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ANALYSIS OF RESPONSE IN THE FREQUENCY DOMAIN

It can be demonstrated (see following pages) that the unit impulse response function h(t)
(Cvvapmon Axoxpiong oe Movadiaia Qotuicn) Avvaun) and the complex frequency
response_function H,,(Q) (Miyaducn Zvvaptnon Zvyvotikng Amokpiornc) form a

Fourier Transform pair, i.e.

() < H,(Q)

1
h(t) = e @t sin(wyt)
mwg
where: 1
(%)

H, () = —Q
u(@) = (1—B2) + i(28B) (ﬁ‘Z)

Recall that the response of a SDOF system, starting from rest and subjected to a general
dynamic load p(t), is expressed by Duhamel’s (convolution) integral (o/oxAnpwua

ovveaé&ng):
t

u(®) = p(t)+h() = f p(DA(t —7) dr

0
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Let:
p(t) < P(Q)
u(t) < Ul

Then applying the Convolution Theorem of Fourier Transform Theory, we obtain:

u(®) =p@®) *h(®t) = U(Q) = P(QH, ()

+00

W) s U@Q) = u(t)=%j UQe da( =

= u(t)=% j P(Q)H,(Q)e** dQ

Thus, the essential steps in the frequency domain analysis can be summarized as
follows:

1) Compute the Fourier Transforms of the excitation function and the
unit impulse response function.

2) Take the product of the two transforms computed in step (1).

3) Take the inverse Fourier Transform of the product to obtain the
desired response.
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Ordinarily, the computations involved in obtaining the Discrete Fourier Transform
(Awaxprroc Metaoynpartiopog Fourier) of the functions being convolved, taking the
product of these transforms and then evaluating the Discrete Inverse Fourier Transform
(Avriotpopocg Ataxpitogc Metaoynpatiopog Fourier), are no less than these in a direct

evaluation of the convolution.

However, the development of a special algorithm called Fast Fourier Transform (FFT)
(Tayvc Metaoynpatiopog Fourier) has completely altered this position. The FFT
algorithm (which derives its efficiency from exploiting the harmonic property of a discrete
transform) cuts down the computations by several orders of magnitude, and makes
frequency-domain analysis highly efficient.

TIME DOMAIN

p(t)

——

8

t

u(t) = fp(r)h(t —1)dt

0

8

e

u(t)

+oo

r(q) = f p(t)e_imdt

—00

FREQUENCY DOMAIN

— P(Q)
I

U(Q) = H,(QP(Q2)

+o0

u(t)=$ f U(Q)e™ dn

—00

.
— U(Q)
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Indirect proof of h(t) < H,(Q) using the Convolution Theorem

We know that the response of the SDOF system to p(t) = 6(t) is u(t) = h(t),i.e.

p(t) =6(t) — —  u(t) = h(t)

Furthermore, it is straightforward to demonstrate, using the sifting property of the Dirac
(delta) function, that the Fourier Transform, A(Q), of §(t) isequal to 1, i.e.

+ 0o

A(Q) = f S(t)e ¥t gt =1

— 00

Therefore, using the Convolution Theorem, we may express the response h(t) of the SDOF
system to a loading p(t) = §(t) as follows:

w(®) = ht) = % f U(Q)e dq

+0o
1 .
= — f A(Q) - H,(Q)e™ da
21
o
1 it
= o 1-H,(Q)e"¥ da

Which implies that the inverse Fourier Transform of H,,(Q) is h(t).

Therefore, h(t) & H,(Q).
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Proof of h(t) < H,(Q) by direct evaluation of the inverse Fourier
Transform Integral using Jordan’s Lemma.

Using Jordan’s Lemma (see below):

+o00

f H,(Q)e ¥ da = Zniz Res{H, (z)e"; a;} (t = 0)

(&) ()

H,(Q) = =
WD =G 1 i2Ep) @ — 0 + i28en)
()
m
0-o(if +/1-82)||2- (i - T-2)
ag az
- iw(iE4+/1-&2 oxpli
Restey) = Ml OBM _ ceol-totoption
m2w,/1-¢ m2wgqg
- iw(if—J1-&2 cexpl—i
o) = AT eoutentia
m2w,/1-¢ m2wgqg
Therefore: Im
—exp[—{wt]
Res(a;) + Res(ay) = ———— - isin(wgt) (t =0)
mwg
Closing the contour in the upper half-space for (t = 0) (so
that the integral converges), it follows that: T T
+00
1 ; 1 - —éwt
— f H,(Qe da = —ZEiM- isin(wgyt) Re
2m 2m mwgy
—Ewt
= —exp[ Swtl - sin(wgt)
mawg
= h(t)

For (t < 0), the contour is closed ‘down’ (i.e., in the lower half plane) and yields zero (no
residues).

