DURABILITY

Ranking of fibers based on durability

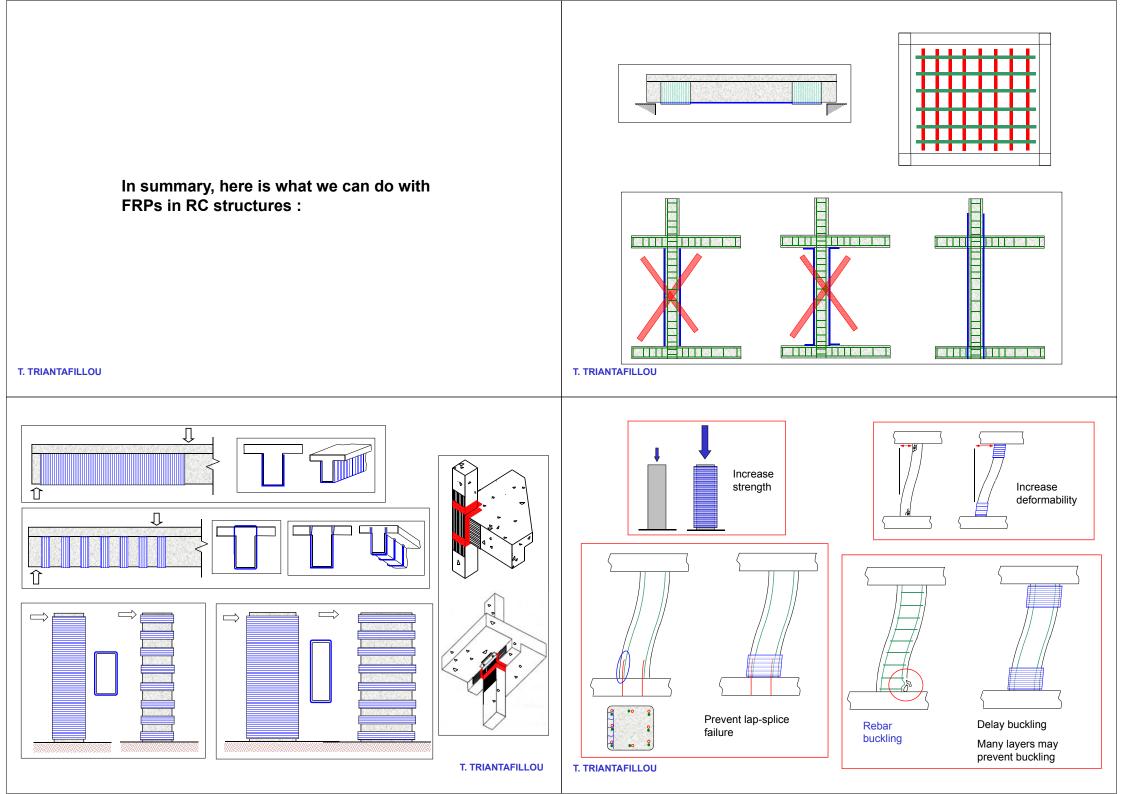
Criterion

TEMPERATURE	Criterion					
			Carbon	Glass	Aramide	
Resin: Sudden strength reduction for T > 60-80 °C. Fiber failure: carbon 650 °C, glass 1000 °C, aramid 200 °C.		High temperature	+	++	-	
		Moisture	+	-	-	
MOISTURE		UV	++	+	-	
Some strength degradation in resins+fibers in extreme cases (continuous wetting). More succeptible is aramid, carbon is not affected, glass suffers some reduction.		Alkaline and acid environment	++		+	
uv		Galvanic corrosion		+	+	
Surface of resin is affected (discolouration, microcracking). Carbon and glass fibers are not		Сгеер	++		-	
affected, aramid's mechanical properties deteriorate.		Creep fracture, stress corrosion	++		+	
ALKALINE OR ACID ENVIRONMENT		Fatigue	++	-	+	
Glass fibers are attacked – should be protected by resin. Carbon is extremely durable.		Impact	-	+	++	
STRESS CORROSION						
Reduction of tensile strength in glass fibers under stress.						
T. TRIANTAFILLOU	T. TRIANTAFILLOU	J				
SUMMARY AND CONCLUSIONS	 Low weight Corrosion resistant Availability of long elements Easy and fast to apply, low disruption of occupancy High strength No change of cross section dimensions Jacketing without increasing stiffness High materials cost (not total !) Lack of ductility (but plenty of deformability !) Need for fire protection Lack of education 					

T. TRIANTAFILLOU

What is the FRP-technique good for ?

RC structures


- Flexural strengthening of beams and slabs
- Shear strengthening of beams, columns, shear walls, joints
- Increase of axial capacity of columns through confinement
- Increase of column deformation capacity (ductility) through confinement

What is the FRP-technique good for ?

Masonry

- In-plane & out-of-plane loading (flexure, shear)
- Confinement (including reversible wrapping)
- Arches, vaults, domes

T. TRIANTAFILLOU	T. TRIANTAFILLOU	
	Limitations of the FRP-technique :	
What is the FRP-technique good for ?	• Flexural strengthening of columns: difficult !	
Timber	Increase of stiffness: not possible !	
 Flexural strengthening , shear strengthening 		
Axial load strengthening	RC jacketing is better in these cases	
Stiffening		
• Ductility		

CONCLUSIONS

- EASY, FAST, EFFECTIVE
- BASIC PRINCIPLES
- FORCES CARRIED BY THE FIBRES
- LINEAR ELASTIC MATERIAL BEHAVIOUR
- DEBONDING IS OF CRUCIAL IMPORTANCE
- FLEXURAL STRENGTHENING (BEAMS+SLABS)
- SHEAR STRENGTHENING
- CONFINEMENT
- SPECIAL CARE ON PRACTICAL EXECUTION
- "TRM": AN INTERESTING CONCEPT WHICH WILL PAVE THE WAY FOR EVEN MORE APPLICATIONS OF EXTERNALLY BONDED COMPOSITES !

T. TRIANTAFILLOU