Applied Microeconometrics (L2): Basic Regression Tools

Nicholas Giannakopoulos

University of Patras Department of Economics

ngias@upatras.gr

October 22, 2019

<□> <@> < E> < E> E のQで 1/51

Overview

Review of Probability and Statistics

Linear Regression

Multiple Regression

Nonlinear Regression Functions

Logarithmic transformations of variables

Higher order polynomials

Interaction effects

Interactions Between Independent Variables

Empirical problem: Class size and educational output

- What?
 - What is the effect of reducing class size by one student per class?
- Why?
 - Economic rationale? Smaller classes promote student learning (Educational production function, Angrist and Lavy, 1999)
- ► How?
 - Secondary school micro-data on students' achievements and class size
 - Model: $y_{isc} = X'_s \beta + n_{sc} \alpha + \pi_c + \eta_s + \epsilon_{isc}$
 - i: student (i = 1, ..., N), c: class (c = 1, ..., C), s: school (s = 1, ..., S)
 - y: pupil's test score
 - X: school characteristics
 - n: size of class
 - π : random class attributes (i.i.d.)
 - ϵ: disturbance term
 - Other dep vars: parent satisfaction, student personal development, future adult welfare and/or earnings, performance on standardized tests and the standardized tests are the standardized tests.

Case study: The California Test Score Data Set

- All K-6 and K-8 California school districts (n = 420)
- Relationship of interest (Dependent and Independent Variables)
 - 5th grade test scores (Stanford-9 achievement test, combined math and reading), district average
 - Student-teacher ratio (STR) = no. of students in the district divided by no. full-time equivalent teachers

TABLE 4.1 Summary of the Distribution of Student-Teacher Ratios and Fifth-Grade Test Scores for 420 K-8 Districts in California in 1998									
			Percentile						
	Average	Standard Deviation	10%	25%	40%	50% (median	60 %	75%	90 %
Student-teacher ratio	19.6	1.9	17.3	18.6	19.3	19.7	20.1	20.9	21.9
Test score	654.2	19.1	630.4	640.0	649.1	654.5	659.4	666.7	679.1

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

Do districts with smaller classes have higher test scores?

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ Q ○ 5/51

Numerical evidence on whether districts with low STRs have higher test scores

- Compare average test scores in districts with low STRs to those with high STRs ("estimation")
- Test the hypothesis that the mean test scores in the two types of districts are the same, against the alternative hypothesis that they differ ("hypothesis testing")
- Estimate an interval for the difference in the mean test scores, high v. low STR districts ("confidence interval")

Compare districts with "small" (STR > 20) and "large" (STR ≥ 20) class sizes

Class Size	Average score $(ar{y})$	Standard deviation $(\bar{s_y})$	п
Small	657.4	19.4	238
Large	650.0	17.9	182

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 7/51

• Estimation of Δ = difference between group means

• Test the hypothesis $\Delta = 0$

Construct a confidence interval for Δ

Estimation

$$ar{Y}_{small} - ar{Y}_{large} = 657.4 - 650.0 = 7.4$$

- $\overline{Y}_{small} = \frac{1}{n_{small}} \sum_{i=1}^{n_{small}} Y_i$
- $\blacktriangleright \ \bar{Y}_{large} = \frac{1}{n_{large}} \sum_{i=1}^{n_{large}} Y_i$
- How big is the stdev across districts? 19.1
- What is the diff between 60th and 75th percentile of test score distribution: 667-6559.4=8.2
- Is that a big difference? In practical terms yes (parents and school administration should worry about this!)

