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ANALYSIS OF RESPONSE IN THE FREQUENCY DOMAIN 

It can be demonstrated (see following pages) that the unit impulse response function  
(Συνάρτηση Απόκρισης σε Μοναδιαία Ωστική Δύναμη) and the complex frequency 
response function  (Μιγαδική Συνάρτηση Συχνοτικής Απόκρισης) form a 
Fourier Transform pair, i.e. 

↔ Ω  

where:

1
sin

Ω

1

1 2
Ω

 

 

Recall that the response of a SDOF system, starting from rest and subjected to a general 
dynamic load  , is expressed by Duhamel’s (convolution) integral (ολοκλήρωμα 
συνέλιξης): 

∗ ≝ 	  
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Let: 

↔ Ω
↔ Ω

 

Then applying the Convolution Theorem of Fourier Transform Theory, we obtain: 

∗ ⟹ Ω Ω Ω

↔ Ω ⟹
1
2

Ω 	 Ω
⟹ 

⟹
1
2

Ω Ω 	 Ω  

Thus, the essential steps in the frequency domain analysis can be summarized as 
follows: 

1) Compute the Fourier Transforms of the excitation function and the 
unit impulse response function. 

2) Take the product of the two transforms computed in step (1). 
3) Take the inverse Fourier Transform of the product to obtain the 

desired response.  
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Ordinarily, the computations involved in obtaining the Discrete Fourier Transform 
(Διακριτός Μετασχηματισμός Fourier) of the functions being convolved, taking the 
product of these transforms and then evaluating the Discrete Inverse Fourier Transform 
(Αντίστροφος Διακριτός Μετασχηματισμός Fourier), are no less than these in a direct 
evaluation of the convolution. 

However, the development of a special algorithm called Fast Fourier Transform (FFT) 
(Ταχύς Μετασχηματισμός Fourier) has completely altered this position. The FFT 
algorithm (which derives its efficiency from exploiting the harmonic property of a discrete 
transform) cuts down the computations by several orders of magnitude, and makes 
frequency-domain analysis highly efficient. 

 

	 	

↓

⟶ Ω Ω 	

∞

∞

⟶ Ω
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Indirect proof of ↔  using the Convolution Theorem 

We know that the response of the SDOF system to   is   , i.e. 

⟶ ⟶  

Furthermore, it is straightforward to demonstrate, using the sifting property of the Dirac 
(delta) function, that the Fourier Transform, ∆ , of  is equal to , i.e. 

∆ Ω 	 1  

Therefore, using the Convolution Theorem, we may express the response  of the SDOF 
system to a loading  as follows: 

1
2

Ω 	 Ω

1
2

Δ Ω ∙ Ω 	 Ω

1
2

1 ∙ Ω 	 Ω

 

Which implies that the inverse Fourier Transform of  is .  

Therefore,  ↔  . 
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Proof of  ↔  by direct evaluation of the inverse Fourier 
Transform Integral using Jordan’s Lemma. 

Using Jordan’s Lemma (see below): 

Ω 	 Ω 2 Res z ; 0  

Ω

1

1 2

1

Ω 2 Ω
1

Ω 1 Ω 1

 

Res
exp exp ∙exp

Res
exp exp ∙exp

 

Therefore: 
exp

∙ 0  

Closing the contour in the upper half-space for 0  (so 
that the integral converges), it follows that: 

1
2

Ω 	 Ω
1
2

2
exp

∙

exp
∙

 

For  0  , the contour is closed ‘down’ (i.e., in the lower half plane) and yields zero (no 
residues). 

Therefore: 

↔ Ω  
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JORDAN’S LEMMA: 

If, along a circular arc  of radius , we have | | , where  is a bound depending only 
on  and hence independent of angular position on , and if →  as → ∞ , then we will say 
that  tends to zero uniformly on  as → ∞. 

It is not difficult to show, in particular, that any rational function (ratio of polynomials) 
whose denominator is of higher degree than the numerator tends uniformly to 
zero on any  as → ∞. 

 

THEOREM: 

Suppose that, in a circular arc   with radius  and center at the origin, →  uniformly as 
→ ∞. 

Then: 

lim
→

	 0  

and 

lim
→

	 0  

If  is finite for all real values of , then: 

	 2 Res z ; 0  

where:  are the poles of  in the 
	
	

 half-plane.  
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STATE-SPACE METHOD 

Equation of Motion: 

⟹ 2
1

 

Introducing the transformation: 

 

we write the desired state equations as follows: 

2
1  

or, in matrix form: 

0 1
2

0
1

 

i.e., 

	 	  

 

This is a system of linear 1st order ODE’s. For such a system we have a closed form solution. 
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Evaluation of the response (i.e., solution* of the state-space equation of motion) for , 
given the initial condition: ≝  : 

	  

where: 

≝
1
2!

