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FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮ሷ ൅ 𝐤𝐮 ൌ 𝟎
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮଴ ൌ 𝐮ሺ0ሻ , 𝐮ሶ ଴ ൌ 𝐮ሶ ሺ0ሻ  

As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution 𝐮 ൌ
𝛟ρ sinሺ𝜔𝑡 ൅ 𝜃ሻ in which 𝛟 and 𝜔 satisfy the Generalized Eigenvalue Problem:  

𝐤𝛟 ൌ 𝜆𝐦𝛟 (1) 
 
where:  𝜆 ൌ 𝜔ଶ 

 

For an 𝑁 -DOF system, equation (1) gives 𝑁 values of  𝜆 , all of which are real and positive but may 
not be distinct. 

Corresponding to each eigenvalue there is an associated eigenvector. These vectors are determined 
within a scalar multiple and form an orthogonal set. 

In vibration analysis, the eigenvalues 𝜆, or rather their square root 𝜔, are referred to as the frequencies and 
the eigenvectors as the mode shapes (or normal modes). 
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The most general solution of the free-vibration equation (homogeneous Equation of Motion) is obtained 
as a superposition of the 𝑁 mode shapes and can be written as:  

𝑜𝑟

𝐮ሺ𝑡ሻ ൌ ෍ 𝜌௡𝛟௡ sinሺ𝜔௡𝑡 ൅ 𝜃௡ሻ
ே

௡ୀଵ

𝐮ሺ𝑡ሻ ൌ ෍ሾ𝐴௡𝛟௡ cosሺ𝜔௡𝑡ሻ ൅ 𝐵௡𝛟௡ sinሺ𝜔௡𝑡ሻሿ
ே

௡ୀଵ

ൌ ෍ ሾ𝐴௡ cosሺ𝜔௡𝑡ሻ ൅ 𝐵௡ sinሺ𝜔௡𝑡ሻሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௤೙ሺ௧ሻ

𝛟௡

ே

௡ୀଵ

 

Where 𝐴௡ & 𝐵௡ (or equivalently  𝜌௡ & 𝜃௡) are arbitrary constants to be determined by the 2𝑁 initial 

conditions (recall that 𝑁 is the number of DOF’s). 

 

Determination of the constants: 

𝐮ሶ ሺ𝑡ሻ ൌ ෍ 𝜔௡ሾെ𝐴௡ sinሺ𝜔௡𝑡ሻ ൅ 𝐵௡ cosሺ𝜔௡𝑡ሻሿᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௤ሶ೙ሺ௧ሻ

𝛟௡

ே

௡ୀଵ

 

Therefore: 

𝐮ሺ0ሻ ൌ ෍ 𝐴௡ด
௤೙ሺ଴ሻ

𝛟௡

ே

௡ୀଵ

, 𝐮ሶ ሺ0ሻ ൌ ෍ 𝜔௡𝐵௡ᇣᇤᇥ
௤ሶ೙ሺ଴ሻ

𝛟௡

ே

௡ୀଵ

 

It follows that: 

𝑞௡ሺ0ሻ ൌ
𝛟௡

்𝐦𝐮଴

𝑀௡
, 𝑞ሶ௡ሺ0ሻ ൌ

𝛟௡
்𝐦𝐮ሶ ଴
𝑀௡

 

Therefore, the free vibration response is: 

𝐮ሺ𝑡ሻ ൌ ෍ 𝑞௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

where: 𝑞௡ሺ𝑡ሻ ൌ 𝑞௡ሺ0ሻ cosሺ𝜔௡𝑡ሻ ൅
𝑞ሶ௡ሺ0ሻ

𝜔௡
sinሺ𝜔௡𝑡ሻ
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FREE VIBRATION OF SYSTEMS WITH (NON-ZERO) DAMPING  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮ሷ ൅ 𝐜𝐮ሶ ൅ 𝐤𝐮 ൌ 𝟎
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮଴ ൌ 𝐮ሺ0ሻ , 𝐮ሶ ଴ ൌ 𝐮ሶ ሺ0ሻ  

We are seeking a solution to the above problem. Procedures to obtain the desired solution differ depending 
on the form of damping: classical or non-classical; these terms are defined next. 

 

For civil engineering structures it is reasonable to assume that the matrices 𝐦, 𝐤, & 𝐜 are all symmetric 
and positive definite. [NOTE: For the proof to be developed below it suffices to have only 𝐦 positive definite 
and the other two matrices, 𝐤, & 𝐜, non-negative definite.] 

 

We are going to demonstrate that the necessary and sufficient condition for the above system to possess 
natural modes of vibration, that are real-valued and identical to those of the associated undamped 
system (also referred to as classical normal modes), is the following equality: 

𝐜𝐦ିଵ𝐤 ൌ 𝐤𝐦ିଵ𝐜  

or, equivalently, that ሺ𝐦ିଵ𝐤ሻ & ሺ𝐦ିଵ𝐜ሻ commute. 
____________________ 
The development is based on: 

CAUGHEY, T. K., and O’KELLY, M. E. J., “Classical Normal Modes in Damped Linear Dynamic Systems,” 
Journal of Applied Mechanics, ASME, 32, 1965, pp. 583–588.     

____________________ 

Proof: 

Since 𝐦 is symmetric and positive definite, it is always possible to find a congruence transformation 

(ሾ𝚯ሿ்𝐦ሾ𝚯ሿ where ሾ𝚯ሿ is non-singular, e.g., HILDEBRAND, 1965, page 42; MEYER, 2000, page 568) 
which will reduce 𝐦 to an identity matrix. 