Therefore:

h(t) < Hy(Q)
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JORDAN’S LEMMA:

If, along a circular arc C,. of radius r, we have |f(z)| < M,, where M,. is a bound depending only
on r and hence independent of angular position on C,., and if M,. = 0 as r — o, then we will say
that f(z) tends to zero uniformly on C, asr — .

It is not difficult to show, in particular, that any rational function (ratio of polynomials)
whose denominator is of higher degree than the numerator tends uniformly to
zeroon any C,. asr — oo.

THEOREM:

Suppose that, in a circular arc C,. with radius R and center at the origin, f(z) — 0 uniformly as
R — oo,

Then:

R[im f e™f(z)dz (m>0)
Cr

and

}%im je‘imzf(z) dz (m>0)
Cr

If f(2) is finite for all real values of z, then:

+ 0o

j etMX £(x) dx = 2niz Res{e*™2f(z); a} (m =0)

— 00

) . (+) upper}
where: a;, are the poles of f(z) in the {(_) lower half-plane.
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STATE-SPACE METHOD

Equation of Motion:
d*u  du d?u du

1
- — = — 4+ 28w — 2u=—
mdt2 +Cdt+ku p(t) = 102 + 2¢w dt+w u mp(t)

Introducing the transformation:

u(t) = z(@)

du(®)  dm(®)

dat ~  dt 22(6)
d*u(t)  dz(t)

dez dt

we write the desired state equations as follows:

2, (t) = z,(t)

2O = CoDn® + (26)n0 + ()p®

or, in matrix form:

. 0
P R G el (DG
Z(t) 4 Z(t) _f(t)—’

State — Space

Z(t) = AZ() + (1) Equation of Motion

This is a system of linear 15t order ODE’s. For such a system we have a closed form solution.
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Evaluation of the response (i.e., solution* of the state-space equation of motion) fort > t,,
given the initial condition: Zy & Z(t,) = [u(ty) wu(ty)]” :

t
Z(t) = eAt-t)Z(t,) + fe“’(t_f)f(r) dr

homogeneous to
solution

particular
solution

where:

State Transition

1 1
At def _ 2 4 34 ...
et ¥ I+ At + T (At) + T (At)° + Matrix

e The homogeneous solution represents the response of the system to the given
initial condition and zero forcing function.

e The particular solution represents the response of the system to the given forcing
function and starting with zero initial conditions.

*NOTE: For a review of matrix analysis of differential equations see:

FRANKLIN, J.N. (1968). Matrix Theory, DOVER Publications, Inc.

STRANG, G. (1976). Linear Algebra and its Applications, Academic Press.
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We proceed to diagonalize A4, and express e“t in terms of the eigenvalues & eigenvectors of
A.

Let: A1, 4, = eigenvalues of A

P4, P, = corresponding eigenvectors of A

e, AY, = L1, & AP, = 1L, ¢,
Let:
A, O ] .
A= ( ) eigenvalue matrix of A
0 A,
l l
S=|¢Y; yY,| eigenvector matrixof A
l l
Then:
A, O
AS = A[¢1 ¢2] = [/111/)1 /121/’2] = [‘I)1 1/’2] ( 0 /12) =SA
i.e. AS=SA = ASS l1=SAS"!
Therefore:

A =SAS! (canonical form of matrix A)

[NOTE: The above development presupposes that A possesses two linearly independent
eigenvectors, which is always the case for an under-damped oscillator.]
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Observing that the powers of A = SAS™! telescope into:
A® = (SAS™1) - (SAS™1) = SA*S™1

the infinite series of the exponential become:

SA’S1 SA3S1
edt = [+ SAS? +Tt2 +Tt3 + .-
At)?  (At)3
= S{I+A+( ) +( ) +-..}5—1
2! 3!
Y;
= Sehts—1

