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VISCOUSLY DAMPED 1-DOF SYSTEM 

 

Equation of Motion: 

𝑚𝑢 𝑡 𝑐𝑢 𝑡 𝑘𝑢 𝑡 𝑃 𝑡  

Initial Conditions: 

𝑢 𝑡 0 𝑢 , 𝑢 𝑡 0 𝑢  

 

Complete Solution: 

𝑢 𝑡 𝑢 𝑡 𝑢 𝑡  

where: 𝑢 𝑡  homogeneous or complementary solution 

  𝑢 𝑡  particular solution 

 

REFERENCE: 

BOYCE, W.E. and R.C. Di PRIMA (1970). Introduction to Differential Equations, John Wiley & Sons, Inc. 
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UNDAMPED FREE VIBRATION 

Equation of Motion:  𝑚𝑢 𝑡 𝑘𝑢 𝑡 0 

Initial Conditions:  𝑢 𝑡 0 𝑢 , 𝑢 𝑡 0 𝑢  

Potentially, a solution is of the form: 𝑢 𝑡 𝐺𝑒  

[𝐺 0 for non-trivial solution, i.e., for non-zero motion; 𝐺 is in general complex-valued.] 

Substituting in the equation of motion: 

𝑚𝐺𝜆 𝑒 𝑘𝐺𝑒 0 ⟺ 𝐺𝑒 𝑚𝜆 𝑘 0
𝑚𝜆 𝑘 0
𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒊𝒔𝒕𝒊𝒄

𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏

⟺ 𝜆 𝑖𝜔  

where:  𝜔 ≝  

∴ General solution of homogeneous equation: 
𝑢 𝑡 𝐺 𝑒 𝐺 𝑒  

or (see NOTE below) 
𝑢 𝑡 𝐴 cos 𝜔𝑡 𝐵 sin 𝜔𝑡  

NOTE: Recall Euler’s formula: 

𝑒 cos 𝑥 𝑖 sin 𝑥 ⟹ cos 𝑥
𝑒 𝑒

2
sin 𝑥

𝑒 𝑒
2𝑖

 

Introducing the initial conditions: 

𝑢 𝑡 𝑢 cos 𝜔𝑡
𝑢
𝜔

sin 𝜔𝑡
𝜌 sin 𝜔𝑡 𝜑

or
𝜌 cos 𝜔𝑡 𝜓

where: 𝜌 𝑢
𝑢
𝜔

&

⎩
⎨

⎧tan 𝜑
𝑢

𝑢 𝜔⁄

tan 𝜓
𝑢 𝜔⁄

𝑢

 

 

Clearly, an oscillatory/harmonic response with: 

Period 𝑇
2𝜋
𝜔

sec  

Natural (circular) frequency 𝜔
rad
sec

 

Natural (cyclic) frequency 𝑓
𝜔
2𝜋

1
𝑇

Hz
cycles

sec
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NOTE: 

THEOREM: 
Consider the second-order linear ordinary differential equation, 

ℒ 𝑦 𝑦 𝑝 𝑡 𝑦 𝑞 𝑡 𝑦 0 

where 𝑝 𝑡  and 𝑞 𝑡  are continuous real-valued functions. If 𝑦 𝑡 𝑢 𝑡 𝑖𝑣 𝑡  is a 
complex-valued solution of the differential equation, then the real part 𝑢 𝑡  and 
the imaginary part 𝑣 𝑡  are also solutions of this equation. 

 

PROOF: 

We substitute 𝑢 𝑡 𝑖𝑣 𝑡  for 𝑦 in ℒ 𝑦 , obtaining 

ℒ 𝑦 𝑢 𝑡 𝑖𝑣 𝑡 𝑝 𝑡 𝑢 𝑡 𝑖𝑣 𝑡 𝑞 𝑡 𝑢 𝑡 𝑖𝑣 𝑡

𝑢 𝑡 𝑖𝑣 𝑡 𝑝 𝑡 𝑢 𝑡 𝑖𝑣 𝑡 𝑞 𝑡 𝑢 𝑡 𝑖𝑣 𝑡
𝑢 𝑝 𝑡 𝑢 𝑞 𝑡 𝑢 𝑖 𝑣 𝑝 𝑡 𝑣 𝑞 𝑡 𝑣

ℒ 𝑢 𝑖ℒ 𝑣

 

