Multi-Degtee of Freedom Systems —
Synopsis

Classification of Problems in Structural Dynamics

By the number of degrees of freedom:

Single DOF
) lumped mass (discrete) system (finite DOF)
Multiple DOFs {continuous systems (infinitely many DOF)
Discrete systems are characterized by systems of ordinary differential equations
(ODE?s), while continuous systems are described by systems of partial differential

equations (PDEs).
By the linearity of the governing equations:

Linear systems linear elasticity, small motions assumption

conservative (elastic) systems

Nonlinear systems { o .
nonconsetvative (inelastic)systems

By the type of excitation:

Free vibrations
... harmonic
periodic .
nonharmonic
deterministic excitation

stationary

. ] structural loads
Forced vibrations {

seismic loads .
transient L
random excitation .
non-stationary

By the type of mathematical problem:

Static Boundary Value Problems (BVPs)
{ eigenvalue problems (free vibrations)

Dynamic {initial value problem, propagation problem (waves)

By the presence of energy dissipating mechanisms:

Undamped vibrations

viscous damping
Damped vibrations hysteretic damp.mg
Coulomb damping

etc.
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Modeling — Discretization

Although real physical structures are continuous in nature (i.e. their mass and stiffness
are continuously distributed along their structural members), they cannot be analyzed as
such. First, they must be cast in the form of discrete systems with a finite number of
DOF. There are two major approaches to transform a continuous system into a
discrete one:

e Heuristic approach (based on physical approximations): Use common sense
(intuition) to lump masses, then basic methods to obtain the required stiffness.

e Mathematical methods: There are two classes of mathematical discretization

schemes based on series of functions expansions, namely,

O Rayleigh-Ritz type methods (such as the assumed-modes method, and
the well-known Finite Element Method) and

0 Weighted Residual methods (such as the well-known Galerkin method).

Rayleigh-Ritz type methods are based on a given variational principle (examples of
variational principles are: Hawmzilton'’s Principle; 1V irtual Work; The Method of Total Potential
Energy; Complementary 1V irtual Work; Principle of Total Complementary Energy, Reissner’s
Principle). By contrast, weighted residual methods are more general in scope and they
do not require a variational principle.

In this course we use exclusively the “heuristic approach” and develop discrete-
parameter models.

For example, in modeling a structural frame for dynamic analysis we neglect vertical
inertia forces and rotational inertias. Note carefully that this does not imply that the
vertical motions or rotations vanish. Instead, these become static degrees of freedom,
and thus depend linearly on the lateral translations, that is, they become slave DOF
to the lateral translations, which are the master DOF. The process of reducing the
number of DOF as a result of neglecting rotational and translational inertias can formally
be achieved by matrix manipulations referred to as static condensation (see
EXAMPLES 9.8 & 9.9 in the textbook). We introduce further simplification by
assuming that that the beams are axially rigid and thus neglect axial deformations. This

introduces a kinematic constraint between the axial components of motion at the two
ends of a beam. The formal process by which this is accomplished through matrix
manipulations is referred to as kinematic condensation.
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The above expression includes axial deformation of the columns. The girder is axially
rigid. All members are made of the same material with modulus of elasticity E.

HINT:
1. Write the stiffness matrix and equilibrium equations for the free joints (Z.e. joints
1&2).
2. Neglecting the axial deformation of the girder and assuming antisymmetric
behavior, so that Uy = U, = U, V; = —V, =V, 1 = P, = @, condense the

stiffness matrix to a matrix 3 X 3 and the load vector to a vector with 3
components. (Write 3 equilibrium equations. What does each one of these
equations represent physically?)

3. Eliminating the rotation ¢ and the axial deformation v of the columns (static

condensation) obtain a relation of the form P = ku (obtain E) The parameter k
is the lateral stiffness of the frame.

NOTE: Accounting for axial deformation of the columns may not be important for a
one-story frame. However, it becomes a crucial consideration for multi-story structures
(say 10 stories and higher).

As another example, for a multi-story structure, we lump masses at the level of each
floor and we assume that the floor slabs act as disks (i.e. rigid in their own planes or,

equivalently, they do not deform under shear forces; act as diaphragms).

Thus each floor has three degrees of centers of centers of
treedom (DOF): two DOFs mass axts \ / o EH A nin

corresponding to translational STORY )
FLOOR N =X
e a

displacements along orthogonal axes that
coincide with the principal axes of the plan = 18;_';

of a typical floot, and a third DOF W-2)——
corresponding to rotation about a vertical :

stiffness for
storyj in:

x — translation = K

y — translation = K

torsion = Kg;

xj
yi

axis.

As a side note we remark that for low-rise
buildings (less than ten floors), the
columns may be assumed inextensible.

However, for high-rise buildings (more
than ten stories), the axial extensibility of
columns must be considered.



Formulation of the Equations of Motion

There are four types of forces involved in the dynamic equilibrium of a structure:
p(t): The external applied forces

f,(t): The inertia forces
(involve accelerations measured w.r.t. an inertial frame of reference)

f;(t): The damping forces
(involve velocities that describe rate of deformation)

fs(t): The restoring (elastic or inelastic) forces
(involve displacements that describe deformation)

One way of looking at the problem is to visualize the external forces p(t) as being

distributed among the three forces f;(t), fp(t), and f5(t), all of them resisting
motion, that is

;@ +6H@) +f:E) = p)
Another way of looking at the problem is by applying NEWTON?’s 2™ law of motion
f,&) = p@)—1fp(0)—1£(0)

In the above equation the restoring forces fs(t) and the damping forces fj, (t) appear
with negative sign because these internal forces resist motion.

Both approaches lead to the same equation of motion, as expected.

If the structure is elastic, the restoring forces may be expressed as fs(t) = ku(t),
where K is the stiffness matrix of the structure.

If we assume that damping in the structure may be described by linear viscous
damping, then fy(t) = cu(t), where ¢ is the damping matrix of the structure.

Finally, the inertia forces may be expressed as f;(t) = mii(t), where m is the mass
matrix of the structure and the accelerations ii(t) must be measured w.r.t. an inertial
frame of reference.