1
3!

⋯ 	
 

 

 The homogeneous solution represents the response of the system to the given 
initial condition and zero forcing function. 
 

 The particular solution represents the response of the system to the given forcing 
function and starting with zero initial conditions. 

 

*NOTE: For a review of matrix analysis of differential equations see: 

FRANKLIN, J.N. (1968). Matrix Theory, DOVER Publications, Inc. 

STRANG, G. (1976). Linear Algebra and its Applications, Academic Press. 
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We proceed to diagonalize , and express  in terms of the eigenvalues & eigenvectors of 
. 

Let:  ,  = eigenvalues of  

  ,  = corresponding eigenvectors of  

i.e.,    &   

Let: 

0
0 	 	 	  

↓ ↓

↓ ↓
	 	 	  

Then: 

0
0

. . ⟹
 

Therefore: 

	 	 	 	  

 

[NOTE: The above development presupposes that  possesses two linearly independent 
eigenvectors, which is always the case for an under-damped oscillator.] 
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Observing that the powers of  telescope into: 

⋯  

the infinite series of the exponential become: 

2! 3!
⋯

2! 3!
⋯  

 

Thus, we have demonstrated that: 

 

i.e., that the state transition matrix  of a SDOF system may be calculated by finding first all 
the eigenvalues & eigenvectors of  . 
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Specifically, solving the eigenvalue problem we obtain the eigenvalues: 

det
1

2 2 0

⟹ 1
 

with corresponding eigenvectors: 

1 1
 

Therefore: 

0
0

1 1
 

Inverting , we obtain: 

1
2

1
1  

It is straightforward to verify that: 

exp
0

0
0

0
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Therefore: 

cos sin
1
sin

sin cos sin

 

Therefore, the response is given by: 

cos sin
1
sin

sin cos sin

1
sin

cos sin
	

 

 

Therefore: 

cos sin

	
 

which is identical to the expression for the displacement response that we obtained previously 
by other means. 
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RESPONSE TO A STEP FUNCTION LOAD (ΒΑΘΜΙΔΩΤΗ ΔΥΝΑΜΗ) 

 

Equation of Motion:   

Solution:   cos sin  

Initial Conditions:  ≝ 0 0 & ≝ 0 0 

 

Then    &  

 

Therefore, the solution becomes: 

1 cos
1

sin  

 

For  (i.e., undamped system): 

1 cos  

Therefore, for   : 
max
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The time at which the max occurs can be obtained by setting  , i.e. 

sin 0

⟹ 0,1,2,⋯ 	 	 	
 

For 0 ⟹ 0	&	 0 , represents a minimum 

For 1 ⟹  

1  

The normalized maximum displacement  is shown above. 
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RESPONSE TO A RAMP FUNCTION LOAD (ΓΡΑΜΜΙΚΑ ΑΥΞΑΝΟΜΕΝΗ 
ΔΥΝΑΜΗ)  

 

Loading:  

 

Response of undamped system is obtained using Duhamel’s integral: 

1
sin 	

sin

sin 2

2

 

Notice that the response depends only on the ratio ⁄ , not separately on  and . 

The system oscillates at its natural period ⁄  about the static solution /  
(i.e., response of the system in the absence of inertia/mass). 
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RESPONSE TO A STEP FUNCTION LOAD WITH FINITE RISE TIME (ΒΑΘΜΙΔΩΤΗ 
ΔΥΝΑΜΗ ΜΕ ΠΕΠΕΡΑΣΜΕΝΟ ΧΡΟΝΟ ΑΝΑΠΤΥΞΗΣ) 

 

Undamped System : 

sin

1
1

sin sin
 

The response  depends only on the ratio ⁄  because ⁄ , not 
separately on  & . 
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1) The system oscillates at the natural period  about the static solution 
≝ ⁄     &    ⁄  

2) If the velocity  is zero at the end of the ramp, the system does not 
vibrate during the constant-force phase. 

3) For smaller values of ⁄  (i.e., relatively short rise time), the response is 
similar to a sudden step force. 

4) For larger values of ⁄ , the dynamic displacement oscillates close to the static 
solution (i.e., dynamic effects are small).  
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The deformation attains its maximum value during the constant-force phase of the 
response (why?).   

The time, , at which the peak response occurs is obtained by setting . Thus: 

cos cos 0

⟹ tan tan
2

⟹
2

0,1,2,⋯

 

The value of  should be chosen so that . 

