


Cooperative and Graph
Signal Processing



Cooperative and Graph
Signal Processing

Principles and Applications

Edited by

Petar M. Djurić

Cédric Richard



Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1650, San Diego, CA 92101, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN 978-0-12-813677-5

For information on all Academic Press publications visit our
website at https://www.elsevier.com/books-and-journals

Publisher: Mara Conner
Acquisition Editor: Tim Pitts
Editorial Project Manager: Peter Jardim
Production Project Manager: Sruthi Satheesh
Designer: Christian Bilbow

Typeset by SPi Global, India

https://www.elsevier.com/books-and-journals


Contributors

Selin Aviyente
Department of Electrical and Computer Engineering, Michigan State University,
East Lansing, MI, United States

Paolo Banelli
Department of Engineering, University of Perugia, Perugia, Italy

Sergio Barbarossa
Department of Information Engineering, Electronics, and Telecommunications, Sapienza
University of Rome, Rome, Italy

Pierre Borgnat
ENS de Lyon, Univ Lyon 1, CNRS, Laboratoire de Physique & IXXI, Univ Lyon,
Lyon, France

Elena Ceci
Department of Information Engineering, Electronics, and Telecommunications, Sapienza
University of Rome, Rome, Italy

Shih-Fu Chang
Department of Electrical Engineering and Department of Computer Science,
Columbia University, New York, NY, United States

Chao Cheng
Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States

Jie Chen
Center of Intelligent Acoustics and Immersive Communications, School of Marine
Science and Technology, Northwestern Polytechnical University, Xi’an, China

Sundeep Prabhakar Chepuri
Delft University of Technology, Delft, The Netherlands

Luca Corinzia
CMLA, ENS Cachan, CNRS, University of Paris-Saclay, Cachan, France; ETH Zurich,
Zurich, Switzerland

Kamil Dedecius
Department of Adaptive Systems, Institute of Information Theory and Automation,
The Czech Academy of Sciences, Prague, Czech Republic

Petar M. Djurić
Department of Electrical and Computer Engineering, Stony Brook University,
Stony Brook, NY, United States

Ceyhun Eksin
Department of Industrial and Systems Engineering, Texas A&M University, College Station,
TX, United States

Andrey Garnaev
Wireless Information Network Laboratory (WINLAB), Rutgers, The State University
of New Jersey, North Brunswick, NJ, United States

xxi



xxii Contributors

David Gesbert
Communication Systems Department, EURECOM, Biot, France

Georgios B. Giannakis
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis,
MN, United States

Paulo Gonçalves
ENS de Lyon, Univ Lyon 1, CNRS, Inria, LIP & IXXI, Univ Lyon, Lyon, France

Alfred Hero
EECS Department, University of Michigan, Ann Arbor, MI, United States

Franz Hlawatsch
Institute of Telecommunications, TU Wien, Vienna, Austria

William Hoiles
Biosymetrics, New York, NY, United States

Hazer Inaltekin
Department of Electrical and Electronic Engineering, The University of Melbourne,
Parkville, VIC, Australia

Kwang-Sung Jun
Wisconsin Institute for Discovery, Madison, WI, United States

Bhavya Kailkhura
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA, United States

Argyris Kalogeratos
CMLA, ENS Cachan, CNRS, University of Paris-Saclay, Cachan, France

Sithan Kanna
Department of Electrical and Electronic Engineering, Imperial College London, London,
United Kingdom

Soummya Kar
Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, United States

Paul de Kerret
Communication Systems Department, EURECOM, Biot, France

Vikram Krishnamurthy
School of Electrical and Computer Engineering, Cornell Tech, Cornell University, New York,
NY, United States

Amir Leshem
Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

Geert Leus
Delft University of Technology, Delft, The Netherlands

Zhenguo Li
Huawei Noah’s Ark Lab, Shatin, Hong Kong Special Administrative Region



Contributors xxiii

Sijia Liu
EECS Department, University of Michigan, Ann Arbor, MI, United States

Ying Liu
Wireless Information Network Laboratory (WINLAB), Rutgers, The State University
of New Jersey, North Brunswick, NJ, United States

Paolo Di Lorenzo
Department of Information Engineering, Electronics, and Telecommunications,
Sapienza University of Rome, Rome, Italy

Danilo P. Mandic
Department of Electrical and Electronic Engineering, Imperial College London,
London, United Kingdom

Morteza Mardani
Department of Electrical Engineering, Stanford University, Stanford, CA, United States

Antonio G. Marques
Department of Signal Theory and Communications, King Juan Carlos University, Madrid, Spain

Gonzalo Mateos
Department of Electrical and Computer Engineering, University of Rochester, Rochester,
NY, United States

Vincenzo Matta
Department of Information Engineering, Electrical Engineering and Applied Mathematics,
DIEM, University of Salerno, Fisciano, Italy

Mattia Merluzzi
Department of Information Engineering, Electronics, and Telecommunications, Sapienza
University of Rome, Rome, Italy

José M.F. Moura
Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, United States

Eric Moulines
CMAP, Ecole Polytechnique, Palaiseau, France

Robert Nowak
Department of Electrical and Computer Engineering, University of Wisconsin-Madison,
Madison, WI, United States

Brandon Oselio
EECS Department, University of Michigan, Ann Arbor, MI, United States

Konstantinos Plataniotis
Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada

H. Vincent Poor
Department of Electrical Engineering, Princeton University, Princeton, NJ, United States

Michael G. Rabbat
McGill University and Facebook AI Research, Montreal, QC, Canada



xxiv Contributors

Alejandro Ribeiro
Department of Electrical and Systems Engineering, University of Pennsylvania,
Philadelphia, PA, United States

Cédric Richard
Laboratoire Lagrange, Université Côte d’Azur, CNRS, OCA, Nice, France

Stefania Sardellitti
Department of Information Engineering, Electronics, and Telecommunications, Sapienza University
of Rome, Rome, Italy

Ali H. Sayed
School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Anna Scaglione
School of Electrical, Computer and Energy Engineering, Arizona State University,
Tempe, AZ, United States

Kevin Scaman
CMLA, ENS Cachan, CNRS, University of Paris-Saclay, Cachan, France; MSR, Inria Joint
Center, Palaiseau, France

Mihaela van der Schaar
Electrical Engineering Department, University of California, Los Angeles, Los Angeles,
CA, United States

Santiago Segarra
Institute for Data, Systems, and Society; Massachusetts Institute of Technology,
Cambridge, MA, United States

Petros Spachos
School of Engineering, University of Guelph, Guelph, ON, Canada

Alex Sprintson
Department of Electrical and Computer Engineering, Texas A&M University,
College Station, TX, United States

Brian Swenson
Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, United States

Cem Tekin
Electrical and Electronics Engineering Department, Bilkent University, Ankara, Turkey

Shang Kee Ting
DSO National Laboratories, Singapore, Singapore

Wade Trappe
Wireless Information Network Laboratory (WINLAB), Rutgers, The State University of
New Jersey, North Brunswick, NJ, United States

Nicolas Tremblay
CNRS, GIPSA-lab, Univ. Grenoble Alpes, Grenoble, France



Contributors xxv

Pramod K. Varshney
Department of EECS, Syracuse University, Syracuse, NY, United States

Nicolas Vayatis
CMLA, ENS Cachan, CNRS, University of Paris-Saclay, Cachan, France

Aditya Vempaty
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States

Marisel Villafañe-Delgado
Department of Electrical and Computer Engineering, Michigan State University,
East Lansing, MI, United States

Hoi-To Wai
School of Electrical, Computer and Energy Engineering, Arizona State University,
Tempe, AZ, United States

Daifeng Wang
Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, United States

Xiao-Ming Wu
Department of Computing, The Hong Kong Polytechnic University, Kowloon,
Hong Kong Special Administrative Region

Yili Xia
School of Information Science and Engineering, Southeast University, Nanjing, PR China

Jie Xu
Electrical and Computer Engineering Department, University of Miami, Coral Gables,
FL, United States

Simpson Zhang
Economics Department, University of California, Los Angeles, Los Angeles, CA,
United States

Xiaochuan Zhao
University of California at Los Angeles, UCLA, Los Angeles, CA, United States



Preface

Cooperative and graph signal processing are areas that have seen significant growth in recent years,
a trend that without a doubt will continue for many years to come. These areas are well within the
scope of network science, which deals with complex systems described by interconnected elements
and/or agents. The networks can be of many types including physical, engineered, information, social,
biological, and economic networks. Within the framework of cooperative and graph signal processing
one aims at discovering principles of various tasks including distributed detection and estimation,
adaptation and learning over networks, distributed decision making, optimization and control over
networks, and modeling and identification. The range of possible applications is vast and includes
robotics, smart grids, communications, economic networks, life sciences, ecology, social networks,
wireless health, and transportation networks.

With this book we want to provide in a single volume the basics of cooperative and graph signal
processing and to address a number of areas where they are applied. The chapters are grouped in five
parts. In Part 1, the fundamentals of inference over networks are addressed, Part 2 is on graph signal
processing, Part 3 focuses on communications, networking, and sensing, Part 4 studies social networks,
and Part 5 describes applications that range from genomics and system biology to big data and brain
networks. All the chapters are written by experts and leaders in the field.

The contents of Part 1 include the fundamentals of inference, learning, and optimization over
networks in synchronous and asynchronous settings (Chapter 1); estimation and detection where the
emphasis is on studying agents that track drifts in models and examining performance limits under
both estimation and detection (Chapter 2); learning in networks where the agents make inference about
parameters of both, common and local interest (Chapter 3), collaborative inference of agents within
the Bayesian framework (Chapter 4); multiagent distributed optimization, where the aim of all agents
is to agree on the minimizer (Chapter 5); sequential filtering using state-space models by Kalman and
particle filtering (Chapter 6); and game-theoretic learning where the objective of the decision-makers
in the network depends on both the actions of other agents and the state of the environment (Chapter 7).

Part 2 starts with the basics of graph signal processing (Chapter 8); then it continues with a review
of recent advances in sampling and recovery of signals defined over graphs (Chapter 9); active learning
in networks where one has the freedom of choosing nodes for querying and wants to select intelligently
informative nodes to minimize prediction errors (Chapter 10); design of graph filters and filter banks
(Chapter 11); extension of the notion of stationarity to random graph signals (Chapter 12); estimating a
graph topology from graph signals (Chapter 13); and a unifying framework for learning on graphs and
based on partially absorbing random walks (Chapter 14).

Part 3, with its theme on communications, networking, and sensing, addresses projection-based
algorithms and projection-free decentralized optimization algorithms for performing big data analytics
(Chapter 15); optimal joint allocation of communication, computation, and caching resources in 5G
communication networks (Chapter 16); analysis of a network’s structural vulnerability to attacks
(Chapter 17); team methods for cooperation in device-centric setups (Chapter 18); cooperative
data exchange so that clients can decode missing messages while minimizing the total number of
transmissions (Chapter 19); and Byzantine attacks and defense for collaborative spectrum-sensing in
cognitive radio networks (Chapter 20).

xxvii



xxviii Preface

Part 4, on social networks, provides material on diffusion models for information in social networks,
Bayesian social learning, and revealed preferences (Chapter 21); network identification for social
networks (Chapter 22); search and data routing in dynamic social networks (Chapter 23); information
diffusion in social networks and control of diffusion of rumors and fake news (Chapter 24); methods
for dealing with multilayer social networks, including multilayer community detection and multilayer
interaction graph estimation (Chapter 25); and investigation of how cooperative and strategic learning
lead to different types of networks and how efficient these networks are in making its agents achieve
their goals (Chapter 26).

Part 5 brings various applications of cooperative and graph signal processing including construction,
modeling, and analysis of gene regulatory networks (Chapter 27); cooperative frequency estimation
in power networks (Chapter 28); the use of Bluetooth low energy beacons in smart city applications
(Chapter 29); scalable decentralized and streaming analytics that facilitate machine learning from big
data (Chapter 30); and capturing the dynamics of brain activity by analyzing functional brain networks
and multivariate signals on the networks with graph signal processing methods (Chapter 31).

This book is a collective effort of the chapter authors. We are thankful for their enthusiastic support
in writing their parts and for their timely responses. We are grateful to the reviewers for taking the
time to read the chapters and for their valuable feedbacks. Finally, we thank Elsevier for all its support
throughout the duration of this project.

Petar M. Djurić
Cédric Richard



CHAPTER

1ASYNCHRONOUS ADAPTIVE
NETWORKSa

Ali H. Sayed∗, Xiaochuan Zhao†

School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland∗ University of

California at Los Angeles, UCLA, Los Angeles, CA, United States†

1.1 INTRODUCTION
Adaptive networks consist of a collection of agents with learning abilities. The agents interact with each
other on a local level and diffuse information across the network to solve inference and optimization
tasks in a decentralized manner. Such networks are scalable, robust to node and link failures, and are
particularly suitable for learning from big datasets by tapping into the power of collaboration among
distributed agents. The networks are also endowed with cognitive abilities due to the sensing abilities
of their agents, their interactions with their neighbors, and the embedded feedback mechanisms for
acquiring and refining information. Each agent is not only capable of sensing data and experiencing
the environment directly, but it also receives information through interactions with its neighbors and
processes and analyzes this information to drive its learning process.

As already indicated in [1,2], there are many good reasons for the peaked interest in networked
solutions, especially in this day and age when the word “network” has become commonplace whether
one is referring to social networks, power networks, transportation networks, biological networks, or
other networks. Some of these reasons have to do with the benefits of cooperation over networks in
terms of improved performance and improved robustness and resilience to failure. Other reasons deal
with privacy and secrecy considerations where agents may not be comfortable sharing their data with
remote fusion centers. In other situations, the data may already be available in dispersed locations,
as happens with cloud computing. One may also be interested in learning and extracting information
through data mining from large datasets. Decentralized learning procedures offer an attractive approach
to dealing with such datasets. Decentralized mechanisms can also serve as important enablers for the
design of robotic swarms, which can assist in the exploration of disaster areas.

aThis work was supported in part by NSF grants ECCS-1407712 and CCF-1524250. Coauthor X. Zhao was a PhD student in
electrical engineering at UCLA. The authors are grateful to IEEE for allowing the reproduction of substantial material from
[1,3–5] in this book chapter.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00001-8
Copyright © 2018 Elsevier Inc. All rights reserved.

3



4 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

1.1.1 ASYNCHRONOUS BEHAVIOR
The survey article [1] and monograph [2] focused on the case of synchronous networks where
data arrive at all agents in a synchronous manner and updates by the agents are also performed
in a synchronous manner. The network topology was assumed to remain largely static during the
adaptation process. Under these conditions, the limits of performance and stability of these networks
were identified in some detail for two main classes of distributed strategies: consensus and diffusion
constructions. In this chapter, we extend the overview from [1] to cover asynchronous environments.
In such environments, the operation of the network can suffer from the occurrence of various random
events, including randomly changing topologies, random link failures, random data arrival times, and
agents turning on and off randomly. Agents may also stop updating their solutions or may stop sending
or receiving information in a random manner and without coordination with other agents. Results in
[3–5] examined the implications of such asynchronous events on network performance in some detail
and under a fairly general model for the random events. The purpose of this chapter is to summarize
the key conclusions from these works in a manner that complements the presentation from [1] for the
benefit of the reader. While the works [3–5] consider a broader formulation involving complex-valued
variables, we limit the discussion here to real-valued variables in order not to overload the notation
and to convey the key insights more directly. Proofs and derivations are often omitted and can be
found in the above references; the emphasis is on presenting the results in a motivated manner and on
commenting on the insights they provide into the operation of asynchronous networks.

We indicated in [3–5] that there already exist many useful studies in the literature on the
performance of consensus strategies in the presence of asynchronous events (see, e.g., [6–16]). There
are also some studies in the context of diffusion strategies [17,18]. However, with the exception of
the latter two works, the earlier references assumed conditions that are not generally favorable for
applications involving continuous adaptation and learning. For example, some of the works assumed a
decaying step-size, which turns off adaptation after sufficient iterations have passed. Some other works
assumed noise-free data, which is a hindrance when learning from data perturbed by interferences
and distortions. A third class of works focused on studying pure averaging algorithms, which are not
required to respond to continuous data streaming. In the works [3–5], we adopted a more general
asynchronous model that removes these limitations by allowing for various sources of random events
and, moreover, the events are allowed to occur simultaneously. We also examined learning algorithms
that respond to streaming data to enable adaptation. The main conclusion from the analysis in these
works, and which will be summarized in future sections, is that asynchronous networks can still behave
in a mean-square-error (MSE) stable manner for sufficiently small step-sizes and, interestingly, their
steady-state performance level is only slightly affected in comparison to synchronous behavior. The
iterates computed by the various agents are still able to converge and hover around an agreement state
with a small MSE. These are reassuring results that support the intrinsic robustness and resilience of
network-based cooperative solutions.

1.1.2 ORGANIZATION OF THE CHAPTER
Readers will benefit more from this chapter if they first review the earlier article [1]. We continue to
follow a similar structure here as well as a similar notation because the material in both this chapter
and the earlier reference [1] are meant to complement each other. We organize the presentation into



1.2 SINGLE-AGENT ADAPTATION AND LEARNING 5

three main components. The first part (Section 1.2) reviews fundamental results on adaptation and
learning by single stand-alone agents. The second part (Section 1.3) covers asynchronous centralized
solutions. The objective is to explain the gain in performance that results from aggregating the data
from the agents and processing it centrally at a fusion center. The centralized performance is used as a
frame of reference for assessing various implementations. While centralized solutions can be powerful,
they nevertheless suffer from a number of limitations. First, in real-time applications where agents
collect data continuously, the repeated exchange of information back and forth between agents and
the fusion center can be costly, especially when these exchanges occur over wireless links or require
nontrivial routing resources. Second, in some sensitive applications, agents may be reluctant to share
their data with remote centers for various reasons including privacy and secrecy considerations. More
importantly perhaps, centralized solutions have a critical point of failure: if the central processor fails,
then this solution method collapses altogether.

For these reasons, we cover in the remaining sections of the chapter (Sections 1.4 and 1.5)
distributed asynchronous strategies of the consensus and diffusion types, and examine their dynamics,
stability, and performance metrics. In the distributed mode of operation, agents are connected by a
topology and are permitted to share information only with their immediate neighbors. The study of the
behavior of such networked agents is more challenging than in the single-agent and centralized modes
of operation due to the coupling among interacting agents and the fact that the networks are generally
sparsely connected.

1.2 SINGLE-AGENT ADAPTATION AND LEARNING
We begin our treatment by reviewing stochastic gradient algorithms, with emphasis on their application
to the problems of adaptation and learning by stand-alone agents.

1.2.1 RISK AND LOSS FUNCTIONS
Thus, let J(w) : RM×1 �→ R denote a twice-differentiable real-valued (cost or utility or risk)
function of a real-valued vector argument, w ∈ RM×1. When the variable w is complex-valued, some
important technical differences arise that are beyond the scope of this chapter; they are addressed in
[2–5]. Likewise, some adjustments to the arguments are needed when the risk function is nonsmooth
(nondifferentiable), as explained in the works [19,20]. It is sufficient for our purposes in this chapter to
limit the presentation to real arguments and smooth risk functions without much loss in generality.

We denote the gradient vectors of J(w) relative to w and wT by the following row and column
vectors, respectively:

∇w J(w) �=
[

∂J(w)
∂w1

,
∂J(w)
∂w2

, . . . ,
∂J(w)
∂wM

]
, (1.1a)

∇wT J(w) �= [∇w J(w)]T . (1.1b)

These definitions are in terms of the partial derivatives of J(w) relative to the individual entries of
w = col{w1, w2, . . . , wM}, where the notation col{·} refers to a column vector that is formed by stacking



6 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

its arguments on top of each other. Likewise, the Hessian matrix of J(w) with respect to w is defined as
the following M × M symmetric matrix:

∇2
w J(w) �= ∇wT [∇w J(w)]=∇w[∇wT J(w)], (1.1c)

which is constructed from two successive gradient operations. It is common in adaptation and learning
applications for the risk function J(w) to be constructed as the expectation of some loss function,
Q(w; x), where the boldface variable x is used to denote some random data, say,

J(w)=E Q(w; x) (1.2)

and the expectation is evaluated over the distribution of x.
Example 1.1 (Mean-square-error (MSE) costs). Let d denote a zero-mean scalar random variable

with variance σ 2
d = Ed2, and let u denote a zero-mean 1 × M random vector with covariance matrix

Ru = EuTu > 0. The combined quantities {d, u} represent the random variable x referred to in
Eq. (1.2). The cross-covariance vector is denoted by rdu = EduT. We formulate the problem of
estimating d from u in the linear least-mean-squares-error sense or, equivalently, the problem of seeking
the vector wo that minimizes the quadratic cost function:

J(w) �= E(d − uw)2 = σ 2
d − rTduw − wTrdu + wTRuw. (1.3a)

This cost corresponds to the following choice for the loss function:

Q(w; x)=(d − uw)2. (1.3b)

Such quadratic costs are widely used in estimation and adaptation problems [21–25]. They are also
widely used as quadratic risk functions in machine learning applications [26,27]. The gradient vector
and Hessian matrix of J(w) are easily seen to be:

∇w J(w)=2 (Ruw − rdu)T , ∇2
w J(w)=2Ru. (1.3c)

�
Example 1.2 (Logistic or log-loss risks). Let γ denote a binary random variable that assumes the

values ±1, and let h denote an M×1 random (feature) vector with Rh=EhhT. The combined quantities
{γ , h} represent the random variable x referred to in Eq. (1.2). In the context of machine learning
and pattern classification problems [26–28], the variable γ designates the class that feature vector h
belongs to. In these problems, one seeks the vector wo that minimizes the regularized logistic risk
function:

J(w) �= ρ

2
‖w‖2 + E

{
ln
[
1 + e−γ hTw

]}
, (1.4a)

where ρ > 0 is some regularization parameter, ln(·) is the natural logarithm function, and ‖w‖2=wTw.
The risk (1.4a) corresponds to the following choice for the loss function:

Q(w; x) �= ρ

2
‖w‖2 + ln

[
1 + e−γ hTw

]
. (1.4b)



1.2 SINGLE-AGENT ADAPTATION AND LEARNING 7

Once wo is recovered, its value can be used to classify new feature vectors, say, {h�}, into classes +1
or −1. This can be achieved by assigning feature vectors with hT

� wo ≥ 0 to one class and feature
vectors with hT

� wo < 0 to another class. It can be easily verified that:

∇w J(w)=ρwT − E

{
γ hT · e−γ hTw

1 + e−γ hTw

}
, (1.4c)

∇2
w J(w)=ρIM + E

⎧⎪⎨
⎪⎩hhT · e−γ hTw(

1 + e−γ hTw
)2

⎫⎪⎬
⎪⎭ , (1.4d)

where IM denotes the identity matrix of size M × M. �

1.2.2 CONDITIONS ON COST FUNCTION
Stochastic gradient algorithms are powerful iterative procedures for solving optimization problems of
the form

min
w

J(w). (1.5)

While the analysis that follows can be pursued under more relaxed conditions (see, e.g., the treatments
in [29–32]), it is sufficient for our purposes to require J(w) to be strongly convex and twice-
differentiable with respect to w. The cost function J(w) is said to be ν-strongly convex if, and only
if, its Hessian matrix is sufficiently bounded away from zero [30,33–35]:

J(w) is ν-strongly convex ⇐⇒ ∇2
w J(w) ≥ νIM > 0 (1.6)

for all w and for some scalar ν > 0, where the notation A > 0 signifies that matrix A is positive-definite.
Strong convexity is a useful condition in the context of adaptation and learning from streaming data
because it helps guard against ill-conditioning in the algorithms; it also helps ensure that J(w) has a
unique global minimum, say, at location wo; there will be no other minima, maxima, or saddle points.
In addition, it is well known that strong convexity helps endow stochastic-gradient algorithms with
geometric convergence rates in the order of O(αi), for some 0 ≤ α < 1 and where i is the iteration
index [30,31].

In many problems of interest in adaptation and learning, the cost function J(w) is either already
strongly convex or can be made strongly convex by means of regularization. For example, it is common
in machine learning problems [26,27] and in adaptation and estimation problems [23,25] to incorporate
regularization factors into the cost functions; these factors help ensure strong convexity. For instance,
the MSE cost (1.3a) is strongly convex whenever Ru > 0. If Ru happens to be singular, then the
following regularized cost will be strongly convex:

J(w) �= ρ

2
‖w‖2 + E(d − uw)2, (1.7)

where ρ > 0 is a regularization parameter similar to Eq. (1.4a).



8 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Besides strong convexity, we shall also assume that the gradient vector of J(w) is δ-Lipschitz,
namely, there exists δ > 0 such that

‖∇w J(w2) − ∇w J(w1)‖ ≤ δ ‖w2 − w1‖ (1.8)

for all w1 and w2. It can be verified that for twice-differentiable costs, conditions (1.6) and (1.8)
combined are equivalent to

0 < νIM ≤ ∇2
w J(w) ≤ δIM . (1.9)

For example, it is clear that the Hessian matrices in Eqs. (1.3c) and (1.4d) satisfy this property because

2λmin(Ru)IM ≤ ∇2
w J(w) ≤ 2λmax(Ru)IM (1.10a)

in the first case and

ρIM ≤ ∇2
w J(w) ≤ (ρ + λmax(Rh))IM (1.10b)

in the second case, where the notation λmin(R) and λmax(R) refers to the smallest and largest eigenvalues
of the symmetric matrix argument, R, respectively. In summary, we will be assuming the following
conditions [2,3,36,37].

Assumption 1.1 (Conditions on cost function). The cost function J(w) is twice-differentiable and
satisfies Eq. (1.9) for some positive parameters ν ≤ δ. Condition (1.9) is equivalent to requiring J(w) to
be ν-strongly convex and for its gradient vector to be δ-Lipschitz as in Eqs. (1.6) and (1.8), respectively.

�

1.2.3 STOCHASTIC-GRADIENT APPROXIMATION
The traditional gradient-descent algorithm for solving Eq. (1.5) takes the form:

wi=wi−1 − μ∇wTJ(wi−1), i ≥ 0, (1.11)

where i ≥ 0 is an iteration index and μ > 0 is a small step-size parameter. Starting from some
initial condition, w−1, the iterates {wi} correspond to successive estimates for the minimizer wo. In
order to run recursion (1.11), we need to have access to the true gradient vector. This information is
generally unavailable in most instances involving learning from data. For example, when cost functions
are defined as the expectations of certain loss functions as in Eq. (1.2), the statistical distribution of the
data x may not be known beforehand. In that case, the exact form of J(w) will not be known because
the expectation of Q(w; x) cannot be computed. In such situations, it is customary to replace the true
gradient vector, ∇wT J(wi−1), by an instantaneous approximation for it, and which we shall denote by

∇̂wT J(wi−1). Doing so leads to the following stochastic-gradient recursion in lieu of Eq. (1.11):

wi=wi−1 − μ ∇̂wT J(wi−1), i ≥ 0. (1.12)

We use the boldface notation, wi, for the iterates in Eq. (1.12) to highlight the fact that these iterates
are now randomly perturbed versions of the values {wi} generated by the original recursion (1.11). The
random perturbations arise from the use of the approximate gradient vector. The boldface notation is
therefore meant to emphasize the random nature of the iterates in Eq. (1.12). We refer to recursion



1.2 SINGLE-AGENT ADAPTATION AND LEARNING 9

(1.12) as a synchronous implementation because updates occur continuously over the iteration index i.
This terminology is meant to distinguish the above recursion from its asynchronous counterpart, which
is introduced later in Section 1.2.5.

We illustrate construction (1.12) by considering a scenario from classical adaptive filter theory
[21–23], where the gradient vector is approximated directly from data realizations. The construction
will reveal why stochastic-gradient implementations of the form (1.12), using approximate rather than
exact gradient information, become naturally endowed with the ability to respond to streaming data.

Example 1.3 (LMS adaptation). Let d(i) denote a streaming sequence of zero-mean random
variables with variance σ 2

d = Ed2(i). Let ui denote a streaming sequence of 1 × M independent
zero-mean random vectors with covariance matrix Ru = EuT

i ui > 0. Both processes {d(i), ui}
are assumed to be jointly wide-sense stationary. The cross-covariance vector between d(i) and ui is
denoted by rdu = Ed(i)uT

i . The data {d(i), ui} are assumed to be related via a linear regression model
of the form:

d(i)=uiw
o + v(i) (1.13a)

for some unknown parameter vector wo, and where v(i) is a zero-mean white-noise process with power
σ 2

v = Ev2(i) and assumed independent of uj for all i, j. Observe that we are using parentheses to
represent the time dependency of a scalar variable, such as writing d(i), and subscripts to represent the
time dependency of a vector variable, such as writing ui. This convention will be used throughout the
chapter. In a manner similar to Example 1.1, we again pose the problem of estimating wo by minimizing
the MSE cost

J(w)=E (d(i) − uiw)2 ≡ EQ(w; xi), (1.13b)

where now the quantities {d(i), ui} represent the random data xi in the definition of the loss function,
Q(w; xi). Using Eq. (1.11), the gradient-descent recursion in this case will take the form:

wi=wi−1 − 2μ
[
Ruwi−1 − rdu

]
, i ≥ 0. (1.13c)

The main difficulty in running this recursion is that it requires knowledge of the moments {rdu, Ru}.
This information is rarely available beforehand; the adaptive agent senses instead realizations {d(i), ui}
whose statistical distributions have moments {rdu, Ru}. The agent can use these realizations to
approximate the moments and the true gradient vector. There are many constructions that can be used
for this purpose, with different constructions leading to different adaptive algorithms [21–24]. It is
sufficient to focus on one of the most popular adaptive algorithms, which results from using the data
{d(i), ui} to compute instantaneous approximations for the unavailable moments as follows:

rdu ≈ d(i)uT
i , Ru ≈ uT

i ui. (1.13d)

By doing so, the true gradient vector is approximated by:

∇̂wT J(w)=2
[
uT

i uiw − uT
i d(i)

]
= ∇wT Q(w; xi). (1.13e)

Observe that this construction amounts to replacing the true gradient vector, ∇wT J(w), by the gradient
vector of the loss function itself (which, equivalently, amounts to dropping the expectation operator).



10 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Substituting Eq. (1.13e) into Eq. (1.13c) leads to the well-known (synchronous) least-mean-squares
(LMS, for short) algorithm [21–23,38]:

wi=wi−1 + 2μuT
i
[
d(i) − uiwi−1

]
, i ≥ 0. (1.13f)

The LMS algorithm is therefore a stochastic-gradient algorithm. By relying directly on the instanta-
neous data {d(i), ui}, the algorithm is infused with useful tracking abilities. This is because drifts in
the model wo from Eq. (1.13a) will be reflected in the data {d(i), ui}, which are used directly in the
update (1.13f).

�
If desired, it is also possible to employ iteration-dependent step-size sequences, μ(i), in Eq. (1.12)

instead of the constant step-size μ, and to require μ(i) to satisfy

∞∑
i=0

μ2(i) < ∞,
∞∑

i=0

μ(i) = ∞. (1.14)

Under some technical conditions, it is well known that such step-size sequences ensure the convergence
of wi toward wo almost surely as i → ∞ [2,30–32]. However, conditions (1.14) force the step-size
sequence to decay to zero, which is problematic for applications requiring continuous adaptation and
learning from streaming data. This is because, in such applications, it is not unusual for the location of
the minimizer, wo, to drift with time. With μ(i) decaying toward zero, the stochastic-gradient algorithm
(1.12) will stop updating and will not be able to track drifts in the solution. For this reason, we shall
focus on constant step-sizes from this point onward because we are interested in solutions with tracking
abilities.

Now, the use of an approximate gradient vector in Eq. (1.12) introduces perturbations relative to the
operation of the original recursion (1.11). We refer to the perturbation as gradient noise and define it as
the difference:

si(wi−1) �= ∇̂wT J(wi−1) − ∇wT J(wi−1). (1.15)

The presence of this perturbation prevents the stochastic iterate, wi, from converging almost surely
to the minimizer wo when constant step-sizes are used. Some deterioration in performance will occur
and the iterate wi will instead fluctuate close to wo. We will assess the size of these fluctuations by
measuring their steady-state mean-square value (also called mean-square-deviation or MSD). It will
turn out that the MSD is small and in the order of O(μ); see Eq. (1.28c) further ahead. It will also turn
out that stochastic-gradient algorithms converge toward their MSD levels at a geometric rate. In this
way, we will be able to conclude that adaptation with small constant step-sizes can still lead to reliable
performance in the presence of gradient noise, which is a reassuring result. We will also be able to
conclude that adaptation with constant step-sizes is useful even for stationary environments. This is
because it is generally sufficient in practice to reach an iterate wi within some fidelity level from wo in
a finite number of iterations. As long as the MSD level is satisfactory, a stochastic-gradient algorithm
will be able to attain satisfactory fidelity within a reasonable time frame. In comparison, although
diminishing step-sizes ensure almost-sure convergence of wi to wo, they nevertheless disable tracking
and can only guarantee slower than geometric rates of convergence (see, e.g., [2,30,31]). The next



1.2 SINGLE-AGENT ADAPTATION AND LEARNING 11

example from [36] illustrates the nature of the gradient noise process (1.15) in the context of MSE
adaptation.

Example 1.4 (Gradient noise). It is clear from the expressions in Example 1.3 that the correspond-
ing gradient noise process is

si(wi−1)=2
(

Ru − uT
i ui

)
w̃i−1 − 2uT

i v(i), (1.16a)

where we introduced the error vector:

w̃i
�= wo − wi. (1.16b)

Let the symbol F i−1 represent the collection of all possible random events generated by the past iterates
{wj} up to time i − 1 (more formally, F i−1 is the filtration generated by the random process wj for
j ≤ i − 1):

F i−1
�= filtration

{
w−1, w0, w1, . . . , wi−1

}
. (1.16c)

It follows from the conditions on the random processes {ui, v(i)} in Example 1.3 that

E
[
si(wi−1)|F i−1

] = 0, (1.16d)

E

[
‖si(wi−1)‖2|F i−1

]
≤ 4c ‖w̃i−1‖2 + 4σ 2

v Tr(Ru) (1.16e)

for some constant c ≥ 0. If we take expectations of both sides of Eq. (1.16e), we further conclude
that the variance of the gradient noise, E‖si(wi−1)‖2, is bounded by the combination of two factors.
The first factor depends on the quality of the iterate, E‖w̃i−1‖2 while the second factor depends on
σ 2

v . Therefore, even if the adaptive agent is able to approach wo with great fidelity so that E‖w̃i−1‖2 is
small, the size of the gradient noise will still depend on σ 2

v . �

1.2.4 CONDITIONS ON GRADIENT NOISE PROCESS
In order to examine the convergence and performance properties of the stochastic-gradient recursion
(1.12), it is necessary to introduce some assumptions on the stochastic nature of the gradient noise
process, si(·). The conditions that we introduce in the sequel are similar to conditions used earlier in
the optimization literature, e.g., in [30, pp. 95–102] and [39, p. 635]; they are also motivated by the
conditions we observed in the MSE case in Example 1.4. Following the developments in [3,36,37],
we let

Rs,i(wi−1) �= E

[
si(wi−1)sTi (wi−1)|F i−1

]
(1.17a)

denote the conditional second-order moment of the gradient noise process, which generally depends
on i. We assume that, in the limit, the covariance matrix tends to a constant value when evaluated at wo

and is denoted by

Rs
�= lim

i→∞E

[
si(wo)sTi (wo)|F i−1

]
. (1.17b)



12 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

For example, comparing with expression (1.16a) for MSE costs, we have

si(wo)= − 2uT
i v(i), (1.18a)

Rs=4σ 2
v Ru. (1.18b)

Assumption 1.2 (Conditions on gradient noise). It is assumed that the first- and second-order
conditional moments of the gradient noise process satisfy Eq. (1.17b) and

E
[
si(wi−1)|F i−1

] = 0, (1.19a)

E

[
‖si(wi−1)‖2|F i−1

]
≤ β2 ‖w̃i−1‖2 + σ 2

s (1.19b)

almost surely, for some nonnegative scalars β2 and σ 2
s . �

Condition (1.19a) ensures that the approximate gradient vector is unbiased. It follows from
conditions (1.19a) and (1.19b) that the gradient noise process itself satisfies:

Esi(wi−1) = 0, (1.20a)

E‖si(wi−1)‖2 ≤ β2 E‖w̃i−1‖2 + σ 2
s . (1.20b)

It is straightforward to verify that the gradient noise process (1.16a) in the MSE case satisfies conditions
(1.19a) and (1.19b). Note in particular from Eq. (1.16e) that we can make the identifications σ 2

s →
4σ 2

v Tr(Ru) and β2 → 4c.

1.2.5 RANDOM UPDATES
We examined the performance of synchronous updates of the form (1.12) in some detail in [1,2]. As
indicated earlier, the focus of the current chapter is on extending the treatment from [1] to asynchronous
implementations. Accordingly, the first main digression in the exposition relative to [1] occurs at this
stage.

Thus, note that the stochastic-gradient recursion (1.12) employs a constant step-size parameter,
μ > 0. This means that this implementation expects the approximate gradient vector, ∇̂wT J(wi−1), to
be available at every iteration. Nevertheless, there are situations where data may arrive at the agent at
random times, in which case the updates will also be occurring at random times. One way to capture
this behavior is to model the step-size parameter as a random process, which we shall denote by the
boldface notation μ(i) (because boldface letters in our notation refer to random quantities). Doing so
allows us to replace the synchronous implementation (1.12) by the following asynchronous recursion:

wi=wi−1 − μ(i)∇̂wT J(wi−1), i ≥ 0. (1.21)

Observe that we are attaching a time index to the step-size parameter in order to highlight that its value
will now be changing randomly from one iteration to another.

For example, one particular instance discussed further ahead in Example 1.5 is when μ(i) is a
Bernoulli random variable assuming one of two possible values, say, μ(i) = μ > 0 with probability pμ

and μ(i) = 0 with probability 1 − pμ. In this case, recursion (1.21) will be updating pμ-fraction of the
time. We will not limit our presentation to the Bernoulli model but will allow the random step-size to
assume broader probability distributions; we denote its first- and second-order moments as follows.



