

Προσομοίωση Φυσικών Διεργασιών Ι με UNISIM 2024

Προσομοίωση εκτόνωσης αερίου:

Ρεύμα αιθανίου (C2) με παροχή 1 kgmole/h και θερμοκρασία 35 °C εκτονώνεται μέσω βαλβίδας από πίεση 6 bar σε πίεση 1 bar.

Fluid Package: NRTL µɛ Vapour Model: Ideal

Ποιά είναι η θερμοκρασία και η πυκνότητα του αιθανίου μετά την εκτόνωση?

Σημείωση: Η λειτουργία της βαλβίδας στο UNISIM είναι ισοενθαλπική.

Οδηγίες:

Δημιουργούμε ένα ρεύμα μάζας Components:

4 Component List View:	Component List - 1					×
Add Component	-Selected Components Ethane		Components Av. <u>M</u> atch	ailable in the Library	View Filters	
Other Comp Lists		Add Pure	OSim Name	Full Name / Synonym C1	⊖ Formula CH4	
			Propane i-Butane	C3 i-C4	C3H8 C4H10	
	< <u>.</u>	ubstitute->	n-Butane i-Pentane n-Pentane	n-04 i-C5 n-C5	C5H12 C5H12	
	<u>R</u> er	move>	n-Hexane n-Heptane n-Octane	C6 C7 C8	C6H14 C7H16 C8H18	
	So	prt List	n-Nonane n-Decane Nitrogen	C9 C10	C9H20 C10H22	
	⊻iew C	Component	CO2 H2S	CO2 H2S	C02 H2S	
< >			Show Synor	nyms Cluste	с7H8 я	·
Selected Compon	ent by TypeComponent Databases					
Delete	Nar	me Compone	ent List - 1			

Fluid Package:

4 Simulation Basis Manager		
Current Fluid Packages		Flowsheet - Fluid Pkg Associations
Basis-1 NC: 1 PP: NRTL - Ideal	View	Flowsheet Fluid Pkg To Use
	Add	
	Delete	
	Сору	
		Default Fluid Pkg Basis-1 🗸
	Import	Fluid Pkg for New Sub-FlowSheets
	Export	Use Default Fluid Pkg Include Column Use Parent's Fluid Pkg
Components Fluid Pkgs Hypotheticals Oil Mana	ger Reactions	Component Maps User Properties
Enter <u>P</u> VT Environment		Return to Simulation Environment

