Textile-Reinforced Mortars (TRM) vs. Fiber Reinforced Polymers (FRP) as Strengthening and Seismic Retrofitting Materials of Concrete and Masonry Structures

> T. C. TRIANTAFILLOU [ttriant@upatras.gr]

Prof. of Civil Engineering Director, Structural Materials Laboratory [www.sml.civil.upatras.gr]

University of Patras, GREECE

CONTENTS

INTRODUCTION & BACKGROUND

TRM-STRENGTHENING OF RC -CONFINEMENT -SHEAR STRENGTHENING -FLEXURAL STRENGTHENING

TRM-MASONRY

CONCLUSIONS

INTRODUCTION & BACKGROUND

CONFINEMENT OF RC SHEAR STRENGTHENING OF RC FLEXURAL STRENGTHENING OF RC MASONRY CONCLUSIONS Some problems with FRP

- Poor behaviour of resins above T_a
- High cost of epoxies
- · Inability to apply on wet surfaces or at low temperatures
- · Lack of vapour permeability
- · Incompatibility with substrate materials
- Difficulty in contacting post-earthquake assessment of damage suffered by the concrete behind the FRP

Past studies on the use of TEXTILES in the upgrading of RC:

Bond aspects, flexural and shear strengthening of beams (first studies: Curbach / Ortlepp 2003 , Curbach / Brueckner 2003)

Main Conclusion: Properly designed textiles combined with

inorganic binders have a good potential as strengthening materials of RC

Textiles for:

Solution

- CONFINEMENT (plain and RC prisms, poorly detailed columns)
- SHEAR STRENGTHENING (including cyclic loading)
- FLEXURAL STRENGTHENING (beams)
- FLEXURAL / SHEAR STRENGTHENING OF MASONRY SUBJECTED TO IN-PLANE OR OUT-OF-PLANE LOADING

TRIANTAFILL

INTRODUCTION & BACKGROUND

CONFINEMENT OF RC SHEAR STRENGTHENING OF RC FLEXURAL STRENGTHENING OF RC MASONRY CONCLUSIONS

		MATERIALS	3	
Carbon fibers, 160 g	y/m², E = 2	s, pp gr 225 GPa , f _t = 3	carb hiber rovin hypropylene d d 10 mm 4 mm 350 GPa , tex 800	on gs I 1 mm I 10 mm
Nominal thickness (based on equivalent smeared distribution of fibers) = 0.047 mm				
	Mortar	Flexural Strength (MPa)	Compressive Strength (MPa)	
	Mortar I 7 days 28 days	2.68 3.28	7.59 8.56	
	Mortar II 7 days 28 days	3.02 4.24	27.45 30.61	
		1	1	T. TRIANTAFILL

T. TRIANTAFILLO

CONCLUSIONS

CONFINEMENT OF RC SHEAR STRENGTHENING OF RC FLEXURAL STRENGTHENING OF RC MASONRY

INTRODUCTION & BACKGROUND

CONCLUSIONS

Strengthening with FRP : very effective, easy to apply, some problems with resins

Strengthening with Textile Reinforced Mortar (TRM) : extremely effective, results in more ductile failure modes !

Modelling: straightforward procedure, by introducing effectiveness coefficients

The mortar plays an important role !

TRM is a very promising solution !

FRP HAVE BEEN AND WILL CONTINUE TO BE QUITE SUCCESSFUL !!

TRM SHOW THE WAY FOR EVEN MORE APPLICATIONS OF CONTINUOUS FIBER REINFORCEMENT IN STRUCTURAL UPGRADING