1.2 SINGLE-AGENT ADAPTATION AND LEARNING 13

Assumption 1.3 (Conditions on step-size process). It is assumed that the stochastic process
{μ(i), i ≥ 0} consists of a sequence of independent and bounded random variables, μ(i) ∈ [0, μub],
where μub > 0 is a constant upper bound. The mean and variance of μ(i) are fixed over i, and they are
denoted by:

μ̄
�= Eμ(i), (1.22a)

σ 2
μ

�= E(μ(i) − μ̄)2 (1.22b)

with μ̄ > 0 and σ 2
μ ≥ 0. Moreover, it is assumed that, for any i, the random variable μ(i) is independent

of any other random variable in the learning algorithm. �
The following variable will play an important role in characterizing the MSE performance of

asynchronous updates and, hence, we introduce a unique symbol for it:

μx
�= μ̄ + σ 2

μ

μ̄
(1.23)

where the subscript “x” is meant to refer to the “asynchronous” mode of operation. This expression
captures the first and second-order moments of the random variations in the step-size parameter into
a single variable, μx. While the constant step-size μ determines the performance of the synchronous
implementation (1.12), it turns out that the constant variable μx defined above will play an equivalent
role for the asynchronous implementation (1.21). Note further that the synchronous stochastic-gradient
iteration (1.12) can be viewed as a special case of recursion (1.21) when the variance of μ(i) is set to
zero, i.e., σ 2

μ = 0, and the mean value μ̄ is set to μ. Therefore, by using these substitutions, we will
able to deduce performance metrics for Eq. (1.12) from the performance metrics that we shall present
for Eq. (1.21). The following two examples illustrate situations involving random updates.

Example 1.5 (Random updates under a Bernoulli model). Assume that at every iteration i, the
agent adopts a random “on-off” policy to reduce energy consumption. It tosses a coin to decide whether
to enter an active learning mode or a sleeping mode. Let 0 < pμ < 1 denote the probability of entering
the active mode. During the active mode, the agent employs a step-size value μ. This model is useful
for situations in which data arrives randomly at the agent: at every iteration i, new data is available with
probability pμ. The random step-size process is therefore of the following type:

μ(i)=
{

μ, with probability pμ,

0, with probability 1 − pμ.
(1.24a)

In this case, the mean and variance of μ(i) are given by:

μ̄=pμμ, σ 2
μ=pμ(1 − pμ)μ2, μx = μ. (1.24b)

�
Example 1.6 (Random updates under a Beta model). Because the random step-size μ(i) is

limited to a finite-length interval [0, μub], we may extend the Bernoulli model from the previous
example by adopting a more general continuous Beta distribution for μ(i). The Beta distribution
is an extension of the Bernoulli distribution. While the Bernoulli distribution assumes two discrete



14 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

possibilities for the random variable, say, {0, μ}, the Beta distribution allows for any value in the
continuum [0, μ].

Thus, let x denote a generic scalar random variable that assumes values in the interval [0, 1]
according to a Beta distribution. Then, according to this distribution, the pdf of x, denoted by fx(x; ξ , ζ ),
is determined by two shape parameters {ξ , ζ } as follows [40,41]:

fx(x; ξ , ζ )=
⎧⎨
⎩

�(ξ + ζ )
�(ξ )�(ζ )

xξ−1(1 − x)ζ−1, 0 ≤ x ≤ 1,

0, otherwise,
(1.25a)

where �(·) denotes the Gamma function [42,43]. Fig. 1.1 plots fx(x; ξ , ζ ) for two values of ζ . The mean
and variance of the Beta distribution (1.25a) are given by:

x̄ = ξ

ξ + ζ
, σ 2

x = ξζ

(ξ + ζ )2(ξ + ζ + 1)
. (1.25b)

We note that the classical uniform distribution over the interval [0, 1] is a special case of the Beta
distribution for ξ = ζ = 1; see Fig. 1.1. Likewise, the Bernoulli distribution with pμ = 1/2 is recovered
from the Beta distribution by letting ξ = ζ → 0.

In the Beta model for asynchronous adaptation, we assume that the ratio μ(i)/μub follows a Beta
distribution with parameters {ξ , ζ }. Under this model, the mean and variance of the random step-size
become:

μ̄=
(

ξ

ξ + ζ

)
μub, σ 2

μ=
(

ξζ

(ξ + ζ )2(ξ + ζ + 1)

)
μ2

ub. (1.26)

�

1.2.6 MEAN-SQUARE-ERROR STABILITY
We now examine the convergence of the asynchronous stochastic-gradient recursion (1.21). In the
statement below, the notation a = O(μ) means a ≤ bμ for some constant b that is independent of μ.

FIG. 1.1

Beta distribution. The pdf of the Beta distribution, fx(x ; ξ , ζ ), defined by Eq. (1.25a) for different values of the
shape parameters ξ and ζ .

Figure reproduced with permission from Zhao X, Sayed AH. Asynchronous adaptation and learning over networks—Part I: Modeling

and stability analysis. IEEE Trans Signal Process 2015;63(4):811–26.



1.2 SINGLE-AGENT ADAPTATION AND LEARNING 15

Lemma 1.1 (Mean-square-error stability). Assume the conditions under Assumptions 1.1–1.3
on the cost function, the gradient noise process, and the random step-size process hold. Let μo =
2ν/(δ2 + β2). For any μx satisfying

μx < μo (1.27)

it holds that E‖w̃i‖2 converges exponentially (i.e., at a geometric rate) according to the recursion

E‖w̃i‖2 ≤ α E‖w̃i−1‖2 + (μ̄2 + σ 2
μ)σ 2

s , (1.28a)

where the scalar α satisfies 0 ≤ α < 1 and is given by

α
�= 1 − 2νμ̄ + (δ2 + β2)(μ̄2 + σ 2

μ)

= 1 − 2νμ̄ + O(μ2
x ). (1.28b)

It follows from Eq. (1.28a) that, for sufficiently small step-sizes:

lim sup
i→∞

E‖w̃i‖2=O(μx). (1.28c)

Proof. We subtract wo from both sides of Eq. (1.21) to get

w̃i=w̃i−1 + μ(i) ∇wT J(wi−1) + μ(i) si(wi−1). (1.29a)

We now appeal to the mean-value theorem [2,30,44] to write:

∇wT J(wi−1) = −
[∫ 1

0
∇2

w J(wo − tw̃i−1)dt

]
w̃i−1

�= −Hi−1w̃i−1, (1.29b)

where we are introducing the symmetric and random time-variant matrix Hi−1 to represent the integral
expression. Substituting into Eq. (1.29a), we get

w̃i=[IM − μ(i)Hi−1] w̃i−1 + μ(i) si(wi−1) (1.29c)

so that from Assumption 1.2:

E

[
‖w̃i‖2|F i−1

]
≤
(
E

[
‖IM − μ(i) Hi−1‖2|F i−1

])
‖w̃i−1‖2 +

(
Eμ2(i)

) (
E

[
‖si(wi−1)‖2|F i−1

])
. (1.30)

It follows from Eq. (1.9) that

‖IM − μ(i) Hi−1‖2 = [ρ (IM − μ(i) Hi−1
)]2

≤ max
{

[1 − μ(i) δ]2 , [1 − μ(i) ν]2
}

≤ 1 − 2μ(i) ν + μ2(i)δ2 (1.31a)

because ν ≤ δ. In the first line above, the notation ρ(A) denotes the spectral radius of its matrix
argument (i.e., ρ(A) = maxk |λk(A)| in terms of the largest magnitude eigenvalue of A). From
Eq. (1.31a) we obtain

E

(
‖IM − μ(i) Hi−1‖2|F i−1

)
≤ 1 − 2μ̄ν + (μ̄2 + σ 2

μ)δ2. (1.31b)



16 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Taking expectations of both sides of Eq. (1.30), we arrive at Eq. (1.28a) from Eqs. (1.20b) and (1.31b)
with α given by Eq. (1.28b). The bound in Eq. (1.27) on the moments of the random step-size ensures
that 0 ≤ α < 1. For the O(μ2

x) approximation in expression (1.28b) note from Eq. (1.23) that

(μ̄2 + σ 2
μ) = μ̄μx ≤ μ2

x . (1.32)

Iterating recursion (1.28a) gives

E ‖w̃i‖2 ≤ αi+1 E ‖w̃−1‖2 + (μ̄2 + σ 2
μ)σ 2

s

1 − α
. (1.33a)

Because 0 ≤ α < 1, there exists an iteration value Io large enough such that

αi+1 E‖w̃−1‖2 ≤ (μ̄2 + σ 2
μ)σ 2

s

1 − α
, i > Io. (1.33b)

It follows that the variance E ‖w̃i‖2 converges exponentially to a region that is upper bounded by
2(μ̄2 + σ 2

μ)σ 2
s /(1 − α). It can be verified that this bound does not exceed 2μxσ

2
s /ν, which is O(μx), for

any μx < μo/2. �

1.2.7 MEAN-SQUARE-ERROR PERFORMANCE
We conclude from Eq. (1.28c) that the MSE can be made as small as desired by using small step-
sizes, μx. In this section we derive a closed-form expression for the asymptotic MSE, which is more
frequently called the mean-square-deviation (MSD) and is defined as:

MSD
�= lim

i→∞ E ‖w̃i‖2. (1.34a)

Strictly speaking, the limit on the right side of the above expression may not exist. A more accurate
definition for the MSD appears in Eq. (4.86) of [2], namely,

MSD
�= μx ·

(
lim

μx→0
lim sup

i→∞
1

μx
E‖w̃i‖2

)
. (1.34b)

However, it was explained in [2, Sec. 4.5] that derivations that assume the validity of Eq. (1.34a) still
lead to the same expression for the MSD to first-order in μx as derivations that rely on the more formal
definition (1.34b). We therefore continue with Eq. (1.34a) for simplicity of presentation. We explain
below how an expression for the MSD can be obtained by following the energy conservation technique
of [2,23,24,45,46]. For that purpose, we need to introduce two smoothness conditions.

Assumption 1.4 (Smoothness conditions). In addition to Assumptions 1.1 and 1.2, we assume
that the Hessian matrix of the cost function and the noise covariance matrix defined by Eq. (1.17a) are
locally Lipschitz continuous in a small neighborhood around w = wo:∥∥∥∇2

w J(wo + δw) − ∇2
w J(wo)

∥∥∥ ≤ τ ‖δw‖, (1.35a)∥∥Rs,i(wo + δw) − Rs,i(wo)
∥∥ ≤ τ2 ‖δw‖κ (1.35b)

for small perturbations ‖δw‖ ≤ r and for some τ , τ2 ≥ 0 and 1 ≤ κ ≤ 2. �



1.2 SINGLE-AGENT ADAPTATION AND LEARNING 17

The range of values for κ can be enlarged, e.g., to κ ∈ (0, 4]. The only change in allowing a
wider range for κ is that the exponent of the higher-order term, O(μ3/2

x ), that will appear in several
performance expressions, as is the case with Eqs. (1.41a), (1.41b), will need to be adjusted from 3

2 to
min{ 3

2 , 1 + κ
2 }, without affecting the first-order term that determines the MSD [2,4,47]. Therefore, it is

sufficient to continue with κ ∈ [1, 2] to illustrate the key concepts though the MSD expressions will
still be valid to first order in μx.

Using Eq. (1.9), it can be verified that condition (1.35a) translates into a global Lipschitz property
relative to the minimizer wo, i.e., it will also hold that [2,4]:

‖∇2
w J(w) − ∇2

w J(wo)‖ ≤ τ ′ ‖w − wo‖ (1.35c)

for all w and for some τ ′ ≥ 0. For example, both conditions (1.35a) and (1.35b) are readily satisfied by
MSE costs. Using property (1.35c), we can now motivate a useful long-term model for the evolution of
the error vector w̃i after sufficient iterations, i.e., for i � 1. Indeed, let us reconsider recursion (1.29c)
and introduce the deviation matrix:

H̃i−1
�= H − Hi−1, (1.36a)

where the constant (symmetric and positive-definite) matrix H is defined as:

H
�= ∇2

w J(wo). (1.36b)

Substituting Eq. (1.36a) into Eq. (1.29c) gives

w̃i=(IM − μ(i) H) w̃i−1 + μ(i) si(wi−1) + μ(i) ci−1, (1.37a)

where

ci−1
�= H̃i−1w̃i−1. (1.37b)

Using Eq. (1.35c) and the fact that (Ea)2 ≤ Ea2 for any real-valued random variable, we can bound the
conditional expectation of the norm of the perturbation term as follows:

E
[ ‖μ(i) ci−1‖ |F i−1

] = (Eμ(i))
(
E
[ ‖ci−1‖ |F i−1

])
≤
√(

Eμ2(i)
)
E
[‖ci−1‖|F i−1

]
(1.35c)≤

√
μ̄2 + σ 2

μ · τ ′
2

‖w̃i−1‖2

≤ μ̄2 + σ 2
μ

μ̄
· τ ′

2
‖w̃i−1‖2

= μx · τ ′
2

‖w̃i−1‖2 (1.38a)

so that using Eq. (1.28c), we conclude that:

lim sup
i→∞

E ‖μ(i) ci−1‖=O(μ2
x ). (1.38b)

We can deduce from this result that ‖μ(i) ci−1‖ = O(μ2
x) asymptotically with high probability [2,4]. To

see this, let rc = mμ2
x , for any constant integer m ≥ 1. Now, calling upon Markov’s inequality [48–50],

we conclude from Eq. (1.38b) that for i � 1:



18 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Pr
(‖μ(i) ci−1‖ < rc

) = 1 − Pr
(‖μ(i) ci−1‖ ≥ rc

)
≥ 1 − E‖μ(i) ci−1‖

rc
(1.38b)≥ 1 − O (1/m) . (1.38c)

This result shows that the probability of having ‖μ(i) ci−1‖ bounded by rc can be made arbitrarily
close to one by selecting a large enough value for m. Once the value for m has been fixed to meet a
desired confidence level, then rc = O(μ2

x). This analysis, along with recursion (1.37a), motivates us to
assess the mean-square performance of the error recursion (1.29c) by considering instead the following
long-term model, which holds with high probability after sufficient iterations i � 1:

w̃i=(IM − μ(i) H)w̃i−1 + μ(i) si(wi−1) + O(μ2
x ). (1.39)

Working with iteration (1.39) is helpful because its dynamics are driven by the constant matrix H as
opposed to the random matrix Hi−1 in the original error recursion (1.29c). If desired, it can be shown
that, under some technical conditions on the fourth-order moment of the gradient noise process, the
MSD expression that will result from using Eq. (1.39) is within O(μ3/2

x ) of the actual MSD expression
for the original recursion (1.29c); see [2,4,47] for a formal proof of this fact. Therefore, it is sufficient
to rely on the long-term model (1.39) to obtain performance expressions that are accurate to first order
in μx. Fig. 1.2 provides a block-diagram representation for Eq. (1.39).

Before explaining how model (1.39) can be used to assess the MSD, we remark that there is a second
useful metric for evaluating the performance of stochastic gradient algorithms. This metric relates to the
mean excess-cost, which is also called the excess-risk (ER) in the machine learning literature [26,27]
and the excess-mean-square-error (EMSE) in the adaptive filtering literature [21–23]. We denote it by
the letters ER and define it as the average fluctuation of the cost function around its minimum value:

ER
�= lim

i→∞E {J(wi−1) − J(wo)}. (1.40a)

IM − m(i)H
wi-1
~

~

z−1

wim(i)IM
si (wi−1)

O(m2)x

FIG. 1.2

Long-term dynamics. A block-diagram representation of the long-term recursion (1.39) for single-agent
adaptation and learning.

Figure reproduced with permission from Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.



1.2 SINGLE-AGENT ADAPTATION AND LEARNING 19

Using the smoothness condition (1.35a), and the mean-value theorem [30,44] again, it can be verified
that [2,4,47]:

ER
�= lim

i→∞E ‖w̃i−1‖2
1
2 H

+ O(μ3/2
x ). (1.40b)

Lemma 1.2 (Mean-square-error performance). Assume the conditions under Assumptions 1.1–
1.4 on the cost function, the gradient noise process, and the random step-size process hold. Assume
further that the asynchronous step-size parameter μx is sufficiently small to ensure mean-square
stability as required by Eq. (1.27). Then, the MSD and ER metrics for the asynchronous stochastic-
gradient algorithm (1.21) are well approximated to first order in μx by the expressions:

MSDasyn = μx

2
Tr
(

H−1Rs

)
+ O(μ3/2

x ), (1.41a)

ERasyn = μx

4
Tr (Rs) + O(μ3/2

x ), (1.41b)

where Rs and H are defined by Eqs. (1.17b) and (1.36b), and where we are adding the superscript
“asyn” for clarity in order to distinguish these measures from the corresponding measures in
the synchronous case (mentioned below in Eqs. (1.43a)–(1.43c)). Moreover, we derived earlier in
Eq. (1.28b) the following expression for the convergence rate:

αasyn = 1 − 2νμ̄ + O(μ2
x ). (1.41c)

Proof. We introduce the eigen-decomposition H = U�UT, where U is orthonormal and � is
diagonal with positive entries, and rewrite Eq. (1.39) in terms of transformed quantities:

wi= (IM − μ(i) �) wi−1 + μ(i) si(wi−1) + O(μ2
x ), (1.42a)

where wi = UTw̃i and si(wi−1) = UTsi(wi−1). Let � denote an arbitrary M × M diagonal matrix with
positive entries that we are free to choose. Then, equating the weighted squared norms of both sides of
Eq. (1.42a) and taking expectations gives for i � 1:

E‖wi‖2
�=E‖wi−1‖2

�′ + (μ̄2 + σ 2
μ)E‖si(wi−1)‖2

� + O(μ5/2
x ), (1.42b)

where

�′ �= E(IM − μ(i) �)�(IM − μ(i) �) = � − 2μ̄�� + O(μ2
x ). (1.42c)

From Eqs. (1.17b), (1.19b), (1.28c), and (1.35b) we obtain:

lim
i→∞E‖si(wi−1)‖2

�=Tr(U�UTRs) + O(μκ/2
x ). (1.42d)

Therefore, substituting into Eq. (1.42b) gives for i → ∞:

lim
i→∞E‖wi‖2

2��=μx Tr(U�UTRs) + O(μ3/2
x ). (1.42e)

Because we are free to choose �, we let � = 1
2�−1 and arrive at Eq. (1.41a) because ‖wi‖2 = ‖w̃i‖2

and U�UT = 1
2 H−1. On the other hand, selecting � = 1

4 IM leads to Eq. (1.41b). �



20 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

We recall our earlier remark that the synchronous stochastic-gradient recursion (1.12) can be viewed
as a special case of the asynchronous update (1.21) by setting σ 2

μ = 0 and μx = μ̄ ≡ μ. Substituting
these values into Eqs. (1.41a)–(1.41c), we obtain for the synchronous implementation (1.12):

MSDsync=μ

2
Tr
(

H−1Rs

)
+ O(μ3/2), (1.43a)

ERsync=μ

2
Tr (Rs) + O(μ3/2), (1.43b)

αsync=1 − 2νμ + O(μ2), (1.43c)

which are the same expressions presented in [1] and which agree with classical results for LMS
adaptation [51–56]. The matrices Rs that appear in these expressions, and in Eqs. (1.41a)–(1.41c),
were defined earlier in Eq. (1.17b) and they correspond to the covariance matrices of the gradient
noise processes in their respective (synchronous or asynchronous) implementations. The examples that
follow show how expressions (1.41a) and (1.41b) can be used to recover performance metrics for MSE
adaptation and learning under random updates.

Example 1.7 (Performance of asynchronous LMS adaptation). We reconsider the LMS recur-
sion (1.13f) albeit in an asynchronous mode of operation, namely,

wi=wi−1 + 2μ(i)uT
i
[
d(i) − uiwi−1

]
, i ≥ 0. (1.44)

We know from Example 1.3 and Eq. (1.18a) that this situation corresponds to H = 2Ru and
Rs = 4σ 2

v Ru. Substituting into Eqs. (1.41a) and (1.41b) leads to the following expressions for the
MSD and EMSE of the asynchronous LMS filter:

MSDasyn
LMS ≈ μxMσ 2

v = O(μx), (1.45a)

EMSEasyn
LMS ≈ μxσ

2
v Tr(Ru) = O(μx), (1.45b)

where here, and elsewhere, we will be using the notation ≈ to indicate that we are ignoring higher-order
terms in μx. For example, let us assume a Bernoulli update model for μ(i) where the filter updates with
probability pμ using a step-size value μ or stays inactive otherwise. In this case, we conclude from
Eq. (1.24b) that μx = μ so that the above performance expressions for the MSD and EMSE metrics
will coincide with the values obtained in the synchronous case as well. In other words, the steady-state
performance levels are not affected whether the algorithm learns in a synchronous or asynchronous
manner. However, the convergence rate is affected because μ̄ = μpμ and, therefore,

α
sync
LMS ≈ 1 − 2νμ, (1.46a)

α
asyn
LMS ≈ 1 − 2νμpμ > α

sync
LMS. (1.46b)

It follows that asynchronous LMS adaptation attains the same performance levels as synchronous LMS
adaptation, albeit at a slower convergence rate.

We may alternatively compare the performance of the synchronous and asynchronous implemen-
tations by fixing their convergence rates to the same value. Thus, consider now a second random
update scheme with mean μ̄ and let us set μ = μ̄. That is, the step-size used by the synchronous
implementation is set equal to the mean step-size used by the asynchronous implementation. Then, in
this case, we will get α

sync
LMS = α

asyn
LMS so that the convergence rates coincide to first order. However, it

now holds that MSDasyn
LMS > MSDsync

LMS because μ̄x > μ so that some deterioration in MSD performance
occurs. �



1.3 CENTRALIZED ADAPTATION AND LEARNING 21

Example 1.8 (Performance of asynchronous online learners). Consider a stand-alone learner
receiving a streaming sequence of independent data vectors {xi, i ≥ 0} that arise from some fixed
probability distribution X . The goal is to learn the vector wo that optimizes some ν-strongly convex
risk function J(w) defined in terms of a loss function [57,58]:

wo �= argminw J(w)=argminw EQ(w; xi). (1.47a)

In an asynchronous environment, the learner seeks wo by running the stochastic-gradient algorithm
with random step-sizes:

wi=wi−1 − μ(i) ∇wTQ(wi−1; xi), i ≥ 0. (1.47b)

The gradient noise vector is still given by

si(wi−1)=∇wT Q(wi−1; xi) − ∇wT J(wi−1). (1.47c)

Because ∇w J(wo) = 0, and because the distribution of xi is stationary, it follows that the covariance
matrix of si(wo) is constant and given by

Rs = E∇wT Q(wo; xi)∇w Q(wo; xi). (1.47d)

The excess-risk measure that will result from this stochastic implementation is then given by Eq. (1.41b)
so that ER = O(μx). �

1.3 CENTRALIZED ADAPTATION AND LEARNING
The discussion in the previous section establishes the mean-square stability of stand-alone adaptive
agents for small step-sizes (Lemma 1.1), and provides expressions for their MSD and ER metrics
(Lemma 1.2). We now examine two situations involving a multitude of similar agents. In the first
scenario, each agent senses data and analyzes it independently of the other agents. We refer to this mode
of operation as noncooperative processing. In the second scenario, the agents transmit the collected data
for processing at a fusion center. We refer to this mode of operation as centralized or batch processing.
We motivate the discussion by considering first the case of MSE costs. Subsequently, we extend the
results to more general costs.

1.3.1 NONCOOPERATIVE MSE PROCESSING
Thus, consider separate agents, labeled k = 1, 2, . . . , N. Each agent, k, receives streaming data

{dk(i), uk,i; i ≥ 0}, (1.48a)

where we are using the subscript k to index the data at agent k. We assume that the data at each agent
satisfies the same statistical properties as in Example 1.3, and the same linear regression model (1.13a)
with a common wo albeit with noise vk(i). We denote the statistical moments of the data at agent k by

Ru,k = EuT
k,iuk,i > 0, σ 2

v,k = Ev2
k (i). (1.48b)



22 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

We further assume in this motivating example that the Ru,k are uniform across the agents so that

Ru,k ≡ Ru, k = 1, 2, . . . , N. (1.48c)

In this way, the cost Jk(w) = E(dk(i)−uk,iw)2, which is associated with agent k, will satisfy a condition
similar to Eq. (1.9) with the corresponding parameters {ν, δ} given by (cf. Eq. 1.10a):

ν=2λmin(Ru), δ=2λmax(Ru). (1.49a)

Now, if each agent runs the asynchronous LMS learning rule (1.44) to estimate wo on its own then,
according to Eq. (1.45a), each agent k will attain an individual MSD level that is given by

MSDasyn
ncop,k ≈ μxM σ 2

v,k, k = 1, 2, . . . , N (1.49b)

where we are further assuming that the parameter μx is uniform across the agents to enable a meaningful
comparison. Moreover, according to Eq. (1.28b), agent k will converge toward this level at a rate
dictated by:

α
asyn
ncop,k ≈ 1 − 4μxλmin(Ru). (1.49c)

The subscript “ncop” is used in Eqs. (1.49b) and (1.49c) to indicate that these expressions are for the
noncooperative mode of operation. It is seen from Eq. (1.49b) that agents with noisier data (i.e., larger
σ 2

v,k) will perform worse and have larger MSD levels than agents with cleaner data. We are going to
show in later sections that cooperation among the agents, whereby agents share information with their
neighbors, can help enhance their individual performance levels.

1.3.2 CENTRALIZED MSE PROCESSING
Let us now contrast the above noncooperative solution with a centralized implementation whereby, at
every iteration i, the N agents transmit their raw data {dk(i), uk,i} to a fusion center for processing. In a
synchronous environment, once the fusion center receives the raw data, it can run a standard stochastic-
gradient update of the form:

wi=wi−1 + μ

⎡
⎣ 1

N

N∑
k=1

2uT
k,i(dk(i) − uk,iwi−1)

⎤
⎦ , (1.50a)

where μ is the constant step-size and the term multiplying μ can be seen to correspond to a
sample average of several approximate gradient vectors. The analysis in [1,2] showed that the MSD
performance that results from this implementation is given by (using expression (1.64a) with Hk = 2Ru

and Rs,k = 4σ 2
v,kRu):

MSDsync
cent ≈ μM

N

⎛
⎝ 1

N

N∑
k=1

σ 2
v,k

⎞
⎠ . (1.50b)



1.3 CENTRALIZED ADAPTATION AND LEARNING 23

Moreover, using expression (1.64b) given further ahead, this centralized solution will converge toward
the above MSD level at the same rate as the noncooperative solution:

α
sync
cent ≈ 1 − 4μλmin(Ru). (1.50c)

In an asynchronous environment, there are now several random events that can interfere with the
operation of the fusion center. Let us consider initially one particular random event that corresponds
to the situation in which the fusion center may or may not update at any particular iteration (e.g., due
to some power-saving strategy). In a manner similar to Eq. (1.21), we may represent this scenario by
writing:

wi=wi−1 + μ(i)

⎡
⎣ 1

N

N∑
k=1

2uT
k,i(dk(i) − uk,iwi−1)

⎤
⎦ (1.51a)

with a random step-size process, μ(i); this process is again assumed to satisfy the conditions under
Assumption 1.3. The analysis in the sequel will show that the MSD performance that results from this
implementation is given by:

MSDasyn,1
cent ≈ μxM

N

⎛
⎝ 1

N

N∑
k=1

σ 2
v,k

⎞
⎠ , (1.51b)

where we are adding the superscript “1” to indicate that this is a preliminary result pertaining to the
particular asynchronous implementation (1.51a). We will be generalizing this result soon, at which
point we will drop the superscript “1”. Likewise, using expression (1.64b) given further ahead, this
version of the asynchronous centralized solution converges toward the above MSD level at the same
rate as the noncooperative solution (1.49c) and the synchronous version (1.50c):

α
asyn,1
cent ≈ 1 − 4μxλmin(Ru). (1.51c)

Observe from Eqs. (1.50b) and (1.51b) that the MSD level attained by the centralized solution is
proportional to 1/N times the average noise power across all agents. This scaled average noise power
can be larger than some of the individual noise variances and smaller than the remaining noise
variances. This example shows that it does not generally hold that centralized stochastic-gradient
implementations outperform all individual noncooperative agents [59].

Now, more generally, observe that in the synchronous batch processing case (1.50a) as well as in the
asynchronous implementation (1.51a), the data collected from the various agents are equally aggregated
with a weighting factor equal to 1/N. We can incorporate a second type of random events besides the
random variations in the step-size parameter. This second source of uncertainty involves the possibility
of failure (or weakening) in the links connecting the individual agents to the fusion center (e.g., due to
fading or outage, or perhaps due to the agents themselves deciding to enter into a sleep mode according



24 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

to some power-saving policy). We can capture these possibilities by extending formulation (1.51a) in
the following manner:

wi = wi−1 + μ(i)

⎡
⎣ N∑

k=1

2πk(i)uT
k,i(dk(i) − uk,iwi−1)

⎤
⎦ (1.52a)

where μ(i) continues to be a random step-size process, but now the coefficients {πk(i); k = 1, 2, . . . , N}
are new random fusion coefficients that satisfy:

N∑
k=1

πk(i)=1, πk(i) ≥ 0 (1.52b)

for every i ≥ 0.
Assumption 1.5 (Conditions on random fusion coefficients). It is assumed that πk(i) is indepen-

dent of μ(i) and of other random variables in the learning algorithm. The fusion coefficients are also
independent over time, namely, πk(i) and π�(j) are independent for any i �= j. For the same time i, the
coefficients {πk(i)} are correlated over space in view of the first requirement in Eq. (1.52b). The mean
and covariance(s) of each πk(i) are denoted by:

π̄k
�= Eπk(i), (1.53a)

cπ ,k�
�= E(πk(i) − π̄k)(π�(i) − π̄�) (1.53b)

for all k, � = 1, 2, . . . , N and all i ≥ 0. When k = �, the scalar cπ ,kk corresponds to the variance of
πk(i) and, therefore, we shall also use the alternative notation σ 2

π ,k for this case:

σ 2
π ,k

�= cπ ,kk ≥ 0. (1.53c)

�
It is straightforward to verify that the first- and second-order moments of the coefficients {πk(i)}

satisfy:

π̄k ≥ 0,
N∑

k=1

π̄k = 1, (1.54a)

N∑
k=1

cπ ,k� = 0, for any �, (1.54b)

N∑
�=1

cπ ,k� = 0, for any k. (1.54c)

Note that the earlier asynchronous implementation (1.51a) is a special case of the more general
formulation (1.52a) when the mean of the random fusion coefficients is chosen as π̄k = 1/N and the
variances are set to zero, σ 2

π ,k = 0. In order to enable a fair and meaningful comparison among the three
centralized implementations (1.50a), (1.51a), and (1.52a), we shall assume that the means of the fusion



1.3 CENTRALIZED ADAPTATION AND LEARNING 25

coefficients in the latest implementation are set to π̄k = 1/N (results for arbitrary mean values are listed
in Example 1.9 further ahead and appear in [5]). We will show in the sequel that for this choice of π̄k,
the MSD performance of implementation (1.52a) is given by:

MSDasyn
cent ≈ μxM

N

⎡
⎣ 1

N

N∑
k=1

(
1 + N2 σ 2

π ,k

)
σ 2
v,k

⎤
⎦ . (1.55a)

Moreover, using expression (1.62b) given further ahead, this asynchronous centralized solution will
converge toward the above MSD level at the same rate as the noncooperative solution (1.49c) and the
synchronous version (1.50c):

α
asyn
cent ≈ 1 − 4μxλmin(Ru). (1.55b)

1.3.3 STOCHASTIC-GRADIENT CENTRALIZED SOLUTION
The previous two sections focused on MSE costs. We now extend the conclusions to more general
costs. Thus, consider a collection of N agents, each with an individual convex cost function, Jk(w). The
objective is to determine the unique minimizer wo of the aggregate cost:

Jglob(w) �=
N∑

k=1

Jk(w). (1.56)

It is now the above aggregate cost, Jglob(w), that will be required to satisfy the conditions of
Assumptions 1.1 and 1.4 relative to some parameters {νc, δc, τc}, with the subscript “c” used to indicate
that these factors correspond to the centralized implementation. Under these conditions, the cost
Jglob(w) will have a unique minimizer, which we continue to denote by wo. We will not be requiring
each individual cost, Jk(w), to be strongly convex. It is sufficient for at least one of these costs to be
strongly convex while the remaining costs can be convex; this condition ensures the strong convexity
of Jglob(w). Moreover, although some individual costs may not have a unique minimizer, we require in
this exposition that wo is one of their minima so that all individual costs share a minimum at location
wo; the treatment in [1,2,60] considers the more general case in which the minimizers of the individual
costs {Jk(w)} can be different and need not contain a common location, wo.

There are many centralized solutions that can be used to determine the unique minimizer wo of
Eq. (1.56), with some solution techniques being more powerful than other. Nevertheless, we shall
focus on centralized implementations of the stochastic-gradient type. The reason we consider the same
class of stochastic gradient algorithms for noncooperative, centralized, and distributed solutions in
this chapter is to enable a meaningful comparison among the various implementations. Thus, we first
consider a synchronous centralized strategy of the following form:

wi=wi−1 − μ

⎡
⎣ 1

N

N∑
k=1

∇̂wT Jk(wi−1)

⎤
⎦ , i ≥ 0 (1.57a)



26 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

with a constant step-size, μ. When the fusion center employs random step-sizes, the above solution is
replaced by:

wi=wi−1 − μ(i)

⎡
⎣ 1

N

N∑
k=1

∇̂wT Jk(wi−1)

⎤
⎦ , i ≥ 0, (1.57b)

where the process μ(i) now satisfies Assumption 1.3. More generally, the asynchronous implementation
can employ random fusion coefficients as well such as:

wi=wi−1 − μ(i)
N∑

k=1

πk(i)∇̂wT Jk(wi−1), i ≥ 0 (1.57c)

where the coefficients {πk(i)} satisfy Assumption 1.5 with means

π̄k = 1/N. (1.57d)

1.3.4 PERFORMANCE OF CENTRALIZED SOLUTION
To examine the performance of the asynchronous implementation (1.57c) and (1.57d), we proceed
in two steps. First, we identify the gradient noise that is present in the recursion; it is equal to the
difference between the true gradient vector for the global cost, Jglob(w), defined by Eq. (1.56) and its
approximation. Second, we argue that Eq. (1.57c) has a form similar to the single-agent stochastic-
gradient algorithm (1.21) and, therefore, invoke earlier results to write down performance metrics for
the centralized solution (1.57c) and (1.57d).

We start by introducing the individual gradient noise processes:

sk,i(wi−1) �= ∇̂wT Jk(wi−1) − ∇wT Jk(wi−1) (1.58a)

for k = 1, 2, . . . , N. We assume that these noises satisfy conditions similar to Assumption 1.2 with
parameters {β2

k , σ 2
s,k, Rs,k}, i.e.,

Rs,k
�= lim

i→∞E

[
sk,i(wo)sTk,i(w

o)|F i−1

]
(1.58b)

and

E
[
sk,i(wi−1)|F i−1

] = 0, (1.58c)

E

[
‖sk,i(wi−1)‖2|F i−1

]
≤ β2

k ‖w̃i−1‖2 + σ 2
s,k. (1.58d)

Additionally, we assume that the gradient noise components across the agents are uncorrelated with
each other:

E

[
sk,i(wi−1)sT�,i(wi−1) |F i−1

]
=0, all k �= �. (1.58e)



1.3 CENTRALIZED ADAPTATION AND LEARNING 27

Using these gradient noise terms, it is straightforward to verify that recursion (1.57c) can be
rewritten as:

wi = wi−1 − μ(i)
N

⎡
⎣si(wi−1) +

N∑
k=1

∇wT Jk(wi−1)

⎤
⎦ , (1.59)

where si(wi−1) denotes the overall gradient noise; its expression is given by

si(wi−1)=
N∑

k=1

[
Nπk(i)∇̂wT Jk(wi−1) − ∇wT Jk(wi−1)

]
. (1.60)

Because iteration (1.59) has the form of a stochastic gradient recursion with random update similar to
Eq. (1.21), we can infer its MSE behavior from Lemmas 1.1 and 1.2 if the noise process si(wi−1) can be
shown to satisfy conditions similar to Assumption 1.2 with some parameters {β2

c , σ 2
s }. Indeed, starting

from Eq. (1.60), some algebra will show that

E
[
si(wi−1)|F i−1

] = 0, (1.61a)

E

[
‖si(wi−1)‖2|F i−1

]
≤ β2

c ‖w̃i−1‖2 + σ 2
s , (1.61b)

where

β2
c

�=
N∑

k=1

[
β2

k + N2σ 2
π ,k(β2

k + δ2
c )
]

, (1.61c)

σ 2
s

�=
N∑

k=1

(1 + N2σ 2
π ,k)σ 2

s,k. (1.61d)

The following result now follows from Lemmas 1.1 and 1.2 [2,5].
Lemma 1.3 (Convergence of centralized solution). Assume the aggregate cost (1.56) satisfies the

conditions under Assumption 1.1 for some parameters 0 < νc ≤ δc. Assume further that the individual
gradient noise processes defined by Eq. (1.58a) satisfy the conditions under Assumption 1.2 for some
parameters {β2

k , σ 2
s,k, Rs,k}, in addition to the orthogonality condition (1.58e). Let μo = 2νc/(δ2

c + β2
c ).

