# DETAILING RULES & SPECIAL DIMENSIONING RULES IN EUROCODE 8

# DETAILING OF FLEXURAL PLASTIC HINGES, FOR CURVATURE DUCTILITY FACTOR $\mu_{\omega}$ CONSISTENT w/ q-FACTOR

- $\mu_{\phi}=2q_o-1$  if  $T_1 \ge T_c$ 
  - $\mu_{\varphi} = 1 + 2(q_0 1)T_c/T_1$  if  $T_1 < T_c$ 
    - T<sub>1</sub>: fundamental period of building,
    - T<sub>c</sub>: T at upper limit of constant spectral acceleration region,
    - $q_o$ : q-factor unreduced for irregularity in elevation (multiplied w/  $M_{Ed}/M_{Rd}$  at wall base).
- Derivation:

  - Relation  $q-\mu_{\bar{o}}$ -T :

 $\mu_{\delta} = q \text{ if } T_1 \ge T_c, \qquad \mu_{\delta} = 1 + (q-1)T_c/T_1 \text{ if } T_1 < T_c;$ 

- Relation of  $L_{pl} \& L_s$  for typical RC beams, columns & walls (for EC2 confinement model:  $\epsilon^*_{cu}=0.0035+0.1\alpha\omega_w$ ):  $\mu_{\phi} \approx 2\mu_{\delta}-1$ 

For steel B ( $\epsilon_u$ : 5-7.5%, f<sub>t</sub>/f<sub>y</sub>: 1.08-1.15) increase  $\mu_{\phi}$ -demand by 50%

## EC8-Part 1: MEANS TO ACHIEVE $\mu_{\phi}$ IN PLASTIC HINGES

- Members w/ axial load & symmetric reinforcement, ω<sub>1</sub>=ω<sub>2</sub> (columns, ductile walls):
  - Confining reinforcement (for walls: in boundary elements) w/ (effective) mechanical volumetric ratio:

 $\alpha \omega_{wd} = 30 \mu_{\varphi} (v_d + \omega_{vd}) \epsilon_{yd} b_c / b_o - 0.035$ 

 $v_d = N_d / b_c h f_{cd}; \epsilon_{yd} = f_{yd} / E_s;$ 

- b<sub>c</sub>: width of compression zone; b<sub>o</sub>: width of confined core;
- $\omega_v$ : mechanical ratio of longitudinal web reinforcement =  $\rho_v f_{yd,v}/f_{cd}$
- Columns meeting strong-column/weak-beam rule ( $\Sigma M_{Rc}$ >1.3 $\Sigma M_{Rb}$ ), should have full confining reinforcement only at (building) base;
- DC H strong columns (ΣM<sub>Rc</sub>>1.3ΣM<sub>Rb</sub>) also provided w/ confining reinforcement for 2/3 of  $\mu_{\phi}$  in all end regions above the base.
- Members w/o axial load & w/ asymmetric reinforcement (beams):
  - -Max. mechanical ratio of tension steel:

 $\omega_1 \leq \omega_2 + 0.0018/\mu_{\varphi} \epsilon_{vd}$ 

## **Derivation:**

- $\mu_{\phi} = \phi_u / \phi_y$
- $\phi_u = \epsilon_{cu} / \xi_u h_o$
- ε<sub>cu</sub>=0.0035+0.1αω<sub>w</sub>
- $\xi_u \sim (v_d + \omega_v + \omega_1 \omega_2)/(1 \varepsilon_{co}/3\varepsilon_{cu})f_c/f_{cc}(h_c b_c)/(h_o b_o)$  (equilibrium)
- $\varphi_y = 1.75\epsilon_y/h$  in columns,  $\varphi_y = 1.44\epsilon_y/h$  in walls,  $\varphi_y = 1.54\epsilon_y/d$  in beams (fitted to >2000 tests)
  - Correction for material safety factors ( $\gamma_c$ =1.5,  $\gamma_s$ =1.15)

# **DESIGN & DETAILING OF DUCTILE WALLS**

Inelastic action limited to plastic hinge at base, so that cantilever relation between q &  $\mu_{\omega}$  can apply:

- Wall provided with flexural overstrength above plastic hinge region (linear moment envelope with shift rule);
- Design in shear for V from analysis, times:
  1.5 for DC M

 $[(1.2 M_{Rd}/M_{Ed})^2 + 0.1(qS_e(T_c)/S_e(T_1))^2]^{1/2} < q$  for DC H

- M<sub>Ed</sub>: design moment at base (from analysis),
- M<sub>Rd</sub>: design flexural resistance at base,
- S<sub>e</sub>(T): ordinate of elastic response spectrum,
- T<sub>c</sub>: upper limit T of const. spectral acc. region
- T<sub>1</sub> fundamental period.

