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FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮 𝐤𝐮 𝟎
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮 𝐮 0 , 𝐮 𝐮 0

 

As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution 𝐮
𝛟ρ sin 𝜔𝑡 𝜃  in which 𝛟 and 𝜔 satisfy the Generalized Eigenvalue Problem:  

𝐤𝛟 𝜆𝐦𝛟 (1) 
 
where:  𝜆 𝜔  

 

For an 𝑁 -DOF system, equation (1) gives 𝑁 values of  𝜆 , all of which are real and positive but may 
not be distinct. 

Corresponding to each eigenvalue there is an associated eigenvector. These vectors are determined 
within a scalar multiple and form an orthogonal set. 

In vibration analysis, the eigenvalues 𝜆, or rather their square root 𝜔, are referred to as the frequencies and 
the eigenvectors as the mode shapes (or normal modes). 

 

  



Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 2 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(12):	DYNAMIC	ANALYSIS	&	RESPONSE	OF	LINEAR	SYSTEMS 

 
The most general solution of the free-vibration equation (homogeneous Equation of Motion) is obtained 
as a superposition of the 𝑁 mode shapes and can be written as:  

𝑜𝑟

𝐮 𝑡 𝜌 𝛟 sin 𝜔 𝑡 𝜃

𝐮 𝑡 𝐴 𝛟 cos 𝜔 𝑡 𝐵 𝛟 sin 𝜔 𝑡

𝐴 cos 𝜔 𝑡 𝐵 sin 𝜔 𝑡 𝛟

 

Where 𝐴  & 𝐵  (or equivalently  𝜌  & 𝜃 ) are arbitrary constants to be determined by the 2𝑁 initial 

conditions (recall that 𝑁 is the number of DOF’s). 

 

Determination of the constants: 

𝐮 𝑡 𝜔 𝐴 sin 𝜔 𝑡 𝐵 cos 𝜔 𝑡 𝛟  

Therefore: 

𝐮 0 𝐴 𝛟 , 𝐮 0 𝜔 𝐵 𝛟  

It follows that: 

𝑞 0
𝛟 𝐦𝐮

𝑀
, 𝑞 0

𝛟 𝐦𝐮
𝑀

 

Therefore, the free vibration response is: 

𝐮 𝑡 𝑞 𝑡 𝛟

where: 𝑞 𝑡 𝑞 0 cos 𝜔 𝑡
𝑞 0

𝜔
sin 𝜔 𝑡
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FREE VIBRATION OF SYSTEMS WITH (NON-ZERO) DAMPING  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮 𝐜𝐮 𝐤𝐮 𝟎
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮 𝐮 0 , 𝐮 𝐮 0

 

We are seeking a solution to the above problem. Procedures to obtain the desired solution differ depending 
on the form of damping: classical or non-classical; these terms are defined next. 

 

For civil engineering structures it is reasonable to assume that the matrices 𝐦, 𝐤, & 𝐜 are all symmetric 
and positive definite. [NOTE: For the proof to be developed below it suffices to have only 𝐦 positive definite 
and the other two matrices, 𝐤, & 𝐜, non-negative definite.] 

 

We are going to demonstrate that the necessary and sufficient condition for the above system to possess 
natural modes of vibration, that are real-valued and identical to those of the associated undamped 
system (also referred to as classical normal modes), is the following equality: 

𝐜𝐦 𝐤 𝐤𝐦 𝐜  

or, equivalently, that 𝐦 𝐤  & 𝐦 𝐜  commute. 
____________________ 
The development is based on: 

CAUGHEY, T. K., and O’KELLY, M. E. J., “Classical Normal Modes in Damped Linear Dynamic Systems,” 
Journal of Applied Mechanics, ASME, 32, 1965, pp. 583–588.     

____________________ 

Proof: 

Since 𝐦 is symmetric and positive definite, it is always possible to find a congruence transformation 

( 𝚯 𝐦 𝚯  where 𝚯  is non-singular, e.g., HILDEBRAND, 1965, page 42; MEYER, 2000, page 568) 
which will reduce 𝐦 to an identity matrix. 