Recall that a complex number is zero if and only if its real and imaginary parts are 
both zero. Therefore, 

ℒ 𝑦 ℒ 𝑢 𝑖𝑣 ℒ 𝑢 𝑖ℒ 𝑣 0 ⇔
ℒ 𝑢 0

&
ℒ 𝑣 0
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NOTE:  

One approach to demonstrate the equivalence of 𝑢 cos 𝜔𝑡 𝑢 𝜔⁄ sin 𝜔𝑡  with 
either 𝜌 sin 𝜔𝑡 𝜑  or 𝜌 cos 𝜔𝑡 𝜓  is the following: 

Let: 
𝑥 𝑡 𝑋 sin 𝜔𝑡 𝑋 cos 𝜔𝑡

𝑋
𝑋
𝑋

sin 𝜔𝑡
𝑋
𝑋

cos 𝜔𝑡

𝑋 cos 𝜑 sin 𝜔𝑡 sin 𝜑 cos 𝜔𝑡
𝑋 sin 𝜔𝑡 𝜑

 

where: 

𝑋 𝑋 𝑋 & 𝜑 tan
𝑋
𝑋

 

Notice that |𝑋 𝑋⁄ | 1 & |𝑋 𝑋⁄ | 1 and 𝑋 𝑋 𝑋 . Therefore 𝑋 𝑋⁄  & 𝑋 𝑋⁄  qualify to 
be equal to the cos ∙  & sin ∙ , respectively, of the same angle 𝜑.  

 

 

Alternatively: 
𝑥 𝑡 𝑋 sin 𝜔𝑡 𝑋 cos 𝜔𝑡

𝑋
𝑋
𝑋

sin 𝜔𝑡
𝑋
𝑋

cos 𝜔𝑡

𝑋 sin 𝜓 sin 𝜔𝑡 cos 𝜓 cos 𝜔𝑡
𝑋 cos 𝜔𝑡 𝜓

 

where: 

𝑋 𝑋 𝑋 & 𝜓 tan
𝑋
𝑋

 

Notice that |𝑋 𝑋⁄ | 1 & |𝑋 𝑋⁄ | 1 and 𝑋 𝑋 𝑋 . Therefore 𝑋 𝑋⁄  & 𝑋 𝑋⁄  qualify to 
be equal to the sin ∙  & cos ∙ , respectively, of the same angle 𝜓. 
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NOTE: 
Another approach of representing vibrations is by means of rotating vectors. 
Imagine a vector 𝑂𝐴 (see FIGURE) of magnitude 𝑢  rotating counterclockwise with a 
constant angular velocity 𝜔 around a fixed point 𝑂. This angular velocity is what we 
call circular frequency of vibration. If at time 𝑡 0 the vector coincides with the 𝑢-
axis, the angle which it makes with the same axis at any instant 𝑡 is equal to 𝜔𝑡. The 
projection 𝑂𝐴  of the vector on the 𝑢-axis is equal to 𝑢 cos 𝜔𝑡  and represents the 
first term of the expression 𝑢 cos 𝜔𝑡 𝑢 𝜔⁄ sin 𝜔𝑡 . To represent the second 
term of the abovementioned expression, i.e., 𝑢 𝜔⁄ sin 𝜔𝑡 𝑢 𝜔⁄ cos 𝜋 2⁄

𝜔𝑡 𝑢 𝜔⁄ cos 𝜔𝑡 𝜋 2⁄ , we take another vector 𝑂𝐵 of magnitude 𝑢 𝜔⁄  and 

perpendicular to vector 𝑂𝐴, as shown in the FIGURE. Evidently, the projection 𝑂𝐵  

of vector 𝑂𝐵 on the 𝑢-axis, gives the second term of the above expression. The total 
displacement given by the sum of the two terms of the above expression is obtained 
by adding the two projections, i.e., 𝑂𝐴 𝑂𝐵 . The same result may be obtained by 

adding vectorially the vectors 𝑂𝐴 & 𝑂𝐵 to obtain vector 𝑂𝐶 and taking its projection 

