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NUMERICAL EVALUATION OF DYNAMIC RESPONSE

AmBunnuroc Yaoioviouoc Avvauikne Amokpionc

TIME-STEPPING (or DIFFERENCE) METHODS:

Me£08o8or Xpovikav Bnuatwyv

Equation of Motion of an inelastic system:

mil + cu + fs(u, ) = p(t)
Initial Conditions (I.C.'s): uy =u(0) & u,=u(0)

Important requirements for a numerical procedure:

(1) Convergence: Ziykiion
As the time step decreases, the numerical solution should
approach the exact solution.

(2) Stability: Evotafewa
The numerical solution should be stable in the presence of
numerical round-off errors.

(3) Accuracy: Awxpilisia
The numerical procedure should provide results that are close
enough to the exact solution.

Types of time-stepping procedures:

(1) Methods based on interpolation of excitation function. M&8o8o1 Baowouévor
omyv tapeuBoin e Sieyvepone

(2) Methods based on finite difference expressions of velocity & acceleration.
Mée0o8oc kevipikne Swawopac

(3) Methods based on assumed variation of acceleration. M£8o8o1 Baowougvor otnv
voBson ustaBoinc e emTayvvoeng
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METHODS BASED ON INTERPOLATION OF EXCITATION (LINEAR SYSTEMS)
Interpolation of the excitation over each time interval

For sufficiently short time intervals, linear interpolation:

p(t) Actual Ap,
A Pi+1 p(@) =p; + £

— Interpolated: p(1)

T

——— Ap; = Piv1 — Di

Response u(t) for 0 < t < At; :

(1) Free vibrationdueto I.C.’su; & u; att = 0
+
(2) Response to step force p; with zero initial conditions

-+

(3) Response to ramp force (% T) with zero initial conditions

Each of the above responses is available in closed form for linear systems. Therefore:

(e = G 2@+ )6

Expressions for A,B,A’,B’,C,D, C’, D' are given in TABLE 5.2.1 of CHOPRA (1995).

The above described procedure is used to compute elastic response spectra.
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METHODS BASED ON DIFFERENCE EXPRESSIONS
Central Difference Method Mé#£8o08oc Kevrpiene Awawopdc

Approximate u & it by difference equations:

B R R 2u; + Ui
o2y (A1)

One way of obtaining these formulae is by Taylor expansion:

2 3

u(t + At) = u(t) + (A)u(t) + (Aztl) i(t) + (A;') i($1) )
N2 \3

w(t — At) = u(t) — (At)u(t) + (Azt!) ii(t) — (A;!) (&,) )

Subtracting (2) from (1), we obtain:

. (ar)® .
u(t + At) —u(t — At) = 2(At)u(t) + 3 [ii(&1) + (&)
' =2ii(§)
oy ult+At) —u(t — At) (A)?
= u(t) = 2080 7% i($)

Add (2) to (1) after expanding up to 4th power:

0% ratucey |, atuey
41 dt* dt*

G)

T

_ult+At) = 2u(t) +ult - At) (At)? [(d*u(d)

- (At)2 12 dt*

u(t + At) + u(t — At) = 2u(t) + (At)%i(t) +

= ii(t)
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Equation of Motion at step i :
mil; + ciy; + (fs); = by
Substituting the approximate expression for u; & ii;:

Uipp = 20 + Uiy Ujpq — Ujq
+ + (fs); = pi
(At)? c 2(A0) (f)i =npi

Transferring the unknown quantities to the right side, we obtain:

- \ p
kuips =0 © Uy = 7
P m 4 c
(A2 2(Ab)
where: m c m
p=pi— [(At)z - Z(At)] Uj—1 — (fS)i + Wui
(Explicit Method)
(Pnt M£00o8oc)
To initialize the process:
N S L Uy —2up Uy
=00 T @2
After eliminating u,, we solve foru_q : u_q; =uy — (At)uy + (Azizﬁo
uy & iy are given initial conditions
Equation of Motion: mily + citg + (fs)o = Po = i = %[po — ¢ty — (fs)ol

Stability requirement:

(at) 1
—<

T T

Typically, % < 0.1, (T = natural period of the SDOF system) to define the
response adequately.
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NEWMARK’s  METHOD MEGOAOEZ NEWMARK

‘Newmark’s Method’ comprises a family of time-stepping methods based on the following
equations:

Uip1 = u; + [(1 — y)At]i; + (YAl
U = u+ @O + | (3-5) (02] i + [B(A6) sy

The parameters § & vy :

o define the variation of acceleration over (At)
o determine the stability & accuracy characteristics

Method is implicit = iteration
For linear systems, the method may be modified to become explicit.

Typical selection of parameters:

1 1 1

= — —<B<=
2 6_3_4-

for satisfactory performance, including accuracy.

