DAMPED FREE VIBRATION WITH COULOMB DAMPING

Equation of Motion:

$\dot{u}>0$: (i.e., moving to the right) $m \ddot{u}+k u=-\mu N$
$\dot{u}<0$: (i.e., moving to the left) $\quad m \ddot{u}+k u=+\mu N$

Solution:

For $\dot{u}>0$:

$$
\begin{aligned}
& u(t)=A \cos (\omega t)+B \sin (\omega t)-\frac{\mu N}{k} \\
& u(t)=C \cos (\omega t)+D \sin (\omega t)+\frac{\mu N}{k}
\end{aligned}
$$

For $\dot{u}<0$:
Initial Conditions: $u(t=0)=u_{0} \quad \& \quad \dot{u}(t=0)=0$
Let us assume that $u_{0}>0$. Then, assuming that $u_{0}>\left(\frac{\mu N}{k}\right)$ (i.e., the spring force is sufficiently large to overcome the frictional force):

Block starts moving to the left:
Then, solution for $\quad 0 \leq t \leq \frac{\pi}{\omega}: \quad u(t)=\left(u_{0}-\frac{\mu N}{k}\right) \cos (\omega t)+\frac{\mu N}{k}$

$$
\therefore\left\{\begin{array}{ccc}
u\left(t=\frac{\pi}{\omega}\right) & = & -\left(u_{0}-\frac{2 \mu N}{k}\right) \\
\dot{u}\left(t=\frac{\pi}{\omega}\right) & = & 0
\end{array}\right.
$$

Block starts moving to the right:
Then, solution for $\quad \frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}: u(t)=\left(u_{0}-\frac{3 \mu N}{k}\right) \cos (\omega t)-\frac{\mu N}{k}$

$$
\therefore\left\{\begin{array}{lc}
u\left(t=\frac{2 \pi}{\omega}\right)= & \left(u_{0}-\frac{4 \mu N}{k}\right) \\
\dot{u}\left(t=\frac{2 \pi}{\omega}\right)=0
\end{array}\right.
$$

(a)


```
Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 2
    Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
                        SEOUL NATIONAL UNIVERSITY
PART (02): DAMPED FREE VIBRATION WITH COULOMB FRICTION
```

- The block has completed a cycle of motion.
- The period of motion (i.e., the time it takes to complete one cycle) is $\left(\frac{2 \pi}{\omega}\right)$, i.e., Coulomb friction does not change the period of vibration.
- The amplitude reduces by $\left(\frac{4 \mu N}{k}\right)$ over one cycle of motion.
- At any instant when $\dot{u}=0$, i.e., when the block is at its extreme left or extreme right position,

$$
\text { if } u \leq \frac{\mu N}{k} \text { then } \underbrace{k u}_{\begin{array}{c}
\text { spring } \\
\text { force }
\end{array}} \leq \underbrace{\mu N}_{\begin{array}{c}
\text { friction } \\
\text { force }
\end{array}}
$$

and the block will cease to move.
Thus, the block will come to rest at the end of a half-cycle in a position which is displaced from its original position of rest.

- In the equation of motion, we must use $\mu_{d}=$ dynamic coefficient of friction.

In checking/ determining the position that the block will come to rest, we use $\mu_{s}=\underline{\text { static }}$ coefficient of friction.

- The amplitude decay per cycle due to Coulomb friction is $\left(\frac{4 \mu N}{k}\right)$. Thus, the envelopes of u vs. t curves are straight lines.

In the cases of viscous or hysteretic damping, amplitude decay is exponential and theoretically the system never comes to rest.

- Because the damping force (i.e., frictional force) changes abruptly at times $t=\frac{\pi}{\omega}, \frac{2 \pi}{\omega}, \cdots$, (i.e., at the end of each half-cycle), the slope of the velocity curve is discontinuous at these times.

Phase Plane Representation of Vibrations Under Coulomb Damping

First half-cycle of motion:

$$
u(t)-\frac{\mu N}{k}=\rho_{1} \sin \left(\omega t+\varphi_{1}\right) \quad\left(0 \leq t \leq \frac{\pi}{\omega}\right)
$$

where:

$$
\rho_{1}=\left(u_{0}-\frac{\mu N}{k}\right) \quad \& \quad \varphi_{1}=\left(\frac{\pi}{2}\right)
$$

Also:

$$
\frac{\dot{u}(t)}{\omega}=\rho_{1} \cos \left(\omega t+\varphi_{1}\right) \quad\left(0 \leq t \leq \frac{\pi}{\omega}\right)
$$

Thus, the first half-cycle is represented by circular $\operatorname{arc} \boldsymbol{A B}$ centered at point $O_{1}=$ ($0, \frac{\mu N}{k}$).

Second half-cycle of motion:

$$
u(t)+\frac{\mu N}{k}=\rho_{2} \sin \left(\omega t+\varphi_{2}\right) \quad\left(\frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}\right)
$$

where:

$$
\rho_{2}=\left(u_{0}-\frac{3 \mu N}{k}\right) \quad \& \quad \varphi_{2}=\left(\frac{\pi}{2}\right)
$$

Also:

$$
\frac{\dot{u}(t)}{\omega}=\rho_{2} \cos \left(\omega t+\varphi_{2}\right) \quad\left(\frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}\right)
$$

Thus, the second half-cycle is represented by circular arc $\boldsymbol{B C}$ centered at point $O_{2}=$ ($0,-\frac{\mu N}{k}$)

(a)

(b)