Also: 

1
2 2

1
2

1
2

1  

[See plot of  vs. , above.] 
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Substitution of ≝  in the expression 1 sin sin  

 gives the following value for the maximum response: 

≝ 1
2 sin 2  

The true maximum will be obtained by selecting a value of  such that the second 
term within the braces in the above equation is positive, so that: 

≝ 1
sin 2

2

 

Observations: 

1) If       then  ≅  

2) If      then  ≅    (i.e., the excitation affects the structure like a 

static force) 

3) If    ⁄ , , , ⋯  , then   ≅  , because  at the end of the force-rise 

phase, and the system does not oscillate during the constant-force phase. 

NOTE: Plots such as the above, which show the relationship between the maximum 
value of a response parameter and a characteristic of the system (e.g., ) are called 
response spectra. 

  



Lecture	Notes:	STRUCTURAL	DYNAMICS			/					FALL	2011			/			Page:	20	
Lecturer:	Prof.		APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(08):	ANALYSIS	OF	RESPONSE	IN	THE	FREQUENCY	DOMAIN 

 
RESPONSE TO PULSE RXCITATION: SOLUTION METHODS 

 

Analytical methods: 

1) The classical method of solving differential equations; 
2) Evaluating Duhamel’s Integral; 
3) Expressing the pulse as a superposition of two or more simpler functions for 

which response solutions are already available or easier to determine. 

NOTE: Response to pulse excitations concerns systems without 
damping because damping has little influence on response to pulse 
excitations. 

  



Lecture	Notes:	STRUCTURAL	DYNAMICS			/					FALL	2011			/			Page:	21	
Lecturer:	Prof.		APOSTOLOS	S.	PAPAGEORGIOU	

SEOUL	NATIONAL	UNIVERSITY	
PART	(08):	ANALYSIS	OF	RESPONSE	IN	THE	FREQUENCY	DOMAIN 

 
RECTANGULAR PULSE FORCE (ΟΡΘΟΓΩΝΙΚΟΣ ΠΑΛΜΟΣ) 

 

Equation of Motion: 0  

Initial Conditions:  0 0 0 

Forced vibration phase: 
⁄

1 cos 1 cos
 

Free vibration phase: 

cos sin

where: 1 cos & sin
⟹ 

⟹ cos cos  

⟹ 2sin sin 2
1
2
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Response History: 

 ⁄   depends only on ⁄  , not separately on  or . 
 While the force is applied on the structure, the system oscillates about the shifted 

position, ⁄  , at its own natural period .  
 If ⁄ , , , ⋯  , the system stays still at its original undeformed 

configuration because  . 
 It must be ⁄  for at least one peak to develop during the forced 

vibration phase; the longer the pulse duration, more such peaks occur, the first peak 
occurs at  ⁄  with the deformation   . 

 If  ⁄  , no peak will develop during the free vibration phase. 
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Maximum deformation during the forced vibration phase: 

1 cos
2 1

2

2
1
2

 

[Indicated as ‘forced response’ in the FIGURE above] 

 

Maximum deformation during the free vibration phase: 

where: 1 cos & sin

⟹ 

⟹ ≝ 2 sin  

[  depends only on ⁄  and is shown as ‘free response’.] 
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If       ⁄ 1 2⁄   the overall maximum is the peak(s) in  that develops during the free 

vibration phase. 

If       ⁄ 1 2⁄    the overall maximum in  is given by either the forced-response 
maximum or the free-response maximum because the two are 
equal. 

If       ⁄ 1 2⁄  the overall maximum is the peak(s) in  that develops during the 
forced vibration phase. 

 

In summary: 

≝
2sin

1
2

2
1
2

 

 

A plot of  (= maximum deformation of the system) vs.  (or related parameter), is 
called a ‘response spectrum’. 

When the excitation is a single pulse, the terminology ‘shock spectrum’ is also used for the 
response spectrum. 

The ‘shock/response spectrum’ characterizes the response completely. 
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HALF-CYCLE SINE PULSE FORCE (ΠΑΛΜΟΣ ΜΙΣΟΥ ΚΥΚΛΟΥ ΗΜΙΤΟΝΟΥ) 

 

Equation of Motion: 
sin ⁄

0  

Initial Conditions:  0 0 0 

CASE 1: ⁄ ⁄  

Forced Vibration Phase: 

Recall that the response to the harmonic force sin ⁄  is: 

1

1 Ω
sin Ω

Ω
sin

where: Ω

 

Therefore, the response to the half-sine pulse for  is:  

1

1 2

sin
2

sin 2

where:

 

Free Vibration Phase: 

We determine  &  from the forced response above, and we obtain: 

cos

2 1
sin 2

1
2  
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CASE 2: ⁄ ⁄   

Forced Vibration Phase: 

Recall that the response to the harmonic loading sin  (i.e., phase resonance) is: 

1
2

cos sin  

Therefore, the response to the half-sine pulse for  is: 

1
2
sin

2 2
cos

2

where:
 

 

Free Vibration Phase: 

We determine  &  from the forced response above: 

2
& 0 

Equation  implies that the displacement in the forced vibration phase 
reaches its maximum at the end of this phase. 

