Exercise WS11.1

1. Draw sketch graphs of $y = 10^x$ and $x = \log_{10} y$ for values of x from -3 to +3. Show algebraically how one graph may be derived from the other, using the definition of a logarithm. Use the graphs to explain why (i) only positive numbers can have logarithms, and (ii) why the logarithms of numbers between 0 and 1 are negative.

(Reminder: By convention, "log y" means $log_{10}y$.)

- 2. (a) Sketch the graphs of each of the following functions.
 - (b) In each case, write down the inverse function.
 - (i) $y = (25)10^x$
 - (ii) $y = 10^{-0.5x}$
 - (iii) $y = -\log 0.5x$
- 3. Using your graphs drawn in questions 1 and 2 above, estimate the values of the following. Then check your estimates using a calculator.
 - (a) $10^{2.5}$
 - (b) $10^{0.5}$
 - (c) log 300
 - (d) log15

Exercise WS11.2

- 1. Attempt the following without using a calculator. Then use a calculator to check your answers.
 - (a) Given log100 = 2 and log3 = 0.4771, what is log300?
 - (b) Given $log(\frac{100}{x}) = -1$, what is x?

UNIVERSITY PRESS

Renshaw: Maths for Economics 4e Chapter 11: The exponential function and logarithms Further student exercises

- (c) Given $\log 3 = 0.4771$, what is (i) $\log 0.3$, and (ii) $\log 30$?
- 2. Solve the equations:
 - (a) $105^{0.5x} = 200$
 - (b) $200 = 100(1+r)^{20}$
 - (c) $50^2 = 25^x$
- 3. The levels of traffic of various types on UK roads (defined as total distance travelled, in billions of kilometres, by all vehicles in the chosen type) was as follows:

Vehicle type	<u>1980</u>	<u>2003</u>
All vehicles	277	495
Light vans	26	58
Heavy goods vehicles	20	28
Buses and coaches	3.5	5.4
Source: <u>www.dft.gov.uk</u>		

- (a) Calculate the average annual growth rate for each type of vehicle.
- (b) Between 1990 and 2003 the increase in traffic for all vehicles was 19%. If this growth rate continues, (i) calculate what the level of traffic will be in 2015; (ii) after how many years will traffic have increased to 50% above its 2003 level?