In view of the above, the equation of dynamic equilibrium may be written as
mii(t) + ca(t) + ku(t) = p(t)

The above matrix equation is the equation of motion of the discretized structure.

As a corollary of BETTD’s law, we demonstrated that, the stiffness matrix K as well as

the flexibility matrix f = K™ of a stable structure, are both symmetric.

NOTE: The symmetry of the flexibility matrix, f7 = f, is known as MAXWELL’s Law
of Reciprocal Deflections.




Furthermore, the matrices m & K are positive definite as the kinetic enetgy T =
(1/2)a"mu and the strain energy U = (1/2)u”Ku are positive definite functions
of velocities and displacements, respectively.

NOTE: For stable civil engineering structures, K is always positive definite because civil
engineering structures are normally supported at fixed points of support and,
consequently, rigid body modes of motion are not possible (that is, the structure is
restrained and motion of the structure cannot exist without deformation of the structure).
On the other hand, for structures like an airplane, when they are flying (that is, when they
are unrestrained), rigid body modes exist and, consequently, there exists motion without
deformation of the structure; in this case, the stiffness matrix K is positive semi-
definite.

REMINDER: If the real quadratic form §" A, associated with a real symmetric
matrix A, is nonnegative for all real &, and is zero only if § = 0, then the quadratic
form is said to be positive definite. Then, by convention, we say that that the matrix A

is positive definite. On the other hand, a quadratic form §" A, associated with a real

symmetric matrix A, is said to be positive semi-definite when it takes on only

nonnegative values for all real &, but vanishes for some § # 0. In this case we say that
that the matrix A is positive semi-definite.

EXAMPLE [Problem 9.13 of the textbook]:

An umbrella structure has been idealized as an assemblage of three flexural elements with
lumped masses at the nodes as shown in FIGURE.

(a) Identify the DOFs to represent the elastic properties and determine the stiffness
matrix. Neglect axial deformations in all members.

(b) Identify the DOFs to represent the inertial properties and determine the mass matrix.
(c) Formulate the equations of motion governing the DOFs in part (b) when the
excitation is (7) horizontal ground motion, (7) vertical ground motion, (7z) ground motion
in direction b — d, (i) ground motion in direction b — ¢, and (») rocking ground motion
in the plane of the structure.

SOLUTION:
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In view of the fact that we neglect axial deformation for all members we have only one
horizontal DOF for all nodes (and consequently for all the corresponding concentrated
masses M, 3m & m) at the level of the beams. Thus, we end up with a total number of
six (6) DOFs for the entire structure (see FIGURE). Now, the DOFs uy, us & ug, are



associated with rotations of the corresponding nodes (and of the corresponding
concentrated nitrated and thus atre associated with zero rotational inertias. Thus,

I T T

Ug Ug
us u;
ﬁ /4R f[\ uy
\ \
Us Uy Ug

Recall that the DOFs u, are associated with significant inertias and are called the
dynamic DOFs, while U are associated with insignificant (i.e. zero) inertias, are
referred to as static DOFs and will be eliminated by static condensation.

The stiffness matrix can formally be derived by the direct stiffness matrix method
(i.e. the stiffness matrix of each individual member is formulated and rotated to the
selected global reference system; the element matrices are assembled to form the global
matrix; the boundary conditions are imposed and the equations not involving reactions
are retained).

For a simple structure (with few DOFs) like the one we are analyzing, we can obtain the
stiffness matrix by imposing a unit displacement at each one of the DOFs sequentially,
while ‘locking’ (i.e. setting equal to zero) all other DOFs. Thus, by setting uq; = 1 we
obtain, using simple statics, the elements of the 1% column: k1, Kky1, k31, k41, k51, and
k1. Proceeding with all the other DOFs in a similar way, we obtain

12 0 0 6L 0 0
0 12 0 —-6L 0 —6L
Ell o 0 12 6L 6L 0
13l6L —6L 6L 121% 212 212
0 0 6L 2L* 42 0
L0 —6L 0 212 0 4%

The partitioned stiffness matrix may be written as

k., k
k=[ tt tO]
Kor Koo
12 0 0 6L 0 0 1212 21* 2I?
kKe=|0 12 0| k=K, =|-6L 0 —6L| Koo =| 212 412 0
0 0 12 6L 6L 0 212 0 4I?

In view of the fact that all masses are concentrated / lumped, the mass matrix m is a
diagonal matrix

0 1 0 0 1 0
0 0 1 0 0 1

B3+1+1) 0 0] [5 0 0]
m=m =m




The condensed stiffness matrix (related only to the translational DOFs) is

A 3E] 28 6 —6
ke = ke — Keokgokoe =—| 6 7 3
10L 6 3 7

The equations of dynamic equilibrium of the structure, for base excitation, are

28 6 —6](W1 0
6 7 3[4U2¢ =40

-6 3 71\u3 0

{mu +kyu = Pesr(0)

5m
peff(t)—_ 0 ﬂgx
0

..t
mi‘t +k,u=0 = m|0 1 0]]i
0 0 1

i

For hotizontal base excitation ug, (t)

Ui
u =utu, = jus {uz} +10¢ Ugy
ub u

for vertical base excitation ug, (t)

ut Uy mii + k,u = Pesr(t)
_ 0
u=utyu,, = {ubjr= uz + ugy )
ut peff(t) - ugy
3 m

for base excitation Ugpq(t) in the b — d direction
( mi+Kku=pere(t)

ul Uy 1/V2 Sm /v
U =u+ algyg > Jubp = U2 +{1/V2 Ugpa = _ .
ut Us Pesr(t) = =3 m/V2 {ilgpa
3 1/V2
m/v2
for base excitation ug.(t) in the b — ¢ direction
mii + K u = porr(t)
w) ) (12 ( p Sm;i]/ci
u'=u+ Lclghe = ug = {uz} + 1/\/5 Ugpe = .
ub Us 1/V2 Perr () = — m/V2 ¢ lgpe
m/v2

for rocking base excitation ugyg(t) (i.c. rotation of base about a horizontal axis normal
to the plane of the structure)
miu + kttu = peff(t)

e

u
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Solution of the Equations of Motion — Modal
Superposition Method

Free Vibration of Systems without Damping

We start by considering the free-vibrations of an undamped system. Indeed, we are
looking for the response of the system performing synchronous motion (i.e. the system
vibrates maintaining the overall shape and changing only the amplitude by a time-
dependent proportionality factor).