In plastic hinge zone: boundary elements w/ confining reinforcement of effective mechanical volumetric ratio:

 $\alpha \omega_{wd} = 30 \mu_{\varphi} (v_d + \omega_{vd}) \varepsilon_{yd} b_c / b_o - 0.035$ 

over part of compression zone depth:  $x_u = (v_d + \omega_v) I_w b_c / b_o$ where strain is between:  $\epsilon^*_{cu} = 0.0035 + 0.1 \alpha \omega_w \& \epsilon_{cu} = 0.0035$ 



OVERVIEW OF DETAILING & DIMENSIONING OF PRIMARY BEAMS, COLUMNS & DUCTILE WALLS IN RC BUILDINGS OF DC H, M or L

# Detailing/dimensioning of primary seismic beams (secondary ones: as in DCL)

|                                                                                    | DC H                                                                                   | DCM                                                                                  | DCL                                 |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------|
| "critical region" length                                                           | 1.5h <sub>w</sub>                                                                      | h <sub>w</sub>                                                                       |                                     |
| Longitudinal bars (L):                                                             |                                                                                        |                                                                                      |                                     |
| $ ho_{min}$ , tension side                                                         | 0.5f <sub>ct</sub>                                                                     | m/f <sub>yk</sub>                                                                    | $0.26 f_{ctm}/f_{yk}, 0.13\%^{(0)}$ |
| $\rho_{max}$ , critical regions <sup>(1)</sup>                                     | ρ'+0.0018f <sub>cd</sub>                                                               | $(\mu_{\phi} \varepsilon_{sy,d} \mathbf{f}_{yd})^{(1)}$                              | 0.04                                |
| A <sub>s,min,</sub> top & bottom                                                   | 2Φ14 (308mm <sup>2</sup> )                                                             | -                                                                                    |                                     |
| A <sub>s,min</sub> , top-span                                                      | A <sub>s,top-supports</sub> /4                                                         |                                                                                      |                                     |
| A <sub>s,min</sub> , critical regions bottom                                       | 0.5As                                                                                  | (2)<br>s,top                                                                         | -                                   |
| A <sub>s.min</sub> , supports bottom                                               |                                                                                        | A <sub>s,bottom-span</sub> /4 <sup>(0)</sup>                                         |                                     |
| $d_{bL}/h_{c}$ - bar crossing interior joint <sup>(3)</sup>                        | $\leq \frac{6.25(1+0.8v_d)}{(1+0.75\frac{\rho'}{\rho_{\max}})} \frac{f_{ctm}}{f_{yd}}$ | $\leq \frac{7.5(1+0.8v_d)}{(1+0.5\frac{\rho'}{\rho_{\max}})} \frac{f_{ctm}}{f_{yd}}$ | -                                   |
| d <sub>bL</sub> /h <sub>c</sub> - bar anchored at exterior<br>joint <sup>(3)</sup> | $\leq 6.25(1+0.8v_d) \frac{f_{ctm}}{f_{yd}}$                                           | $\leq 7.5(1+0.8v_d) \frac{f_{ctm}}{f_{yd}}$                                          | -                                   |

- (0) NDP (Nationally Determined Parameter) per EC2. Table gives the EC2 recommended value.
- (1)  $\mu_{\phi}$ : value of the curvature ductility factor corresponding to the basic value,  $q_{o}$ , of behavior factor used in the design
- (2) The minimum area of bottom steel,  $A_{s,min}$ , is in addition to any compression steel that may be needed for the verification of the end section for the ULS in bending under the (absolutely) maximum negative moment from the analysis for the seismic design situation,  $M_{Ed}$ .
- (3)  $h_c$ : column depth in the direction of the bar,  $v_d = N_{Ed} A_c f_{cd}$ : column axial load ratio for the algebraically minimum axial load in the seismic design situation (compression: positive).

# Detailing & dimensioning of primary seismic beams (cont'd)

|                              | DC H                                                                           | DCM                                                                            | DCL |  |
|------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----|--|
| Transverse bars (w):         |                                                                                |                                                                                |     |  |
| (i) outside critical regions |                                                                                |                                                                                |     |  |
| spacing s <sub>w</sub> ≤     |                                                                                | 0.75d                                                                          |     |  |
| $\rho_{W} \geq$              | 0.0                                                                            | 0.08√(f <sub>ck</sub> (MPa)/f <sub>vk</sub> (MPa) <sup>(0)</sup>               |     |  |
| (ii) in critical regions:    |                                                                                |                                                                                |     |  |
| d <sub>bw</sub> ≥            |                                                                                | 6mm                                                                            |     |  |
| spacing s <sub>w</sub> ≤     | 6d <sub>bL</sub> , <u><i>h</i></u> <sub>w</sub> , 24d <sub>bw</sub> ,<br>175mm | 8d <sub>bL</sub> , <u><i>h</i></u> <sub>w</sub> , 24d <sub>bw</sub> ,<br>225mm | -   |  |