For any μx/N < μo, the iterates generated by the asynchronous centralized solution (1.57c) and
(1.57d) satisfy:

E‖w̃i‖2 ≤ α E‖w̃i−1‖2 + σ 2
s (μ̄2 + σ 2

μ)/N2, (1.62a)

where the scalar α satisfies 0 ≤ α < 1 and is given by

α
asyn
cent =1 − 2νc (μx/N) + (δ2

c + β2
c )(μ̄2 + σ 2

μ)/N2. (1.62b)

It follows from Eq. (1.62a) that for sufficiently small step-size parameter μx � 1:

lim sup
i→∞

E‖w̃i‖2=O(μx). (1.62c)



28 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Moreover, under smoothness conditions similar to Eq. (1.35a) for Jglob(w) for some parameter τc ≥ 0,
and similar to Eq. (1.35b) for the individual gradient noise covariance matrices, it holds for small μx

that:

MSDasyn
cent =

μx

2N
Tr

⎡
⎢⎣
⎛
⎝ N∑

k=1

Hk

⎞
⎠

−1⎛
⎝ N∑

k=1

(1 + N2σ 2
π ,k)Rs,k

⎞
⎠
⎤
⎥⎦+ O

(
μ

3/2
x

)
, (1.63)

where Hk = ∇2
w Jk(wo). �

We can recover from the expressions in the lemma, performance results for the particular
asynchronous implementation described earlier by Eq. (1.57b) by setting σ 2

π ,k = 0 so that

MSDasyn,1
cent ≈ μx

2N
Tr

⎡
⎢⎣
⎛
⎝ N∑

k=1

Hk

⎞
⎠

−1⎛
⎝ N∑

k=1

Rs,k

⎞
⎠
⎤
⎥⎦ , (1.64a)

α
asyn,1
cent ≈ 1 − 2νcμx/N. (1.64b)

It is seen from Eqs. (1.63) and (1.64a) that when the fusion center operates under the more general
asynchronous policy (1.57c), the additional randomness in the fusion coefficients {πk(i)} degrades the
MSD performance relative to Eq. (1.64a) due to the presence of the factor 1 + N2σ 2

π ,k > 1, i.e., to first
order in μx we have:

MSDasyn,1 < MSDasyn. (1.65a)

In comparison, the added randomness due to the {πk(i)} does not have a significant impact on the
convergence rate because it is straightforward to see that to first order in the step-size parameter μx:

α
asyn,1
cent ≈ α

asyn
cent . (1.65b)

Likewise, setting μ̄k = μ and σ 2
π ,k = 0, the performance of the synchronous centralized solution

(1.57a) is obtained as a special case of the results in the lemma:

MSDsync
cent ≈ μ

2N
Tr

⎡
⎢⎣
⎛
⎝ N∑

k=1

Hk

⎞
⎠

−1⎛
⎝ N∑

k=1

Rs,k

⎞
⎠
⎤
⎥⎦ (1.66a)

α
sync
cent ≈ 1 − 2νcμ/N. (1.66b)

These expressions agree with the performance results presented in [1,2].
Example 1.9 (Case of general mean-values). Although not used in this chapter, we remark in

passing that if the mean values {π̄k} are not fixed at 1/N, as was required by Eq. (1.57d), then the MSD
performance of the asynchronous centralized solution (1.57c) will instead be given by

MSDasyn
cent =

μxN

2
Tr

⎡
⎢⎣
⎛
⎝ N∑

k=1

Hk

⎞
⎠

−1⎛
⎝ N∑

k=1

(π̄2
k + σ 2

π ,k)Rs,k

⎞
⎠
⎤
⎥⎦+ O

(
μ

3/2
x

)
. (1.67)

�



1.3 CENTRALIZED ADAPTATION AND LEARNING 29

1.3.5 COMPARISON WITH NONCOOPERATIVE PROCESSING
We can now compare the performance of the asynchronous centralized solution (1.57c) against the
performance of noncooperative processing when agents act independently of each other and run the
recursion:

wk,i=wk,i−1 − μ(i) ∇̂wT Jk(wk,i−1), i ≥ 0. (1.68a)

This comparison is meaningful when all agents share the same unique minimizer so that we can
compare how well the individual agents are able to recover the same wo as the centralized solution.
For this reason, we reintroduce the requirement that all individual costs {Jk(w)} are ν-strongly convex
with a uniform parameter ν. Because Jglob(w) is the aggregate sum of the individual costs, then we
can set the lower bound νc for the Hessian of Jglob(w) at νc = Nν. From expressions (1.28b) and
(1.64b) we then conclude that, for a sufficiently small μx, the convergence rates of the asynchronous
noncooperative solution (1.68a) and the asynchronous centralized solution with random update (1.57b)
will be similar:

α
asyn
cent ≈ 1 − 2νc (μx/N) = 1 − 2νμx ≈ α

asyn
ncop,k. (1.68b)

Moreover, we observe from Eq. (1.41a) that the average MSD level across N noncooperative
asynchronous agents is given by

MSDasyn
ncop,av ≈ μx

2N
Tr

⎡
⎣ N∑

k=1

H−1
k Rs,k

⎤
⎦ (1.68c)

so that comparing with Eq. (1.64a), some simple algebra allows us to conclude that, for small step-sizes
and to first order in μx:

MSDasyn,1
cent ≤ MSDasyn

ncop,av. (1.68d)

That is, while the asynchronous centralized solution (1.57b) with random updates need not outperform
every individual noncooperative agent in general, its performance outperforms the average performance
across all noncooperative agents.

The next example illustrates this result by considering the scenario where all agents have the same
Hessian matrices at w = wo, namely, Hk ≡ H for k = 1, 2, . . . , N. This situation occurs, for example,
when the individual costs are identical across the agents, say, Jk(w) ≡ J(w), as is common in machine
learning applications. This situation also occurs for the MSE costs we considered earlier in this section
when the regression covariance matrices, {Ru,k}, are uniform across all agents, i.e., Ru,k ≡ Ru for
k = 1, 2, . . . , N. In these cases with uniform Hessian matrices Hk, the example below establishes that
the asynchronous centralized solution (1.57b) with random updates improves over the average MSD
performance of the noncooperative solution (1.68a) by a factor of N.

Example 1.10 (N-fold improvement in MSD performance). Consider a collection of N agents
whose individual cost functions, Jk(w), are ν-strongly convex and are minimized at the same location
w = wo. The costs are also assumed to have identical Hessian matrices at w = wo, i.e., Hk ≡ H.
Then, using Eq. (1.64a), the MSD of the asynchronous centralized implementation (1.57b) with random
updates is given by:

MSDasyn,1
cent ≈ 1

N

⎛
⎝μx

2N

N∑
k=1

Tr(H−1Rs,k)

⎞
⎠ ≈ 1

N
MSDasyn

ncop,av. (1.69)

�



30 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Example 1.11 (Random fusion can degrade MSD performance). Although the convergence
rates of the asynchronous centralized solution (1.57c) and the noncooperative solution (1.68a) agree
to first order in μx, the relation between their MSD values is indefinite (contrary to Eq. 1.68d), as
illustrated by the following example.

Consider the same setting of Example 1.10 and assume further that the variances of the random
fusion coefficients are uniform, i.e., σ 2

π ,k ≡ σ 2
π . Then, using Eq. (1.63), the MSD of the asynchronous

centralized implementation (1.57c) is given by

MSDasyn
cent ≈ 1 + N2σ 2

π

N

⎛
⎝μx

2N

N∑
k=1

Tr(H−1Rs,k)

⎞
⎠ ≈

(
1 + N2σ 2

π

N

)
MSDasyn

ncop,av. (1.70)

Therefore, to first order in μx, we find that{
MSDasyn

cent ≤ MSDasyn
ncop,av, if σ 2

π ≤ N−1
N2 ,

MSDasyn
cent > MSDasyn

ncop,av, if σ 2
π > N−1

N2 .
(1.71)

In other words, if the variance of the random fusion coefficients is large enough, then the centralized
solution will generally have degraded performance relative to the noncooperative solution (which is an
expected result). �

Example 1.12 (Fully connected networks). In preparation for the discussion on networked agents,
it is useful to describe one extreme situation where a collection of N agents are fully connected to each
other; see Fig. 1.3. In this case, each agent is able to access the data from all other agents and, therefore,
each individual agent can run a synchronous or asynchronous centralized implementation, say, one of
the same form as Eq. (1.57b):

wk,i=wk,i−1 − μ(i)

⎡
⎣ 1

N

N∑
�=1

∇̂wT J
�
(wk,i−1)

⎤
⎦ , i ≥ 0. (1.72)

When this happens, each agent will attain the same performance level as that of the asynchronous
centralized solution (1.57b). Two observations are in place. First, note from Eq. (1.72) that the
information that agent k is receiving from all other agents is their gradient vector approximations.
Obviously, other pieces of information could be shared among the agents, such as their iterates
{w�,i−1}. Second, note that the right most term multiplying μ(i) in Eq. (1.72) corresponds to a convex
combination of the approximate gradients from the various agents, with the combination coefficients
being uniform and all equal to 1/N. In general, there is no need for these combination weights to be
identical. Even more importantly, agents do not need to have access to information from all other agents
in the network. We are going to see in the sequel that interactions with a limited number of neighbors
are sufficient for the agents to attain performance that is comparable to that of the centralized solution.

Fig. 1.4 shows a simple selection of connected topologies for five agents. The leftmost panel
corresponds to the noncooperative case and the rightmost panel corresponds to the fully connected
case. The panels in-between illustrate some other topologies. In the coming sections, we are going to
present results that allow us to answer useful questions about such networked agents such as: (a) Which
topology has the best performance in terms of MSE and convergence rate? (b) Given a connected
topology, can it be made to approach the performance of the centralized solution? (c) Which aspects of
the topology influence performance? (d) Which aspects of the combination weights (policy) influence



1.3 CENTRALIZED ADAPTATION AND LEARNING 31

1

2

3

4

5

6

7

N

FIG. 1.3

Fully connected network. Example of a fully connected network where each agent can access information from
all other agents.

Figure reproduced with permission from Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.

Noncooperative

agents

Examples of connected networks Fully connected

network

FIG. 1.4

Connected networks. Examples of connected networks, with the left most panel representing a collection of
noncooperative agents.

Figure reproduced with permission from Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.

performance? (e) Can different topologies deliver similar performance levels? (f) Is cooperation always
beneficial? and (g) If the individual agents are able to solve the inference task individually in a stable
manner, does it follow that the connected network will remain stable regardless of the topology and
regardless of the cooperation strategy? �



32 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

1.4 SYNCHRONOUS MULTIAGENT ADAPTATION AND LEARNING
In this section, we describe distributed strategies of the consensus (e.g., [6,10,61] and [62–71]) and
diffusion (e.g., [1,2,22,36,61,72–74]) types. These strategies rely solely on localized interactions among
neighboring agents, and they can be used to seek the minimizer of Eq. (1.56). We first describe the
network model.

1.4.1 STRONGLY CONNECTED NETWORKS
Fig. 1.5 shows an example of a network consisting of N connected agents, labeled k = 1, 2, . . . , N.
Following the presentation from [2,61], the network is represented by a graph consisting of N vertices
(representing the agents) and a set of edges connecting the agents to each other. An edge that connects
an agent to itself is called a self-loop. The neighborhood of an agent k is denoted by Nk and it consists
of all agents that are connected to k by an edge. Any two neighboring agents k and � have the ability to
share information over the edge connecting them.

We assume an undirected graph so that if agent k is a neighbor of agent �, then agent � is also a
neighbor of agent k. We assign a pair of nonnegative scaling weights, {ak�, a�k}, to the edge connecting

3

2

9

8

5

7

3

2

9

8

5

7

6

4

a44

N

Nk

a k
ak

k

Jk(w)

J (w)

1

FIG. 1.5

Neighborhoods and interactions. Agents that are linked by edges can share information. The neighborhood of
agent k is marked by the highlighted area.

Figure reproduced with permission from Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.



1.4 SYNCHRONOUS MULTIAGENT ADAPTATION AND LEARNING 33

k and �. The scalar a�k is used by agent k to scale the data it receives from agent �; this scaling can
be interpreted as a measure of the confidence level that agent k assigns to its interaction with agent
�. Likewise, ak� is used by agent � to scale the data it receives from agent k. The weights {ak�, a�k}
can be different so that the exchange of information between the neighboring agents {k, �} need not be
symmetrical. One or both weights can also be zero.

A network is said to be connected if paths with nonzero scaling weights can be found linking any
two distinct agents in both directions, either directly when they are neighbors or by passing through
intermediate agents when they are not neighbors. In this way, information can flow in both directions
between any two agents in the network, although the forward path from an agent k to some other agent
� need not be the same as the backward path from � to k. A strongly connected network is a connected
network with at least one nontrivial self-loop, meaning that akk > 0 for some agent k.

The strong connectivity of a network translates into a useful property on the combination weights.
Assume we collect the coefficients {a�k} into an N × N matrix A = [a�k], such that the entries on
the kth column of A contain the coefficients used by agent k to scale data arriving from its neighbors
� ∈ Nk; we set a�k = 0 if � /∈ Nk. We refer to A as the combination matrix or policy. It turns out that
combination matrices that correspond to strongly connected networks are primitive—an N × N matrix
A with nonnegative entries is said to be primitive if there exists some finite integer no > 0 such that all
entries of Ano are strictly positive [2,61,75].

1.4.2 DISTRIBUTED OPTIMIZATION
Network cooperation can be exploited to solve adaptation, learning, and optimization problems in a
decentralized manner in response to streaming data. To explain how cooperation can be achieved, we
start by associating with each agent k a twice-differentiable cost function Jk(w) : RM×1 �→ R. The
objective of the network of agents is to seek the unique minimizer of the aggregate cost function,
Jglob(w), defined by Eq. (1.56). Now, however, we seek a distributed (as opposed to a centralized)
solution. In a distributed implementation, each agent k can only rely on its own data and on data from
its neighbors.

We continue to assume that Jglob(w) satisfies the conditions of Assumptions 1.1 and 1.4 with
parameters {νd, δd, τd}, with the subscript “d” now used to indicate that these parameters are related to
the distributed implementation. Under these conditions, the cost Jglob(w) will have a unique minimizer,
which we continue to denote by wo. For simplicity of presentation, we will also assume in the remainder
of this chapter that the individual costs Jk(w) are strongly convex as well. These costs can be distinct
across the agents or they can all be identical, i.e., Jk(w) ≡ J(w) for k = 1, 2, . . . , N; in the latter
situation, the problem of minimizing Eq. (1.56) would correspond to the case in which the agents work
together to optimize the same cost function. If we let wo

k denote the minimizer of Jk(w), we continue to
assume for this exposition that each Jk(w) is also minimized at wo:

wo
k ≡ wo, k = 1, 2, . . . , N. (1.73)

The case where the individual costs are only convex and need not be strongly convex is discussed
in [1,2,37]; most of the results and conclusions continue to hold but the derivations become more
technical. Likewise, the case in which the individual costs need not share minimizers is discussed in
these references. In that case, as was already shown in [60], the iterates wk,i by the individual agents
will not approach the minimizer wo of Eq. (1.56), but rather the minimizer w� of a weighted aggregate
function with some positive scaling weights {qk}. This function was defined in Eq. (57b) of [1]. It was



34 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

also explained in [1] how this convergence property adds a useful degree of freedom to the operation of
the network, and how it can be exploited advantageously to steer the network to converge to desirable
limit points, including to wo, through the selection of the combination policy A (which determines the
scaling weights {qk} in the weighted aggregate cost).

It is, nevertheless, sufficient for the purposes of this chapter to continue with the case (1.73). There
are many important situations in practice where the minimizers of individual costs coincide with each
other. For instance, examples abound where agents need to work cooperatively to attain a common
objective such as tracking a target, locating a food source, or evading a predator (see, e.g., [72,76,77]).
This scenario is also common in machine learning problems [26,27,78–81] when data samples at the
various agents are generated by a common distribution parameterized by some vector, wo. One such
situation is illustrated in the next example.

Example 1.13 (Mean-square-error (MSE) networks). Consider the same setting of Example 1.3
except that we now have N agents observing streaming data {dk(i), uk,i} that satisfy the regression model
(1.13a) with regression covariance matrices Ru,k = EuT

k,iuk,i > 0 and with the same unknown wo, i.e.,

dk(i)=uk,iw
o + vk(i). (1.74a)

The individual MSE costs are defined by

Jk(w) = E(dk(i) − uk,iw)2 (1.74b)

and are strongly convex in this case, with the minimizer of each Jk(w) occurring at

wo
k

�= R−1
u,k rdu,k, k = 1, 2, . . . , N. (1.74c)

If we multiply both sides of Eq. (1.74a) by uT
k,i from the left, and take expectations, we find that wo

satisfies

rdu,k = Ru,kwo. (1.75)

This relation shows that the unknown wo from Eq. (1.74a) satisfies the same expression as wo
k in

Eq. (1.74c), for any k = 1, 2, . . . , N, so that we must have wo = wo
k . Therefore, this example amounts

to a situation where all costs {Jk(w)} attain their minima at the same location, wo.
We shall use the network model of this example to illustrate other results in the chapter. For ease

of reference, we shall refer to strongly connected networks with agents receiving data according to
model (1.74a) and seeking to estimate wo by adopting the MSE costs Jk(w) defined above, as MSE
networks. We assume for these networks that the measurement noise process vk(i) is temporally white
and independent over space so that

Evk(i)v�(j) = σ 2
v,kδk,�δi,j (1.76)

in terms of the Kronecker delta δk,�. Likewise, we assume that the regression data uk,i is temporally
white and independent over space so that

EuT
k,iu�,j = Ru,kδk,�δi,j. (1.77)

Moreover, the measurement noise vk(i) and the regression data u�,j are independent of each other for
all k, �, i, j. These statistical conditions help facilitate the analysis of such networks. �



1.4 SYNCHRONOUS MULTIAGENT ADAPTATION AND LEARNING 35

In the next subsections we list synchronous distributed algorithms of the consensus and diffusion
types for the optimization of Jglob(w). We only list the algorithms here; for motivation and justifications,
the reader may refer to the treatments in [1,2]. Moreover, Sec. V.D of [1] provides commentary on
several other related works in the literature in addition to the history and evolution of the consensus and
diffusion strategies.

1.4.3 SYNCHRONOUS CONSENSUS STRATEGY
Let wk,i denote the iterate that is available at agent k at iteration i; this iterate serves as the estimate
for wo. The consensus iteration at each agent k is described by the following construction (see, e.g.,
[6,10,31,63,65,71]):

wk,i=
∑

�∈Nk

a�k w�,i−1 − μk ∇̂wT Jk(wk,i−1) (1.78)

where the {μk} are individual step-size parameters, and where the combination coefficients {a�k} that
appear in Eq. (1.78) are nonnegative scalars that are required to satisfy the following conditions for
each agent k = 1, 2, . . . , N:

a�k ≥ 0,
N∑

�=1

a�k = 1, a�k = 0 if � /∈ Nk. (1.79a)

Condition (1.79a) implies that the combination matrix A = [a�k] satisfies

AT1 = 1, (1.79b)

where 1 denotes the vector with all entries equal to one. We say that A is left-stochastic. One useful
property of left-stochastic matrices is that their spectral radius is equal to one [61,75,82–84]:

ρ(A) = 1. (1.79c)

An equivalent representation that is useful for later analysis is to rewrite the consensus iteration (1.78)
as shown in the following listing, where the intermediate iterate that results from the neighborhood
combination is denoted by ψk,i−1. Observe that the gradient vector in the consensus implementation
(1.80) is evaluated at wk,i−1 and not ψk,i−1.

Consensus strategy for distributed adaptation
for each time instant i ≥ 0 :

each agent k = 1, 2, . . . , N performs the update:⎧⎪⎨
⎪⎩

ψk,i−1=
∑

�∈Nk

a�k w�,i−1

wk,i=ψk,i−1 − μk ∇̂wT Jk

(
wk,i−1

)
end

(1.80)

We remark that one way to motivate the consensus update (1.78) is to start from the noncooperative
step (1.68a) and replace the first iterate wk,i−1 by the convex combination used in Eq. (1.78).



36 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Example 1.14 (Consensus LMS networks). For the MSE network of Example 1.13, the consensus
strategy reduces to:

⎧⎪⎨
⎪⎩

ψk,i−1=
∑

�∈Nk

a�k w�,i−1,

wk,i=ψk,i−1 + 2μkuT
k,i[dk(i) − uk,iwk,i−1].

(1.81)

�

1.4.4 SYNCHRONOUS DIFFUSION STRATEGIES
There is an inherent asymmetry in the consensus construction. Observe from the computation of wk,i
in Eq. (1.80) that the update starts from ψk,i−1 and corrects it by the approximate gradient vector
evaluated at wk,i−1 (and not at ψk,i−1). This asymmetry will be shown later, e.g., in Example 1.25, to
be problematic when the consensus strategy is used for adaptation and learning over networks. This
is because the asymmetry can cause an unstable growth in the state of the network [85]; see also the
explanations in [1] and [2, Sec. 10.6]. Diffusion strategies remove the asymmetry problem.

Combine-then-Adapt (CTA) Diffusion. In the CTA formulation of the diffusion strategy, the same
iterate ψk,i−1 is used to compute wk,i, thus leading to description (1.82a) where the gradient vector
is evaluated at ψk,i−1 as well. The reason for the name “Combine-then-Adapt” is that the first step
in Eq. (1.82a) involves a combination step while the second step involves an adaptation step. The
reason for the qualification “diffusion” is that the use of ψk,i−1 to evaluate the gradient vector allows
information to diffuse more thoroughly through the network. This is because information is not only
being diffused through the aggregation of the neighborhood iterates, but also through the evaluation of
the gradient vector at the aggregate state value.

Diffusion strategy for distributed adaptation (CTA)
for each time instant i ≥ 0 :

each agent k = 1, 2, . . . , N performs the update:⎧⎪⎨
⎪⎩

ψk,i−1=
∑

�∈Nk

a�k w�,i−1

wk,i=ψk,i−1 − μk ∇̂wT Jk

(
ψk,i−1

)
end

(1.82a)

Adapt-then-Combine (ATC) Diffusion. A similar implementation can be obtained by switching
the order of the combination and adaptation steps in Eq. (1.82a), as shown in the listing (1.82b). The
structures of the CTA and ATC strategies are fundamentally identical: the difference lies in which
variable we choose to correspond to the updated iterate wk,i. In ATC, we choose the result of the
combination step to be wk,i, whereas in CTA we choose the result of the adaptation step to be wk,i.



1.4 SYNCHRONOUS MULTIAGENT ADAPTATION AND LEARNING 37

Diffusion strategy for distributed adaptation (ATC)
foreach time instant i ≥ 0 :

each agent k = 1, 2, . . . , N performs the update:⎧⎪⎨
⎪⎩

ψk,i=wk,i−1 − μk ∇̂wT Jk(wk,i−1)

wk,i=
∑

�∈Nk

a�k ψ�,i

end

(1.82b)

One main motivation for the introduction of the diffusion strategies (1.82a) and (1.82b) is the fact
that they enable single time-scale distributed learning from streaming data under constant step-size
adaptation and in a stable manner [3,60,73,74,86–90]; see also [2, Chs. 9–11]. The diffusion strategies
further allow A to be left-stochastic, which permits larger modes of cooperation than doubly stochastic
policies. The CTA diffusion strategy (1.83a) was first introduced for MSE estimation problems in
[73,86–88]. The ATC diffusion structure (1.83b), with adaptation preceding combination, appeared
in the work [91] on adaptive distributed least-squares schemes and also in the works [74,90,92,93]
on distributed MSE and state-space estimation methods. The CTA structure (1.82a) with an iteration
dependent step-size that decays to zero, μ(i) → 0, was employed in [8,94,95] to solve distributed
optimization problems that require all agents to reach agreement. The ATC form (1.82b), also with an
iteration dependent sequence μ(i) that decays to zero, was employed in [96,97] to ensure almost-sure
convergence and agreement among agents.

Example 1.15 (Diffusion LMS networks). For the MSE network of Example 1.13, the ATC and
CTA diffusion strategies reduce to:

⎧⎪⎨
⎪⎩

ψk,i−1 =
∑

�∈Nk

a�k w�,i−1 (CTA diffusion)

wk,i = ψk,i−1 + 2μkuT
k,i
[
dk(i) − uk,iψk,i−1

] (1.83a)

and

⎧⎪⎨
⎪⎩

ψk,i = wk,i−1 + 2μkuT
k,i
[
dk(i) − uk,iwk,i−1

]
wk,i =

∑
�∈Nk

a�k ψ�,i (ATC diffusion) (1.83b)

�
Example 1.16 (Diffusion logistic regression). We revisit the pattern classification problem from

Example 1.2, where we consider a collection of N networked agents cooperating with each other
to solve the logistic regression problem. Each agent receives streaming data {γ k(i), hk,i}, where the
variable γ k(i) assumes the values ±1 and designates the class that the feature vector hk,i belongs to.
The objective is to use the training data to determine the vector wo that minimizes the cost

Jk(w) �= ρ

2
‖w‖2 + E

{
ln
[

1 + e−γ k(i)hT
k,iw
]}

(1.84)



38 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

under the assumption of joint wide-sense stationarity over the random data. It is straightforward to
verify that the ATC diffusion strategy (1.82b) reduces to the following form in this case:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ψk,i = (1 − ρμk)wk,i−1 + μk

(
γ k(i)

1 + eγ k(i)hT
k,iwk,i−1

)
hk,i,

wk,i =
∑

�∈Nk

a�k ψ�,i.
(1.85)

�

1.5 ASYNCHRONOUS MULTIAGENT ADAPTATION AND LEARNING
There are various ways by which asynchronous events can be introduced into the operation of a
distributed strategy. Without loss in generality, we illustrate the model for asynchronous operation
by describing it for the ATC diffusion strategy (1.82b); similar constructions apply to CTA diffusion
(1.82a) and consensus (1.80).

1.5.1 ASYNCHRONOUS MODEL
In a first instance, we model the step-size parameters as random variables and replace Eq. (1.82b) by:⎧⎪⎨

⎪⎩
ψk,i=wk,i−1 − μk(i) ∇̂wT Jk(wk,i−1),

wk,i=
∑

�∈Nk

a�k ψ�,i.
(1.86)

In this model, the neighborhoods and the network topology remain fixed and only the μk(i) assume
random values. The step-sizes can vary across the agents and, therefore, their means and variances
become agent-dependent. Moreover, the step-sizes across agents can be correlated with each other. We
therefore denote the first- and second-order moments of the step-size parameters by:

μ̄k
�= Eμk(i), (1.87a)

σ 2
μ,k

�= E(μk(i) − μ̄k)2, (1.87b)

cμ,k�
�= E(μk(i) − μ̄k)(μ�(i) − μ̄�). (1.87c)

When � = k, the scalar cμ,kk coincides with the variance of μk(i), i.e., cμ,kk = σ 2
μ,k ≥ 0. On the other

hand, if the step-sizes across the agents happen to be uncorrelated, then cμ,k� = 0 for k �= �.
More broadly, we can allow for random variations in the neighborhoods (and, hence, in the network

structure), and random variations in the combination coefficients as well. We capture this more general
asynchronous implementation by writing:

⎧⎪⎨
⎪⎩

ψk,i=wk,i−1 − μk(i)∇̂wT Jk(wk,i−1)

wk,i =
∑

�∈N k,i

a�k(i) ψ�,i
(1.88)



1.5 ASYNCHRONOUS MULTIAGENT ADAPTATION AND LEARNING 39

where the combination coefficients {a� k(i)} are now random and, moreover, the symbol N k,i denotes
the randomly changing neighborhood of agent k at time i. These neighborhoods become random
because the random variations in the combination coefficients can turn links on and off depending
on the values of the {a�,k(i)}. We continue to require the combination coefficients {a�k(i)} to satisfy the
same structural constraint as given before by Eq. (1.79a), i.e.,

∑
�∈N k,i

a�k(i) = 1, and

{
a�k(i) > 0, if � ∈ N k,i,

a�k(i) = 0, otherwise.
(1.89)

Because these coefficients are now random, we denote their first- and second-order moments by:

ā�k
�= E a�k(i), (1.90a)

σ 2
a,�k

�= E(a�k(i) − ā�k)2, (1.90b)

ca,�k,nm
�= E(a�k(i) − ā�k)(anm(i) − ānm). (1.90c)

When � = n and k = m, the scalar ca,�k,nm coincides with the variance of a�k(i), i.e., ca,�k,nm = σ 2
a,�k ≥

0.
Example 1.17 (Asynchronous diffusion LMS networks). For the MSE network of Example 1.13,

the ATC diffusion strategy (1.86) with random update reduces to

⎧⎪⎨
⎪⎩

ψk,i = wk,i−1 + 2μk(i)uT
k,i
[
dk(i) − uk,iwk,i−1

]
,

wk,i =
∑

�∈Nk

a�k ψ�,i (diffusion with random updates), (1.91a)

whereas the asynchronous ATC diffusion strategy (1.88) reduces to:

⎧⎪⎨
⎪⎩

ψk,i = wk,i−1 + 2μk(i)uT
k,i
[
dk(i) − uk,iwk,i−1

]
,

wk,i =
∑

�∈N k,i

a�k(i) ψ�,i (asynchronous diffusion). (1.91b)

We can view implementation (1.91a) as a special case of the asynchronous update (1.91b) when the
variances of the random combination coefficients {a�k(i)} are set to zero. �

Example 1.18 (Asynchronous consensus LMS networks). Similarly, for the same MSE network
of Example 1.13, the asynchronous consensus strategy is given by

⎧⎪⎨
⎪⎩

ψk,i−1=
∑

�∈N k,i

a�k(i) w�,i−1,

wk,i=ψk,i−1 + 2μk(i)uT
k,i[dk(i) − uk,iwk,i−1].

(1.92)

�



40 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

1.5.2 MEAN GRAPH
We refer to the topology that corresponds to the average combination coefficients {ā�k} as the mean
graph, which is fixed over time. For each agent k, the neighborhood defined by the mean graph is
denoted by Nk. It is straightforward to verify that the mean combination coefficients ā�k satisfy the
following constraints over the mean graph (compare with Eq. 1.79a and Eq. 1.89):

∑
�∈Nk

ā�k = 1, and

{
ā�k > 0, if � ∈ Nk,

ā�k = 0, otherwise.
(1.93)

One example of a random network with two equally probable realizations and its mean graph is shown
in Fig. 1.6 [3]. The letter ω is used to index the sample space of the random matrix Ai.

There is one useful result that relates the random neighborhoods {N k,i} from Eq. (1.88) to the
neighborhoods {Nk} from the mean graph. It is not difficult to verify that Nk is equal to the union of
all possible realizations for the random neighborhoods N k,i; this property is already illustrated by the
example of Fig. 1.6:

Nk =
⋃
ω∈�

N k,i(ω) (1.94)

for any k, where � denotes the sample space for N k,i.

FIG. 1.6

Mean graph. The first two rows show two equally probable realizations with the respective neighborhoods. The
last row shows the resulting mean graph.
This is a modified version of a Figure reproduced with permission from Zhao X, Sayed AH. Asynchronous adaptation and learning over

networks—Part I: Modeling and stability analysis. IEEE Trans Signal Process 2015;63(4):811–26.



1.5 ASYNCHRONOUS MULTIAGENT ADAPTATION AND LEARNING 41

1.5.3 RANDOM COMBINATION POLICY
The first- and second-order moments of the combination coefficients will play an important role in
characterizing the stability and MSE performance of the asynchronous network (1.88). We collect these
moments in matrix form as follows. We first group the combination coefficients into a matrix:

Ai
�= [ a�k(i) ]N�,k=1 (N × N). (1.95)

The sequence {Ai, i ≥ 0} represents a stochastic process consisting of left-stochastic random matrices
whose entries satisfy the conditions in Eq. (1.89) at every time i. We subsequently introduce the mean
and Kronecker-covariance matrix of Ai and assume these quantities are constant over time; we denote
them by the N × N matrix Ā and the N2 × N2 matrix CA, respectively:

Ā
�= EAi = [ā�k ]N�,k=1, (1.96a)

CA
�= E[(Ai − Ā) ⊗ (Ai − Ā)]. (1.96b)

The matrix CA is not a conventional covariance matrix and is not necessarily Hermitian. The reason for
its introduction is because it captures the correlations of each entry of Ai with all other entries in Ai.
For example, for a network with N = 2 agents, the entries of Ā and CA will be given by:

Ā = [ ā11 ā12ā21 ā22
]

, (1.97a)

CA =

⎡
⎢⎢⎣

ca,11,11 ca,11,12 ca,12,11 ca,12,12
ca,11,21 ca,11,22 ca,12,21 ca,12,22
ca,21,11 ca,21,12 ca,22,11 ca,22,12
ca,21,21 ca,21,22 ca,22,21 ca,22,22

⎤
⎥⎥⎦ . (1.97b)

We thus see that the (�, k)th block of CA contains the covariance coefficients of a�k with all other entries
of Ai. One useful property of the matrices {Ā, CA} so defined is that their elements are nonnegative and
the following matrices are left-stochastic:

(
Ā
)T

1N = 1N , (Ā ⊗ Ā + CA)T1N2 = 1N2 . (1.98)

Assumption 1.6 (Asynchronous network model). It is assumed that the random processes
{μk(i), a�m(j)} are independent of each other for all k, �, m, i, and j. They are also independent of any
other random variable in the learning algorithm. �

The asynchronous network model described in this section covers many situations of practical
interest. For example, we can choose the sample space for each step-size μk(i) to be the binary choice
{0, μ} to model random “on-off” behavior at each agent k for the purpose of saving power, waiting
for data, or even due to random agent failures. Similarly, we can choose the sample space for each
combination coefficient a� k(i), � ∈ Nk\{k}, to be {0, a�k} to model a random “on-off” status for the link
from agent � to agent k at time i for the purpose of either saving communication cost or due to random
link failures. Note that the convex constraint (1.89) can always be satisfied by adjusting the value of
akk(i) according to the realizations of {a�k(i); � ∈ N k,i\{k}}.

Example 1.19 (The spatially uncorrelated model). A useful special case of the asynchronous
network model of this section is the spatially uncorrelated model. In this case, at each iteration i, the
random step-sizes {μk(i); k = 1, 2, . . . , N} are uncorrelated with each other across the network, and the



42 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

random combination coefficients {a�k(i); � �= k, k = 1, 2, . . . , N} are also uncorrelated with each other
across the network. Then, it can be verified that the covariances {cμ,k�} in Eq. (1.87c) and {ca,�k,nm} in
Eq. (1.90c) will be fully determined by the variances {σ 2

μ, σ 2
a,�k}:

cμ,kk = σ 2
μ,k, cμ,k� = 0, k �= � (1.99a)

and

ca,�k,nm =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ 2
a,�k, if k = m, � = n, � ∈ Nk\{k},

−σ 2
a,�k, if k = m = n, � ∈ Nk\{k},

−σ 2
a,nk, if k = m = �, n ∈ Nk\{k},∑

j∈Nk\{k}
σ 2

a,jk, if k = m = � = n,

0, otherwise.

(1.99b)

�

1.5.4 PERRON VECTORS
Now that we introduced the network model, we can move on to examine the effect of network
cooperation on performance. Some interesting patterns of behavior arise when agents cooperate to
solve a global optimization problem in a distributed manner from streaming data [1,2]. For example, one
interesting result established in [3,4,37,60,98] is that the effect of the network topology on performance
is captured by the Perron vector of the combination policy. This vector turns out to summarize the
influence of the topology on performance so much so that different topologies with similar Perron
vectors will end up delivering similar performance. We explained the role of Perron vectors in the
context of synchronous adaptation and learning in [1,2]. Here we focus on asynchronous networks. In
this case, two Perron vectors will be needed because the randomness in the combination policy is now
represented by two moment matrices, Ā and CA. In the synchronous case, only one Perron vector was
necessary because the combination policy was fixed and described by a matrix A. Although we are
focusing on the asynchronous case in the sequel, we will be able to recover results for synchronous
networks as special cases.

Let us first recall the definition of Perron vectors for synchronous networks, say, of the form
described by Eq. (1.82b) with combination policy A. We assume the network is strongly connected.
In this case, the left-stochastic matrix A will be primitive. For such primitive matrices, it follows
from the Perron-Frobenius Theorem [75] that: (a) the matrix A will have a single eigenvalue at one;
(b) all other eigenvalues of A will be strictly inside the unit circle so that ρ(A) = 1; and (c) with
proper sign scaling, all entries of the right-eigenvector of A corresponding to the single eigenvalue at
one will be positive. Let p denote this right-eigenvector with its entries {pk} normalized to add up to
one, i.e.,

Ap=p, 1Tp=1, pk > 0, k = 1, 2, . . . , N. (1.100)

We refer to p as the Perron eigenvector of A. It was explained in [1,2] how the entries of this vector
determine the MSE performance and convergence rate of the network; these results will be revisited
further ahead when we recover them as special cases of the asynchronous results.



1.5 ASYNCHRONOUS MULTIAGENT ADAPTATION AND LEARNING 43

On the other hand, for an asynchronous implementation, the individual realizations of the random
combination matrix Ai in Eq. (1.88) need not be primitive. In this context, we will require a form of
primitiveness to hold on average as follows.

Definition 1.1 (Strongly connected asynchronous model). We say that an asynchronous model
with random combination coefficients {a�k(i)} is strongly connected if the Kronecker-covariance matrix
given by Ā ⊗ Ā + CA is primitive. �

Observe that if we set Ā = A and CA = 0, then we recover the condition for strong-connectedness
in the synchronous case, namely, that A should be primitive.

Definition 1.1 means that the directed graph (digraph) associated with the matrix Ā ⊗ Ā + CA is
strongly connected (e.g., [83, pp. 30,34] and [2]). It is straightforward to check from the definition of
CA in Eq. (1.96b) that

Ā ⊗ Ā + CA = E(Ai ⊗ Ai) (1.101)

so that the digraph associated with Ā ⊗ Ā + CA is the union of all possible digraphs associated with
the realizations of Ai ⊗ Ai [99, p. 29]. Therefore, as explained in [3–5], Definition 1.1 amounts to
an assumption that the union of all possible digraphs associated with the realizations of Ai ⊗ Ai

is strongly connected. As illustrated in Fig. 1.7, this condition still allows individual digraphs
associated with realizations of Ai to be weakly connected with or without self-loops or even to be
disconnected [4].

It follows from property (1.98) and Definition 1.1, the matrix Ā ⊗ Ā + CA is left-stochastic and
primitive. It can be verified that mean matrix Ā is also primitive if Ā ⊗ Ā + CA is primitive (although
the converse is not true). Therefore, the matrix Ā is both left-stochastic and primitive. We denote the
Perron eigenvector of Ā ⊗ Ā + CA by pc ∈ RN2×1, which satisfies:

(Ā ⊗ Ā + CA)pc = pc, pT
c 1 = 1. (1.102a)

Likewise, we denote the Perron eigenvector of Ā by p̄ ∈ RN×1, which satisfies:

Āp̄ = p̄, p̄T1 = 1. (1.102b)

Observe that if we set CA = 0 and Ā = A, then we recover the synchronous case information, namely,
p̄ = p and pc = p ⊗ p.