Hypothesis testing

Difference-in-means test: compute the t-statistic

$$t = \frac{\bar{Y}_s - \bar{Y}_l}{\sqrt{\frac{s_s^2}{n_s} + \frac{s_l^2}{n_l}}} = \frac{\bar{Y}_s - \bar{Y}_l}{SE(\bar{Y}_s - \bar{Y}_l)}$$

- $SE(\bar{Y}_s \bar{Y}_l)$ is the "standard error" of $\bar{Y}_s \bar{Y}_l$
- subscripts s and l refer to "small" and "large" STR districts, respectively

<□> < @ > < ≧ > < ≧ > ≧ の Q @ 9/51

•
$$s_s^2 = \frac{1}{n_s - 1} \sum_{i=1}^{n_s} (Y_i - \bar{Y}_s)^2$$

• $s_l^2 = \frac{1}{n_l - 1} \sum_{i=1}^{n_l} (Y_i - \bar{Y}_l)^2$

Compute the difference-of-means *t*-statistic

Size	(\bar{Y})	$(\bar{s_Y})$	п
small	657.4	19.4	238
large	650.0	17.9	182

•
$$t = \frac{\bar{Y}_s - \bar{Y}_l}{\sqrt{\frac{s_s^2}{n_s} + \frac{s_l^2}{n_l}}} = \frac{657.4 - 650.0}{\sqrt{\frac{19.4^2}{238} + \frac{17.9^2}{182}}} = \frac{7.4}{1.83} = 4.05$$

▶ |t| > 1.96 Reject (at 5% significance level) then null hypothesis that the two mean are the same (equal)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○ 10/51

Confidence interval

- A 95% confidence interval for the difference between the means is
 - $(\bar{Y}_s \bar{Y}_l) \pm 1.96 \times SE(\bar{Y}_s \bar{Y}_l) = 7.4 \pm 1.96 \times 1.83 = (3.8, 11.0)$
 - Two equivalent statements:
 - The 95% confidence interval for Δ doesn't include 0
 - The hypothesis that $\Delta = 0$ is rejected at the 5% level

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 11/51

Review of statistics

What is the underlying framework (statistical inference)?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 12/51

- Estimation: Why estimate $\Delta = (\bar{Y}_s \bar{Y}_l)$?
- Testing: Why reject $\Delta = 0$ if |t| > 1.96?
- Confidence Intervals: What is a confidence interval?

The class size/test score policy question

What is the effect on test scores of reducing STR by one student/class?

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 13/51

- Policy interest: $\frac{\Delta \text{Test score}}{\Delta STR}$
- Slope of the line relating test score and STR

Population regression line

Test Score = $\beta_0 + \beta_1 STR$

- $\beta_1 = \frac{\Delta \text{Test score}}{\Delta STR}$: slope of population regression line
- β_0 and β_1 are population parameters
- Since we don't know β₁ we must estimate it using data
- ▶ Use the least squares ("Ordinary Least Squares" or "OLS") estimator of the unknown parameters β_0 and β_1
- The OLS estimator minimizes the average squared difference between the actual values of Y_i and the prediction (predicted value) based on the estimated line
- Solving the minimization problem yields the OLS estimators of β₀ and β₁

Why use OLS, rather than some other estimator?

OLS is a generalization of the sample average: if the "line" is just an intercept (no X), then the OLS estimator is just the sample average of Y₁, ..., Y_n, i.e., Y

▲□▶▲@▶★≧▶★≧▶ ≧ のへで 15/51

OLS Estimator, Predicted Values and Residuals

The OLS estimators of the slople β_1 and the intercept β_0 are:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{S_{XY}}{S_X^2}$$
(1)

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} \tag{2}$$

The OLS predicted values \hat{Y}_i and the residuals \hat{u}_i are:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i, \quad i = 1, ..., n$$
 (3)

$$\hat{u}_i = Y_i - \hat{Y}_i, \quad i = 1, ..., n$$
 (4)

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 16/51

The estimated intercept $(\hat{\beta}_0)$, slope $(\hat{\beta}_1)$ and residual (\hat{u}_i) are computed from a sample of n observations of X_i and Y_i , where i = 1, ..., n. These are estimates of the unknown true population intercept (β_0) , slope (β_1) and error term (u_i) .