Thus, we have demonstrated that:

eAt _ SeAts—l

i.e., that the state transition matrix et of a SDOF system may be calculated by finding first all
the eigenvalues & eigenvectors of A.
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Specifically, solving the eigenvalue problem we obtain the eigenvalues:

det[4 — M| = | _’12

A =—¢w+iwg

= .
A, =—=¢w—iwy

with corresponding eigenvectors:

1 1
Y1 = (—fa) + iwd) Y2 = <—€a) —iwy
Therefore:
_(Sw tiwg 0 ) _ < 1
A_< 0 —w —iwg $= —€w +iwg
Inverting S, we obtain:
61 _ 1 <—Ew —iwy —1)
2wg\ w—iwg 1
It is straightforward to verify that:
At 0 Aqt 0
At _ 1 _le
r=en (s )= (0 )

-
—w* 28w -1

(wd = w\/TSeZ)

=12+ 28wd + w? =0

)

1
—Ew —

iwd)
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Therefore:
eAt — SeAts—l

cos(wgyt) + (i_w) sin(wyt) wisin(wdt)

— e—fa)t d d

2
_ <w_) sin(wgyt) cos(wgyt) — (i_a)) sin(wgt)

Wy d

Therefore, the response is given by:

cos(wgyt) + (f_cu) sin(wgyt) isin(a)dt) \
{zf(t)} _ -fwt , Wq Wq {y(to)}
u(t) w0\ Swy u(to)

— (w—d> sin(wyt) cos(wgyt) — (w—d> sin(wyt)
; —sin[wg (t — 7)]
+ f PO _coie-v) wg w;w ' \‘ dr
to m \cos[wd(t —-17)] — (w—d> sin[wy(t — T)]/
Therefore:
u(t) = e St [u(to) cos(wyt) + Swulto) +ulto) sin(a)dt)]
d

t

+ fp(r)h(t —1)dt

to

which is identical to the expression for the displacement response that we obtained previously
by other means.
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RESPONSE TO A STEP FUNCTION LOAD (BAOMIAOQTH AYNAMH)

—

e

p—

& Po

o8]

xS

~

(=]

<9

Time,t

Equation of Motion: mil + cit + ku = p,
Solution: u(t) = e $“t[Acos(wyt) + B sin(wgt)] + %
Initial Conditions: Uy u(0)=0 & U, ®u(0)=0

— _(Po — _ (Po) (s@) = _ (Po)_¢&
Then A= (k) & B= (k)(a)d)_ (k)J1-—§2

Therefore, the solution becomes:

u(t) = (%) 1 —eSwt lcos(wdt) + Lsin(wdt)

i

For ¢ = 0 (i.e., undamped system):

u(t) = (i—o) [1 — cos(wt)]

Therefore, for € =0:
mtaxu(t)

®

Rd: =2
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Damping ratio, &

The time at which the max occurs can be obtained by setting it(t) = 0, i.e.

2
(Z;c_o) e—i0ty {% + wd} Sin(a)dtp) =0

nm ,
= t, = w_d n=20,12,:- (tp = time at peak value)

For n=0=1t,=0&u=0,representsaminimum

(=t )
Umax = u(ty) = (%) l1+e ( 1-¢2

Umax

The normalized maximum displacement <@> is shown above.

k
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RESPONSE TO A RAMP FUNCTION LOAD (I'PAMMIKA AYEANOMENH
AYNAMH)

A /—:ﬁ? A
st 1l
po — : g 1.0
fo T
o .§ 0.8}
e = tr
<% AT A —=2
N A T
[t
S 2
29 S 0.4—
0
(=]
B
8, 02}
v
)
- = 012 OJZ 0]6 ola 1lo—‘“
. 0 2 :
Time,t t, (t_r)
(a) (b) T
Loading:

p(t) = po (é)

Response of undamped system is obtained using Duhamel’s integral:

t
w(@®) = %f %m[w(t ~ D) dr
0 T

- B
®) () sin(2nr)

)

T

Notice that the response depends only on the ratio (¢,/T), not separately on ¢, and T.