#### Detailing & dimensioning of primary seismic beams (cont'd)

|                                                                                                                                                                       | DC H                                                                                                        | DCM                                                                   | DCL                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|
| Shear design:                                                                                                                                                         |                                                                                                             |                                                                       |                                                            |
| V <sub>Ed</sub> , seismic <sup>(4)</sup>                                                                                                                              | $1.2 \frac{\sum M_{Rb}}{l_{cl}} \pm V_{o,g+\psi_2 q} ^{(4)}$                                                | $\frac{\sum M_{Rb}}{l_{cl}} \pm V_{o,g+\psi_2 q} $ <sup>(4)</sup>     | from analysis for<br>design seismic<br>action plus gravity |
| V <sub>Rd,max</sub> seismic <sup>(5)</sup>                                                                                                                            | As in EC2: V <sub>Rd,max</sub> =0.3(                                                                        | 1-f <sub>ck</sub> (MPa)/250)b <sub>wo</sub> zf <sub>cd</sub> si       | in2δ <sup>(5)</sup> , 1≤cotδ≤2.5                           |
| V <sub>Rd,s</sub> , outside critical regions <sup>(5)</sup>                                                                                                           | As in EC2: $V_{Rd,s}=b_w z \rho_w$                                                                          | $f_{ywd}$ cot $\delta$ <sup>(5)</sup> , 1 $\leq$ cot $\delta\leq$ 2.5 |                                                            |
| V <sub>Rd,s</sub> , critical regions <sup>(5)</sup>                                                                                                                   | $V_{Rd,s}=b_w z \rho_w f_{ywd} (\delta=45^{\circ})$                                                         | As in EC2:<br>1≤cotδ≤2.5                                              | $V_{Rd,s} = b_w z \rho_w f_{ywd} cot \delta$ ,             |
| If $\zeta \equiv V_{\text{Emin}}/V_{\text{Emax}}^{(6)} < -0.5$ : inclined<br>bars at angle $\pm \alpha$ to beam axis,<br>with cross-section A <sub>s</sub> /direction | If $V_{Emax}/(2+\zeta)f_{ctd}b_wd>1$ :<br>$A_s=0.5V_{Emax}/f_{yd}sin\alpha$<br>& stirrups for $0.5V_{Emax}$ | -                                                                     |                                                            |

(4) At a member end where the moment capacities around the joint satisfy: ∑M<sub>Rb</sub>>∑M<sub>Rc</sub>, M<sub>Rb</sub> is replaced in the calculation of the design shear force, V<sub>Ed</sub>, by M<sub>Rb</sub>(∑M<sub>Rc</sub>/∑M<sub>Rb</sub>)
 (5) z: internal lever arm, taken equal to 0.9*d* or to the distance between the tension and the

compression reinforcement,  $d-d_1$ . (6)  $V_{Emax}$ ,  $V_{E,min}$  are the algebraically maximum and minimum values of  $V_{Ed}$  resulting from the  $\pm$  sign;  $V_{emax}$  is the absolutely largest of the two values, and is taken positive in the calculation of  $\zeta$ ; the sign of  $V_{Emin}$  is determined according to whether it is the same as that of  $V_{Emax}$  or not.

# Detailing/dimensioning of primary seismic columns (secondary ones: as in DCL)

|                                           | DCH                                                             | DCM                                                        | DCL                                 |
|-------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|
| Cross sostion sides h h >                 | 0.25m;                                                          |                                                            |                                     |
| Cross-section sides, $n_c$ , $D_c \ge$    | h <sub>v</sub> /10 if θ=Ρδ/Vh>0.1 <sup>(1)</sup>                |                                                            | -                                   |
| "critical region" length <sup>(1)</sup> ≥ | 1.5h <sub>c</sub> , 1.5b <sub>c</sub> , 0.6m, I <sub>c</sub> /5 | h <sub>c</sub> , b <sub>c</sub> , 0.45m, I <sub>c</sub> /6 | h <sub>c</sub> , b <sub>c</sub>     |
| Longitudinal bars (L):                    |                                                                 |                                                            |                                     |
| $ ho_{min}$                               | 1%                                                              |                                                            | $0.1N_{d}/A_{c}f_{yd}, 0.2\%^{(0)}$ |
| ρ <sub>max</sub>                          | 4%                                                              |                                                            | 4% <sup>(0)</sup>                   |
| d <sub>bL</sub> ≥                         | 8mm                                                             |                                                            |                                     |
| bars per side ≥                           | 3                                                               |                                                            | 2                                   |
| Spacing between restrained bars           | ≤150mm                                                          | ≤200mm                                                     | -                                   |
| distance of unrestrained bar from         | ≤150mm                                                          |                                                            |                                     |

