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RESPONSE TO GENERAL DYNAMIC LOADING 

 

The time integral of a force is referred to as impulse, is determined by 𝑰 and is obtained from: 

𝐼 𝑝 𝑡  𝑑𝑡

∆

 

Newton’s 2nd Law of motion states that the action of an (impulsive) force on a mass, 
results in a change in the velocity of the mass and hence in its linear momentum, 
the change in linear momentum being equal to the impulse of the (impulsive) 
force. 

Thus, representing the change in velocity by ∆𝒖, 

𝑚∆𝑢 𝐼 

If the mass is initially at rest, it will have a velocity 𝑰 𝒎⁄  after the action of the impulse. 

Suppose that a SDOF system is subjected to an impulse  𝑰 𝒑 𝝉 ∙ ∆𝝉. The action of the impulse 
will set the system vibrating. The ensuing free vibration response can be obtained by 
recognizing that the initial displacement is zero and the initial velocity is 𝑰 𝒎⁄ . 
Thus, the resulting response is: 

𝑢 𝑡
𝐼

𝑚𝜔
𝑒 sin 𝜔 𝑡 𝐼 ∙ ℎ 𝑡  
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We approximate the general loading 𝒑 𝒕  by a series of pulses of intensity 𝒑 𝒕 ∙ ∆𝝉. 

Hence, a pulse applied at time 𝜏 contributes to the response at time 𝑡 an amount equal to: 

∆𝑢 𝑡 ≅ 𝑝 𝜏 ∆𝜏 ∙ ℎ 𝑡 𝜏

where: ℎ 𝑡
1

𝑚𝜔
𝑒 sin 𝜔 𝑡

𝒖𝒏𝒊𝒕 𝒊𝒎𝒑𝒖𝒍𝒔𝒆
𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

 

The above expression is approximate when ∆𝝉 is finite but becomes exact as  ∆𝝉 → 𝟎.  

 

Thus, the contribution of all the pulses 𝟎 𝝉 𝒕  is given by: 

𝑢 𝑡 ≅ 𝑝 𝜏 ∆𝜏 ∙ ℎ 𝑡 𝜏  

At the limit as  ∆𝝉 → 𝟎 , we obtain: 

𝑢 𝑡 𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏  
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We can obtain the unit impulse response 𝒉 𝒕  using the Dirac (delta) function 𝜹 𝒕 : 

Equation of Motion: 
𝑚𝑢 𝑐𝑢 𝑘𝑢 𝐼𝛿 𝑡 𝐼 𝒊𝒎𝒑𝒖𝒍𝒔𝒆 𝒊𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚

⟹ 𝑢 2𝜉𝜔𝑢 𝜔 𝑢
𝐼

𝑚
𝛿 𝑡

 

𝑈𝑁𝐼𝑇𝑆:
𝐼 𝐹 𝑇

𝛿 𝑡 𝑇
 

Initial conditions:  𝒖 𝟎 𝟎 & 𝒖 𝟎 𝟎  (i.e., system at rest) 

 

Integrate the Equation of Motion formally over 𝜺, 𝜺  and take the limit as 𝜺 → 𝟎: 

lim
→

𝑢 𝑡  𝑑𝑡 2𝜉𝜔 𝑢 𝑡  𝑑𝑡 𝜔 𝑢 𝑡  𝑑𝑡
𝐼

𝑚
𝛿 𝑡  𝑑𝑡  

lim
→

⎩
⎪
⎨

⎪
⎧

𝑢 𝜀 𝑢 𝜀 2𝜉𝜔 𝑢 𝜀 𝑢 𝜀 𝜔 𝑢 𝑡  𝑑𝑡
𝐼

𝑚

⎭
⎪
⎬

⎪
⎫

 

𝑢 0 𝑢 0 2𝜉𝜔 𝑢 0 𝑢 0

∵ 𝒖 𝒕 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔

0
𝐼

𝑚
 

Therefore: 

𝑢 0
𝐼

𝑚
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Therefore, we can make the following statement: 

𝑚𝑢 𝑐𝑢 𝑘𝑢 𝐼𝛿 𝑡

𝑢 0 0   &  𝑢 0 0
𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

𝑚𝑢 𝑐𝑢 𝑘𝑢 0  𝑡 0

𝑢 0
𝐼

𝑚
  &  𝑢 0 0 

 

 

Therefore, the effect of the impulsive force 𝒑 𝒕 𝑰𝜹 𝒕  is to import to the 

SDOF system an initial velocity equal to  𝑰 𝒎 . 

