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FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

Equation of Motion: mii + ku =0
Initial Conditions: uy=u(0) , wu, =u(0)

As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution u =
$p sin(wt + 6) in which ¢ and w satisfy the Generalized Eigenvalue Problent.

k¢ = Amé )

where: 1 = w?

For an N -DOF system, equation (1) gives N values of 4, all of which are real and positive but may
not be distinct.

Corresponding to each eigenvalue there is an associated eigenvector. These vectors are determined
within a scalar multiple and form an orthogonal set.

In vibration analysis, the eigenvalues A, or rather their squate root w, are referred to as the frequencies and
the eigenvectors as the mode shapes (or normal modes).
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The most general solution of the free-vibration equation (homogeneous Equation of Motion) is obtained

as a superposition of the N mode shapes and can be written as:

N
u(t) = Prdn sin(wpt + 6,)
N
or u(t) = Z [A;,®, cos(w,t) + By, sin(w,t)]

n=1
N
Z [A,, cos(w,t) + By sin(w,t)] ¢,
n=1 qn(t)

Where A, & B,, (ot equivalently p,, & 8,,) ate arbitrary constants to be determined by the 2N initial
conditions (recall that N is the number of DOF’s).

Determination of the constants:

N

ut) = Z wy[—A,, sin(wy,t) + By, cos(w,t)] ¢,
n=1 qn ()
Therefore:
N N
U0 = > Ay b UO) = ) 0By b
n=1qn(0) n=1 qn(0)
It follows that:
¢, mu, . ¢, mu,
0)=—— , 0)=—
q,(0) i, 4n(0) i,

Therefore, the free vibration response is:

N
ll(t) = Z qn(t)q)n
n=1

4 (0)

n

where: g, (t) = q,,(0) cos(w,t) + sin(w,t)
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FREE VIBRATION OF SYSTEMS WITH (NON-ZERO) DAMPING

Equation of Motion: mii +cu+ku =0
Initial Conditions: uy, =u(0) , wu, =u(0)

We are seeking a solution to the above problem. Procedures to obtain the desired solution differ depending
on the form of damping: classical or non-classical, these terms are defined next.

For civil engineering structures it is reasonable to assume that the matrices m, K, & ¢ are all symmetric

and positive definite. INOTE: For the proof to be developed below it suffices to have only m positive definite
and the other two matrices, K, & €, non-negative definite.)

We are going to demonstrate that the necessary and sufficient condition for the above system to possess
natural modes of vibration, that are real-valued and identical to those of the associated undamped

system (also referred to as classical normal modes), is the following equality:

lem 'k = km!c|

or, equivalently, that (m~1K) & (m~1c) commute.

The development is based on:

CAUGHEY, T. K,, and O’KELLY, M. E. J., “Classical Normal Modes in Damped Linear Dynamic Systems,”
Journal of Applied Mechanics, ASME, 32, 1965, pp. 583-588.

Proof:

Since m is symmetric and positive definite, it is always possible to find a congruence transformation
((8]"m[®] where [@] is non-singular, ¢.g., HILDEBRAND, 1965, page 42; MEYER, 2000, page 568)

which will reduce m to an identity matrix.

HILDEBRAND, F.B. (1965). Methods of Applied Mathematics, PRENTICE-HALL

MEYER, C.D. (2000). Matrix Analysis and Applied Linear Algebra, STAM

NOTE: The reader should realize that in module #1171 we have established that the mass matrix may be written
asm = QTQ, where Q is non-singular and (QT)_1 = (Q_l)T. Therefore m = QTQ & (QT)_lmQ_1 =
| R (Q_l)TmQ_1 = L It must be evident to the reader that the non-singular matrix [@] that we are
secking is Q71 7e., [@] & QL.
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Let this transformation be:

u(®) = [0]z()

So that:
[0]"m[@] = 1
Therefore:
T . 11 ) =
[0]" /] mii+ ca+ Kku 0} = [0]"m[®]% + [0]7c[0]Z + [0]"k[O]Zz = 0
u=[0]z
I A B
Therefore:
IZ+Az+Bz = 0

Where:

A ¥ [0]7c[O]
B

2

>
=
2

Since K & ¢ are real symmetric and (at least) non-negative definite matrices, then, matrices A & B are also real
symmetric and (at least) non-negative definite.