HILDEBRAND, F.B. (1965). Methods of Applied Mathematics, PRENTICE-HALL 

MEYER, C.D. (2000). Matrix Analysis and Applied Linear Algebra, SIAM 
 
____________________ 
NOTE: The reader should realize that in module #11 we have established that the mass matrix may be written 

as 𝐦 ൌ 𝐐்𝐐, where 𝐐 is non-singular and ൫𝐐𝑻൯
ି𝟏

ൌ ൫𝐐ି𝟏൯
𝑻

. Therefore 𝐦 ൌ 𝐐்𝐐 ⇔ ൫𝐐𝑻൯
ି𝟏

𝐦𝐐ି𝟏 ൌ

𝐈 ⇔ ൫𝐐ି𝟏൯
𝑻

𝐦𝐐ି𝟏 ൌ 𝐈. It must be evident to the reader that the non-singular matrix ሾ𝚯ሿ that we are 

seeking is 𝐐ି𝟏 i.e., ሾ𝚯ሿ ≝ 𝐐ି𝟏. 
____________________ 
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Let this transformation be: 

𝐮ሺ𝑡ሻ ൌ ሾ𝚯ሿ 𝐳ሺ𝑡ሻ 

So that: 

ሾ𝚯ሿ்𝐦ሾ𝚯ሿ ൌ 𝐈 

 

Therefore: 

ሾ𝚯ሿ் ∙| 𝐦𝐮ሷ ൅ 𝐜𝐮ሶ ൅ 𝐤𝐮 ൌ 𝟎
𝐮 ൌ ሾ𝚯ሿ ∙ 𝐳

ൠ ⇒ ሾ𝚯ሿ்𝐦ሾ𝚯ሿᇣᇧᇧᇤᇧᇧᇥ
𝐈

𝐳ሷ ൅ ሾ𝚯ሿ்𝐜ሾ𝚯ሿᇣᇧᇧᇤᇧᇧᇥ
𝐀

𝐳ሶ ൅ ሾ𝚯ሿ்𝐤ሾ𝚯ሿᇣᇧᇧᇤᇧᇧᇥ
𝐁

𝐳 ൌ 𝟎 

Therefore: 

𝐈𝐳ሷ ൅ 𝐀𝐳ሶ ൅ 𝐁𝐳 ൌ 𝟎 

Where: 

𝐀 ≝ ሾ𝚯ሿ்𝐜ሾ𝚯ሿ
𝐁 ≝ ሾ𝚯ሿ்𝐤ሾ𝚯ሿ

 

Since 𝐤 & 𝐜 are real symmetric and (at least) non-negative definite matrices, then, matrices 𝐀 & 𝐁 are also real 
symmetric and (at least) non-negative definite. 

For the system 𝐈𝐳ሷ ൅ 𝐀𝐳ሶ ൅ 𝐁𝐳 ൌ 𝟎 to possess classical normal modes then there must exist an orthogonal 

transformation ሾ𝚿ሿ (i.e., ሾ𝚿ሿ்ሾ𝚿ሿ ൌ 𝐈) that reduces simultaneously to diagonal form the real 

symmetric matrices 𝐀 & 𝐁. But such a transformation exists if and only if matrices 𝐀 & 𝐁 commute 
(BELLMAN, 1970, page 56); i.e. 

𝐀𝐁 ൌ 𝐁𝐀 

BELLMAN, R. (1970/1997). Introduction to Matrix Analysis, Second Edition, SIAM 

It is straightforward to obtain: 

ሾ𝚯ሿ்𝐦ሾ𝚯ሿ ൌ 𝐈 ⇒ ሾ𝚯ሿିଵ𝐦ିଵሺሾ𝚯ሿ்ሻିଵ ൌ 𝐈ିଵ ⇒ 𝐦ିଵ ൌ ሾ𝚯ሿሾ𝚯ሿ் 

Therefore, summarizing we have the identities: 

𝐀 ≝ ሾ𝚯ሿ்𝐜ሾ𝚯ሿ
𝐁 ≝ ሾ𝚯ሿ்𝐤ሾ𝚯ሿ

𝐦ିଵ ൌ ሾ𝚯ሿሾ𝚯ሿ்
 

Therefore, if the matrices 𝐀 & 𝐁 commute, i.e. if   𝐀𝐁 ൌ 𝐁𝐀 , then: 
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𝐀𝐁 ൌ 𝐁𝐀

ሾ𝚯ሿ்𝐜ሾ𝚯ሿሾ𝚯ሿ்𝐤ሾ𝚯ሿ ൌ ሾ𝚯ሿ்𝐤ሾ𝚯ሿሾ𝚯ሿ்𝐜ሾ𝚯ሿ
ሾ𝚯ሿ்𝐜𝐦ିଵ𝐤ሾ𝚯ሿ ൌ ሾ𝚯ሿ்𝐤𝐦ିଵ𝐜ሾ𝚯ሿ

𝐜𝐦ିଵ𝐤 ൌ 𝐤𝐦ିଵ𝐜
ሺ𝐦ିଵ𝐜ሻሺ𝐦ିଵ𝐤ሻ ൌ ሺ𝐦ିଵ𝐤ሻሺ𝐦ିଵ𝐜ሻ

 

Therefore, in conclusion, the necessary and sufficient condition for classical normal modes to exist in 𝐦𝐮ሷ ൅
𝐜𝐮ሶ ൅ 𝐤𝐮 ൌ 𝟎 , is that 𝐜𝐦ିଵ𝐤 ൌ 𝐤𝐦ିଵ𝐜 or, equivalently, that matrices ሺ𝐦ିଵ𝐜ሻ & ሺ𝐦ିଵ𝐤ሻ commute.  

