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VISCOUSLY DAMPED 1-DOF SYSTEM 

 

Equation of Motion: 

𝑚𝑢ሷ ሺ𝑡ሻ ൅ 𝑐𝑢ሶ ሺ𝑡ሻ ൅ 𝑘𝑢ሺ𝑡ሻ ൌ 𝑃ሺ𝑡ሻ 

Initial Conditions: 

𝑢ሺ𝑡 ൌ 0ሻ ൌ 𝑢଴ , 𝑢ሶ ሺ𝑡 ൌ 0ሻ ൌ 𝑢ሶ ଴ 

 

Complete Solution: 

𝑢ሺ𝑡ሻ ൌ 𝑢ுሺ𝑡ሻ ൅ 𝑢௉ሺ𝑡ሻ 

where: 𝑢ுሺ𝑡ሻ ൌ homogeneous or complementary solution 

  𝑢௉ሺ𝑡ሻ ൌ particular solution 

 

REFERENCE: 

BOYCE, W.E. and R.C. Di PRIMA (1970). Introduction to Differential Equations, John Wiley & Sons, Inc. 
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UNDAMPED FREE VIBRATION 

Equation of Motion:  𝑚𝑢ሷ ሺ𝑡ሻ ൅ 𝑘𝑢ሺ𝑡ሻ ൌ 0 

Initial Conditions:  𝑢ሺ𝑡 ൌ 0ሻ ൌ 𝑢଴ , 𝑢ሶ ሺ𝑡 ൌ 0ሻ ൌ 𝑢ሶ ଴ 

Potentially, a solution is of the form: 𝑢ሺ𝑡ሻ ൌ 𝐺𝑒ఒ௧ 

[𝐺 ് 0 for non-trivial solution, i.e., for non-zero motion; 𝐺 is in general complex-valued.] 

Substituting in the equation of motion: 

𝑚𝐺𝜆ଶ𝑒ఒ௧ ൅ 𝑘𝐺𝑒ఒ௧ ൌ 0 ⟺ 𝐺𝑒ఒ௧ሺ𝑚𝜆ଶ ൅ 𝑘ሻ ൌ 0
𝑚𝜆ଶ ൅ 𝑘 ൌ 0ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒊𝒔𝒕𝒊𝒄

𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏

⟺ 𝜆 ൌ േ𝑖𝜔  

where:  𝜔 ≝ ට ௞

௠
 

∴ General solution of homogeneous equation: 
𝑢ሺ𝑡ሻ ൌ 𝐺ଵ𝑒௜ఠ௧ ൅ 𝐺ଶ𝑒ି௜ఠ௧ 

or (see NOTE below) 
𝑢ሺ𝑡ሻ ൌ 𝐴 cosሺ𝜔𝑡ሻ ൅ 𝐵 sinሺ𝜔𝑡ሻ 

NOTE: Recall Euler’s formula: 

𝑒േ௜௫ ൌ cos 𝑥 േ 𝑖 sin 𝑥 ⟹ cos 𝑥 ൌ
𝑒ା௜௫ ൅ 𝑒ି௜௫

2
sin 𝑥 ൌ

𝑒ା௜௫ െ 𝑒ି௜௫

2𝑖
 

Introducing the initial conditions: 

𝑢ሺ𝑡ሻ ൌ 𝑢଴ cosሺ𝜔𝑡ሻ ൅
𝑢ሶ ଴
𝜔

sinሺ𝜔𝑡ሻ ൌ ൝
𝜌 sinሺ𝜔𝑡 ൅ 𝜑ሻ

or
𝜌 cosሺ𝜔𝑡 െ 𝜓ሻ

where: 𝜌 ൌ ඨ𝑢଴
ଶ ൅ ൬

𝑢ሶ ଴
𝜔

൰
ଶ

&

⎩
⎨

⎧tan 𝜑 ൌ
𝑢଴

ሺ𝑢ሶ ଴ 𝜔⁄ ሻ

tan 𝜓 ൌ
ሺ𝑢ሶ ଴ 𝜔⁄ ሻ

𝑢଴

 

 