Application to the California Test Score (TS)-Class Size data (STR)

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

Estimated slope β₁ = -2.28
 Estimated intercept β₀ = 698.9
 Estimated regression line TS = 698.9 - 2.28STR

Interpretation

$\hat{TS} = 698.9 - 2.28STR$

- Districts with one more student per teacher on average have test scores that are 2.28 points lower
- The intercept means that, districts with zero students per teacher would have a (predicted) test score of 698.9
- This interpretation of the intercept makes no sense it extrapolates the line outside the range of the data - in this application, the intercept is not itself economically meaningful

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 18/51

Predicted values & residuals

$$\hat{TS} = 698.9 - 2.28STR$$

• One of the districts in the data set is Antelope, CA, for which STR = 19.33 and TS = 657.8

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 19/51

- ▶ predicted value: $\hat{Y}_{Antelope} = 698.6 2.28 \times 19.33 = 654.8$
- residual: $\hat{u}_{Antelope} = 657.8 654.8 = 3.0$

OLS regression: STATA output

regress testsor str, robust									
Regression	n with robust	t standard e	rrors		Number of obs F(1, 418) Prob > F R-squared Root MSE	= = =	19.26 0.0000 0.0512		
 testscr		Robust Std. Err.	t	₽> t	[95% Conf	. In	terval]		
str _cons	-2.279808 698.933	.5194892 10.36436	-4.39 67.44	0.000	-3.300945 678.5602		.258671 19.3057		

 $TestScore = 698.9 - 2.28 \times STR$

Review OLS

- The OLS regression line is an estimate, computed using our sample of data; a different sample would have given a different value of β₁
- How can we:
 - quantify the sampling uncertainty associated with $\hat{\beta}_1$?

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ 21/51

- use $\hat{\beta}_1$ to test the hypothesis $\beta_1 = 0$?
- construct a confidence interval for $\beta_1 = 0$?
- Like estimation of the mean
 - The probability framework for linear regression
 - Estimation
 - Hypothesis Testing
 - Confidence intervals

OLS estimate of the TS/STR relation

$$\hat{TS} = {\begin{array}{*{20}c} 698.9 - 2.28 \, STR, \ R^2 = .05, \ SER = 18.6 \ (10.4) \ (0.52) \end{array}}$$

Is this a credible estimate of the causal effect on test scores of a change in the student-teacher ratio?

- No!
- There are omitted confounding factors (family income; whether the students are native English speakers) that bias the OLS estimator: STR could be "picking up" the effect of these confounding factors
- The bias in the OLS estimator that occurs as a result of an omitted factor is called **omitted variable bias**
- Include English Language Ability (EL) as additional covariate

Additional Covariates: Review Multiple Regression

		Student-Teacher Ratio < 20		icher 20	Difference in Test Scores, Low vs. High STR		
	Average Test Score	n	Average Test Score	n	Difference	t-statistic	
All Districts	657.4	238	650.0	182	7.4	4.04	
Percent of English L	earners						
< 2.2%	664.1	78	665.4	27	-1.3	-0.44	
2.2-8.8%	666.1	61	661.8	44	4.3	1.44	
8.8-23.0%	654.6	55	649.7	50	4.9	1.64	
> 23.0%	636.7	44	634.8	61	1.9	0.68	

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

- 1. Districts with fewer English Learners have higher test scores
- 2. Districts with lower percent EL (PctEL) have smaller classes
- Among districts with comparable PctEL the effect of class size is small (recall overall "test score gap" = 7.4)

Additional Covariates: Review Multiple Regression

Multiple regression in STATA

$TestScore = 696.0 - 1.10 \times STR - 0.65PctEL$

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

Non-linear relations between dependent and independent vars

- 1. The approximation that the regression function is linear might be good for some variables, but not for others.
- 2. The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more Xs