Σύσταση, Πίεση, Θερμοκρασία

Ter ical Simulation Produced Tech Window Help Produced Tech Window Help Produced Tech Window Help Univ Valkier Melphage Alexa Window Help	🔰 NoName.usc - UniSim Design R430		- o ×
Image:	File Edit Simulation Flowsheet Tools Window Help		
P 29 - Card (MAD) P A A P P B Image: Comparison of the Parison of	🛕 🐨 🧐 🗮 🛄 🗰 🖉 😒 🐨 🐨 🛓		Environment: Case (Main) Mode: Steady State
H H H Ki A A P R II Image: Second	IC PFD - Case (Main)		Case (Main) ×
Wask theet Hear Hare Wask thear Hear Hare	H M Z H M P A A 7 物 🖩		🧐 Default Co 🖶 🙆 🗙
Warksheet Steam Name 100000 Worksheet Steam Name 100000 Temperature (S) 100000 00000 Worksheet Steam Name 100000 Temperature (S) 100000 00000 Worksheet Steam Name 100000 Temperature (S) 100000 00000 Worksheet Steam Name 100000 Worksheet Attachments Dynamics Worksheet Attachments Dynamics Worksheet Attachments Dynamics Worksheet Attachments Dynamics Worksheet Detime from Differ Steam. Worksheet Worksheet Attachments Dynamics Worksheet Detime from Differ Steam. Worksheet Worksheet Attachments Dynamics Worksheet Attachments Dynamics Worksheet <t< td=""><td></td><td></td><td>\rightarrow</td></t<>			\rightarrow
Worksheet States Name Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet States Input Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet States Input Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet States Input Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet States Input Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet Attachange States Input Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet Attachange States Input Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet Attachange States Input Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet Attachange States Input Composition for Stream: 1 Imput Composition for Stream: 1 Imput Composition for Stream: 1 Worksheet Attachange States Input Compo			
Worksheet Attachments Dynamics Worksheet			S
Worksheet Temperature (2) 9 Input Composition for Stream: 1 × Worksheet Temperature (2) 9 Store 10000 Properation Temperature (2) 9 Store 10000 Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Note: Note: Base Floation: 0 Store 0 Mode Floation: 0 Mode Floation: Delete: Deletine: Deletine: Deletine: Deletine: Note: 0 Mode Floatio: Phot F			1 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二
Vorksheet Steam Name 10000 Dondkins Pressue [bi] 5000 Properties Pressue [bi] 6000 Name Fractions Other Fractions Mate Fractions User Vanidates 84.60+004 Mate Fractions Mate Fractions User Vanidates 84.60+004 Mate Fractions Mate Fractions Note Statistic Lay Value [Indication of the Fractions Mate Fractions Mate Fractions Note Statistic Lay Value [Indication of the Fractions Mate Fractions Mate Fractions Note Corportion 84.60+004 Mate Fractions Mate Fractions Mate Errory [J./Agnobe] 8289-002 Corportion Control Ease Mate Fractions Mate Fractions Mate Fractions Mate Fractions Delete Delete	I De la Composition for Stream: 1	×	-4 6
Upper lise Upper lise Upper lise Isome income incom	Worksheet Stream Name 1 MoleFraction	Composition Basis	
Production Moder Elever (grands/h) 1000 1000 Moder Elever (grands/h) 1000 1000 Moder Elever (grands/h) Work sheet Note: Moder Elever (grands/h) 3007 3007 Moder Elever (grands/h) 0 Moder Elever (grands/h) 8454e002 Moder Entrop (W) 0 0 Moder Elever (grands/h) 8454e002 Moder Entrop (W) 0 0 Moder Elever (grands/h) 8456e002 Moder Entrop (W) 9 0 Moder Elever (grands/h) 8356e002 Flade Finder (grands/h) 8356e002 Flade Finder (grands/h) 0 Moder Elever (grands/h) 8356e002 Flade Finder (grands/h) 8356e002 Flade Finder (grands/h) 0 Moder Elever (grands/h) 8356e002 Flade Finder (grands/h) 8356e002 Flade Finder (grands/h) 0 Moder Elever (grands/h) 8356e002 Flade Finder (grands/h) 8356e002 Flade Finder (grands/h) 0 Moder Elever (grands/h) 8356e002 Flade Finder (grands/h) 0 0 0 Moder Elever (grands/h) 9 8 0 0 0 Moder Elever (grands/h) 9 8 0 0 0 Moder Elever (grands/h) 9 9 0 0 0 Moder Elever (grands/h)	Conditions Vapour / Phase risotom 1,0000 Entere 1,00000	Mole Fractions	🔍 🔍 🏹
K - Valake Hose Flow (kg/n) Su 30.07 Su 30.0	- Pressure [bar] 6,000 - Composition Molar Flow (konole/h) 1,000	Lig Volume Fractions	<mark>-}∳-∲-∲-∮</mark> -
Modes Enhage [LA/grade] 9,420-004 Mode Enhage [LA/grade] 23,38 Hade Actor 23,38 Phase Option Multiphase Image Interpret (Image Interpre	- K Value Mass Flow (kg/n) 30.07 - User Variables Stril (dwal (n) vol Flow (m3/n) 8.8546-002	O Mole Flows	⋺ - <u></u>
Colif y alleles by the File of Define from Other Stream	Notes Mode Esthalog [J-J/R gm/de]	O Mass Flows	1
Fuld Packer @Std Company 8 3856-002 Phase Dation Multiphase Cancel Equalace Composition Total T00000 DK Cancel Cancel	Head Toroly (LAT Sprider C) 22.07	Composition Controls	
Phase Option Malphase Normalce Normalce	Liq Vol Flow (@Std Cond (m3/h) 8,365e-002 Filuid Package 8ais-1	Erase	
	Phase Option Multiphase	Normalize	
Cancel Concel			~* [#]
Worksheel Attachments Dynamics Equalize Composition Total 1000000 DK Equalize Composition Total 100000 Equalize Composition Total 10000 Equalize Composition Total 100000 Equalize Compos		Cancel	A. A. A.
Delete Define from Other Steam	Worksheet Attachments Dynamics Equalize Composition Total 1,000000	ОК	
Delete Define from Other Stream	ОК		
	Delete Define from Other Stream 💠 📫		£ 1 4*
F V 4			