HILDEBRAND, F.B. (1965). Methods of Applied Mathematics, PRENTICE-HALL 

MEYER, C.D. (2000). Matrix Analysis and Applied Linear Algebra, SIAM 
 
____________________ 
NOTE: The reader should realize that in module #11 we have established that the mass matrix may be written 

as 𝐦 𝐐 𝐐, where 𝐐 is non-singular and 𝐐𝑻 𝟏
𝐐 𝟏 𝑻

. Therefore 𝐦 𝐐 𝐐 ⇔ 𝐐𝑻 𝟏
𝐦𝐐 𝟏

𝐈 ⇔ 𝐐 𝟏 𝑻
𝐦𝐐 𝟏 𝐈. It must be evident to the reader that the non-singular matrix 𝚯  that we are 

seeking is 𝐐 𝟏 i.e., 𝚯 ≝ 𝐐 𝟏. 
____________________ 
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Let this transformation be: 

𝐮 𝑡 𝚯  𝐳 𝑡  

So that: 

𝚯 𝐦 𝚯 𝐈 

 

Therefore: 

𝚯 ∙| 𝐦𝐮 𝐜𝐮 𝐤𝐮 𝟎
𝐮 𝚯 ∙ 𝐳

⇒ 𝚯 𝐦 𝚯
𝐈

𝐳 𝚯 𝐜 𝚯
𝐀

𝐳 𝚯 𝐤 𝚯
𝐁

𝐳 𝟎 

Therefore: 

𝐈𝐳 𝐀𝐳 𝐁𝐳 𝟎 

Where: 

𝐀 ≝ 𝚯 𝐜 𝚯
𝐁 ≝ 𝚯 𝐤 𝚯

 

Since 𝐤 & 𝐜 are real symmetric and (at least) non-negative definite matrices, then, matrices 𝐀 & 𝐁 are also real 
symmetric and (at least) non-negative definite. 

For the system 𝐈𝐳 𝐀𝐳 𝐁𝐳 𝟎 to possess classical normal modes then there must exist an orthogonal 

transformation 𝚿  (i.e., 𝚿 𝚿 𝐈) that reduces simultaneously to diagonal form the real 

symmetric matrices 𝐀 & 𝐁. But such a transformation exists if and only if matrices 𝐀 & 𝐁 commute 
(BELLMAN, 1970, page 56); i.e. 

𝐀𝐁 𝐁𝐀 

BELLMAN, R. (1970/1997). Introduction to Matrix Analysis, Second Edition, SIAM 

It is straightforward to obtain: 

𝚯 𝐦 𝚯 𝐈 ⇒ 𝚯 𝐦 𝚯 𝐈 ⇒ 𝐦 𝚯 𝚯  

Therefore, summarizing we have the identities: 

𝐀 ≝ 𝚯 𝐜 𝚯
𝐁 ≝ 𝚯 𝐤 𝚯

𝐦 𝚯 𝚯
 

Therefore, if the matrices 𝐀 & 𝐁 commute, i.e. if   𝐀𝐁 𝐁𝐀 , then: 
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𝐀𝐁 𝐁𝐀

𝚯 𝐜 𝚯 𝚯 𝐤 𝚯 𝚯 𝐤 𝚯 𝚯 𝐜 𝚯
𝚯 𝐜𝐦 𝐤 𝚯 𝚯 𝐤𝐦 𝐜 𝚯

𝐜𝐦 𝐤 𝐤𝐦 𝐜
𝐦 𝐜 𝐦 𝐤 𝐦 𝐤 𝐦 𝐜

 

Therefore, in conclusion, the necessary and sufficient condition for classical normal modes to exist in 𝐦𝐮
𝐜𝐮 𝐤𝐮 𝟎 , is that 𝐜𝐦 𝐤 𝐤𝐦 𝐜 or, equivalently, that matrices 𝐦 𝐜  & 𝐦 𝐤  commute.  

As was stated above, let the orthogonal transformation that reduces simultaneously to diagonal form the 
real symmetric matrices 𝐀 & 𝐁 be the following: 

𝐳 𝑡 𝚿  𝐪 𝑡  
Therefore: 

𝐮 𝑡 𝚯  𝐳 𝑡
𝐳 𝑡 𝚿  𝐪 𝑡

⇒

𝐮 𝑡 𝚯  𝚿
𝚽

 𝐪 𝑡

⇓
𝐮 𝑡 𝚽  𝐪 𝑡

 

Summarizing: 

𝚽 𝐦 𝚽 𝚿 𝚯 𝐦 𝚯  𝚿 𝚿 𝐈 𝚿 𝚿  𝚿 𝐈 
𝚽 𝐜 𝚽 𝚿 𝚯 𝐜 𝚯  𝚿 𝚿 𝐀 𝚿
𝚽 𝐤 𝚽 𝚿 𝚯 𝐤 𝚯  𝚿 𝚿 𝐁 𝚿

 