We seek solutions (of the equations of motion of the undamped system) of the form
u(t) = e, where @ is the shape that the system maintains as it vibrates freely and eS¢
is the time-dependent proportionality factor:

mi+ku=0

u(t) = e“(p} = eS'(s’m¢p +kp) =0

= k¢ = —s’m¢
Therefore,

k¢ = m$p , A= —s2

The above problem is known as the algebraic (or matrix) eigenvalue problem (or
characteristic-value problem).

Facts that we learn from Linear Algebra regarding the matrix eigenvalue problem:

(1) The eigenvalues of an algebraic eigenvalue problem, in which K & m atre both
symmetric, and at least one positive definite, are all real.
[NOTE: For stable civil engineering structures both matrices K & m are positive
definite]

(2) When matrices K & m are both positive definite, the eigenvalues are all

positive.

(3) When K is singular, at least one of the eigenvalues must be zero.
[INOTE: An example of a stable (but unconstrained) structure which has a
singular K matrix is an airborne airplane.]
When m is singular, at least one of the eigenvalues must be infinite.
[NOTE: For a discrete model of a civil engineering structure that we develop
and analyze in this course, m is always non-singular as we have eliminated (by
static condensation) any degrees associated with insignificant inertia.]

(4) The eigenvectors, corresponding to different eigenvalues, are orthogonal to
each other with respect to both K & m. Therefore
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Evidently,

K
k¢, = wrzlmq)n -

2 szd)n __n

= = =
“n T PIme, M,

= ¢£k¢n = szlq)?Tlmq)n

To an eigenvalue of multiplicity 71 there correspond 7 linearly independent

eigenvectors. These m linearly independent eigenvectors can be made

orthogonal (w.r.t. K & m) to each other using the Gram-Schmidt

orthogonalization procedure. These eigenvectors are already orthogonal to the
rest (n — m) eigenvectors

[NOTE: It is rather unlikely for a civil engineering structure to have eigenvalues
with multiplicity higher than 1. However, it is not inconceivable.]

Any arbitrary N-vector U can always be expressed as a linear combination of
the linearly independent eigenvectors of the algebraic eigenvalue problem:

N
u= Z érq, = @q
r=1

N \)
where: @ = <(|)1 ¢, - (])N)
| !

Modal Matrix

where q, (r = 1,2,+++, N) are scalar multipliers called modal coordinates or
qz

normal coordinates and q = [1 qn]T; N = no. of Degrees of
Freedom (DOF) of the structure.

[NOTE: The above statement, known as the “eigenvector expansion
theorem”, guaranties that whatever shape the structure takes as it vibrates, that
shape can always be expressed as a linear combination of the modal shapes of
the structure. This theorem forms the basis of the “modal superposition

method” of expressing the response of the structure.]

Returning to the solution of the matrix eigenvalue problem, now we know that 4 > 0

(always true for civil engineering structures). Therefore, we can set A = w?. This implies
that s = +vV—1 = +iw. It follows that the general solution of mil + ku = 0 is u(t) =
C,e'tp + Cre @t = (Clei“’t + Cze_i“’t)cl); for this expression to represent
actual vibrations it must be a real expression; therefore C, = C; = A’ + iB’
(assuming that C; = A" — iB"). Then,



u(t) = 2Re(Ciet)d
2[A’ cos(wt) + B’ sin(wt)]¢
[A cos(wt) + B sin(wt)]¢

p =+ A?+ B?
= psin(wt+60)¢ A
0 = tan?! (§>

This demonstrates that the system/structure petforms synchronous harmonic motion
maintaining all the time the same shape.

Now, if we give an arbitrary initial displacement u(t = 0) = u, and arbitrary initial
velocity U(t = 0) = 1, to the structure, the response may be expressed by invoking the
eigenvector expansion theorem. Specifically

u®) = D a0

Evidently, the step that precedes the above one is to solve the matrix eigenvalue problem
kd = Amd@, and we know that we are going to obtain N positive values A, =
wrzl ,(n=1,2,--,N) and corresponding N real eigenvectors ¢, ,(n = 1,2,---,N).

In order to decouple the equations of motion, we substitute the above expression for the
response / solution u(t), we pre-multiply by ¢; both sides of the equation of motion

and we invoke the orthogonality theorem of the eigenvectors. As a result we obtain N
uncoupled modal equations

subject to the following initial conditions

‘I)JT'muo 2 (0) = ‘I)JT‘muo
M, Y M,

q;(0) =
The solution / response of the above set of uncoupled modal equations is

q;(0)
wj

q;(t) = q;(0) cos(a)jt) + sin(wjt) , G=12,--,N)

[INOTE: The modal equations are mathematically equivalent to the equation of motion
of a SDOF system. Cleatly, any method that is appropriate to use to solve the equation
of motion of a SDOF system is also appropriate to solve also the modal equations.]

We observe that in the general case, (that is for arbitrary initial displacement and
velocity), all modes participate in the response. If we would like to excite only one

mode, say the m-th mode, both the Uy and Wy would have to be proportional to ¢y,
i.e. Uy = OC(I)m & 1.10 = ﬁ(l)m




EXAMPLE [Problem 10.23 of the textbook]:

(a) For the umbrella structure, determine the natural vibration frequencies and modes.
Express the frequencies in terms of m, E1, & L, and sketch the modes.

(b) The structure is pulled through a lateral displacement u;(0) = 1 and released.
Determine the free vibration response.