As was stated above, let the orthogonal transformation that reduces simultaneously to diagonal form the 
real symmetric matrices 𝐀 & 𝐁 be the following: 

𝐳ሺ𝑡ሻ ൌ ሾ𝚿ሿ 𝐪ሺ𝑡ሻ 
Therefore: 

𝐮ሺ𝑡ሻ ൌ ሾ𝚯ሿ 𝐳ሺ𝑡ሻ
𝐳ሺ𝑡ሻ ൌ ሾ𝚿ሿ 𝐪ሺ𝑡ሻൠ ⇒

𝐮ሺ𝑡ሻ ൌ ሾ𝚯ሿ ሾ𝚿ሿᇣᇧᇤᇧᇥ
ሾ𝚽ሿ

 𝐪ሺ𝑡ሻ

⇓
𝐮ሺ𝑡ሻ ൌ ሾ𝚽ሿ 𝐪ሺ𝑡ሻ

 

Summarizing: 
ሾ𝚽ሿ்𝐦ሾ𝚽ሿ ൌ ሾ𝚿ሿ்ሾ𝚯ሿ்𝐦ሾ𝚯ሿ ሾ𝚿ሿ ൌ ሾ𝚿ሿ்𝐈 ሾ𝚿ሿ ൌ ሾ𝚿ሿ் ሾ𝚿ሿ ൌ 𝐈 
ሾ𝚽ሿ்𝐜ሾ𝚽ሿ ൌ ሾ𝚿ሿ்ሾ𝚯ሿ்𝐜ሾ𝚯ሿ ሾ𝚿ሿ ൌ ሾ𝚿ሿ்𝐀 ሾ𝚿ሿ
ሾ𝚽ሿ்𝐤ሾ𝚽ሿ ൌ ሾ𝚿ሿ்ሾ𝚯ሿ்𝐤ሾ𝚯ሿ ሾ𝚿ሿ ൌ ሾ𝚿ሿ்𝐁 ሾ𝚿ሿ

 

If classical normal modes exist (and the necessary and sufficient condition for this is: 𝐜𝐦ିଵ𝐤 ൌ 𝐤𝐦ିଵ𝐜 

or, equivalently, that matrices ሺ𝐦ିଵ𝐜ሻ & ሺ𝐦ିଵ𝐤ሻ commute), then: 

ሾ𝚿ሿ்𝐀 ሾ𝚿ሿ ൌ 𝑑𝑖𝑎𝑔 ൥
⋱

𝜆஺

⋱
൩

ሾ𝚿ሿ்𝐁 ሾ𝚿ሿ ൌ 𝑑𝑖𝑎𝑔 ൥
⋱

𝜆஻

⋱
൩

 

Q.E.D.■ 
____________________ 
NOTE: Transformations of the form ሺ𝐏 𝐀 𝐐ሻ are classified according to the restrictions imposed on the 
non-singular matrices 𝐏 & 𝐐. If   𝐁 ൌ ሺ𝐏 𝐀 𝐐ሻ , then matrices 𝐀 & 𝐁 are called equivalent matrices. 

Thus:  

 If   𝐏 ൌ 𝐐் , the resulting transformation, ሺ𝐐் 𝐀 𝐐ሻ , is called a congruence transformation. 

 If   𝐏 ൌ 𝐐ିଵ , the resulting transformation, ሺ𝐐ିଵ 𝐀 𝐐ሻ , is called a similarity transformation. 

 If   𝐏 ൌ 𝐐் ൌ 𝐐ିଵ , the resulting transformation, ሺ𝐐ିଵ 𝐀 𝐐ሻ ൌ ሺ𝐐் 𝐀 𝐐ሻ , is called an orthogonal 
transformation. 

This terminology is motivated by certain geometrical considerations. We notice that an ‘orthogonal’ 
transformation is both a ‘congruence’ and a ‘similarity’ transformation. 
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FREE VIBRATION OF SYSTEMS WITH CLASSICAL DAMPING 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮ሷ ൅ 𝐜𝐮ሶ ൅ 𝐤𝐮 ൌ 𝟎
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮଴ ൌ 𝐮ሺ0ሻ , 𝐮ሶ ଴ ൌ 𝐮ሶ ሺ0ሻ  

𝑪𝒍𝒂𝒔𝒔𝒊𝒄𝒂𝒍 𝑫𝒂𝒎𝒑𝒊𝒏𝒈 ⟺ 𝚽்𝐜𝚽 ൌ ൥
⋱

2𝜉௡𝜔௡𝑀௡

⋱
൩

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍 𝒏𝒂𝒕𝒓𝒊𝒙

 

In the case of MDOF system with Classical Damping, the response/solution can be conveniently 
expressed as a superposition of the 𝑁 mode shapes of the undamped system. 

Specifically, we formulate and solve the eigenvalue problem: 

ሺ𝐤 െ 𝜆𝐦ሻ𝛟 ൌ 𝟎 ⟹ ൜𝜆 ≝ 𝜔ଶ

𝛟௜′𝑠
 

Then, the response of the damped system is expressed as: 

𝐮ሺ𝑡ሻ ൌ ෍ 𝑞௡ሺ𝑡ሻ𝛟௡

ே

௡ୀଵ

 

Substituting the above solution in the Equation of Motion and using the orthogonality of the mode 

shapes (w.r.t. 𝐦, 𝐤, & 𝐜), we obtain 𝑁 uncoupled ODE’s in terms of the modal coordinates  𝑞௡ሺ𝑡ሻ, i.e., 

𝑞ሷ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝑞ሶ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝑞௡ሺ𝑡ሻ ൌ 0 ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ  

Solving the above 𝑁 uncoupled equations, we obtain: 

𝑞௡ሺ𝑡ሻ ൌ 𝑒ିక೙ఠ೙௧ ቈ𝑞௡ሺ0ሻ cosሺ𝜔஽௡𝑡ሻ ൅
𝑞ሶ௡ሺ0ሻ ൅ 𝜉௡𝜔௡𝑞௡ሺ0ሻ

𝜔஽௡
sinሺ𝜔஽௡𝑡ሻ቉

where: 𝜔஽௡ ൌ 𝜔௡ඥ1 െ 𝜉௡
ଶ , 𝑞௡ሺ0ሻ ൌ

𝛟௡
்𝐦𝐮଴

𝑀௡
, 𝑞ሶ௡ሺ0ሻ ൌ

𝛟௡
்𝐦𝐮ሶ ଴
𝑀௡
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DYNAMIC ANALYSIS & RESPONSE OF LINEAR SYSTEMS 