The response of the SDOF system governed by: 

Equation of Motion:  𝑚𝑢 𝑐𝑢 𝑘𝑢 0  𝑡 0    

Initial Conditions:   𝑢 0   &  𝑢 0 0 

is given by: 

𝑢 𝑡 𝑒 𝑢 0 cos 𝜔 𝑡
𝑢 0 𝜉𝜔𝑢 0

𝜔
sin 𝜔 𝑡

𝐼 𝑚
𝜔

𝑒 sin 𝜔 𝑡

 

For  𝑰 𝟏, the above response is denoted by ℎ 𝑡  and is referred to as the unit impulse response 
function. 

 

Therefore: 

1 ∙ 𝛿 𝑡 →
𝑆𝐷𝑂𝐹
𝜉 0 → ℎ 𝑡

1
𝑚𝜔

sin 𝜔𝑡

1 ∙ 𝛿 𝑡 →
𝑆𝐷𝑂𝐹

0 𝜉 1 → ℎ 𝑡
1

𝑚𝜔
𝑒 sin 𝜔 𝑡
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Assuming that we know the unit impulse response of the system/structure, the response 

integral 𝒖 𝒕 𝒑 𝝉 𝒉 𝒕 𝝉  𝒅𝝉
𝒕

𝟎 ≝ 𝒑 𝒕 ∗ 𝒉 𝒕  may be derived also using a ‘Linear Systems 

Theory’ approach. 

Sifting property of the Dirac (delta) function 𝜹 𝒕 : 

𝛿 𝑡 𝑡 𝑓 𝑡  𝑑𝑡 𝑓 𝑡  

NOTE: The verb ‘to sift’ means to put through a sieve. 

 

 

𝑬𝑿𝑪𝑰𝑻𝑨𝑻𝑰𝑶𝑵 𝑹𝑬𝑺𝑷𝑶𝑵𝑺𝑬

𝛿 𝑡 → 𝑆𝐷𝑂𝐹 → ℎ 𝑡
1

𝑚𝜔
𝑒 sin 𝜔 𝑡

𝛿 𝑡 𝜏 → 𝑆𝐷𝑂𝐹 → ℎ 𝑡 𝜏
𝒕𝒊𝒎𝒆 𝒊𝒏𝒗𝒂𝒓𝒊𝒂𝒏𝒕 𝒔𝒚𝒔𝒕𝒆𝒎

𝛿 𝑡 𝜏 𝑝 𝜏 𝑑𝜏 → 𝑆𝐷𝑂𝐹 → ℎ 𝑡 𝜏 𝑝 𝜏 𝑑𝜏
𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒚𝒔𝒕𝒆𝒎

𝛿 𝑡 𝜏 𝑝 𝜏 𝑑𝜏

𝒔𝒊𝒇𝒕𝒊𝒏𝒈 𝒑𝒓𝒐𝒑𝒆𝒓𝒕𝒚 𝒐𝒇 𝜹 𝒕

→ 𝑆𝐷𝑂𝐹 → ℎ 𝑡 𝜏 𝑝 𝜏 𝑑𝜏

𝒔𝒖𝒑𝒆𝒓𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝒑 𝒕 → 𝑆𝐷𝑂𝐹 → 𝒖 𝒕 𝒉 𝒕 𝝉 𝒑 𝝉 𝒅𝝉

𝒕

𝟎
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Therefore, the response of the SDOF system to an arbitrary loading 𝒑 𝒕 , starting 
from rest, is given by: 

𝑢 𝑡 𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏

𝒄𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏
𝑜𝑟

𝑫𝒖𝒉𝒂𝒎𝒆𝒍′𝒔
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙

 

The above integral is known as the ‘convolution integral’ or ‘Duhamel’s integral’. 

