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1. INTRODUCTION 

 The aims of this study are: 

1. To determine the parameters governing the motion of a single degree of freedom 

beam structure using measurements of its response to sinusoidal forcing. 

2. To evaluate two strategies for determining the viscous damping of the structure.  

3. To compare results with nominal values of parameters given by Hallauer and 

Devenport (2006).  

These aims were achieved by performing measurements and analysis on a laboratory 

structure of the type shown in Figure 1. The theoretical background of such structures is 

summarized below. 

In general, any single-degree of freedom system can be thought of as being 

equivalent to the combination of a mass, a connected spring and a dashpot, as shown 

schematically in Figure 2.  To determine the response of such a system it is necessary to 

analyze its motion. Balancing the forces acting on the mass, m, in Figure 2 gives the 

equation of motion: 

 )(tfkxxbxm =++  (1) 

where k is the spring constant, b is the damping coefficient and f(t) is the applied force. 

The parameters m, b and k completely define the dynamics of the structure. Solving 

equation (1) for a sinusoidally fluctuating force at an angular frequency,ω, it is found that 

the amplitude of the motion, xm , and the amplitude of the force that produces it, fm , are 

related as: 
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See, for example, Ogata (1998). This ratio is referred to as the dynamic flexibility, given 

here the symbol, g. The phase lag between the motion and force ψm is 
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It is possible to design an experiment to determine the parameters m, b and k 

through measurements of the dynamic flexibility and phase lag and the use of equations 

(2) and (3). For example, the spring stiffness, k, can be inferred from a measure of the 

dynamic flexibility at zero or very low frequency, since g(0)=1/k. The system mass, m, 

can then be determined by measuring the natural frequency, ωn , since mkn /=ω  and 

thus  

 km n /2ω=  (4) 

The natural frequency can be identified using the fact that the phase is -90 degrees here.   

 Two straightforward methods for determining the damping, b, present themselves. 

We can either measure the dynamic flexibility at the natural frequency  

 )/(1)( nn bg ωω =  (5) 

or measure the resonant frequency 

 kbnr /1 2
2
1+= ωω  (6) 

at which the dynamic flexibility is a maximum.  

  In the present study these approaches are used to measure the parameters of a 

dynamical system. Uncertainty analysis is also used to reveal the best method for 

determining the damping.  The remainder of this report is organized as follows. The 

following section includes a detailed description of the structure, the experimental 

instrumentation and procedures. Results are then presented in Section 3 along with 
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uncertainty estimates and a comparison of the measured parameters with nominal values. 

Finally conclusions are drawn. Most importantly we find that damping coefficient can be 

determined with reasonable accuracy from the dynamic flexibility at the natural 

frequency. We also find the nominal mass of the structure to be in error by at least 26% 

 

2. APPARATUS AND TECHNIQUES 

2.1 Test Structure 

The test structure (Figures 3 and 4) is mounted inside a wooden frame. A large 

aluminum block firmly attached to the frame serves as a fixed support for the structure. 

Two parallel aluminum beams, cantilevered from the block, support a rigid mass that is 

free to vibrate in the x direction as illustrated in Figure 1. The beams are also cantilevered 

at the mass preventing any rotation of the mass as it moves. The rectangular cross section 

of the beams also prevents any out-of-plane vibration. The beams and mass are made 

from aluminum.  

At rest, the distance between the block and mass, and thus the free length of each 

beam, is 305±0.8 mm. The cross section of each beam is 76.6×5.4 mm with an 

uncertainty of 0.05 mms  The rigid mass, including embedded portions of the beams and 

their attachment brackets, has a total length of 152.3±0.05 mm, a width of 62.9±0.05 mm 

and depth of 76.6±0.05 mm. Attached to one side of the mass is an Airport dashpot (type 

not recorded), and to the other side the coil of a solenoid-type electromechanical shaker 

(type not available), as shown in Figure 3.  

Values given in the AOE 3054 Course Manual (Hallauer and Devenport, 2006) 

for the beam stiffness and length imply a combined spring constant, k, for the two beams 
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of 7636 N/m. The manual also gives the rigid mass (including mass of the shaker coil, 

dashpot piston, embedded portions of the beams and mounting brackets) as 0.726 kg. 

Technically the value of the mass, m, appearing in the equation of motion of the structure 

should also include contributions from the two beams but, as discussed by Hallauer and 

Devenport (2006), these were expected to be small. Finally the manual includes the 

nominal amplitude and phase response in graphical form, these charts indicating a natural 

frequency of close to 16 Hz. 

For all measurements the wooden frame containing the beam structure was placed 

on the laboratory floor, this being the lowest floor level in the building. This minimized 

contamination of the response measurements through building vibrations, and removed 

the possibility of the structural dynamics coupling with a laboratory bench. Care was 

taken to keep cables and other obstructions clear of the beam system to avoid mechanical 

interference. 