Undamped Linear Systems: Modal Analysis 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮ሷ ൅ 𝐤𝐮 ൌ 𝐩ሺ𝑡ሻ
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮଴ ൌ 𝐮ሺ0ሻ , 𝐮ሶ ଴ ൌ 𝐮ሶ ሺ0ሻ

 

The solution of a linear undamped MDOF system can be expanded in terms of modal contributions 
(recall the modal expansion theorem): 

𝐮ሺ𝑡ሻ ൌ ෍ 𝑞௥ሺ𝑡ሻ𝛟௥

ே

௥ୀଵ

ൌ 𝚽𝐪ሺ𝑡ሻ  

Substitution of the above expression of  𝐮ሺ𝑡ሻ  in the Equation of Motion gives: 

෍ሼ𝐦𝛟௥𝑞ሷ௥ሺ𝑡ሻሽ
ே

௥ୀଵ

൅ ෍ሼ𝐤𝛟௥𝑞௥ሺ𝑡ሻሽ
ே

௥ୀଵ

ൌ 𝐩ሺ𝑡ሻ 

Pre-multiplying by 𝛟௡
் : 

෍ሼሺ𝛟௡
்𝐦𝛟௥ሻ𝑞ሷ௥ሺ𝑡ሻሽ

ே

௥ୀଵ

൅ ෍ሼሺ𝛟௡
்𝐤𝛟௥ሻ𝑞௥ሺ𝑡ሻሽ

ே

௥ୀଵ

ൌ 𝛟௡
்𝐩ሺ𝑡ሻ 

Invoking the orthogonality of  𝛟௡’s (w.r.t. 𝐦 & 𝐤): 

ሺ𝛟௡
்𝐦𝛟௡ሻᇣᇧᇧᇤᇧᇧᇥ

ெ೙

𝑞ሷ௡ሺ𝑡ሻ ൅ ሺ𝛟௡
்𝐤𝛟௡ሻᇣᇧᇧᇤᇧᇧᇥ

௄೙

𝑞௡ሺ𝑡ሻ ൌ 𝛟௡
்𝐩ሺ𝑡ሻᇣᇧᇤᇧᇥ
௉೙ሺ௧ሻ

 

⟹ 𝑀௡𝑞ሷ௡ሺ𝑡ሻ ൅ 𝐾௡𝑞௡ሺ𝑡ሻ ൌ 𝑃௡ሺ𝑡ሻ ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ

⟹ 𝑞ሷ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝑞௡ሺ𝑡ሻ ൌ

𝑃௡ሺ𝑡ሻ

𝑀௡

 

Thus, we have to solve 𝑁 uncoupled equations of the modal coordinates subject to 
the initial conditions: 

𝑞௡ሺ0ሻ ൌ
𝛟௡

்𝐦𝐮଴

𝑀௡
, 𝑞ሶ௡ሺ0ሻ ൌ

𝛟௡
்𝐦𝐮ሶ ଴
𝑀௡
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Damped Linear System with Classical Damping: Modal Analysis 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑜𝑡𝑖𝑜𝑛: 𝐦𝐮ሷ ൅ 𝐜𝐮ሶ ൅ 𝐤𝐮 ൌ 𝐩ሺ𝑡ሻ
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐮଴ ൌ 𝐮ሺ0ሻ , 𝐮ሶ ଴ ൌ 𝐮ሶ ሺ0ሻ

 

The solution of a linear undamped MDOF system can be expanded in terms of modal contributions 
(recall the modal expansion theorem): 

𝐮ሺ𝑡ሻ ൌ ෍ 𝑞௥ሺ𝑡ሻ𝛟௥

ே

௥ୀଵ

ൌ 𝚽𝐪ሺ𝑡ሻ  

Substitution of the above expression of  𝐮ሺ𝑡ሻ  in the Equation of Motion gives: 

෍ሼ𝐦𝛟௥𝑞ሷ௥ሺ𝑡ሻሽ
ே

௥ୀଵ

൅ ෍ሼ𝐜𝛟௥𝑞ሶ௥ሺ𝑡ሻሽ
ே

௥ୀଵ

൅ ෍ሼ𝐤𝛟௥𝑞௥ሺ𝑡ሻሽ
ே

௥ୀଵ

ൌ 𝐩ሺ𝑡ሻ 

Pre-multiplying by 𝛟௡
் : 

෍ሼሺ𝛟௡
்𝐦𝛟௥ሻ𝑞ሷ௥ሺ𝑡ሻሽ

ே

௥ୀଵ

൅ ෍ሼሺ𝛟௡
்𝐜𝛟௥ሻ𝑞ሶ௥ሺ𝑡ሻሽ

ே

௥ୀଵ

൅ ෍ሼሺ𝛟௡
்𝐤𝛟௥ሻ𝑞௥ሺ𝑡ሻሽ

ே

௥ୀଵ

ൌ 𝛟௡
்𝐩ሺ𝑡ሻ 

Invoking the orthogonality of  𝛟௡’s (w.r.t. 𝐦 & 𝐤): 

