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VISCOUSLY DAMPED 1-DOF SYSTEM

Equation of Motion:
mi(t) + cu(t) + ku(t) = P(t)
Initial Conditions:

ut=0=u, , ult=0)=nu,

Complete Solution:
u(t) = uy(t) +up(t)
where: uy (t) = homogeneous or complementary solution

up(t) = particular solution

REFERENCE:

BOYCE, W.E. and R.C. Di PRIMA (1970). Introduction to Differential Equations, John Wiley & Sons, Inc.
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UNDAMPED FREE VIBRATION

Equation of Motion: mii(t) + ku(t) =0

Initial Conditions: ult=0=u, , ult=0)=nu,

Potentially, a solution is of the form: u(t) = Ge?t
[G # 0 for non-trivial solution, i.e., for non-zero motion; G is in general complex-valued.]

Substituting in the equation of motion:

1
mGA2eM + kGeM =0 & GeM(mA2+k)=0 4, X‘Iﬂ'
mA2+k=0 = 1= +iw S

NS S
characteristic
equation

/k
where: w¥® [—
m

~ General solution of homogeneous equation:
u(t) = G e't + G,e~ @t

or (see NOTE below)
u(t) = A cos(wt) + B sin(wt)

NOTE: Recall Euler’s formula:
i . e+ix + e—ix . e+ix _ e—ix
e— = Cosxi I1SInx = COSX =# Sin x =T
l

Introducing the initial conditions:

i p sin(wt + @)
0 .
u(t) = U, cos(wt) + —sin(wt) = or
@ p cos(wt — )
t o
an@Q = -———
where: (/)
' (o /w)
tany = ——
Ug
Clearly, an oscillatory/harmonic response with:
. 2T
Period T = — [sec]
W
. rad
Natural (circular) frequency ) [—]
sec

B B _cycles
Natural (cyclic) frequency f= 2T T [ 2= sec ]
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NOTE:

THEOREM:
Consider the second-order linear ordinary differential equation,

Lly] = y"+p@®y +q@®)y = 0

where p(t) and g(t) are continuous real-valued functions. If y(t) = u(t) + iv(t) isa
complex-valued solution of the differential equation, then the real part u(t) and
the imaginary part v(t) are also solutions of this equation.

PROOF:

We substitute u(t) + iv(t) for y in L[y], obtaining

(w(®) + iv(®)" +p)(u(t) + iv()) + q®)(u(t) + iv(t))
= uW®O+w"'®)+p@®WQ® +iv'©®)q®)(u®) + ivD))
[u” +p@Ou’ + q@®u] + i[v" + p(O)v" + q(t)v]

Llu] + iL[v]

L[y]

Recall that a complex number is zero if and only if its real and imaginary parts are
both zero. Therefore,

L[u]
Lly] =Llu+iv] =Llu]+iL[v] =0 & &
L[v]

0
0
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NOTE:

One approach to demonstrate the equivalence of [u, cos(wt) + (11y/w) sin(wt)] with
either p sin(wt + @) or p cos(wt — ) is the following:

Let:
x(t) = X; sin(wt) + X, cos(wt)
X X
= X [71 sin(wt) + 72 cos(wt)]
= X[cos ¢ sin(wt) + sin ¢ cos(wt)]
X sin(wt + @)
where:

X
X = fX12+X22 & ¢=tan"? (—2)
X1

Notice that |X;/X| < 1 & |X,/X| < 1and X? = X? + X2. Therefore (X;/X) & (X,/X) qualify to
be equal to the cos(+) & sin(+), respectively, of the same angle ¢.

Alternatively:
x(t) = X; sin(wt) + X, cos(wt)

X [% sin(wt) + % cos(wt)]
X[siny sin(wt) + cosy cos(wt)]

X cos(wt — )

X
X= |X?+x? & =tan"! (—1)
X2

Notice that |X;/X| < 1 & |X,/X| < 1and X% = X? + X2. Therefore (X;/X) & (X,/X) qualify to
be equal to the sin(-) & cos(+), respectively, of the same angle .

where:
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NOTE:

Another approach of representing vibrations is by means of rotating vectors.
Imagine a vector OA (see FIGURE) of magnitude u, rotating counterclockwise with a
constant angular velocity w around a fixed point 0. This angular velocity is what we
call circular frequency of vibration. If at time t = 0 the vector coincides with the u-
axis, the angle which it makes with the same axis at any instant t is equal to wt. The
projection OA' of the vector on the u-axis is equal to u, cos(wt) and represents the
first term of the expression [u, cos(wt) + (1 /w) sin(wt)]. To represent the second
term of the abovementioned expression, i.e., (i,/w) sin(wt) = (tty/w) cos[(m/2) —
wt] = (1iy/w) cos[wt — (r/2)], we take another vector OB of magnitude (it,/w) and
perpendicular to vector 04, as shown in the FIGURE. Evidently, the projection OB’
of vector OB on the u-axis, gives the second term of the above expression. The total
displacement given by the sum of the two terms of the above expression is obtained
by adding the two projections, i.e., 0A" + OB’. The same result may be obtained by
adding vectorially the vectors 0A & OB to obtain vector OC and taking its projection