(1)  $h_v$  is the distance of the inflection point to the column end further away, for bending within a plane parallel to the side of interest;  $I_c$  is the column clear length.

| Detailing & dimensioning of primary seismic columns (cont'd)  |                                                                   |                                             |                                                                      |  |
|---------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|
|                                                               | DCH                                                               | DCM                                         | DCL                                                                  |  |
| Transverse bars (w):                                          |                                                                   |                                             |                                                                      |  |
| Outside critical regions:                                     |                                                                   |                                             |                                                                      |  |
| d <sub>bw</sub> ≥                                             |                                                                   | 6mm, d <sub>bL</sub> /4                     |                                                                      |  |
| spacing $s_w \le$                                             | 20d <sub>bL</sub> , h <sub>c</sub> , b <sub>c</sub>               | , 400mm                                     | 12d <sub>bL</sub> , 0.6h <sub>c</sub> , 0.6b <sub>c</sub> ,<br>240mm |  |
| at lap splices, if d <sub>bL</sub> >14mm:<br>s <sub>w</sub> ≤ | 12d <sub>bL</sub> , 0.6h <sub>c</sub> , 0.6b <sub>c</sub> , 240mm |                                             |                                                                      |  |
| Within critical regions: <sup>(2)</sup>                       |                                                                   |                                             |                                                                      |  |
| $d_{bw} \ge {}^{(3)}$                                         | 6mm, $0.4(f_{yd}/f_{ywd})^{1/2}d_{bL}$                            | 6mm                                         | , d <sub>bL</sub> /4                                                 |  |
| $S_{W} \leq {}^{(3),(4)}$                                     | 6d <sub>bL</sub> , b <sub>o</sub> /3, 125mm                       | 8d <sub>bL</sub> , b <sub>o</sub> /2, 175mm | -                                                                    |  |
| $\omega_{wd} \ge {}^{(5)}$                                    | 0.08                                                              |                                             | -                                                                    |  |
| $\alpha \omega_{wd} \ge {}^{(4),(5),(6),(7)}$                 | $30\mu_{\phi}^{*}\nu_{d}\varepsilon_{sy,d}b_{c}/b_{o}$ -0.035     |                                             | -                                                                    |  |
| In critical region at column base:                            |                                                                   |                                             |                                                                      |  |
| wwd≥                                                          | 0.12                                                              | 0.08                                        | -                                                                    |  |
| $\alpha \overline{\omega_{wd}} \ge (4),(5),(6),(8),(9)$       | $\overline{30\mu_{\phi}\nu_{d}}\epsilon_{sy,d}b_{c}/$             | ′b <sub>o</sub> -0.035                      | -                                                                    |  |

(2) For DCM: If q ≤ 2 used in the design, the transverse reinforcement in critical regions of columns with axial load ratio v<sub>d</sub> not greater than 0.2 may follow the rules applying to DCL columns.
(3) For DCH: In the two lower storeys of the building, the requirements on d<sub>bw</sub>, s<sub>w</sub> apply over a distance from the end section not less than 1.5 times the critical region height.
(4) c denotes full concrete section; o the confined core (to centreline of perimeter hoop); b<sub>o</sub> is the smallest side of this core.
(5) ω<sub>wd</sub>: volume ratio of confining ties to confined core (to centreline of perimeter hoop) times f<sub>vd</sub>/f<sub>cd</sub>

| Detailing & dimension                                         | ing of primary                                                              | seismic colu                                | ımns <i>(cont'd</i> )                                                |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|
|                                                               | DCH                                                                         | DCM                                         | DCL                                                                  |  |
| Transverse bars (w):                                          |                                                                             |                                             |                                                                      |  |
| Outside critical regions:                                     |                                                                             |                                             |                                                                      |  |
| d <sub>bw</sub> ≥                                             |                                                                             | 6mm, d <sub>bL</sub> /4                     |                                                                      |  |
| spacing $s_w \le$                                             | 20d <sub>bL</sub> , h <sub>c</sub> , b <sub>c</sub> ,                       | , 400mm                                     | 12d <sub>bL</sub> , 0.6h <sub>c</sub> , 0.6b <sub>c</sub> ,<br>240mm |  |
| at lap splices, if d <sub>bL</sub> >14mm:<br>s <sub>w</sub> ≤ | 12d <sub>bL</sub> , 0.6h <sub>c</sub> , 0.6b <sub>c</sub> , 240mm           |                                             |                                                                      |  |
| Within critical regions: <sup>(2)</sup>                       |                                                                             |                                             |                                                                      |  |
| $d_{bw} \geq {}^{(3)}$                                        | 6mm, 0.4(f <sub>yd</sub> /f <sub>ywd</sub> ) <sup>1/2</sup> d <sub>bL</sub> | 6mm                                         | , d <sub>bL</sub> /4                                                 |  |
| $S_{w} \leq {}^{(3),(4)}$                                     | 6d <sub>bL</sub> , b <sub>o</sub> /3, 125mm                                 | 8d <sub>bL</sub> , b <sub>o</sub> /2, 175mm | -                                                                    |  |
| $\omega_{wd} \ge {}^{(5)}$                                    | 0.08                                                                        |                                             | -                                                                    |  |
| $\alpha \omega_{wd} \ge {}^{(4),(5),(6),(7)}$                 | $30\mu_{\phi}^{*}\nu_{d}\varepsilon_{sy,d}b_{c}/b_{o}$ -0.035               |                                             | -                                                                    |  |
| In critical region at column base:                            |                                                                             |                                             |                                                                      |  |
| wwd≥                                                          | 0.12                                                                        | 0.08                                        | -                                                                    |  |
| $\alpha \omega_{wd} \ge {}^{(4),(5),(6),(8),(9)}$             | $30\mu_{\phi}\nu_{d}\overline{\epsilon}_{sy,d}b_{c}/$                       | /b <sub>o</sub> -0.035                      | -                                                                    |  |

