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FORMULATION OF THE MDOF EQUATIONS OF MOTION
EEIZOXEIT KINHEZHE, AIATYIIQOEH TOY IPOBAHMATOX
KAI ME@OAOI EINIAYXHXE

For an accurate description of its displaced configuration, a structural system subjected to
dynamic disturbances may require the specification of displacements along more than one
coordinate direction.

Such a system is known as a Multi-Degree-Of-Freedom (MDOF) system.

The number of displacement components which must be considered in order to represent
the effects of all significant inertia forces of a structure may be termed the number
of dynamic degrees of freedom of the structure.

The degrees of freedom (DOF) in a discrete-parameter system may be taken as:

¢ The displacement amplitudes of certain selected points in the structure
(FIGURE a)
or

e They may be generalized coordinates representing the amplitudes of a specified
set of displacement patterns (FIGURE b).
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EXAMPLE: Mass-Spring-Damper System
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EXAMPLE: Two-Story Shear Frame
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p,(t) —wi o = +  p () —e + =fp1
51 & *-;fgl
77
(a) (b)
Assumption: Mass concentrated at floor levels (generally appropriate for multi-

story buildings).
Newton’s 2nd Law of Motion for each mass:
mass j: pj—fsj—foj =mily = myi+fp; +fs; =p;®) (G =12)

In matrix form:

(o )+ () ()= ()
0 m, \Uz/ fp2 fs2 p2(t)
m i fp fs p(t)
mass matrix
ie.,
mii + fp + fg = p(¢)
where:
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Resisting (elastic or inelastic) force vector f:

Story shear:

Story Stiffness:

Vi =k; (u; — 1)
4
story
deformation
/drift

TYETIKN UETATOILON 0PO®OoV

(for shear-building [; = )

mass 1:

mass 2:

Notice that

Therefore:

12EI,
b = Z ( 3 )

columns

from from
story story
below above
() @
fa = fo1~ tfs

kiAy + (=kyAz)

AwaTunmxo kxnplo

ky(uy —0) + ky(uy —uy)

fs2 = k24,
= ky(uz —uy)
S(la )= - fs2  (story shear) Téuvovoa opo@oOV
fs1\ _  (kit ks —ko)\ —
£ = _k K w, = |fg =Kku
S2 2 2

fs

k u
stiffnessumatrix of
two—storey shear bldg.
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Damping force vector fj :

We assume that the story shear due to damping is expressed as follows:

mass 1:
for = D(f) +fD((11) = iy + (U — 1)
mass 2:
fpz2 = c2(Uy —1y)
Therefore:
c,+c¢c, —c u -
(fm) _ (1 2 2)(.1) — [fp = cu
fp2 —C2 C2 / \U,
—— ——
fD S u
damping
matrix
Therefore:

mii + fp + fg = p(t)
f¢ = ku =
fD=Cl:l

= |mii+ ca + ku = p(t)| Equation of Motion
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GENERAL APPROACH FOR LINEAR SYSTEMS

Discretization: Araxprrosoinon

A&;o He o~ Uq
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’ A:.) Af}“’ 5l
Structural
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7 7 7 7 b= 5
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pi() P4lt) ps(t)
> & Vo
D D Sl

A frame structure can be idealized as an assemblage of elements — beams, columns,
walls — interconnected at nodal points or nodes.

The displacements of the nodes are the degrees of freedom (DOF).

Axial deformation of beams can be neglected in analyzing most buildings, and axial
deformation of columns need not be considered for low-rise buildings.

The external dynamic forces are applied at the nodes. The external moments p5(t)
to pg(t) are zero in most practical cases.
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Elastic Forces:

(We assume that the structural behavior is linear, so that the principle of superposition
applies). Apyn ¢ eaiiniiac

Stiffness influence coefficients

Forces fS O Node;

, no lumped mass
Displacements U

We apply a unit displacement along DOF j, holding all other displacements to zero as
shown.

To maintain these displacements, forces must be applied generally along all DOFs.

The stiffness influence coefficient k;; is the force required along
DOF i due to unit displacement at DOF j.