on the u-axis. Clearly, the magnitude of vector 0C is p = Juj + (1y/w)?, and its
projection OC' on the u-axis is p cos(wt — ). By now it should be evident that the
result of the addition of two simple harmonic vibrations of the same
circular frequency w, one proportional to cos(wt) and the other proportional to
sin(wt), is a simple harmonic vibration proportional to cos(wt — ). The

maximum displacement of the vibrating mass is given by p = \/u3 + (1,/w)? and is
referred as amplitude of vibration. The angle i is referred to as phase difference.

. n g
Uy

w
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Phase Plane Diagram (or Poincaré Phase Plane)

Displacement: u(t) = psin(wt + @)

Velocity: u(t) = pwcos(wt + ) = ? = p cos(wt + ¢)

[Notice that (u(t)) has dimensions of displacement.]

w

f\ |
o
<
/t
gl
Displacement, u
f— & <
ST
-
n
e |y
ely
&
B NS S
=
)
oY

€le.

) l"
VYV
[@) [@]
77 7
(a)

Vi) = %kuz

Potential Energy: 1
= Ekp2 sin?(wt + @)

T(t) %muz
- 1 22 .2
Kinetic Energy: = ;mwp®cos(wt + @)
%kp2 cos?(wt + @)

Ll

3=

Evidently: V(t) +T(t) = >kp?

No energy is dissipated in a system undergoing free vibrations.

Circles (i.e., closed curves) in a phase plane diagram thus represent ‘constant-
energy’ states.
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VISCOUSLY DAMPED FREE VIBRATIONS

Equation of Motion: mii(t) + cu(t) + ku(t) =0
Initial Conditions: ult=0=u, , ult=0)=nu,
Possible solution is of the form: u(t) = Gett, (G #0)

Substituting in the equation of motion:

mP+cl+k=0 = A

characteristic
equation —
q /12 =
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Critically Damped System: (§ = 1)

L c\? k]. )
When the discriminant A = (—) — —| is zero:

2m

Then A=0 & |c=c, =2Vkm=2mw

g = - =—w (The characteristic equation has a double root)
’ 2m

General solution: u(t) = (G, + Gyt)e ¢

Introducing the Initial Conditions:
u(t) = [ug + (g + wuy)tle @t

The above solution represents non-oscillatory motion.
u(t) w(t=0)>0

u(t=0)=0

u(t=0)<o0

u(t=0)

0] \/- ;

NOTE: Mechanical Systems for which it is required that the system return to a zero-
displacement position in the least amount of time are designed to have critical
damping (e.g., recoiling gun, weighing scale).

Definition of Damping Ratio:

Then: i=&=§w

2m 2m

Therefore: Mo =—¢wtwyé?-1

For the critically damped case: ¢=1

underdamped overdamped

N

5 -
s =4 g =1 ()
undamped critically damped
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Over-damped System: (§ > 1)

M=—¢w+w/E*—-1

Clearly:
R T N
Let: w=wé* -1
Then: u(t) = e $9(G,e®t + G,e~ )

Introducing the Initial Conditions, we obtain:

c Uy + Cw + ®)u,
v 20
C. = —ty — (§w — @)ug
8 20
Alternatively, the response may be expressed as:
Uy + wu

u(t) = e=$t |u, cosh(at) + 0 sinh(at)]

The above solution represents non-oscillatory motion.

NOTE: Recall the definition of hyperbolic functions in terms of the exponential function:

inh _ex—e"‘ b _ex+e‘x
sinnx = 2 coshx = 2
Over-damped Critically Damped

Vo

o
=)

Displacement, u
Displacemoent, u

NOTE: Certain recoil mechanisms (e.g., an automatic door closer) are designed to have
over-damping.
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Under-damped System: (§ < 1)
M=o+ ia)\/l——.f2
Ay, = —éw — w1 — &2

Definition of Damped Circular Frequency: Wy & w1-—¢&2

Roots of the characteristic equation:

The general solution may be written as:

u(t) = e$@t(G,e'?at + G e~iwat)
or
u(t) = e ¥t [A cos(wyt) + B sin(wyt)]

Introducing the Initial Conditions, we obtain:

u(t) = e~$ot [uo cos(wyt) + msin(wdt)]
Wq
Therefore:
—f(x)t .
U+ Eou pe sin(wyt + @)
u(t) = efot [uo cos(wgyt) + usin(a)dt)] = &
@a pe ¢t cos(wyt — )
p
2 il,o + f(l)uO 2
- farerien
h ! “
where
&
¢ UgWq
ang = ————
¢ Ug + Ewuy

The above expression represents decaying oscillatory motion.