If classical normal modes exist (and the necessary and sufficient condition for this is: 𝐜𝐦 𝐤 𝐤𝐦 𝐜 

or, equivalently, that matrices 𝐦 𝐜  & 𝐦 𝐤  commute), then: 

𝚿 𝐀 𝚿 𝑑𝑖𝑎𝑔
⋱

𝜆
⋱

𝚿 𝐁 𝚿 𝑑𝑖𝑎𝑔
⋱

𝜆
⋱

 

Q.E.D.■ 
____________________ 
NOTE: Transformations of the form 𝐏 𝐀 𝐐  are classified according to the restrictions imposed on the 
non-singular matrices 𝐏 & 𝐐. If   𝐁 𝐏 𝐀 𝐐  , then matrices 𝐀 & 𝐁 are called equivalent matrices. 

Thus:  

 If   𝐏 𝐐  , the resulting transformation, 𝐐  𝐀 𝐐  , is called a congruence transformation. 

 If   𝐏 𝐐  , the resulting transformation, 𝐐  𝐀 𝐐  , is called a similarity transformation. 

 If   𝐏 𝐐 𝐐  , the resulting transformation, 𝐐  𝐀 𝐐 𝐐  𝐀 𝐐  , is called an orthogonal 
transformation. 

This terminology is motivated by certain geometrical considerations. We notice that an ‘orthogonal’ 
transformation is both a ‘congruence’ and a ‘similarity’ transformation. 
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FREE VIBRATION OF SYSTEMS WITH CLASSICAL DAMPING 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮 𝐜𝐮 𝐤𝐮 𝟎
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮 𝐮 0 , 𝐮 𝐮 0

 

𝑪𝒍𝒂𝒔𝒔𝒊𝒄𝒂𝒍 𝑫𝒂𝒎𝒑𝒊𝒏𝒈 ⟺ 𝚽 𝐜𝚽
⋱

2𝜉 𝜔 𝑀
⋱

𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍 𝒏𝒂𝒕𝒓𝒊𝒙

 

In the case of MDOF system with Classical Damping, the response/solution can be conveniently 
expressed as a superposition of the 𝑁 mode shapes of the undamped system. 

Specifically, we formulate and solve the eigenvalue problem: 

𝐤 𝜆𝐦 𝛟 𝟎 ⟹ 𝜆 ≝ 𝜔
𝛟 ′𝑠

 

Then, the response of the damped system is expressed as: 

𝐮 𝑡 𝑞 𝑡 𝛟  

Substituting the above solution in the Equation of Motion and using the orthogonality of the mode 

shapes (w.r.t. 𝐦, 𝐤, & 𝐜), we obtain 𝑁 uncoupled ODE’s in terms of the modal coordinates  𝑞 𝑡 , i.e., 

𝑞 𝑡 2𝜉 𝜔 𝑞 𝑡 𝜔 𝑞 𝑡 0 𝑛 1,2, ⋯ , 𝑁  

Solving the above 𝑁 uncoupled equations, we obtain: 

𝑞 𝑡 𝑒 𝑞 0 cos 𝜔 𝑡
𝑞 0 𝜉 𝜔 𝑞 0

𝜔
sin 𝜔 𝑡

where: 𝜔 𝜔 1 𝜉 , 𝑞 0
𝛟 𝐦𝐮

𝑀
, 𝑞 0

𝛟 𝐦𝐮
𝑀
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DYNAMIC ANALYSIS & RESPONSE OF LINEAR SYSTEMS 

Undamped Linear Systems: Modal Analysis 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮 𝐤𝐮 𝐩 𝑡
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮 𝐮 0 , 𝐮 𝐮 0

 

The solution of a linear undamped MDOF system can be expanded in terms of modal contributions 
(recall the modal expansion theorem): 

𝐮 𝑡 𝑞 𝑡 𝛟 𝚽𝐪 𝑡  

Substitution of the above expression of  𝐮 𝑡   in the Equation of Motion gives: 

𝐦𝛟 𝑞 𝑡 𝐤𝛟 𝑞 𝑡 𝐩 𝑡  

Pre-multiplying by 𝛟 : 