The system oscillates at its natural period T = (277/®) about the static solution p(t)/k
(i.e., response of the system in the absence of inertia/mass).
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RESPONSE TO A STEP FUNCTION LOAD WITH FINITE RISE TIME (BAOMIAQTH
AYNAMH ME ITIEITEPAXMENO XPONO ANAIITYEHY)

p(t)
A
Po-
: »
0 £,

Undamped System (¢ = 0):
( Py (t sin(wt)

") o=

k/ |t, wt, -7

1

(T;c_O) {1 ot

The response u(t) depends only on the ratio (t,./T) because wt, = 2n(t,./T), not
separatelyont, & T.

u(t) =

[sin(wt) — sin[w(t — tr)]]} t=>t,

T




1)
2)
3)

4)

Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page:17
Lecturer: Prof. APOSTOLOS S. PAPAGEORGIOU
SEOUL NATIONAL UNIVERSITY
PART (08): ANALYSIS OF RESPONSE IN THE FREQUENCY DOMAIN

Response to step force with rise time

o
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The system oscillates at the natural period T about the static solution
u,(t) 2 p(t)/k & [(us)o =po/kl

If the velocity u(t,) is zero at the end of the ramp, the system does not
vibrate during the constant-force phase.

For smaller values of (¢,./T) (i.e., relatively short rise time), the response is
similar to a sudden step force.

For larger values of (t,./T), the dynamic displacement oscillates close to the static
solution (i.e., dynamic effects are small).
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10

T

t, = Time of maximum response

P
1.0 \ s T i G

0 1 2 3 4
5)
T
The deformation attains its maximum value during the constant-force phase of the
response (Wwhy?).

The time, t,,, at which the peak response occurs is obtained by setting u(t) = 0. Thus:

p—o{— cos(wt) + cos[w(t —t,)]} =0

kt,
wt,
= tan(wt) = tan( 5 )
= |, =""4" n-012--
p a) 2 ) ) )
The value of n should be chosen so that ¢, > t,.
Also:
(tp>_ mr+1_ nm +1_1 n +1
VT ) )

[See plot of (Z—’r’) VS. (%’) above.]
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Response spectrum for step force with rise time

2-

o
AN

I

=
S
e

s 1

]

Il »

= de: - 0
= Unax = Up (ust)o = (?)

0 1 2 3 4

(t,./T) = rise time/natural period

Substitution of t = ¢, & 7;—” + %T in the expression u(t) = (’;—") {1 - wit [sin(wt) — sin[w(t — tr)]]}

(t > t,) gives the following value for the maximum response:

2 sin (nn — a)ztr)

wt,

Umax & Up = (2;(_0) 1+

The true maximum will be obtained by selecting a value of n such that the second
term within the braces in the above equation is positive, so that:

- 5

Umax = k (wtr)
2

Observations:

T
1) If < then g, =2(%)

2) If t,.>3T then u,,, = (’;{—0) (i.e., the excitation affects the structure like a
static force)
3) If (t./T)=1,2,3,--- ,then u, , = (p—k") , because u(t,) = 0 at the end of the force-rise
phase, and the system does not oscillate during the constant-force phase.
NOTE: Plots such as the above, which show the relationship between the maximum

value of a response parameter and a characteristic of the system (e.g., T') are called
response spectra.
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RESPONSE TO PULSE RXCITATION: SOLUTION METHODS

Pulse force = superposition of simple functions

p(t) p
i Pt = Po
(a) pU Po
t = r'd t
td :
“Per i S
Npal) =2,
p(t) 4
{) P, sin wt polf) = po sin w(t- ty)
Po Po Sin(R2t) po

ANAYAVAYAYAY
c. \/ AVAVAVA

p(t) P
Po () = p"r Pg(t):-%’o(f-fd)
() i ri,fa ” r
£ \\\
N, pald <2e(t- &)

Analytical methods:

1) The classical method of solving differential equations;
2) Evaluating Duhamel’s Integral;

3) Expressing the pulse as a superposition of two or more simpler functions for
which response solutions are already available or easier to determine.