NOTE: For ¢ = 0 (i.e., ¢ = 0) the solution reduces to undamped free vibrations.
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NOTE:

We have seen that we could describe undamped vibrations by making use of a rotating
vector. Such a vector can be used also in the case of damped vibrations. Imagine a

vector 04 of time-varying magnitude uye~“* rotating with a constant angular velocity w4
(see FIGURE). Measuring the angle of rotation counterclockwise starting from the positive
u-axis, the projection 0A’ of the vector 0A is equal to uge~¢“t cos(wyt) and represents

the first term of the response expression et [uo cos(wgyt) +

msin(oodt)]. In the

wq

same manner, by taking a vector OB of magnitude @e‘f“’t and perpendicular to
d

vector 04 and projecting it on the u-axis we get the projection OB’ which is equal to
%:moe_fwt coslwgt — (m/2)] = %:moe_f“’t cos[(m/2) — wyt] = %:’uoe—fwt sin(wyt)
and represents the second term of the response expression. Thus, the sum of the two
projections, i.e., 0A" + OB’, represents the complete response. Therefore, the
complete response is represented by the projection of vector 0C which results by

summing the vectors 0A & OB. Clearly, the magnitude of vector 0C is pe Swt =

2 i+ wug) 2 —fwt ; ; .
ug + (w—d) e and the response of the underdamped oscillator may be written as:

u(t) = pe‘f(l)t Cos(a)dt - 1/))’ Where tanl[) — uo+f(uu0

wquy

dr = tan™ ' (=¢)

¥y = G2 (— %52)

During the rotation of vector 0C the point C describes a spiral. The spiral is referred to
as equiangular spiral because the tangent (at point C) to the spiral makes a
constant angle 9, = tan~1(—¢), with the perpendicular to the radius vector oc (see
NOTE below for a proof). The points at which the envelopes pe™“t & —pe =t touch
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the response curve u(t) = pe 5t cos(wyt — ), occur at the instants when |cos(wgt — ¥)| =
1, i.e., when the tangent to the spiral is perpendicular to the u-axis. Consequently, the points
of tangency (i.e., points Ty, T,, Ts, --- shown in the FIGURE) lie on a line that passes through

the origin and forms an angle 97 = tan~1(—¢§) with the u-axis.

The points of tangency, though, are not the points of local maxima. The points of local
maxima (i.e., local peaks of the response displacement; points P;, P,, Ps, --- shown in the
FIGURE), are slightly ahead (in time) of the points of tangency and are located by setting the
velocity equal to zero:

u(t) = pe~* cos(wat =) = W(t) = —Swpe*** cos(wgt — P) — wgpe*** sin(wyt — )
Therefore,

u(®) =0 = tan(wyt—1) = — <5/ 1-— €2>
Indeed, this suggests that the local peaks of the response lie on a line passing through

the origin and forming an angle 9, = tan™! (— /1 — 52) with the u-axis that (in
absolute value) is slightly larger than [9;], i.e., [97] < |9p].

Time, ¢

Q
Qg
& |r:‘
Displacement, u

(c)

4 c I->
i
= m
_— /\ /\ N}
L] (O NEN®)
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NOTE: Logarithmic or Exponential or Equiangular Spiral

')

Equation of Exponential Spiral: r = pe ¢t = pe %

The shape of the spiral depends on ¢ only. For a given value of ¢ a spiral has to be
drawn only once.

Using the drawing as a template, the spiral can be transferred to the phase-plane diagram by
selecting the required value of r on the spiral.

Let 91 be the angle that is formed by the tangent at a point on the spiral and by the
perpendicular to the polar radius r at that point. Specifically, let us consider a point A
on the spiral and let us draw a perpendicular to the polar radius 0A at point A. Then, let us
consider another point B on the spiral, adjacent to point A. As point B moves towards point A
line AB tends to become tangent to the spiral at point A. Thus, at the limit, as point B tends
to point 4, the angle BAC tends to the aforementioned angle 9, point € tends to point A, the
angle BCA tends to (r/2), and the triangle A (BCA) tends to become an orthogonal triangle.
Therefore,

Ar (Ar/A8)
r-AO r

lim(Ar/AQ) 3 (dr/do)

r r

- CB -
tan(BAC) = YTl tan 9y = éil){lq[tan(BAC)] =

Therefore:

(ar/d6) _ —¢pe™? _

tan 19T = r pe_se

NOTE: This is why the exponential spiral is called sometimes ‘equiangular’ spiral.

HISTORICAL NOTE: The investigation of Spirals began at least with the ancient Greeks.
The famous Equiangular Spiral was discovered by DESCARTES, its properties of self-
reproduction by James (Jacob) BERNOULLI (1654-1705) who requested that the curve
be engraved upon his tomb with the phrase "Eadem mutata resurgo” ("l shall arise the
same, though changed").

YATES, R. C. (1952). Curves and Their Properties. THE NATIONAL COUNCIL OF TEACHERS OF
MATHEMATICS