Special Cases:

) y=0 B=0: Constant acceleration method
2 Y= % B = i : Average acceleration method
3) y= % B = % : Linear acceleration method

Newmark’s method is stable if:

At 1 1
(7)< 2y - 25

1 1 At
N = - = ==Y _
For Y=3 B 2 T<oo

1 At
B=- = =<0.551
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Constant-Acceleration Method: (y =0 p =0)

i(r) = il
u(‘r) = ui + Tﬁi
= Uiy = U + (A0
72
u(t) = wu+7Tw+ ?ul
o, @2
= |ujp =y + (A + — U
A
p——

= —_

£

IQ ui _____

ey

S

-

LY

Foag)

)

Q

Q

<

- >
t; titq Time,t
e
At At

The above two equations provide two of the three equations for time integration, i.e. to
obtain Uit1, ill-+1, ui+1 from u;, ill-, u, .

The third equation is the Equation of Motion:
Milipq + CUipg + KUjpq = Piga
Then:

. 1 . (a0)?] .
Ujyg = E{le —ku; — [c + k(A)]w; — [C(At) +k ]ui}

2

To begin the time integration, we need to know the values of u, , 1y & it , i.e. the values of
displacement, velocity and acceleration at ¢t = 0.

Two of them must be specified; the third is obtained by using the Equation of Motion at
t=0.



Lecture Notes: STRUCTURAL DYNAMICS / FALL2011 / Page:7
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU

SEOUL NATIONAL UNIVERSITY
PART (09): NUMERICAL EVALUATION OF DYNAMIC RESPONSE

Average Acceleration Method: (y = %

Linear Acceleration: (y = % B=>)

(1)
u(1)

u(t)

1+ T

1 ..
E (Hj41

(1)

u(t)

u(7)

+1;)

(Hj41 + 1)

2

2

2 . .
T Uj 1 + U
ui + ’L’T:Li + <7> ( i+1 L)

B=2)

Uipq = U + (AL)

(Hij41 + ;)

= (U1 = w + (AU + 2 (41 + 1)

At)?

1
6

oo T .. ..
i; + @0 (41 — 1y)

e T
U+ 7l + 5 (e — i)

ui+rul~+<

2

TZ i T3 . .
7) u; + <m> (41 — Uy)

Uisy

-
-

Acceleration, it

e

\

o J O -*'-'-'

- LS | i — S+ AR

il = i z

& W ———7

s

b

3 At

L5

<
t; tiiq Time,t
F—=

iy + ity

Uy = U + (AL)

(Hj41 + 1)

. 1.
U1 = U + (MDY + (A1)? (Eui+1 +

1.
3t

)

7] €1
—

Time,t

/ o u:u,+a(m“ — ;)
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Non-iterative Formulation of Newmark'’s f Method (Linear Systems):

Mn sravainaxaxn (n un Bauotixn) Statdawan

Let:
def
Au; & g —
L :
Aty S Ujyq — Uy

L - _
Aty = Uy — Uy Ap; = piz1 —pi

Newmark’s time-stepping equations: Efiomoegic ypovikov Bnudatov

Aui = (At)ui + T i T ﬁ(At) Aui ( )
. 1 1 . 1 ..
(lb) = Aui = WA‘LLL — mui - ﬁui (2)
(2)+ (ta) = 8y = Lo du; Ly + a0) (1- %) ii; 3)

Incremental Equation of Motion: AvEntikn sfiowon kivnonce

2)+B)+ @ = kAu; =Ap;
1

/3(20 “Tpaoz™
and Ap; = Ap; + (Lm +Zc) u; + [im + (At) (L— 1) C] U

where: k =k +

S (At) B 2B 2P
A s
Therefore: % =% } = Al = {ul_“
Equation (3) i+l
L. — kw
flypg = Di+1 Cu;:—: Uitq = i,

Implicit Method (ITemtieyuevn M£Bo8oc)
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ERRORS INVOLVED IN NUMERICAL INTEGRATION
Types of errors:

(1) Round-off errors due to precision of the floating point arithmetic of computers.
ApOunmkd c@diua oTPpoYYUAGIIOINoNC

(2) Truncation errors involved in representing u;,, or u;,; by a finite number of
terms in the Taylor series expansion. This error is represented analytically by the

dp ; g 3
term C(At)P (%r(f)) . ApOunmikd c@aAna TEPIKOTNC

A very important aspect in the error analysis of numerical methods is the growth or
accumulation of errors as computation progresses (error propagation).

This consideration is related to the stability of the numerical scheme.