NOTE: Response to pulse excitations concerns systems without

damping because damping has little influence on response to pulse
excitations.
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RECTANGULAR PULSE FORCE (OPOOT'QONIKOX ITAAMOY)

p(t)
A

Po
(t)
0o £
. S . _ _(po t=tq
Equation of Motion: mit + ku = p(t) = { 0 t>tg
Initial Conditions: u(0) =u(0)=0
u(t) 2mt
=1- t)y=1- — t<t
Forced vibration phase: | (ust)o cos(wt) COS( T ) (t < tq)
(po/k)
Free vibration phase:
u(t) = u(ty) cos[w(t —ty)] + u((zd) sinfw(t — tg)] —
where: u(ty) = (Ug)ol[1 — cos(wty)] & u(ty) = (ug),w sin(wty)
u(t)

W) = cos[w(t — tz)] — cos(wt) (t =ty)
st/o

= (ZS))O = (2 sin nTtd) sin [2n (% — %(%))] (t=>ty)
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Response to rectangular pulse forces

7| - —./ust )/ ()0

e 7/\

0 005 01 015 02 025 0 01 02 03 04 05

e — — — — -+ — — —

£ \
2 . : . . i i . :
0 0.25 05 075 1 0 0.5 1 1.5 2
td/T=125 td/T=1.5

N AN
2! VoL ,\/\.

0 1 ' '

\+]

u(t)/(ug),
o

u(t)/(uge) o
o

u(t) /(g
o

4

2 3 0 1 2 3

rvas WANWAN/s VA
A'A

0 1 2
t/T t/T

u(t)/(use) o
o

S
o
N.
w
n

Response History:

o u(t)/(us), depends only on (t;/T) , not separately on t; or T.

o While the force is applied on the structure, the system oscillates about the shifted
position, (ug), = po/k , at its own natural period T.

o If(ty/T)=1,2,3,:-- ,the system stays still at its original undeformed
configuration because u(t;) = u(t;) = 0.

e It mustbe t; > T/2 for at least one peak to develop during the forced
vibration phase; the longer the pulse duration, more such peaks occur, the first peak
occurs at t, = T/2 with the deformation u, = 2(uy,), .

o If t; <T/2,no peak will develop during the free vibration phase.
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Shock spectrum for rectangular pulse force

Forced response

& 2 Vo W S
<~ 7N / 0\ /N
B ‘/I \ i \ /'Free response
(e / ; : i
(a) =c 1 /l’ \ / \ /
! '
= i y
% i 1 2 3
Lt /T
Overall maximum
2.
~
g
® 3N
[l
e
% 1 2 3

t;/T

Maximum deformation during the forced vibration phase:

27Ttd ta 1

— L)<

poo Yo _ ! COS( T) (T)‘Z
¢ (ust)o 2 (t_d>>l
2

[Indicated as ‘forced response’ in the FIGURE above]

Maximum deformation during the free vibration phase:

. 2
z%=ﬁwmw+r%)

w

where: u(ty) = (ug)o[1 —cos(wty)] & u(ty) = (ug),w sin(wty)

Uo

= [Ra = =2 fon ()
«< = sSIN | —
d (Ust) o T

[R; depends only on (t;/T) and is shown as ‘free response’.]
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If  t;/T<1/2 the overall maximum is the peak(s) in u(t) that develops during the free
vibration phase.

If t;/T=1/2 the overall maximum in u(t) is given by either the forced-response
maximum or the free-response maximum because the two are
equal.

If  t;/T>1/2 the overall maximum is the peak(s) in u(t) that develops during the

forced vibration phase.

In summary:
A TL'td td 1
2sin(7) (7)=3
L Yo _ Sm(T T)=2
(uSt)O 2 (t_d>>l
T) 2

A plot of u, (= maximum deformation of the system) vs. T (or related parameter), is
called a ‘response spectrun?’.

When the excitation is a single pulse, the terminology ‘shock spectrun?’ is also used for the
response spectrum.