ሺ𝛟௡
்𝐦𝛟௡ሻᇣᇧᇧᇤᇧᇧᇥ

ெ೙

𝑞ሷ௡ሺ𝑡ሻ ൅ ሺ𝛟௡
்𝐜𝛟௡ሻᇣᇧᇧᇤᇧᇧᇥ

஼೙

𝑞ሶ௥ሺ𝑡ሻ ൅ ሺ𝛟௡
்𝐤𝛟௡ሻᇣᇧᇧᇤᇧᇧᇥ

௄೙

𝑞௡ሺ𝑡ሻ ൌ 𝛟௡
்𝐩ሺ𝑡ሻᇣᇧᇤᇧᇥ
௉೙ሺ௧ሻ

 

⟹ 𝑀௡𝑞ሷ௡ሺ𝑡ሻ ൅ 𝐶௡𝑞ሶ௡ሺ𝑡ሻ ൅ 𝐾௡𝑞௡ሺ𝑡ሻ ൌ 𝑃௡ሺ𝑡ሻ ሺ𝑛 ൌ 1,2, ⋯ , 𝑁ሻ

⟹ 𝑞ሷ௡ሺ𝑡ሻ ൅ 2𝜉௡𝜔௡𝑞ሶ௡ሺ𝑡ሻ ൅ 𝜔௡
ଶ𝑞௡ሺ𝑡ሻ ൌ

𝑃௡ሺ𝑡ሻ

𝑀௡

 

Thus, we have to solve 𝑁 uncoupled equations of the modal coordinates subject to 
the initial conditions: 

𝑞௡ሺ0ሻ ൌ
𝛟௡

்𝐦𝐮଴

𝑀௡
, 𝑞ሶ௡ሺ0ሻ ൌ

𝛟௡
்𝐦𝐮ሶ ଴
𝑀௡
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ADDITIONAL ORTHOGONALITY CONDITIONS 

Before establishing the conditions for damping orthogonality, we need to develop a series of additional 
mode shape orthogonality conditions similar to those given by: 

𝛟௜
்𝐦𝛟௝ ൌ 0 , 𝛟௜

்𝐤𝛟௝ ൌ 0 𝜆௜ ് 𝜆௝ 
We start with the eigenvalue problem: 

𝐤𝛟௜ ൌ 𝜆௜𝐦𝛟௜ 

𝛟௝
்𝐤𝐦ିଵᇩᇭᇭᇪᇭᇭᇫ 𝐤𝛟௜ ൌ 𝜆௜ 𝛟௝

்𝐤𝐦ିଵᇩᇭᇭᇪᇭᇭᇫ 𝐦𝛟௜ ൌ 𝜆௜𝛟௝
்𝐤𝛟௜ ൌ 0 , ሺ𝑖 ് 𝑗ሻ

𝛟௜
்𝐤𝐦ିଵᇩᇭᇭᇪᇭᇭᇫ 𝐤𝛟௜ ൌ 𝜆௜ 𝛟௜

்𝐤𝐦ିଵᇩᇭᇭᇪᇭᇭᇫ 𝐦𝛟௜ ൌ 𝜆௜𝛟௜
்𝐤𝛟௜ ൌ 𝜆௜

ଶ , ሺ𝑖 ൌ 𝑗ሻ
 

[assuming 𝛟௜ ’s are orthonormal ⟺ 𝛟௜
்𝐦𝛟௜ ൌ 1] 

Similarly: 

𝛟௝
்𝐤𝐦ିଵ𝐤𝐦ିଵᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ 𝐤𝛟௜ ൌ 𝜆௜ 𝛟௝

்𝐤𝐦ିଵ𝐤𝐦ିଵᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ 𝐦𝛟௜ ൌ 𝜆௜𝛟௝
்𝐤𝐦ିଵ𝐤𝛟௜ ൌ 0 , ሺ𝑖 ് 𝑗ሻ

𝛟௜
்𝐤𝐦ିଵ𝐤𝐦ିଵᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ 𝐤𝛟௜ ൌ 𝜆௜ 𝛟௜

்𝐤𝐦ିଵ𝐤𝐦ିଵᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ 𝐦𝛟௜ ൌ 𝜆௜𝛟௜
்𝐤𝐦ିଵ𝐤𝛟௜ ൌ 𝜆௜

ଷ , ሺ𝑖 ൌ 𝑗ሻ
 

In general: 

𝛟௝
்ሺ𝐤𝐦ିଵሻ௔𝐤𝛟௜ ൌ 0 ൜

𝑖 ് 𝑗
𝑎 ൌ 0,1,2, ⋯ , ∞ൠ , 𝛟௜

்ሺ𝐤𝐦ିଵሻ௔𝐤𝛟௜ ൌ 𝜆௜
௔ାଵ ൜

𝑖 ൌ 𝑗
𝑎 ൌ 0,1,2, ⋯ , ∞ൠ  

Then, it follows that: 

𝛟௝
்ሺ𝐤𝐦ିଵሻ௔𝐤𝛟௜ ൌ 0 ൜

𝑖 ് 𝑗
𝑎 ൌ 0,1,2, ⋯ , ∞ൠ →

⎩
⎪
⎨

⎪
⎧⟹ 𝛟௝

் 𝐦𝐦ିଵᇩᇭᇪᇭᇫ
୍

ሺ𝐤𝐦ିଵሻ௔𝐤𝛟௜ ൌ 0

⟹ 𝛟௝
்𝐦𝐦ିଵ ሺ𝐤𝐦ିଵሻሺ𝐤𝐦ିଵሻ ⋯ ሺ𝐤𝐦ିଵሻᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

௔ ௧௜௠௘௦

𝐤𝛟௜ ൌ 0

⟹ 𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻ௔ାଵ𝛟௜ ൌ 0

 

Similarly: 