 

2.2 Excitation system 

The structure was excited using fluctuating forces applied through the shaker coil 

attached to one side of the rigid mass, Figure 5. The coil moves inside, but does not 

touch, a permanent magnet fixed to the wooden frame. Force is generated between the 

magnet and coil when a current is passed through the coil.  

A Tektronix function generator, type CFG250, was use to generate the sinusoidal 

excitation signal which was delivered to the shaker through a generic power amplifier. 

The calibration of the power amplifier/shaker combination, shown in Figure 6, indicates 

that it generates close to 0.363 N/V (0.0817 lb/V). Force amplitudes were inferred from 
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this calibration factor and measured voltage amplitudes. Both a Tektronix multimeter 

(type CDM 250) and oscilloscope (type 2205) were available to measure voltage 

amplitudes. However, after initial testing only the latter was used due to frequency 

limitations on the multimeter. A Beckman UC10A counter was used to measure the 

frequency of excitation signals.  A schematic of the excitation system is shown in Figure 

7. 

For the low frequency measurements used to determine the spring constant the 

excitation amplitude was set at 2 V and the coil only energized for limited times in order 

to avoid overheating. For the measurements around the response peak (natural and 

resonant frequency) the excitation amplitude was set so as to produce a response 

amplitude of 2 V. Uncertainty in excitation voltage amplitude measured with the scope 

was typically 1/20th of a division, corresponding to 0.025 V for the low frequency 

measurements and 0.005 V for the tests around the response peak. These values are 

equivalent to uncertainties in force amplitude, fm , of 0.0091 N and 0.0018 N respectively. 

For frequency measurements the gate time on the Beckman counter was set to 10 

seconds, giving a frequency resolution (and apparent uncertainty) of 0.1 Hz. 

 

2.3 Response system 

The instantaneous position of the rigid mass was sensed using a proximeter 

system. The system uses a non-contact probe (Bentley Nevada Corporation type 300-00-

00-30-36-02) mounted on an arm to the fixed wooden frame, Figure 8. The probe, 

operated using an Bentley Nevada type 3120-8400-300 proximeter was used to sense the 
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distance to small steel target mounted to the rigid mass.  A Tecktronix CPS250 power 

supply was used to provide the -18 V power required by the proximeter. 

The calibration of the proximeter system, in terms of the voltage it outputs as a 

function of the distance between the probe and target, is shown in Figure 9. The probe 

has a range of some 180 mils (about 4.5 mm), but is most linear for distances around 70 

mils (about 1.8 mm) corresponding to output voltages around -6 V. The calibration slope 

here corresponds to 4173 V/m. The probe position relative to the target was adjusted to 

give −6 V output with no force applied to the rigid mass, so as to take advantage of this 

linear range.  During testing, the amplitude of the proximeter output voltage fluctuation, 

and thus the amplitude of the beam vibration, was measured using the Tektronix 2205 

oscilloscope. The uncertainty of these measurements was 0.025 V for the low frequency 

tests and about 0.2 V for the tests around the response peak, corresponding to 

uncertainties in xm of 6.0×10-6 m and 4.8×10-5 m respectively. The much larger 

uncertainty around the response peak was the result of slow drifting of the amplitude 

here, over a timescale of some 20 to 30 seconds. A Lissajous figure, with the oscilloscope 

in XY mode, was used to judge when the phase lag was -90 degrees and thus determine 

the natural frequency of the system. The accuracy of the natural frequency determined 

using this method was limited to 0.1 Hz by the resolution of the counter. A schematic of 

the response system is shown in Figure 10. 
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2.4 Other items of equipment 

A digital camera (Cannon A510) was used the photograph the instrumentation 

and set up. A steel ruler (1/16" divisions) and caliper (1/1000" resolution) were used to 

measure dimensions of the various components of the beam system.  

 

3.  RESULTS AND DISCUSSION 

3.1 Low frequency measurements 

Measurements to determine the spring constant k of the structure, using the low-

frequency asymptote of Equation (2), g(0)=1/k, were performed by exciting the structure 

at frequencies much less than the expected natural frequency of 16 Hz. Results for 

frequencies between 0.6 and 3 Hz, are listed in Table 1. The table includes measurements 

of the amplitude of the applied force, fm , and of the resulting beam displacement, xm , as 

well as the dynamic flexibility calculated by dividing these values. Figure 11 shows a 

plot of the dynamic flexibility plotted vs. frequency.  

Table 1 Response of the structure (in terms of displacement amplitude, xm) to low-frequency sinusoidal 
forcing (of amplitude fm), and implied values of the dynamic flexibility, g.   