on the 𝑢-axis. Clearly, the magnitude of vector 𝑂𝐶 is 𝜌 𝑢 𝑢 𝜔⁄ , and its 
projection 𝑂𝐶  on the 𝑢-axis is 𝜌 cos 𝜔𝑡 𝜓 . By now it should be evident that the 
result of the addition of two simple harmonic vibrations of the same 
circular frequency 𝜔, one proportional to cos 𝜔𝑡  and the other proportional to 
sin 𝜔𝑡 , is a simple harmonic vibration proportional to cos 𝜔𝑡 𝜓 . The 

maximum displacement of the vibrating mass is given by 𝜌 𝑢 𝑢 𝜔⁄  and is 
referred as amplitude of vibration. The angle 𝜓 is referred to as phase difference.     
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Phase Plane Diagram (or Poincaré Phase Plane) 

Displacement:  𝑢 𝑡 𝜌 sin 𝜔𝑡 𝜑  

Velocity:  𝑢 𝑡 𝜌𝜔 cos 𝜔𝑡 𝜑 ⟹ 𝜌 cos 𝜔𝑡 𝜑  

[Notice that  has dimensions of displacement.] 

 

Potential Energy: 
𝑉 𝑡 𝑘𝑢

𝑘𝜌 sin 𝜔𝑡 𝜑
 

Kinetic Energy: 

𝑇 𝑡 𝑚𝑢

𝑚𝜔 𝜌 cos 𝜔𝑡 𝜑

⏟ 𝑘𝜌 cos 𝜔𝑡 𝜑
 

Evidently:  𝑉 𝑡 𝑇 𝑡 𝑘𝜌  

∴  No energy is dissipated in a system undergoing free vibrations. 

 Circles (i.e., closed curves) in a phase plane diagram thus represent ‘constant-
energy’ states. 
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VISCOUSLY DAMPED FREE VIBRATIONS 

Equation of Motion:  𝑚𝑢 𝑡 𝑐𝑢 𝑡 𝑘𝑢 𝑡 0 

Initial Conditions:  𝑢 𝑡 0 𝑢 , 𝑢 𝑡 0 𝑢  

Possible solution is of the form: 𝑢 𝑡 𝐺𝑒  , 𝐺 0  

Substituting in the equation of motion: 

𝑚𝜆 𝑐𝜆 𝑘 0
𝒄𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒊𝒔𝒕𝒊𝒄

𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏

⟹

⎩
⎪
⎨

⎪
⎧

𝜆
𝑐

2𝑚
𝑐

2𝑚
𝑘
𝑚

𝜆
𝑐

2𝑚
𝑐

2𝑚
𝑘
𝑚

 

  



Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 8 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(01):	VISCUOUSLY	DAMPED	SDOF	SYSTEM 

 

Critically Damped System: 𝝃 𝟏  

When the discriminant Δ  is zero: 

Then  Δ 0 ⟺ 𝑐 𝑐 2√𝑘𝑚 2𝑚𝜔  

 𝜆 , 𝜔  (The characteristic equation has a double root) 

∴  General solution:  𝑢 𝑡 𝐺 𝐺 𝑡 𝑒  

 Introducing the Initial Conditions: 

𝑢 𝑡 𝑢 𝑢 𝜔𝑢 𝑡 𝑒  

The above solution represents non-oscillatory motion. 

 

NOTE: Mechanical Systems for which it is required that the system return to a zero-
displacement position in the least amount of time are designed to have critical 
damping (e.g., recoiling gun, weighing scale). 
 

Definition of Damping Ratio: 

𝜉
𝑐

𝑐
𝑐

2√𝑘𝑚
 

Then:  𝜉𝜔 

Therefore: 𝜆 , 𝜉𝜔 𝜔 𝜉 1 

For the critically damped case:  𝜉 1 
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Over-damped System: 𝝃 𝟏  

Clearly: 
𝜆 𝜉𝜔 𝜔 𝜉 1

𝜆 𝜉𝜔 𝜔 𝜉 1
 

Let:  𝜔 𝜔 𝜉 1  

Then:  𝑢 𝑡 𝑒 𝐺 𝑒 𝐺 𝑒  

Introducing the Initial Conditions, we obtain: 

𝐺
𝑢 𝜉𝜔 𝜔 𝑢

2𝜔

𝐺
𝑢 𝜉𝜔 𝜔 𝑢

2𝜔

 

Alternatively, the response may be expressed as: 

𝑢 𝑡 𝑒 𝑢 cosh 𝜔𝑡
𝑢 𝜉𝜔𝑢

𝜔
sinh 𝜔𝑡  

The above solution represents non-oscillatory motion. 

