CONFINEMENT OF RC

Confinement of leaking water-pipe (Thessaloniki, Fyfe Europe s.a.)

T. TRIANTAFILLOU

Confinement models

 $\alpha_{f} = \alpha_{n} \times \alpha_{s} \times \alpha_{a} \le 1$

 $d - s_f'/2$

b_f

T. TRIANTAFILLOU

EXAMPLES

T. TRIANTAFILLOU

$f_{cd} = 20 \text{ MPa} \text{ E}_c = 33.5 \text{ GPa}$

Target : Increase strength to 35 MPa, ultimate strain to ε_{cou} = 0.025

Carbon fibers, E_f = 230 GPa, f_{fde} = 2460 MPa. Glass fibers, E_f = 70 GPa, f_{fde} = 1330 MPa

	R	A	α,	Required jacket thickness t _r (mm)			
Section	(mm)	(cm ²)	(effectiveness)	Carbon fibers		Glass fibers	
				for f _{ccd} = 35 MPa	for ε _{ccu} = 0.025	for f _{ccd} = 35 MPa	for ε_{ccu} = 0.025
300 300	20	896.5	0.50	0.39	0.31	0.82	0.12
250 500	20	1246.5	0.32	0.74	0.56	1.56	0.22
300 300	40	886.2	0.64	0.31	0.24	0.64	0.10

INCREASE OF DEFORMABILITY

- CHORD ROTATION (OR DISPLACEMENT) DUCTILITY FACTOR

- CURVATURE DUCTILITY FACTOR

DESIGN OF JACKET FOR DUCTILITY

Chord rotation (or displacement) ductility factor

$$\mu_{\Delta} = \frac{\Delta_u}{\Delta_y} = \mu_{\theta} = \frac{\theta_u}{\theta_y}$$

Tastani & Pantazopoulou (2002) // Alternative but very conservative approach

$$\begin{split} \mu_{\Delta} &= \mu_{\theta} = 1.3 + 12.4 (\frac{\sigma_{\ell u, b}}{f_{c}} - 0.1) \ge 1.3 \\ \sigma_{\ell u, b} &= \alpha_{f} \frac{2 t_{f}}{d} f_{fe} \end{split}$$

T. TRIANTAFILLOU

EXAMPLE

EXAMPLE OF JACKET DESIGN

	Required number of la	yers
Deformability	4	4 at the
Lap splices	2	
Rebar buckling	3	2 layers – full
Shear	2	wrapping

NO IMPROVEMENTS REGARDING :

- Stiffening
- Second order (P- Δ) effects
- Flexural strengthening

IN ORDER TO HAVE A "FEELING" OF DIMENSIONS ...

2 layers of "standard" CFRP fabric (0.13 mm thick) is equivalent to S500 Φ 8/10 stirrups

3 layers will provide a chord rotation ductility factor $\mu_{\theta} = \mu_{\Delta} > 4-5$ and will prevent lap splice failures in many "common" cases

ALTERNATIVE CONFINEMENT SYSTEMS

T. TRIANTAFILLOU

Helically applied unbonded strips

0

0.005

0.010 0.015

Strain (-)

0.020

0.025

T. TRIANTAFILLOU