- (6)  $\alpha$ : confinement effectiveness factor,  $\alpha = \alpha_s \alpha_n$ ; where  $\alpha_s = (1-s/2b_o)(1-s/2h_o)$  for hoops,  $\alpha_s = (1-s/2b_o)$  for spirals;  $\alpha_n = 1$  for circular hoops,  $\alpha_n = 1 \{b_o/((n_h 1)h_o) + h_o/((n_b 1)b_o)\}/3$  for rect. hoops with  $n_b$  legs parallel to side of the core with length  $b_o$  and  $n_h$  legs parallel to the one with length  $h_o$ .
- (7) For DCH: at column ends protected from plastic hinging by capacity design of the column,  $\mu_{\phi}^{*}$  is the curvature ductility factor corresponding to 2/3 of the basic value  $q_{o}$  of the behaviour factor used in the design; at column ends where plastic hinging is not prevented due to the exemptions in Note (10) below,  $\mu^{*}$  is the full value corresponding to  $q \neq q_{o} = f_{o}/F$ 
  - $\mu_{\phi}^{*}$  is the full value corresponding to  $q_{o}$ ;  $\varepsilon_{sy,d} = f_{yd}/E_{s}$ .
- (8) Note (1) of the Beams Table applies.
- (9) For DCH: Requirement applies also in the critical regions at the ends of columns where plastic hinging is not prevented, because of the exemptions in Note (10) below.

## Detailing & dimensioning of primary seismic columns (cont'd)

|                                                                                 | DCH                                                                                                                                        | DCM                                           | DCL                                                        |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|
| Capacity design check at beam-<br>column joints: <sup>(10)</sup>                | 1.3∑M <sub>Rb</sub> ≤∑M <sub>Rc</sub><br>No moment in trans<br>column                                                                      | _                                             |                                                            |
| Verification for M <sub>x</sub> -M <sub>y</sub> -N:                             | Truly biaxial, or uniaxial with (M <sub>z</sub> /0.7, N), (M <sub>y</sub> /0.7, N)                                                         |                                               |                                                            |
| Axial load ratio <sub>Vd</sub> =N <sub>Ed</sub> /A <sub>c</sub> f <sub>cd</sub> | ≤ 0.55                                                                                                                                     | ≤ 0.65                                        | -                                                          |
| Shear design:                                                                   |                                                                                                                                            |                                               |                                                            |
| V <sub>Ed</sub> seismic <sup>(11)</sup>                                         | $1.3 \frac{\sum M_{Rc}^{ends}}{l_{cl}} $ (11)                                                                                              | $1.1 \frac{\sum M_{Rc}^{ends}}{l_{cl}} $ (11) | from analysis for<br>design seismic<br>action plus gravity |
| V <sub>Rd,max</sub> seismic <sup>(12), (13)</sup>                               | As in EC2: $V_{Rd,max}$ =0.3(1-f <sub>ck</sub> (MPa)/250)b <sub>wo</sub> zf <sub>cd</sub> sin2 $\delta$ , 1 $\leq$ cot $\delta$ $\leq$ 2.5 |                                               |                                                            |
| V <sub>Rd,s</sub> seismic <sup>(12), (13), (14)</sup>                           | As in EC2: $V_{Rd,s}=b_w z \rho_w f_{ywd} \cot \delta + N_{Ed}(h-x)/I_{cl}^{(13)}$ , $1 \le \cot \delta \le 2.5$                           |                                               |                                                            |