Clearly, an oscillatory/harmonic response with: 

Period 𝑇 ൌ
2𝜋
𝜔

ሾsecሿ 

Natural (circular) frequency 𝜔 ൤
rad
sec

൨ 

Natural (cyclic) frequency 𝑓 ൌ
𝜔
2𝜋

ൌ
1
𝑇

൤Hzൌ
cycles

sec
൨ 
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NOTE: 

THEOREM: 
Consider the second-order linear ordinary differential equation, 

ℒሾ𝑦ሿ ൌ 𝑦ᇱᇱ ൅ 𝑝ሺ𝑡ሻ𝑦ᇱ ൅ 𝑞ሺ𝑡ሻ𝑦 ൌ 0 

where 𝑝ሺ𝑡ሻ and 𝑞ሺ𝑡ሻ are continuous real-valued functions. If 𝑦ሺ𝑡ሻ ൌ 𝑢ሺ𝑡ሻ ൅ 𝑖𝑣ሺ𝑡ሻ is a 
complex-valued solution of the differential equation, then the real part 𝑢ሺ𝑡ሻ and 
the imaginary part 𝑣ሺ𝑡ሻ are also solutions of this equation. 

 

PROOF: 

We substitute 𝑢ሺ𝑡ሻ ൅ 𝑖𝑣ሺ𝑡ሻ for 𝑦 in ℒሾ𝑦ሿ, obtaining 

ℒሾ𝑦ሿ ൌ ൫𝑢ሺ𝑡ሻ ൅ 𝑖𝑣ሺ𝑡ሻ൯
ᇱᇱ

൅ 𝑝ሺ𝑡ሻ൫𝑢ሺ𝑡ሻ ൅ 𝑖𝑣ሺ𝑡ሻ൯
ᇱ

൅ 𝑞ሺ𝑡ሻ൫𝑢ሺ𝑡ሻ ൅ 𝑖𝑣ሺ𝑡ሻ൯

ൌ 𝑢ᇱᇱሺ𝑡ሻ ൅ 𝑖𝑣ᇱᇱሺ𝑡ሻ ൅ 𝑝ሺ𝑡ሻ൫𝑢ᇱሺ𝑡ሻ ൅ 𝑖𝑣ᇱሺ𝑡ሻ൯𝑞ሺ𝑡ሻ൫𝑢ሺ𝑡ሻ ൅ 𝑖𝑣ሺ𝑡ሻ൯
ൌ ሾ𝑢ᇱᇱ ൅ 𝑝ሺ𝑡ሻ𝑢ᇱ ൅ 𝑞ሺ𝑡ሻ𝑢ሿ ൅ 𝑖ሾ𝑣ᇱᇱ ൅ 𝑝ሺ𝑡ሻ𝑣ᇱ ൅ 𝑞ሺ𝑡ሻ𝑣ሿ
ൌ ℒሾ𝑢ሿ ൅ 𝑖ℒሾ𝑣ሿ

 

Recall that a complex number is zero if and only if its real and imaginary parts are 
both zero. Therefore, 

ℒሾ𝑦ሿ ൌ ℒሾ𝑢 ൅ 𝑖𝑣ሿ ൌ ℒሾ𝑢ሿ ൅ 𝑖ℒሾ𝑣ሿ ൌ 0 ⇔ ൝
ℒሾ𝑢ሿ ൌ 0

&
ℒሾ𝑣ሿ ൌ 0
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NOTE:  

One approach to demonstrate the equivalence of ሾ𝑢଴ cosሺ𝜔𝑡ሻ ൅ ሺ𝑢ሶ ଴ 𝜔⁄ ሻ sinሺ𝜔𝑡ሻሿ with 
either 𝜌 sinሺ𝜔𝑡 ൅ 𝜑ሻ or 𝜌 cosሺ𝜔𝑡 െ 𝜓ሻ is the following: 