For the system IZ + AZ + Bz = 0 to possess classical normal modes then there must exist an orthogonal

transformation [¥] (i.e., [¥]7 [¥] = I) that reduces simultaneously to diagonal form the real
symmetric matrices A & B. But such a transformation exists if and only if matrices A & B commute

(BELLMAN, 1970, page 50); Z.e.

AB = BA

BELLMAN, R. (1970/1997). Introduction to Matrix Analysis, Second Edition, SIAM

It is straightforward to obtain:
[0]'m[e] =1 = [0]"'m~'([0])*=1"t = m™ =[0e][e]"

Therefore, summarizing we have the identities:

A = [0]"c[O]
B « [0]"k[0]
m' = [e][e]"

Therefore, if the matrices A & B commute, z¢. if AB = BA | then:



Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page:5
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (12): DYNAMIC ANALYSIS & RESPONSE OF LINEAR SYSTEMS

AB = BA
[0]"c[e][6]"k[6] = [O]"k[e][6]"c[6]
[0]"cm™'k[@] = [0]"km lc[0O]
cm 'k = km™lc
m ) (m'k) = (m'k)(mlc)

Therefore, in conclusion, the necessary and sufficient condition for classical normal modes to exist in mii +

cu + Kku = 0, is that cm™ 1k = km™c¢ or, equivalently, that matrices (m~c) & (m~1K) commute.

As was stated above, let the orthogonal transformation that reduces simultaneously to diagonal form the

real symmetric matrices A & B be the following:

zt) = [Plq(®)

Therefore:
ut) = [O][¥] q)
u(t) = [0] z(t)} N (@]
2(t) = [¥lq@®) v
u@® = [®]q()]
Summarizing:
[®]"'m[®] = [¥]"[e]'m[0][¥] = [¥]'I[¥] = [¥]"[¥] = I
[@]"c[®@] = [¥]"[0]"c[e] [¥] = [¥]"A[¥]
[®]"k[®] = [¥]"[e]"k[6] [¥] [¥]"B [¥]

If classical normal modes exist (and the necessary and sufficient condition for this is: cm™*k = km™ !¢

or, equivalently, that matrices (m~1c) & (m~1K) commute), then:

[PITA[®] = diag ) s

[%]7B [¥] diag| 1,

Q.ED.m

NOTE: Transformations of the form (P A Q) ate classified according to the restrictions imposed on the
non-singular matrices P & Q. If B = (P A Q) , then matrices A & B are called equivalent matrices.

Thus:
e If P=QT, the resulting transformation, (QT A Q) , is called a congruence transformation.
e If P=Q1, the resulting transformation, (Q* A Q) , is called a similarity transformation.

e If P=Q" =Q!, the resulting transformation, (Q"* A Q) = (Q" A Q) , is called an orthogonal
transformation.

This terminology is motivated by certain geometrical considerations. We notice that an ‘orthogonal
transformation is both a ‘congruence’ and a ‘similarity’ transformation.
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FREE VIBRATION OF SYSTEMS WITH CLASSICAL DAMPING

Equation of Motion: mii +cu+ku =0
Initial Conditions: uy, =u(0) , wu, =u(0)
Classical Damping < ®Tcd = 28,0, M,

diagonal natrix

In the case of MDOF system with Classical Damping, the response/solution can be conveniently

expressed as a superposition of the N mode shapes of the undamped system.

Specifically, we formulate and solve the eigenvalue problem:

A% w?

k-m)p=0 = {(I)i,S

Then, the response of the damped system is expressed as:

N
u() = ) an()bn

Substituting the above solution in the Equation of Motion and using the orthogonality of the mode
shapes (w.n.2. m, K, & €), we obtain N uncoupled ODE’s in terms of the modal coordinates q,(t), ie.,

C.I.n(t) + anwnC.In(t) + wrleIn(t) =0 (n = 1,2, "';N)

Solving the above N uncoupled equations, we obtain:

1n(0) + & w 0
n(©) = €600 |, (0) cos(ap ) + IO S0 IO g
Dn
Tmu T mu
¢n 0 ’ qn(o) — (I)n 0
M, M,

where: Wp, = wp/1—E&2 , q,(0) =
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DYNAMIC ANALYSIS & RESPONSE OF LINEAR SYSTEMS

Undamped Linear Systems: Modal Analysis

Equation of Motion: mii + ku = p(t)
Initial Conditions: uy=u(0) , wu, =u(0)

The solution of a linear undamped MDOF system can be expanded in terms of modal contributions
(recall the modal expansion theorem):