The entries of the Perron vectors {pc, p̄} are related to each other, as illustrated by the following
explanation (proofs appear in [4, App. VII]). Because the vector pc is of dimension N2 ×1, we partition
it into N subvectors of dimension N × 1 each:

pc
�= col{p1, p2, . . . , pN}, (1.103a)

where pk denotes the kth subvector. We construct an N × N matrix Pc from these subvectors:

Pc
�= [p1p2 . . . pN ] = [pc,�k

]N
k,�=1 . (1.103b)

We use p�k to denote the (�, k)th element of matrix Pc, which is equal to the �th element of pk. It can be
verified that the matrix Pc in Eq. (1.103b) is symmetric positive semidefinite and it satisfies

Pc1 = p̄, PT
c = Pc, Pc ≥ 0 (1.103c)



44 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

FIG. 1.7 Digraphs.

The combination policy Ai has two equally probable realizations in this example, denoted by {Ai (ω1), Ai (ω2)}.
Observe that neither of the digraphs Ai (ω1) ⊗ Ai (ω1) or Ai (ω2) ⊗ Ai (ω2) is strongly connected due to the
existence of the source and sink nodes. However, the digraph associated with E(Ai ⊗ Ai ), which is the union of
the first two digraphs, is strongly connected, where information can flow in any direction through the network.
This is a modified version of a Figure reproduced with permission from Zhao X, Sayed AH. Asynchronous adaptation and learning over

networks—Part II: Performance analysis. IEEE Trans Signal Process 2015;63(4):827–42.

where p̄ is the Perron eigenvector in Eq. (1.102b). We can further establish the following useful
relations:

pc,�k = pc,k�,
N∑

k=1

pc,�k = p̄�,
N∑

�=1

pc,�k = p̄k. (1.103d)

We can also verify that the matrix difference

Cc
�= Pc − p̄p̄T, CT

c = Cc, Cc ≥ 0 (1.103e)

is symmetric, positive semidefinite, and satisfies Cc1 = 0. Moreover, it is straightforward to verify that

cc,kk = pc,kk − p̄2
k ≥ 0 (1.104)

where cc,kk denotes the (k, k)th entry in Cc.



1.6 ASYNCHRONOUS NETWORK PERFORMANCE 45

1.6 ASYNCHRONOUS NETWORK PERFORMANCE
We now comment on the performance of asynchronous networks and compare their metrics against
both noncooperative and centralized strategies.

1.6.1 MSD PERFORMANCE
We denote the MSD performance of the individual agents and the average MSD performance across
the network by:

MSDdist,k
�= lim

i→∞ E ‖w̃k,i‖2, (1.105a)

MSDdist, av
�= 1

N

N∑
k=1

MSDdist,k, (1.105b)

where the error vectors are measured relative to the global optimizer, wo. We further denote the gradient
noise process at the individual agents by

sk,i(w) �= ∇̂wTJk(w) − ∇wTJk(w) (1.106a)

and define

Hk
�= ∇2

w Jk(wo), (1.106b)

Rs,k
�= lim

i→∞E

[
sk,i(wo)sTk,i(w

o) |F i−1

]
, (1.106c)

where F i−1 now represents the collection of all random events generated by the iterates from across
all agents, {wk,j, k = 1, 2, . . . , N}, up to time i − 1:

F i−1
�= filtration{wk,−1, wk,0, wk,1, . . . , wk,i−1, all k}. (1.106d)

It is stated later in Eq. (1.149a) that under some assumptions on the gradient noise processes (1.106a),
that for strongly connected asynchronous diffusion networks of the form (1.86), and for sufficiently
small step-sizes μx [2,4]:

MSDasyn
dist,k ≈ MSDasyn

dist,av ≈ 1

2
Tr

⎡
⎢⎣
⎛
⎝ N∑

k=1

μ̄kp̄kHk

⎞
⎠

−1⎛
⎝ N∑

k=1

(μ̄2
k + σ 2

μ,k)pc,kkRs,k

⎞
⎠
⎤
⎥⎦ . (1.107)

The same result holds for asynchronous consensus and CTA diffusion strategies. Observe from
Eq. (1.107) the interesting conclusion that the distributed strategy is able to equalize the MSD
performance across all agents for sufficiently small step-sizes. It is also instructive to compare
expression (1.149a) with Eqs. (1.63) and (1.67) in the centralized case. Observe how cooperation among
agents leads to the appearance of the scaling coefficients {p̄k, pc,kk}; these factors are determined by Ā
and CA.



46 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Note further that if we set μ̄k = μ, σ 2
μ,k = 0, p̄k = pk, and pc,kk = p2

k , then we recover the MSD
expression for synchronous distributed strategies:

MSDsync
dist,k ≈ MSDsync

dist,av ≈ 1

2
Tr

⎡
⎢⎣
⎛
⎝ N∑

k=1

μkpkHk

⎞
⎠

−1⎛
⎝ N∑

k=1

μ2
kp2

kRs,k

⎞
⎠
⎤
⎥⎦ . (1.108)

This result agrees with expression (62) from [1].
Example 1.20 (MSE networks with random updates). We continue with the setting of

Example 1.13, which deals with MSE networks. We assume the first- and second-order moments
of the random step-sizes are uniform, i.e., μ̄k ≡ μ̄ and cμ,kk ≡ σ 2

μ, and also assume uniform
regression covariance matrices, i.e., Ru,k ≡ Ru for k = 1, 2, . . . , N. It follows that Hk = 2Ru ≡ H and
Rs,k = 4σ 2

v,kRu. Substituting into Eq. (1.149a), and assuming a fixed topology with fixed combination
coefficients set to a�k, we conclude that the MSD performance of the diffusion strategy (1.91a) with
random updates is well approximated by:

MSDasyn,1
dist,k ≈ MSDasyn,1

dist,av ≈ μxM

⎛
⎝ N∑

k=1

p2
kσ 2

v,k

⎞
⎠ , (1.109a)

where

μx = μ̄ + σ 2
μ

μ̄
(1.109b)

and pk is the kth entry of the Perron vector p defined by Eq. (1.100).
If the combination matrix A happens to be doubly stochastic, then its Perron eigenvector becomes

p = 1/N. Substituting pk = 1/N into Eq. (1.109a) gives

MSDasyn,1
dist,k ≈ MSDasyn,1

dist,av ≈ μxM

N

⎛
⎝ 1

N

N∑
k=1

σ 2
v,k

⎞
⎠ , (1.109c)

which agrees with the centralized performance (1.51b). In other words, the asynchronous diffusion
strategy is able to match the performance of the centralized solution for doubly stochastic combination
policies when both implementations employ random updates. Because the centralized solution can
improve the average MSD performance over noncooperative networks, we further conclude that the
diffusion strategy can also exceed the average performance of noncooperative networks. �

Example 1.21 (Asynchronous MSE networks). We continue with the setting of Example 1.20
except that we now employ the asynchronous LMS diffusion network (1.91b). Its MSD performance is
well approximated by:

MSDasyn
dist,k ≈ MSDasyn

dist,av ≈ μxM

⎛
⎝ N∑

k=1

pc,kkσ
2
v,k

⎞
⎠ . (1.110a)

If the mean combination matrix Ā happens to be doubly stochastic, then its Perron eigenvector becomes
p̄ = 1/N. Substituting p̄k = 1/N into Eq. (1.109a), and using pc,kk = p̄2

k + cc,kk, where cc,kk is from
Eq. (1.103e), gives



1.7 NETWORK STABILITY AND PERFORMANCE 47

MSDasyn
dist,k ≈ MSDasyn

dist,av ≈ μxM

N

⎡
⎣ 1

N

N∑
k=1

(1 + N2cc,kk)σ 2
v,k

⎤
⎦ . (1.110b)

It is clear that if cc,kk = σ 2
π ,k, then the MSD performance in Eq. (1.110b) will agree with the centralized

performance (1.55a). In other words, the distributed diffusion strategy is able to match the performance
of the centralized solution. �

1.7 NETWORK STABILITY AND PERFORMANCE
In this section, we examine more closely the performance and stability results that were alluded to in
the earlier sections. We first examine the consensus and diffusion strategies in a unified manner and
subsequently focus on diffusion strategies due to their enhanced stability properties, as the ensuing
discussion will reveal.

1.7.1 MSE NETWORKS
We motivate the discussion by presenting first some illustrative examples with MSE networks, which
involve quadratic costs. Following the examples, we extend the framework to more general costs.

Example 1.22 (Error dynamics over MSE networks). We consider the MSE network of
Example 1.13, which involves quadratic costs with a common minimizer, wo. The update equations for
the noncooperative, consensus, and diffusion strategies are given by Eqs. (1.68a), (1.81), (1.83a), and
(1.83b). We can group these strategies into a single unifying description by considering the following
structure in terms of three sets of combination coefficients {ao,�k(i), a1,�k(i), a2,�k(i)}:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φk,i−1 =
∑

�∈N k,i

a1,�k(i)w�,i−1,

ψk,i =
∑

�∈N k,i

ao,�k(i)φ�,i−1 + 2μk(i)uT
k,i
[
dk(i) − uk,iφk,i−1

]
,

wk,i =
∑

�∈N k,i

a2,�k(i)ψ�,i.

(1.111)

In Eq. (1.111), the quantities {φk,i−1, ψk,i} denote M × 1 intermediate variables while the nonnegative
entries of the N × N matrices Ao,i = [ao,�k(i)], A1,i = [a1,�k(i)], and A2,i = [a2,�k(i)] are assumed to
satisfy the same conditions (1.89). Any of the combination weights {ao,�k(i), a1,�k(i), a2,�k(i)} is zero
whenever � /∈ N k,i. Different choices for {Ao,i, A1,i, A2,i}, including random and deterministic choices,
correspond to different strategies, as the following examples reveal:

noncooperative: A1,i = Ao,i = A2,i = IN , (1.112a)

consensus: Ao,i = Ai, A1,i = IN = A2,i, (1.112b)

CTA diffusion: A1,i = Ai, A2,i = IN = Ao,i, (1.112c)

ATC diffusion: A2,i = Ai, A1,i = IN = Ao,i, (1.112d)



48 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

where Ai denotes some generic combination policy satisfying Eq. (1.89). We associate with each agent
k the following three errors:

w̃k,i
�= wo − wk,i, (1.113a)

ψ̃k,i
�= wo − ψk,i, (1.113b)

φ̃k,i−1
�= wo − φk,i−1, (1.113c)

which measure the deviations from the global minimizer, wo. Subtracting wo from both sides of the
equations in Eq. (1.111) we get⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ̃k,i−1 =
∑

�∈N k,i

a1,�k(i) w̃�,i−1,

ψ̃k,i =
∑

�∈N k,i

ao,�k(i)φ̃�,i−1 − 2μk(i)uT
k,iuk,iφ̃k,i−1 − 2μk(i)uT

k,ivk(i),

w̃k,i =
∑

�∈N k,i

a2,�k(i) ψ̃�,i.

(1.114a)

In a manner similar to Eq. (1.16a), the gradient noise process at each agent k is given by

sk,i(φk,i−1) = 2
(

Ru,k − uT
k,iuk,i

)
φ̃k,i−1 − 2uT

k,ivk(i). (1.114b)

In order to examine the evolution of the error dynamics across the network, we collect the error vectors
from all agents into N × 1 block error vectors (whose individual entries are of size M × 1 each):

w̃i
�=

⎡
⎢⎢⎢⎣

w̃1,i
w̃2,i

...
w̃N,i

⎤
⎥⎥⎥⎦ , ψ̃ i

�=

⎡
⎢⎢⎢⎢⎣

ψ̃1,i
ψ̃2,i

...
ψ̃N,i

⎤
⎥⎥⎥⎥⎦ , φ̃i−1

�=

⎡
⎢⎢⎢⎢⎣

φ̃1,i−1
φ̃2,i−1

...
φ̃N,i−1

⎤
⎥⎥⎥⎥⎦ . (1.115a)

Motivated by the last term in the second equation in Eq. (1.114a), and by the gradient noise terms
(1.114b), we also introduce the following N × 1 column vectors whose entries are of size M × 1 each:

zi
�=

⎡
⎢⎢⎢⎢⎣

2uT
1,iv1(i)

2uT
2,iv2(i)

...
2uT

N,ivN (i)

⎤
⎥⎥⎥⎥⎦ , si

�=

⎡
⎢⎢⎢⎣

s1,i(φ1,i−1)
s2,i(φ2,i−1)

...
sN,i(φN,i−1)

⎤
⎥⎥⎥⎦ . (1.115b)

We further introduce the Kronecker products

Ao,i
�= Ao,i ⊗ IM , A1,i

�= A1,i ⊗ IM , A2,i
�= A2,i ⊗ IM (1.116a)

and the following N × N block diagonal matrices, whose individual entries are of size M × M each:

Mi
�= diag{μ1(i)IM , μ2(i)IM , . . . , μN (i)IM }, (1.116b)

Ri
�= diag

{
2uT

1,iu1,i, 2uT
2,iu2,i, . . . , 2uT

N,iuN,i

}
. (1.116c)



1.7 NETWORK STABILITY AND PERFORMANCE 49

From Eq. (1.114a) we can then easily conclude that the block network variables satisfy the recursions:⎧⎪⎪⎨
⎪⎪⎩

φ̃i−1 = AT
1,iw̃i−1,

ψ̃ i =
(
AT

o,i − MiRi

)
φ̃i−1 − Mizi,

w̃i = AT
2,iψ̃ i

(1.117a)

so that the network weight error vector, w̃i, evolves according to:

w̃i = AT
2,i

(
AT

o,i − MiRi

)
AT

1,iw̃i−1 − AT
2,iMizi. (1.117b)

For comparison purposes, if each agent operates individually and uses the noncooperative strategy
(1.68a), then the weight error vector would instead evolve according to the following recursion:

w̃i = (IMN − MiRi) w̃i−1 − Mizi, i ≥ 0, (1.118)

where the matrices {Ao,i,A1,i,A2,i} do not appear any longer, and with a block diagonal coefficient
matrix (IMN − MiRi). It is also straightforward to verify that recursion (1.117b) can be equivalently
rewritten in the following form in terms of the gradient noise vector, si, defined by Eq. (1.115b):

w̃i = Bi w̃i−1 + AT
2,iMisi, (1.119a)

where

Bi
�= AT

2,i

(
AT

o,i − MiR
)
AT

1,i, (1.119b)

R �= ERi = diag{2Ru,1, 2Ru,2, . . . , 2Ru,N}. (1.119c)

�
Example 1.23 (Mean-error behavior). We continue with the setting of Example 1.22. In MSE

analysis, we are interested in examining how the quantities Ew̃i and E ‖w̃i‖2 evolve over time. If
we refer back to the data model described in Example 1.13, where the regression data {uk,i} were
assumed to be temporally white and independent over space, then the stochastic matrix Ri appearing
in Eqs. (1.117b), (1.118) is seen to be statistically independent of w̃i−1. We further assume that, in
the unified formulation, the entries of the combination policies {Ao,i, A1,i, A2,i} are independent of
each other (as well as over time) and of any other variable in the learning algorithm. Therefore,
taking expectations of both sides of these recursions, and invoking the fact that uk,i and vk(i) are also
independent of each other and have zero means (so that Ezi = 0), we conclude that the mean-error
vectors evolve according to the following recursions:

Ew̃i = B̄
(
E w̃i−1

)
(distributed), (1.120a)

Ew̃i = (IMN − M̄R
) (

Ew̃i−1
)

(noncooperative), (1.120b)

where

B̄ �= EBi = ĀT
2

(
ĀT

o − M̄R
)
ĀT

1 , (1.121a)

M̄ = EMi = diag{ μ̄1IM , . . . , μ̄NIM}, (1.121b)



50 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Āo = EAo,i, (1.121c)

Ā1 = EA1,i, (1.121d)

Ā2 = EA2,i. (1.121e)

The matrix B̄ controls the dynamics of the mean weight-error vector for the distributed strategies.
Observe, in particular, that B̄ reduces to the following forms for the various strategies (noncooperative
(Eq. 1.68a), consensus (Eq. 1.81), and diffusion (Eqs. 1.83a–1.83b):

B̄ncop = IMN − M̄R, (1.122a)

B̄cons = ĀT − M̄R, (1.122b)

B̄atc = ĀT (IMN − M̄R
)

, (1.122c)

B̄cta = (IMN − M̄R
)
ĀT, (1.122d)

where Ā = Ā ⊗ IM and Ā = EAi. �
Example 1.24 (MSE networks with uniform agents). The results of Example 1.23 simplify when

all agents employ step-sizes with the same mean value, μ̄k ≡ μ̄, and observe regression data with the
same covariance matrix, Ru,k ≡ Ru [61,85]. In this case, we can express M̄ and R from Eqs. (1.152b)
and (1.119c) in Kronecker product form as follows:

M̄ = μ̄IN ⊗ IM , R = IN ⊗ 2Ru (1.123)

so that expressions (1.122a)–(1.122d) reduce to

B̄ncop = IN ⊗ (IM − 2μ̄Ru), (1.124a)

B̄cons = ĀT ⊗ IM − 2μ̄(IM ⊗ Ru), (1.124b)

B̄atc = ĀT ⊗ (IM − 2μ̄Ru), (1.124c)

B̄cta = ĀT ⊗ (IM − 2μ̄Ru). (1.124d)

Observe that B̄atc = B̄cta, so we denote these matrices by B̄diff. Using properties of the eigenvalues
of Kronecker products of matrices, it can be easily verified that the MN eigenvalues of the above B̄
matrices are given by the following expressions in terms of the eigenvalues of the component matrices
{Ā, Ru} for k = 1, 2, . . . N and m = 1, 2, . . . , M:

λ(B̄ncop) = 1 − 2μ̄λm(Ru), (1.125a)

λ(B̄cons) = λk(Ā) − 2μ̄λm(Ru), (1.125b)

λ(B̄diff) = λk(Ā) [1 − 2μ̄λm(Ru)] . (1.125c)

�
Example 1.25 (Potential instability in consensus networks). Consensus strategies can become

unstable when used for adaptation purposes [2,85]. This undesirable effect is already reflected in
expressions (1.125a)–(1.125c). In particular, observe that the eigenvalues of Ā appear multiplying
(1 − 2μλm(Ru)) in expression (1.125c) for diffusion. As such, and because ρ(Ā) = 1 for any left-
stochastic matrix, we conclude for this case of uniform agents that ρ(B̄diff) = ρ(B̄ncop). It follows that,
regardless of the choice of the mean combination policy Ā, the diffusion strategies will be stable in the



1.7 NETWORK STABILITY AND PERFORMANCE 51

mean (i.e., Ew̃i will converge asymptotically to zero) whenever the individual noncooperative agents
are stable in the mean:

individual agents stable �⇒ diffusion networks stable. (1.126a)

The same conclusion is not true for consensus networks; the individual agents can be stable and yet
the consensus network can become unstable. This is because λk(Ā) appears as an additive (rather than
multiplicative) term in Eq. (1.125b) (see [2,72,85] for examples):

individual agents stable � consensus networks stable. (1.126b)

The fact that the combination matrix ĀT appears in an additive form in Eq. (1.122b) is the result
of the asymmetry that was mentioned earlier in the update equation for the consensus strategy. In
contrast, the update equations for the diffusion strategies lead to ĀT appearing in a multiplicative form
in Eqs. (1.122c), (1.122d). �

Example 1.26 (Useful stability result). It is observed from expressions (1.122c) and (1.122d)
in the asynchronous case as well as from the corresponding expressions (81c) and (81d) in the
synchronous case studied in [1] that the mean stability of diffusion strategies usually involves
examining the stability of a matrix product of the form:

B �= AT
2 DAT

1 , (1.127)

where D is a block diagonal symmetric matrix with blocks of size M × M, while A1 and A2 are
Kronecker product matrices defined in terms of N × N left-stochastic matrices A1 and A2 as A1 =
A1 ⊗ IM and A2 = A2 ⊗ IM . For example, in Eq. (1.122c) we have A1 = IN , A2 = Ā, A1 = IMN ,
A2 = Ā, and D = IMN − MR.

Matrix products of the form (1.127) are induced by the cooperation mechanism that is inherent
to diffusion learning. They have a useful property: it turns out that these matrix products are stable,
regardless of A1 and A2, as long as D is stable (i.e., has all its eigenvalues strictly inside the unit disc).
This useful result is easy to establish for symmetric left-stochastic matrices A1 and A2, as already noted
in [73]. This is because for symmetric matrices, their spectral radii coincide with their 2-induced norms
and, hence,

ρ(A1) = ‖A1‖, ρ(A2) = ‖A2‖. (1.128)

Consequently, because we already know that ρ(A1) = ρ(A2) = 1, it follows that

ρ(B) ≤ ‖B‖
≤ ‖A2‖ · ‖D‖ · ‖A1‖
= ρ(A2) · ρ(D) · ρ(A1)
= ρ(A2) · ρ(D) · ρ(A1)
= ρ(D), (1.129)

which confirms that a stable D guarantees a stable B, regardless of A1 and A2.
The conclusion that B in Eq. (1.127) is stable whenever D is stable continues to hold even when

the matrices A1 and A2 are not necessarily symmetric. However, the argument leading to Eq. (1.129)
will need to be adjusted because property (1.128) need not hold anymore. This more general result



52 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

was established in [61, App. D] and also in [100, App. A, pp. 3471–3473], where it was shown
that multiplication of a symmetric block diagonal matrix D by any (not necessarily symmetric)
left-stochastic Kronecker-product transformations from left and right generally reduces the spectral
radius, i.e.,

ρ
(
AT

2 DAT
1

)
≤ ρ(D). (1.130)

Accordingly, a stable D again ensures a stable B. This conclusion was established in the above
references by replacing the 2-induced norm used to arrive at Eq. (1.129) by a more convenient block-
maximum norm, denoted by ‖ · ‖b,∞ and defined as follows.

Let x = col{x1, x2, . . . , xN} denote an N × 1 block column vector whose individual entries are
themselves vectors of size M×1 each. Following [31,61,101], the block maximum norm of x is denoted
by ‖x‖b,∞ and is defined as

‖x‖b,∞ �= max
1≤k≤N

‖xk‖. (1.131)

That is, ‖x‖b,∞ is equal to the largest Euclidean norm of its block components (this definition extends
the regular notion of the ∞-norm of a vector to block vectors). The vector norm (1.131) induces a
block-maximum matrix norm. Let A denote an arbitrary N × N block matrix with individual block
entries of size M × M each. Then, the block-maximum norm of A is defined as

‖A‖b,∞ �= max
x �=0

‖Ax‖b,∞
‖x‖b,∞

. (1.132)

The block-maximum norm has several useful properties; see [61]. In particular, when A is N × N
left-stochastic and A = A ⊗ IM , then it can be verified that ‖AT‖b,∞ = 1. Likewise, when D is
block diagonal and symmetric, then ‖D‖b,∞ = ρ(D). Consequently, repeating the argument leading to
Eq. (1.129) and replacing the 2-induced norm used there by the block-maximum norm we have

ρ(B) ≤ ‖B‖b,∞ ≤ ‖AT
2 ‖b,∞ · ‖D‖b,∞ · ‖AT

1 ‖b,∞ = ρ(D) (1.133)

and we again conclude that a stable symmetric D guarantees a stable B for general left-stochastic
matrices A1 and A2 because, for symmetric D, it holds that ρ(D) = ‖D‖b,∞.

Remark 1.1. The same argument (1.133) can be used to relax the requirement of symmetry and
stability on the block diagonal matrix D. Actually, as long as ‖D‖b,∞ < 1, which is guaranteed by
requiring the block diagonal entries of D to have their 2-induced norms bounded by one, we can again
conclude that ρ(B) < 1 so that B is stable.

Remark 1.2. The validity of property (1.130) for general left-stochastic matrices was already noted
and exploited in earlier works, e.g., in Lemma 1 of [74] and in Lemma 2 of [102]. However, the
statement of Lemma 1 in [74] left out the qualification “diagonal” for the center matrix, and the norm
‖ · ‖ρ that was used in the proof of the lemma in Appendix I of [74] should be replaced by the
‖ · ‖∞-norm. Although these corrections were already noted in the references [61,100], we restate



1.7 NETWORK STABILITY AND PERFORMANCE 53

below the correct form of Lemma 1 from [74] for accuracy and provide its adjusted proof using
the current notation. That lemma deals with left-stochastic matrices A1 and A2 prior to extension by
Kronecker products. Its correct statement should read as follows (the word “diagonal” is missing from
the statement in [74]).

Restatement of Lemma 1 [74]: Let A1, A2, and D denote arbitrary N × N matrices, where A1 and A2
have real nonnegative entries, with columns adding up to one, i.e., 1TA1 = 1T, 1TA2 = 1T. Then,
the matrix B = AT

2 DAT
1 is stable for any choice of A1 and A2 if, and only if, the diagonal matrix D

is stable.
Proof. One immediate derivation is to employ the ∞-norm and to note that

‖AT
1 ‖∞ = 1 = ‖AT

2 ‖∞, ‖D‖∞ = ρ(D) (1.134)

and, hence,

ρ(B) ≤ ‖B‖∞ ≤ ‖AT
2 ‖∞ · ‖D‖∞ · ‖AT

1 ‖∞ = ρ(D). (1.135)

It follows that a stable D guarantees a stable B. A second derivation that fixes the argument from
Appendix I of [74] relies on using the ∞-norm instead of the ρ-norm used there. Thus, note that we
can alternatively argue that

‖Bi‖∞ ≤
(
‖AT

2 ‖∞
)i · (‖D‖∞)i ·

(
‖AT

1 ‖∞
)i

= (ρ(D))i −→ 0, as i → ∞ (1.136)

when D is stable. This completes the proof of Lemma 1 from [74].
Remark 1.3. These same arguments establish the validity of Lemma 2 from [102], which deals with

a special case involving a matrix of the form B = AT
2 D using the current notation (the matrix in [102]

is denoted by F = CTM with B ← F , A2 ← C, and D ← M; moreover, the matrix M is now
generally nonsymmetric but still block diagonal with stable entries of the form Mkk = (I − PkSk)F
for some matrices {Pk, Sk, F} defined in [102]. When ‖Mkk‖2 < 1, these block diagonal entries will
have 2-induced norms smaller than one so that ‖D‖b,∞ < 1. Again, the ρ-norm used in the proof of
Lemma 2 in [102] should be replaced by the ‖ · ‖b,∞ norm and the argument adjusted as in Eq. (1.133)
or, alternatively, we note that

‖Bi‖b,∞ ≤
(
‖AT

2 ‖b,∞
)i · (‖D‖b,∞

)i −→ 0, as i → ∞. (1.137)

�

1.7.2 DIFFUSION NETWORKS
Given the superior stability properties of diffusion strategies for adaptation and learning over networks,
we continue our presentation by focusing on this class of algorithms. The results in the previous section
focus on MSE networks, which deal with MSE cost functions. We now consider networks with more
general costs, {Jk(w)}, and apply diffusion strategies to seek the global minimizer, wo, of the aggregate
cost function, Jglob(w), defined by Eq. (1.56). Without loss in generality, we consider ATC diffusion
implementations of the form (1.88):



54 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

ψk,i=wk,i−1 − μk(i)∇̂wT Jk(wk,i−1), (1.138a)

wk,i =
∑

�∈N k,i

a�k(i) ψ�,i. (1.138b)

Similar conclusions will apply to CTA diffusion implementations.
Assumption 1.7 (Conditions on cost functions). The aggregate cost Jglob(w) in Eq. (1.56) is

twice differentiable and satisfies a condition similar to Eq. (1.9) in Assumption 1.1 for some positive
parameters νd ≤ δd. Moreover, all individual costs {Jk(w)} are assumed to be strongly convex with their
global minimizers located at wo, as indicated earlier by Eq. (1.73). �

As explained before following Eq. (1.73), references [1,2,37] present results on the case in which
the individual costs are only convex and need not be strongly convex. These references also discuss the
case in which the individual costs need not share minimizers. With each agent k in Eq. (1.88), we again
associate a gradient noise vector:

sk,i(wk,i−1) �= ∇̂wT Jk(wk,i−1) − ∇wT Jk(wk,i−1). (1.139)

Assumption 1.8 (Conditions on gradient noise). It is assumed that the first- and second-order
conditional moments of the gradient noise components satisfy:

E
[
sk,i(wk,i−1) |F i−1

] = 0, (1.140a)

E

[
sk,i(wk,i−1)sT�,i(w�,i−1) |F i−1

]
= 0, ∀ k �= �, (1.140b)

E

[
‖sk,i(wk,i−1)‖2 |F i−1

]
≤ β2

k ‖w̃k,i−1‖2 + σ 2
s,k (1.140c)

almost surely for some nonnegative scalars β2
k and σ 2

s,k, and where F i−1 represents the collection of
all random events generated by the iterates from across all agents, {w�,j, � = 1, 2, . . . , N}, up to time
i − 1. Moreover, it is assumed that the limiting covariance matrix of sk,i(wo) exists:

Rs,k
�= lim

i→∞E

[
sk,i(wo)sTk,i(w

o) |F i−1

]
. (1.140d)

�
We collect the error vectors and gradient noises from across all agents into N × 1 block vectors,

whose individual entries are of size M × 1 each:

w̃i
�=

⎡
⎢⎢⎢⎣

w̃1,i
w̃2,i

...
w̃N,i

⎤
⎥⎥⎥⎦ , si

�=

⎡
⎢⎢⎢⎣

s1,i
s2,i

...
sN,i

⎤
⎥⎥⎥⎦ (1.141)

and where we are dropping the argument wk,i−1 from the sk,i(·) for compactness of notation. Likewise,
we introduce the following N × N block diagonal matrices, whose individual entries are of size M × M
each:

Mi = diag{ μ1(i)IM , μ2(i)IM , . . . , μN (i)IM }, (1.142a)

Hi−1 = diag
{

H1,i−1, H2,i−1, . . . , HN,i−1
}

, (1.142b)



1.7 NETWORK STABILITY AND PERFORMANCE 55

where

Hk,i−1
�=
∫ 1

0
∇2

wJk(wo − tw̃k,i−1)dt. (1.142c)

Now, in a manner similar to Eq. (1.29b), we can appeal to the mean-value theorem [2,30,44] to note
that

∇wTJk(wk,i−1) = −Hk,i−1w̃k,i−1 (1.143)

so that the approximate gradient vector can be expressed as:

∇̂wTJk(wk,i−1) = −Hk,i−1w̃k,i−1 + sk,i(wk,i−1). (1.144)

Subtracting wo from both sides of Eqs. (1.138a), (1.138b), and using Eq. (1.144), we find that the
network error vector evolves according to the following stochastic recursion:

w̃i = Bi−1w̃i−1 + AT
i Misi (1.145a)

where

Bi−1
�= AT

i
(
INM − MiHi−1

)
. (1.145b)

Recursion (1.145a) describes the evolution of the network error vector for general convex costs, Jk(w),
in a manner similar to recursion (1.119a) in the MSE case. However, recursion (1.145a) is more
challenging to deal with because of the presence of the random matrix Hi−1; this matrix is replaced by
the constant term R in the earlier recursion (1.119a) because that example deals with MSE networks
where the individual costs, Jk(w), are quadratic in w and, therefore, their Hessian matrices are constant
and independent of w. In that case, each matrix Hk,i−1 in Eq. (1.142c) will evaluate to 2Ru,k and the
matrix Hi−1 in Eq. (1.145b) will coincide with the matrix R defined by Eq. (1.119c).

The next statement ascertains that sufficiently small step-sizes exist that guarantee the MSE stability
of the asynchronous diffusion strategy (1.138a) and (1.138b) [2,3].

Lemma 1.4 (MSE network stability). Consider an asynchronous network of N interacting agents
running the ATC diffusion strategy (1.138a) and (1.138b). Assume the conditions in Assumptions 1.6–
1.8 hold. Let

μx,max = max
1≤k≤N

{
μx,k

} = max
1≤k≤N

(
μ̄k +

σ 2
μ,k

μ̄k

)
. (1.146)

Then, there exists μo > 0 such that for all μx,max < μo:

lim sup
i→∞

E‖w̃k,i‖2 = O(μx,max). (1.147)

Proof. See App. IV of [3]. �
Result (1.147) shows that the MSD of the network is in the order of μx,max. Therefore, sufficiently

small step-sizes lead to sufficiently small MSDs. As was the case with the discussion in Section 1.2.7,
we can also seek a closed-form expression for the MSD performance of the asynchronous diffusion
network and its agents. To do that, we first introduce the analog of Assumption 1.4 for the network case.



56 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Assumption 1.9 (Smoothness Conditions). The Hessian matrix of the individual cost functions
{Jk(w)} and the noise covariance matrices defined for each agent in a manner similar to Eq. (1.17a) and
denoted by Rs,k,i(w), are assumed to be locally Lipschitz continuous in a small neighborhood around wo:

‖∇2
w Jk(wo + δw) − ∇2

w Jk(wo)‖ ≤ τk,d‖δw‖, (1.148a)

‖Rs,k,i(wo + δw) − Rs,k,i(wo)‖ ≤ τk,s‖δw‖κ (1.148b)

for small perturbation ‖δw‖ ≤ rd and for some τk,d, τk,s ≥ 0 and 1 ≤ κ ≤ 2. �
Lemma 1.5 (Asynchronous network MSD performance). Consider an asynchronous network of

N interacting agents running the asynchronous diffusion strategy (1.138a) and (1.138b). Assume the
conditions under Assumptions 1.6, 1.7, 1.8, and 1.1 hold. Assume further that the step-size parameter
μx,max is sufficiently small to ensure mean-square stability, as already ascertained by Lemma 1.4. Then,

MSDasyn
diff,k ≈ MSDasyn

diff, av ≈ 1

2
Tr

⎡
⎢⎣
⎛
⎝ N∑

k=1

μ̄kp̄kHk

⎞
⎠

−1⎛
⎝ N∑

k=1

(μ̄2
k + σ 2

μ,k)pc,kkRs,k

⎞
⎠
⎤
⎥⎦ , (1.149a)

where Hk = ∇2
w Jk(wo). Moreover, for a large enough i, the convergence rate toward the above steady-

state value is well approximated by the scalar:

α
asyn
dist =1 − 2λmin

⎛
⎝ N∑

k=1

μ̄kp̄kHk

⎞
⎠+ O

(
μ

1+1/N2

x,max

)
. (1.149b)

Proof. See App. XII in [4]. �
Example 1.27 (Gaussian regression data). MSE performance expressions of the form (1.149a)

are accurate to first-order in the step-size parameters, i.e., they are on the order of O(μ̄k). The same
is true of expression (112) from [1] in the synchronous case. There are situations, however, where
exact expressions for the MSE performance can be derived for multiagent networks. We illustrate
this possibility here for the case of MSE networks of the type described earlier in Example 1.13. We
consider first synchronous networks and comment later on how the results should be adjusted to handle
asynchronous behavior.

We refer to the same setting of Example 9 from [1] where we have N agents observing streaming
data {dk(i), uk,i} that satisfy the regression model:

dk(i) = uk,iw
o + vk(i). (1.150a)

We assume the regression vectors are zero-mean Gaussian-distributed with diagonal covariance
matrices denoted by �k, say,

Ru,k = EuT
k,iuk,i

�= �k > 0. (1.150b)

We further assume that the regression data is temporally white and independent over space so that

EuT
k,iu�,j = Ru,kδk,�δi,j. (1.150c)

We also assume that the measurement noise process vk(i) is temporally white and independent over
space so that Evk(i)v�(j) = σ 2

v,kδk,�δi,j in terms of the Kronecker delta sequence δm,n. Likewise, the



1.7 NETWORK STABILITY AND PERFORMANCE 57

measurement noise vk(i) and the regression data u�,j are assumed to be independent of each other for
all k, �, i, j.

The Gaussian assumption on the regression data is useful because, for this case, fourth-order
moments of the regression vectors can be evaluated in closed form (and such fourth-order moment
calculations will arise in the process of determining closed-form expressions for the MSE). Specifically,
for any matrix Q ≥ 0 of size M × M, it holds for independent real-valued Gaussian regressors that [23]
(there is a typo in reproducing this expression in the second equation of App. II in [74]):

EuT
k,iuk,iQuT

�,iu�,i = Ru,kQRu,� + δk,�
{
Ru,kTr

(
QRu,k

)+ Ru,kQRu,k
}

. (1.150d)

We assume the network is running a diffusion strategy of the form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φk,i−1 =
∑

�∈Nk

a1,�kw�,i−1,

ψk,i = φk,i−1 + 2μkuT
k,i

[
dk(i) − uk,iφk,i−1

]
,

wk,i =
∑

�∈Nk

a2,�kψ�,i.

(1.151a)

which includes both the ATC and CTA LMS diffusion forms as special cases. We know from (77b) in
[1] that the error network vector evolves according to the dynamics

w̃i = AT
2 (I − MRi)AT

1 w̃i−1 − AT
2 Mzi, i ≥ 0, (1.151b)

which is defined in terms of the following N × 1 column vectors whose entries are of size M × 1 each:

zi
�=

⎡
⎢⎢⎢⎢⎣

2uT
1,iv1(i)

2uT
2,iv2(i)

...
2uT

N,ivN (i)

⎤
⎥⎥⎥⎥⎦ , si

�=

⎡
⎢⎢⎢⎣

s1,i(φ1,i−1)
s2,i(φ2,i−1)

...
sN,i(φN,i−1).

