhaps a class size reduction is more effective in some
circumstances than in other...

2. Perhaps smaller classes help more if there are many English
learners, who need individual attention

3. How to model such “interactions” between X1 and X2?

4. Continuous and/or Binary Vars
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