- (10) The capacity design rule does not need to be met at beam-column joints: (a) of the top floor, (b) of the ground storey in two-storey buildings with axial load ratio  $v_d \le 0.3$  in all columns, (c) if shear walls resist  $\ge 50\%$  of base shear parallel to the plane of the frame (wall buildings or wall-equivalent dual), or (d) in one-out-of-four columns of plane frames with columns of similar size.
- (11) At a member end where the moment capacities around the joint satisfy:  $\Sigma M_{Rb} < \Sigma M_{Rc}$ ,  $M_{Rc}$  is replaced by  $M_{Rc}(\Sigma M_{Rb}/\Sigma M_{Rc})$ .
- (12) z is the internal lever arm, equal to 0.9*d* or to the distance between the tension and the compression reinforcement,  $d-d_1$ .
- (13) The axial load,  $N_{Ed}$ , and its normalized value,  $v_d$ , are taken with their most unfavorable values for the shear verification in the seismic design situation (considering both demand and capacity)
- (14) x is the neutral axis depth at the end section in the ULS of bending with axial load.

# **Detailing & dimensioning of ductile walls**

|                                         | DCH                                                                                                                                                                           | DCM | DCL |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| Web thickness, b <sub>wo</sub> ≥        | max(150mm, h <sub>storey</sub> /20)                                                                                                                                           |     | -   |
| critical region length, h <sub>cr</sub> | $\geq \max(I_w, H_w/6)^{(1)}$<br>$\leq \min(2I_w, h_{storey}) \text{ if wall } \leq 6 \text{ storeys}$<br>$\leq \min(2I_w, 2h_{storey}) \text{ if wall } > 6 \text{ storeys}$ |     | -   |

(0) Notes (0) of the Beam & Column Tables apply.

(1)  $I_w$  is the long side of the rectangular wall section or rectangular part thereof;  $H_w$  is the total height of the wall;  $h_{storey}$  is the storey height.

| Detailing & dimensioning of ductile walls (cont'd) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|
|                                                    | DCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DCM                         | DCL                            |
| Boundary elements:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                |
| a) in critical region:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                |
| -length $l_c$ from edge $\geq$                     | $0.15 l_w$ , $1.5 b_w$ , length over which $\varepsilon_c > 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) 03 5                      | -                              |
| - thickness $b_w$ over $l_c \ge$                   | $0.2m$ ; $h_{st}/15$ if $l_c \le max(2b_w, l_w/5)$ , $h_{st}/10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | if $l_c > max(2b_w, l_w/5)$ | -                              |
| - vertical reinforcement:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                |
| $\rho_{\min}$ over $A_c = l_c b_w$                 | 0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 0.2% <sup>(0)</sup>            |
| $\rho_{max}$ over $A_c$                            | 4 % (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                |
| - confining hoops (w) <sup>(2)</sup> :             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                |
| d <sub>bw</sub> ≥                                  | $6\mathrm{mm}$ , 0.4 $(\mathrm{f_{yd}}/\mathrm{f_{ywd}})^{1/2}\mathrm{d_{bL}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 m m,                      | in the part of the             |
| spacing $s_w \leq^{(3)}$                           | $6 d_{bL}, b_o/3, 125 m m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $8d_{bL}, b_{o}/2, 175  mm$ | section where $\rho_L > 2\%$ : |
| $\omega_{wd} \geq^{(2)}$                           | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                        | as over the rest of the        |
| $\alpha \omega_{wd} \geq^{(3),(4)}$                | $30 \mu_{\phi}(\nu_{d} + \omega_{\nu}) \varepsilon_{sy,d} b_{w} / b_{o} - 0.035$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | wall (case b, below)           |
| b) over the rest of the wall<br>height:            | <ul> <li>In parts of the section where ε<sub>c</sub>&gt;0.2%: ρ<sub>v,min</sub> = 0.5%;</li> <li>In parts of the section where ρ<sub>L</sub>&gt;2%:</li> <li>distance of unrestrained bar in compression zone from nearest restrained bar ≤ 150mm;</li> <li>hoops with d<sub>bw</sub>≥ max(6mm, d<sub>bL</sub>/4) &amp; spacing s<sub>w</sub>≤ min(12d<sub>bL</sub>, 0.6b<sub>wo</sub>, 240mm)<sup>(0)</sup> up to a distance of 4b<sub>w</sub> above or below floor beams or slabs, or s<sub>w</sub>≤ min(20d<sub>bL</sub>, b<sub>wo</sub>, 400mm)<sup>(0)</sup> beyond that distance</li> </ul> |                             |                                |

(2) For DC M: If in the seismic design situation v<sub>d</sub>=N<sub>Ed</sub>/A<sub>c</sub>f<sub>cd</sub>≤0.15, the DCL rules may be applied to boundary elements; these rules apply also if v<sub>d</sub>≤0.2 but the q-value used in the design is ≤ of 85% of the value allowed if the DC M confining reinforcement is used in boundary elements.
(3) Notes (4), (5), (6) of the columns Table apply for the confined core of boundary elements.
(4) μ<sub>φ</sub> is the curvature ductility factor corresponding to the product of q<sub>o</sub> and the ratio M<sub>Edo</sub>/M<sub>Rdo</sub> at the base of the wall; ε<sub>sv,d</sub> = f<sub>vd</sub>/E<sub>s</sub>, ω<sub>vd</sub> is the mechanical ratio of the vertical web reinforcement.