𝛟 𝐦𝛟 𝑞 𝑡 𝛟 𝐤𝛟 𝑞 𝑡 𝛟 𝐩 𝑡  

Invoking the orthogonality of  𝛟 ’s (w.r.t. 𝐦 & 𝐤): 

𝛟 𝐦𝛟 𝑞 𝑡 𝛟 𝐤𝛟 𝑞 𝑡 𝛟 𝐩 𝑡  

⟹ 𝑀 𝑞 𝑡 𝐾 𝑞 𝑡 𝑃 𝑡 𝑛 1,2, ⋯ , 𝑁

⟹ 𝑞 𝑡 𝜔 𝑞 𝑡
𝑃 𝑡

𝑀
 

Thus, we have to solve 𝑁 uncoupled equations of the modal coordinates subject to 
the initial conditions: 

𝑞 0
𝛟 𝐦𝐮

𝑀
, 𝑞 0

𝛟 𝐦𝐮
𝑀
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Damped Linear System with Classical Damping: Modal Analysis 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮 𝐜𝐮 𝐤𝐮 𝐩 𝑡
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮 𝐮 0 , 𝐮 𝐮 0

 

The solution of a linear undamped MDOF system can be expanded in terms of modal contributions 
(recall the modal expansion theorem): 

𝐮 𝑡 𝑞 𝑡 𝛟 𝚽𝐪 𝑡  

Substitution of the above expression of  𝐮 𝑡   in the Equation of Motion gives: 

𝐦𝛟 𝑞 𝑡 𝐜𝛟 𝑞 𝑡 𝐤𝛟 𝑞 𝑡 𝐩 𝑡  

Pre-multiplying by 𝛟 : 

𝛟 𝐦𝛟 𝑞 𝑡 𝛟 𝐜𝛟 𝑞 𝑡 𝛟 𝐤𝛟 𝑞 𝑡 𝛟 𝐩 𝑡  

Invoking the orthogonality of  𝛟 ’s (w.r.t. 𝐦 & 𝐤): 

𝛟 𝐦𝛟 𝑞 𝑡 𝛟 𝐜𝛟 𝑞 𝑡 𝛟 𝐤𝛟 𝑞 𝑡 𝛟 𝐩 𝑡  

⟹ 𝑀 𝑞 𝑡 𝐶 𝑞 𝑡 𝐾 𝑞 𝑡 𝑃 𝑡 𝑛 1,2, ⋯ , 𝑁

⟹ 𝑞 𝑡 2𝜉 𝜔 𝑞 𝑡 𝜔 𝑞 𝑡
𝑃 𝑡

𝑀
 

Thus, we have to solve 𝑁 uncoupled equations of the modal coordinates subject to 
the initial conditions: 

𝑞 0
𝛟 𝐦𝐮

𝑀
, 𝑞 0

𝛟 𝐦𝐮
𝑀
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ADDITIONAL ORTHOGONALITY CONDITIONS 

Before establishing the conditions for damping orthogonality, we need to develop a series of additional 
mode shape orthogonality conditions similar to those given by: 

𝛟 𝐦𝛟 0 , 𝛟 𝐤𝛟 0 𝜆 𝜆  
We start with the eigenvalue problem: 

𝐤𝛟 𝜆 𝐦𝛟  

𝛟 𝐤𝐦 𝐤𝛟 𝜆 𝛟 𝐤𝐦 𝐦𝛟 𝜆 𝛟 𝐤𝛟 0 , 𝑖 𝑗

𝛟 𝐤𝐦 𝐤𝛟 𝜆 𝛟 𝐤𝐦 𝐦𝛟 𝜆 𝛟 𝐤𝛟 𝜆 , 𝑖 𝑗
 

[assuming 𝛟 ’s are orthonormal ⟺ 𝛟 𝐦𝛟 1] 
Similarly: 

𝛟 𝐤𝐦 𝐤𝐦 𝐤𝛟 𝜆 𝛟 𝐤𝐦 𝐤𝐦 𝐦𝛟 𝜆 𝛟 𝐤𝐦 𝐤𝛟 0 , 𝑖 𝑗

𝛟 𝐤𝐦 𝐤𝐦 𝐤𝛟 𝜆 𝛟 𝐤𝐦 𝐤𝐦 𝐦𝛟 𝜆 𝛟 𝐤𝐦 𝐤𝛟 𝜆 , 𝑖 𝑗
 

In general: 