The force f; at DOF i associated with displacements uq, u,, -+, uy is obtained by
superposition:

fsi = kilul -+ kizUz + -+ kUu] + -+ kiNuN (l = 1,2,"',N)
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In matrix form:

fe1 /k11 kiy ky; k11v\ Uy

fs2 | ka1 koo kaj - kon | Uz

fsi kkn kKip o kg kuv) Y

fSN kNl kNZ kN] °° kNN uN
k

stif fness matrix

or

fs=ku

The stiffness matrix k for a discretized system can be determined by any one of several
methods.

The most commonly used method is the direct stiffness method.

fg=ku < u=Kkfg=ffg

f=[f;] flexibility matrix f=Kk!

The flexibility influence coefficient fl-]- is the deflection of DOF i

due to unit load applied to DOF j (while no loads are applied to all other
DOFs).

The evaluation of flexibility coefficients for any given system is a standard problem of
structural analysis.

Any desired method of analysis may be used to compute these deflections resulting from the
applied unit loads.
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Inertia Forces:

We apply a unit acceleration along DOF j, while the acceleration in all other DOFs
are kept zero.

According to d’Alembert’s principle, the fictitious inertia forces oppose these
accelerations.

Therefore, external forces will be necessary to equilibrate these inertia forces.

The mass influence coefficient m;; is the external force in DOF i
due to unit acceleration along DOF j.

The force f; at DOF i associated with accelerations iiq, iy, -+, ity is obtained by
superposition:

f}i = milul -+ mizuz + -+ muu] + -+ miNilN (l = 1,2,"',N)

In matrix form:

myp My 0 My; - Mypy
Mp1 Mpy 0 My 0 Myy

. \I _ H . ., : | :
| f]l/l B | miq m;, e My e My | u]

Uy
Uy

\le My =+ Myj 0 Myy

m
mass matrix

or

f1=mii
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Inertia Forces (continued): Lumped-Mass Matrix

Structural element

d / L f my my L mf
a b c m, m, M m,
b b b A

(a) (©)

The simplest procedure for defining the mass properties of any structure is to assume that
the entire mass is lumped / concentrated at the points/nodes at which the translational
displacements are defined.

The lumped mass at a node is determined from the portion of the weight that can
reasonably be assigned to the node.

The off-diagonal terms m; (i # j) of the ‘lumped-mass’ (cvvkevipwusvn ndala)
matrix vanish because an acceleration of any mass point produces an inertial force at that
point only, i.e.

m;; =0 for i#j

Thus the lumped-mass matrix is a diagonal matrix which will include zero diagonal
elements for rotational DOFs, i.e.

(o
m. . -
1 0 (for rotational DOFs)

The rotational DOFs are eliminated by ‘static condensation’ (explained later)
(oTtoamikn ovuTOKVOOoN).
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] i ]
Ujy
u j6
Q Ujx
L -1 ]

The mass representation can be simplified for multistory buildings because of the
constraining effects of the floor slabs or floor diaphragms.

Each floor diaphragm is usually assumed to be rigid in its own plane but is flexible in
bending in the vertical direction, which is reasonable representation of the true
behavior of several types of floor systems (e.g., cast-in-place concrete).

Both horizontal (x & y) DOFs of all the nodes at a floor level are related to the
three rigid-body DOFs of the floor-diaphragm in its own plane.

For the jth floor diaphragm these three DOFs, defined at the center of mass, are
translations u;, & u;,, and rotation u;g about a vertical axis.
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Damping Forces:

(assuming that damping is of viscous type, i.e. depends on velocity)

fDl /cll
C
foo [

fpi Ci1

)

Cn1

C12 C1j
C22 C2j
Ci2 Cij
Cn2 Cnj

C1N Uy
C2n U,
Cin

|
CNN/

Uy

damping matrix

The damping influence coefficient ¢;; is the force acting along
DOF i due to a unit velocity of DOF j.

In matrix form:

fD=Cl:l

However, it is impractical / impossible to compute the coefficients c;; of the damping
matrix directly from the dimensions of the structure and the sizes of the structural elements.

Damping for MDOF systems is generally specified by numerical values for the
damping ratios, as for SDOF systems, based on experimental data for similar

structures.