### Detailing & dimensioning of ductile walls (cont'd)

|                                                                                      | DCH                                                                                                                         | DCM                                                         | DCL                                                     |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| Web:                                                                                 |                                                                                                                             |                                                             |                                                         |
| <ul> <li>vertical bars (v):</li> </ul>                                               |                                                                                                                             |                                                             |                                                         |
| $ ho_{v,min}$                                                                        | wherever $\epsilon_c$ >0.2%: 0.5%; else                                                                                     | where 0.2%                                                  | 0.2% <sup>(0)</sup>                                     |
| $ ho_{v,max}$                                                                        |                                                                                                                             | 4%                                                          |                                                         |
| d <sub>bv</sub> ≥                                                                    | 8mm                                                                                                                         |                                                             | -                                                       |
| d <sub>bv</sub> ≤                                                                    | b <sub>wo</sub> /8                                                                                                          |                                                             | -                                                       |
| spacing s <sub>v</sub> ≤                                                             | min(25d <sub>bv</sub> , 250mm)                                                                                              | min(3b <sub>v</sub>                                         | <sub>/o</sub> , 400mm)                                  |
| - horizontal bars:                                                                   |                                                                                                                             |                                                             |                                                         |
| $ ho_{hmin}$                                                                         | 0.2%                                                                                                                        | max(0.1°                                                    | %, 0.25ρ <sub>ν</sub> ) <sup>(0)</sup>                  |
| d <sub>bh</sub> ≥                                                                    | 8mm                                                                                                                         |                                                             | -                                                       |
| d <sub>bh</sub> ≤                                                                    | b <sub>wo</sub> /8                                                                                                          | - 8/wo                                                      |                                                         |
| spacing s <sub>h</sub> ≤                                                             | min(25d <sub>bh</sub> , 250mm)                                                                                              | 40                                                          | 0mm                                                     |
| axial load ratio v <sub>d</sub> =<br>N <sub>Ed</sub> /A <sub>c</sub> f <sub>cd</sub> | ≤0.35                                                                                                                       | ≤0.4                                                        | -                                                       |
| Design moments M <sub>Ed</sub> :                                                     | If $H_w/I_w \ge 2$ , design moments from I maximum moments $M_{Ed}$ from "seismic design situation", shifted u shift" $a_I$ | inear envelope of<br>analysis for the<br>up by the "tension | from analysis for<br>design seismic<br>action & gravity |

#### (0) Notes (0) of the Beam & Column Tables apply.

| Detailing & dimensioning of ductile walls (cont'd)                                                                                                |                                                                                                                                                                                                                                      |                                      |                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------|
|                                                                                                                                                   | DCH                                                                                                                                                                                                                                  | DCM                                  | DCL                                                     |
| Shear design:                                                                                                                                     |                                                                                                                                                                                                                                      |                                      |                                                         |
| Design shear force $V_{Ed} =$<br>shear force V' <sub>Ed</sub> from the<br>analysis for the design<br>seismic action, times factor<br>$\epsilon$ : | if $H_w/l_w \le 2^{(5)}$ :<br>$\varepsilon = 1.2 M_{Rdo}/M_{Edo} \le q$<br>if $H_w/l_w > 2^{(5), (6)}$ :<br>$\varepsilon = \sqrt{\left(1.2 \frac{M_{Rdo}}{M_{Edo}}\right)^2 + 0.1 \left(q \frac{S_e(T_C)}{S_e(T_1)}\right)^2} \le q$ | ε=1.5                                | ε=1.0                                                   |
| Design shear force in walls<br>of dual systems with<br>$H_w/l_w>2$ , for z between $H_w/3$<br>and $H_w$ : <sup>(7)</sup>                          | $V_{Ed}(z) = \left(\frac{0.75z}{H_w} - \frac{1}{4}\right) \varepsilon V_{Ed}(0) + \left(1.5 - \frac{1.5z}{H_w}\right) \varepsilon^{-1}$                                                                                              | $V_{Ed}\left(\frac{H_{w}}{3}\right)$ | from analysis for<br>design seismic action<br>& gravity |
| V <sub>Rd,max</sub> outside critical region                                                                                                       | As in EC2: $V_{Rd,max} = 0.3(1 - f_{ck}(MPa)/250)$                                                                                                                                                                                   | $b_{wo}(0.8l_w)f_{cd}sin2\delta,$    | with $1 \leq \cot \delta \leq 2.5$                      |
| V <sub>Rd,max</sub> in critical region                                                                                                            | 40% of EC2 value                                                                                                                                                                                                                     | As in EC2                            |                                                         |

