FOOD CHEMISTRY: FRUITS & VEGETABLES

Chemical composition – nutritional contribution

- Energy (Calories) Carbohydrates and fats provide most of the calories the body requires
- Carbohydrates: carb rich fruits/vegetables: banana, persimmon, raisins, dates
- **Fats**: fat rich fruits/vegetables: avocado, olives, walnuts
- Proteins & amino acids: protein rich fruits/vegetables: walnuts, dried apricots, figs
 - ✓ Fruits contain <1% protein (as opposed to 9-20% in nuts)
 - Enzymes that catalyze metabolic processes in fruit are essential for carrying out the reactions associated with ripening and aging
 - ✓ Some of the enzymes that are of great importance for the quality of fruits and their products are the following:

Enzyme

Polyphenol oxidase (PPO) Catalyzes the oxidation of phenols into brown polymers

- Enzymatic browning in plant products is a result of the oxidation of the phenolic components and is carried out, in the presence of O₂, by polyphenol oxidase (PPO)
- The initial product is usually an o-quinone, which is unstable and undergoes polymerization to give brown, higher MW pigments
- PPO catalyzes the following two reactions:

Enzyme

Polygalacturonase (PG)

Catalyzes the hydrolysis of the $\alpha(1 \rightarrow 4)$ glucosidic bonds of **polygalacturonic acid (pectin)**, leading to a reduction in pectin size and making tissues softer

Enzyme

Pectin lyase (PL)

- Catalyzes the hydrolysis of the $\alpha(1\rightarrow 4)$
- glycosidic bonds of
- pectin (acts after
- a methyester
- unit of galacturonic acid)

Mode of action of the main pectolytic enzymes

Enzyme

Pectinesterase (PE) (or Pectinmethylesterase)

Catalyzes the **transesterification** of **galacturonans into pectin**, leading to tissue hardening or vice versa

Enzyme

Lipoxygenase

Catalyzes the **oxidation of lipids**, leading to the creation of unpleasant odors

Enzyme

Ascorbic Oxidase Catalyzes the oxidation of ascorbic acid, leading to a reduction in nutritional value

Enzyme

Chlorophyllas

Catalyses the **breakdown of chlorophyll** into chlorophyllin and phytol, leading to loss of green color

Sugars

- It is the most abundant and widespread component of foods of plant origin
- Their content varies in fresh fruit and generally ranges between 10-25%
- Sucrose, glucose & fructose, are major sugars found in fruit –mainly in the cytoplasm in concentrations from 0.9% in lemons to 16% in fresh figs
- Sucrose is contained in traces in cherries, grapes and pomegranates and > 8% in ripe bananas and pineapples affecting the taste accordingly as fructose is sweeter than sucrose
- Starch appears in the form of small grains in unripe fruit, and turns into sugar when the fruit ripens
- Other fruit polysaccharides are cellulose, hemicellulose, & pectin, found mainly (up to 50%) in cell walls
- When they are broken down (mainly pectins) into smaller and more soluble components the fruit softens

Lipids

- Make up only 0.1-0.2% of most fresh fruits & vegetables, except avocados, olives & nuts
- They are components of cell membranes and the waxy surface, which contributes to the appearance of the fruit and its protection from evaporation and diseases
- The degree of saturation of the fatty acids determines the elasticity of the membranes (the higher it is, the lower the elasticity)

Organic acids

- They are important intermediate products of metabolism
- The Krebs cycle is the main oxidation pathway of of organic acids to living cells, and provides the energy needed for their maintenance
- They are metabolized to various components, such as amino acids, the building blocks of proteins
- Most fresh fruits are acidic Some (e.g. lemons, limes) contain acid as much as 2-3% of their total wet weight
- The acid content is reduced during ripening due to the conversion of acids into sugars or their consumption during respiration

Organic acids

Malic and citric acids are the most abundant acids in fruit, except grapes (where tartaric acid predominates) and kiwis (where quinic acid predominates)

- Phenolic constituents in plants include many kinds of compounds with many functional properties in food:
- Organoleptic properties (astrigency, bitterness) & **color** (mainly due to enzymatic browning)
- Potential health benefits (Antioxidant properties, Antimicrobial action)
- Phenolic compounds are hydroxylated derivatives of compounds such as phenol, p-cresol and 3-ethylphenol and phenolic acids such as caffeic, coumaric and ferulic
- Total phenolic content is highest in unripe fruits (~0.1-2 g\100 g fresh weight.

Fruit/vegetable phenolics include:

- Chlorogenic acid (derivative of caffeic acid, widespread in fruits and a major substrate of enzymatic browning when they are cut or generally when their tissues are exposed to oxygen)
- Flavonoids (such as flavonols, catechin, epicatechin, cyanidin)
- Anthocyanins (glycosides of anthocyanidins)
- Cinnamic acid derivatives
- Simple phenols

Flavonoids

- Enzymatic browning in plant products is a result of the oxidation of the phenolics by polyphenol oxidase (PPO)
- The extent of browning depends on the total amount of phenols in the tissue and the activity of PPO
- Astringent flavor is directly dependent on the phenolic load and usually weakens with ripening due to conversion of soluble phenolics to insoluble, non-astringent forms
- Although enzymatic browning is desirable in processes such as tea & cocoa fermentation, it is undesirable in fruits and vegetables because it causes discoloration
- Methods to avoid enzymatic browning include:
 - ✓ Exclusion of oxygen
 - ✓ Use of acids
 - Deactivation by heating (blanching)
 - ✓ Use of sulphites etc.

Colors

- The chemicals responsible for fruit color undergo many changes during ripening, which include:
- Loss of chlorophyll (green color), affected by pH changes, redox reactions, chlorophyllase enzyme activity
- Synthesis of anthocyanins (red, blue & purple colors)
- Carotenoid synthesis (yellow & orange colors)

Volatiles (aroma)

- Volatile compounds are responsible for the characteristic fruit aroma
- They are mainly esters, alcohols, organic acids, aldehydes, ketones
- They are present at very low concentrations (<100 µg/g fresh weight)
- The main volatile component produced by climacteric fruits is ethylene (50-75% of total C of all volatiles) – it has no strong aroma and does not contribute to typical fruit aroma
- A huge number of volatiles have been identified in fruits by gas chromatographic methods of analysis, but few, key compounds, are important for the specific aroma of a fruit, e.g. terpenic compounds

Examples of exercise questions

- 1. What is dietary fiber & what is its nutritional value?
- 2. Name the enzymes that are of great importance for the quality of fruits/vegetables and their products.
- 3. What are the most common organic acids in fruits/vegetables?
- 4. What are the main classes of phenolic compounds in fruits/vegetables?
- 5. What is the aroma of fruits/vegetables composed of?
- 6. What is the color of fruits/vegetables composed of?

