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RESPONSE TO GENERAL DYNAMIC LOADING

Force,p

NN

i t+ At

The time integral of a force is referred to as impulse, is determined by I and is obtained from:
t+At
I = J p(t) dt
t

Newton’s 2nd Law of motion states that the action of an (impulsive) force on a mass,
results in a change in the velocity of the mass and hence in its linear momentum,
the change in linear momentum being equal to the impulse of the (impulsive)
force.

Thus, representing the change in velocity by A1,
mAu =1
If the mass is initially at rest, it will have a velocity (I/m) after the action of the impulse.

Suppose that a SDOF system is subjected to an impulse I = p(t) - Ar. The action of the impulse
will set the system vibrating. The ensuing free vibration response can be obtained by
recognizing that the initial displacement is zero and the initial velocity is (I/m).
Thus, the resulting response is:

I
mawgy

e ¢t sin(wgt) =1 - h(t)

u(t) =
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We approximate the general loading p(t) by a series of pulses of intensity p(t) - At.
Hence, a pulse applied at time 7 contributes to the response at time t an amount equal to:
Au(t) = [p(t)At] - h(t — 1)

where: h(t) = e ¢t sin(wg4t) (:

unit impulse )

mwy response function

The above expression is approximate when Az is finite but becomes exact as At — 0.

Thus, the contribution of all the pulses (0 < T < t) is given by:

u(t) = Z{p(r)m h(t — 1))

At the limitas At — 0, we obtain:

t

u(t) = fp(r)h(t —17)drt

0
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We can obtain the unit impulse response h(t) using the Dirac (delta) function 6(t):

Equation of Motion:
mii + cu + ku

16(t) [l = impulse intensity]
I

(5-) s
m

(71 = [FIT]
s®] = [

= i+ 2fwu + w?u

UNITS: {[

Initial conditions: u(07) =0 & u(07) =0 (i.e., system at rest)

Integrate the Equation of Motion formally over (—¢, +¢) and take the limitas € — 0:

lim ru(t) dt + 28w ru(t) dt + w2 fu(t) dt = (%) ra(t) dt}

( )
| +e I
Ll—%{ [i(+¢) — u(—=e)] + 2éw[u(+e) — u(—¢)] + w? _jg u(t) dt = (E> ?
\ — )
[u(0+) — u(o—)] + 28w [u(0") —u(07)] +0 = (L)
5 0 "
 u(t)=continuous
Therefore:

-
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Therefore, we can make the following statement:

mii + cit + ku = 15(5) miit+cu+ku=0 (t>0)

equivalent I
u(07) = 0 & (0™ = 0 1(0) = <H> & u(0) = 0

Therefore, the effect of the impulsive force p(t) = I15(t) is to import to the
SDOF system an initial velocity equal to (/).

The response of the SDOF system governed by:

Equation of Motion: mii+cu+ku=0 (t>0)
Initial Conditions: u(0) = (i) & u(0)=0
is given by:
u(t) = e $t [u(O) cos(wgyt) + %ﬁwu(o)sin(wdt)

I
—( /m) e %@t sin(wqt)
Wq

For I = 1, the above response is denoted by h(t) and is referred to as the unit impulse response
function.

Therefore:

1
1-6(t) - éD:Og) - h(t) = %Sin(wt)

SDOF

1-6(t) - 0<&<1)

e ¢t sin(w,4t)

1
- h() = —

d
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Assuming that we know the unit impulse response of the system/structure, the response
integral u(t) = fotp('r)h(t — 1) dt ¥ p(t) ~ h(t) may be derived also using a ‘Linear Systems
Theory’ approach.

Sifting property of the Dirac (delta) function 6(t):

f 5(t — to)f() dt = f(to)

NOTE: The verb ‘to sift’ means to put through a sieve.

EXCITATION RESPONSE
5(t) - |SDOF|—- h(t) =

e ¢t sin(w,4t)
mawygy

5(t—1) - [SDOF] - h(t — 1)

time—invariant system

s(t—op(dr - - h(t — Dp()dt

linear system

+00 t
| sc-opwar ~BEDOF- [ - Dp@r
0 0

sifting property of &(t) superposition

p(t) - - u® = [ ht-Dp@dr
0
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Therefore, the response of the SDOF system to an arbitrary loading p(t), starting
from rest, is given by:

¢ convolution
or
u(t) = fp(r)h(t—r) dt Duhamel's
0 integral

The above integral is known as the ‘convolution integral’ or ‘Duhamel’s integral’.

If the SDOF system starts from a state other than the state of rest, then the response is
given by:

1(0) + éwu(0)

d

u(t) = e %@t |u(0)cos(wyt) +

t
sin(wdt)] + j p(D)h(t — 1) dt

0




Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page:7
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (06): RESPONSE TO GENERAL DYNAMIC LOADING

Note the following properties of the convolution integral:
t

w(®) = p(e)+h(t) j p(DR(t —17) dr

0
t

= [pe-one©ra
0
Graphical representation of fotp(r)h(t —1)drt:

S O t (,[)

Note that when t is greater than the pulse time, say ¢,, then:
t

u(t) = fp(r)h(t —17)drt
t ° "
= j p(t)h(t — 1) dt + jp(r)h(t —1)dTt
: t 2 0
- fpp(r)h(t _ 1) dr
0

[
l
|

s ‘I\

/ 1 A

s \
- s
-~ \‘ ,j

v
~0 hs 4 (7)

Considering that for ¢ > t,, the load application ceases, the oscillator will perform free
vibrations with initial conditions u(t,) & u(t,). The integral [,” p(:)h(t — 1) dr
expresses/evaluates these free oscillations.
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NOTE:

Let an Initial Value Problem (1VP) be specified by the following n'"* order linear Ordinary
Differential Equation (ODE) with constant coefficients:

d™u d* u
anm + an_lw + -+ agu = T(t)

Let the associated linear operator:

dn dn—l
L[ ] = anm+an_1m+ -+ ag

Then, the Green’s function G(t) of the above linear differential operator L[ ] with constant
coefficients is the function that satisfies:

(i)  The homogeneous ODE:

L[G]=0
(i)  The initial conditions:
da (0 d?G(0 d"2G(0 d"1G(0 1
b - O _EOQ 6O 60 1
dt dt? dtn—2 dtn-1 a,

It can be demonstrated that:

t

u(t) = fT‘(T)G(t —1)drt

0

is a solution of the above inhomogeneous ODE.