Methods are available to construct the damping matrix from known damping

ratios.
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Example 9.2
Rigid bar
T ) ST A
=
{c)u1=:,u2=0 ()4 =1,8=0

(d)uy =0, u,=1 Kz Inertia forces = (m/L)(x/L)

U
myy T My
m = non-—diagonal
k = diagonal X
Example 9.3
(d) G=1,5=0

m!l‘
, , ' [ : ‘I/Ine:ﬁa forces = m/L
1 1 ;‘_ | ] 1
(e) | A :}F Y_ v
Mot
Mg=004=1 i
N1

[l[{l = d[agona! : Inertia forces = - (m/)x

= non-—diagonal
@
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Example 9.4
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Flexibility Method

fy=1fg=0
51 ? fy=1
(1) p (1) -
@ P— fom b 2 u ©
mL/2 mlL/4 8
, L2 2,
T T b !
fo=1f=0

1 4 o
(b) (d)
éElement (l)TElcment 2) Z b
Node (2)  Node (1) I
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Direct Stiffness Method
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EQUATIONS OF MOTION: EXTERNAL FORCES

The equations of motion of a structural system can be formulated by expressing the
(dynamic) equilibrium of the effective forces associated with each of its DOFs.

In general, four types of forces will be involved at any point i:

The external applied load p;(t)

The inertia force f;(t)

The damping force fp;(t)

The restoring (elastic or inelastic) force f;(t)

Forces resulting from motion: f;(t), fpi(t), fsi(t)

frn =p1(8) — fs1— fp1
frz = Pz(t)._ fs2 — fp2

The elastic and damping forces are shown acting in the opposite direction
because they are internal forces resisting the motion.

The above set of scalar equations may be organized in matrix form:

fI + fD + fS = p(t)
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Equations of Motion (continued): Alternative approach

Pat) ® fs2 peasSsE fo r=-@--1+h

/{f A
I I 1

() @ = ~fo + ----- o1 + :

I

i
r--@®---+=0)
]
| I
W/_[ | | 1

Displacements u; Displacements u; Velocities i, Accelerations i
Velocities u;
Accelerations i

(a) (b) © (@)

We visualize the structural system as the combination of three pure components:

1) Stiffness component: the frame without damping or mass

2) Damping component: the frame with its damping property but no stiffness or

mass
3) Mass component: the floor masses without the stiffness or damping of
the
frame

The external forces p(t) may be visualized as distributed among the above three
components of the structural system:

o f (t) to the stiffness component (related to displacements)
o« fp (t) to the damping component (related to velocities)

. f,(t) to the mass component (related to accelerations)

Therefore:

f;(t) +fp(0) +f5(t) = p(®)
or

mii + cu + ku = p(t)
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BASIC STRUCTURAL CONCEPTS

Strain Enerqy:

The strain energy U of a structural system is equal to the work done in deforming
the system:

where the factor (1/2) results from the forces which increase linearly with the
displacements.

Clearly:

and

_1 7
U=7u p} = U=%uTku
p = ku

Noting that the strain energy stored in a stable structure during any distortion/deformation
must always be positive, it is evident that:

u’ku>0 and p’fp>0

Matrices which satisfy this condition, where u or p is any arbitrary
Nnonzero vector, are said to be positive definite; positive definite
matrices (and consequently the flexibility & stiffness matrices of a stable
structure) are nonsingular and can be inverted.
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BETTI's Law
Load System a: Load System b:
Pia Pz2a P3a Pib P2 P3sb
P was
Deflections a: Deflections b:
",—1 """" r ------- .._*“ Jd"‘-f-“‘"\\ 3p
Via Vza Via V1b 02/ S
Case 1

1 1
Loads a: Waa = EZ PiaVia = Epgua
LoadS b: Wbb + Wab = %prgub + pgub

1 1
Total: Wy = Waq + Wy + Wop = SPaUa +5Ppup + Palip

Case 2:

LoadS b: Wbb = %pgub
. _ 17 T
Loadsa: W,,+W,, = >Pallg + Py,

Total: Wy = Wpp + Waq + Whe = %pgub + %pgua + pgua

The deformation of an elastic structure is independent of the loading
sequence.

Therefore: W, =W, = plu, =plu,

Betti’s Law: The work done by one set of loads on the
deflections due to a second set of loads is equal to the work of
the second set of loads acting on the deflections due to the
first.