𝛟௜
்ሺ𝐤𝐦ିଵሻ௔𝐤𝛟௜ ൌ 𝜆௜

௔ାଵ ൜
𝑖 ൌ 𝑗

𝑎 ൌ 0,1,2, ⋯ , ∞ൠ →

⎩
⎪
⎨

⎪
⎧⟹ 𝛟௜

் 𝐦𝐦ିଵᇩᇭᇪᇭᇫ
୍

ሺ𝐤𝐦ିଵሻ௔𝐤𝛟௜ ൌ 𝜆௜
௔ାଵ

⟹ 𝛟௜
்𝐦𝐦ିଵ ሺ𝐤𝐦ିଵሻሺ𝐤𝐦ିଵሻ ⋯ ሺ𝐤𝐦ିଵሻᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

௔ ௧௜௠௘௦

𝐤𝛟௜ ൌ 𝜆௜
௔ାଵ

⟹ 𝛟௜
்𝐦ሺ𝐦ିଵ𝐤ሻ௔ାଵ𝛟௜ ൌ 𝜆௜

௔ାଵ

 

In general: 

𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻ௕𝛟௜ ൌ 0 ൜

𝑖 ് 𝑗
𝑏 ൌ 0,1,2, ⋯ , ∞

𝛟௜
்𝐦ሺ𝐦ିଵ𝐤ሻ௕𝛟௜ ൌ 𝜆௜

௕ ൜
𝑖 ൌ 𝑗

𝑏 ൌ 0,1,2, ⋯ , ∞

 

[assuming the 𝛟௜’s are orthonormal w.r.t. 𝐦 ⟺ 𝛟௜
்𝐦𝛟௜ ൌ 1] 
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We start again with the eigenvalue problem: 

𝐤𝛟௜ ൌ 𝜆௜𝐦𝛟௜ (1) 
 

ሺ1ሻ ⟹ 𝛟௝
்𝐦𝐤ିଵᇩᇭᇭᇪᇭᇭᇫ 𝐤𝛟௜ ൌ 𝜆௜ 𝛟௝

்𝐦𝐤ିଵᇩᇭᇭᇪᇭᇭᇫ 𝐦𝛟௜ ⟹ 𝛟௝
்𝐦𝛟௜ᇣᇧᇤᇧᇥ

଴

ൌ 𝜆௜𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻିଵ𝛟௜

∴ 𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻିଵ𝛟௜ ൌ 0 ൜

𝑖 ് 𝑗
𝜆௜ ് 0

 

ሺ1ሻ ⟹ 𝛟௜
்𝐦𝐤ିଵᇩᇭᇭᇪᇭᇭᇫ 𝐤𝛟௜ ൌ 𝜆௜ 𝛟௜

்𝐦𝐤ିଵᇩᇭᇭᇪᇭᇭᇫ 𝐦𝛟௜ ⟹ 𝛟௜
்𝐦𝛟௜ᇣᇧᇤᇧᇥ

ଵ

ൌ 𝜆௜𝛟௜
்𝐦ሺ𝐦ିଵ𝐤ሻିଵ𝛟௜

ሾ𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑝𝑒𝑠 𝑎𝑟𝑒 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙 𝑤. 𝑟. 𝑡. 𝐦ሿ

∴ 𝛟௜
்𝐦ሺ𝐦ିଵ𝐤ሻିଵ𝛟௜ ൌ 𝜆௜

ିଵ ൜
𝑖 ൌ 𝑗

𝜆௜ ് 0

 

Similarly: 

ሺ1ሻ ⟹ 𝛟௝
்𝐦𝐤ିଵ𝐦𝐤ିଵᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ 𝐤𝛟௜ ൌ 𝜆௜ 𝛟௝

்𝐦𝐤ିଵ𝐦𝐤ିଵᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ 𝐦𝛟௜ ⟹ 𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻିଵ𝛟௜ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

଴

ൌ 𝜆௜𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻିଶ𝛟௜

∴ 𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻିଶ𝛟௜ ൌ 0 ൜

𝑖 ് 𝑗
𝜆௜ ് 0

 

ሺ1ሻ ⟹ 𝛟௜
்𝐦𝐤ିଵ𝐦𝐤ିଵᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ 𝐤𝛟௜ ൌ 𝜆௜ 𝛟௜

்𝐦𝐤ିଵ𝐦𝐤ିଵᇩᇭᇭᇭᇭᇪᇭᇭᇭᇭᇫ 𝐦𝛟௜ ⟹ 𝛟௜
்𝐦ሺ𝐦ିଵ𝐤ሻିଵ𝛟௜ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

ఒ೔
షభ

ൌ 𝜆௜𝛟௜
்𝐦ሺ𝐦ିଵ𝐤ሻିଶ𝛟௜

∴ 𝛟௜
்𝐦ሺ𝐦ିଵ𝐤ሻିଶ𝛟௜ ൌ 𝜆௜

ିଶ ൜
𝑖 ൌ 𝑗

𝜆௜ ് 0

 

Thus, by induction we obtain: 

𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻ௕𝛟௜ ൌ 0 ൜

𝑖 ് 𝑗 𝜆௜ ് 0
𝑏 ൌ െ1, െ2, ⋯ , െ∞

ൠ , 𝛟௜
்𝐦ሺ𝐦ିଵ𝐤ሻ௕𝛟௜ ൌ 𝜆௜

௕ ൜
𝑖 ൌ 𝑗 𝜆௜ ് 0

𝑏 ൌ െ1, െ2, ⋯ , െ∞
ൠ 

 

Thus, combining the above expressions for 𝑏 negative with the expressions we derived above for 𝑏 positive, 
we get: 

𝛟௝
்𝐦ሺ𝐦ିଵ𝐤ሻ௕𝛟௜ ൌ ൜

0 𝑖 ് 𝑗
𝜆௜

௕ 𝑖 ൌ 𝑗
െ∞ ൏ 𝑏 ൏ ൅∞

ሾ𝑚𝑜𝑑𝑒 𝑠ℎ𝑎𝑝𝑒𝑠 𝑎𝑟𝑒 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙 𝑤. 𝑟. 𝑡. 𝐦 ⟺ 𝛟௜
்𝐦𝛟௜ ൌ 1ሿ
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CLASSICAL DAMPING MATRIX 

Classical damping matrix is an appropriate idealization if similar damping mechanisms throughout the 
structure (e.g., multi-story building with a similar structural system and structural materials over its height). 