 

If the SDOF system starts from a state other than the state of rest, then the response is 
given by: 

𝑢 𝑡 𝑒 𝑢 0 cos 𝜔 𝑡
𝑢 0 𝜉𝜔𝑢 0

𝜔
sin 𝜔 𝑡 𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏  
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Note the following properties of the convolution integral: 

𝑢 𝑡 𝑝 𝑡 ∗ ℎ 𝑡 ≝ 𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏

𝑝 𝑡 𝜉 ℎ 𝜉  𝑑𝜉

 

Graphical representation of  𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏 : 

 
Note that when 𝒕 is greater than the pulse time, say  𝒕𝒑, then: 

𝑢 𝑡 𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏

𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏 𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏

𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏

𝒕𝒑

 

 
Considering that for 𝑡 𝑡  the load application ceases, the oscillator will perform free 

vibrations with initial conditions 𝑢 𝑡  & 𝑢 𝑡 . The integral 𝑝 𝜏 ℎ 𝑡 𝜏  𝑑𝜏 

expresses/evaluates these free oscillations. 
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NOTE: 

Let an Initial Value Problem (IVP) be specified by the following 𝒏𝒕𝒉 order linear Ordinary 
Differential Equation (ODE) with constant coefficients: 

𝑎
𝑑 𝑢
𝑑𝑡

𝑎
𝑑 𝑢
𝑑𝑡

⋯ 𝑎 𝑢 𝑟 𝑡  

Let the associated linear operator: 

𝐿 𝑎
𝑑

𝑑𝑡
𝑎

𝑑
𝑑𝑡

⋯ 𝑎  

Then, the Green’s function 𝑮 𝒕  of the above linear differential operator 𝐿  with constant 
coefficients is the function that satisfies: 

(i) The homogeneous ODE: 

𝐿 𝐺 0 

(ii) The initial conditions: 

𝐺 0
𝑑𝐺 0

𝑑𝑡
𝑑 𝐺 0

𝑑𝑡
⋯

𝑑 𝐺 0
𝑑𝑡

0 &
𝑑 𝐺 0

𝑑𝑡
1

𝑎
 

It can be demonstrated that: 

𝑢 𝑡 𝑟 𝜏 𝐺 𝑡 𝜏  𝑑𝜏 

is a solution of the above inhomogeneous ODE. 

It is now evident that the unit impulse response 𝒉 𝒕  is the 
Green’s function of the equation of motion. 
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Derivation Of Duhamel’s (Convolution) Integral 

Using the Response to a Force Described by the Unit Step Function  
 

 

Let 𝒈 𝒕  be the displacement response of a SDOF system, starting from rest, to a force 
described by the unit step function ℍ 𝑡 , i.e., 𝑝 𝑡 𝑝 ∙ ℍ 𝑡 1 ∙ ℍ 𝑡 . Specifically, 

𝑔 𝑡
1
𝑘

1 𝑒 cos 𝜔 𝑡
𝜉

1 𝜉
sin 𝜔 𝑡 ,  𝑡 0  

NOTE: The above result may be obtained by considering the governing equation of 
motion 𝑚𝑢 𝑐𝑢 𝑘𝑢 𝑝 𝑡 , where 𝑝 𝑡 𝑝 ∙ ℍ 𝑡 1 ∙ ℍ 𝑡 , subject to initial 
conditions: 𝑢 𝑡 0 0 & 𝑢 𝑡 0 0. The general solution of the above equation is 

written as follows: 𝑢 𝑡 𝑢 𝑡 𝑢 𝑡 𝑒 𝐴 cos 𝜔 𝑡 𝐵 sin 𝜔 𝑡 1 𝑘⁄ . After 
imposing the given initial conditions, we obtain the above (boxed) result. 