Lecture Notes: STRUCTURAL DYNAMICS / FALL2011 / Page: 21
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (10): FORMULATION OF THE MDOF EQUATIONS OF MOTION

Corollaries of Betti’'s Law:

Paup, = Pyl
= pufp, = Pbfpa
= . the flexibility matrix
= f = f /] ym
s symmetric
i.e. fij = fji| Maxwell's Law of Reciprocal Deflections
Similarly:
Pauy = Pyl
= uikTu, = ulkTu,
the stif fness matrix
= k = 'Y . U .
s symmetric
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Static Condensation:

!

(a) (b)
The static condensation method is used to eliminate from dynamic analysis those

DOFs of a structure to which zero mass is assigned; however, all the DOFs are
included in the static analysis.

Equation of Motion:

(5 o) aa)* (e @) = ()

where: Uy

DOFs with zero mass

u; DOFs with mass (= dynamic DOFs)

my i, + Keu, + Keoug = pe(t) (l)} R

Koeu; + Kgoup = 0 (ii) uy = —k&}kmut}

NOTE: Because no inertia terms or external forces are associated with uy, Equation
(i) permits a static relationship between uy and u;.

= My, +i(ttut = p(t)

where:

condensed

;o kT k-1
K¢ = Ky — KoKoo Kor stif fness matrix
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Planar Systems: Translational Ground Motion

Rigid-body w

motion

N

Rigid-body
motion j

v l—b-iﬂs
(a) (b)
N O y= N iN=l
J O l.j=| j 1j=1
1 —4—0— =1 1 =1
INR—r
feju, =1 feu, =1 fefu, =
(@) (b)
u'(®= u@®) + uy,(O1
““*-_/ | SE—
relative  rigid—body
(to base) motion
motion
T
where: 1=[1,1,---,1]
[
N
Equation of Dynamic Equilibrium: fi+fp+1fs=0

Only the relative motions u between the masses and the base due to structural
deformations produce elastic and damping forces (i.e., the rigid-body component
of the displacement of the structure produces only inertial forces).
Therefore:

fD =cu & fS = Kku
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However, the inertia forces f; are related to the total accelerations ii’ of the masses,
ie.

fI = mﬁt

Therefore:
f,+fp+fs=0
= mil+ca+ku=0
ul(t) = u(t) +u, (t)l} =

= |mii + cu + ku = —m1ii,(¢t)

The above equation contains N (coupled) ODE’s governing the relative displacements
u;(t) of a linearly elastic MDOF system subjected to ground acceleration it (t).

The stiffness matrix k refers to horizontal displacements and is obtained by static
condensation in order to eliminate rotational and vertical DOFs of the nodes k is known as
the lateral stiffness matrix (untomwo misvpiene Svorkauwiac).

’m y —8 — -y i)
i ® - -mii (1)
o ] ——@——— -y (1)
7 70 . T
—e lift) Stationary base

Equation of Motion:

mii + cu + ku = —m1iig(t)

Pesf(t)
Effective
Earthquake
Forces
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In general, the total displacement of each mass is expressed as:

its displacement uf due to static application of ground motion

+
the dynamic displacement u; relative to the quasi — static displacement

ie, w@®)=w®+uw®) or u'(®)=u’()+u®)

The quasi-static displacements (owovei ortatikéc nertaromiosic) can be expressed as:
u®(t) = iuy(t)

where: i= influence vector (Siavuoua smpponc)

represents the displacements of the masses resulting from
static application of a unit ground displacement

Therefore:

u‘(t) = iuy(t) +u(t)

Equation of Motion:

mii + cu + ku = —miii, (t)
N — e’
peff(t)
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EXAMPLE:
ty=1
m, ﬂ—_?ﬂia‘, U, L—J,_...._._El__c"l ; -(mz + m:‘}ﬂsfrj
=
83 3
m U efi, =1 —mlﬁ‘(t)
Fofu, =1 Stationary base
@) (b) i ©
i = w1 u us]’ = [1 1 o]F
static
application
of ug=1
Therefore:
my 1 my
Pesf(t) = —miiiy () = —ig(t) m, +my 1|=——1ig(t) (mz + m3>
my/ \0 0

-(my + my)ho (1)

I

Am;raé'{fj
e -mh,8,(1)
7
Stationary base
(a) () (c)
i = [m u us]” = [hy  hy  x3]"
static
application
of 04=1

Therefore:

mqhy
Pesr(t) = —mify(t) = —6,(t) ((mz + m3)h2)
msxs3