Let: 
𝑥ሺ𝑡ሻ ൌ 𝑋ଵ sinሺ𝜔𝑡ሻ ൅ 𝑋ଶ cosሺ𝜔𝑡ሻ

ൌ 𝑋 ൤
𝑋ଵ

𝑋
sinሺ𝜔𝑡ሻ ൅

𝑋ଶ

𝑋
cosሺ𝜔𝑡ሻ൨

ൌ 𝑋ሾcos 𝜑 sinሺ𝜔𝑡ሻ ൅ sin 𝜑 cosሺ𝜔𝑡ሻሿ
ൌ 𝑋 sinሺ𝜔𝑡 ൅ 𝜑ሻ

 

where: 

𝑋 ൌ ට𝑋ଵ
ଶ ൅ 𝑋ଶ

ଶ & 𝜑 ൌ tanିଵ ൬
𝑋ଶ

𝑋ଵ
൰ 

Notice that |𝑋ଵ 𝑋⁄ | ൑ 1 & |𝑋ଶ 𝑋⁄ | ൑ 1 and 𝑋ଶ ൌ 𝑋ଵ
ଶ ൅ 𝑋ଶ

ଶ. Therefore ሺ𝑋ଵ 𝑋⁄ ሻ & ሺ𝑋ଶ 𝑋⁄ ሻ qualify to 
be equal to the cosሺ∙ሻ & sinሺ∙ሻ, respectively, of the same angle 𝜑.  

 

 

Alternatively: 
𝑥ሺ𝑡ሻ ൌ 𝑋ଵ sinሺ𝜔𝑡ሻ ൅ 𝑋ଶ cosሺ𝜔𝑡ሻ

ൌ 𝑋 ൤
𝑋ଵ

𝑋
sinሺ𝜔𝑡ሻ ൅

𝑋ଶ

𝑋
cosሺ𝜔𝑡ሻ൨

ൌ 𝑋ሾsin 𝜓 sinሺ𝜔𝑡ሻ ൅ cos 𝜓 cosሺ𝜔𝑡ሻሿ
ൌ 𝑋 cosሺ𝜔𝑡 െ 𝜓ሻ

 

where: 

𝑋 ൌ ට𝑋ଵ
ଶ ൅ 𝑋ଶ

ଶ & 𝜓 ൌ tanିଵ ൬
𝑋ଵ

𝑋ଶ
൰ 

Notice that |𝑋ଵ 𝑋⁄ | ൑ 1 & |𝑋ଶ 𝑋⁄ | ൑ 1 and 𝑋ଶ ൌ 𝑋ଵ
ଶ ൅ 𝑋ଶ

ଶ. Therefore ሺ𝑋ଵ 𝑋⁄ ሻ & ሺ𝑋ଶ 𝑋⁄ ሻ qualify to 
be equal to the sinሺ∙ሻ & cosሺ∙ሻ, respectively, of the same angle 𝜓. 
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NOTE: 
Another approach of representing vibrations is by means of rotating vectors. 
Imagine a vector 𝑂𝐴തതതത (see FIGURE) of magnitude 𝑢଴ rotating counterclockwise with a 
constant angular velocity 𝜔 around a fixed point 𝑂. This angular velocity is what we 
call circular frequency of vibration. If at time 𝑡 ൌ 0 the vector coincides with the 𝑢-
axis, the angle which it makes with the same axis at any instant 𝑡 is equal to 𝜔𝑡. The 
projection 𝑂𝐴ᇱ of the vector on the 𝑢-axis is equal to 𝑢଴ cosሺ𝜔𝑡ሻ and represents the 
first term of the expression ሾ𝑢଴ cosሺ𝜔𝑡ሻ ൅ ሺ𝑢ሶ ଴ 𝜔⁄ ሻ sinሺ𝜔𝑡ሻሿ. To represent the second 
term of the abovementioned expression, i.e., ሺ𝑢ሶ ଴ 𝜔⁄ ሻ sinሺ𝜔𝑡ሻ ൌ ሺ𝑢ሶ ଴ 𝜔⁄ ሻ cosሾሺ𝜋 2⁄ ሻ െ