It should be noted that when a system is assumed to possess proportional damping, the mode 
superposition method can be used in the analysis and the damping matrix is not required, provided that a 
damping ratio can be specified for each mode that has been included. 

It would therefore appear that there is no need to specify a damping matrix explicitly for a system possessing 
classical damping. 

 

There, are however, situations when a damping matrix is required. 

For example, for the calculation of the response of structures beyond their linearly elastic range 
during earthquakes, numerical time integration must be used and the damping matrix has to be specified. 

 

When a (classical) damping matrix is required, it should be constructed in such a manner that it 
would lead to specified values for the damping ratio in some or all of the modes. The construction of 
such a matrix requires a study of the conditions of damping orthogonality. 
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Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 13 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(12):	DYNAMIC	ANALYSIS	&	RESPONSE	OF	LINEAR	SYSTEMS 

 
RAYLEIGH DAMPING 

We can use the orthogonality relationships derived previously to develop a damping matrix that will satisfy 
the condition of orthogonality. 

Mass Proportional Damping: 

𝐜 ൌ 𝛼଴𝐦 ሺ𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 ሾ𝛼଴ሿ ൌ ሾ𝑇ሿିଵሻ  
Therefore: 

𝛟௝
்𝐜𝛟௜ ൌ 𝛼଴ 𝛟௝

்𝐦𝛟௜ᇣᇧᇤᇧᇥ
଴

ൌ 0
ൡ ሺ𝑖 ് 𝑗ሻ ,

𝛟௜
்𝐜𝛟௜ᇣᇤᇥ
஼೔

ൌ 𝛼଴ 𝛟௜
்𝐦𝛟௜ᇣᇧᇤᇧᇥ

ெ೔

𝐶௜ ൌ 𝛼଴𝑀௜
𝐶௜ ≝ 2𝜉௜𝜔௜𝑀௜

ൠ ⟹ 𝛼଴ ൌ 2𝜉௜𝜔௜

ൢ ሺ𝑖 ൌ 𝑗ሻ 

 
Once a value of 𝛼଴ has been selected as above, the damping in any other mode will be given by: 

𝜉௝ ൌ
𝛼଴

2𝜔௝
ൌ 𝜉௜

𝜔௜

𝜔௝
 

 

 

Stiffness Proportional Damping: 

𝐜 ൌ 𝛼ଵ𝐤 ሺ𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 ሾ𝛼ଵሿ ൌ ሾ𝑇ሿሻ  

Therefore: 

𝛟௝
்𝐜𝛟௜ ൌ 𝛼ଵ 𝛟௝

்𝐤𝛟௜ᇣᇧᇤᇧᇥ
଴

ൌ 0
ൡ ሺ𝑖 ് 𝑗ሻ ,

𝛟௜
்𝐜𝛟௜ᇣᇤᇥ
஼೔

ൌ 𝛼ଵ 𝛟௜
்𝐤𝛟௜ᇣᇧᇤᇧᇥ

ఈభఠ೔
మெ೔

𝐶௜ ൌ 𝛼ଵ𝜔௜
ଶ𝑀௜

𝐶௜ ≝ 2𝜉௜𝜔௜𝑀௜
ൠ ⟹ 𝛼ଵ ൌ

2𝜉௜

𝜔௜ ⎭
⎪
⎬

⎪
⎫

ሺ𝑖 ൌ 𝑗ሻ 

 

Having selected a value of 𝜶𝟏 as above, the damping ratio for any other mode can be determined: 

𝜉௝ ൌ
1
2

𝜔௝𝛼ଵ ൌ 𝜉௜
𝜔௝

𝜔௜
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Rayleigh Damping: 

As a more general case, we can select the damping matrix to be a linear combination of the mass and the 
stiffness matrices, so that: 

𝐜 ൌ 𝛼଴𝐦 ൅ 𝛼ଵ𝐤  

The above equation has two free parameters, 𝛼଴ & 𝛼ଵ. 

We can thus specify the damping ratio for any two modes, say the 𝑖௧௛ and  𝑗௧௛. 

 

Then: 

𝛟௜
்𝐜𝛟௜ ൌ 2𝜉௜𝜔௜𝑀௜ ൌ 𝛼଴𝑀௜ ൅ 𝛼ଵ𝜔௜

ଶ𝑀௜

𝛟௝
்𝐜𝛟௝ ൌ 2𝜉௝𝜔௝𝑀௝ ൌ 𝛼଴𝑀௝ ൅ 𝛼ଵ𝜔௝

ଶ𝑀௝
 

or, in matrix form: 

1
2

⎝

⎜
⎛

1
𝜔௜

𝜔௜

1
𝜔௝

𝜔௝

⎠

⎟
⎞

ቀ
𝛼଴
𝛼ଵ

ቁ ൌ ൬
𝜉௜
𝜉௝

൰  

The above equation can be solved for  𝛼଴ & 𝛼ଵ : 

𝛼଴ ൌ
2𝜔௜𝜔௝൫𝜉௜𝜔௝ െ 𝜉௝𝜔௜൯

൫𝜔௝
ଶ െ 𝜔௜

ଶ൯
, 𝛼ଵ ൌ

2൫𝜉௝𝜔௝ െ 𝜉௜𝜔௜൯

൫𝜔௝
ଶ െ 𝜔௜

ଶ൯
 

The damping ratio of any other mode, say the 𝑛௧௛ mode, is: 

𝜉௡ ൌ
1
2

൬𝛼଴
1

𝜔௡
൅ 𝛼ଵ𝜔௡൰  
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FIGURE: Variation of modal damping ratios with natural frequency: (a) mass-proportional damping and 
stiffness-proportional damping; (b) Rayleigh damping.  
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Caughey (or Extended Rayleigh) Damping: 

The mass and stiffness matrices, 𝐦 & 𝐤 respectively, used to formulate Rayleigh damping are not the only 
matrices to which the orthogonality relations of the (undamped system) mode-shapes apply; in fact, it has 
been demonstrated earlier that an infinite number of matrices have this property. 