2. Το ρεύμα αιθανίου τροφοδοτείται σε μία βαλβίδα εκτόνωσης (valve). Γι αυτό θα Case (Main)
Γι αυτό θα

4. Κάντε διπλό αριστερό κλίκ στο Valve (VLV-100) για να ενεργοποιήσετε το παράθυρο με τις ιδιότητες του.

3 NoName.usc - UniSim Design R430			- a ×
File Edit Simulation Flowsheet Tools Window Help			Environment: Case (Main)
E PFD - Case (Main) 日朔尼日報 P A A 2 物量		Case (Main)	Mode: Steady State Image: Steady Steady Steady State
✓ VLV-100 Design Name Connections Parameters User Valakes Notes Fuid Package Basic 1 Design Design Rating Voksheet Design Rating Voksheet Design Rating			 *
PFD 1			
Required Info : VLV-100 - Requires a feed stream Required Info : VLV-100 - Requires a product stream	Completed.		0
		Balance Tool	Errors

Προσομοίωση Φυσικών Διεργασιών Ι με **UNISIM 2024**

Προσομοίωση εκτόνωσης αερίου:5. Πατήστε το βελάκι στο πεδίο **Inlet** και επιλέξτε το ρεύμα «1» που είναι το ρεύμα τροφοδοσίας.

₩ VLV-100	
Design Connections Parameters	Name VLV-100
User Variables Notes	Inlet Outlet Fluid Package Basis-1
Design Rating	Worksheet Dynamics Cost
Delete	Requires a product stream

6. Για να δημιουργήσετε το ρεύμα εξόδου τοποθετήστε το δρομέα του ποντικιού στο πεδίο Outlet και πληκτρολογήστε 2 και Enter.

ΓΑΝΕΠΕΤΗΜΟΤΙΜΕ Τμήμα Τμήμα Χημικών Μηχανικά * VLV-100	Προσομοίωση Φυσικών Διεργασιών Ι με UNISIM 2024 Προσομοίωση εκτόνωσης αερίου:	
Design Connections Parameters	Name VLV-100	
User Variables Notes	Injet Outlet 2 Fluid Package Basis-1	
Design Rating	Worksheet Dynamics Cost Unknown Delta P	

 Τώρα μεταβείτε στο Φύλλο Parameters στο οποίο παρατηρούμε ότι περιλαμβάνεται 1 παράμετρος: η πτώση πίεσης (Delta P= P_{inlet} -P_{outlet}).

ΠΑΝΕΠΙΣΤΗΜΟ ΠΑΤΡΩΝ Τμήμα Χημικών ChemEnt[UP	Προσομοίωση Φυσικών Διεργασιών Ι με UNISIM 2024 Προσομοίωση εκτόνωσης αερίου:	
Design Connections Parameters User Variables Notes	Pressure Drop Parameters Delta P <empty> User Specified OP-F Relation</empty>	
Design Rating Delete	Worksheet Dynamics Cost Unknown Delta P	Ignored

8. Εφόσον το ρεύμα της τροφοδοσίας έχει οριστεί πλήρως, **μόνο η πτώση πίεσης** πρέπει να καθοριστεί για την βαλβίδα ώστε να ολοκληρωθούν οι υπολογισμοί.