𝜔𝑡ሿ ൌ ሺ𝑢ሶ ଴ 𝜔⁄ ሻ cosሾ𝜔𝑡 െ ሺ𝜋 2⁄ ሻሿ, we take another vector 𝑂𝐵ሬሬሬሬሬ⃑  of magnitude ሺ𝑢ሶ ଴ 𝜔⁄ ሻ and 

perpendicular to vector 𝑂𝐴ሬሬሬሬሬ⃑ , as shown in the FIGURE. Evidently, the projection 𝑂𝐵ᇱ 

of vector 𝑂𝐵ሬሬሬሬሬ⃑  on the 𝑢-axis, gives the second term of the above expression. The total 
displacement given by the sum of the two terms of the above expression is obtained 
by adding the two projections, i.e., 𝑂𝐴ᇱ ൅ 𝑂𝐵ᇱ. The same result may be obtained by 

adding vectorially the vectors 𝑂𝐴ሬሬሬሬሬ⃑  & 𝑂𝐵ሬሬሬሬሬ⃑  to obtain vector 𝑂𝐶ሬሬሬሬሬ⃑  and taking its projection 

on the 𝑢-axis. Clearly, the magnitude of vector 𝑂𝐶ሬሬሬሬሬ⃑  is 𝜌 ൌ ඥ𝑢଴
ଶ ൅ ሺ𝑢ሶ ଴ 𝜔⁄ ሻଶ, and its 

projection 𝑂𝐶ᇱ on the 𝑢-axis is 𝜌 cosሺ𝜔𝑡 െ 𝜓ሻ. By now it should be evident that the 
result of the addition of two simple harmonic vibrations of the same 
circular frequency 𝜔, one proportional to cosሺ𝜔𝑡ሻ and the other proportional to 
sinሺ𝜔𝑡ሻ, is a simple harmonic vibration proportional to cosሺ𝜔𝑡 െ 𝜓ሻ. The 

maximum displacement of the vibrating mass is given by 𝜌 ൌ ඥ𝑢଴
ଶ ൅ ሺ𝑢ሶ ଴ 𝜔⁄ ሻଶ and is 

referred as amplitude of vibration. The angle 𝜓 is referred to as phase difference.     
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Phase Plane Diagram (or Poincaré Phase Plane) 

Displacement:  𝑢ሺ𝑡ሻ ൌ 𝜌 sinሺ𝜔𝑡 ൅ 𝜑ሻ 

Velocity:  𝑢ሶ ሺ𝑡ሻ ൌ 𝜌𝜔 cosሺ𝜔𝑡 ൅ 𝜑ሻ ⟹
௨ሶ ሺ௧ሻ

ఠ
ൌ 𝜌 cosሺ𝜔𝑡 ൅ 𝜑ሻ 

[Notice that ቀ
௨ሶ ሺ௧ሻ

ఠ
ቁ has dimensions of displacement.] 

 

Potential Energy: 
𝑉ሺ𝑡ሻ ൌ

ଵ

ଶ
𝑘𝑢ଶ

ൌ
ଵ

ଶ
𝑘𝜌ଶ sinଶሺ𝜔𝑡 ൅ 𝜑ሻ

 

Kinetic Energy: 

𝑇ሺ𝑡ሻ ൌ
ଵ

ଶ
𝑚𝑢ሶ ଶ

ൌ
ଵ

ଶ
𝑚𝜔ଶ𝜌ଶ cosଶሺ𝜔𝑡 ൅ 𝜑ሻ

ൌ⏟
ఠమୀ

ೖ
೘

ଵ

ଶ
𝑘𝜌ଶ cosଶሺ𝜔𝑡 ൅ 𝜑ሻ

 

Evidently:  𝑉ሺ𝑡ሻ ൅ 𝑇ሺ𝑡ሻ ൌ
ଵ

ଶ
𝑘𝜌ଶ  

∴  No energy is dissipated in a system undergoing free vibrations. 