▲□▶▲@▶▲≣▶▲≣▶ ≣ の९ペ 25/51

3. e.g., the Test Score – average district income relation

Linear and Non-linear relatioships

Non-linear relations between dependent and independent vars

If a relation between \boldsymbol{Y} and \boldsymbol{X} is nonlinear:

- 1. the effect on Y of a change in X depends on the value of X that is, the marginal effect of X is not constant
- 2. the linear regression is misspecified the functional form is wrong
- 3. the estimator of the effect on Y of X is biased it needn't even be right on average
- 4. the solution to this is to estimate a regression function that is nonlinear in \boldsymbol{X}

The General Nonlinear Population Regression Function

$$Y_i = f(X_{1i}, X_{2i}, X_{3i}, ..., X_{ki}) + u_i, i = 1, ..., n$$

Assumptions

1. $E(u_i|X_{1i}, X_{2i}, X_{3i}, ..., X_{ki}) = 0$: f is the conditional expectation of Y given Xs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 28/51

- 2. $(X_{1i}, X_{2i}, X_{3i}, ..., X_{ki}, Y_i)$ are i.i.d
- 3. "enough" moments exist but depend on specific f
- 4. no perfect multicollinearity: depend on specific f

Non-linear relatioships: The expected effect on Y of a change in a specific X

The expected change in Y (i.e., ΔY) associated with the change in X_1 (i.e., ΔX_1) holding $X_2, ..., X_k$ constant, is the difference between the value of the population regression function before and after changing X_1 , holding $X_2, ..., X_k$ constant. That is, the expected change in Y is the difference:

$$\Delta Y = f(X_1 + \Delta X_1, X_2, ..., X_k) - f(X_1, X_2, ..., X_k)$$
(5)

The estimator of this unknown population difference is the difference between the predicted values of these two cases if we assume that $f(X_1, X_2, ..., X_k)$ is the predicted values of Y based on the estimator \hat{f} of the population regression function. Then the predicted change in Y is:

$$\Delta \hat{Y} = \hat{f}(X_1 + \Delta X_1, X_2, ..., X_k) - \hat{f}(X_1, X_2, ..., X_k)$$
(6)

Two complementary approaches

Polynomials in X

- The population regression function is approximated by a quadratic, cubic, or higher-degree polynomial
- Logarithmic transformations
 - Y and/or X is transformed by taking its logarithm
 - this gives a "percentages" interpretation that makes sense in many applications

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 30/51

Polynomials in X

$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_r X_i^r + u_i$

- This is just the linear multiple regression model except that the regressors are powers of X
- Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS
- The coefficients are difficult to interpret, but the regression function itself is interpretable

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ 31/51

Example: the TestScore - Income relation

- Income_i = average district income in the ith district (in thousdand dollars per capita)
- Quadratic specification:

lncome_i = $\beta_0 + \beta_1$ lncome_i + β_2 (lncome_i)² + u_i

Cubic specification:

lncome_i = $\beta_0 + \beta_1$ lncome_i + β_2 (lncome_i)² + β_3 (lncome_i)³ + u_i

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ○ ○ 32/51

Non-linear relatioships

Estimation of the quadratic specification in STATA

generate avgind reg testscr avg			Create	a new r	egressor	
Regression with	n robust stan	ndard errors			Number of obs F(2, 417) Prob > F R-squared Root MSE	= 428.52 = 0.0000
 testscr		Robust Std. Err.	t	P> t	[95% Conf.	Interval]
avginc avginc2 _cons	3.850995	.2680941 .0047803 2.901754	14.36 -8.85 209.29	0.000 0.000 0.000	3.32401 051705 601.5978	4.377979 0329119 613.0056

The *t*-statistic on $Income^2$ is -8.85, so the hypothesis of linearity is rejected against the quadratic alternative at the 1% significance level.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 33/51