Therefore, the response in the free-vibration phase is: 

2
cos 2

1
2
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Response History: 

 As ⁄  increases (i.e., as the variation of the time becomes increasingly slower 
relative to the natural period  of the system) the dynamic effects become smaller. 

 The forced-vibration response contains both frequencies: ⁄  and  and it 
is positive throughout. 

 If  ⁄ . , . , ⋯ , the mass stays still after the force pulse ends because  
. 
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Maximum Response: 

Forced Vibration Phase: 

To determine  = time instants when the peaks occur, we set 0 : 

0 ⟹ cos cos
2

	

⟹ ℓ
2ℓ

1 2
ℓ 1,2,3,⋯

 

where:  negative signs    ↔   local minima 

  positive signs     ↔   local maxima 

Therefore: 

ℓ
2ℓ

1 2
ℓ 1,2,3,⋯  

We consider only  . Substituting t in the expression u of forced response we obtain: 

≝
1

1 2

sin
2 ℓ

1
2 2

sin
2 ℓ

1 2

 

where:  = peak value 

Free Vibration Phase: 

≝
cos

2 1
 

[plotted as ‘free response’] 

For the special case of  ⁄ ⁄ , the maximum of the forced and free vibration 
phases are the same: 

≝
2
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≝
1

1 2

sin
2 ℓ

1
2 2

sin
2 ℓ

1 2

 

If  . ⁄ .  only one peak,  , occurs during the forced response. 

If   . ⁄   a second peak develops, but is smaller than the first peak   
    if  . ⁄ .  

If ⁄ .   no peak occurs during the forced vibration phase   

    (i.e., for  ⟹ ⟹ ) 

Therefore, the peak forced response is: sin 2   
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SYMMETRICAL TRIANGULAR PULSE FORCE (ΣΥΜΜΕΤΡΙΚΟΣ ΤΡΙΓΩΝΙΚΟΣ 
ΠΑΛΜΟΣ) 

 

2
2

sin 2 0
2

2 1
2

2 sin
2 1

2
sin 2

2

2
2

2 sin
2 1

2
sin

2
sin 2
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 The dynamic effects are seen to decrease as the pulse duration  increases 
beyond . 

 The first peak develops 

   right at the end of the pulse  if ⁄ ; 

   during the pulse    if ⁄ ; 

  and after the pulse    if ⁄  
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(ΦΑΣΜΑ ΠΛΗΓΜΑΤΟΣ) 

The above FIGURE shows that: 

If          ⁄  the overall maximum is the largest peak that develops during 
the force pulse; 

If          ⁄  the overall maximum is the peak response during the free 
vibration phase; 

If          ⁄  the forced and free response maxima are equal 
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EFFECTS OF PULSE SHAPE AND APPROXIMATE ANALYSIS FOR SHORT PULSES 

 

 As shown in the previous analyses, if  ⁄ , the overall maximum deformation 
occurs during the pulse. Then the pulse shape is of great significance. 

 For the larger values of  ⁄ , the overall maximum is influenced by the rapidity 
of loading. 

 If  ⁄ , the overall maximum response of the system occurs during its free 
vibration phase and is controlled by the time integral of the pulse 

	  

 This can be demonstrated by considering the limiting case as  ⁄ → . 
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Recall that the response of a SDOF system to an impulse of intensity  is: 

sin  

Thus, the maximum deformation is: 
2

 

Over the range  ⁄ ⁄ , the pure impulse solution is close to the exact response, i.e. 
the maximum deformation is essentially controlled by the pulse area, independent 
of its shape. 
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EFFECTS OF VISCOUS DAMPING 

 

FIGURE: Shock spectra for a half-cycle sine pulse force for five damping values 

If the excitation is a sine pulse, the effect of damping on the maximum response is usually not 
important unless the system is highly damped. 

Thus a conservative but not overly conservative estimate of the response of many 
practical structures with damping to pulse-type excitations may be obtained by 
neglecting damping and using the results for undamped systems. 

 

 

 

 

 

 

 

 