 Circles (i.e., closed curves) in a phase plane diagram thus represent ‘constant-
energy’ states. 
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VISCOUSLY DAMPED FREE VIBRATIONS 

Equation of Motion:  𝑚𝑢ሷ ሺ𝑡ሻ ൅ 𝑐𝑢ሶ ሺ𝑡ሻ ൅ 𝑘𝑢ሺ𝑡ሻ ൌ 0 

Initial Conditions:  𝑢ሺ𝑡 ൌ 0ሻ ൌ 𝑢଴ , 𝑢ሶ ሺ𝑡 ൌ 0ሻ ൌ 𝑢ሶ ଴ 

Possible solution is of the form: 𝑢ሺ𝑡ሻ ൌ 𝐺𝑒ఒ௧ , ሺ𝐺 ് 0ሻ 

Substituting in the equation of motion: 

𝑚𝜆ଶ ൅ 𝑐𝜆 ൅ 𝑘 ൌ 0ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒊𝒔𝒕𝒊𝒄

𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏

⟹

⎩
⎪
⎨

⎪
⎧

𝜆ଵ ൌ െ
𝑐

2𝑚
൅ ඨቀ

𝑐
2𝑚

ቁ
ଶ

െ
𝑘
𝑚

𝜆ଶ ൌ െ
𝑐

2𝑚
െ ඨቀ

𝑐
2𝑚

ቁ
ଶ

െ
𝑘
𝑚
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Critically Damped System: ሺ𝝃 ൌ 𝟏ሻ 

When the discriminant Δ ൌ ൤ቀ ௖

ଶ௠
ቁ

ଶ
െ

௞

௠
൨ is zero: 

Then  Δ ൌ 0 ⟺ 𝑐 ൌ 𝑐௖௥ ൌ 2√𝑘𝑚 ൌ 2𝑚𝜔  

 𝜆ଵ,ଶ ൌ െ
௖

ଶ௠
ൌ െ𝜔  (The characteristic equation has a double root) 

∴  General solution:  𝑢ሺ𝑡ሻ ൌ ሺ𝐺ଵ ൅ 𝐺ଶ𝑡ሻ𝑒ିఠ௧ 

 Introducing the Initial Conditions: 

𝑢ሺ𝑡ሻ ൌ ሾ𝑢଴ ൅ ሺ𝑢ሶ ଴ ൅ 𝜔𝑢଴ሻ𝑡ሿ𝑒ିఠ௧  

The above solution represents non-oscillatory motion. 

 

NOTE: Mechanical Systems for which it is required that the system return to a zero-
displacement position in the least amount of time are designed to have critical 
damping (e.g., recoiling gun, weighing scale). 
 

Definition of Damping Ratio: 

𝜉 ൌ
𝑐

𝑐௖௥
ൌ

𝑐

2√𝑘𝑚
 

Then:  
௖

ଶ௠
ൌ

క௖೎ೝ

ଶ௠
ൌ 𝜉𝜔 

Therefore: 𝜆ଵ,ଶ ൌ െ𝜉𝜔 േ 𝜔ඥ𝜉ଶ െ 1 

For the critically damped case:  𝜉 ൌ 1 
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Over-damped System: ሺ𝝃 ൐ 𝟏ሻ 

Clearly: 
𝜆ଵ ൌ െ𝜉𝜔 ൅ 𝜔ඥ𝜉ଶ െ 1

𝜆ଶ ൌ െ𝜉𝜔 െ 𝜔ඥ𝜉ଶ െ 1
 

Let:  𝜔ഥ ൌ 𝜔ඥ𝜉ଶ െ 1  

Then:  𝑢ሺ𝑡ሻ ൌ 𝑒ିకఠ௧ሺ𝐺ଵ𝑒ఠഥ ௧ ൅ 𝐺ଶ𝑒ିఠഥ ௧ሻ  

Introducing the Initial Conditions, we obtain: 

𝐺ଵ ൌ
𝑢ሶ ଴ ൅ ሺ𝜉𝜔 ൅ 𝜔ഥሻ𝑢଴

2𝜔ഥ

𝐺ଶ ൌ
െ𝑢ሶ ଴ െ ሺ𝜉𝜔 െ 𝜔ഥሻ𝑢଴

2𝜔ഥ

 

Alternatively, the response may be expressed as: 

𝑢ሺ𝑡ሻ ൌ 𝑒ିకఠ௧ ൤𝑢଴ coshሺ𝜔ഥ𝑡ሻ ൅
𝑢ሶ ଴ ൅ 𝜉𝜔𝑢଴

𝜔ഥ
sinhሺ𝜔ഥ𝑡ሻ൨  

The above solution represents non-oscillatory motion. 