The performance of a numerical scheme is evaluated by examining two important
characteristics:

(1) Amplitude decay (AD) as a function of (%) Efac0évion Evpove Tahdvioong

(2) Period Elongation (PE) as a function of (%) Emunxvvon Ieprodov

Amplitude decay and period elongation

a (c)
0.5 (@) 0.1 0.5
0.4 10.08 0.4
0.3 0.06 03}
AD E
B on
0.2 0.04 =02¢
e
|
)
0.1 0.02 0.1
Central Difference ati
Linear ﬂ[.'[_’{{{l‘!?’uﬂlﬂﬂ E Acceleration
Average Acceleralio)
0 - - . . . 0 0.0
0.0 01 0.2 0.3 0.4
(at/T)
u(lt} (b) 041}
1 Vumericaﬂ: FEAD
g N o 0.2
g - T el
4 Exact '\~ - &
0 0.1 0.2 0.3 04
(4¢/T)

The Central Difference, Linear Acceleration & Average Acceleration Methods
introduce no artificial damping, i.e. AD = 0.
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ANALYSIS OF NONLINEAR RESPONSE

Equation of Motion: mit + ci + fo(u, 1) = p(t)
t=t;. mﬁi+Cul‘+(fs)i=pi
t=1ti4q: M1 + Wipr + (fs)iv1 = Pina

m(iljyq — i) + c@ipr — ) + [(fiv1 — (5] = Piv1 — 1)

or |mAil; + cAu; + (Af); = Ap;]

The incremental resisting force:
(AfS)i = (ki)sec - Au;
where: (k;)sec = secant stiffness  (not known) t¢uvovoa Svoraumwia

or approximately:

(Afs); = (k)7 - Ay

where: (k;)r =tangent stiffness es@amrousevikn Svokauwia

Application of Newmark’s Method, which is the most popular method because of its
accuracy:

ki - Au; = Ap;

~ 1
ki = (ki)r +

ﬁ(yAt) ‘ez
kAﬁi = Ap; + <ﬁm +%c) u; + [%m + (At) <%— 1) c] il

i.e., same formulae as in the linear case except that k has been replaced by (k;)r .

where:
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Significant error arises for two reasons:

(1) The tangent stiffness is used instead of the secant stiffness;

(2) Use of a constant time step delays detection of the transition in the force

deformation relation.

- (u)

(fs) A
/’ ky ke
1
s 1
rd
(fs)isr[—F 7y
(Afs); <
(fs)i
Aui
Uu; Uit1 (w)
(fs) (fs)
!
b _ .;’ ~Numerical
- - ,l} - Exact
: € ’& , /l.ar
C & " Vy
¢+ Numerical a’
/ Exact
~ (u)
u; Uiq U  Ujq
Error (2) Error (1)

Error (2) is eliminated by using an iterative process in which integration is resumed

from t; with a smaller step whose size is progressively adjusted so that at the end of

such an adjusted time step, the velocity is close to zero.
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Error (1) is eliminated by an iteration process (Bawmonikn uéBodoc) that is known as
Newton-Raphson Method.

Newton-Raphson iteration schemes

; AR® N SEPY: O
, ln(a) b1 23 , ' { 2 3
2) A . 2) e - 4 o
A'R( ; (3)1 > Af ATf - @ L e
Af Af k(@)
ap Af(n AF® AL ) i
L A | Ak
AKY A | AU Al | Au® | Au)
- U - U
(a) (b)

Initialize data:
0 0 ~
uD =w 0 =) ARD =ap
Calculation for each iteration: j =123,

kiau® = ARD) = Ayl

() _ (-1 i
Ut = why o +dut
. i i 14 1 .
AFD) = D) _ G-D [ ]A )
/ fs7 s (g <t pan ™A

ARU+D = ARWD — AfOD
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LINEAR MULTISTEP (LMS) METHODS

LMS Methods for 1st-order Equations:

Consider a system of 1st-order Ordinary Differential Equations (ODE’s):

y=fot (D)

A k-step linear multistep method for equation (1) is defined by the following

expression:
k

Z{aiyn+1—i + (OB f Vn+1-irtns1-)} = 0 2

i=0

The a; & B; are parameters that define the method.

Note that the word ‘linear’, in ‘linear multistep method’, has nothing to do with the
linearity of equation (1). Indeed, equation (2) is perfectly well defined for a nonlinear
function f(y, t).

Excellent references for LMS methods of this type are:

GEAR, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-
Hall, Englewood Cliffs, NJ.

ISERLES, A. (1996), A First Course in the Numerical Analysis of Differential Equations, Cambridge
University Press.

EXAMPLE:

The equation of motion of the linear, viscously damped, SDOF system can be cast in 1st-order
form:

1
mii+cu+ku=pt) = ii+2fwl+w’u= (E) p(t)
Let:
yi=1u
Y2=u
Then: Equation of Motion = y, = (%)p(t) — 28wy, — w?y,
Therefore:

. 0
Go) = (s —zlgw)(;;)Jf((%)p(t)) B (ﬁgg)

i.e. }"=f(y,t)
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Multistep Methods:

Runge-Kutta (one step method)
Adams-Bashford
Adams-Multon

Predictor-Corrector Methods