𝛟 𝐤𝐦 𝐤𝛟 0
𝑖 𝑗

𝑎 0,1,2, ⋯ , ∞ , 𝛟 𝐤𝐦 𝐤𝛟 𝜆
𝑖 𝑗

𝑎 0,1,2, ⋯ , ∞  

Then, it follows that: 

𝛟 𝐤𝐦 𝐤𝛟 0
𝑖 𝑗

𝑎 0,1,2, ⋯ , ∞ →

⎩
⎪
⎨

⎪
⎧⟹ 𝛟 𝐦𝐦 𝐤𝐦 𝐤𝛟 0

⟹ 𝛟 𝐦𝐦 𝐤𝐦 𝐤𝐦 ⋯ 𝐤𝐦
 

𝐤𝛟 0

⟹ 𝛟 𝐦 𝐦 𝐤 𝛟 0

 

Similarly: 

𝛟 𝐤𝐦 𝐤𝛟 𝜆
𝑖 𝑗

𝑎 0,1,2, ⋯ , ∞ →

⎩
⎪
⎨

⎪
⎧⟹ 𝛟 𝐦𝐦 𝐤𝐦 𝐤𝛟 𝜆

⟹ 𝛟 𝐦𝐦 𝐤𝐦 𝐤𝐦 ⋯ 𝐤𝐦
 

𝐤𝛟 𝜆

⟹ 𝛟 𝐦 𝐦 𝐤 𝛟 𝜆

 

In general: 

𝛟 𝐦 𝐦 𝐤 𝛟 0
𝑖 𝑗

𝑏 0,1,2, ⋯ , ∞

𝛟 𝐦 𝐦 𝐤 𝛟 𝜆
𝑖 𝑗

𝑏 0,1,2, ⋯ , ∞

 

[assuming the 𝛟 ’s are orthonormal w.r.t. 𝐦 ⟺ 𝛟 𝐦𝛟 1] 

 

  



Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 10 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(12):	DYNAMIC	ANALYSIS	&	RESPONSE	OF	LINEAR	SYSTEMS 

 
We start again with the eigenvalue problem: 

𝐤𝛟 𝜆 𝐦𝛟 (1) 
 

1 ⟹ 𝛟 𝐦𝐤 𝐤𝛟 𝜆 𝛟 𝐦𝐤 𝐦𝛟 ⟹ 𝛟 𝐦𝛟 𝜆 𝛟 𝐦 𝐦 𝐤 𝛟

∴ 𝛟 𝐦 𝐦 𝐤 𝛟 0
𝑖 𝑗

𝜆 0

 

1 ⟹ 𝛟 𝐦𝐤 𝐤𝛟 𝜆 𝛟 𝐦𝐤 𝐦𝛟 ⟹ 𝛟 𝐦𝛟 𝜆 𝛟 𝐦 𝐦 𝐤 𝛟

𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑝𝑒𝑠 𝑎𝑟𝑒 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙 𝑤. 𝑟. 𝑡. 𝐦

∴ 𝛟 𝐦 𝐦 𝐤 𝛟 𝜆
𝑖 𝑗

𝜆 0

 

Similarly: 

1 ⟹ 𝛟 𝐦𝐤 𝐦𝐤 𝐤𝛟 𝜆 𝛟 𝐦𝐤 𝐦𝐤 𝐦𝛟 ⟹ 𝛟 𝐦 𝐦 𝐤 𝛟 𝜆 𝛟 𝐦 𝐦 𝐤 𝛟

∴ 𝛟 𝐦 𝐦 𝐤 𝛟 0
𝑖 𝑗

𝜆 0

 

1 ⟹ 𝛟 𝐦𝐤 𝐦𝐤 𝐤𝛟 𝜆 𝛟 𝐦𝐤 𝐦𝐤 𝐦𝛟 ⟹ 𝛟 𝐦 𝐦 𝐤 𝛟 𝜆 𝛟 𝐦 𝐦 𝐤 𝛟

∴ 𝛟 𝐦 𝐦 𝐤 𝛟 𝜆
𝑖 𝑗

𝜆 0

 

Thus, by induction we obtain: 

𝛟 𝐦 𝐦 𝐤 𝛟 0
𝑖 𝑗 𝜆 0

𝑏 1, 2, ⋯ , ∞
, 𝛟 𝐦 𝐦 𝐤 𝛟 𝜆

𝑖 𝑗 𝜆 0
𝑏 1, 2, ⋯ , ∞

 