NOTE: Recall the definition of hyperbolic functions in terms of the exponential function: 

sinh 𝑥 ൌ
𝑒௫ െ 𝑒ି௫

2
cosh 𝑥 ൌ

𝑒௫ ൅ 𝑒ି௫

2
 

Over-damped Critically Damped 

 

NOTE: Certain recoil mechanisms (e.g., an automatic door closer) are designed to have 
over-damping. 
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Under-damped System:  ሺ𝝃 ൏ 𝟏ሻ 

Roots of the characteristic equation:  
𝜆ଵ ൌ െ𝜉𝜔 ൅ 𝑖𝜔ඥ1 െ 𝜉ଶ

𝜆ଶ ൌ െ𝜉𝜔 െ 𝑖𝜔ඥ1 െ 𝜉ଶ
 

Definition of Damped Circular Frequency:  𝜔ௗ ≝ 𝜔ඥ1 െ 𝜉ଶ   

The general solution may be written as: 

𝑢ሺ𝑡ሻ ൌ 𝑒ିకఠ௧൫𝐺ଵ𝑒௜ఠ೏௧ ൅ 𝐺ଶ𝑒ି௜ఠ೏௧൯ 
or 

𝑢ሺ𝑡ሻ ൌ 𝑒ିకఠ௧ሾ𝐴 cosሺ𝜔ௗ𝑡ሻ ൅ 𝐵 sinሺ𝜔ௗ𝑡ሻሿ 

Introducing the Initial Conditions, we obtain: 

𝑢ሺ𝑡ሻ ൌ 𝑒ିకఠ௧ ൤𝑢଴ cosሺ𝜔ௗ𝑡ሻ ൅
𝑢ሶ ଴ ൅ 𝜉𝜔𝑢଴

𝜔ௗ
sinሺ𝜔ௗ𝑡ሻ൨ 

Therefore: 

𝑢ሺ𝑡ሻ ൌ 𝑒ିకఠ௧ ൤𝑢଴ cosሺ𝜔ௗ𝑡ሻ ൅
𝑢ሶ ଴ ൅ 𝜉𝜔𝑢଴

𝜔ௗ
sinሺ𝜔ௗ𝑡ሻ൨ ൌ ቐ

𝜌𝑒ିకఠ௧ sinሺ𝜔ௗ𝑡 ൅ 𝜑ሻ
&

𝜌𝑒ିకఠ௧ cosሺ𝜔ௗ𝑡 െ 𝜓ሻ

where

⎩
⎪
⎨

⎪
⎧

𝜌 ൌ ඨ𝑢଴
ଶ ൅ ൬

𝑢ሶ ଴ ൅ 𝜉𝜔𝑢଴

𝜔ௗ
൰

ଶ

&

tan 𝜑 ൌ
𝑢଴𝜔ௗ

𝑢ሶ ଴ ൅ 𝜉𝜔𝑢଴

 

The above expression represents decaying oscillatory motion. 

 

NOTE: For 𝜉 ൌ 0 (i.e., 𝑐 ൌ 0) the solution reduces to undamped free vibrations. 
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NOTE:  

We have seen that we could describe undamped vibrations by making use of a rotating 
vector. Such a vector can be used also in the case of damped vibrations. Imagine a 

vector 𝑂𝐴ሬሬሬሬሬ⃑  of time-varying magnitude 𝑢଴𝑒െ𝜉𝜔𝑡 rotating with a constant angular velocity 𝜔ௗ 
(see FIGURE). Measuring the angle of rotation counterclockwise starting from the positive 