Frequency 
(Hz) 

fm 
 (N) 

xm 
(m) 

g 
(m/N) 

3.0 0.727 0.0001198 0.000165
2.1 0.727 0.0001078 0.000148
1.0 0.727 0.0000958 0.000132
0.6 0.727 0.0000958 0.000132

 

The measurements do show some variation in the dynamic flexibility with 

frequency, which decreases from 0.000165 m/M at 3.0 Hz to 0.00132 m/N at 1.0 Hz. 

However further lowering of the frequency to 0.6 Hz makes no difference to the 

measured flexibility, suggesting that the low-frequency asymptote has been reached. The 
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value of g(0) is therefore taken to be 0.132 m/N, implying a spring stiffness, k, of 7583 

N/m. The uncertainty in this measurement, calculated in the appendix, is 450 N/m or 

about 6%. The present results therefore confirm the nominal spring stiffness given by 

Hallauer and Devenport (2006) of 7636 N/m. 

 

 

3.2 Measurements around the response peak 

The effective mass, m, of the structure was estimated by using using a Lissajous 

figure to determine the frequency at which the phase between excitation and response 

was -90 degrees, i.e. the natural frequency, ωn. The mass was then determined from this 

frequency and the measured spring constant using equation (4). Estimates of the damping 

constant, b, were obtained both from the measured dynamic flexibility at the natural 

frequency and from measuring the resonant frequency, with appropriate use of Equations 

(5) and (6). An important objective of this test was to compare these two methods. 

Table 2  Measurements of the natural and resonant frequencies and of dynamic flexibility, g, at the natural 
frequency, along with implied values of the mass, m, and damping constant, b.  

 Frequency 
(Hz) 

fm  
(N) 

xm  
(m) 

g 
(m/N) 

k 
(N/m) 

Table 1

m 
(kg) 

eqn. 4 

b 
(kg/s) 
eqn. 5 

b 
(kg/s) 
eqn. 6 

Natural 
frequency 18.9 0.0227 0.000407 0.0179 7583 0.538 0.470  

Resonant 
frequency 19.0    7583   12.685

 

Results are presented in Table 2. The measured value of mass is interesting since, 

at 0.538 kg, it is 26% lower than the nominal value for this structure given by Hallauer 

and Devenport (2006). This is particularly significant since their value ignored the 
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contribution from the two beams and thus should be an underestimate. The uncertainty in 

the present result (see appendix) is only 0.33 kg (6%), and cannot account for 

discrepancy. It seems probable therefore that the value given by Hallauer and Devenport 

(2006) is an overestimate, and should be revised. 

The two measured values of the damping constant appear wildly inconsistent until 

one examines the uncertainty estimates (calculated in the appendix). Using the dynamic 

flexibility at the natural frequency and Equation (5) results in an uncertainty of 0.065 

kg/s, about 14% of the measured value. This method therefore appears to result in a 

useful estimate of the damping. Using the measured resonant frequency and Equation (6), 

however, results in an uncertainty of some 13 kg/s, actually larger than the measured 

value. The uncertainty is dominated by the uncertainty in the frequency measurement of 

0.1 Hz, see Table 6. The approach of inferring the damping from a measurement of 

resonant frequency, as compared to the natural frequency, is clearly not practical for this 

type of structure.  

 

4. CONCLUSIONS 

An experiment has been performed to determine the parameters governing the 

motion of a single-degree-of-freedom structural system by measuring the response of the 

structure to sinusoidal forcing. Measurements at very low frequency were made to 

determine the spring constant of the structure. Measurements of the natural frequency 

were used to determine the effective mass, m. To methods for determining the viscous 

damping, b, using measurements at the natural frequency and resonant frequency were 

compared. The following conclusions are drawn. 
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1. The structure has a spring constant of 7583±450 N/m, an effective mass 

of 0.538±0.33 kg and a viscous damping of 0.470±0.065 kg. 

2. The present results confirm the nominal spring stiffness value given by 

Hallauer and Devenport (2006). 

3. The effective mass of the structure is at least 26% less than the nominal 

value given by Hallauer and Devenport (2006). It is recommended that 

this nominal value be revised. 

4. It is not possible to reliably infer the damping from a measurement of 

the resonant frequency as compared to the natural frequency, at least for 

the type of structure considered here.  

5. A useful estimate of the damping can be obtained using the dynamic 

flexibility at the natural frequency.  
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APPENDIX: UNCERTAINTY CALCULATIONS 

Uncertainties in measurements were calculated for 20:1 odds. Sources of uncertainty 

included the accuracy with which signal voltage amplitudes could be measured using the 
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oscilloscope, and the resolution of the counter used for frequency measurements. Specific 

uncertainties in these primary measurements are given in Section 2. To obtain 

uncertainties in results R derived from these measurements, uncertainties were combined 

using the root sum square equation, 
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where a, b, c… are the measurements on which R depends. Partial derivatives were 

estimated numerically, the whole calculation being performed using a spreadsheet table. 