 

Thus, combining the above expressions for 𝑏 negative with the expressions we derived above for 𝑏 positive, 
we get: 

𝛟 𝐦 𝐦 𝐤 𝛟
0 𝑖 𝑗

𝜆 𝑖 𝑗
∞ 𝑏 ∞

𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑝𝑒𝑠 𝑎𝑟𝑒 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙 𝑤. 𝑟. 𝑡. 𝐦 ⟺ 𝛟 𝐦𝛟 1
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CLASSICAL DAMPING MATRIX 

Classical damping matrix is an appropriate idealization if similar damping mechanisms throughout the 
structure (e.g., multi-story building with a similar structural system and structural materials over its height). 

It should be noted that when a system is assumed to possess proportional damping, the mode 
superposition method can be used in the analysis and the damping matrix is not required, provided that a 
damping ratio can be specified for each mode that has been included. 

It would therefore appear that there is no need to specify a damping matrix explicitly for a system possessing 
classical damping. 

 

There, are however, situations when a damping matrix is required. 

For example, for the calculation of the response of structures beyond their linearly elastic range 
during earthquakes, numerical time integration must be used and the damping matrix has to be specified. 

 

When a (classical) damping matrix is required, it should be constructed in such a manner that it 
would lead to specified values for the damping ratio in some or all of the modes. The construction of 
such a matrix requires a study of the conditions of damping orthogonality. 
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RAYLEIGH DAMPING 

We can use the orthogonality relationships derived previously to develop a damping matrix that will satisfy 
the condition of orthogonality. 

Mass Proportional Damping: 

𝐜 𝛼 𝐦 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝛼 𝑇  
Therefore: 

𝛟 𝐜𝛟 𝛼 𝛟 𝐦𝛟

0
𝑖 𝑗 ,

𝛟 𝐜𝛟 𝛼 𝛟 𝐦𝛟

𝐶 𝛼 𝑀
𝐶 ≝ 2𝜉 𝜔 𝑀 ⟹ 𝛼 2𝜉 𝜔

𝑖 𝑗  

 
Once a value of 𝛼  has been selected as above, the damping in any other mode will be given by: 

𝜉
𝛼

2𝜔
𝜉

𝜔
𝜔  

 

 

Stiffness Proportional Damping: 

𝐜 𝛼 𝐤 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝛼 𝑇  

Therefore: 

𝛟 𝐜𝛟 𝛼 𝛟 𝐤𝛟

0
𝑖 𝑗 ,

𝛟 𝐜𝛟 𝛼 𝛟 𝐤𝛟

𝐶 𝛼 𝜔 𝑀
𝐶 ≝ 2𝜉 𝜔 𝑀

⟹ 𝛼
2𝜉
𝜔 ⎭

⎪
⎬

⎪
⎫

𝑖 𝑗  

 

Having selected a value of 𝜶𝟏 as above, the damping ratio for any other mode can be determined: 

𝜉
1
2

𝜔 𝛼 𝜉
𝜔
𝜔
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Rayleigh Damping: 

As a more general case, we can select the damping matrix to be a linear combination of the mass and the 
stiffness matrices, so that: 

𝐜 𝛼 𝐦 𝛼 𝐤  

The above equation has two free parameters, 𝛼  & 𝛼 . 

We can thus specify the damping ratio for any two modes, say the 𝑖  and  𝑗 . 

 

Then: 

𝛟 𝐜𝛟 2𝜉 𝜔 𝑀 𝛼 𝑀 𝛼 𝜔 𝑀
𝛟 𝐜𝛟 2𝜉 𝜔 𝑀 𝛼 𝑀 𝛼 𝜔 𝑀

 

or, in matrix form: 

1
2

⎝

⎜
⎛

1
𝜔

𝜔

1
𝜔

𝜔
⎠

⎟
⎞ 𝛼

𝛼
𝜉
𝜉  

The above equation can be solved for  𝛼  & 𝛼  : 

𝛼
2𝜔 𝜔 𝜉 𝜔 𝜉 𝜔

𝜔 𝜔
, 𝛼

2 𝜉 𝜔 𝜉 𝜔

𝜔 𝜔
 

The damping ratio of any other mode, say the 𝑛  mode, is: 

𝜉
1
2

𝛼
1

𝜔
𝛼 𝜔  
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FIGURE: Variation of modal damping ratios with natural frequency: (a) mass-proportional damping and 
stiffness-proportional damping; (b) Rayleigh damping.  
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Caughey (or Extended Rayleigh) Damping: 

The mass and stiffness matrices, 𝐦 & 𝐤 respectively, used to formulate Rayleigh damping are not the only 
matrices to which the orthogonality relations of the (undamped system) mode-shapes apply; in fact, it has 
been demonstrated earlier that an infinite number of matrices have this property. 