Contribution to the response of a step function of amplitude ∆𝒑 𝒕, 𝝉  applied at 𝒕 𝝉 : 

∆𝑢 𝑡, 𝜏 ≅ ∆𝑝 𝜏 𝑔 𝑡 𝜏
∆𝑝 𝜏

∆𝜏
𝑔 𝑡 𝜏 ∆𝜏 

Therefore: 

𝑢 𝑡 ≅ 𝑝 0 𝑔 𝑡
∆𝑝 𝜏

∆𝜏
𝑔 𝑡 𝜏 ∆𝜏  

As ∆𝜏 → 0, we obtain: 

𝑢 𝑡 𝑝 0 𝑔 𝑡
𝑑𝑝 𝜏

𝑑𝜏
𝑔 𝑡 𝜏  𝑑𝜏

𝑫𝒖𝒉𝒂𝒎𝒆𝒍′𝒔
𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒍
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Integrating by parts: 

𝑢 𝑡 𝑝 0 𝑔 𝑡 𝑔 𝑡 𝜏 𝑝 𝜏 | 𝑝 𝜏
𝑑𝑔 𝑡 𝜏

𝑑𝜏
 𝑑𝜏

𝑔 0 𝑝 𝑡 𝑝 𝜏
𝑑𝑔 𝑡 𝜏

𝑑𝑡
 𝑑𝜏

 

Applying Leibnitz rule for differentiation under the integral sign, we obtain: 

𝑢 𝑡
𝑑
𝑑𝑡

𝑔 𝑡 𝜏 𝑝 𝜏  𝑑𝜏  

_______________________ 
NOTE: LEIBNITZ RULE 

Let: 𝐼 𝜀 𝑓 𝑥, 𝜀 𝑑𝑥 

Then: 
𝑑𝐼
𝑑𝜀

𝑓 𝑥 , 𝜀
𝑑𝑥
𝑑𝜀

𝑓 𝑥 , 𝜀
𝑑𝑥
𝑑𝜀

𝜕𝑓 𝑥, 𝜀
𝜕𝜀

 𝑑𝑥 

_______________________ 
It is straightforward to show that: 

ℎ 𝑡
𝑑
𝑑𝑡

𝑔 𝑡  

Indeed, 

𝑑𝑔 𝑡
𝑑𝑡

𝑑
𝑑𝑡

⎩
⎨

⎧1
𝑘

𝑒 𝜉𝜔𝑡

𝑘
⎣
⎢
⎢
⎡
cos 𝜔𝐷𝑡

𝜉

1 𝜉2
sin 𝜔𝐷𝑡

⎦
⎥
⎥
⎤

⎭
⎬

⎫

⎩
⎪⎪
⎨

⎪⎪
⎧𝜉𝜔

𝑘
𝑒 𝜉𝜔𝑡

⎣
⎢
⎢
⎡
cos 𝜔𝐷𝑡

𝜉

1 𝜉2
sin 𝜔𝐷𝑡

⎦
⎥
⎥
⎤

1
𝑘

𝑒 𝜉𝜔𝑡 𝜔𝐷 sin 𝜔𝐷𝑡 𝜉𝜔 cos 𝜔𝐷𝑡 ⎭
⎪⎪
⎬

⎪⎪
⎫

𝑒 𝜉𝜔𝑡

𝑘
sin 𝜔𝐷𝑡

⎣
⎢
⎢
⎡ 𝜉2𝜔

1 𝜉2
𝜔𝐷

⎦
⎥
⎥
⎤

𝑒 𝜉𝜔𝑡

𝑘
sin 𝜔𝐷𝑡

𝜔

1 𝜉2

𝑒 𝜉𝜔𝑡

𝑚𝜔𝐷
sin 𝜔𝐷𝑡
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EXAMPLE: 

Let the SDOF system of mass 𝑚 and stiffness 𝑘 be subjected to a loading 𝑝 𝑡 , where: 

𝑝 𝑡
𝑝 𝑡 𝑡
0 𝑡 𝑡  

Compute the displacement response of the SDOF system using the convolution integral; assume 
that the system responds to the applied load starting from rest. 