The ‘shock/response spectrum’ characterizes the response completely.
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HALF-CYCLE SINE PULSE FORCE (ITAAMOX MIZ0OY KYKAOY HMITONOY)

p(t)
A
Po
Y - [
0 £
. _ . posin(mt/ty) t<t,
Equation of Motion: mil + ku = p(t) = { 0
t>ty
Initial Conditions: u(0)=u(0) =0

CASE 1. (t;/T) +1/2

Forced Vibration Phase:

Recall that the response to the harmonic force p(t) = p, sin(mt/t,) is:

u(t) = (%)j{sin(ﬂt) — (%) sin(wt)}

w

T
where: Q= (—)
ta

Therefore, the response to the half-sine pulse for ¢ < ¢, is:

gy ) Gl =
where:  (ug), = (%)

Free Vibration Phase:

We determine u(t;) & u(t,) from the forced response above, and we obtain:

u(®) = (%) © (HT) sin [271 (t ! td)] t=tg

(ust)o - (%)2 1
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CASE 2: (t;/T) =1/2

Forced Vibration Phase:

Recall that the response to the harmonic loading p(t) = p, sin(wt) (i.e., phase resonance) is:
u(t) = 1 (@) {wt cos(wt) — sin(wt)}
2\k
Therefore, the response to the half-sine pulse for t < t, is:

20 o) ()l =

where: (ug), = (%)

Free Vibration Phase:

We determine u(t,;) & u(t,;) from the forced response above:

u(ty) m ) _
(Ust)o "2 & ulta) =0

Equation u(t;) = 0 implies that the displacement in the forced vibration phase
reaches its maximum at the end of this phase.

Therefore, the response in the free-vibration phase is:

Ot D) =
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Response to half-cycle sine pulse forces

2
/_f\: (ust(t)/(usr)a
R P -
< 0
= A
= 2 . . : ; . . . . .
0 0.1 02 025 0 01 02 03 04 05
ta/T=
2 ]
I < VA
3 0 2 ~N
-
& 1 \ - N\
: . T T 1 Ll T T 1
0 025 05 075 1 0 0.5 1 15 2
td/T=15 td T=2
5 _
fgﬁ 1i — . —
S N \//\ 2N
E 1 -
= . _ 1 . .
0 1 2 3 0 1 2 3 4
a/T=28
2
=]
;?; 1
=0 - PaN
OBl
=, . :
0 1 2 3 4 5 0 1 2 3 4 5 6
t/T t/T
Response History:

As (t;/T) increases (i.e., as the variation of the time becomes increasingly slower
relative to the natural period T of the system) the dynamic effects become smaller.
The forced-vibration response contains both frequencies: Q(= m/t;) and w and it

is positive throughout.

If (t;/T)=1.5,2.5,---, the mass stays still after the force pulse ends because u(0) =

u(0) =0.
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Maximum Response:

Forced Vibration Phase:

To determine t, = time instants when the peaks occur, we set u(t,) = 0:

. L, 2mt,\  transcedental
u(t,) =0 = cos|—|=cos|—— ,
tq T equation
2¢
= (to)e = —7~ta £=123,
1+2(H#)
where: negative signs < local minima
positive signs < local maxima
Therefore:
24
(to)f = # = 1J2I31 e

1+2(%d)td

We consider only (t,), < t; . Substituting t in the expression u of forced response we obtain:

R s U, 1 ) 2mt ( T ) ) 2mt

= = SN ——— | —\{=—)SIn

7 (use)o 1_(L)2 142t \2tg 1+
2ty T 2tq

where: u, = peak value

Free Vibration Phase:

() (Y

‘= (ust)o B (T )2

2ty

-1

[plotted as ‘free response’]

For the special case of (t;/T) = 1/2, the maximum of the forced and free vibration
phases are the same:

Ryte —o =2
(ust)o 2
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Shock spectrum for half-cycle sine pulse force

Largest peak of the forced response is:

2 L 1st peak | 2nd peak | 3rd peak
~
P
)
(a) il
—
)
S’
=
0 -
0 12 1 2 3 4 5 6
t/T
2,.
~ | S
« / \ Mg
= \ ~Foreed respanss
® 1 \
< f \  F
& fi \ ~~Free response
/ N TN —.
* VAV VNN
0 12 i 2 3 4 5 6
t/T
2_
]
Ao,
o Overall maximum
&
(c) - 1
o
S
p—
=
0 12 1 2 3 4 5 6
t/T
w  Uo 1 ) 2nt ( T ) ) 2nt
gof = sin| ——=— | —|=—])sin
¢ (Ust)o 1— (L)z 1+ Zﬁ 2ty 1+ L
th T th
If 0.5 < (t;/T) < 1.5 onlyone peak, ¢ = 1, occurs during the forced response.
If 1.5 < (t4/T) a second peak develops, but is smaller than the first peak
if 1.5 < (ty/T) <2.5
If (ty/T) < 0.5 no peak occurs during the forced vibration phase