SOLUTION:
We recall that
[3 X 8] i, = 2[5 5 ‘3]
0 0 1 L ¢ 3 7
We form the eigenvalue problem:
A 31 [28—54 6 -6 10mI?3
Ky — w’m = — 6 7—-2 3| , A= w?
10L _6 3 7.3 3EI
28 — 51 6 -6
6 7—21 3l=0 = 513-9812+5201—-400=0
—6 3 7—21

The cubic equation (like the quadratic & quartic equations but not higher order
equations) can be solved algebraically; for a detailed discussion see
https://en.wikipedia.org/wiki/Cubic equation ).

The roots of the above characteristic equation are:

A, = 0.9219 A, = 8.6780 A3 = 10

El El El
wq = 0.5259 W Wy, = 1.6135 W w3 = 1.7321 W

Then, from the equation [i(tt - a),zlm] ¢, = 0, and after setting one of the elements of
&, cqual to an arbitrary value (see EXAMPLE 10.1), we obtain

1 1 0
¢, ={-1.9492; ¢, =1 1.2826¢ ¢3 =11
1.9492 —1.2826 1

Initial conditions:

1 0
u(0) =u, = {0} u(0) =u, = {O}
0 0



(I){muo

q:(0) = oTmd, 0.3969 ¢,(0) =0
. ¢5mu, _ ) _

q2(0) = oimd, 0.6031 §,(0) =0
. ‘I’gmuo _ . _

q3(0) = oTmbs 0 43(0) =0

The free vibration response to the given initial displacement is

3 3 .
00 = D Gt @) = Y. o 0)c05(0,0) + L2 i)
n=1 n=1

wn
or
uy (8) 0.3969 0.6031
u(t) =1u,(t);p = {—0.7736} cos(w,t) +{ 0.77361 cos(w,t)
us(t) 0.7736 —0.7736

Notice that the 3 mode does not contribute to the response because the initial

conditions do not contain a component in that mode (recall that q3(0) = 0 & ¢5(0) =
0).




Free Vibration of Systems with Classical Damping

In order to simulate the damping mechanisms present in our physical structure, we
introduce in the equations of motion the term cul, where the damping matrix C is
assumed to satisfy the same properties of orthogonality as the matrices K & m.
Specifically, the eigenvectors (modal shapes) @ = [y ¢, - by - y] that
we obtain by solving the matrix eigenvalue problem k¢p = w?me are assumed to be
orthogonal w.r.t. the damping matrix € as well, i.e.

0 n+Em
T _
brcbn = {zfnwnMn n=m
ot in terms of the modal matrix ®
(I)TC(I) — zfnwnMn
Cn

diagonal matrix

The parameters &, . (n = 1,2, -+, N) specify the damping ratios of the modes of the
structure and are referred to as modal damping ratios.

[INOTE: It is important to point out that the matrix eigenvalue problem K¢ =
w?m@, solution of which produces the modal shapes ¢,, and characteristic circular
frequencies w,,, does not involve the matrix C.]

The above kind of damping is referred to as classical damping. This model of damping
is appropriate for all common/conventional civil engineering structures. However, if a
structure is equipped with modern protective (aseismic) systems, such as base isolation
and/or energy absorbing dashpots, then the damping model of classical damping is not
satisfactory and one has to make use of the non-classical damping model. This model

is not discussed in this course.

Let us consider the free vibrations of a structure with classical damping, subjected to
initial displacement u(t = 0) = u, and initial velocity u(t = 0) = ,. Therefore

Eqn of Motion: mi+cu+ku=0
Initial Conditions: u(t =0) =u, , u(t=0)=u,

Invoking again the eigenvector expansion theorem, we express the response /
solution of the structure as a linear combination of the modal shapes:

N
u®) = D aOén

Substituting the above expansion in the equations of motion, pre-multiplying by (1)3w and,
invoking the orthogonality property of the modal shapes w.r.t. K, m & ¢, we obtain



N uncoupled modal equations in terms of the normal co-ordinates q,,(t) , (j =

1,2,-,N):

i;(t) + 2&w;q;(0) + wiq;®) =0 , (G =12,,N)

subject to the following initial conditions

¢ mu, ¢ mu,
. 0 = B o . O — —
q;(0) M, q;(0) A

The solution / response of the above set of uncoupled modal equations is

q;(0) + &;w;q;(0)
wp i

q;(t) = e~5sst {%‘(0) cos(wp;t) +

Wpj = ‘“J’,/l_"i2

We observe that in the general case, (that is for arbitrary initial displacement and

J

velocity), all modes participate in the response. If we would like to excite only one
mode, say the m-th mode, both the uy and Wy would have to be proportional to ¢y,

ie. uo = a(l)m & 1.10 = ﬁ(l)m

NOTE: For the analysis of conventional structures using discrete models developed
and discussed in this course, it is not necessary to form the damping matrix €. The only
information that the analyst needs is the damping ratios & I (j=1,2,-+,N) of the

modes of the structure. The damping ratios §; are used in the modal equations.

However, there are problems of dynamic analysis of structures that require the formation
of a damping matrix €. For example, a Finite Element Model (FEM) of the structure
including part of the soil supporting the structure would be such a problem. The reason
is that the nature and amount of damping in the soil is very different from that in the
structure. Therefore, an explicit damping matrix needs to be formed for the soil part of
the finite element mesh and a separate damping matrix for the mesh modeling the
structure. Eventually, the two submatrices are combined to form a damping matrix for
the complete soil-structure system.