Therefore, a classical damping matrix can be made up of any combination of these matrices, as follows: 

 

𝐜 ൌ 𝐦 ෍ 𝛼ℓሾ𝐦ିଵ𝐤ሿℓ

ℓ

ൌ ෍ 𝐜ℓ

ℓ

ℓ ൌ ⋯ , െ2, െ1,0, ൅1, ൅2, ⋯ (1) 

 

It is evident that Rayleigh damping is given by Equation (1) above if only the terms ℓ ൌ 0 and  ℓ ൌ 1 
are retained in the series. 

 

We have demonstrated previously that: 

𝛟௝
்𝐦ሾ𝐦ିଵ𝐤ሿℓ𝛟௝ ൌ 𝜔௝

ଶℓ𝑀௝ 

Therefore: 

𝛟௝
்𝐜𝛟௝ᇣᇧᇤᇧᇥ

஼ೕ

ൌ ෍ 𝛼ℓ𝜔௝
ଶℓ𝑀௝

ℓ

𝐶௝ ൌ ൌ 2𝜉௝𝜔௝𝑀௝

ൢ ⟹ 𝜉௝ ൌ
1

2𝜔௝
෍ 𝛼ℓ𝜔௝

ଶℓ

ℓ

 

The above equation provides the means for evaluating the constants 𝛼ℓ to give the desired damping at 

any specified number (up to 𝑁 for 𝑁-DOF system) of modal frequencies. 

As many terms must be included in the series as there are specified modal damping ratios; then the 
constants are given by the solution of the set of equations, one written for each damping ratio. 

In principle, the values of ℓ can be anywhere in the range  െ∞ ൏ ℓ ൏ ൅∞ , but in practice it is desirable 
to select values of these exponents as close to zero as possible. 

 

  



Lecture Notes: STRUCTURAL	DYNAMICS   /     FALL 2011   /   Page: 17 
Lecturer: Prof.  APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(12):	DYNAMIC	ANALYSIS	&	RESPONSE	OF	LINEAR	SYSTEMS 

 
For example, to evaluate the coefficients that will provide specified damping ratios in any four modes having 
frequencies 𝜔௠, 𝜔௡, 𝜔௢, 𝜔௣ the equations resulting from: 

𝜉௝ ൌ
1

2𝜔௝
෍ 𝛼ℓ𝜔௝

ଶℓ

ℓ

 

Using the terms for ℓ ൌ െ1,0, ൅1, ൅2 are: 

൮

𝜉௠
𝜉௡
𝜉௢
𝜉௣

൲ ൌ
1
2

⎝

⎜
⎛

1 𝜔௠
ଶ⁄ 1 𝜔௠⁄ 𝜔௠ 𝜔௠

ଷ

1 𝜔௡
ଶ⁄ 1 𝜔௡⁄ 𝜔௡ 𝜔௡

ଷ

1 𝜔௢
ଶ⁄ 1 𝜔௢⁄ 𝜔௢ 𝜔௢

ଷ

1 𝜔௣
ଶ⁄ 1 𝜔௣⁄ 𝜔௣ 𝜔௣

ଷ
⎠

⎟
⎞

൮

𝛼ିଵ
𝛼଴
𝛼ଵ
𝛼ଶ

൲ 

 

When the coefficients 𝛼ିଵ, 𝛼଴, 𝛼ଵ, 𝛼ଶ have been evaluated by solving the above system of equations, the 
classical damping matrix that provides the four required damping ratios at the four specified frequencies is: 

𝐜 ൌ 𝐦ሼ𝛼ିଵሾ𝐦ିଵ𝐤ሿିଵ ൅ 𝛼଴𝐈 ൅ 𝛼ଵሾ𝐦ିଵ𝐤ሿ ൅ 𝛼ଶሾ𝐦ିଵ𝐤ሿଶሽ 

 

FIGURE (𝑎) below illustrates the relation between damping ratio and frequency that would result from 
this matrix. 
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To simplify FIGURE (𝑎) it has been assumed that the same damping ratio, 𝜉௫ , was specified for all four (4) 
frequencies; however, each of the damping ratios could have been specified arbitrarily. 

 

Also, 𝜔௠ has been taken as the fundamental mode frequency, 𝜔ଵ, and 𝜔௣ is intended to approximate the 

frequency of the highest mode that contributes significantly to the response, while 𝜔௡ and 𝜔௢ are 
spaced about equally within the frequency range. 

 

It is evident in FIGURE (𝑎) that the damping ratio remains close to the desired value 𝜉௫  throughout the 
frequency range, being exact at the four specified frequencies and ranging slightly above or below at other 
frequencies in the range. It is important to note, however, that the damping increases monotonically with 
frequency for frequencies increasing above 𝜔௣. This has the effect of excluding any significant contribution 

from any modes with frequencies much greater than 𝜔௣. 

 

An even more important point to note is the consequence of including only three (3) terms in the derivation 
of the damping matrix  𝐜  [FIGURE (𝑏)]. 

The serious defect of this case is that the damping decreases monotonically for 𝜔௢ ൏ 𝜔 and negative 
damping is indicated for all the highest modal frequencies. This is physically unacceptable. 

 

The general implication of this observation is that CAUGHEY damping may be used effectively only 

if an even number of terms is included in the series expression of 𝐜. 

 

 