⎤
⎥⎥⎥⎦ (1.151c)

Moreover,

A1
�= A1 ⊗ IM , A2

�= A2 ⊗ IM (1.152a)

while the quantities

M �= diag{ μ1IM , μ2IM , . . . , μNIM }, (1.152b)

Ri
�= diag

{
2uT

1,iu1,i, 2uT
2,iu2,i, . . . , 2uT

N,iuN,i

}
, (1.152c)

R �= ERi = diag
{
2Ru,1, 2Ru,2, . . . , 2Ru,N

}
, (1.152d)

S �= Eziz
T
i = diag

{
4σ 2

v,1Ru,1, . . . , 4σ 2
v,NRu,N

}
(1.152e)

are N×N block diagonal matrices, whose individual entries are of size M×M each. Let � be any N×N
nonnegative definite block matrix that we are free to choose, with blocks of size M ×M. Computing the
�-weighted squared norm of the error vector in Eq. (1.151b) under expectation gives (see the derivation
leading to (269) in [61] or (38)–(39) in [74]):

E‖w̃i‖2
� = E‖w̃i−1‖2

�′ + E

(
zTi MA2�AT

2 Mzi

)
, (1.153a)



58 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

where the deterministic weighting matrix �′ is given by:

�′ = A1

{
A2�AT

2 − A2�AT
2 MR − RMA2�AT

2 + E

(
RiMA2�AT

2 MRi

)}
AT

1 . (1.153b)

We can evaluate the last expectations in Eqs. (1.153a), (1.153b) in closed form. But first we need to
introduce a convenient block-vector notation, denoted by bvec(·). Thus, given an N × N block matrix,
with blocks of size M × M each, say for N = 3,

X =
⎡
⎣ X11 X12 X13

X21 X22 X23
X31 X32 X33

⎤
⎦ (1.154a)

its block vectorization is obtained as follows. We first vectorize each of the block entries and define
the column vector xk� = vec(Xk�); this operation stacks the columns of Xk� on top of each other.
Subsequently, the quantity bvec(X) is obtained by stacking the vectors {xk�} on top of each other:

bvec(X) �= col{x11, x21, x31, x12, x22, x32, x13, x23, x33}. (1.154b)

The following two useful properties can be easily verified for any block matrices {A, B, �} of
compatible dimensions [103,104]:

bvec(A�B) = (BT ⊗b A)bvec(�), (1.154c)

Tr(ATB) = (bvec(A))T bvec(B), (1.154d)

where the notation A⊗bB denotes the block Kronecker product of two block matrices A and B (assumed
here to be both of size N × N with M × M blocks); the k�th block of A ⊗b B has size NM2 × NM2 and
is given by [104]:

[A ⊗b B]k� =

⎡
⎢⎢⎢⎣

Ak� ⊗ B11 Ak� ⊗ B12 . . . Ak� ⊗ B1N
Ak� ⊗ B21 Ak� ⊗ B22 . . . Ak� ⊗ B2N

...
...

. . .
...

Ak� ⊗ BN1 Ak� ⊗ BN2 . . . Ak� ⊗ BNN

⎤
⎥⎥⎥⎦ (1.154e)

in terms of the traditional Kronecker product operation. Using the block Kronecker properties (1.154c)
and (1.154d) we now find that the last expectation in Eq. (1.153a) is given by:

E

(
zTi MA2�AT

2 Mzi

)
= bTσ , (1.155a)

σ
�= bvec(�), (1.155b)

b
�= (AT

2 ⊗b AT
2 )(M ⊗b M)bvec(S). (1.155c)

This is the same expression (56) from [73] for the case of CTA diffusion, and the same expression (42)
from [74]) for CTA and ATC diffusion (except that this latter reference used the traditional vec(.) and
Kronecker notation ⊗ instead of bvec(.) and the block Kronecker notation ⊗b).



1.7 NETWORK STABILITY AND PERFORMANCE 59

Let us now evaluate the last expectation in Eq. (1.153a). Let Q = MA2�AT
2 M so that we can

rewrite more compactly:

K �= E

(
RiMA2�AT

2 MRi

)
= ERiQRi. (1.156a)

The k�th block entry in this matrix is given by

Kk� = 4EuT
k,iuk,iQk�uT

�,iu�,i (1.156b)

in terms of the k�th block of Q. Using property (1.150d) for Gaussian regressors, we get

Kk� = 4Ru,kQk�Ru,� + 4δk�
{
Ru,kTr

[
QkkRu,k

]+ Ru,kQkkRu,k
}

. (1.156c)

It is clear from the above expression that the matrix K has the following general form involving two
block diagonal matrices:

1

4
K = RQR + Z1 + Z2, (1.156d)

Z1
�= blkdiag

{
Ru,kQkkRu,k

}
, (1.156e)

Z2
�= blkdiag

{
Ru,kTr

(
QkkRu,k

)}
. (1.156f)

Introduce the block diagonal matrices (written for N = 3):

L1
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IM2

0
0

0
IM2

0
0

0
IM2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.157a)

L2
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1λT
1

0
0

0
λ2λT

2
0

0
0

λ3λT
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.157b)

where λk = vec(�k). Then, it can be verified that

bvec(Z1) = L1(R ⊗b R)bvec(Q), (1.158a)

bvec(Z2) = L2bvec(Q). (1.158b)



60 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

Noting that

bvec(Q) = (M ⊗b M)(A2 ⊗b A2)σ (1.159)

we conclude that

bvec(K) = 4X (M ⊗b M)(A2 ⊗b A2)σ , (1.160a)

X �= (I + L1)(R ⊗b R) + L2. (1.160b)

Note that the matrix X has the following block-diagonal structure:

X �= diag {X1, X2, . . . ,XN} , (1.160c)

Xk
�= diag

{
X (1)

k , X (2)
k , . . . ,X (N)

k

}
, (1.160d)

X (�)
k =

{
�k ⊗ ��, when k �= �,
λkλ

T
k + 2�k ⊗ �k, when k = �.

(1.160e)

which is the same structure derived through equations (57)–(67) in [73]. Substituting Eq. (1.160a)
into Eq. (1.153b) and using again Eqs. (1.154c), (1.154d), we find that the block vectorized forms of
the weighting matrices {�, �′} are related via (the expression for F below fixes the typo in Eq. (44)
from [74]; in the derivation in this example we considered the special case in which Sm = I in (44)
from [74]):

σ ′ = Fσ , (1.161a)

F �= (A1 ⊗b A1) {I − (RM ⊗b I) − (I ⊗b RM) + 4(M ⊗b M)X } (A2 ⊗b A2). (1.161b)

This is the same expression for F in Eq. (69) from [73] for the case of CTA diffusion (where A2 = IN).
This is also the same expression for F in Eq. (41) from [74] for CTA and ATC diffusion (except that
this latter reference wrote ⊗ instead ⊗b). Substituting Eq. (1.155a) and the above expression for σ ′ into
Eq. (1.153a), and using the compact notation ‖x‖2

σ for ‖x‖2
� , we rewrite Eq. (1.153a) in the form

E‖w̃i‖2
σ = E‖w̃i−1‖2

Fσ
+ bTσ . (1.162)

In the steady state, as i → ∞, the MSE approaches

lim
i→∞ E‖w̃i‖2

(I−F )σ = bTσ . (1.163)

As explained in Sec. 6.6 of [61], the network MSD can be assessed by selecting σ to satisfy

(I − F )σ = 1

N
bvec(INM), (1.164)

which leads to the desired expression

MSDsync
diff, av = 1

N
bT(I − F )−1bvec(INM), (1.165)

which is expression (105a) from [73].



1.8 CONCLUDING REMARKS 61

To illustrate how these results are adjusted for asynchronous behavior, we consider the case in
which the step-size parameters {μk} in Eq. (1.151a) are replaced by random values {μk(i)}. We denote
the mean and variances of these random variables as follows:

μ̄k
�= Eμk(i), (1.166a)

Mi
�= diag{μ1(i)IM , μ2(i)IM , . . . , μN (i)IM}, (1.166b)

M̄ �= EMi, (1.166c)

Cμ
�= E(Mi − M̄) ⊗b (Mi − M̄). (1.166d)

If we now repeat the same analysis, expressions (1.153a) and (1.153b) are replaced by

E‖w̃i‖2
� = E‖w̃i−1‖2

�′ + E

(
zTi MiA2�AT

2 Mizi

)
, (1.167a)

�′ = A1

{
A2�AT

2 − A2�AT
2 M̄R − RM̄A2�AT

2 + E

(
RiMiA2�AT

2 MiRi

)}
AT

1 . (1.167b)

We can evaluate the last expectations in Eqs. (1.167a), (1.167b) as follows. First we have:

E

(
zTi MiA2�AT

2 Mizi

)
= bTσ , (1.168a)

where

b
�= Ebvec

(
AT

2 MiSMiA2

)
,

= (AT
2 ⊗b AT

2 )E(Mi ⊗b Mi)bvec(S),

= (AT
2 ⊗b AT

2 )(Cμ + M̄ ⊗b M̄)bvec(S). (1.168b)

Second, we have:

bvec
{
E

(
RiMiA2�AT

2 MiRi

)}
= E(Mi ⊗b Mi)E (Ri ⊗b Ri) (A2 ⊗b A2)σ

= (Cμ + M̄ ⊗b M̄)E (Ri ⊗b Ri) (A2 ⊗b A2)σ (1.169)

so that we replace the quantities M and (M⊗b M) in the expressions (1.155c) and (1.161b) for b and
F by M̄ and (Cμ + M̄ ⊗b M̄), respectively. �

1.8 CONCLUDING REMARKS
This chapter provides an overview of asynchronous strategies for adaptation, learning, and optimization
over networks including noncooperative, centralized, consensus, and diffusion strategies. Particular
attention is given to the constant step-size case in order to examine solutions that are able to adapt
and learn continuously from streaming data. The presentation complements the results from [1,2]. We
introduced a fairly general model for asynchronous behavior that allows for random step-sizes, link
failures, random topology variations, and random combination coefficients. We examined the MSE
performance and stability properties under asynchronous events and recovered results for synchronous
operation as a special case. The results indicate that asynchronous networks are robust, resilient to
failure, and remain mean-square stable for sufficiently small step-sizes.



62 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

There are of course several other aspects of distributed strategies that are not covered in this work.
Comments on these aspects can be found in [1,2,61], including issues related to (a) the noisy exchange
of information over links (e.g., [9,61,105–109]); (b) the use of gossip strategies (e.g., [7,10,15,17,65,
110,111]); (c) the exploitation of sparsity constraints (e.g., [112–115]); (d) the solution of constrained
optimization problems (e.g., [8,95,116–118]); (e) the use of distributed solutions of the recursive least-
squares type (e.g., [61,66,93]); (f) the development of distributed state-space solutions (e.g., [66,92,102,
119–124]); (g) the study of incremental-based strategies (e.g., [125–137]); (h) the study of distributed
solutions under multitask environments [138–142]; (i) the case of nonsmooth risk functions in the
context of subgradient learning [19,20,63,113]; and (j) the incorporation of proximal operators into the
distributed setting [143–147].

REFERENCES
[1] Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.
[2] Sayed AH. Adaptation, learning, and optimization over networks. In: Foundations and trends in machine

learning, July 2014, vol. 7(4–5). Boston-Delft: NOW Publishers; 2014. p. 311–801.
[3] Zhao X, Sayed AH. Asynchronous adaptation and learning over networks—Part I: Modeling and stability

analysis. IEEE Trans Signal Process 2015;63(4):811–26.
[4] Zhao X, Sayed AH. Asynchronous adaptation and learning over networks—Part II: Performance analysis.

IEEE Trans Signal Process 2015;63(4):827–42.
[5] Zhao X, Sayed AH. Asynchronous adaptation and learning over networks—Part III: Comparison analysis.

IEEE Trans Signal Process 2015;63(4):843–58.
[6] Tsitsiklis J, Bertsekas D, Athans M. Distributed asynchronous deterministic and stochastic gradient

optimization algorithms. IEEE Trans Autom Control 1986;31(9):803–12.
[7] Boyd S, Ghosh A, Prabhakar B, Shah D. Randomized gossip algorithms. IEEE Trans Inf Theory

2006;52(6):2508–30.
[8] Srivastava K, Nedic A. Distributed asynchronous constrained stochastic optimization. IEEE J Sel Topics

Signal Process 2011;5(4):772–90.
[9] Kar S, Moura JMF. Distributed consensus algorithms in sensor networks: link failures and channel noise.

IEEE Trans Signal Process 2009;57(1):355–69.
[10] Kar S, Moura JMF. Convergence rate analysis of distributed gossip (linear parameter) estimation: funda-

mental limits and tradeoffs. IEEE J Sel Topics Signal Process 2011;5(4):674–90.
[11] Kar S, Moura JMF. Sensor networks with random links: topology design for distributed consensus. IEEE

Trans Signal Process 2008;56(7):3315–26.
[12] Jakovetic D, Xavier J, Moura JMF. Weight optimization for consensus algorithms with correlated switching

topology. IEEE Trans Signal Process 2010;58(7):3788–801.
[13] Jakovetic D, Xavier J, Moura JMF. Cooperative convex optimization in networked systems: augmented

Lagrangian algorithms with directed gossip communication. IEEE Trans Signal Process 2011;59(8):
3889–902.

[14] Kar S, Moura JMF. Distributed consensus algorithms in sensor networks: quantized data and random link
failures. IEEE Trans Signal Process 2010;58(3):1383–400.

[15] Aysal TC, Yildiz ME, Sarwate AD, Scaglione A. Broadcast gossip algorithms for consensus. IEEE Trans
Signal Process 2009;57(7):2748–61.

[16] Aysal TC, Sarwate AD, Dimakis AG. Reaching consensus in wireless networks with probabilistic broadcast.
In: Proceedings of the Allerton conference communication, control, computer, September and October 2009.
IL: Allerton House; 2009, p. 732–9.

http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0010


REFERENCES 63

[17] Lopes C, Sayed AH. Diffusion adaptive networks with changing topologies. In: Proc. IEEE ICASSP, April
2008, Las Vegas; 2008. p. 3285–8.

[18] Takahashi N, Yamada I. Link probability control for probabilistic diffusion least-mean squares over
resource-constrained networks. In: Proceedings of the IEEE international conference acoustics, speech,
signal process, March 2010. Dallas, TX: ICASSP; 2010. p. 3518–21.

[19] Ying B, Sayed AH. Performance limits of stochastic sub-gradient learning, Part I: Single agent case: Signal
Processing 2018;144:271–82.

[20] Ying B, Sayed AH. Performance limits of stochastic sub-gradient learning, Part II: Multi-agent case: Signal
Processing 2018;144:253–64.

[21] Haykin S. Adaptive filter theory. Upper Saddle River, NJ: Prentice Hall; 2002.
[22] Widrow B, Stearns SD. Adaptive signal processing. Upper Saddle River, NJ: Prentice Hall; 1985.
[23] Sayed AH. Adaptive filters. NJ: Wiley; 2008.
[24] Sayed AH. Fundamentals of adaptive filtering. NJ: Wiley; 2003.
[25] Kailath T, Sayed AH, Hassibi B. Linear estimation. Upper Saddle River, NJ: Prentice Hall; 2000.
[26] Bishop CM. Pattern recognition and machine learning. Springer; 2007.
[27] Theodoridis S, Koutroumbas K. Pattern recognition. 4th ed. Academic Press; 2008.
[28] Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. NJ: Wiley; 2000.
[29] Poljak BT, Tsypkin YZ. Pseudogradient adaptation and training algorithms. Autom Remote Control

1973;12:83–94.
[30] Poljak B. Introduction to optimization. NY: Optimization Software; 1987.
[31] Bertsekas DP, Tsitsiklis JN. Parallel and distributed computation: numerical methods. 1st ed. Singapore:

Athena Scientific; 1997.
[32] Tsypkin YZ. Adaptation and learning in automatic systems. NY: Academic Press; 1971.
[33] Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004.
[34] Bertsekas D. Convex analysis and optimization. Athena Scientific; 2003.
[35] Nesterov Y. Introductory lectures on convex optimization: a basic course. Kluwer Academic Publishers;

2004.
[36] Chen J, Sayed AH. Diffusion adaptation strategies for distributed optimization and learning over networks.

IEEE Trans Signal Process 2012;60(8):4289–305.
[37] Chen J, Sayed AH. On the learning behavior of adaptive networks—Part I: Transient analysis. IEEE Trans

Inf Theory 2015;61(6):3487–517.
[38] Widrow B, Hoff Jr ME. Adaptive switching circuits. In: IRE WESCON Conv. Rec., Pt. 4; 1960. p. 96–104.
[39] Bertsekas DP, Tsitsiklis JN. Gradient convergence in gradient methods with errors. SIAM J Optim

2000;10(3):627–42.
[40] Feller W. An introduction to probability theory and its applications, vol. 2. NY: Wiley; 1971.
[41] Hahn GJ, Shapiro S. Statistical models in engineering. NY: Wiley; 1994.
[42] Abramowitz M, Stegun I, editors. Handbook of mathematical functions with formulas, graphs, and

mathematical tables. NY: Dover; 1972.
[43] Andrews GE, Askey R, Roy R. Special functions. Cambridge: Cambridge University Press; 1999.
[44] Rudin W. Principles of mathematical analysis. McGraw-Hill; 1976.
[45] Yousef NR, Sayed AH. A unified approach to the steady-state and tracking analysis of adaptive filters. IEEE

Trans Signal Process 2001;49(2):314–24.
[46] Al-Naffouri TY, Sayed AH. Transient analysis of data-normalized adaptive filters. IEEE Trans Signal

Process 2003;51(3):639–52.
[47] Chen J, Sayed AH. On the learning behavior of adaptive networks—Part II: Performance analysis. IEEE

Trans Inf Theory 2015;61(6):3518–48.
[48] Papoulis A, Pilla SU. Probability, random variables, and stochastic processes. NY: McGraw-Hill; 2002.

http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0090


64 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

[49] Durret R. Probability theory and examples. 2nd ed. Duxbury Press; 1996.
[50] Dudley RM. Real analysis and probability. 2nd ed. Cambridge University Press; 2003.
[51] Widrow B, McCool JM, Larimore MG, Johnson JCR. Stationary and nonstationary learning characteristics

of the LMS adaptive filter. Proc IEEE 1976;64(8):1151–62.
[52] Horowitz L, Senne K. Performance advantage of complex LMS for controlling narrow-band adaptive arrays.

IEEE Trans Acoust, Speech, Signal Process 1981;29(3):722–36.
[53] Jones S, Cavin III R, Reed W. Analysis of error-gradient adaptive linear estimators for a class of stationary

dependent processes. IEEE Trans Inf Theory 1982;28(2):318–29.
[54] Gardner WA. Learning characteristics of stochastic-gradient-descent algorithms: a general study, analysis,

and critique. Signal Process 1984;6(2):113–33.
[55] Feuer A, Weinstein E. Convergence analysis of LMS filters with uncorrelated Gaussian data. IEEE Trans

Acoust, Speech, Signal Process 1985;33(1):222–30.
[56] Foley JB, Boland FM. A note on the convergence analysis of LMS adaptive filters with Gaussian data. IEEE

Trans Acoust, Speech, Signal Process 1988;36(7):1087–9.
[57] Vapnik VN. The nature of statistical learning theory. NY: Springer; 2000.
[58] Towfic Z, Chen J, Sayed AH. On the generalization ability of distributed online learners. In: Proc. IEEE

workshop on machine learning for signal processing (MLSP), Santander, Spain; 2012. p. 1–6.
[59] Zhao X, Sayed AH. Performance limits for distributed estimation over LMS adaptive networks. IEEE Trans

Signal Process 2012;60(10):5107–24.
[60] Chen J, Sayed AH. Distributed pareto optimization via diffusion strategies. IEEE J Sel Topics Signal Process

2013;7(2):205–20.
[61] Sayed AH. Diffusion adaptation over networks. In: Chellapa R, Theodoridis S, editors. E-reference signal

processing, vol. 3. Academic Press; 2014. p. 323–454. Also available as arXiv:1205.4220v1 [cs.MA], May
2012.

[62] Nedic A, Ozdaglar A. Cooperative distributed multi-agent optimization. In: Eldar Y, Palomar D, edi-
tors. Convex optimization in signal processing and communications. Cambridge University Press; 2010.
p. 340–86.

[63] Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom
Control 2009;54(1):48–61.

[64] Johansson B, Keviczky T, Johansson M, Johansson K. Subgradient methods and consensus algorithms for
solving convex optimization problems. In: Proc. IEEE CDC, Cancun, Mexico; 2008. p. 4185–90.

[65] Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A. Gossip algorithms for distributed signal
processing. Proc IEEE 2010;98(11):1847–64.

[66] Xiao L, Boyd S, Lall S. A space-time diffusion scheme peer-to-peer least-squares-estimation. In: Proceed-
ings of information processing in sensor networks (IPSN), Nashville, TN; 2006. p. 168–76.

[67] Ren W, Beard RW. Consensus seeking in multi-agent systems under dynamically changing interaction
topologies. IEEE Trans Autom Control 2005;50:655–61.

[68] Olfati-Saber R, Shamma J. Consensus filters for sensor networks and distributed sensor fusion.
In: Proceedings of 44th IEEE conference on decision and control (CDC), Seville, Spain; 2005.
p. 6698–703.

[69] Barbarossa S, Scutari G. Bio-inspired sensor network design. IEEE Signal Process Mag 2007;24(3):
26–35.

[70] Sardellitti S, Giona M, Barbarossa S. Fast distributed average consensus algorithms based on advection-dif-
fusion processes. IEEE Trans Signal Process 2010;58(2):826–42.

[71] Braca P, Marano S, Matta V. Running consensus in wireless sensor networks. In: Proc. 11th international
conference on information fusion, Cologne, Germany; 2008. p. 1–6.

[72] Sayed AH, Tu SY, Chen J, Zhao X, Towfic Z. Diffusion strategies for adaptation and learning over networks.
IEEE Signal Process Mag 2013;30(3):155–71.

http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0305
arXiv:1205.4220v1 [cs.MA]
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0315
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0325
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0330
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0335
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0340
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0345
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0350
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0355
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0360
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0365
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0365
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0360
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0355
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0350
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0345
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0340
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0335
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0330
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0325
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0315
arXiv:1205.4220v1 [cs.MA]
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0250


REFERENCES 65

[73] Lopes CG, Sayed AH. Diffusion least-mean squares over adaptive networks: formulation and performance
analysis. IEEE Trans Signal Process 2008;56(7):3122–36.

[74] Cattivelli FS, Sayed AH. Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process
2010;58(3):1035–48.

[75] Horn RA, Johnson CR. Matrix analysis. Cambridge University Press; 2003.
[76] Tu SY, Sayed AH. Mobile adaptive networks. IEEE J Sel Topics Signal Process 2011;5(4):649–64.
[77] Cattivelli F, Sayed AH. Modeling bird flight formations using diffusion adaptation. IEEE Trans Signal

Process 2011;59(5):2038–51.
[78] Dekel O, Gilad-Bachrach R, Shamir O, Xiao L. Optimal distributed online prediction. In: Proceedings of

international conference on machine learning (ICML), Bellevue, WA; 2011. p. 713–20.
[79] Agarwal A, Duchi J. Distributed delayed stochastic optimization. In: Proceedings of neural information

processing systems (NIPS), Granada, Spain; 2011. p. 873–81.
[80] Predd JB, Kulkarni SB, Poor HV. Distributed learning in wireless sensor networks. IEEE Signal Process

Mag 2006;23(4):56–69.
[81] Towfic ZJ, Chen J, Sayed AH. Collaborative learning of mixture models using diffusion adaptation. In:

Proceedings of the IEEE workshop machine learning signal processing (MLSP), Beijing, China; 2011.
p. 1–6.

[82] Golub GH, Van Loan CF. Matrix computations. 3rd ed. Baltimore: The John Hopkins University Press;
1996.

[83] Berman A, Plemmons RJ. Nonnegative matrices in the mathematical sciences. PA: SIAM; 1994.
[84] Pillai SU, Suel T, Cha S. The Perron-Frobenius theorem: some of its applications. IEEE Signal Process Mag

2005;22(2):62–75.
[85] Tu SY, Sayed AH. Diffusion strategies outperform consensus strategies for distributed estimation over

adaptive networks. IEEE Trans Signal Process 2012;60(12):6217–34.
[86] Lopes CG, Sayed AH. Distributed processing over adaptive networks. In: Proceedings adaptive sensor array

processing workshop. MA: MIT Lincoln Laboratory; 2006. p. 1–5.
[87] Sayed AH, Lopes CG. Adaptive processing over distributed networks. IEICE Trans Fundam Electron

Commun Comput Sci 2007;E90-A(8):1504–10.
[88] Lopes CG, Sayed AH. Diffusion least-mean-squares over adaptive networks. In: Proceedings IEEE ICASSP,

Honolulu, Hawaii, vol. 3; 2007. p. 917–20.
[89] Lopes CG, Sayed AH. Steady-state performance of adaptive diffusion least-mean squares. In: Proceedings

IEEE workshop on statistical signal processing (SSP), Madison, WI; 2007. p. 136–40.
[90] Cattivelli FS, Sayed AH. Diffusion LMS algorithms with information exchange. In: Proceedings Asilomar

conference signals, system computer, Pacific Grove, CA; 2008. p. 251–5.
[91] Cattivelli FS, Lopes CG, Sayed AH. A diffusion RLS scheme for distributed estimation over adaptive

networks. In: Proceedings IEEE workshop on signal process. Advances wireless communication (SPAWC),
Helsinki, Finland; 2007. p. 1–5.

[92] Cattivelli FS, Sayed AH. Diffusion mechanisms for fixed-point distributed Kalman smoothing. In: Proceed-
ings EUSIPCO, Lausanne, Switzerland; 2008. p. 1–4.

[93] Cattivelli FS, Lopes CG, Sayed AH. Diffusion recursive least-squares for distributed estimation over
adaptive networks. IEEE Trans Signal Process 2008;56(5):1865–77.

[94] Ram SS, Nedic A, Veeravalli VV. Distributed stochastic subgradient projection algorithms for convex
optimization. J Optim Theory Appl 2010;147(3):516–45.

[95] Lee S, Nedic A. Distributed random projection algorithm for convex optimization. IEEE J Sel Topics Signal
Process 2013;7(2):221–9.

[96] Bianchi P, Fort G, Hachem W. Performance of a distributed stochastic approximation algorithm. IEEE Trans
Inf Theory 2013;59(11):7405–18.

http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0370
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0375
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0380
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0385
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0390
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0395
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0400
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0405
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0410
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0415
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0420
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0425
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0430
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0435
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0440
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0445
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0450
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0455
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0460
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0465
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0470
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0475
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0480
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0485
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0485
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0480
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0475
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0470
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0465
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0460
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0455
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0450
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0445
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0440
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0435
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0430
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0425
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0420
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0415
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0410
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0405
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0400
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0395
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0390
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0385
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0380
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0375
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0370


66 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

[97] Stankovic SS, Stankovic MS, Stipanovic DS. Decentralized parameter estimation by consensus based
stochastic approximation. IEEE Trans Autom Control 2011;56(3):531–43.

[98] Chen J, Sayed AH. On the limiting behavior of distributed optimization strategies. In: Proceedings
50th annual Allerton conference on communication, control, and computing, Monticello, IL; 2012.
p. 1535–42.

[99] Bondy JA, Murty USR. Graph theory. Springer; 2008.
[100] Zhao X, Tu SY, Sayed AH. Diffusion adaptation over networks under imperfect information exchange and

non-stationary data. IEEE Trans Signal Process 2012;60(7):3460–75.
[101] Takahashi N, Yamada I, Sayed AH. Diffusion least-mean-squares with adaptive combiners: formulation and

performance analysis. IEEE Trans Signal Process 2010;58(9):4795–810.
[102] Cattivelli F, Sayed AH. Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans

Autom Control 2010;55(9):2069–84.
[103] Tracy DS, Singh RP. A new matrix product and its applications in partitioned matrix differentiation. Statistica

Neerlandica 1972;26(4):143–57.
[104] Koning RH, Neudecker H, Wansbeek T. Block Kronecker products and the vecb operator. Linear Algebra

Appl 1991;149:165–84.
[105] Tu SY, Sayed AH. Adaptive networks with noisy links. In: Proceedings IEEE Globecom, Houston, TX;

2011. p. 1–5.
[106] Abdolee R, Champagne B. Diffusion LMS algorithms for sensor networks over non-ideal inter-sensor

wireless channels. In: Proceedings IEEE international conference distribution computer sensor systems
(DCOSS), Barcelona, Spain; 2011. p. 1–6.

[107] Khalili A, Tinati MA, Rastegarnia A, Chambers JA. Steady state analysis of diffusion LMS adaptive
networks with noisy links. IEEE Trans Signal Process 2012;60(2):974–9.

[108] Zhao X, Sayed AH. Combination weights for diffusion strategies with imperfect information exchange. In:
Proceedings IEEE ICC, Ottawa, Canada; 2012. p. 648–52.

[109] Mateos G, Schizas ID, Giannakis GB. Performance analysis of the consensus-based distributed LMS
algorithm. EURASIP J Adv Signal Process 2009:1–19. https://doi.org/10.1155/2009/981030. Article ID
981030.

[110] Shah D. Gossip algorithms. In: Foundations and trends in networking, vol. 3; 2009. p. 1–125.
[111] Rortveit OL, Husoy JH, Sayed AH. Diffusion LMS with communications constraints. In: Proceedings of the

44th Asilomar conference on signals, systems and computers, Pacific Grove, CA; 2010. p. 1645–9.
[112] Di Lorenzo P, Sayed AH. Sparse distributed learning based on diffusion adaptation. IEEE Trans Signal

Process 2013;61(6):1419–33.
[113] Chouvardas S, Slavakis K, Kopsinis Y, Theodoridis S. A sparsity-promoting adaptive algorithm for

distributed learning. IEEE Trans Signal Process 2012;60(10):5412–25.
[114] Chouvardas S, Mileounis G, Kalouptsidis N, Theodoridis S. A greedy sparsity-promoting LMS for

distributed adaptive learning in diffusion networks. In: Proceedings ICASSP, Vancouver, BC, Canada; 2013.
p. 5415–9.

[115] Liu Y, Li C, Zhang Z. Diffusion sparse least-mean squares over networks. IEEE Trans Signal Process
2012;60:4480–5.

[116] Yan F, Sundaram S, Vishwanathan SVN, Qi Y. Distributed autonomous online learning: regrets and intrinsic
privacy-preserving properties. IEEE Trans Knowl Data Eng 2013;25(11):2483–93.

[117] Theodoridis S, Slavakis K, Yamada I. Adaptive learning in a world of projections: a unifying framework for
linear and nonlinear classification and regression tasks. IEEE Signal Process Mag 2011;28(1):97–123.

[118] Towfic Z, Sayed AH. Adaptive penalty-based distributed stochastic convex optimization. IEEE Trans Signal
Process 2014;62(15):3924–38.

[119] Olfati-Saber R. Kalman-consensus filter: optimality, stability, and performance. In: Proceedings IEEE CDC,
Shangai, China; 2009. p. 7036–42.

http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0490
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0495
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0500
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0505
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0510
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0515
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0520
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0525
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0530
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0535
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0540
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0545
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0550
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0555
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0560
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0565
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0570
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0575
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0580
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0585
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0590
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0595
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0600
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0600
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0595
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0590
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0585
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0580
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0575
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0570
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0565
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0560
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0555
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0550
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0545
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0540
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0535
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0530
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0525
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0520
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0515
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0510
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0505
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0500
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0495
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0490


REFERENCES 67

[120] Olfati-Saber R. Distributed Kalman filtering for sensor networks. In: Proceedings of the 46th IEEE
conference decision control, New Orleans, LA; 2007. p. 5492–8.

[121] Cattivelli FS, Lopes CG, Sayed AH. Diffusion strategies for distributed Kalman filtering: formulation and
performance analysis. In: Proceedings IAPR workshop on cognitive information process (CIP), Santorini,
Greece; 2008. p. 36–41.

[122] Cattivelli F, Sayed AH. Diffusion distributed Kalman filtering with adaptive weights. In: Proceedings
Asilomar conference on signals, systems and computers, Pacific Grove, CA; 2009. p. 908–12.

[123] Khan UA, Moura JMF. Distributing the Kalman filter for large-scale systems. IEEE Trans Signal Process
2008;56(10):4919–35.

[124] Alriksson P, Rantzer A. Distributed Kalman filtering using weighted averaging. In: Proceedings of the 17th
international symposium on mathematical theory of networks and systems (MTNS), Kyoto, Japan; 2006.
p. 1–6.

[125] Bertsekas DP. A new class of incremental gradient methods for least squares problems. SIAM J Optim
1997;7(4):913–26.

[126] Bertsekas DP. Nonlinear programming. 2nd ed. Belmont, MA: Athena Scientific; 1999.
[127] Nedic A, Bertsekas DP. Incremental subgradient methods for nondifferentiable optimization. SIAM J Optim

2001;12(1):109–38.
[128] Rabbat MG, Nowak RD. Quantized incremental algorithms for distributed optimization. IEEE J Sel Areas

Commun 2005;23(4):798–808.
[129] Helou ES, De Pierro AR. Incremental subgradients for constrained convex optimization: a unified framework

and new methods. SIAM J Optim 2009;20:1547–72.
[130] Johansson B, Rabi M, Johansson M. A randomized incremental subgradient method for distributed

optimization in networked systems. SIAM J Optim 2009;20:1157–70.
[131] Blatt D, Hero AO, Gauchman H. A convergent incremental gradient method with a constant step size. SIAM

J Optim 2008;18:29–51.
[132] Sayed AH, Lopes C. Distributed recursive least-squares strategies over adaptive networks. In: Proceed-

ings of the 40th Asilomar conference on signals, systems and computers, Pacific Grove, CA; 2006.
p. 233–7.

[133] Lopes CG, Sayed AH. Incremental adaptive strategies over distributed networks. IEEE Trans Signal Process
2007;55(8):4064–77.

[134] Sayed AH, Cattivelli F. Distributed adaptive learning mechanisms. In: Haykin S, Ray Liu KJ, editors.
Handbook on array processing and sensor networks. NJ: Wiley; 2009. p. 695–722.

[135] Li L, Chambers J, Lopes CG, Sayed AH. Distributed estimation over an adaptive incremental network based
on the affine projection algorithm. IEEE Trans Signal Process 2010;58(1):151–64.

[136] Cattivelli F, Sayed AH. Analysis of spatial and incremental LMS processing for distributed estimation. IEEE
Trans Signal Process 2011;59(4):1465–80.

[137] Predd JB, Kulkarni SR, Poor HV. A collaborative training algorithm for distributed learning. IEEE Trans Inf
Theory 2009;55(4):1856–71.

[138] Nassif R, Richard C, Ferrari A, Sayed AH. Multitask diffusion adaptation over asynchronous networks.
IEEE Trans Signal Process 2016;64(11):2835–50.

[139] Bertrand A, Moonen M. Distributed adaptive node-specific signal estimation in fully connected sensor
networks—Part I: Sequential node updating. IEEE Trans Signal Process 2010;58(10):5277–91.

[140] Bogdanovic N, Plata-Chaves J, Berberidis K. Distributed diffusion-based LMS for node-specific parameter
estimation over adaptive networks. In: Proceedings IEEE ICASSP, Florence, Italy; 2014. p. 7223–7.

[141] Chen J, Richard C, Sayed AH. Multitask diffusion adaptation over networks. IEEE Trans Signal Process
2014;62(16):4129–44.

[142] Chen J, Richard C, Sayed AH. Diffusion LMS over multitask networks. IEEE Trans Signal Process
2015;63(11):2733–48.

http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0605
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0610
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0615
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0620
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0625
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0630
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0635
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0640
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0645
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0650
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0655
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0660
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0665
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0670
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0675
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0680
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0685
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0690
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0695
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0700
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0705
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0710
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0715
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0715
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0710
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0705
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0700
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0695
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0690
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0685
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0680
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0675
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0670
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0665
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0660
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0655
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0650
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0645
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0640
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0635
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0630
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0625
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0620
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0615
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0610
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0605


68 CHAPTER 1 ASYNCHRONOUS ADAPTIVE NETWORKS

[143] Chen AI, Ozdaglar A. A fast distributed proximal gradient method. In: Proceedings of annual Allerton
conference on communication, control, and computing, Allerton, USA; 2012. p. 601–8.

[144] Wee W, Yamada I. A proximal splitting approach to regularized distributed adaptive estimation in diffusion
network. In: Proceedings IEEE ICASSP, Vancouver, Canada; 2013. p. 5420–4.

[145] Vlaski S, Vandenberghe L, Sayed AH. Diffusion stochastic optimization with non-smooth regularizers. In:
Proceedings IEEE ICASSP, Shanghai, China; 2016. p. 4149–53.

[146] Vlaski S, Sayed AH. Proximal diffusion for stochastic costs with non-differentiable regularizers. In:
Proceedings IEEE ICASSP, Brisbane, Australia; 2015. p. 3352–6.

[147] Nassif R, Ferrari A, Richard C, Sayed AH. Proximal multitask learning over networks with sparsity-inducing
coregularization. IEEE Trans Signal Process 2016;64(23):6329–44.

http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0720
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0725
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0730
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0735
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0740
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0740
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0735
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0730
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0725
http://refhub.elsevier.com/B978-0-12-813677-5.00001-8/rf0720


CHAPTER

2ESTIMATION AND DETECTION
OVER ADAPTIVE NETWORKS

Vincenzo Matta∗, Ali H. Sayed†

Department of Information Engineering, Electrical Engineering and Applied Mathematics, DIEM,

University of Salerno, Fisciano, Italy∗ School of Engineering, École Polytechnique Fédérale

de Lausanne (EPFL), Lausanne, Switzerland†

2.1 INTRODUCTION
As illustrated in Chapter 1, adaptive networks are well suited to model the complex behavior exhibited
by several real-world systems as well as to perform decentralized information processing tasks. This
chapter provides an overview of results pertaining to estimation and detection by networked agents,
with a focus on adaptation to drifting conditions and learning from online streaming data. Specifically,
we formulate two canonical problems for statistical inference: (i) the estimation problem, where the
observer is tasked with approximating a vector parameter that models an unknown, continuous-valued
system state; and (ii) the detection problem, where the observer is tasked with choosing among
a finite number of hypotheses that model an unknown, discrete-valued system state. We consider
distributed variations of these problems where a collection of interconnected agents is tasked with
solving estimation or detection problems in a decentralized manner. We emphasize the need for adaptive
distributed implementations in order to enable continuous tracking of system dynamics when drifts
occur in the environmental conditions, which translate into drifts in the continuous-valued parameter
for estimation problems or drifts in the discrete-valued state for detection problems.

We also explain how diffusion learning strategies with constant step-size updates form a powerful
core for effective adaptive implementations. For these implementations, we review the basic formal
representations and present the results available about their theoretical performance characterization.
In particular, it will be seen that the theoretical characterization enables powerful understanding of the
interplay between network properties (such as the connectivity of each agent and the combination policy
used by these agents), the flow of information across the network, and the accuracy of the inferential
process.

Special attention is paid to universal laws for network inference performance. We examine the
resulting scaling laws with respect to the step-size parameter, and illustrate commonalities as well as
distinctive features between the estimation and detection settings. These fundamental laws are also
compared against known laws for estimation and detection in traditional (centralized or decentralized,
nonadaptive) inferential systems.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00002-X
Copyright © 2018 Elsevier Inc. All rights reserved.