One way to form a damping matrix that provides classical damping is using the so called
CAUGHEY damping series. Specifically

c= mX ag[m‘lk]q

£
1
— 2¢
4= z—w,.Zf e

The damping ratios ; for as many modes need to be provided. However, for effective

£=-,—2,—1,0,+1,+2,

use of the CAUGHEY damping series, an even number of terms must be used in the
series expression.

sin(a)Djt)} , (=12,



Dynamic Analysis of Structural Systems with Classical
Damping

Let us consider a N-DOF system, having classical damping and subjected to the

general loading p(t) and having initial displacement u(t = 0) = u, and initial
velocity U(t = 0) = 0. [NOTE: Normally, in most cases, civil engineering structures
start vibrating from rest.] Therefore

Eqn of Motion: mii + cu + ku = p(¢t)
Initial Conditions: u(t =0) =u, , u(t=0)=u,

Invoking again the eigenvector expansion theorem, we express the response /
solution of the structure as a linear combination of the modal shapes:

N

u(e) = Y uy(0) = i 4O,
n=1

n=1

Substituting the above expansion in the equations of motion, pre-multiplying by (I)]T and
invoking the orthogonality property of the modal shapes w.r.t. K, m & ¢ we obtain N
uncoupled modal equations in terms of the normal co-ordinates q;(t) , (j =
1,2,---,N):

M;q;(t) + C;q;(t) + K;q;(t) = Pi(t) , (=12,--,N)
4 () + 4 4 (t)+Kj (t) Filt
= . g, o) =
. . ) Pi(t
= §;(0) 4 2&0;4;(1) + wig; (D) e
j
where P(®) = ¢]p(®)
subject to the following initial conditions
¢jmu, ) ¢ mu,

M, ' M,

The above equations governing the response of the normal co-ordinates

q; (t),( =1,2,-+,N) is mathematically identical to the equation of motion of a SDOF
system. Any one of the techniques that we developed in obtaining the response of the
SDOF system, evidently may be applied here as well.

Modal Analysis for p(t) = sp(t)

One particular type of loading p(t) is of interest to us. This is the case of p(t) = sp(t),
where all the applied loads have common time variation p(t), while the (time-
independent) vector S describes the spatial distribution of the load. This type of load
describes various practical cases, including the earthquake load (i.e. the load induced by

support motion) to be considered later.



We resolve vector S into its modal components:
N

N
r=1 r=

_ rs Modal
~ M, Participation Factor

Lmo,
1

L

It is evident that [, is not independent of how the modal shape is normalized.
However, the modal component s, = I;;m¢, is independent of how the modal shape
is normalized.

The above expansion of the S vector has two useful properties:

(1) 'The force vector s, p(t) produces response only in the n'"* mode but no
response in any other mode.

(2) 'The dynamic response of the nth mode is entirely due to the partial force
vector S, p(t).

It should be noted that the spatial distribution of the inertia forces (f;),, associated
with the n" mode, is the same as that of s,, = [[md,:

(f)n = mit, (t) = mé, G, (t)

The uncoupled modal equations in this case are:

P,
n(©) + 260000 (E) + 0300 (0) = 22

where: P, (t) = ¢}p(t) = dgsp(t) = T,,M,p(t)

(n=12-,N)

Therefore:
Gn () + 2&,w0,0, () + W2q,(t) = T,p(t) (n=1,2,-,N)

Introducing the new variable: D, (t) = q,,(t)/I}, © q,(t) = [},D,(t), we obtain
D, () + 28w, Dp () + 02D, (t) = p(t) (m=12,-,N)

The reason that we express the modal equations in terms of the variable D, (t) (a

seemingly trivial substitution) is because Dy, & mz':lx|Dn (t)| may be read directly from

the response spectrum of p(t).

In order to find element forces (i.c. actions such as moments and shear forces of the
various structural members of a structure subjected to dynamic analysis) we implement
the equivalent static force method. Specifically, as the structure vibrates it deforms and

the equivalent static forces that would cause the deformed shape u(t) at any instant in
time are the elastic forces fs(t) = Ku(t) corresponding to that time instant. It is
evident that



N

u(e) = Y uy(6) = i 4Oy = i RO
n=1 n=1

n=1

and

N N N
() = Ku(®) =k ) un(®) = ) Kup(©) = ) fin(0)
n=1 n=1 n=1

We work with each mode separately. Therefore, the equivalent static forces fg, (t)

in the nth mode are

fsn (t) = ku,(¢) =T, Ky, Dy () = Lumy, [0 Dy ()]

wimdy, Sn

= fSn (t) =S [wrlen (t)]

In words, the above result makes evident that the elastic forces in the nth mode consist
of the modal component S,, (which describes the spatial distribution of the elastic
forces in the nth mode and is time independent) scaled by the time-varying
coefficient [wZD,,(t)]. This suggests that in order to compute any response quantity

r(t) [such as actions (e.g. moment, shear force) acting on members of the structure, or
displacements at any of the nodes of the structure], we need to perform N static
analyses. The results of these static analyses, ;3¢ , (n = 1,2, -+, N), will be scaled by the
respective time-varying coefficients, [w2D,, (t)], (n = 1,2,-++, N), to obtain the
corresponding modal contribution, 1, (t) , (n = 1,2, -+, N), to the response quantity

r(t).

s, — [MDOF System| - st - wiD(t) = 1 (t)
s, — [MDOF System| - st - wiD,(t) = 5 (t)
Sy - [MDOF System| - st - wiDy() = ry(t)

s = Z s, = |MDOF System|— 1% = z st r(t) = Z 7, (t)
N

N

st
NOTE: From the relation 75¢ = Y 1,5 we obtain 1 = Y (%) = Y.y T Evidently

_ rat . .
T = (%) expresses the contribution of the nth mode to the response quantity
r

r(t) and that is why it is referred to as the nth modal contribution factor to the

response quantity 7(t). The advantages of these factors over the nth modal participation
factors I, are: (1) they are dimensionless; (2) they are independent of how modes are
normalized; and (3) the sum of the modal contribution factors over all modes is unity,
thatis Y.y 7, = 1.



Now, let us consider the peak response of the system. Let us introduce the following
definitions:

Dno = max| Dy (¢)]

max|p(t)| Dy
_ _ t _ bo Rd = -
(Dn,st)o = m?X |Dn,st(t)| - ( w2 - (E) " (Dn,st)o
static n n T Dvnami
response Dynamic

Response Factor

NOTE: The static response D, ;;(t) is obtained from D, (t) + 2&,w, D, (£) +
w?2D, (t) = p(t), by dropping the D,, & D,, terms.

It follows that:

— .St 2 — .St
Tho =171 C‘)nDno =r 7”npoRaln

st
Th

NOTE: The algebraic sign of 7;,, is the same as that of r;;¢ & ¢

positive by definition.