It is now evident that the unit impulse response h(t) is the
Green’s function of the equation of motion.
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Derivation Of Duhamel’s (Convolution) Integral
Using the Response to a Force Described by the Unit Step Function

p(t) 1

piﬂJ

|
|
|
1
F T ﬁ |-<--—£'sr t Time, (1)

Let g(t) be the displacement response of a SDOF system, starting from rest, to a force
described by the unit step function H(t), i.e., p(t) = p, - H(t) = 1 - H(t). Specifically,

g(t) = %{1 — g—Swt [cos(wdt) +\/%€25in(wdt)]} , t=0

NOTE: The above result may be obtained by considering the governing equation of
motion mii + cu + ku = p(t), where p(t) = p, - H(t) = 1 - H(t), subject to initial
conditions: u(t = 0) = 0 & u(t = 0) = 0. The general solution of the above equation is
written as follows: u(t) = uy (t) + up(t) = e $“t[A cos(wyt) + B sin(wyt)] + (1/k). After
imposing the given initial conditions, we obtain the above (boxed) result.

Contribution to the response of a step function of amplitude Ap(t, ) appliedatt =7 :

Au(t,t) = Ap(D)g(t — 1) = ﬂg(t —T)At

Therefore:

u(®) = p(0)g(© + ). {ﬂg(t - r)Ar}

As At - 0, we obtain:

Duhamel's
integral

u(®) = p(0)g () + j 4@ e~ 1) dr

0
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Integrating by parts:

u(t)

t
prG)+gG—rm&M6—fp()g(_T)

0

g(t - T)

t
mmmo+fMﬂ

0

Applying Leibnitz rule for differentiation under the integral sign, we obtain:

d t
u@ =7 [ 9~ (@) dr
0

NOTE: LEIBNITZ RULE

x2(€)
Let: I(e) = J f(x,¢e)dx
x1(€) ©
dI T af(x,
Then: __f( X2, & )——f(xl,e) J %
x1(8)
It is straightforward to show that:
A = 2 90
~atd
Indeed,
( [ N
dg(t) _ d |1 et 5 . |
7 - E{E T |cos(th) + — Ez sm(th)Jlj}
[ ]
5 f“’tlcos(a) t) + sin(w t)l
| D - nt)| ot [ £ |
{ [ 1-¢ J o= = sin(a)Dt)| +a)D|
. + Ni-¢ |
— Ee‘f‘”t[—wp sin(wpt) + Ew cos(wpt)]
e—f{ut . w e—f(ut )
TSln(th) = . sin(wpt)

1- ¢



Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page:11
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (06): RESPONSE TO GENERAL DYNAMIC LOADING
EXAMPLE:

Let the SDOF system of mass m and stiffness k be subjected to a loading p(t), where:

Po t=tq
t =
p(®) {0 t>t,

Compute the displacement response of the SDOF system using the convolution integral; assume
that the system responds to the applied load starting from rest.

Solution:

The unit impulse response for the undamped SDOF system is: h(t) = %sin(wt). Therefore:

t
0
ta

|

1)2 [cos(w(t — tqg)) — cos(wt)] t >ty

sinfw(t —1)]-p(r)dt t<t,

-

h(®) * p(t)

u(t)
sinfw(t —1)]-p(n)dt t>ty

i(
{
l

§|~

1

mw?

*[1 — cos(wt)] t<ty

Details of the evaluation of the convolution integral (two phases):

t t 0
1 1 =ttt
f%sin[w(t —17)]-p()dr —— f nfwt-1)]-1dt =2 —- f sin[wé] d(—=¢&)
0 0 t
1

me
t t=wf ) wt
— —- f o mwzlf sin{ d{
0 0
= 5+ (= cosO§" = ——h [1 — cos(wt)]
1 " tgq f=t-1 1 t—tg
—si t— . dt = —_— i t— -1d =2 - i d
fmw sinfw(t —1)] - p(7) dt — f sin[w(t — 1)] T — f sin[wé] dé
0 0 t
w(t—-tgq)
1 1 _
= s f sin{ d{ = —3 cos(lzgt ta)

wt

— cos(a)t)]
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From the result we obtained above for u(t) = h(t) = p(t) by calculating the convolution integral
for the time interval t < t;, we may calculate the following quantities:

1

u(ty) = mwz-[l—cos(wtd)]
1

u(ty) = M-sin(wtd)

Consider the response the response of the oscillator for t > t,, i.e., after the load application
has ceased. The oscillator performs free vibration oscillations with initial conditions
u(ty) & u(ty). Specifically,

u(t) = u(ty) cos(w(t —ty)) + ﬁ(j)d) sin(w(t —ty))
= miuz : [[1 — cos(wtg)] cos(w(t — tg)) + sin(wty) sin(w(t — td))]
B miﬂ [eos(w(t — t4)) — cos(wty) cos(w(t — tq)) + sin(wty) sin(w(t — t4))]
1

= — [cos(a)(t — td)) - COS(wt)]

The last expression is indeed what we obtained by evaluating the convolution integral for t > t;.