N
u(®) = Y 4O, = ®q(t)
r=1

Substitution of the above expression of u(t) in the Equation of Motion gives:

N N
Dm0} + ) (kg (0} = p(©)

Pre-multiplying by ¢X:

N N
> (@m0} + ) (@hkd,)a- ()} = SEp(©)
r=1 r=1

Invoking the orthogonality of ¢;,’s (w.r.z. m & K):

(pnm,) i4n () + (drkdn) g, () = $rp(t)

My Kn Pp(t)

= MuG,(t) + Knqn(t) = B(t) (n=12,--,N)
P, (t)
My,

= qn(t) + wrzlchz(t) =

Thus, we have to solve N uncoupled equations of the modal coordinates subject to
the initial conditions:

$Imu, . $¢Imu,
0 = 0 =
qn( ) Mn ) Qn( ) Mn
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Damped Linear System with Classical Danping: Modal Analysis

Equation of Motion:  mii + cu + ku = p(t)
Initial Conditions: uy=u(0) , wu, =u(0)

The solution of a linear undamped MDOF system can be expanded in terms of modal contributions

(recall the modal expansion theorem):

N
u(®) = ) 4, (Od, = 2q®)

Substitution of the above expression of u(t) in the Equation of Motion gives:

N N N
D M, (03 + ) (cdrdr (O} + ) kb, (0} = PO
r=1 r=1 r=1

Pre-multiplying by ¢Z:

N N N
D (@Ime)3, (O} + ) (@hed)d- O} + ) {(@kd)a- (0} = $ip©)

Invoking the orthogonality of ¢,’s (w.n.2. m & K):

(dimd,) G, (t) + (bredy) 4,(t) + (brkd,) g, () = drp(t)

Mp, Cn Kn Pr(t)

= Mnéin(t) + CnC.In(t) + ann(t) = Pn(t) (TL =12, "':N)
P, (t)
M,

= () + 2604, (1) + wiq () =

Thus, we have to solve N uncoupled equations of the modal coordinates subject to
the initial conditions:

¢;mu, . ¢ mu,
O = , 0 =
q,(0) A G, (0) A
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ADDITIONAL ORTHOGONALITY CONDITIONS

Before establishing the conditions for damping orthogonality, we need to develop a series of additional
mode shape orthogonality conditions similar to those given by:

We start with the eigenvalue problem:

k¢; = ,;me;

—_—

¢Tkm ' kd; = 4; I km ' m; = 4;p]kd; =0 , (i #))

¢ km " ko; = 4; d{km ' md; = i p{kd; = AF , (=)
[assuming ¢;’s are orthonormal < ¢ md; = 1]

Similarly:
¢ km'km ' k¢; = 4; ] km ' km ' m; = 1,pTkm'kp; =0 , (i #))
¢ km'km ™ kd; = ; ¢/ km'km ' m¢; = 4, g km'kp; =4}, (=)
In general:

T “1\aledy. — L#] T 1Ny, — ja+1 1=j
@) (k™) = 0 {a=0,1,2,"',°0} - @i (m™) e = & {a=0,1,2,---,oo}

Then, it follows that:
I

¢ mm-1 (km™")%k¢; = 0

o (=
&7 (km™1)kp; = 0 {a=011¢2]~- Oo} N {=> ¢Tmm~? (km=)(km™1) - (km~!) kép; = 0
) ) ) ) I
\

a times
= ¢ m(m 1K) p; =0
Similarly:
I
—_——
¢! mm~1! (km™1)%%k¢; = 1¢*!

(
o | =
o] (km™)%k; = 24+ {a 01z oo} 5 o @Tmmt Gm ) kmD) - (km ) ke, = A8
e | a times
k: ¢?m(m—1k)a+1¢i — Agl+1
In general:
T 1\ D ey,  — L#]
jmanoe = 0y o7l
PImm )Py, = 2 ')
t ¢ t = 011:21 *+, 00
[assuming the @;’s are orthonormalw.r.t. m < ¢ mep; = 1
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We start again with the eigenvalue problem:

ko; = ;;mo; M

(1) = ¢;mk ' kd; = 4; ] mk ' m; = ¢ me; = 1;¢]m(m k)" P;
0

SPmm 10 4 =0 {; 7]

A #0

(1) = ¢{mk " kd; = 4; ¢ mk ' m; = ¢/ m¢; = 1;p/m(m~'k) " ¢,
1
[mode shapes are orthonormal w.r.t.m|