(5) M<sub>Edo</sub>: moment at the wall base from the analysis for the seismic design situation; M<sub>Rdo</sub>: design moment resistance at wall base for the axial force N<sub>Ed</sub> from the same analysis
(6) S<sub>e</sub>(T<sub>1</sub>): value of the elastic spectral acceleration at the period of the fundamental mode in the horizontal direction (closest to that) of the wall shear force being multiplied by ε; S<sub>e</sub>(T<sub>c</sub>): spectral acceleration at the corner period T<sub>C</sub> of the elastic spectrum.
(7) A dual structural system is one where walls resist between 35 and 65% of the seismic base shear in the direction of the wall shear force considered; z is distance from the base of the wall.

#### Detailing & dimensioning of ductile walls (cont'd)

|                                                                                                              | DCH                                                                                                                                       | DCM        | DCL                                                     |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------|
| Shear design:                                                                                                |                                                                                                                                           |            |                                                         |
| V <sub>Rd,s</sub> in critical region; web                                                                    |                                                                                                                                           |            |                                                         |
| reinforcement ratios: $\rho_h$ , $\rho_v$                                                                    |                                                                                                                                           |            |                                                         |
| (i) if $\alpha_s = M_{Ed}/V_{Ed}l_w \ge 2$ :                                                                 | $V = h (0.81) \circ f$                                                                                                                    | As in EC2: | $V_{Rd,s} = b_{wo}(0.8l_w)\rho_h f_{ywd} \cot \delta$ , |
| $\rho_v = \rho_{v,min}, \rho_h \text{ from } V_{Rd,s}$ :                                                     | $\mathbf{v}_{\mathrm{Rd,s}} = \mathbf{O}_{\mathrm{Wo}}(0.01_{\mathrm{W}})\mathbf{\rho}_{\mathrm{h}}1_{\mathrm{ywd}}$                      | 1≤cotδ≤2.5 |                                                         |
| (ii) if $\alpha_s < 2$ : $\rho_h$ from $V_{Rd,s}$ :                                                          | $V_{Rd,s} = V_{Rd,c} + b_{wo}\alpha_s(0.75l_w)\rho_h f_{yhd}$                                                                             | As in EC2: | $V_{Rd,s} = b_{wo}(0.8l_w)\rho_h f_{ywd} cot\delta,$    |
| $\rho_{\rm v}$ from: <sup>(9)</sup>                                                                          | $\rho_v f_{vvd} \ge \rho_h f_{vhd} - N_{Ed} / (0.8 l_w b_{wo})$                                                                           | 1≤coto≤2.5 |                                                         |
| Resistance to sliding shear:<br>via bars with total area $A_{si}$<br>at angle $\pm \alpha$ to the horizontal | $V_{Rd,s} = A_{si} f_{yd} \cos \alpha + A_{sv} \min(0.25 f_{yd}, 1.3 \sqrt{(f_{yd} f_{cd})}) + 0.3(1 - f_{ck} (MPa)/250) b_{wo} x f_{cd}$ |            |                                                         |
| ρ <sub>v,min</sub><br>at construction joints <sup>(9),(11)</sup>                                             | $0.0025, \frac{1.3f_{ctd} - \frac{N_{Ed}}{A_c}}{f_{yd} + 1.5\sqrt{f_{cd}f_{yd}}}$                                                         | -          |                                                         |

(8) If  $b_w \& d$  in m,  $f_{cd}$  in MPa,  $\rho_l$ : tensile reinforcement ratio and  $N_{Ed}$  in kN,  $V_{Rdc}$  (in kN) is given by:

$$V_{Rd,c} = \left\{ m \, ax \, \left| \, 180 \left( 100 \, \rho_1 \right)^{1/3} , \, 35 \, \sqrt{1 + \sqrt{\frac{0.2}{d}}} \, f_{cd}^{1/6} \, \left| \left( 1 + \sqrt{\frac{0.2}{d}} \right) f_{cd}^{1/3} + 0.15 \, \frac{N_{Ed}}{A_c} \right\} b_w d \right| \right\}$$

 $N_{ed}$ >0 for compression; min. value from analysis for seismic design situation;  $V_{Rd}$ =0 for tension (9)  $N_{Ed}$ >0 for compression; use its minimum value from the analysis for the seismic design situation (10)  $A_{sv}$ : total area of web vert. bars & of additional vert. bars in boundary elements for shear sliding (11)  $f_{sv}=f_{sv}=\sigma r/\gamma_{s}$ : design value of (5%-fractile) tensile strength of concrete.