. 2
(i.e., for t’=1:>t¢,=1 tg=1t,>ty)

T
Therefore, the peak forced response is: ulta) _ (Zt‘i) sin (Zn t—d)
(ust)o (L) -1 T

2ty
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SYMMETRICAL TRIANGULAR PULSE FORCE (XYMMETPIKOZX TPIT'ONIKOX
ITAAMOXY)

p(t)
'
Po
: > (t
0o m o O
( {é—zitd Zn% 0St<%d
(ZE:))O = 2{1—%+%[25in[2?n t—%td)]—sin(br%)]} %Stﬁtd
2y fesm (e 5t0)] s ] -sm(anpl] s
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Response to triangular pulse forces

/=173

ug (D) /(uge)o 1 ~~

ST T S
Pl 2 = o~

== N

1
—
L

u(6)/(use)o

0 005 01 015 02 025 0 01 02 03 04 05

|
1 ~
i

u(t)/ (use)o

20 o025 05 075 1 0 05 1 15 2
=
b D-A@Qvé =
1 |
3, | | | .
0 1 2 3 0 1 2 3 4

u(t)/(us)o

¢ The dynamic effects are seen to decrease as the pulse duration ¢, increases
beyond 2T.
o The first peak develops

right at the end of the pulse ifty =T/2;
during the pulse ifty >T/2;

and after the pulse ifty <T/2
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Shock spectrum for triangular pulse force

2-
=]
Fo,
PR =
S \ Mg Forced response
B s ~ o T - s A S—,.
(a) © 17 ~ — -
- \
I [
[
~ 1/ \ - F
o ree response
|/ X e —_
] r \_‘_/ . \'- _'__..-"/ . ‘\-—_l
0 1 2 3 4 5 6
ty/T
2_
=]
]
: i -
S Overall maximum
Sng
b e 14
(b) <
Il
-
[~
G ) 1 b L) T 1
0 1 2 3 4 5 6
ty/T
(PAXMA ITAHI'MATOY)
The above FIGURE shows that:
If ty;>T/2 the overall maximum is the largest peak that develops during
the force pulse;
If ty <T/2 the overall maximum is the peak response during the free

vibration phase;

If ty=T/2 the forced and free response maxima are equal
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EFFECTS OF PULSE SHAPE AND APPROXIMATE ANALYSIS FOR SHORT PULSES

Shock spectra for force pulses of equal amplitude

N
h

)
/
/y

Ry = uo/(ust)o
=
I/’
(
%L
=
=

@
.
l\):
.
A-

As shown in the previous analyses, if t; > T /2, the overall maximum deformation
occurs during the pulse. Then the pulse shape is of great significance.
For the larger values of t;/T, the overall maximum is influenced by the rapidity

of loading.
If t; < T/2, the overall maximum response of the system occurs during its free

vibration phase and is controlled by the time integral of the pulse

ta

I= f p(t) dt (= Impulse)
0

This can be demonstrated by considering the limiting case as (t;/T) — 0.
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Shock spectra for force pulses of equal area

21 Approximate
—~ g /ﬂ’--""'-._\
ST TN
1 =
p— “"-:_- — — —
e

(=]
S
O T T T T
0 1 2
tqy/T

Recall that the response of a SDOF system to an impulse of intensity I is:
I
u(t) = —sin(wt)
mw
Thus, the maximum deformation is:
~a~ ) (F)
o= - \W\T

Over the range (t;/T) < (1/4), the pure impulse solution is close to the exact response, i.e.
the maximum deformation is essentially controlled by the pulse area, independent

of its shape.
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EFFECTS OF VISCOUS DAMPING

Shock spectra for a half-cycle sine pulse force

2-
]
~—
*;; -
=
~
s
I
"~ E
4
0: T T T T T T T 1
0 1 2 3 4
tq)T

FIGURE: Shock spectra for a half-cycle sine pulse force for five damping values

If the excitation is a sine pulse, the effect of damping on the maximum response is usually not
important unless the system is highly damped.

Thus a conservative but not overly conservative estimate of the response of many
practical structures with damping to pulse-type excitations may be obtained by
neglecting damping and using the results for undamped systems.