Non-linear relatioships: estimated regression function

Plot predicted values

$$\hat{TS} = \begin{array}{c} 607.3 + 3.85 \, | \text{ncome}_i - 0.042 \, | \text{ncome}_i^2 \\ (2.9) & (0.27) & (0.005) \end{array}$$

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

Non-linear relatioships: Review polynomial regression functions

Compute "effects" for different values of X

- Predicted change in TS for a change in income to \$6,000 from \$5,000 per capita:
 - $\blacktriangleright \Delta \hat{TS} =$

 $607.3 + 3.85 \times 6 - 0.042 \times 6^2 - (607.3 + 3.85 \times 5 - 0.042 \times 5^2) = 3.4$

Predicted change in TS for a change in income to \$26,000 from \$25,000 per capita:

 $\blacktriangleright \Delta \hat{TS} = 1.7$

Predicted change in TS for a change in income to \$46,000 from \$45,000 per capita:

 $\blacktriangleright \Delta \hat{TS} = 0.0$

The "effect" of a change in income is greater at low than high income levels (perhaps, a declining marginal benefit of an increase in school budgets?) Caution! What about a change from 65 to 66? Don't extrapolate outside the range of the data

Logarithmic functions of Y and/or X

- In(X): natural logarithm of X
- Logarithmic transforms permit modeling relations in "percentage" terms (like elasticities), rather than linearly.
- ► Why?

►
$$ln(x + \Delta x) - ln(x) = ln(1 + \frac{\Delta x}{x}) \equiv \frac{\Delta x}{x}$$
, calculus $\frac{dln(x)}{dx} = \frac{1}{x}$
► Numerically

< □ ▶ < @ ▶ < E ▶ < E ▶ E の < 36/51

▶ $ln(1.01) = .00995 \equiv .01$, $ln(1.10) = .0953 \equiv .10$

Non-linear relatioships: estimated regression function

Plot predicted values: Logarithmic transformation

 $\hat{TS} = 557.8 + 36.42 \times In Income_i$

Source: J.H. Stock and M.W. Watson, Introduction to Econometrics (first edition), Addison-Wesley, 2003

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

<□ > < @ > < E > < E > E の < C 38/51

Logarithmic transformations: four possible combinations

- Linear (no transformations)
- Linear-Log model
- Log-Linear model
- Log-Log model

	Variable X	
Variable Y	X	logX
Y	Linear	Linear-Log
Estimated model	$\hat{Y}_i = \beta_0 + \beta_1 X_i$	$\hat{Y}_i = eta_0 + eta_1 \log X_i$
logY	Log-Linear	Log-Log
Estimated model	$\log \hat{Y}_i = eta_0 + eta_1 X_i$	$\log \hat{Y}_i = \beta_0 + \beta_1 \log X_i$

<□ ▶ < @ ▶ < \ > ▲ \ > ● ● ● ③ 0 へ ? 39/51

Figure 1: Combinations of logarithmic transformations

Review: Properties of logarithms and exponential functions

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 40/51

$$log(e) = 1
log(1) = 0
log(x^A) = Alog(x)
log(e)^A = A
e^{log(A)} = A
log(A \times B) = log(A) + log(B)
log(\frac{A}{B}) = log(A) - log(B)
e^{A \times B} = (e^A)^B
e^{A+B} = (e^A) \times (e^B)
e^{A-B} = \frac{e^A}{e^B}$$

• capture non-linear relationship between the independent and dependent variables (e.g., $Y_i = \beta_0 + \beta_1 \log X_i + u_i$)

transform a highly skewed variable into an approximately normal variable

Interpretation: Linear model

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ↔ 42/51

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- β₁
- Change in Y for a one-unit change in X

Interpretation: Linear-Log model

$$Y_i = \beta_0 + \beta_1 \log X_i + u_i$$

$$\hat{\beta}_1$$

- A one-unit increase in logX will produce an expected increase in Y of β₁ units.
- Example
 - ▶ Ŷ_i = 450.2 + 65.32logX_i, where Y is the average math SAT score and X is the expenditure per student (i = 1, ..., N schools).
 - β₁ = 65.32: a 1 percent increase in expenditure per student increases the average math SAT score by 0.65 points (i.e., β₁/100 or 65.32/100).