𝑢-axis, the projection 𝑂𝐴ᇱ of the vector 𝑂𝐴ሬሬሬሬሬ⃑  is equal to 𝑢଴𝑒ିకఠ௧ cosሺ𝜔ௗ𝑡ሻ and represents 

the first term of the response expression 𝑒ିకఠ௧ ቂ𝑢଴ cosሺ𝜔ௗ𝑡ሻ ൅
௨ሶ బାకఠ௨బ

ఠ೏
sinሺ𝜔ௗ𝑡ሻቃ. In the 

same manner, by taking a vector 𝑂𝐵ሬሬሬሬሬ⃑  of magnitude ௨ሶ బାకఠ௨బ

ఠ೏
𝑒ିకఠ௧ and perpendicular to 

vector 𝑂𝐴ሬሬሬሬሬ⃑  and projecting it on the 𝑢-axis we get the projection 𝑂𝐵ᇱ which is equal to 
௨ሶ బାకఠ௨బ

ఠ೏
𝑒ିకఠ௧ cosሾ𝜔ௗ𝑡 െ ሺ𝜋 2⁄ ሻሿ ൌ ௨ሶ బାకఠ௨బ

ఠ೏
𝑒ିకఠ௧ cosሾሺ𝜋 2⁄ ሻ െ 𝜔ௗ𝑡ሿ ൌ

௨ሶ బାకఠ௨బ

ఠ೏
𝑒ିకఠ௧ sinሺ𝜔ௗ𝑡ሻ 

and represents the second term of the response expression. Thus, the sum of the two 
projections, i.e., 𝑂𝐴ᇱ ൅ 𝑂𝐵ᇱ, represents the complete response. Therefore, the 

complete response is represented by the projection of vector 𝑂𝐶ሬሬሬሬሬ⃑  which results by 

summing the vectors 𝑂𝐴ሬሬሬሬሬ⃑  & 𝑂𝐵ሬሬሬሬሬ⃑ . Clearly, the magnitude of vector 𝑂𝐶ሬሬሬሬሬ⃑  is 𝜌𝑒ିకఠ௧ ൌ

ට𝑢଴
ଶ ൅ ቀ௨ሶ బାకఠ௨బ

ఠ೏
ቁ

ଶ
𝑒ିకఠ௧ and the response of the underdamped oscillator may be written as: 

𝑢ሺ𝑡ሻ ൌ 𝜌𝑒ିకఠ௧ cosሺ𝜔ௗ𝑡 െ 𝜓ሻ, where tan 𝜓 ൌ
௨ሶ బାకఠ௨బ

ఠ೏௨బ
.  

 

During the rotation of vector 𝑂𝐶ሬሬሬሬሬ⃑  the point 𝐶 describes a spiral. The spiral is referred to 
as equiangular spiral because the tangent (at point 𝐶) to the spiral makes a 

constant angle 𝜗் ൌ tanିଵሺെ𝜉ሻ, with the perpendicular to the radius vector 𝑂𝐶ሬሬሬሬሬ⃑  (see 
NOTE below for a proof). The points at which the envelopes 𝜌𝑒െ𝜉𝜔𝑡 & െ𝜌𝑒ିకఠ௧ touch 
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the response curve 𝑢ሺ𝑡ሻ ൌ 𝜌𝑒ିకఠ௧ cosሺ𝜔ௗ𝑡 െ 𝜓ሻ, occur at the instants when |cosሺ𝜔ௗ𝑡 െ 𝜓ሻ| ൌ
1, i.e., when the tangent to the spiral is perpendicular to the 𝑢-axis. Consequently, the points 
of tangency (i.e., points 𝑇ଵ, 𝑇ଶ, 𝑇ଷ, ⋯ shown in the FIGURE) lie on a line that passes through 

the origin and forms an angle 𝜗் ൌ tanିଵሺെ𝜉ሻ with the 𝑢-axis.  