7, because Ry, is

o rt&T,: depend on the spatial distribution S of the applied forces, but
are independent of the time variation p(t) of the applied forces.

e Ry,: depends on p(t), but is independent of s.

Earthquake Analysis of Linear Systems

In the case of base excitation (earthquake problem) there are no external forces
acting on the structure, i.e. p(t) = 0. Therefore

f,(t) + () + () = 0

It should be emphasized that the inertia forces vector depends on absolute
accelerations (i.e. accelerations measured w.r.t. an inertial / Newtonian frame of

reference). The absolute / total displacement vector u*(t) (the superscript ‘t” stands
for ‘total’) may be resolved as follows

u‘(t) = u(t) + wy(t)

where: lug (t) is the part of displacements that describes rigid body motion of the
structure as it undergoes support motion Uy (t), (i.e. if the structure were massless and

were subjected to support motion Ug(t)); Uis the influence vector; u(t) are the

additional displacements / deformations that the structure (with its mass)
experiences due to the inertia forces that are induced as the structure accelerates due
to support movement.

Evidently, the elastic forces fs(t) are associated with u(t) (i.e. the part of displacements
associated with the deformations of the structure), i.e. f5(t) = Ku(t), while the damping



forces fp, (t) are associated with the rate of deformations u(t), i.e. fy(t) = cu(t).
Therefore, the equation of dynamic equilibrium transforms to

m[ii(t) + ui, (0] + cu(t) + ku(t) = 0
mii(t) + cu(t) + ku(t) = —muiiy(t)
The right-hand side term pgsy(t) = —muiiy(t) are the effective earthquake forces.

Therefore, Pess(t) ate of the form sp(t) where s = muand p(t) = (—iig (t)) Thus,
all the development presented above regarding the response / solution for p(t) = sp(t)
applies also for Pesys (t) = —mti, (v).

For instance, the expansion of the vector § = mt of the effective earthquake forces is

N N

Ts Tmu
s=ml=Zsr=Zl}m¢r , I‘r=q;/; =¢;/I
r r

r=1 r=1

The modal equations are
Dy (t) + 28,0,Dy, (1) + wiD, (8) = —ily(t) (n=12,-,N)

The above equation is identical to the equation that is used to compute earthquake
response spectra which display the peak (absolute) value of the response D, (t), i.e.
Dy & méax|Dn (t)|, by sweeping the circular frequency axis and for selected values of

the damping ratio. Response spectra may display the same information in two
alternative but equivalent forms:
e in terms of the pseudo-velocity 1}, = max|V;,(t)| = max|w, D, (t)| =
t t
WnDpo; and,
e in terms of pseudo-acceleration A4,, = max|4, (t)| = max|w2D, (t)| =
t t

2
wnDno

EXAMPLE [Problem 13.17 of the textbook]:

For the umbrella structure of the FIGURE excited by horizontal ground motion
ilgx(t), determine (a) the modal expansion of effective earthquake forces, (b) the
displacement response in terms of D, (t), and (c) the bending moments at the base of
the column and at location a of the beam in terms of A, (t).

SOLUTION:

We recall that for the given structure we have:

[5 0 o] g [28 6 —6
m=m0 1 O ) kttz 3 6 7 3
00 1 W0F[_g 3 4




S

El El El
01 =05259 |—5 w0, =16135 |—5 w;=17321 |—

1 1 0
¢, = {—1.9492} $, = { 1.2826 $; = {1
1

1.9492 —1.2826

For the given excitation, the influence vector Uis

-

The effective earthquake forces are:

n=1 n=1
Ly =¢mu=5m L, = ¢ImiL=5m Ly =¢Imi=0
M; = ¢Tme, = 12597m M, = ¢pImd, = 8.292m  M; = d¢imd; = 2m
=2 g397 I, = 22 _ 0,603 L=
1= M1 = 2 = Mz = 3= M, =
1.985m 3.015m 0
s; =Im¢; ={-0.774m; s, =T,mé, =1 0.774m; s3 = zm¢; =10
0.774m —0.774m 0
0 0 0.774m 0.774m 0
I 5m 1.985m 3.015m I 0
0.774m 0.774m
LW L Y
M3 =3.533mL M35 =1.467mL M5 =0

The displacement response in terms of D, (t) is

0.397 0.603 0
u(t) = Z [ d..D,(t) —{ 0. 774}1)1(1:) +{ 0. 774} D,(6) +{ }03@)
0.774 0.774 0

n=1

Uz Uu;
I 4 I_‘fl
N
M,
M
N

The bending moment at the base of the column (point b) in terms of its modal
contributions is



3
My(®) = D My(®

3
= EMiflAn(t)
n=1
= 3.533-mL-A,(t) + 1.467 -mL - A,(t)

The bending moment at location a of the beam in terms of its modal contributions is

3
Ma(t) = ZMan(t)
n=1

3
= > MEA®
n=1
= —0.774-mL-A,(t) + 0.774 - mL - A,(¢)

In Earthquake Engineering we have two types of analysis:

e Response History Analysis (RHA)
e Response Spectrum Analysis (RSA)

Response History Analysis (RHA) is feasible with the capacity and capabilities of
present day personal computers. It is an “exact” analysis in that it is based on the exact
(analytical or numerical) integration of the equations of motion that govern the response
of the mathematical model that we have adopted. Thus, for a given ground acceleration,
we can compute the time history of any response quantity 7(t) = Yy 17, (t).

Structural design is usually based on peak values of forces and deformations over the
duration of the earthquake-induced response. Estimation / calculation of such peak
values may be determined directly from the response spectrum. Such an approach is
referred to as Response Spectrum Analysis (RSA). We can use the response spectrum
to predict exactly the response of a SDOF system, and estimate approximately the
response of MDOF systems. The latter estimate is accurate enough for structural
design applications.