Interpretation: Log-Linear model

$$\log Y_i = \beta_0 + \beta_1 X_i + u_i$$

$$\hat{\beta}_1$$

- A one-unit increase in X will produce an expected increase in logY of β₁ units.
- Example
 - ▶ Ŷ_i = 10.5 + 0.08logX_i, where Y is the annual earnings and X is the years of completed schooling per worker (i = 1, ..., N workers).
 - $\hat{\beta}_1 = 0.08$: a 1 unit increase in years of schooling (1 more year) increases annual earnings by 8% (i.e., $\hat{\beta}_1 \times 100$ or 0.08×100).

Interpretation: Log-Log model

$$\log Y_i = \beta_0 + \beta_1 \log X_i + u_i$$

$$\hat{\beta}_1$$

- Expected percentage change in Y when X increases by some percentage (e.g., 1% or 10%). Directly estimate elasticities.
- Example
 - ▶ Ŷ_i = 7.09 0.50*logX_i*, where Y is the percentage of urban population and X is the per capita GDP per country (*i* = 1, ..., N countries).
 - ▶ 1% increase in X: $\hat{\beta}_1 = 0.50$: a 1% increase GDP reduces urban population by 0.5% (i.e., $\hat{\beta}_1 \times 1$ or 0.50×1).
 - ▶ 10% increase in X: $\hat{\beta}_1 = 0.50$: a 10% increase GDP reduces urban population by 5.0% (i.e., $\hat{\beta}_1 \times 10$ or 0.50×10).

Higher order polynomials

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ ♡ 46/51

Higher order polynomials

Cubic transformation $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + u_i$

Interaction effects

Model $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + u_i$

- "interaction terms": X_{1i}X_{2i}
- ▶ partial derivative of Y wrt X_1 : $\beta_1 + \beta_3 X_{2i}$
- ▶ if X_{2i} = 0 then Y depends on X
- test $\beta_1 = 0$: no effect of X_1 on Y when $X_2 = 0$

Interaction effects

In models with multiplicative terms, the regression coefficients for X_1 and X_2 reflect *conditional* relationships. β_1 of the effect of X_1 on Y when $X_2 = 0$. Similarly, β_2 is the effect of X_2 on Y when $X_1 = 0$. For example, we get

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 X_2) + \epsilon$$
$$= \alpha + \beta_1 X_1 + \beta_2 0 + \beta_3 (X_1 0) + \epsilon$$
$$= \alpha + \beta_1 X_1 + \epsilon$$

So, we can say that, for a person with $X_2 = 0$, a 1 unit increase in X_1 will produce, on average, a β_1 unit increase in Y.

Interaction effects

However, suppose that someone has a score of 3 on X_2 . The effect X_1 is then

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 X_2) + \epsilon$$

= $\alpha + \beta_1 X_1 + \beta_2 3 + \beta_3 (X_1 3) + \epsilon$
= $\alpha + \beta_1 X_1 + 3\beta_2 + 3\beta_3 X_1 + \epsilon$
= $\alpha + 3\beta_2 + (\beta_1 + 3\beta_3) X_1 + \epsilon$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○ 50/51

So, when $X_2 = 3$, a 1 unit increase in X_1 will produce, on average, a $\beta_1 + 3\beta_3$ unit increase in Y.

Interaction effects: Review

- 1. Perhaps a class size reduction is more effective in some circumstances than in other...
- 2. Perhaps smaller classes help more if there are many English learners, who need individual attention

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 51/51

- 3. How to model such "interactions" between X_1 and X_2 ?
- 4. Continuous and/or Binary Vars