The points of tangency, though, are not the points of local maxima. The points of local 
maxima (i.e., local peaks of the response displacement; points 𝑃ଵ, 𝑃ଶ, 𝑃ଷ, ⋯ shown in the 
FIGURE), are slightly ahead (in time) of the points of tangency and are located by setting the 
velocity equal to zero: 

𝑢ሺ𝑡ሻ ൌ 𝜌𝑒െ𝜉𝜔𝑡 cosሺ𝜔𝑑𝑡 െ 𝜓ሻ ⇒ 𝑢ሶ ሺ𝑡ሻ ൌ െ𝜉𝜔𝜌𝑒െ𝜉𝜔𝑡 cosሺ𝜔𝑑𝑡 െ 𝜓ሻ െ 𝜔𝑑𝜌𝑒െ𝜉𝜔𝑡 sinሺ𝜔𝑑𝑡 െ 𝜓ሻ 

Therefore, 

𝑢ሶ ሺ𝑡ሻ ൌ 0 ⇒ tanሺ𝜔𝑑𝑡 െ 𝜓ሻ ൌ െ ቆ𝜉 ට1 െ 𝜉ଶൗ ቇ 

Indeed, this suggests that the local peaks of the response lie on a line passing through 

the origin and forming an angle 𝜗௉ ൌ tanିଵ ቀെ 𝜉 ඥ1 െ 𝜉ଶ⁄ ቁ with the 𝑢-axis that (in 

absolute value) is slightly larger than |𝜗்|, i.e., |𝜗்| ൏ |𝜗௉|. 
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NOTE: Logarithmic or Exponential or Equiangular Spiral 

 

Equation of Exponential Spiral: 𝑟 ൌ 𝜌𝑒ିకఠ௧ ൌ 𝜌𝑒ିకఏ  
 

The shape of the spiral depends on 𝝃 only. For a given value of 𝝃 a spiral has to be 
drawn only once. 

Using the drawing as a template, the spiral can be transferred to the phase-plane diagram by 
selecting the required value of 𝒓 on the spiral. 

Let 𝝑𝑻 be the angle that is formed by the tangent at a point on the spiral and by the 
perpendicular to the polar radius 𝒓 at that point. Specifically, let us consider a point 𝐴 
on the spiral and let us draw a perpendicular to the polar radius 𝑂𝐴 at point 𝐴. Then, let us 
consider another point 𝐵 on the spiral, adjacent to point 𝐴. As point 𝐵 moves towards point 𝐴 
line 𝐴𝐵 tends to become tangent to the spiral at point 𝐴. Thus, at the limit, as point 𝐵 tends 

to point 𝐴, the angle 𝐵𝐴𝐶෣  tends to the aforementioned angle 𝝑𝑻, point 𝐶 tends to point 𝐴, the 

angle 𝐵𝐶𝐴෣ tends to ሺ𝜋 2⁄ ሻ, and the triangle △ ሺ𝐵𝐶𝐴ሻ tends to become an orthogonal triangle. 
Therefore, 

tan൫𝐵𝐴𝐶෣൯ ≅
𝐶𝐵
𝐴𝐶

ൌ
∆𝑟

𝑟 ∙ ∆𝜃
ൌ

ሺ∆𝑟 ∆𝜃⁄ ሻ

𝑟
⇒ tan 𝜗் ൌ lim

஻→஺
ൣtan൫𝐵𝐴𝐶෣൯൧ ൌ

limሺ∆𝑟 ∆𝜃⁄ ሻ

𝑟
ൌ

ሺ𝑑𝑟 𝑑𝜃⁄ ሻ

𝑟
 

Therefore:  

tan 𝜗் ൌ
ሺ𝑑𝑟 𝑑𝜃⁄ ሻ

𝑟
ൌ

െ𝜉𝜌𝑒ିకఏ

𝜌𝑒ିకఏ ൌ െ𝜉 

NOTE: This is why the exponential spiral is called sometimes ‘equiangular’ spiral. 

HISTORICAL NOTE: The investigation of Spirals began at least with the ancient Greeks. 
The famous Equiangular Spiral was discovered by DESCARTES, its properties of self-
reproduction by James (Jacob) BERNOULLI (1654-1705) who requested that the curve 
be engraved upon his tomb with the phrase "Eadem mutata resurgo" ("I shall arise the 
same, though changed"). 

YATES, R. C. (1952). Curves and Their Properties. THE NATIONAL COUNCIL OF TEACHERS OF 
MATHEMATICS 

 