₩ VLV-100		
Design Connections Parameters User Variables Notes	Pressure Brop Parameters Delta P 500,000 kPa User Specified P - F Relation	
Design Rating	Worksheet Dynamics Cost	
Delete	UK	

Προσομοίωση Φυσικών Διεργασιών Ι με UNISIM 2024

Προσομοίωση εκτόνωσης αερίου:

9. Παρατηρούμε ότι το πρόγραμμα ολοκλήρωσε τους υπολογισμούς. Διαβάζουμε την πυκνότητα του ρεύματος εξόδου 2 επιλέγουμε την καρτέλα Worksheet, όπου βλέπουμε ότι η θερμοκρασία του αιθανίου μετά την εκτόνωση παραμένει ίδια.

•	✓ VLV-100				
	Worksheet	Name	1	2	
	Conditions	Vapour	1,0000	1,0000	
	Conditions	Temperature [C]	35,00	35,00	
	Properties	Pressure [bar]	6,000	1,000	
	Composition	Molar Flow [kgmole/h]	1,000	1,000	
	PE Specs	Mass Flow [kg/h]	1,0000 1,0000 re [C] 35,00 35,00 var] 6,000 1,000 [kgmole/h] 1,000 1,000 [kg/h] 30,07 30,07 iq Vol Flow [m3/h] 8,454e-002 8,454e-002 alpy [kJ/kgmole] -8,420e+004 -8,420e+004 xpy [kJ/kgmole-C] 220,7 235,6 [kW] -23,39 -23,39 alpo [kJ/kgmole-C] 220,7 235,6 [kW] -23,39 -23,39 alpo [kJ/kgmole-C] 20,7 235,6 [kw] -23,39 -23,39		
	11 00000	Std Ideal Liq Vol Flow [m3/h]	8,454e-002	8,454e-002	
		Molar Enthalpy [kJ/kgmole]	-8,420e+004	-8,420e+004	
		Molar Entropy [kJ/kgmole-C]	220,7	235,6	
		Heat Flow [kW]	-23,39	-23,39	
		Name 1 2 Vapour 1,0000 1,0000 Temperature [C] 35,00 35,00 Pressure [bar] 6,000 1,000 Molar Flow [kgmole/h] 1,000 1,000 Mass Flow [kg/h] 30,07 30,07 Std Ideal Liq Vol Flow [m3/h] 8,454e-002 8,454e-002 Molar Enthalpy [kJ/kgmole] -8,420e+004 -8,420e+004 Molar Enthalpy [kJ/kgmole] -8,420e+004 -8,420e+004 Molar Entropy [kJ/kgmole] -23,39 -23,39 Heat Flow [kW] -23,39 -23,39 Image: Worksheet Dynamics Cost			
		, , ,		1	
,	Design Rating	Worksheet Dynamics Cost			
	Delete		OK		Ignored

Για να δούμε την πυκνότητα πατάμε το κουμπί **Properties,** όπου διαβάζουμε την τιμή **1,174 kg/m**³

WORSheet	Name	1	2	/
onditions	Molecular Weight	30,07	30,07	
onakions	Molar Density [kgmole/m3]	0,2342	3,903e-002	
roperties	Mass Density [kg/m3]	7,042	1,174	
omposition	Act. Volume Flow [m3/h]	4,270	25,62	
E Space	Mass Enthalpy [kJ/kg]	-2800	-2800	
i opecs	Mass Entropy [kJ/kg-C]	7,340	7,836	
	Heat Capacity [kJ/kgmole-C]	53,97	53,97	
	Mass Heat Capacity [kJ/kg-C]	1,795	1,795	
	Lower Heating Value [kJ/kgmole]	1,429e+006	1,429e+006	
	Mass Lower Heating Value [kJ/kg]	4,751e+004	4,751e+004	
	Phase Fraction [Vol. Basis]	<empty></empty>	<empty></empty>	
	Phase Fraction [Mass Basis]	4,941e-324	4,941e-324	
	Partial Pressure of CO2 [bar]	0,0000	0,0000	
	Cost Based on Flow [Cost/s]	0,0000	0,0000	
	Act. Gas Flow [ACT_m3/h]	4,270	25,62	
	Avg. Liq. Density [kgmole/m3]	11,83	11,83	