NOTE: Recall the definition of hyperbolic functions in terms of the exponential function: 

sinh 𝑥
𝑒 𝑒

2
cosh 𝑥

𝑒 𝑒
2

 

Over-damped Critically Damped 

 

NOTE: Certain recoil mechanisms (e.g., an automatic door closer) are designed to have 
over-damping. 
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Under-damped System:  𝝃 𝟏  

Roots of the characteristic equation:  
𝜆 𝜉𝜔 𝑖𝜔 1 𝜉

𝜆 𝜉𝜔 𝑖𝜔 1 𝜉
 

Definition of Damped Circular Frequency:  𝜔 ≝ 𝜔 1 𝜉   

The general solution may be written as: 

𝑢 𝑡 𝑒 𝐺 𝑒 𝐺 𝑒  
or 

𝑢 𝑡 𝑒 𝐴 cos 𝜔 𝑡 𝐵 sin 𝜔 𝑡  

Introducing the Initial Conditions, we obtain: 

𝑢 𝑡 𝑒 𝑢 cos 𝜔 𝑡
𝑢 𝜉𝜔𝑢

𝜔
sin 𝜔 𝑡  

Therefore: 

𝑢 𝑡 𝑒 𝑢 cos 𝜔 𝑡
𝑢 𝜉𝜔𝑢

𝜔
sin 𝜔 𝑡

𝜌𝑒 sin 𝜔 𝑡 𝜑
&

𝜌𝑒 cos 𝜔 𝑡 𝜓

where

⎩
⎪
⎨

⎪
⎧

𝜌 𝑢
𝑢 𝜉𝜔𝑢

𝜔

&

tan 𝜑
𝑢 𝜔

𝑢 𝜉𝜔𝑢

 

The above expression represents decaying oscillatory motion. 

 

NOTE: For 𝜉 0 (i.e., 𝑐 0) the solution reduces to undamped free vibrations. 
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NOTE:  

We have seen that we could describe undamped vibrations by making use of a rotating 
vector. Such a vector can be used also in the case of damped vibrations. Imagine a 

vector 𝑂𝐴 of time-varying magnitude 𝑢 𝑒 𝜉𝜔𝑡 rotating with a constant angular velocity 𝜔  
(see FIGURE). Measuring the angle of rotation counterclockwise starting from the positive 

𝑢-axis, the projection 𝑂𝐴  of the vector 𝑂𝐴 is equal to 𝑢 𝑒 cos 𝜔 𝑡  and represents 

the first term of the response expression 𝑒 𝑢 cos 𝜔 𝑡 sin 𝜔 𝑡 . In the 

same manner, by taking a vector 𝑂𝐵 of magnitude 𝑒  and perpendicular to 

vector 𝑂𝐴 and projecting it on the 𝑢-axis we get the projection 𝑂𝐵  which is equal to 

𝑒 cos 𝜔 𝑡 𝜋 2⁄ 𝑒 cos 𝜋 2⁄ 𝜔 𝑡 𝑒 sin 𝜔 𝑡  

and represents the second term of the response expression. Thus, the sum of the two 
projections, i.e., 𝑂𝐴 𝑂𝐵 , represents the complete response. Therefore, the 

complete response is represented by the projection of vector 𝑂𝐶 which results by 

summing the vectors 𝑂𝐴 & 𝑂𝐵. Clearly, the magnitude of vector 𝑂𝐶 is 𝜌𝑒

𝑢 𝑒  and the response of the underdamped oscillator may be written as: 

𝑢 𝑡 𝜌𝑒 cos 𝜔 𝑡 𝜓 , where tan 𝜓 .  