Calculations for the uncertainty in spring constant, k, mass, m, damping, b, determined 

from the dynamic flexibility at the natural frequency, and from the ratio of resonant to 

natural frequency, are given in Tables 3 to 6 below, respectively. 

Table 3  Table for calculation of uncertainty in the spring constant, k. 

      Perturbation 
    Quantity Uncertainty a+da,b a,b+db 
 Proximiter sensitivity (V/m) 4173.228  4173.228 4173.228
 Shaker calibration (N/V) 0.36342  0.36342 0.36342
        
 Input Variables      
a Excitation voltage amplitude (V) 2 0.025 2.025 2
b Response voltage amplitude (V) 0.4 0.025 0.4 0.425
        
 Intermediate results     
 Excitation force amplitude (N) 0.726839  0.735925 0.726839
 Response amplitude (m) 9.58E-05  9.58E-05 0.000102
        
 Final Result      
 Effective spring constant, k (N/m) 7583.164  7677.954 7137.096
     Change 94.78955 -446.068
 Uncertainty in spring constant (N/m) 456.0287    
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Table 4 Table for calculation of uncertainty in the effective mass, m. 

      Perturbation 
    Quantity Uncertainty a+da,b a,b+db 
        
 Input variables     
a Effective Spring Constant 7583.164 456.0287 7583.164 8039.193 
b Natural Frequency (Hz) 18.9 0.1 19 18.9 
        
 Intermediate results     
 Natural frequency (rads/s) 118.7522  119.3805 118.7522 
        
 Final Result      
 Effective mass, m (kg) 0.537734  0.532088 0.570071 
     Change -0.00565 0.032338 
 Uncertainty in mass (kg) 0.032827    

 

 

Table 5 Table for calculation of uncertainty in damping, b, when determined from the dynamic flexibility 
at the natural frequency 

 

 

 

      Perturbation   
    Quantity Uncertainty a+da,b,c,d a,b+db,c,d a,b,c+dc,d a,b,c,d+dd 
 Proximiter sensitivity (V/m) 4173.228  4173.228 4173.228 4173.228 4173.228
 Shaker calibration (N/V) 0.36342  0.36342 0.36342 0.36342 0.36342
          
 Input Variables        
a Excitation voltage amplitude (V) 0.0625 0.005 0.0675 0.0625 0.0625 0.0625
b Response voltage amplitude (V) 1.7 0.2 1.7 1.9 1.7 1.7
c Effective Spring Constant (N/m) 7583.164 456.0287 7583.164 7583.164 8039.193 7583.164
d Effective Mass (kg)  0.537734 0.032827 0.537734 0.537734 0.537734 0.57056
          
 Intermediate results       
 Excitation force amplitude (N) 0.022714  0.024531 0.022714 0.022714 0.022714
 Response amplitude (m) 0.000407  0.000407 0.000455 0.000407 0.000407
 Dynamic flexibility, d (m/N) 0.017934  0.016606 0.020044 0.017934 0.017934
          
 Final Result        
 Viscous damping, b (kg/s) 0.469537  0.5071 0.420112 0.456025 0.483657
     Change 0.037563 -0.04942 -0.01351 0.01412
 Uncertainty in damping (kg/s) 0.065083      
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Table 6 Table for calculation in damping, b, when determined from the ratio of the resonant and natural 
frequencies. 

      Perturbation  
    Quantity Uncertainty a+da,b,c a,b+db,c a,b,c+dc 
 Primary measurements      
a Natural Frequency (Hz) 18.9 0.1 19 18.9 18.9
b Resonant Frequency (Hz) 19 0.1 19 19.1 19
c Effective Spring Constant (N/m) 7583.164 456.0287 7583.164 7583.164 8039.193
         
 Intermediate results      
 Frequency ratio  1.005291  1 1.010582 1.005291
         
 Final Result       
 Viscous damping, b (kg/s) 12.68522  0 17.96326 13.06108
     Change -12.6852 5.278042 0.375857
 Uncertainty in damping (kg/s) 13.75312     
 

 

 

Figure 1. Diagram of the beam structure.  Adapted from Hallauer and Devenport (2006). 
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Figure 2. Idealized mechanical system equivalent to the beam structure in Figure 1. 

Figure 3. Photograph of the beam structure.  
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Figure 4. Beam structure dimensions (in mm). 

 

 

Figure 5. Detail showing the shaker and rigid mass. 
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Figure 6. Shaker calibration. From Hallauer and Devenport (2006). 

 

 

Figure 7. Schematic of the excitation system. From Hallauer and Devenport (2006). 
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Figure 8. Detail showing the proximeter probe. 
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Figure 9. Proximeter calibration. From Hallauer and Devenport (2006). 
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Figure 10. Schematic of the response system. From Hallauer and Devenport (2006). 
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Figure 11. Dynamic flexibility of the structure at low frequencies. 