69



70 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

Table 2.1 List of Notation and Symbols Used in the Text
and Appendices

Notation Description

R field of real numbers

1 column vector with all its entries equal to one

IM identity matrix of size M × M

x boldface notation denotes random variables

x normal font denotes realizations of random variables

P probability operator

E expectation operator

A capital letters denote matrices

a small letters denote vectors or scalars

x(i) small letters with parenthesis denote scalars

xi small letters with subscripts denote vectors

� matrix transposition

col{a, b} column vector with entries a and b

diag{a, b} diagonal matrix with entries a and b

‖x‖ Euclidean norm of its vector argument

Tr(A) trace of matrix A

A ⊗ B Kronecker product of A and B

α = o(μ) signifies that α/μ → 0 as μ → 0

α = O(μ) signifies that |α| ≤ c|μ| for some constant c > 0

α(μ) ·= β(μ) signifies that μ ln[α(μ)/β(μ)] → 0 as μ → 0

2.2 INFERENCE OVER NETWORKS
To start with, we introduce the two canonical inference problems of estimation and detection, with
reference to the classic nondistributed setting.

2.2.1 CANONICAL INFERENCE PROBLEMS
Statistical inference [1–3] broadly refers to the problem of learning about a phenomenon of interest
using a set of observations whose statistical distribution is governed by the unknown state of the
phenomenon. The two fundamental problems of statistical inference are the estimation problem and
the detection problem.

In the estimation problem, the phenomenon of interest is formally represented by a continuous-
valued parameter vector that influences the statistical distribution of the observations. The parameter
can be modeled as deterministic or random. In the latter case, a prior distribution is usually assigned to
the unknown parameter, and the resulting setting is referred to as the Bayesian setting. There exist many
criteria for optimizing the estimation performance, and many related estimation strategies. To mention
a few, the classic choices include the maximum likelihood estimator (for the deterministic parameter
setting), and the minimum mean-square-error estimator (for the Bayesian setting) [1,2,4–6]. Because in



2.2 INFERENCE OVER NETWORKS 71

the following treatment we shall focus on the deterministic-parameter setting, the unknown parameter,
wo ∈ RM , is denoted by a normal font letter. The inference process amounts to computing an estimator,
ŵ, which is (except for trivial cases) random because it is a function of the available random data. We
shall use boldface letters to refer to random quantities.

Example 2.1 (Classic nondistributed estimation). In wireless communications, it is often
desirable to acquire a channel state information (CSI), namely, to get knowledge about the response
of the channel connecting the source to the destination. Owing to channel-originated impairments, CSI
estimation is usually based on noisy data measured at the output of the channel when the input is loaded
with a sequence of training samples. This situation can be formally abstracted by saying that there is
a vector parameter, wo, which models the channel response, and two sequences of random variables,
x1, x2, . . . , xN and y1, y2, . . . , yN , which model the training samples as well as the measured output data.
The statistical distribution of the received data depends on the actual value taken by wo. Given a stream
of input-output data, the inferential goal is to produce an estimator, ŵ, that is able to approximate wo

with high fidelity, i.e., up to a small error. �
The estimation error is evaluated through some distortion measure. A popular distortion measure

is the mean-square-error, E‖wo − ŵ‖2, which, in particular, will play an important role in our
treatment. When the chosen distortion measure is difficult to evaluate, it is often convenient to
replace it with some asymptotic performance index. One widely adopted asymptotic descriptor is the
Fisher information matrix, whose inverse represents a lower bound on the best performance attainable
by an unbiased estimator (the Cramér-Rao lower bound) as well as the error-covariance matrix
achieved (asymptotically) by a maximum-likelihood estimator [1,2,4]. These estimation methods and
performance indices are well suited to those cases where exact knowledge of the data distributions
(parametrized by the unknown wo) is available. When such knowledge is limited or even absent, other
methods must be employed. A primary role in the nonparametric setting is played by the least-squares
criterion and by the theory of linear estimation [5]. Among other advantages, the estimators resulting
from these two approaches exhibit high versatility under many distinct operational conditions, and are
open to adaptive and sequential implementations, such as, for example, the famous least-mean-squares
(LMS) and recursive-least-squares (RLS) algorithms [6]. As we shall see later in Section 2.4, these
types of estimators play an important role in the development of distributed adaptive estimation (DAE).

Next, we describe the detection problem (aka hypothesis testing or decision problem) where the
phenomenon of interest is modeled through a finite number of states (the hypotheses). Again, the
unknown phenomenon can be modeled as deterministic or random. In the latter case, there is usually a
probability assignment (the prior distribution) on the occurrence of the different hypotheses (Bayesian
setting). The simplest and most typical setting is the binary detection setting, where one has a pair
of hypotheses: H0 (the null hypothesis) and H1 (the alternative hypothesis). In a nontrivial binary
detection problem, the dataset, which can be described through a sequence of random variables,
x1, x2, . . . , xN , has a distribution that is different under the different hypotheses. Such a difference
is key to enabling successful discrimination between the hypotheses.

Example 2.2 (Classic nondistributed detection). There is a cat in a closed box. It is not known
beforehand whether the cat is dead or alive. This model encompasses a binary state of nature, which
can be formally represented by a pair of hypotheses: namely, hypothesis H0 (dead cat) and hypothesis
H1 (cat alive). The observer (i.e., the agent who must perform detection) is not allowed to look inside
the box. The observer is allowed to collect observations from the box, which can be related to the cat’s
state. Such observations might include, for instance, temperature of the box, noise or smell perceived



72 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

in the proximity of the box, and so on. Multiple observations can be collected over time, and the stream
of data is conveniently abstracted as a suite of random variables, x1, x2, . . . , xN , featuring a different
distribution under the different hypotheses. Based upon the gathered data, the observer must produce a
binary decision as regards the cat’s state. Due to the randomness of the data, the final decision will be
affected by error. There will be a certain probability of declaring the cat as dead when it is alive, and of
declaring the cat alive when it is dead. �

The detection performance is typically measured in terms of the Type-I (false-alarm) and Type-II
(miss-detection) error probabilities defined, respectively, as [3,7,8]:

α � P[decide H1 while H0 is true], β � P[decide H0 while H1is true]. (2.1)

Simultaneous minimization of both errors is conflictual, and there exist different criteria to properly
carry out the detection performance optimization, including the Neyman-Pearson criterion, where one
error is constrained and the other is minimized; the Bayesian criterion, where the average (over the prior
distribution) error probability is minimized; and the min-max criterion, where the maximum of the two
errors is minimized. For all these criteria, the optimal test amounts to comparing the likelihood ratio
(between the two distributions under the different hypotheses) against some threshold [3,7,8]. When
the exact distribution of the observations is not known, the aforementioned optimization criteria cannot
be pursued, and detection statistics different from the likelihood ratio must be employed. A common
choice is the sum of some suitably chosen functions of the observations, which arise as the optimal
choice in some specific frameworks, e.g., for locally optimum detection [9], for robust detection [10],
and for universal/nonparametric hypothesis testing [11,12].

There exist also asymptotic criteria for optimizing and characterizing the performance of statistical
tests. For example, in a large deviations framework [12,13], one studies the problem where the
number of observations gets large and the error probabilities vanish exponentially fast with the
number of observations. The related optimization criterion focuses on maximizing the decaying rate
by maximizing the error exponents [12,13]. We shall see later in Section 2.5 that the large deviations
tool plays an important role in the study of distributed adaptive detection (DAD).

2.2.2 DISTRIBUTED INFERENCE PROBLEM
One fundamental classification for distributed inference distinguishes network architectures with a
fusion center from network architectures that are fully flat (and, therefore, fully decentralized).

Architectures with fusion center
Under this formulation, the network agents are geographically dispersed with respect to a central
processing unit (the fusion center) that is tasked with producing the final inference, and the main
concern is the necessity of communicating the data to and from the remote fusion center. The
fundamental constraint that reflects the distributed nature of the problem is often determined by the
data rate that each agent is allowed to sustain when communicating with the fusion center.

Example 2.3 (Distributed inference with fusion center). A firm’s chief executive officer (CEO) is
interested in solving an inferential (estimation and/or detection) task. The data sequence is not directly
available to the CEO, perhaps because it represents tactical decisions by a firm competitor. Therefore,
the CEO deploys a team of agents who gather noisy data about the underlying phenomenon of interest.
Due to various limitations, the aggregate data rate at which agents may deliver information to the CEO



2.2 INFERENCE OVER NETWORKS 73

is limited to, say, R bits per second. The fusion center must accomplish the inferential task based upon
the received data. The inference performance will be affected by the bit-rate, namely, by the degree of
compression employed by the remote agents. �

The literature about decentralized inference under rate constraints is very abundant, and offers a
number of elegant results and powerful solutions. An exhaustive overview of available results is not
practical here. We limit ourselves to some useful entry-points and results. Let us consider decentralized
estimation first. A careful management of the agents’ data rates translates often into optimization
of the agents’ quantizers to attain the final estimation goal. Such optimization can be carried out
under different settings, e.g., under the Bayesian setting [14–16], under the deterministic-parameter
setting [17,18], or under the nonparametric setting [19–22]. It is also possible to take into account the
role of the communication channel, as done, e.g., in [23,24]. Switching to the context of decentralized
detection with the fusion center, a general overview can be found in [25,26]. Optimization of the remote
quantizers for detection purposes is addressed in [27,28]. In many instances, decentralized detection
often focuses on the limiting case where the agents are constrained to send just one bit (i.e., a local
decision), and the main problem becomes that of establishing the best fusion rule [29–31]. Channel-
aware strategies are also proposed in [32,33]. An alternative approach to manage the agents’ data rates
for detection purposes is the censoring approach, where the constraint is imposed in terms of number
of channel accesses rather than in terms of bits [34,35].

The fundamental limits of distributed inference over networks employing a fusion center have also
been investigated under an information-theoretic setting in the context of statistical inference under
multiterminal data compression in [36], and multiterminal source coding in [37–39]. Some of these
fundamental limits will be used later in Section 2.6, where they will be compared against the scaling
laws derived for adaptive inference over fully decentralized networks.

Fully flat architectures
The fully flat (i.e., fully decentralized) architecture is the setting addressed in the present chapter. Under
this setting, there is no fusion center, and each agent is demanded to produce its individual inference
after (possibly iterated) consultation steps with the other agents. In order to keep the communication
burden low, the agents are allowed to perform only local interactions, i.e., communication is permitted
only among neighboring agents. Therefore, in contrast to the fusion center architecture, in the fully
decentralized case the limitations are typically less constrained in terms of transmission rates. The
limitations are more seriously dictated by the communication radius of each agent or by the network
connection graph.

Great interest is devoted in the literature to distributed algorithms that are able to reproduce linear
combinations of the local data (or some suitable function thereof) available at the individual agents.
Besides the implementation convenience of linear combination rules, one important reason for the
interest in these type of rules is that many optimal inference solutions require linear combinations
of some local statistics. This is the case, for instance, when one has to compute likelihood functions
in the presence of independent random variables. It is therefore not hard to explain why distributed
averaging protocols (aka consensus protocols or gossip algorithms) are prevalent in the design of fully
distributed inference algorithms [40–44]. In a nutshell, a consensus protocol prescribes that an agent
sequentially updates its state by successively averaging it with that of its neighbors, and all agents
perform simultaneously similar updates. Under proper conditions on the network connectivity, the



74 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

asymptotic solution (with exponentially fast convergence) is driven to the desired linear combination
of the initial states, i.e., of the desired local statistics.

Example 2.4 (Distributed inference with fully flat architecture). A wireless sensor network is
tasked with estimating an underlying phenomenon of interest, which is formally represented in terms
of a scalar parameter wo. The kth sensor, for k = 1, 2, . . . , N, possesses a noisy observation xk,
which is a random variable with mean wo. Each individual sensor must produce an estimate of wo,
after local consultation steps with its own neighbors. To this end, the sensors implement a consensus
protocol by sequentially updating their state through averaging with the states of their neighbors.
After a sufficient number of iterations, the state of each individual sensor becomes close enough to
the arithmetic average of the observations, namely, sensor k owns an estimate of the parameter wo

given by ŵk → 1
N

∑N
�=1 x�. �

The aforementioned consensus construction has been applied in the context of distributed estimation
and detection, e.g., in the framework known as running consensus [45–47] or consensus + innova-
tions [48–51]. In this framework, the data acquisition and inferential process take place simultaneously,
in the sense that the consensus algorithm runs when the agents are still gathering data and the updates
are able to incorporate the new streaming data in the computed statistics.

These implementations belong to the class of stochastic approximation solutions with decaying
step-sizes. For several useful formulations of distributed estimation and detection, the use of stochastic
approximation solutions with decaying step-sizes leads to asymptotically optimal performance in the
sense of asymptotic variance for the estimation framework [48], and in the sense of asymptotic relative
efficiency [46] or of error exponents [49–51] for the detection framework. Optimality in these works
is formulated with reference to the centralized solution, and the qualification “asymptotic” is used to
refer either to a large number of observations or a large time window. The error performance (e.g.,
mean-square-error for estimation or error probabilities for detection) is shown in these works to decay
with optimal rates as time elapses, provided that some conditions on the network structure are met. For
these results to hold, it is critical for the statistical properties of the data to remain invariant and for
the algorithms to rely on a recursive test statistic with a decaying step-size, which entails an inherent
limitation as regards their applicability in adaptive contexts. Indeed, the asymptotic equivalence to
centralized solutions goes hand in hand with a limited adaptation ability, namely, a limited capacity
of following drifts in the phenomenon of interest and/or in the observation distributions and/or in the
network topology. This is because, in order to converge to the same performance of the centralized
solution, the running consensus strategies tend to give credit to observations coming from the remote
past. The resulting “elephant’s memory” implies that if the underlying state (e.g., the value of the
parameter to be estimated) changes, the algorithm tends to remain trapped in the old value for a
relatively long time before converging to the new value. This is one of the main reasons why, in adaptive
network implementations, constant (as opposed to decaying) step-sizes are preferred. These constant
step-sizes endow the distributed algorithms with continuous learning and adaptation abilities even in
the face of drifting data and models.

2.2.3 INFERENCE OVER ADAPTIVE NETWORKS
In realistic distributed inference applications, the properties of the system should be allowed to vary
over time. For example, the object of the inference problem (i.e., the unknown parameter in the
estimation problem, or the unknown hypothesis in the detection problem) might drift over time.



2.2 INFERENCE OVER NETWORKS 75

Therefore, the adaptation aspect, i.e., the capability of tracking dynamic scenarios, becomes crucial.
In such scenarios, the diffusion algorithms (with nondecaying, constant step-size) provide effective
mechanisms for continuous adaptation and learning [52–54]. It is well known in the adaptation and
learning literature that using constant step-sizes in the update relations automatically infuses the
algorithms with a tracking mechanism that enables them to track variations in the underlying models.
This effect does not happen for algorithms with decaying step-sizes (such as the aforementioned
running-consensus algorithms) because the decaying step-size annihilates the gradient update term in
the limit and ultimately stops adaptation. In contrast, when the system conditions change at a certain
moment, an algorithm with a constant step-size will continue learning from that point onward and,
given sufficient time to learn, will converge to a steady-state learning performance. However, the use of
constant step-sizes allows gradient noise to seep into the operation of the algorithms. Therefore, a key
challenge in the study of adaptive networks is to show, that despite the presence of the gradient noise,
the algorithms are able to remain stable, learn, and deliver performance. We will find that the more an
adaptive network algorithm learns, the more it reduces the size of the gradient noise and this feedback
mechanism leads to effective learning.

Example 2.5 (Distributed adaptive estimation). A team of spy agents share the common goal of
monitoring the activity of a dangerous criminal, who is known to be present in a certain extended area.
Each agent collects, continually across time, information about the possible criminal’s location within
the area. Due to various forms of limitations (e.g., internal rules of the agencies, relative locations of
the agents, etc.), a given agent can exchange information only with a given subset of the agents. The
goal of each agent is that of estimating the current position of the criminal, based upon his own data,
and the data exchanged with the agents he is “connected” to. After a sufficient amount of time, it is
expected that the agents can converge to the same location. On the other hand, because the criminal can
change his position across time, the distributed processing implemented by the agents must be open
to adaptation, namely, the agents should be able to follow the variations in the criminal’s state. As we
shall see in the forthcoming treatment, such a continuous mechanism of adaptive estimation can be
successfully implemented through a diffusion algorithm. �

Example 2.6 (Distributed adaptive detection). A robotic swarm is deployed over a disaster area
in order to perform exploration and/or rescuing operations. As the individual robots travel across the
area, they must be aware of the environmental conditions in order to decide whether or not to enter a
certain location. To this aim, the robots enhance their individual knowledge about the state of nature
(danger/no-danger) by exchanging local information with neighbors. The knowledge of an individual
agent is encoded into a certain state variable, which is continually updated, in order to keep alive
the possibility of monitoring variations in the environmental conditions. At each time instant, each
individual agent must make a binary decision (enter/do-not-enter), based upon the current individual
state variable. As we shall see in the forthcoming treatment, such a continuous mechanism of adaptive
detection can be successfully implemented through a diffusion algorithm. �

Example 2.7 (Distributed adaptive detection + estimation). A school of fish must evade the
attack of a predator. Information exchange across the network occurs through local interactions among
adjacent members of the school. Using such an exchange of information, the fish school is able to
carefully reconfigure its topology in the face of danger: when a predator is detected, the entire school
of fish estimates the predator location and adapts its configuration to let the predator go through.
When there is no predator, the fish coalesce and restart their schooling behavior. As time elapses, the
individual agents must be continually alert in order to react to the presence/absence of a predator and



76 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

to the variations in the predator’s location. It is known that such a continuous mechanism of adaptive
learning (simultaneous detection and estimation) can be emulated through a diffusion algorithm. �

In the context of distributed inference, it is worth mentioning a third canonical problem, namely,
Bayesian filtering. Useful methods (e.g., distributed Kalman filters, distributed particle filters) have
been proposed for distributed (linear and nonlinear) Bayesian filtering. These methods will be treated
in Chapter 6.

2.3 DIFFUSION IMPLEMENTATIONS
There exists an elegant and unifying formulation that captures the essence of many inference and
learning problems over adaptive networks. Such a representation is based on three fundamental steps: (i)
identification of a cost function that matches the learning objective of the network; (ii) implementation
of a stochastic-gradient algorithm for minimizing the cost function; and (iii) implementation of a
diffusion mechanism to enable information sharing across the network. Such a representation has been
presented in Chapter 1 in greater detail as well as in references [52–54] for more general scenarios, and
is briefly reported here for making the present chapter self-contained.

Let us consider a network with N agents. We assume that the learning objective of the network can
be well described by the following optimization problem:

min
w

J(w), J(w) �
N∑

k=1

Jk(w), Jk(w) � EQk(w; xk). (2.2)

We see that agent k is associated with an individual cost function Jk(w), which can be expressed as
the expectation of a certain loss function, Qk(w; xk), with the expectation being evaluated with respect
to certain random data, xk. We assume that the individual cost functions fulfill standard smoothness
conditions. In particular, it is sufficient for the purposes of this chapter to assume that the individual
costs are ν-strongly convex (see Chapter 1 and [53]), and that they attain their unique global minima at
the same location, wo, yielding

wo � arg min
w

J(w) = arg min
w

Jk(w). (2.3)

These smoothness conditions can be relaxed. For example, the individual costs do not need to attain
their minima at the same location. It is also sufficient for them to be convex functions and to require
only the aggregate cost J(w) to be ν-strongly convex. These more general scenarios are discussed in
detail in [53]. We continue with Eq. (2.3). Under the aforementioned smoothness conditions, one way
to perform minimization relies on the evaluation of the gradient vector, ∇wJ(w) = ∑N

k=1 ∇wJk(w), and
to apply the steepest descent algorithm [6]. However, in our formulation we shall assume that the agents
do not have information about the true gradient (as is the case in typical adaptive network applications).
Therefore, agent k will replace the true gradient with an instantaneous approximation, chosen as

∇̂wJk(w) = ∇̂wJk(w; xk) � ∇wQk(w; xk), [stochastic gradient] (2.4)

which highlights how the gradient must be learned from the data. The task of each agent k consists in
producing, at each time instant i, a value wk,i, which should approximate the desired value wo. To this



2.3 DIFFUSION IMPLEMENTATIONS 77

end, agents are allowed to exchange information with their neighbors. Randomness of the state wk,i is
originated from the fact that its determination is based on random data.

We are now ready to illustrate a diffusion-type algorithm that is able to guarantee distributed
adaptation and learning over networks. This algorithm is traditionally referred to as the adapt-then-
combine (ATC) algorithm [52,55]. While, as shown in Chapter 1 and [52–54], other forms and
extensions are possible, in this chapter we focus on the ATC form to convey the main ideas. We
choose the ATC form because it exhibits some inherent advantages in terms of a slightly improved
mean-square-error performance relative to other forms [52].

In the ATC recursion, each node k updates its state from wk,i−1 to wk,i through local cooperation
with its neighbors as follows, for all i ≥ 0:

ψk,i = wk,i−1 − μ ∇wQk(wk,i−1; xk,i), [adaptation step]

wk,i =
N∑

�=1

a�kψ�,i, [combination step]
(2.5)

where 0 < μ � 1 is a small step-size parameter. It is seen that node k first uses its locally available
data xk,i to update its state from wk,i−1 to an intermediate value ψk,i. The other network agents
simultaneously perform similar updates using their local data. Subsequently, node k aggregates the
intermediate states of its neighbors using nonnegative convex combination weights {a�k} that add up to
one. Again, all other network agents perform a similar calculation. Collecting the combination weights
into a square matrix A = [a�k], then A is a left-stochastic matrix, namely, the entries on each column
add up to one [53]. Formally:

a�k ≥ 0, A�1 = 1 (2.6)

with 1 being a column-vector with all entries equal to one.
The network topology (or network graph) establishes whether two agents are connected, i.e.,

whether they are in the position of exchanging information; see Fig. 2.1 for an illustrative example.
A relevant descriptive indicator of the network graph is the neighborhood of an agent. The neighbor-
hood of the kth agent, denoted by Nk, is the set containing the neighbors of agent k, including k itself.
Clearly, when two agents are not connected (according to a given network graph), they cannot exchange
information. If they are connected, the exchange of information can be bidirectional, unidirectional, or
even absent, depending on the structure of the combination matrix. We shall say that the network is
strongly connected [54] when there is always a path with nonzero weights between any pair of nodes,
and at least one node in the network has a self-loop (akk > 0 for some agent k). Under this assumption,
it holds true that there exists an eigenvector p = [p1, p2, . . . , pN]� satisfying:

Ap = p, 1�p = 1, pk > 0, k = 1, 2, . . . , N (2.7)

where p is usually referred to as the Perron eigenvector of A; see, e.g., [54].
Example 2.8 (Combination policies). One of the simplest combination policies is the uniform

averaging rule. The qualification “uniform” arises because each agent uses identical (nonzero) weights,



78 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

FIG. 2.1

Example of a connected network. A network with N = 10 agents is shown in the figure. The neighborhood of
agent 2, N2 = {2, 3, 8}, is marked by the broken line. We note that agent 2 is the least connected (smallest
neighborhood size). In contrast, agent 4, with neighborhood N4 = {3, 4, 6, 7, 8, 9, 10}, is the most connected.
As we shall see later, the different agents’ connectivity can play a role in the inference performance.

which implies that the nonzero weights of the kth agent are set as the inverse of the kth neighborhood
size. Formally:

a�k = 1

|Nk| , � ∈ Nk. (2.8)

The resulting combination matrix is left-stochastic.
As a slight generalization of the uniform averaging rule, we present the Metropolis rule, which is

defined as:

a�k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

max {|Nk|, |N�|} , � ∈ Nk \ {k},

1 −
∑

m∈Nk\{k}
amk, � = k.

(2.9)

It is easy to verify that the Metropolis rule provides a doubly-stochastic combination matrix (i.e., the
entries on each of its columns add up to one, and the entries on each of its rows also add up to one). �

The formulation in Eq. (2.5) provides the fundamental equations of diffusion-based optimization,
inference, and learning over adaptive networks. We shall now motivate the latter observation by
examining in detail the structure of Eq. (2.5).

Where are inference and learning? The inference and learning aspects are encoded in the stochastic
gradient terms employed during the adaptation step in Eq. (2.5). Indeed, the streaming data enter
the update equation through these stochastic gradients.

Is learning effective? Effectiveness of learning resides in the fact that, as i gets large, the individual
states, wk,i, will fluctuate within a small neighborhood of the desired solution, wo. The radius of
such a neighborhood is determined by the step-size: the smaller μ is, the smaller the neighborhood
size is.



2.4 DISTRIBUTED ADAPTIVE ESTIMATION (DAE) 79

Where are the distributed features? The combination step in Eq. (2.5) encodes the distributed
features because it shows how the agents aggregate information from their neighbors through the
diffusion mechanism.

Where is adaptation? Adaptation is enabled by the small but constant step-size μ. When, for
example, the value wo changes or drifts over time, the constant step-size allows the system to react
promptly and to start adapting the individual states to the new solution. Algorithms such as that
described by Eq. (2.5) are naturally infused with adaptation and tracking capabilities. The larger
the value of μ is, the faster the reaction to drifts (i.e., the convergence to a steady-state solution)
will be.

We shall see in the forthcoming two sections how the general formulation in Eq. (2.5) can be specialized
to the distinct settings of estimation and detection.

2.4 DISTRIBUTED ADAPTIVE ESTIMATION (DAE)
The diffusion paradigm illustrated in the previous section can be used to design estimators according
to many different settings and optimization criteria. In order to illustrate the fundamental features of
distributed estimation over adaptive networks, we focus here on the celebrated and widely used linear
regression model. Specifically, we assume that each agent k senses data {dk(i), uk,i} that satisfy a model
of the form:

dk(i) = uk,iw
o + vk(i). [linear regression model] (2.10)

More general scenarios are considered in Chapter 1 and [53,54]. In the model (2.10):

• The unknown (deterministic) parameter to be estimated is wo, an M × 1 vector. All vectors in our
treatment will be column vectors, with the exception of uk,i, which is a 1 × M row vector.

• The streaming data available at time i to the kth agent are {xk,i} = {dk(i), uk,i}. In particular, the
(scalar) data {dk(i)} are usually referred to as desired response or output data. The data {uk,i} are
usually referred to as regressors, or regression data.

• The terms {vk(i)} are usually referred to as noise.

We shall examine the performance of distributed adaptive algorithms with model (2.10) under the
following technical assumptions:

1. The data and the noise are zero-mean jointly wide-sense stationary random processes.
2. The regression data are temporally white and independent over space, with covariance matrix

Ru � Eu�
k,iuk,i.

3. The cross-covariance vector between the output data and the regression data is defined as
rdu = Edk(i)u�

k,i.

4. The noise data are temporally white and independent over space, with variances σ 2
v,k � Ev2

k(i).
5. The regression and noise processes {uk,i, v�(j)} are independent of each other for all k, �, i, j.



80 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

2.4.1 CONSTRUCTING THE DISTRIBUTED ADAPTIVE ESTIMATION ALGORITHM
In order to construct the distributed and adaptive estimator, we shall select the following cost function,
for k = 1, 2, . . . , N:

Jk(w) = E(dk(i) − uk,iw)2, [quadratic cost function] (2.11)

which entails the following loss function and instantaneous approximation:

Qk(w; xk,i) = (dk(i) − uk,iw)2 ⇔ ∇̂wJk(w) = 2u�
k,i[uk,iw − dk(i)], (2.12)

and, hence, the diffusion algorithm in Eq. (2.5) becomes, for all i ≥ 0:

ψk,i = wk,i−1 + 2μ u�
k,i[dk(i) − uk,iwk,i−1], [adaptation step]

wk,i =
N∑

�=1

a�kψ�,i. [combination step]
(2.13)

In the single-agent case, the particular stochastic-gradient implementation in Eq. (2.13) is traditionally
known as LMS algorithm [6].

Before dwelling on the examination of the estimation performance, it is useful to draw some
connections between the adaptive diffusion solution (2.13) and classic results on estimation theory.
First, if we left-multiply by u�

k,i both sides of Eq. (2.10), and then take expectations, we see that

the value of the true parameter, wo, can be expressed as wo = R−1
u rdu. However, in a typical (and

meaningful) estimation setting, both Ru and rdu are unknown. Therefore, one useful interpretation of the
instantaneous approximation in Eq. (2.12) is that one tries to approximate the true gradient by replacing
the unknown covariances, Ru and rdu, with their instantaneous (and local, i.e., corresponding to the
individual agents) estimates, u�

k,iuk,i and dk(i)u�
k,i. Then, in a steady-state situation, the instantaneous

approximations feeding the algorithm combine with each other recursively so as to increase the
precision in estimating the covariance matrix and the cross-covariance vector, and, hence, the parameter
wo. However, because the constant step-size leaves deliberately alive the gradient noise contribution,
such an increase in precision does not proceed indefinitely: some deterioration in performance is
accepted (i.e., the estimate will not become perfect as i → ∞) in order to keep adaptation alive forever.

Another useful observation concerns the high versatility of the general diffusion implementa-
tion (2.5), which allows designing distributed-and-adaptive estimators even for statistical models
other than the linear regression model. To illustrate this point, we consider an example based on the
maximum-likelihood principle. Assume for simplicity identical distribution across time index i, and
choose as loss function:

Qk(w; xk,i) = −�(w; xk,i), (2.14)

where �(w; xk,i) is the log-likelihood function corresponding to data xk,i. We immediately reach
two conclusions. First, minimizing the expected loss corresponds to maximizing the expected log-
likelihood, and it is well known that the maximizer of the expected log-likelihood is the true value of
the parameter [1,3]. Second, in view of Eq. (2.14), the stochastic approximation of the true gradient
corresponds to evaluating the (negative of the) score vector, namely,



2.4 DISTRIBUTED ADAPTIVE ESTIMATION (DAE) 81

∇wQ(w; xk,i) = −∇w�(w; xk,i). (2.15)

Accordingly, provided that the statistical model guarantees the verification of standard conditions on the
gradient noise associated with the chosen loss function, a diffusion implementation (2.5) that employs
the score vectors in the adaptation step would enable each agent to estimate the desired parameter.

2.4.2 MEAN-SQUARE-ERROR PERFORMANCE
In the adaptation literature, the standard approach to get useful performance metrics consists of splitting
the analysis into two complementary parts [6]:

(i) The transient analysis. Assuming that, from a certain point, the statistical conditions of the
system remain stationary for a sufficiently long time, in the transient analysis the focus is on
evaluating if and how convergence to a steady state takes place. Such an analysis is relevant
because, when some variations in the statistical conditions occur at a certain time, the transient
analysis allows quantifying the time to track such variations. Detailed studies about the transient
phase of the diffusion learning algorithm have been carried out, which clarify the behavior of the
learning curve during this stage of operation [56,57]. In particular, the convergence rate toward
the steady-state regime is known to occur at an exponential rate in the order of O(ci) for some
c ∈ (0, 1); this is a faster rate than O(1/i) that is afforded, for example, by decaying step-sizes.
Nevertheless, in the constant step-size case, the smaller the value of μ is, the closer the value of c
gets to one. A compact qualitative index that is commonly employed to describe the effective
duration of a transient is the time constant, which is the time needed to reduce by a certain
amount the initial error state. For the problems considered in this chapter, it is known that the time
constant is, for small values of μ, in the order of 1/μ [56,57].

(ii) The steady-state analysis. This analysis provides the inference performance of the adaptive
algorithm with reference to an infinitely long period of stationarity, which takes on the practical
meaning of giving the algorithm sufficient time to learn. An exact analytical characterization of
the inference performance is seldom affordable. However, closed-form results can be obtained by
focusing on the regime of small step-sizes. As we shall see later, the inference performance is
inversely related to the step-size: the smaller μ is, the smaller the steady-state error becomes.

Let us now focus on the performance analysis of the diffusion-based estimators in Eq. (2.13). A classic
way to measure the estimation performance of the adaptive network algorithm (2.13) is to introduce the
error vector corresponding to agent k at time i, and the related time-dependent mean-square-deviation,1

for k = 1, 2, . . . , N:

w̃k,i = wo − wk,i, MSDk(i) � E‖w̃k,i‖2. (2.16)

We remark that the mean-square-deviations in Eq. (2.16) depend upon the statistical properties of the
entire dataset used in the diffusion algorithm up to time i. In particular, the errors depend upon the
different kinds of variations that may have occurred during the evolution of the algorithm.

1The terminology “mean-square-deviation” is used in lieu of “mean-square-error” in order to avoid confusion with another
squared error that is typically measured in the linear regression context, namely, the cost function in Eq. (2.11).



82 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

Once a proper performance measure has been chosen, we can use it to obtain the estimation
performance following the route traced at the beginning of this section: we assume that the data
are possibly nonstationary up to a certain time instant, after which they are drawn from the same
stationary distribution for a sufficiently long time. Technically, when performing this steady-state
analysis, it suffices to assume that the data, for all i ≥ 0, arise from the same distribution. The past
history (including possible drifts that occurred in the statistical conditions) that influences the overall
algorithm evolution is reflected in the initial state vectors, {wk,−1}. Accordingly, the limiting mean-
square-deviation is defined as, for k = 1, 2, . . . , N:

MSDk � lim
i→∞E‖w̃k,i‖2. (2.17)

In order to evaluate MSDk, it is convenient to introduce the network error vector at time i:

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (2.18)

along with an arbitrary N × N block symmetric and nonnegative-definite matrix, defined as a block
matrix with M ×M block entries, and denoted by �. Different choices of � can be used to characterize
different aspects of the inferential performance of the network. We further introduce the matrices B
and Y:

B = A� ⊗ (IM − 2μRu), Y = 4μ2 (A�RvA ⊗ Ru), (2.19)

where Rv = diag{σ 2
v,1, σ 2

v,2, . . . , σ 2
v,N}. Elaborating on Eq. (2.13), by subtracting the true parameter

vector wo and then taking expectations, it is possible to derive the following recursions for the mean
and mean-square evolution as time i progresses [52–54]:

Ew̃i = BEw̃i−1, Ew̃�
i �w̃i ≈ Ew̃�

i−1B
��Bw̃i−1 + Tr(�Y) (2.20)

where the second expression is an approximation for the mean-square-error evolution valid in the
steady-state regime (i � 1) and for small step-sizes. The following important facts have been
established in relation to the estimation performance of the network [52–54].

Steady-state unbiasedness. For sufficiently small step-sizes, the estimators {wk,i} are asymptotically
unbiased, namely, for k = 1, 2, . . . , N:

lim
i→∞Ew̃k,i = 0. (2.21)

Let us now quantify the qualification “sufficiently small”. The first equation in Eq. (2.19) implies
the following relationship, which relates the MN eigenvalues of matrix B to the eigenvalues of
matrices A and Ru, for k = 1, 2, . . . , N and j = 1, 2, . . . M:

λ(B) = λk(A)[1 − 2μλj(Ru)]. (2.22)

Then, using the first relationship in Eqs. (2.20) and (2.22), we conclude that unbiasedness is
guaranteed if the step-size is smaller than the quantity 1/λmax(Ru), where λmax(Ru) is the largest
eigenvalue of Ru. Notably, this condition is independent of the combination matrix, and, hence,
coincides with the condition that would be required for mean stability of an individual LMS filter



2.4 DISTRIBUTED ADAPTIVE ESTIMATION (DAE) 83

because the latter can be regarded as a special case of the truly distributed implementation (2.13).
Accordingly, for the diffusion implementation in Eq. (2.13), it holds true that individual
mean-stability implies network mean-stability, an implication that is not found, for instance, in
other types of implementations, such as, for example, the consensus implementation [53].

Steady-state mean-square-error. Elaborating on the second relationship in Eq. (2.20), it can be
shown that under the mean-stability condition one has [53]:

lim
i→∞Ew̃�

i �w̃i ≈
∞∑

m=0

Tr(BmYB�m�). (2.23)

With the particular choice � = Jk, where Jk is the block diagonal matrix with IM on the kth block
and with zero blocks elsewhere, Eq. (2.23) yields:

MSDk ≈
∞∑

m=0

Tr(BmYB�mJk). (2.24)

Using the explicit expressions for B and Y in Eq. (2.19), it is finally possible to obtain the
following revealing formula, for k = 1, 2, . . . , N [53,58]:

MSDk = μ M
N∑

�=1

p2
�σ

2
v,� + O(μ2). (2.25)

Fundamental scaling law. Eq. (2.25) reveals the fundamental scaling law for distributed estimation
with diffusion adaptation: as μ decreases, the mean-square performance of all agents scales
proportionally to μ (i.e., inversely as a function of 1/μ).

Adaptation/learning trade-off. We see from Eq. (2.25) that the smaller the step-size, the finer the
estimate of the parameter vector wo becomes. Recalling that smaller values of μ entail less
adaptation, we conclude that a better estimation accuracy costs in terms of adaptation speed. This
result is a well-known trade-off in the adaptive filtering literature between estimation accuracy and
adaptation [6].

Asymptotic equivalence among agents. By ignoring the O(μ2) term appearing in Eq. (2.25), we see
that MSDk does not depend on the agent index k. As a result, for small step-sizes the estimation
performance equalizes across agents. Actually, the differences across agents are contained in the
O(μ2) term appearing in Eq. (2.25). In summary, we can use the following formula to describe the
performance of each individual agent:

MSD � μ M
N∑

�=1

p2
�σ

2
v,� (2.26)

which does not depend on the particular agent, and which approximates the true
mean-square-deviation, MSDk, of each agent k, in the regime of small step-sizes.



84 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

2.4.3 USEFUL COMPARISONS
We now compare the distributed performance in Eq. (2.26) against the performance of some reference
estimators.

Centralized (adaptive) processing. Let us consider first the case of a centralized stochastic-gradient
(i.e., adaptive) processor that aims at minimizing the cost function J(w) = ∑N

k=1 pkJk(w) for some
convex and nonnegative combination weights {pk}, and for the cost functions defined in Eq. (2.11).
Because a centralized processor of this type can be derived by considering a fully connected
network with a combination matrix with identical columns equal to p = [p1, p2, . . . , pN]�, the
performance for the centralized case can be derived directly from Eq. (2.26), and is given by:

MSDcent ≈ μ M
N∑

�=1

p2
�σ

2
v,�. (2.27)

Accordingly, we see from Eq. (2.26) that if the chosen combination matrix has the Perron
eigenvector p, then:

MSDk

MSDcent
≈ 1 (2.28)

namely, we reach the important conclusion that the distributed diffusion solution delivers, for
sufficiently small step-sizes, the same performance of a centralized stochastic-gradient processor.