 

During the rotation of vector 𝑂𝐶 the point 𝐶 describes a spiral. The spiral is referred to 
as equiangular spiral because the tangent (at point 𝐶) to the spiral makes a 

constant angle 𝜗 tan 𝜉 , with the perpendicular to the radius vector 𝑂𝐶 (see 
NOTE below for a proof). The points at which the envelopes 𝜌𝑒 𝜉𝜔𝑡 & 𝜌𝑒  touch 
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the response curve 𝑢 𝑡 𝜌𝑒 cos 𝜔 𝑡 𝜓 , occur at the instants when |cos 𝜔 𝑡 𝜓 |
1, i.e., when the tangent to the spiral is perpendicular to the 𝑢-axis. Consequently, the points 
of tangency (i.e., points 𝑇 , 𝑇 , 𝑇 , ⋯ shown in the FIGURE) lie on a line that passes through 

the origin and forms an angle 𝜗 tan 𝜉  with the 𝑢-axis.  

The points of tangency, though, are not the points of local maxima. The points of local 
maxima (i.e., local peaks of the response displacement; points 𝑃 , 𝑃 , 𝑃 , ⋯ shown in the 
FIGURE), are slightly ahead (in time) of the points of tangency and are located by setting the 
velocity equal to zero: 

𝑢 𝑡 𝜌𝑒 𝜉𝜔𝑡 cos 𝜔𝑑𝑡 𝜓 ⇒ 𝑢 𝑡 𝜉𝜔𝜌𝑒 𝜉𝜔𝑡 cos 𝜔𝑑𝑡 𝜓 𝜔𝑑𝜌𝑒 𝜉𝜔𝑡 sin 𝜔𝑑𝑡 𝜓  

Therefore, 

𝑢 𝑡 0 ⇒ tan 𝜔𝑑𝑡 𝜓 𝜉 1 𝜉  

Indeed, this suggests that the local peaks of the response lie on a line passing through 

the origin and forming an angle 𝜗 tan 𝜉 1 𝜉⁄  with the 𝑢-axis that (in 

absolute value) is slightly larger than |𝜗 |, i.e., |𝜗 | |𝜗 |. 
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NOTE: Logarithmic or Exponential or Equiangular Spiral 

 

Equation of Exponential Spiral: 𝑟 𝜌𝑒 𝜌𝑒  
 

The shape of the spiral depends on 𝝃 only. For a given value of 𝝃 a spiral has to be 
drawn only once. 

Using the drawing as a template, the spiral can be transferred to the phase-plane diagram by 
selecting the required value of 𝒓 on the spiral. 

Let 𝝑𝑻 be the angle that is formed by the tangent at a point on the spiral and by the 
perpendicular to the polar radius 𝒓 at that point. Specifically, let us consider a point 𝐴 
on the spiral and let us draw a perpendicular to the polar radius 𝑂𝐴 at point 𝐴. Then, let us 
consider another point 𝐵 on the spiral, adjacent to point 𝐴. As point 𝐵 moves towards point 𝐴 
line 𝐴𝐵 tends to become tangent to the spiral at point 𝐴. Thus, at the limit, as point 𝐵 tends 

to point 𝐴, the angle 𝐵𝐴𝐶 tends to the aforementioned angle 𝝑𝑻, point 𝐶 tends to point 𝐴, the 

angle 𝐵𝐶𝐴 tends to 𝜋 2⁄ , and the triangle △ 𝐵𝐶𝐴  tends to become an orthogonal triangle. 
Therefore, 

tan 𝐵𝐴𝐶 ≅
𝐶𝐵
𝐴𝐶

∆𝑟
𝑟 ∙ ∆𝜃

∆𝑟 ∆𝜃⁄

𝑟
⇒ tan 𝜗 lim

→
tan 𝐵𝐴𝐶

lim ∆𝑟 ∆𝜃⁄

𝑟

𝑑𝑟 𝑑𝜃⁄

𝑟
 

Therefore:  

tan 𝜗
𝑑𝑟 𝑑𝜃⁄

𝑟
𝜉𝜌𝑒
𝜌𝑒

𝜉 

NOTE: This is why the exponential spiral is called sometimes ‘equiangular’ spiral. 

HISTORICAL NOTE: The investigation of Spirals began at least with the ancient Greeks. 
The famous Equiangular Spiral was discovered by DESCARTES, its properties of self-
reproduction by James (Jacob) BERNOULLI (1654-1705) who requested that the curve 
be engraved upon his tomb with the phrase "Eadem mutata resurgo" ("I shall arise the 
same, though changed"). 
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