Solution: 

The unit impulse response for the undamped SDOF system is: ℎ 𝑡 sin 𝜔𝑡 . Therefore: 

ℎ 𝑡 ∗ 𝑝 𝑡

⎩
⎪⎪
⎨

⎪⎪
⎧ 1

𝑚𝜔
sin 𝜔 𝑡 𝜏 ∙ 𝑝 𝜏  𝑑𝜏 𝑡 𝑡

1
𝑚𝜔

sin 𝜔 𝑡 𝜏 ∙ 𝑝 𝜏  𝑑𝜏 𝑡 𝑡

1
𝑚𝜔

∙ 1 cos 𝜔𝑡 𝑡 𝑡

1
𝑚𝜔

∙ cos 𝜔 𝑡 𝑡 cos 𝜔𝑡 𝑡 𝑡

 

__________________________ 
Details of the evaluation of the convolution integral (two phases): 

1
𝑚𝜔

sin 𝜔 𝑡 𝜏 ∙ 𝑝 𝜏  𝑑𝜏
1

𝑚𝜔
∙ sin 𝜔 𝑡 𝜏 ∙ 1 𝑑𝜏 ⏞

1
𝑚𝜔

∙ sin 𝜔𝜉  𝑑 𝜉

1
𝑚𝜔

∙ sin 𝜔𝜉  𝑑𝜉 ⏞
1

𝑚𝜔
∙ sin 𝜁  𝑑𝜁

1
𝑚𝜔

∙ cos 𝜁 |
1

𝑚𝜔
∙ 1 cos 𝜔𝑡

 

1
𝑚𝜔

sin 𝜔 𝑡 𝜏 ∙ 𝑝 𝜏  𝑑𝜏
1

𝑚𝜔
∙ sin 𝜔 𝑡 𝜏 ∙ 1 𝑑𝜏 ⏞

1
𝑚𝜔

∙ sin 𝜔𝜉  𝑑𝜉

1
𝑚𝜔

∙ sin 𝜁  𝑑𝜁
1

𝑚𝜔
∙ cos 𝜁|

1
𝑚𝜔

∙ cos 𝜔 𝑡 𝑡 cos 𝜔𝑡

 

__________________________ 
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From the result we obtained above for 𝑢 𝑡 ℎ 𝑡 ∗ 𝑝 𝑡  by calculating the convolution integral 
for the time interval 𝑡 𝑡 , we may calculate the following quantities: 

𝑢 𝑡
1

𝑚𝜔
∙ 1 cos 𝜔𝑡

𝑢 𝑡
1

𝑚𝜔
∙ sin 𝜔𝑡

 

Consider the response the response of the oscillator for 𝑡 𝑡 , i.e., after the load application 
has ceased. The oscillator performs free vibration oscillations with initial conditions 
𝑢 𝑡  & 𝑢 𝑡 . Specifically, 

𝑢 𝑡 𝑢 𝑡 cos 𝜔 𝑡 𝑡
𝑢 𝑡

𝜔
sin 𝜔 𝑡 𝑡

1
𝑚𝜔

∙ 1 cos 𝜔𝑡 cos 𝜔 𝑡 𝑡 sin 𝜔𝑡 sin 𝜔 𝑡 𝑡

1
𝑚𝜔

∙ cos 𝜔 𝑡 𝑡 cos 𝜔𝑡 cos 𝜔 𝑡 𝑡 sin 𝜔𝑡 sin 𝜔 𝑡 𝑡

1
𝑚𝜔

∙ cos 𝜔 𝑡 𝑡 cos 𝜔𝑡

 

The last expression is indeed what we obtained by evaluating the convolution integral for 𝑡 𝑡 . 

 