T “11) -1y, — 3-1 L=]
o, m(m k)" d; = 4; {ﬂ.ii()

Similarly:
(1) = ¢mk'mk ' k¢; = 4; ¢ mk'mk ' m¢p; = ¢Tm(m k) d; = ;T m(m k),
0

T —11\-2¢hy . — L#]
fmm 107 =0 {} L)

(1) = ¢/ mk'mk™ ' k¢; = 4; ¢ mk'mk ' m¢p; = ¢/ m(m'K)'¢; = 4;¢p] m(m~'k) 2,
At

T -2y — =2 (E=T
oTmm 2 =22 {; T/

Thus, by induction we obtain:
i+j A4;#0

jm(m~) ;= 0 {b = _1,_2’...’_00} , ¢Im(m k)P, = 2?7 {b i=j A4 #0 }

= _1J _21 e, —00

Thus, combining the above expressions for b negative with the expressions we derived above for b positive,
we get:

0 i+

i

Simm R g = |

[mode shapes are orthonormal w.r.t.m < ¢ mé; = 1]
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CLASSICAL DAMPING MATRIX

Classical damping matrix is an appropriate idealization if similar damping mechanisms throughout the
structure (e.g., multi-story building with a similar structural system and structural materials over its height).

It should be noted that when a system is assumed to possess proportional damping, the mode
superposition method can be used in the analysis and the damping matrix is not required, provided that a
damping ratio can be specified for each mode that has been included.

It would therefore appear that there is no need to specify a damping matrix explicitly for a system possessing

classical damping.

There, are however, situations when a damping matrix is required.

For example, for the calculation of the response of structures beyond their linearly elastic range
during earthquakes, numerical time integration must be used and the damping matrix has to be specified.

When a (classical) damping matrix is required, it should be constructed in such a manner that it
would lead to specified values for the damping ratio in some or all of the modes. The construction of
such a matrix requires a study of the conditions of damping orthogonality.
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TABLE RECOMMENDED DAMPING VALUES
Type and Condition Damping Ratio
Stress Level of Structure (%)
Working stress, Welded steel, prestressed 2-3
no more than about concrete, well-reinforced
1 yield point concrete (only slight cracking)
i Reinforced concrete with 3-5
considerable cracking
Bolted and/or riveted steel, 5-7
wood structures with nailed or
bolted joints
At or just below Welded steel, prestressed 5-7
yield point concrete (without complete
loss in prestress)
Prestressed concrete with no 7-10
prestress left
Reinforced concrete 7-10
Bolted and/or riveted steel, 10-15

wood structures with
bolted joints

Wood structures with nailed 15-20
joints

Source: N. M. Newmark, and W. J. Hall, Earthquake Spectra and Design, Earth-
guake Engineering Research Institute, Berkeley, Calif., 1982.
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RAYLEIGH DAMPING

We can use the orthogonality relationships derived previously to develop a damping matrix that will satisfy

the condition of orthogonality.

Mass Proportional Damping:
c=aom (units of [ay] = [T]™1)

Therefore:

Pled; = admd)
- 0 def =
Ci = ZEl-a)iMi

¢iTC¢i = Q ¢iTm¢i
N—— | S—

ay = 2§;w;

Once a value of @ has been selected as above, the damping in any other mode will be given by:

wj

§ = 5- = &

Stiffness Proportional Danmping:
c=a;k (unitsof [a;] =[T])

Therefore:
. . ¢iTC¢i = ¢iTk¢i \I
¢ichd;, = a; ¢k, ) Ci a;w?M; ¥ (
— i#j) , i=j
C; = 2¢w0;M; Y ow )

Having selected a value of @ as above, the damping ratio for any other mode can be determined:

§j = ij% = §i—

wj

Cl Ml (l. o
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Rayleigh Damping:

As a more general case, we can select the damping matrix to be a linear combination of the mass and the
stiffness matrices, so that:

C= a0m+a1k

The above equation has two free parameters, @y & a;.

We can thus specify the damping ratio for any two modes, say the i" and j**.