Therefore, a classical damping matrix can be made up of any combination of these matrices, as follows: 

 

𝐜 𝐦 𝛼ℓ 𝐦 𝐤 ℓ

ℓ

𝐜ℓ

ℓ

ℓ ⋯ , 2, 1,0, 1, 2, ⋯ (1) 

 

It is evident that Rayleigh damping is given by Equation (1) above if only the terms ℓ 0 and  ℓ 1 
are retained in the series. 

 

We have demonstrated previously that: 

𝛟 𝐦 𝐦 𝐤 ℓ𝛟 𝜔 ℓ𝑀  

Therefore: 

𝛟 𝐜𝛟 𝛼ℓ𝜔 ℓ𝑀
ℓ

𝐶 2𝜉 𝜔 𝑀

⟹ 𝜉
1

2𝜔
𝛼ℓ𝜔 ℓ

ℓ

 

The above equation provides the means for evaluating the constants 𝛼ℓ to give the desired damping at 

any specified number (up to 𝑁 for 𝑁-DOF system) of modal frequencies. 

As many terms must be included in the series as there are specified modal damping ratios; then the 
constants are given by the solution of the set of equations, one written for each damping ratio. 

In principle, the values of ℓ can be anywhere in the range  ∞ ℓ ∞ , but in practice it is desirable 
to select values of these exponents as close to zero as possible. 
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For example, to evaluate the coefficients that will provide specified damping ratios in any four modes having 
frequencies 𝜔 , 𝜔 , 𝜔 , 𝜔  the equations resulting from: 

𝜉
1

2𝜔
𝛼ℓ𝜔 ℓ

ℓ

 

Using the terms for ℓ 1,0, 1, 2 are: 

𝜉
𝜉
𝜉
𝜉

1
2

⎝

⎜
⎛

1 𝜔⁄ 1 𝜔⁄ 𝜔 𝜔
1 𝜔⁄ 1 𝜔⁄ 𝜔 𝜔
1 𝜔⁄ 1 𝜔⁄ 𝜔 𝜔
1 𝜔⁄ 1 𝜔⁄ 𝜔 𝜔 ⎠

⎟
⎞

𝛼
𝛼
𝛼
𝛼

 

 

When the coefficients 𝛼 , 𝛼 , 𝛼 , 𝛼  have been evaluated by solving the above system of equations, the 
classical damping matrix that provides the four required damping ratios at the four specified frequencies is: 

𝐜 𝐦 𝛼 𝐦 𝐤 𝛼 𝐈 𝛼 𝐦 𝐤 𝛼 𝐦 𝐤  

 

FIGURE (𝑎) below illustrates the relation between damping ratio and frequency that would result from 
this matrix. 
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To simplify FIGURE (𝑎) it has been assumed that the same damping ratio, 𝜉  , was specified for all four (4) 
frequencies; however, each of the damping ratios could have been specified arbitrarily. 

 

Also, 𝜔  has been taken as the fundamental mode frequency, 𝜔 , and 𝜔  is intended to approximate the 

frequency of the highest mode that contributes significantly to the response, while 𝜔  and 𝜔  are 
spaced about equally within the frequency range. 

 

It is evident in FIGURE (𝑎) that the damping ratio remains close to the desired value 𝜉   throughout the 
frequency range, being exact at the four specified frequencies and ranging slightly above or below at other 
frequencies in the range. It is important to note, however, that the damping increases monotonically with 
frequency for frequencies increasing above 𝜔 . This has the effect of excluding any significant contribution 

from any modes with frequencies much greater than 𝜔 . 

 

An even more important point to note is the consequence of including only three (3) terms in the derivation 
of the damping matrix  𝐜  [FIGURE (𝑏)]. 

The serious defect of this case is that the damping decreases monotonically for 𝜔 𝜔 and negative 
damping is indicated for all the highest modal frequencies. This is physically unacceptable. 

 

The general implication of this observation is that CAUGHEY damping may be used effectively only 

if an even number of terms is included in the series expression of 𝐜. 

 

 