Peak Modal Response of any response quantity 7(t) is given by
Tho = Ty Ano

where, we recall that 4,,, = méax|An (t)| = A(Ty, &é,); the value A(Ty, &,,) (which is

always non-negative) is the peak (absolute) value of the pseudo-acceleration and is
read from the response spectrum. Evidently, all response quantities 7 (t)



associated with a particular mode, say the nth mode, reach their peak values at the
same time instant as A, (t) reaches its peak.

[INOTE: The textbook is using the following notation: A, = m?X|An 1

The basic question is the following: How do we combine the peak modal responses

def

Tho(m = 1,2,-++, N) to determine the peak value 7, & mle|T(t)| of the total

response? It will not be possible to determine the exact value of 7, from 73, because,
in general, the modal responses 7;,(t) attain their peaks at different time instants

and the combined r(t) attains its peak at yet a different instant.

Modal Combination Rules

e The Absolute Sum (ABSSUM) modal combination rule:

N
To < ernol
n=1

This upper-bound value is usually too conservative.

e The Square-Root-of-Sum-of-Squares (SRSS) rule:

N a

n=1

This rule provides excellent response estimates for structures with well-

separated natural frequencies.

e The Complete Quadratic Combination (CQC) rule:

where: p;, = correlation coefficient of modes i & n
[0<pin<1;pin=1 for i =n]

It can be demonstrated that the double summation inside the

parentheses is always positive.

The expression for the CQC rule may be written as:



1/2

N N N
E 2
Tho T PinTio™o

n=1 i=1n=1

R

To

The estimate for 1, obtained by the CRC rule, maybe larger or smaller than the
estimate provided by the SRSS rule.

The SRSS & CQC rules have been detrived based on RANDOM VIBRATION
THEORY (also referred to as STOCHASTIC STRUCTURAL DYNAMICS)

Implications of the assumptions behind the derivations:

The modal combination rules would be most accurate for:

e carthquake excitation that contain a wide band of frequencies (white noise
assumption);

e with long phases of strong shaking (stationarity);

e which (ie., long phases) are several times longer than T; (=fundamental period)
of the structure (stationarity);

e which (i.e., modes) are not too lightly damped (£, > 0.005).

The modal combination rules become less accurate for short-duration impulsive
ground motions and are not recommended for ground motions that contain many
cycles of essentially harmonic excitation

EXAMPLE [Problem 13.50 of the textbook, but using metric units]:

The umbrella structure of the FIGURE (also of previous EXAMPLES) is made of
150 — mm —nominal diameter standard steel pipe. Its properties are: [ = 1171.6 cm*,
E = 200,000 MPa, mass = 28.23 kg/m, m = 680 kg, and L = 3 m.

Determine the peak response of this structure to horizontal ground motion
characterized by the design spectrum of Fig. 6.9.5 (for 5% damping) scaled to 0.20g
peak ground acceleration. Using the SRSS combination rule, estimate:

(a) displacements U4, U;, and U3, and
(b) the bending moments at the base of the column and at location a of the beam.
SOLUTION:

Weight of the pipe (We consider: g = 9.81 m/s?; recall that: 1 N = 1 kg X 1(522))
3 x 3m x 28.23 %4 —Xyg = 2,492.43 N,

The weight of the concentrated masses is:



m
(3+1+1)mg=5-680kg-9.815 = 33,354 N

Notice that the weight of the structural members is very small compared to the weight of
the concentrated masses; thus we ignore it.

Compute the characteristic periods of the structure (1 Pa = 1 N/m?):

w;y = 0.5259 /% w, = 1.6135 /% ws = 1.7321 /%
2x1011( 2 )x1171.6x10-8m*
[ (mﬁv)_xz T 11.2971 (1)
mL 680(TS)><(3)3m3 s

wy =5.927 (1) w, =17.951 (") w; =19.634 ()

N

T, =1,06s T, =0.35s T; =0.32s

For the above values of the natural periods of the structure, the design spectrum of FIG.
6.9.5 gives

A =02 X % =03409 = D, =95cm

A, =02x271g=05429g = D,=17cm
A;=02%x271g=05429g = Dy;=14cm

Recall that we have previously determined that
0.397 0.603 0

u(t) =4-0.774¢ D, (t) +3 0.774;D,(t) +30¢ D5(t)
0.774 —-0.774 0

Therefore, the peak modal responses of displacement are:

0.397 3,77
u; = max(uy(t)) ={-0.774{ x 9.5 ={-7,35{ cm
‘ 0.774 7,35

0.603 1.03
u, = mtax(ul(t)) =] 0.774{x 1,7 ={ 1.32¢{ cm

—0.774 —1.32
uq u, uz SRSS
3,77 1.03 0 3.91
—7,35tcm 1.32ycm 30;cm 37.47;cm
7,35 —-1.32 0 7.47

Recall that for horizontal excitation, modal components of the effective earthquake

forces S are

1.985m 3.015m 0
$1 =1-0.774m; S, =4 0.774m; s3 =10
0.774m —0.774m 0

Peak responses in the nth mode are induced by the equivalent static forces f,, =
Shln:



1.985m 0.6749 4502
f, =s,4, = {—0.774m>0.340g = {—0.2632}mg = {—1.755}kN
0.774m 0.2632 1.755
3.015m 1.6341 10.901
f, = 5,4, ={ 0.774m} 0.542g ={ 0.4195}mg ={ 2.798} kN
—0.774m —0.4195 —2.798
0 0
£, = sy, = {o}o.mg _ {0} N
0 0

We subject the structure to forces f, = 8,4, we perform static analysis of the

structure and we obtain the peak values (M), & (Mp)y, of the bending moments
due to each mode:

Mode1l Mode2 Mode3 SRSS
M) no 5.265 7.829 0 9.435

(Mp)n 24.036 15915 0  28.827

Comment

In evaluating the accuracy of the estimates based on the SRSS rule, one obvious choice is
to compute the time history response and compare the SRSS estimates with the peak
values of the time-history response. The other option is to obtain estimates based on the
CQC combination rule and compare them with the SRSS results. We observe that the
periods of the 2™ and 3™ modes are very close (0.35 s vs. 0.32's). As a consequence we
would expect the cross-terms involving these two modes to make a significant
contribution. All other cross-terms are expected to be significant. However, we have
shown that the 3* mode does not patticipate in the response. Consequently, the
estimates using the CQC rule are expected to be very close to those of the SRSS rule.