Then:
¢! c; = 2§ w0 M; = agM; + a,wiM;

exa
llwi i Qo

21 1 241
\o )

The above equation can be solved for ag & a4 :

o = Zwiwj(fiwj - fjwi) o = Z(Sja)j — fiwi)
i (0f — }) C T (0 -w))

ot, in matrix form:

The damping ratio of any other mode, say the nt" mode, is:

1 1
$n = E(“O w_ + alwn)

n
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p Agm

7 o3 ms

ﬁ = Us
7

Y

7 Tty m,

ﬁ—E_ . 2 = U,
7

7

7 @My m,

é_'E - = U4
4

2

7

/

e

mass — proportional

damping
i ] C=aym a8 s e
=a,/(2w "k
fn O/( n) gn £ alwn/z
W, oy @3 ®f

Natural frequencies w,,

$n

aks;

ak,

aky

ST L AP LA 7

damping

stiffness — proportional

Rayleigh Damping

dp Qg Wy
fn =g+
2w, 2
-
-
-
Cd
\ o
\ o
\ %
\ o
N\ ’6'
~
P
- - .
- P - - - - -
w; CDJ

FIGURE: Variation of modal damping ratios with natural frequency: (a) mass-proportional damping and

stiffness-proportional damping; (b) Rayleigh damping.
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Caughey (or Exctended Rayleigh) Damping:

The mass and stiffness matrices, m & K respectively, used to formulate Rayleigh damping are not the only
matrices to which the orthogonality relations of the (undamped system) mode-shapes apply; in fact, it has
been demonstrated earlier that an infinite number of matrices have this property.

Therefore, a classical damping matrix can be made up of any combination of these matrices, as follows:

C=m2ag[m_1k]£=2c{, £f=-.,-2,-1,0+1,+2,-- M
t ?

It is evident that Rayleigh damping is given by Equation (1) above if only the terms £ = 0 and £ =1
are retained in the series.

We have demonstrated previously that:
T -11.1¢ — .27
¢;mm K[ ¢p; = w*M;

Therefore:

Cj £ = 5]2_

djch; = z a0’ M; 1
~————— 2¢
2,
— — J)

The above equation provides the means for evaluating the constants a, to give the desired damping at
any specified number (up to N for N-DOF system) of modal frequencies.

As many terms must be included in the series as there are specified modal damping ratios; then the

constants are given by the solution of the set of equations, one written for each damping ratio.

In principle, the values of £ can be anywhere in the range —00 < £ < 400, but in practice it is desirable
to select values of these exponents as close to zero as possible.
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For example, to evaluate the coefficients that will provide specified damping ratios in any four modes having

frequencies Wy, Wy, W, wp the equations resulting from:

1
— 2¢
5= z—ij @

Using the terms for £ = —1,0, +1, +2 are:

$m /1/(‘)72n 1/ wm wn wrgn\ a_q
fn — ll 1/(1)121 1/wn Wn w% | ao
$o 21 1/w? 1/w, w, o3 ay
$p \1/(»5 1w, w, wg/ @2

When the coefficients a_q, &g, &1, @3 have been evaluated by solving the above system of equations, the
classical damping matrix that provides the four required damping ratios at the four specified frequencies is:

c =m{a_;[m K]t + q,I + a;[m1K] + a,[m1Kk]?}

FIGURE (a) below illustrates the relation between damping ratio and frequency that would result from
this matrix.

Four (4) term solution Three (3) term solution
4 L 3

Mo M

| |

- e

= =

g N

)

2 g

g b | | = |

S | I { I S r

Q | I f I Q t
| ! | | !
i | L ! - |

Frequency w Frequency w
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To simplify FIGURE (a) it has been assumed that the same damping ratio, &, , was specified for all four (4)
frequencies; however, each of the damping ratios could have been specified arbitrarily.

Also, Wy, has been taken as the fundamental mode frequency, wy, and w), is intended to approximate the

frequency of the highest mode that contributes significantly to the response, while w;,, and w, are
spaced about equally within the frequency range.

It is evident in FIGURE (a) that the damping ratio remains close to the desited value &, throughout the
frequency range, being exact at the four specified frequencies and ranging slightly above or below at other
frequencies in the range. It is important to note, however, that the damping increases monotonically with

frequency for frequencies increasing above w,,. This has the effect of excluding any significant contribution

from any modes with frequencies much greater than Wp-

An even more important point to note is the consequence of including only three (3) terms in the derivation
of the damping matrix ¢ [FIGURE (b)].

The serious defect of this case is that the damping decreases monotonically for w, < w and negative
damping is indicated for all the highest modal frequencies. This is physically unacceptable.

The general implication of this observation is that CAUGHEY damping may be used effectively only

if an even number of terms is included in the series expression of C.