Noncooperative processing. The case of noncooperative processing is derived from the general
diffusion case by simply considering each agent separately (i.e., by considering a “combination
matrix” A = 1, with N = 1), which yields, for k = 1, 2, . . . , N:

MSDncop,k ≈ μ Mσ 2
v,k. (2.29)

There are at least two meaningful ways to compare the performance of cooperative (i.e., diffusion)
and noncooperative solutions. The first is in terms of an aggregate network performance measure,
which we take here as the network mean-square-deviation, defined as:

MSD(net) � 1

N

N∑
k=1

MSDk ≈ MSD = μ M
N∑

�=1

p2
�σ

2
v,�. (2.30)

Because (for small step-sizes) diffusion equalizes performance across agents, the network
performance for the diffusion algorithm is equivalent (for small step-sizes) to the performance
reached by each individual agent through cooperation. The corresponding performance for the
noncooperative case is:

MSD(net)
ncop � 1

N

N∑
k=1

MSDncop,k ≈ μ M

⎛
⎝ 1

N

N∑
k=1

σ 2
v,k

⎞
⎠ . (2.31)



2.4 DISTRIBUTED ADAPTIVE ESTIMATION (DAE) 85

If we now consider a doubly-stochastic combination matrix A (for which we know that the limiting
Perron weights are p� = 1/N for all � = 1, 2, . . . , N), from Eqs. (2.30) and (2.31) we get:

MSD(net) ≈ 1

N
MSD(net)

ncop, (2.32)

namely, diffusion adaptation yields an N-fold improvement in comparison to a noncooperative
solution in terms of aggregate network performance.
Let us now see what happens if the comparison with the noncooperative solution is made in terms
of the individual agent’s performance. Consider first the case that the agents feature the same
reliability, namely, that the noise variances, σ 2

v,k, are equal across index k. Then, we immediately
see from Eqs. (2.26) and (2.29) that the same N-fold performance improvement is observed.
However, the situation might change drastically if the variances vary across agents. In the latter
case, for doubly-stochastic combination policies, and even for general left-stochastic combination
policies (i.e., for general limiting weights, {p�}), cooperation is not always beneficial for the
individual agents! For example, if one agent is particularly reliable (low noise variance), the
sharing of information with unreliable neighbors might worsen its individual performance
(with diffusion) with respect to the noncooperative performance (without diffusion). This is
because the scaling corresponding to the limiting combination weights does not match the
reliability of the individual agents: intuitively, an optimal solution must give less credit (i.e., lower
Perron weights) to unreliable agents and more credit (i.e., higher Perron weights) to reliable
agents. An optimal choice can be devised by seeking an optimal left-stochastic combination matrix
that solves the following optimization problem [53,58]:

A(opt) = arg min
A∈A

N∑
�=1

p2
�σ

2
v,�, subject to Ap = p, 1�p = 1, p� > 0 (2.33)

with A being the set of all primitive N × N left-stochastic matrices matching the underlying
network connection graph. One solution to this problem is as follows:

a
(opt)
�k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ 2
v,k

max
{
|Nk|σ 2

v,k, |N�|σ 2
v,�

} , � ∈ Nk \ {k},

1 −
∑

m∈Nk\{k}
a

(opt)
mk , � = k.

(2.34)

The combination rule in Eq. (2.34) is usually known as the Hastings combination rule. The
corresponding mean-square-deviations are, for k = 1, 2, . . . , N:

MSDopt,k ≈ MSD(net)
opt ≈ μ M∑N

�=1 σ−2
v,�

. (2.35)

Comparing Eq. (2.35) with Eq. (2.31), we see that, for sufficiently small step-sizes:

MSD(net)
opt ≤ 1

N
MSD(net)

ncop, MSDopt,k ≤ MSDncop,k. (2.36)



86 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

The following important conclusions arise from Eq. (2.36): (i) the aggregate network performance
for the diffusion algorithm with the optimized combination matrix is at least N times better than
the noncooperative solution; and (ii) optimization of the combination matrix lets the individual
agent performance outperform the noncooperative solution even in the presence of different
reliabilities across agents.

2.4.4 DAE AT WORK
One illustrative example of adaptive estimation is offered in Fig. 2.2, leftmost panel. The network
topology is that displayed in Fig. 2.1. The adaptive network aims at estimating a parameter vector
wo ∈ R3. For the sake of simplicity, the noise variables are generated as independent (both across time
and space) standard Gaussian variables, and so are the regression vectors, with Ru = I3. The plot shows
the time evolution of the online estimates, wk,i, for two agents, namely, for k = 2 and k = 4. The
three components of the estimated parameter vector and of the true parameter vector are displayed as
functions of time index i. Starting from the time origin, we see that, after an initial transient, the online

−5

0

10008006004002000

5

0 200 400 600 800 1000
−30

−20

−10

0

10

20

FIG. 2.2

Illustration of the distributed adaptive estimation problem. The estimation problem is formalized in Eq. (2.10).
The noise variables are chosen as independent (both across time and space) standard Gaussian variables, and
so are the regression vectors, with Ru = I3. The network topology is shown in Fig. 2.1, and the combination
rule is the Metropolis rule in Eq. (2.9). Leftmost panel: One realization of the diffusion algorithm in Eq. (2.13),
namely, of the online estimators corresponding to agents 2 and 4 (oscillating curves). The three components of
the true parameter are also displayed (piecewise constant curves). The first two components of the true
parameter change when i = 500, and the adaptive algorithm is able to track such variation promptly. The
step-size is set to μ = 0.1. Rightmost panel: Empirical evaluation of the time-dependent
mean-square-deviation, MSDk (i) [see Eq. (2.16)], obtained by averaging the squared error norm, ‖w̃k,i‖2, over
statistical realizations similar to the one shown in the leftmost panel. Obviously, to encompass the variations of
the true parameter vector, the definition of the error in Eq. (2.16) has been modified by letting the true
parameter vector depend on time index i. The theoretical approximation of the steady-state
mean-square-deviation, MSD ≈ MSDk [see Eq. (2.26)], is represented by the horizontal dashed lines. Two
values of the step-size are considered.



2.5 DISTRIBUTED ADAPTIVE DETECTION (DAD) 87

estimates (oscillating curves) fluctuate in a close neighborhood of the true parameter vector components
(piecewise constant curves). Then, at one-half of the observation window, the first two components of
the true parameter vector drift to new values. Remarkably, the online estimates react promptly to such
variations and are able to adapt their behavior to the new values.

Such a qualitative behavior is complemented by the results shown in the rightmost panel of Fig. 2.2,
where the adaptation and learning performance are examined through a quantitative illustration of the
mean-square performance of the network of estimators. This performance is evaluated by averaging
over a number of statistical realizations (Monte Carlo trials) similar to the one shown in the leftmost
panel. Specifically, the time-dependent mean-square-deviation, MSDk(i), is displayed as a function
of time and is expressed in dB for a better reading. Obviously, to encompass the variations of the
true parameter vector, the definition of the error in Eq. (2.16) has been modified by letting the true
parameter vector depend on time index i. With respect to the example of the leftmost panel, where the
step-size was set to a value μ = 0.1, we add another example, for the case μ = 0.01. Let us first
refer to the case μ = 0.1. After transient phases that correspond either to an initialization phase or to
time instants where the true parameter drifts, we see that the mean-square-deviation reaches a steady-
state behavior. Specifically, the curves corresponding to agents 2 and 4 become stable. For comparison
purposes, the limiting theoretical mean-square-deviation, MSDk, is displayed with a dashed line. Let us
see what happens with a smaller step-size value, namely, with μ = 0.01. Three basic features emerge
that match perfectly the theoretical results illustrated in the previous section. First, the adaptation is
slower for smaller step-sizes. Second, the accuracy of the steady-state estimates increases for smaller
step-sizes. Third, as μ decreases, the curves pertaining to the different agents get closer to each other
and are in turn closer to the theoretical performance: as a matter of fact, the estimation performance
equalizes across agents and meets the approximation (2.26), which in fact holds in the small step-size
regime. Moreover, we note that for both values of the step-size, the MSD curves pertaining to agent
2 are worse (i.e., higher) than those pertaining to agent 4. This could be explained through careful
examination of Fig. 2.1, where we see that agent 2 is in a sense more peripheral than agent 4, as regards
its connectivity properties. The discrepancies between the two curves (and between each of them and
the theoretical dashed line) are contained in the higher order corrections, namely, in the O(μ2) term
appearing in Eq. (2.25) that is neglected by the approximation in Eq. (2.26).

2.5 DISTRIBUTED ADAPTIVE DETECTION (DAD)
The earlier sections provided an overview of the results on the DAE problem by focusing largely on the
mean-square-error context, although most of the conclusions hold more generally [53,54]. We now turn
to the DAD problem. This problem is abstracted as follows over adaptive networks. The network agents
gather streaming data, {xk,i} (with the agent index k = 1, 2, . . . , N, and the time index i = 0, 1, . . .) about
a certain phenomenon of interest, which is modeled by a binary state of nature formally represented
by the hypotheses H0 and H1. The statistical properties of the data depend upon the hypothesis that
is in force. Under stationary conditions, the data {xk,i} form a suite of independent and identically
distributed (i.i.d.) variables, with the distribution depending on the underlying hypothesis that is in
force. At each time instant, each individual agent is tasked with producing a decision about the state
of nature, by exchanging information with its neighbors through a distributed processing algorithm.



88 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

As time elapses, the adaptive algorithm should allow each agent to learn about the true hypothesis. On
the other hand, adaptation is required because variations might occur, e.g., in the statistical conditions,
in the environmental conditions, and in the network topology, among other possibilities. For example,
the hypothesis in force can drift over time and the agents must be able to promptly change their
decisions in the presence of the aforementioned drifts.

2.5.1 CONSTRUCTING THE DISTRIBUTED ADAPTIVE DETECTION ALGORITHM
We now show how the construction of the distributed detection algorithm can be derived from Eq. (2.5).
As it is well known for the i.i.d. data model, an optimal centralized (and nonadaptive) detection statistic
is the sum of the log-likelihood ratios, which is compared against some threshold to make a decision.
Therefore, it is meaningful to identify some individual cost functions, Jk(w) in Eq. (2.2), that are able
to drive the network agents toward distributed computation of the log-likelihood ratio. We now show
that such computation is enabled, for example, by the following choice:

Qk(w; xk,i) = 1

2

(
w − ln

f1(xk,i)
f0(xk,i)

)2
(2.37)

where xk,i describes the data collected by agent k at time i while f0(·) and f1(·) are the probability density
functions (for continuous variables) or probability mass functions (for discrete variables) under H0 and
H1, respectively. We note that, because the log-likelihood ratio is a scalar quantity, the argument of the
functions Jk(w) will be scalar as well. In view of Eq. (2.37), the exact (scalar) gradient corresponding
to Eq. (2.37) becomes:

∇wJk(w) = w − E0 ln
f1(xk,i)
f0(xk,i)

under H0, (2.38)

∇wJk(w) = w − E1 ln
f1(xk,i)
f0(xk,i)

under H1, (2.39)

where E0[·] and E1[·] denote that the expectation operator acts under H0 and under H1, respectively.
Now, the expectations of the log-likelihood ratio under the different hypotheses can be written as:

E0 ln
f1(xk,i)
f0(xk,i)

= −D01 < 0, E1 ln
f1(xk,i)
f0(xk,i)

= D10 > 0, (2.40)

where Dhj denotes the Kullback-Leibler divergence between hypothesis h and hypothesis j, for h, j =
0, 1, with h �= j, and strict positivity of the divergences amounts to assume that the detection problem
is nonsingular [1]. From Eqs. (2.38), (2.39) and (2.40), we see that the minimum of the true gradient
is attained at value −D01 under H0, and value D10 under H1. Therefore, under the assumption of a
strongly connected network, we know that each agent is able to approach (for μ sufficiently small)
the negative value −D01 under H0, and the positive value D10 under H1. We conclude that the choice
in Eq. (2.37) enables the network of detectors to achieve successful discrimination between the two
hypotheses.

It is not mandatory to choose the log-likelihood ratio in Eq. (2.37) to let the algorithm work
properly. Such observation is particularly relevant for the cases where the statistics of the data are not
perfectly known. In these cases, it is useful to employ a detection statistic that is a linear combination



2.5 DISTRIBUTED ADAPTIVE DETECTION (DAD) 89

of suitable local statistics, as is typical in some classical detection frameworks, e.g., in locally optimum
detection [9], in robust detection [10], and in universal/nonparametric hypothesis testing [11,12].
Therefore, in the following treatment we introduce a scalar random variable, τ k(i), which will represent
the local detection statistic computed at time i by agent k. This local statistic might be chosen as
the local log-likelihood ratio but this requirement is not necessary. According to the adopted model,
under stationary conditions, the local statistics τ k(i) will be spatially and temporally independent and
identically distributed. To ensure detectability, we assume that E0τ k(i) �= E1τ k(i) ), and, without loss
of generality, that E0τ k(i) < E1τ k(i).

In order to allow the usage of a general local statistic, we now replace the log-likelihood ratio
in Eq. (2.37) with the general local statistic, τ k(i), and, hence, the diffusion implementation in Eq. (2.5)
takes on the following form, for all i ≥ 0 [59]:

ψk(i) = (1 − μ)wk(i − 1) + μ τ k(i), [adaptation step]

wk(i) =
N∑

�=1

a�kψ�(i). [combination step]
(2.41)

Moreover, at time i, the kth agent produces a decision based upon its current state value wk(i). To this
end, a decision rule must be designed, with a common choice being [59]:

wk(i)
H0

�
H1

γ (2.42)

for some threshold value γ .
Before ending this section, we would like to give another useful interpretation of the above

adaptive detection algorithm. It is straightforward to verify that, in the single-agent case, the algorithm
in Eq. (2.41) reproduces the so-called exponentially weighted (or geometric) moving average (EWMA)
control chart [60]. The terminology EWMA stems from the fact that, through recursive application of
the (1−μ) weighting, the most recent datum has higher weight (i.e., higher degree of importance) with
respect to past data, and that the weights assigned to past data undergo an exponential decay as time
elapses.

2.5.2 DETECTION PERFORMANCE
The general method presented at the beginning of Section 2.4.2 for evaluating the performance of
adaptive estimation can be applied also in the context of adaptive detection. The first step is to introduce
a proper performance measure for the detection framework. The classic choice is the error probability.
The time-dependent detection error probability of agent k will be accordingly defined as:

p(e)
k (i) = P [agent k chooses the wrong hypothesis at time i] . (2.43)

These error probabilities depend upon the statistical properties of the entire dataset used in the diffusion
algorithm up to time i. In particular, the error probabilities depend upon the different variations that may
have occurred during the evolution of the algorithm.



90 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

We shall focus on examining performance in the steady state. This means that the data are possibly
nonstationary up to a certain time instant (which we conveniently set to i = −1), after which (i.e.,
for all i ≥ 0) they are assumed to be drawn from the same stationary distribution for an infinitely
long time. Since, under a stationary evolution, the hypothesis in force remains stable over time, the
error probability in Eq. (2.43) can be split into two kinds of error probabilities, namely, the Type-I
(false-alarm) and Type-II (miss-detection) error probabilities, defined, respectively, as:

αk(i) � P0 [agent k decides H1 at time i] , [Type-I]

βk(i) � P1 [agent k decides H0 at time i] , [Type-II]
(2.44)

where P0[·] and P1[·] denote that the probability operator acts under H0 and under H1, respectively.
The limiting values of the aforementioned quantities give the steady-state error probabilities, namely,

αk = lim
i→∞ αk(i), βk = lim

i→∞ βk(i). (2.45)

As a preliminary step toward the evaluation of Eq. (2.45), we show that the output of the diffusion
algorithm, wk(i), admits a steady-state distribution. First, we observe that, by simple recursion,
Eq. (2.41) can be written in the form, for all i ≥ 0:

wk(i) = (1 − μ)i+1
N∑

�=1

b�k(i + 1)w�(−1)

︸ ︷︷ ︸
transient term

+ μ

i∑
m=0

N∑
�=1

(1 − μ)mb�k(m + 1)τ �(i − m)

︸ ︷︷ ︸
steady-state term

, (2.46)

where b�k(i) is the (�, k)th entry of the matrix power Bi � Ai. The formulation in Eq. (2.46) emphasizes
the presence of the transient term as opposed to the steady-state term. Disappearance of the transient
term as i → ∞, for any set of the initial agents’ states, {w�(−1)}, is easy to see. Moreover, in Theorem 1
of [59], convergence of the diffusion output to a steady-state random variable (denoted by w


k) has
been established. This property can be summarized by the following statement (the symbol � means
convergence in distribution, under the hypothesis that is in force):

wk(i) i→∞� w

k . (2.47)

In view of Eq. (2.47), the steady-state detection performance can now be expressed in terms of the
steady-state random variable as follows2:

αk = P0[w

k > γ ], βk = P1[w


k ≤ γ ]. (2.48)

The statistical characterization of w

k is usually a formidable task. In order to gain useful insights, as

shown for the DAE problem, we resort to an evaluation of the steady-state performance in the small
step-size regime.

2According to the definition of weak convergence [1], the result in Eq. (2.47) implies Eq. (2.48) provided that P0[w

k = γ ] =

P1[w

k = γ ] = 0, i.e., provided that the limiting random variable has no probability mass concentrated at γ . This is a mild

condition that holds under most typical models; see the comments reported after Eq. (20) in [59] for more details.



2.5 DISTRIBUTED ADAPTIVE DETECTION (DAD) 91

2.5.3 WEAK LAW OF SMALL STEP-SIZES
It is useful to start with some results concerning the first two central moments of w


k, which have been
established in [59]. Let us preliminarily make a remark about notation. When we deal with results
holding for a generic distribution, it will not be necessary to specify the particular hypothesis that is
in force. Accordingly, we will formulate our results without specifying the hypothesis. In contrast,
when we need to distinguish the Type-I and Type-II error probabilities, a subscript h ∈ {0, 1} will be
appended to denote that the pertinent quantities are computed under the distribution corresponding to
the particular hypothesis h.

The mean of w

k equals, for all k = 1, 2, . . . , N, the mean of the local detection statistic, namely [59]:

Ew

k = Eτ k(i) � Eτ (2.49)

where, in the latter equality, the dependence on k and i is suppressed due to the i.i.d. assumption. The
variance of the steady-state random variable is given by [59]3:

σ 2
k � VAR[w


k] = σ 2
τ

∞∑
m=0

N∑
�=1

μ2(1 − μ)2m b2
�k(m + 1). (2.50)

In contrast to the behavior of the mean, the variance of w

k does depend on the agent index k. In addition,

it depends on the variance of the local detection statistic, σ 2
τ , on the combination weights (through

{b�k(m)}), and on the step-size. It can be shown that the variances of the individual agents in Eq. (2.50)
obey the following law [61]:

σ 2
k = μ

σ 2
τ

2

N∑
�=1

p2
� + O(μ2). (2.51)

The knowledge of the first two moments of w

k can be exploited to obtain an interesting limit law.

Applying Chebyshev’s inequality, we have, for any positive ε:

P[|w

k − Eτ | > ε] ≤ σ 2

k

ε2
μ→0−→ 0 (2.52)

which reveals that, for small step-sizes, the steady-state output of the diffusion algorithm converges
in probability, as μ → 0, to the expected value of the local statistic, Eτ . Therefore, the limit law
in Eq. (2.52) can be referred to as a weak law of small step-sizes.

The evident analogy with the weak law of large numbers can be further strengthened in light of
the following observation. We see from the algorithm evolution in Eq. (2.46) that, in order to ensure
adaptation, the algorithm uses an exponentially weighted moving window that gives progressively less
credit (i.e., progressively smaller weight) to old data, following a geometric law (1−μ)m. Accordingly,

3In order to avoid confusion, we stress that, in the present treatment, we use a slightly different notation relative to the other
works [59,61]. Such a choice is made to facilitate the illustration of the main ideas as well as to keep notation as uniform as
possible across the estimation and detection settings.



92 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

given the current time instant, we can neglect all data having a weight lower than a certain value
0 < C < 1. In this way, we approximate the effective number of data used by the algorithm as the
current datum, plus all the past data having a weight greater or equal to C, which yields, for sufficiently
small values of μ:

(1 − μ)Neff+1 = C ⇒ Neff ≈ ln C

ln(1 − μ)
≈ | ln C|

μ
. (2.53)

Accordingly, the quantity 1/μ can be taken as a qualitative index of the effective amount of information
used by the algorithm, and we now see why the condition of small step-sizes takes on the meaning of a
large number of samples.

We now show a direct implication of the weak law of small step-sizes that is relevant for the
distributed detection application. Assume that we set a detection threshold E0τ < γ < E1τ . Then
we can write:

αk = P0[w

k − E0τ > γ − E0τ ] ≤ P0[|w


k − E0τ | > γ − E0τ ], (2.54)

βk = P1[w

k − E1τ ≤ γ − E1τ ] ≤ P1[|w


k − E1τ | > E1τ − γ ]. (2.55)

In view of the choice E0τ < γ < E1τ , it is now legitimate to apply the weak law of small step-
sizes in Eq. (2.52) to both Eqs. (2.54) and (2.55), with the choices ε = γ − E0τ and ε = E1τ − γ ,
respectively, obtaining:

αk
μ→0−→ 0, βk

μ→0−→ 0. (2.56)

The results in Eq. (2.56) show that, by proper choice of the detection threshold, the Type-I and Type-II
error probabilities can be made arbitrarily small as μ decreases. This is a remarkable conclusion as
regards the performance of distributed detection over adaptive networks. It is now desirable to give
a shape to the aforementioned vanishing behavior, i.e., to understand how αk and βk vanish as μ

decreases.

2.5.4 ASYMPTOTIC NORMALITY
The weak law of small step-sizes can be refined to ascertain the following central limit theorem (CLT),
which claims that, for μ small enough, the steady-state diffusion output is distributed as a Gaussian
random variable. Formally, we have that [59,61]:

w

k − Eτ

σk

μ→0� N (0, 1) (2.57)

where N (0, 1) denotes a standard normal distribution. There are several important implications of the
asymptotic normality result as regards the DAD problem.

CLT for detection performance. First of all, Eq. (2.57) provides a simple closed-form solution that
can be used to approximate the test performance of each individual agent, yielding:

αk ≈ Q

(
γ − E0τ

σk,0

)
, βk ≈ 1 − Q

(
γ − E1τ

σk,1

)
(2.58)



2.5 DISTRIBUTED ADAPTIVE DETECTION (DAD) 93

where Q(·) is the complementary cumulative distribution function of the standard normal
distribution.

Asymptotic equivalence among agents? For small step-sizes, we can use Eq. (2.51) to replace the
actual variances in Eq. (2.58) by their leading-order approximation, μ (σ 2

τ /2)
∑N

�=1 p2
�, which

turns out to be identical across agents because it does not depend on the agent index k. This
additional simplification suggests that the diffusion process equalizes in some sense the detection
performance across agents. On the other hand, neglecting the O(μ2) correction appearing
in Eq. (2.51) might ignore some useful information about the distinguishing attributes among the
individual agents. Which perspective is correct? We shall answer this question in Section 2.6,
where we shall see that both perspectives are correct: equivalence across agents holds in a precise
sense, and the (possibly) different connectivity properties of the individual agents reflect in their
detection performance.

CLT and small deviations. By applying the definition of convergence in distribution, the result
in Eq. (2.57) can be written in a more explicit form as follows [1]:

P[w

k > Eτ + σkw] μ→0→ Q(w) (2.59)

for any w ∈ R. We recall that Eτ is the mean of w

k, and that, in view of Eq. (2.51), the standard

deviation σk vanishes as
√

μ. Accordingly, the term Eτ + σkw in Eq. (2.59) represents a
(μ-dependent) threshold that lies, for small values of μ, in a small neighborhood of the mean. As a
result, Eq. (2.59) reveals that the normal approximation is asymptotically exact when: (i) the
steady-state variable, w


k, deviates “slightly” from its mean; and (ii) the probability converges to
some value Q(w) (i.e., it does not vanish) as μ → 0. Similar regimes, which arise in various forms
in statistics, are usually referred to as normal deviations or small deviations regimes. In contrast,
when one focuses on evaluating the probability that the steady-state variable, w


k, deviates from its
mean by a constant (rather than vanishing) amount, it is commonplace to talk of a large deviations
regime.
The large deviations framework is particularly appropriate in the detection framework, for at least
two reasons. First, setting a constant threshold γ is appealing because both error probabilities will
vanish as the step-size goes to zero; see Eq. (2.56). Second, even allowing a μ-dependent
threshold, it is not possible to enforce small deviations around the means under both hypotheses
because E0τ �= E1τ (for example, if the threshold collapses to E0τ , we guarantee a small
deviation under H0, but we get a large deviation under H1).

2.5.5 LARGE DEVIATIONS
In order to overcome the limitations of normal approximations, a large deviations analysis has been
performed in [59], and the following conclusion has been established:

αk
·= e−(1/μ) 0 = e−(1/μ) [0+o(1)], βk

·= e−(1/μ) 1 = e−(1/μ) [1+o(1)] (2.60)

where o(1) denotes a quantity that vanishes as μ goes to zero, and, accordingly, the notation
·= means

equality to the leading exponential order as μ goes to zero [62]. The quantities 0 and 1, which will
be referred to as the error exponents, are independent of the step-size μ. A preliminary examination of



94 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

result (2.60) shows several insightful ramifications about the performance of distributed detection over
adaptive networks.

Fundamental scaling law. Eq. (2.60) reveals the fundamental scaling law for distributed detection
with diffusion adaptation: as μ decreases, the error probabilities go to zero exponentially as
functions of 1/μ.

Adaptation/learning trade-off. Recalling that smaller values of μ entail less adaptation, we observe
from Eq. (2.60) that a better detection quality costs in terms of adaptation speed. This result
matches what we have found in the estimation setting.

Benefits of cooperation. As done for the estimation setting, two useful comparisons with known
detectors can be easily done for the case of doubly-stochastic combination policies. For this case,
the error exponents admit a special form, namely, 0 = N�0 and 1 = N�1, where the quantities
�0 and �1 are the error exponents per single agent, which are independent of the number of
agents and of the network connectivity [59]. They depend solely upon the detection threshold and
upon the distribution of the local statistic, τ k(i). As a result, we see that the overall error
exponents, 0 and 1, increase linearly in the number of agents. This implies that cooperation
offers exponential gains in terms of detection performance.

Centralized (adaptive) detector. Eq. (2.60) applies to the centralized case as well because the
centralized adaptive detector can be regarded as a distributed detector with a fully connected
network. Therefore, it can be concluded from Eq. (2.60) that in the small-μ regime the distributed
diffusion solution exhibits a detection performance governed by the same error exponents of the
centralized system.

Example 2.9 (Comparison with decaying step-size solutions). It is useful to contrast the results
about DAD with those pertaining to distributed detection algorithms with decaying step-size [49–51].
The result in Eq. (2.47) reveals that, under stationary conditions, the agents’ detection statistics (i.e.,
the diffusion outputs wk(i)) converge in distribution to a certain random variable. In contrast, in the
decaying step-size case, the detection statistic will collapse, as time elapses, into a deterministic
value (e.g., the Kullback-Leibler divergence). Such convergence to a deterministic value reflects the
continuously improving performance as time elapses with decaying step-sizes. In particular, under
stationary conditions, the error probabilities for decaying step-size algorithms decay exponentially
as functions of the time index i; see, e.g. [49–51]. Accordingly, such probabilities might reach
“astronomically” small values as time elapses. In our adaptive setting (with constant step-size), the
situation is different because the error probabilities stabilize as time elapses. The possibility of reducing
the error probabilities is now related to decreasing the step-size. In fact, the result in Eq. (2.60) reveals
that the error probabilities decay exponentially as functions of the (inverse of the) step-size μ, and not
as functions of the time index i. In accordance with the exponential decay w.r.t. 1/μ, small variations
of the step-size can lead to substantial variations in the error probabilities. �

We now illustrate how the error exponents can be computed from the statistical properties of the
local statistic τ k(i). In particular, we shall see that the fundamental statistical descriptor enabling a
large-deviations analysis is the logarithmic moment generating function (LMGF) of τ k(i), namely,

ψ(t) � lnEetτ k(i), assuming ψ(t) < +∞ ∀t ∈ R. (2.61)



2.5 DISTRIBUTED ADAPTIVE DETECTION (DAD) 95

As done before, we are not specifying the particular hypothesis that is in force because it suffices to
assume that the data come from the same distribution. Then, when we need to distinguish the Type-I and
Type-II error probabilities and error exponents, a subscript h ∈ {0, 1} will be appended to denote that the
pertinent quantities are computed under the distribution corresponding to the particular hypothesis h.

In [59] it has been proved that computation of the error exponents involves two steps. First, one
introduces the following function, which depends only on the local LMGF, ψ(t), and on the limiting
combination weights, {p�}:

φ(t) =
N∑

�=1

∫ p�t

0

ψ(ζ )
ζ

dζ . (2.62)

Second, one computes the Fenchel-Legendre transform of φ(t) [12,13,59,61]:

 � sup
t∈R

[γ t − φ(t)] = γ θ − φ(θ ), where θ : φ′(θ ) = γ . (2.63)

Example 2.10 (A Gaussian example). Assume that the local detection statistics, τ k(i), are
Gaussian random variables, with mean Eτ and variance σ 2

τ . Because the diffusion output is a linear
combination of Gaussian variables, from Eqs. (2.49) and (2.50) we conclude that w


k is Gaussian as
well with mean Eτ and variance σ 2

k . Therefore, analytical expressions for the exact probabilities are
available.

Preliminarily, it is convenient to use the following representation for the variance σ 2
k in Eq. (2.51):

σ 2
k = μσ 2

lim[1 − zk(μ)], where σ 2
lim � σ 2

τ

2

N∑
�=1

p2
� , zk(μ) = 1 − σ 2

k

μσ 2
lim

μ→0−→ 0. (2.64)

Consider now a threshold γ > Eτ . We can write:

P[w

k > γ ] = Q

(
γ − Eτ

σk

)
≈ 1√

2π
(γ − Eτ )2

μσ 2
lim[1 − zk(μ)]

exp

{
− (γ − Eτ )2

2μσ 2
lim[1 − zk(μ)]

}
, (2.65)

where we have used the well-known approximation Q(x) ≈ 1√
2πx2

e− x2
2 , which holds for x > 0.

Let us now see where a large deviations analysis will lead. Noticing that the LMGF of a Gaussian
random variable of mean a and variance b is equal to eat+bt2/2, and using Eqs. (2.62) and (2.63), some
straightforward calculations give:

 = (γ − Eτ )2

2σ 2
lim

⇔ P[w

k > γ ] ·= exp

{
− (γ − Eτ )2

2μσ 2
lim

}
(2.66)

where, we recall, the symbol
·= denotes equality to the leading order in the exponent as μ → 0.

Therefore, comparing Eq. (2.66) with Eq. (2.65), we see that the large deviations analysis corresponds
to neglecting the square-root factor as well as the corrections zk(μ), appearing in Eq. (2.65), which
implies the following two conclusions: (i) the large deviations analysis matches the leading exponential



96 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

order of the true probability in Eq. (2.65); and (ii) the dependencies of the true probability on the agent
index, k, are skipped by the large deviations analysis. Are these dependencies important? This question
is examined in the next section. �

2.5.6 REFINED LARGE DEVIATIONS ANALYSIS: EXACT ASYMPTOTICS
A large deviations analysis presents a well-known limitation: it inherently neglects subexponential
terms. For example, assume that network agents 1 and 2 exhibit the following (asymptotic) Type-I
error probabilities:

α1 = e−(1/μ) 0 ,

α2 = 10 e−(1/μ) 0 = e−(1/μ) 0+ln 10 = e−(1/μ) [0+o(1)]. (2.67)

These two probabilities have the same exponent, 0 (they are equal at the leading order in the
exponent), and, hence, they are considered equivalent from a large deviations perspective. Nonetheless,
we shall always have that α2 = 10 α1, namely, that agent 2 has a Type-I error probability that is 10
times larger than that of agent 1. This is because the factor 10 acts as a subexponential term. On the
other hand, there is no doubt that an accurate prediction of the detection performance would require
taking into account such subexponential corrections. A refined analysis should therefore look for two
functions, Ak and Bk, which are able to approximate the Type-I and Type-II error probabilities, αk and
βk, in the following stronger sense:

αk

Ak

μ→0−→ 1,
βk

Bk

μ→0−→ 1. (2.68)

Such types of approximations are known in a framework that is commonly referred to as exact
asymptotics [12,63].

The exact asymptotics for detection over diffusion networks have been obtained in [61], where the
following result has been established4:

Ak =
√

μ

2π θ2
0 φ′′

0 (θ0)
exp

{
− 1

μ

[
0 + ck,0(μ)

]}

Bk =
√

μ

2π θ2
1 φ′′

1 (θ1)
exp

{
− 1

μ

[
1 + ck,1(μ)

]} (2.69)

with the functions ck,0(μ) and ck,1(μ) converging to zero as μ → 0, and being in particular of order
O(μ). The detailed procedure to compute such functions is illustrated in Appendix A.1.

Despite an apparent complexity, the formulas in Eq. (2.69) exhibit a remarkable and revealing
structure that allows capturing important connections with the physical behavior of the adaptive
distributed detectors. Let us elucidate some of these features. We start by the leading order in the
exponent. Because ck,0(μ) and ck,1(μ) vanish, it is immediately seen from Eq. (2.69) that:

4More accurately, the result holds provided that the local statistic, τ k(i), is not lattice [64]; see Theorem 3 in [61] for
additional details.



2.5 DISTRIBUTED ADAPTIVE DETECTION (DAD) 97

μ ln Ak
μ→0−→ −0, μ ln Bk

μ→0−→ −1, (2.70)

which matches perfectly the leading-order behavior prescribed by Eq. (2.60).
More importantly, we see from Eq. (2.69) that the functions ck,0(μ) and ck,1(μ), along with the

square-root terms, give a shape to the overall subexponential corrections, namely, to the o(1) terms
appearing in Eq. (2.60). The square-root correction is a typical subexponential refinement arising in
the framework of exact asymptotics, and is a consequence of a local CLT (see [63]). Because this
correction is related to the network topology only through the Perron eigenvector, it is independent
of the agent index k, and is therefore applicable to all agents. In contrast, the corrections ck,0(μ)
and ck,1(μ) do depend on the agent index k and take into account the entire network topology and
combination weights.

As a result, we conclude that Eq. (2.69) furnishes a detailed and revealing assessment of the
universal behavior of distributed detection over adaptive networks: as functions of 1/μ, the error (log-)
probability curves corresponding to different agents not only stay nearly parallel to each other, but they
are also ordered following a criterion dictated by the corrections ck,0(μ) and ck,1(μ). As we shall show
later (see rightmost panel in Fig. 2.4 further ahead), this criterion reflects the degree of connectivity of
each agent. Depending on the combination weights, the more connected an agent is, the lower its error
probability will be, and the corrections ck,0(μ) and ck,1(μ) are sufficiently rich to capture this behavior.

Example 2.11 (The Gaussian example (revisited)). Let us apply the exact asymptotics framework
to Example 2.10. We seek an approximation in the following form:

P[w

k > γ ] ≈

√
μ

2π θ2 φ′′(θ )
exp

{
− 1

μ
[ + ck(μ)]

}
. (2.71)

By applying the procedure detailed in Appendix A.1, we end up with the following result:

θ = (γ − Eτ )2

σ 2
lim

, φ′′(θ ) = σ 2
lim, ck(μ) = (γ − Eτ )2

2σ 2
lim

[zk(μ) + z2
k (μ)], (2.72)

where zk(μ) has been defined in Eq. (2.64). Using now the error exponent  already computed in
Example 2.10, and applying Eq. (2.71), the approximation in Eq. (2.66) can be refined to:

P[w

k > γ ] ≈ 1√

2π
(γ − Eτ )2

μσ 2
lim

exp

{
− (γ − Eτ )2

2μσ 2
lim

[1 + zk(μ) + z2
k (μ)]

}
. (2.73)

Let us now compare this formula with the true probability in Eq. (2.65). We see immediately that:
(i) the ratio between the square-root factors tends to one; and (ii) the arguments of the exponential
functions match in view of the well-known Taylor approximation (1 − z)−1 ≈ 1 + z + z2 for z � 1.
We observe how the exact asymptotics analysis is able to recover the dependencies on the individual
agents (index k) that were ignored by the large deviations analysis. �

Example 2.11 helps highlight the following important aspect that concerns the normal approxima-
tion in Eq. (2.58) and the refined large deviations in Eq. (2.69). In Example 2.11, all the statistical
properties of the steady-state diffusion output are determined completely by its first two moments, Eτ

and σ 2
k , because w


k is normally distributed. Then, we have two obvious observations. First, there is



98 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

no need to refer to a normal “approximation”, because the steady-state random variable is actually
Gaussian, and, hence, Eqs. (2.58) will be exact in this particular case. Second, the exact asymptotics
in Eq. (2.73) cannot but depend only on the first two moments of w


k (again, because w

k is Gaussian).

However, the situation changes under general statistical models, when the error probabilities will
depend on higher moments or on the moment generating function. In these more challenging situations,
the normal approximation in Eq. (2.58) will not take into account these higher order dependencies,
because normal approximations use only the first two moments. In contrast, the exact asymptotics
in Eq. (2.69) will be able to exploit higher order dependencies because they use information contained
in the moment generating function.