EXAMPLE:

The umbrella structure of the previous examples is subjected to an impulsive loading
6(t) along DOF #1 (the structure starts moving from rest).
(1) Compute the displacement response of the structure to the impulsive loading.
(2) Using the above result compute the response of the structure to a loading acting
along DOF #1 with time variation p(t).

SOLUTION:

For the given structure we know:

1 1 0 5 0 0
¢, =1-1.9492; ¢, =7 1.2826¢ ¢3=31f m=m(0 1 O
1.9492 —1.2826 1 0 0 1

The given impulsive loading may be expressed as follows:



1
p(t) =sé(t) = {0

}a(t)
0

The vector S is resolved into its modal components:

3 3
= Z Sy = Z [, m¢,
n=1 n=1

=¢is=1 L,=¢3;s=1 Ly=¢is=0
M; = ¢Tm¢, = 12.597m M, = ¢Tm¢, =8.292m M; = ¢pime; =2m
[ Ly — =0.079m™?! I L —= =0.121m™? F—L—3—0
L=, 2=y, =M, T
0.395 0.605 0
s =I''m¢, = [—0.154] s, =Lm¢, = [ 0.155} s; =me; = {0}
0.154 —0.155 0

NOTE: Above, we have evaluated the modal components of § even though this is not
necessary for computing the displacement response. The modal components of § will be
necessary to calculate any 7,5t (e.g. moments, shears, etc.) that may be needed. Specifically

@ = Z () = Z AL(0) = Z K WD (6)

Therefore, the displacement response is:

N N N
B(D) £ u(®ls) = ) un® = Y 6uObn = ) TDu(Oby
n=1 n=1 n=1
0.079m™1 0.121m™1
{—0.154m‘1}D1(t) +1 0.155m_1}D2(t)
0.154m™1 —0.155m™?

where D, (t) , (n = 1,2,3) is governed by the modal equations
Dy (8) + 28,0, D, () + 03D, () = 6()
with initial conditions

1 ¢Imu, i 1 1 ¢Imu,

1
Dy (0) = —an(0) = =0, Du(0) =.(0) =

=0
L My L My

The solution is



1
Da(t) = —e 5t sin(want) , Wan = wny/1- &2

n

Notice that the above solution is the Green’s function (unit impulse response) hy,(t) of
the governing differential equation ﬁn(t) + anwnl:tn (t) + w2h, (t) = 5(b).

The response to any other kind of loading p(t) may be computed by convolving the
above derived solution with p(t), i.e.

WOl = O *p(1) = ) Tulhn () * PO

EXAMPLE:
The umbrella structure of the previous examples is subjected to harmonic loading eifit
along DOF #1 (the structure starts moving from rest).

(1) Compute the steady-state displacement response of the structure.
(2) Using the above response results, compute the response of the structure to a
loading acting along DOF #1 with time vatiation p(t) < P(Q).
SOLUTION:
The given impulsive loading may be expressed as follows:

1
p(t) = gl = {O}eiﬂt
0

The steady-state response may be written as follows:
N

N N
u(t)|ss = Zun(t)lss = ZQn(t)lssq)n = Z [nDn (0| ssPn
n=1 n=1

n=1

where Dy, (t)[ss , (n = 1,2,3) is governed by the modal equations
Dp(®)| , + 28n@nDn (D] + 0FDp(8)lss = ™

We know that the steady-state solution of the above equation is of the form D, (t)|ss =

H, (Q)e™¥. If we substitute the above expression in the modal equation we obtain

[ Hp () + 28,0, () Hn () + 0f Hp ()] = e



R ) (@)

Hn () T wZ -+ 25,00 (1_(9)2>+i25 (Q) T (—P2) + 25,8

where: B = (Q/w,,).
Therefore, the steady-state response is
1
@
(1 - Bz) + izfnﬁ

Recall, that the function: H,(Q) = [w2 — Q% + i2&,w,Q] 1 is referred to as complex
frequency response.

D, (O)|ss = Hp(Q)e¥ = it

Now, the modal equations for the loading p(t) = sp(t) would be written as
Dn(t) + 280, D () + wiDp(8) = p(t) , (n=123)

Let us solve the above equations by using the Fouriet Transform F{ }. Let the
Fourier Transform pairs p(t) © P(Q) & D, (t) © D, (Q). Then

F{Dp(t) + 28,0, D, () + 02D, ()} = F{p(D)}
(i)?D,(Q) + 2&,w, (i) Dy, (Q) + 2D, (Q) = P(Q)

Therefore
1

D,(Q) =
n(Q) w2 — 02 + 28w, Q

P(Q)

NOTE: The Fourier Transform D,, () of Dy, (t) is the product of the complex
frequency response function H,({)) times the Fourier Transform of the time variation

of the loading p(t) < P(Q).

The response Dy, (t) in the time domain is obtained by inverse Fourier Transform

FY k
_ 1 . 1 [ P@erior
Dn(t) = :F_l{Dn('Q')} - % f Dn(ﬂ)e+lﬂt da = % f (1)721 - 0%+ iZEn(DnQ a0

In the previous EXAMPLE we derived the response to an arbitrary loading p(t) =
Sp (t):

N
U(Olpe) = B * PO = ) Tulhn(®) * p(O]
n=1

If we take the Fourier Transform of the above expression, we have



N
Flu(®)ly} = Fh) *pt)} = F Z Lulhn () * p(t)]¢n}
n=1

N
(D)oo = BO) P = ) T[;n(@) - P@)]
Evidently
N
B = ) T @n
n=1

The above result could have been derived by taking the Fourier Transform of the
following expression that we have derived in the previous EXAMPLE:

N
h()) £ u(®lse) = ) TaDa(O)b
n=1
N
Fh()} = T{u(t)ls(t)} =F {Z FnDn(t)(I)n}
n=1

N
h() = 4@l = ) LD,@b,
n=1