2.5.7 DAD AT WORK
One illustrative example of detection over adaptive networks is offered in Fig. 2.3, leftmost panel. The
network topology is the same adopted for the estimation example, and is displayed in Fig. 2.1. The
considered detection problem is a non-Gaussian detection problem, where the (scalar) observations,
xk(i), follow a shifted Laplace distribution with unit-scale parameter, namely:

H0 : xk(i) has probability density function f0(x) = e− 1
2 |x|

H1 : xk(i) has probability density function f1(x) = e− 1
2 |x−ρ|

(2.74)

for some ρ > 0. The local statistic adopted by the agents is the log-likelihood ratio of the observations,
namely,

τ k(i) = ln
f1(xk(i))
f0(xk(i))

= |xk(i)| − |xk(i) − ρ|. (2.75)

The plot shows the time evolution of the detection statistics, wk(i), for two agents, namely, for k = 2
and k = 4. We see that the hypothesis initially in force is H0. Accordingly, after an initial transient,
the online detection statistics (oscillating curves) fluctuate around some negative value (which is the
divergence D01). Then, at one-half of the observation window, the hypothesis in force becomes H1,
and, after a short transient, the online detection statistics react promptly to such variation and are able
to adapt their behavior to the new hypothesis, namely, they oscillate around some positive value (which
is the divergence D10). The detection threshold is set to γ = 0. Accordingly, each agent will declare
H1 when such a threshold is exceeded (we see that some wrong decisions are occasionally made during
the algorithm evolution).

With reference to the same example, in the rightmost panel of Fig. 2.3 we present a quantitative
illustration of the detection performance of the adaptive network, which is obtained by estimating the
time-dependent error probability in Eq. (2.43) by the Monte Carlo simulation. Such a “running” error
probability is displayed as a function of time, and is expressed in a logarithmic scale for better reading.
With respect to the example of the leftmost panel, where the step-size was set to a value μ = 0.1,
we add another example, for the case μ = 0.05. After transient phases that correspond either to an
initialization phase or to time instants where the true hypothesis drifts, we see that the error probability
reaches a steady-state behavior. Specifically, the curves corresponding to agents 2 and 4 become stable.
It is interesting to examine the features of the steady-state behavior of the error probability in this
detection example, in comparison to what happens for the mean-square-deviation in the estimation



2.5 DISTRIBUTED ADAPTIVE DETECTION (DAD) 99

0 100 200 300 400
10−8

10−6

10−4

10−2

100

0 100 200 300 400
−0.5

0

0.5

Detection threshold

FIG. 2.3

Illustration of the distributed adaptive detection problem. The detection problem in Eq. (2.74), with the
observations following a shifted Laplace distribution with unit-scale parameter and with ρ = 0.6; see Eq. (2.74).
Leftmost panel: One realization of the diffusion algorithm (2.41), namely, of the online detection statistics
corresponding to agents 2 and 4. The network topology is shown in Fig. 2.1, and the combination rule is the
Metropolis rule in Eq. (2.9). The step-size is set to μ = 0.1. The underlying hypothesis changes when i = 200,
and the adaptive algorithm is able to track such variation promptly. Rightmost panel: Empirical (Monte Carlo)
evaluation of the time-dependent error probability, p(e)

k (i), appearing in Eq. (2.43), for two values of the
step-size.

example; see the rightmost panel of Fig. 2.2. Two important similarities emerge because, even in
the detection case, for smaller step-sizes the adaptation becomes slower and the quality of inference
increases (i.e., the detection error probability decreases). However, there are also remarkable differences
between estimation and detection, as regards the performance of distinct agents. In the estimation case
we have observed that the performance levels of different agents tend to equalize as μ → 0. In contrast,
we see from the rightmost panel of Fig. 2.3 that, in the detection case, the curves pertaining to the
different agents do not collapse into one and the same curve as μ decreases. In particular, also in the
detection case the performance of agent 2 is worse (i.e., higher error probability) than agent 4. However,
differently from what happens in the estimation case, the discrepancies do not disappear as μ goes
to zero. Such a behavior is perfectly consistent with the theoretical analysis. Indeed, we have already
explained that the subexponential correction terms, ck,0(μ) and ck,1(μ), appearing in Eq. (2.69), embody
the differences existing among distinct agents as regards the impact of their connectivity features on the
error probabilities. Moreover, we notice that, as compared with the estimation case (where we reduced
the step-size by one order of magnitude, passing from μ = 0.1 to μ = 0.01), a smaller variation of
the step-size (reduction by one half, passing from μ = 0.1 to μ = 0.05) implies a substantial variation
of the error probability, complying with the exponential decay of the latter with the inverse of the
step-size, 1/μ.

Finally, in the rightmost panel of Fig. 2.4 we check the validity of the two theoretical approximations
presented in this chapter, namely, the normal approximation in Eq. (2.58), and the exact asymptotics
in Eq. (2.69). We note in passing that, for the chosen distributions, detection statistics, and threshold,
the Type-I and Type-II error probabilities can be shown to be equal, namely, we have αk = βk. The
error probabilities of four distinct agents (k = 2, 4, 5, 10) are displayed as functions of the inverse of
the step-size, 1/μ. The logarithmic scale adopted on the vertical axis emphasizes the exponential decay



100 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

10 200 400 600 800 1000
−40

−35

−30

−25

−20

−15

−10

−5

10 20 30 40 50

10−10

10−5

Markers:  Sim.
Dash: Eq. (2.58)
Solid: Eq. (2.69)

FIG. 2.4

DAE vs. DAD. Comparison between the steady-state performance of DAE (leftmost panel) and DAD (rightmost
panel) as a function of the (inverse of the) step-size μ. The leftmost panel shows the steady-state
mean-square-deviations, MSDk , for k = 2, 4, 5, 10, along with the theoretical prediction (dashed curve)
provided by Eq. (2.26). The rightmost panel shows the empirical steady-state error probabilities (αk = βk in
this example), evaluated through Monte Carlo importance sampling, along with: (i) the theoretical normal
approximation in Eq. (2.58), dashed curves; and (ii) the exact asymptotics in Eq. (2.69), solid curves. The
setting for the estimation and the detection problem are the same as those considered in Fig. 2.2 and in
Fig. 2.3, respectively.

of the error probabilities predicted by the large deviations analysis. First, we observe that the normal
approximation turns out to be accurate, especially for relatively small values of 1/μ. This implies
that the variances in Eq. (2.50) contain useful information about the different detection performance
at different agents. However, as indicated by the theory, the predictions obtained with the normal
approximation cannot be assumed true as the step-size decreases. On the other hand, the empirical
probability converges toward the exact asymptotics (and not toward the normal approximation) as the
step-size decreases. The dependency between the network structure and the detection performance at
different agents is correctly embodied in the exact asymptotics, as witnessed by the correct ordering of
the curves. In contrast to what happens for the normal approximation, the predictions offered by the
exact asymptotic for less connected agents seem less accurate in the leftmost part of the plot. In a sense,
the two theoretical approximations complement each other.

Finally, the rightmost panel of Fig. 2.4 shows that very low values of the error probabilities are
achievable.5 This observation has some important implications. In Example 2.9 we have remarked
that distributed nonadaptive implementations such as the running consensus exhibit error probabilities
that decay to zero exponentially fast as time elapses. In contrast, the price for adaptation paid by the
diffusion algorithm is that the error probabilities tend to some steady-state value as time elapses. But
we have just shown that such steady-state error probabilities can reach extremely low values, which
means that the adaptive algorithm is able to learn well.

5The simulation of the system for accurate evaluation of such low probabilities has been carried out using importance
sampling techniques, as detailed in [65].



2.6 UNIVERSAL SCALING LAWS: ESTIMATION VERSUS DETECTION 101

2.6 UNIVERSAL SCALING LAWS: ESTIMATION VERSUS DETECTION
We conclude our analysis by highlighting the universal features of estimation and detection over
adaptive networks as well as by illustrating some useful ramifications of the presented theory.

As we have shown in the previous sections, a number of results are available to characterize the
estimation performance as well as the detection performance of adaptive networks. Such results are
even more revealing if examined in conjunction, because a comparative analysis allows highlighting
commonalities as well as distinctive features between estimation and detection. Moreover, we will also
compare the results illustrated in the previous sections against known laws for estimation and detection
in traditional (centralized or decentralized, nonadaptive) inferential systems.

The (steady-state) inference performance of adaptive networks is summarized in Fig. 2.4. The
leftmost panel displays the mean-square-deviation, MSDk, as a function of the inverse of the step-
size, 1/μ, and with reference to four agents (k = 2, 4, 5, 10). The empirical data points (markers)
obtained via Monte Carlo simulation are compared against the theoretical curve given in Eq. (2.26),
which is represented with a dashed line. The rightmost panel displays the empirical steady-state
error probabilities (αk = βk in this example), evaluated through Monte Carlo importance sampling,
along with: (i) the theoretical normal approximation in Eq. (2.58), dashed curves; and (ii) the exact
asymptotics in Eq. (2.69), solid curves. The settings for the estimation and for the detection problem
are the same as those considered in Fig. 2.2 and in Fig. 2.3, respectively. A number of important findings
are revealed by a detailed analysis of the figure.

Universal scaling laws. In the estimation context, we observe from Eq. (2.26) that the
mean-square-deviation scales proportionally to μ (i.e., inversely with 1/μ) as μ goes to zero. In a
detection context, we observe from Eq. (2.60) that the error probabilities decay exponentially fast
as functions of 1/μ, as μ goes to zero. These scaling laws are general and represent the universal
scaling laws governing errors of estimation and detection over adaptive networks.

Adaptation/learning trade-off. Recalling that smaller values of μ mean a lower degree of adaptation,
we observe that, in both cases, reaching a better inference quality costs in terms of adaptation
speed. This trade-off between tracking speed and steady-state learning performance is well known
in the adaptive filtering literature [6].

Equivalence among agents? We see from the leftmost panel in Fig. 2.4 that the different error curves
collapse into the limiting theoretical curve in Eq. (2.26), as the step-size goes to zero. Accordingly,
we can conclude that all agents reach, for sufficiently small step-sizes, the same estimation
performance. Let us switch to the analysis of the detection setting, rightmost panel in Fig. 2.4. We
see that the error probability curves stay nearly parallel (in the log-scale representation), which
confirms that they are equivalent at the leading order in the exponent. In this sense we recognize
an analogy with the estimation setting, because for what concerns the exponential rate of decay,
the performance is equalized across agents. On the other hand, a fundamental contrast emerges
between estimation and detection: differently from what happens in the former problem, in the
latter problem the performance of distinct agents does not equalize as μ goes to zero. Actually, the
error-probability curves of distinct agents are ordered so as to reflect the network structure,
namely, the differences across agents are related to the degree of connectivity of the agents within
the network, as can be readily verified by joint inspection of the rightmost panel in Fig. 2.4 and of
the network topology shown in Fig. 2.1.



102 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

Where these discrepancies come from? Given that the operational conditions (e.g., the network
deployment, the diffusion algorithm, and so on) are essentially the same for both the estimation
and the detection setting, one might wonder why in the former case the inference performance
equalizes across agents while in the latter case it does not. The theoretical machinery developed so
far provides a clear explanation of such a phenomenon. Let us compare the performance of
agents j and k.
For the estimation setting we use Eq. (2.25). Because here we want to emphasize that the O(μ2)
corrections appearing in Eq. (2.25) can depend on the particular agent, we denote the (possibly)
different corrections pertaining to agents j and k by c̃j(μ) and c̃k(μ), respectively. Thus we get:

MSDj

MSDk
= μ M

∑N
�=1 p2

�
σ 2
v,� + c̃j(μ)

μ M
∑N

�=1 p2
�
σ 2
v,� + c̃k(μ)

≈ 1. (2.76)

We see from Eq. (2.76) that, in the relative comparison between the performance of the two agents,
the impact of the higher order terms progressively disappears as the step-size decreases (because
these terms are of order O(μ2)), which implies the aforementioned performance equalization
across agents.
For the detection setting we use Eq. (2.69) to obtain:

αj

αk
≈ exp

{
1

μ

[
ck,0(μ) − cj,0(μ)

]}
,

βj

βk
≈ exp

{
1

μ

[
ck,1(μ) − cj,1(μ)

]}
. (2.77)

Now, the ratios appearing in Eq. (2.77) do not tend to 1 in general, because we know that the
corrections c�,h(μ), for � = 1, 2, . . . , N and h = 0, 1, are of order O(μ). We conclude that, in
general, the error probabilities of different agents do not equalize as the step-size decreases.

Classic inference scaling laws. We have observed from Eqs. (2.26) and (2.60) that the scaling laws
governing errors of estimation and detection over adaptive networks behave very differently. The
significance and elegance of this result for adaptive distributed networks lie in revealing an
intriguing analogy with other more traditional inferential schemes. As a first example, consider a
classic (i.e., centralized, nonadaptive) inferential system with N i.i.d. data points. It is known that
the optimal estimation error decays as 1/N while the error probabilities of the best detector decay
exponentially fast to zero with N [1,12]. Another important case is that of distributed (nonadaptive)
inference problems with a fusion center, which has been described in Section 2.2.2.1. The
fundamental limits for such a problem have been examined in the context of rate-constrained
multiterminal inference, and, more specifically, with reference to the so-called CEO problem; see
Example 2.3. In this case, given a total bit-rate R, the squared estimation error vanishes as 1/R
while the detection performance scales exponentially with R [38,39]. Thus, at an abstract level,
reducing the step-size corresponds to increasing the number of independent observations in the
first system or increasing the bit-rate in the second system. The above comparisons furnish at least
two interesting interpretations for the inverse of the step-size, 1/μ. First, 1/μ represents the cost of
information used by the network for inference purposes, much as the number of data N or the
bit-rate R in the considered examples. Indeed, 1/μ measures the cost of adaptation, i.e., the
adaptation time, because we know that the adaptation time scales roughly as 1/μ; see last
statement of point (i) in Section 2.4.2. Second, 1/μ measures the number of data samples that, at a
certain time i, receive “enough” credit by the diffusion algorithm, and, hence, 1/μ takes on the



A.1 PROCEDURE TO EVALUATE EQ. (2.69) 103

Table 2.2 Scaling Laws of Detection and of Estimation for Different Types of
Inference Problems

Problem Type Cost Estimation Detection

Centralized and nonadaptive N (no. of data) mse ∼ 1/N Err. prob. ∼ e−N

Distributed + FC and nonadaptive R (bit-rate) mse ∼ 1/R Err. prob. ∼ e−R

Fully distributed and adaptive 1/μ (adapt. time) mse ∼ μ Err. prob. ∼ e−1/μ

The symbol ∼ means “scales as” whereas the common symbol mse denotes the pertinent mean-square-error
estimation performance for all the addressed problems. FC, fusion center.

meaning of an effective amount of information; see Eq. (2.53). Such a notion can be useful to
compare the adaptive system (which operates on infinitely long sequences of streaming data)
against the other two systems of the considered examples, which operate on a fixed amount of data
(N) or bits (R). A summary of the aforementioned analogies and comparisons is provided in
Table 2.2.

APPENDIX

A.1 PROCEDURE TO EVALUATE EQ. (2.69)
This appendix collects the steps needed to evaluate Eq. (2.69). In order to simplify the notation, we
suppress the subscripts denoting the particular hypothesis in force.

In the forthcoming computation, we shall employ the LMGF of the steady-state random variable
w


k, which is:

φk(t; μ) � lnEetw

k =

∞∑
m=0

S∑
�=1

ψ
(
μ (1 − μ)m b�k(m + 1) t

)
, (A.1)

where the latter series representation has been proved in [61]. Moreover, in [61] it is also proved that
the derivatives of the LMGF can be computed via term-by-term differentiation. Finally, we remark
that, depending on the particular application, the formulas in the forthcoming listing might need to be
evaluated numerically, and, for practical purposes, the infinite summations must be obviously truncated.

1. Find the solution θ to the stationary equation appearing in Eq. (2.63):

φ′(θ ) = 1

θ

N∑
�=1

ψ(p�θ ) = γ . (A.2)

2. Using Eq. (A.1), compute the correction term ck(μ) as:

ck(μ) = [φ(θ ) − μφk(θ/μ; μ)] +
[
φ′(θ ) − φ′

k(θ/μ; μ)
]2

2 φ′′(θ )
. (A.3)



104 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

REFERENCES
[1] Shao H. Mathematical statistics. New York: Springer-Verlag; 2003.
[2] Lehmann EL, Casella G. Theory of point estimation. New York: Springer; 1998.
[3] Lehmann EL, Romano JP. Testing statistical hypotheses. New York: Springer-Verlag; 2005.
[4] Kay SM. Fundamentals of statistical signal processing: estimation theory. Upper Saddle River, NJ:

Prentice-Hall; 1993.
[5] Kailath T, Sayed AH, Hassibi B. Linear estimation. Upper Saddle River, NJ: Prentice-Hall; 2000.
[6] Sayed AH. Adaptive filters. NJ: Wiley; 2008.
[7] Kay SM. Fundamentals of statistical signal processing: detection theory. Upper Saddle River, NJ:

Prentice-Hall; 1998.
[8] Poor HV. An introduction to signal detection and estimation. Springer-Verlag; 1988.
[9] Kassam SA. Signal detection in non-Gaussian noise. New York: Springer-Verlag; 1987.

[10] Huber PJ. Robust statistics. NJ: Wiley; 2004.
[11] Györfi L, Kohler M, Krzyżak A, Walk H. A distribution-free theory of nonparametric regression. New York:

Springer; 2002.
[12] Dembo A, Zeitouni O. Large deviations techniques and applications. New York: Springer-Verlag; 1998.
[13] den Hollander F. Large deviations. Providence: American Mathematical Society; 2008.
[14] Lam WM, Reibman AR. Design of quantizers for decentralized estimation systems. IEEE Trans Commun

1993;41(11):1602–5.
[15] Gubner JA. Distributed estimation and quantization. IEEE Trans Inf Theory 1993;39(4):1456–9.
[16] Zhang K, Li XR. Optimal sensor data quantization for best linear unbiased estimation fusion. In: 2004 43rd

IEEE Conference on Decision and Control (CDC), vol. 3; 2004. p. 2656–61.
[17] Venkitasubramaniam P, Tong L, Swami A. Quantization for maximin ARE in distributed estimation. IEEE

Trans Signal Process 2007;55(7):3596–605.
[18] Marano S, Matta V, Willett P. Distributed estimation in large wireless sensor networks via a locally optimum

approach. IEEE Trans Signal Process 2008;56(2):748–56.
[19] Luo ZQ. Universal decentralized estimation in a bandwidth constrained sensor network. IEEE Trans Inf

Theory 2005;51(6):2210–19.
[20] Xiao JJ, Luo ZQ, Giannakis GB. Performance bounds for the rate-constrained universal decentralized

estimators. IEEE Signal Process Lett 2007;14(1):47–50.
[21] Predd JB, Kulkarni SB, Poor HV. Distributed learning in wireless sensor networks. IEEE Signal Process Mag

2006;23(4):56–69.
[22] Marano S, Matta V, Willett P. Nearest-neighbor distributed learning by ordered transmissions. IEEE Trans

Signal Process 2013;61(21):5217–30.
[23] Mergen G, Naware V, Tong L. Asymptotic detection performance of type-based multiple access over

multiaccess fading channels. IEEE Trans Signal Process 2007;55(3):1081–92.
[24] Marano S, Matta V, Tong L, Willett P. A likelihood-based multiple access for estimation in sensor networks.

IEEE Trans Signal Process 2007;55(11):5155–66.
[25] Viswanathan R, Varshney PK. Distributed detection with multiple sensors. I. Fundamentals. Proc IEEE

1997;85(1):54–63.
[26] Blum RS, Kassam SA, Poor HV. Distributed detection with multiple sensors. II. Advanced topics. Proc IEEE

1997;85(1):64–79.
[27] Tsitsiklis JN. Decentralized detection. Adv Stat Signal Process 1993;2:297–344.
[28] Longo M, Lookabaugh TD, Gray RM. Quantization for decentralized hypothesis testing under communica-

tion constraints. IEEE Trans Inf Theory 1990;36(2):241–55.
[29] Varshney PK. Distributed detection and data fusion. New York: Springer-Verlag; 1997.

http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0150


REFERENCES 105

[30] Chamberland JF, Veeravalli VV. Decentralized detection in sensor networks. IEEE Trans Signal Process
2003;51(2):407–16.

[31] Chamberland JF, Veeravalli VV. Wireless sensors in distributed detection applications. IEEE Signal Process
Mag 2007;24(3):16–25.

[32] Chen B, Tong L, Varshney PK. Channel-aware distributed detection in wireless sensor networks. IEEE Signal
Process Mag 2006;23(4):16–26.

[33] Saligrama V, Alanyali M, Savas O. Distributed detection in sensor networks with packet losses and finite
capacity links. IEEE Trans Signal Process 2006;54(11):4118–32.

[34] Rago C, Willett P, Bar-Shalom Y. Censoring sensors: a low-communication-rate scheme for distributed
detection. IEEE Trans Aerosp Electron Syst 1996;32(2):554–68.

[35] Marano S, Matta V, Willett PK. Distributed detection with censoring sensors under physical layer secrecy.
IEEE Trans Signal Process 2009;57(5):1976–86.

[36] Han TS, Amari S. Statistical inference under multiterminal data compression. IEEE Trans Inf Theory
1998;44(6):2300–24.

[37] Zhang Z, Berger T. Estimation via compressed information. IEEE Trans Inf Theory 1988;34(2):198–211.
[38] Berger T, Zhang Z, Viswanathan H. The CEO problem [multiterminal source coding]. IEEE Trans Inf Theory

1996;42(3):887–902.
[39] Viswanathan H, Berger T. The quadratic Gaussian CEO problem. IEEE Trans Inf Theory 1997;43(5):

1549–59.
[40] Tsitsiklis J, Bertsekas D, Athans M. Distributed asynchronous deterministic and stochastic gradient optimiza-

tion algorithms. IEEE Trans Autom Control 1986;31(9):803–12.
[41] Xiao L, Boyd S. Fast linear iterations for distributed averaging. Syst Control Lett 2004;53(1):65–78.
[42] Boyd S, Ghosh A, Prabhakar B, Shah D. Randomized gossip algorithms. IEEE Trans Inf Theory

2006;52(6):2508–30.
[43] Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom

Control 2009;54(1):48–61.
[44] Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A. Gossip algorithms for distributed signal

processing. Proc IEEE 2010;98(11):1847–64.
[45] Braca P, Marano S, Matta V. Enforcing consensus while monitoring the environment in wireless sensor

networks. IEEE Trans Signal Process 2008;56(7):3375–80.
[46] Braca P, Marano S, Matta V, Willett P. Asymptotic optimality of running consensus in testing binary

hypotheses. IEEE Trans Signal Process 2010;58(2):814–25.
[47] Braca P, Marano S, Matta V, Willett P. Consensus-based Page’s test in sensor networks. Signal Process

2011;91(4):919–30.
[48] Kar S, Moura JMF. Convergence rate analysis of distributed gossip (linear parameter) estimation: fundamental

limits and tradeoffs. IEEE J Sel Top Signal Process 2011;5(4):674–90.
[49] Bajovic D, Jakovetic D, Xavier J, Sinopoli B, Moura JMF. Distributed detection via Gaussian running

consensus: large deviations asymptotic analysis. IEEE Trans Signal Process 2011;59(9): 4381–96.
[50] Bajovic D, Jakovetic D, Moura JMF, Xavier J, Sinopoli B. Large deviations performance of consensus+

innovations distributed detection with non-Gaussian observations. IEEE Trans Signal Process 2012;60(11):
5987–6002.

[51] Jakovetic D, Moura JMF, Xavier J. Distributed detection over noisy networks: large deviations analysis. IEEE
Trans Signal Process 2012;60(8):4306–20.

[52] Sayed AH, Tu SY, Chen J, Zhao X, Towfic ZJ. Diffusion strategies for adaptation and learning over networks.
IEEE Signal Process Mag 2013;30(3):155–71.

[53] Sayed AH. Adaptation, learning, and optimization over networks. In: Foundations and trends in machine
learning, vol. 7. Boston-Delft: NOW Publishers; 2014. p. 311–801.

http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0270


106 CHAPTER 2 ESTIMATION AND DETECTION OVER ADAPTIVE NETWORKS

[54] Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.
[55] Lopes CG, Sayed AH. Diffusion least-mean squares over adaptive networks: formulation and performance

analysis. IEEE Trans Signal Process 2008;56(7):3122–36.
[56] Chen J, Sayed AH. On the learning behavior of adaptive networks—Part I: transient analysis. IEEE Trans Inf

Theory 2015;61(6):3487–517.
[57] Chen J, Sayed AH. On the learning behavior of adaptive networks—Part II: performance analysis. IEEE Trans

Inf Theory 2015;61(6):3518–48.
[58] Zhao X, Sayed AH. Performance limits for distributed estimation over LMS adaptive networks. IEEE Trans

Signal Process 2012;60(10):5107–24.
[59] Matta V, Braca P, Marano S, Sayed AH. Diffusion-based adaptive distributed detection: steady-state

performance in the slow adaptation regime. IEEE Trans Inf Theory 2016;62(8):4710–32.
[60] Roberts SW. Control chart tests based on geometric moving averages. Technometrics 1959;1(3):239–50.
[61] Matta V, Braca P, Marano S, Sayed AH. Distributed detection over adaptive networks: refined asymptotics

and the role of connectivity. IEEE Trans Signal Inf Process Netw 2016;2(4):442–60.
[62] Cover T, Thomas J. Elements of information theory. New York: John Wiley & Sons; 1991.
[63] Bahadur RR, Rao RR. On deviations of the sample mean. Ann Math Stat 1960;31(4):1015–27.
[64] Feller W. An introduction to probability and its applications, vol. 2. New York: John Wiley & Sons; 1971.
[65] Matta V, Braca P, Marano S, Sayed AH. Detection over diffusion networks: asymptotic tools for performance

prediction and simulation. In: 24th European signal processing conference (EUSIPCO); 2016. p. 1503–7.

http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0315
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0325
http://refhub.elsevier.com/B978-0-12-813677-5.00002-X/rf0330


CHAPTER

3MULTITASK LEARNING OVER
ADAPTIVE NETWORKS WITH
GROUPING STRATEGIES

Jie Chena∗, Cédric Richardb†, Shang Kee Ting‡, Ali H. Sayedc§

Center of Intelligent Acoustics and Immersive Communications, School of Marine Science and Technology,

Northwestern Polytechnical University, Xi’an, China∗ Laboratoire Lagrange, Université Côte d’Azur, CNRS, OCA,

Nice, France† DSO National Laboratories, Singapore, Singapore‡ School of Engineering, École Polytechnique

Fédérale de Lausanne (EPFL), Lausanne, Switzerland§

3.1 INTRODUCTION
A large variety of applications are network-structured and require adaptation to time-varying dynamics.
Sensor networks, vehicular networks, communication networks, and power grids are some typical
examples.

While centralized strategies can extract information from aggregated data more accurately, they
nevertheless become prohibitive in large data scenarios and rely on a risky fusion-based architecture
where failure of the single central processor can make this solution unreliable. Distributed strategies are
more robust and can be designed to process data in an online streaming fashion, thus avoiding the need
to steer large amounts of raw information. Signal processing over networks has provided a powerful
and convenient set of tools for such scenarios, allowing for efficient in-network learning and adaptation.
Several strategies have been proposed in the literature, including incremental [1–4], consensus [5–7],
and diffusion strategies [8–15]. Diffusion strategies are particularly attractive because they are scalable,
robust, and enable continuous learning and adaptation in response to data drifts [16–18].

The working hypothesis for these earlier studies is that the nodes cooperate with each other to
monitor a single process or to estimate a common parameter vector. We shall refer to problems of this
type as single-task problems. Reaching consensus among the agents is critical for successful inference
in these problems. Due to the increased heterogeneity in models and data types, there has been growing
interest in multitask problems. Over multitask networks, rather than promote consensus among all
agents, the agents are allowed to track node-specific interests that happen to share some dependency
relation with the interest of other agents. In this way, even though the objectives may be different,

aThe work of J. Chen was supported in part by NSFC grant 61671382.
bThe work of C. Richard was supported in part by IDEX UCAJEDI project (ANR-15-IDEX-0001).
cThe work of A.H. Sayed was supported in part by NSF grant CCF-1524250.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00003-1
Copyright © 2018 Elsevier Inc. All rights reserved.

107



108 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

the agents can still benefit from cooperation. In [19,20], the authors describe distributed node-specific
estimation algorithms over fully connected networks or tree networks. In [21], the authors formalize
the problem of adaptation and learning over multitask networks. They devise a set of distributed
online algorithms based on diffusion adaptation strategy. Extensions to asynchronous networks are
considered in [22]. In [23], the performance of a single-task diffusion implementation is analyzed when
it operates in a multitask environment. An unsupervised clustering strategy that allows each agent to
automatically select the neighboring agents with which it can collaborate is also introduced. In this
scenario, the only available information is that clusters of nodes with common interests may exist in
the network but nodes do not know which other nodes share the same interest. Other useful works
have also addressed variations of this scenario in [24–27]. In [28], the authors use multitask diffusion
adaptation as described in [21] with a node clustering strategy for studying the relation between the
tremor intensity and brain connectivity of Parkinson’s patients. In [29], the authors derive a distributed
strategy that allows each node in the network to locally adapt the intensity of cooperation with other
nodes. The authors in [30] promote cooperation between clusters with �1-norm coregularizers. The
authors in [31,32] examine an alternative way to model relations between tasks by assuming that they
all share a common latent feature representation. Variations of this scenario are addressed in [33]. In
another scenario, it is assumed that there are parameters of global interest to all nodes in the network, a
collection of parameters of common interest within subgroups of nodes, and a set of parameters of local
interest at each node [34–36]. In [37,38], the optimum parameter vectors to be estimated by agents are
related according to a set of constraints.

An inspection of the literature on diffusion adaptation over networks shows that, in most existing
works, single-task and multitask oriented algorithms fuse information from neighboring agents via
weighted combinations of estimated parameter vectors. These combinations assign the same scaling
weight to all entries in the combined iterates. There are situations, however, where some groups of
entries within the iterate vectors should be weighted differently than other groups of entries within the
same iterates. Consider an example where the top half of the entries of the parameter vectors to estimate
are common across all agents while the bottom half entries are randomly distributed without obvious
relationship. Uniformly combining estimates may cause a large estimation error due to the presence of
significantly different entries.

Considering groups of variables rather than variables individually can be beneficial for estimation
accuracy if structural relationships between variables exist (e.g., spatial, hierarchical, or related to the
physics of the problem). Group-sparsity inducing estimators are typical examples that benefit from
such prior information. In this chapter, we build on this principle to show how diffusion LMS can be
extended to deal with structured criteria involving groups of variables.

This chapter is organized as follows. Section 3.2 presents the network model and provides a brief
review of diffusion LMS. The group diffusion LMS algorithm is shown in Section 3.3. Its stochastic
behavior is analyzed for known groups of variables and fixed combination coefficients. Section 3.4
introduces unsupervised strategies for grouping the variables and setting the combination coefficients
of the group diffusion LMS. In Section 3.5, experiments are conducted to validate the algorithms and
theoretical findings. Section 3.6 concludes this chapter.

Notation. The normal font x denotes scalars. Boldface small letters x denote vectors. All vectors
are column vectors. Boldface capital letters X denote matrices. The (k, �)th entry of a matrix is denoted
by (·)k�, and the (k, �)th block of a block matrix is denoted by [ · ]k�. The superscript (·)� represents the
transpose of a matrix or vector. The notation ‖·‖ denotes the �2-norm of its matrix or vector argument



3.2 NETWORK MODEL AND DIFFUSION LMS 109

while ‖ · ‖b,∞ denotes the block maximum norm of its block vector or matrix argument. The spectral
radius of a square matrix is denoted by ρ(·). The matrix trace is denoted by trace(·). The operator col{·}
stacks its vector arguments on top of each other to generate a connected vector. The operator diag{·}
formulates a (block) diagonal matrix with its arguments. An identity matrix of size N × N is denoted
by IN . The Kronecker product is denoted by ⊗, and expectation is denoted by E{·}. We denote by Nk

the set of node indices in the neighborhood of node k, including k itself, and |Nk| its set cardinality.

3.2 NETWORK MODEL AND DIFFUSION LMS
3.2.1 NETWORK MODEL
Let us consider a connected network G = (V , E) defined by a set V = {1, 2, . . . , N} of N agents, along
with a set E of edges that are two-element subsets of V . We address the problem of estimating an L × 1
unknown vector at each node k from streaming data collected over the network. At each time instant
n, node k has access to time sequences {dk(n), xk,n}, where dk(n) denotes the reference signal and xk,n
represents an L × 1 regression vector with covariance matrix Rx,k = E{xk,nx�

k,n} > 0. We assume that
the data are related via the linear model:

dk(n) = w��
k xk,n + zk(n) (3.1)

for all k, with w�
k an unknown parameter vector at node k, and zk(n) a zero-mean i.i.d. noise of variance

σ 2
z,k that is independent of every other signal. For determining the parameter vectors w�

k, we consider
the mean-square error criterion at each node k defined as:

Jk(wk) = E
{|dk(n) − x�

k,nwk|2
}
. (3.2)

We shall refer to scenarios where all nodes estimate the same parameter vector, that is, w�
1 = · · · = w�

N ,
as single-task problems. Collaboration among nodes with standard distributed strategies can enhance
the estimation performance over the network. On the contrary, we shall refer to cases where nodes
may estimate distinct parameter vectors, namely, cases where the {w�

k}N
k=1 are not necessarily the

same, as multitask problems. Still, we assume that similarities exist in some sense among these
parameter vectors. Otherwise the estimation problem would be node-independent and would reduce
to the noncooperative setting.

3.2.2 A BRIEF REVIEW OF DIFFUSION LMS
Before introducing the diffusion strategy at the group level, we provide a brief review of standard
diffusion LMS derived for single-task scenarios. The goal of this algorithm is to minimize the
following global cost function in a distributed manner for an enhanced estimation performance over
a noncooperative strategy:

Jglob(w) =
N∑

k=1

Jk(w). (3.3)



110 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

We denote the minimizer of Eq. (3.3) by w�. Minimizing Eq. (3.3) over w with Jk defined by the mean-
square error (3.2) is equivalent to minimizing the following alternative cost [12,13]:

Jglob’(w) = Jk(w) +
∑
��=k

‖w − w�‖2
Rx,�

. (3.4)

To bypass the unknown second-order statistics Rx,�, one can rely on the Rayleigh-Ritz characterization
of eigenvalues to approximate the weighted norm in Eq. (3.4) by a scaled unweighted norm [12,13],
say as,

‖w − w�‖2
Rx,�

≈ b�k ‖w − w�‖2 (3.5)

for some nonnegative coefficients b�k. This leads to the following modified cost function at node k:

Jglob”(w) = Jk(w) +
∑
��=k

b�k ‖w − w�‖2. (3.6)

Calculating the gradient vector of Eq. (3.6), restricting communication to immediate neighbors, and
using approximation (3.5) along with the arguments from [13], we arrive at the adapt-then-combine
(ATC) strategy without raw data exchange [9]:

ψk,n = wk,n−1 + μ xk,n [dk(n) − w�
k,n−1xk,n], (3.7a)

wk,n =
∑

�∈Nk

a�k ψ�,n, (3.7b)

where μ is a small positive step size. The combine-then-adapt (CTA) form can be derived in a similar
way; it is sufficient for our purposes to continue with the ATC form (3.7). The coefficients {a�k} in the
above algorithm are given by:

akk = 1 − μ
∑

�∈Nk\{k}
b�k, (3.8)

a�k = μ b�k, � ∈ Nk\{k}, (3.9)

a�k = 0, � /∈ Nk. (3.10)

In practice, the coefficients {a�k} are usually treated as free weighting parameters to be chosen by the
designer. That is, it is not necessary to worry about selecting the coefficients {b�k}. It is sufficient to
select the {a�k} as nonnegative convex combination coefficients satisfying:

a�k ≥ 0,
∑

�∈Nk

a�k = 1, a�k = 0 if � /∈ Nk. (3.11)

The selection of the {a�k} has a significant impact on the performance of the algorithm for both single
and multitask scenarios [13–15,23,25].



3.3 GROUP DIFFUSION LMS 111

3.3 GROUP DIFFUSION LMS
3.3.1 MOTIVATION
It is explained in [13] how Eq. (3.5) leads to the fusion (3.7b) of local estimates in the neighborhood of
each node. Note now that all the entries of the intermediate estimate ψ�,n are scaled by the same weight
a�k. Fig. 3.1 illustrates one possible limitation of uniform scaling of the entries and why grouping can
be useful in some important situations. For example, in the figure, adjacent nodes k and � are estimating
parameter vectors w�

k and w�
� whose entries are grouped into three separate sets: both vectors have the

same entries in the first group, they significantly differ in the second group due to sensor failure, for
instance, and only differ slightly in the third group due to sensor drift. It is not suitable to view this
scenario either as a single-task problem or as a multitask problem with a single set of combination
weights a�k. A small combination weight may not be sufficient to promote the closeness of entries in
the first and third groups whereas a large combination weight may lead to a large estimation bias caused
by the second group.

This example motivates us to introduce a grouping strategy. More generally, let M be a positive
integer less than or equal to L, and let {Gm}M

m=1 be a partition of the set of indexes G = {1, . . . , L},
namely,

M⋃
m=1

Gm = G, Gm ∩ Gm′ = ∅ if m �= m′. (3.12)

We also let wGm or [w]Gm denote a subvector of w indexed by Gm. In the case of Fig. 3.1B, these are the
subvectors that correspond to the groups G1,G2, and G3. We can then assign larger combination weights

(A) (B) (C)

FIG. 3.1

(A) Parameter vector structures for nodes k and �: three sets of entries have different levels of similarity,
encoded by grey levels. (B) A scenario with three groups; (C) a second scenario with six groups.



112 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

to the first group, smaller or even null-valued weights to the second group, and medium-value weights to
the third group. Such a grouping strategy ends up exploiting the structure of the parameter vectors more
fully. However, because information on the internal group structures may not be available beforehand,
one possible strategy is to split parameter vectors into a number of groups of preset lengths and assign
a combination coefficient to each group, as illustrated in Fig. 3.1C. In the sequel, we shall describe
an unsupervised adaptive strategy to estimate the parameter vectors in these scenarios in an online
manner. Note that the parameter vector entries within each group need not be necessarily contiguous.
In the scope of this chapter, we shall only focus on homogeneous groups of entries across the network,
namely, we shall assume that the parameter vectors at all nodes possess the same grouping structure
across the network. While heterogeneous group models are able to represent more complex application
scenarios, this will require further notation and a more complex algorithm development.

3.3.2 GROUP DIFFUSION LMS ALGORITHM
We now motivate the group diffusion LMS from the single-task derivation by approximating the
second-order statistics Rx,� in an alternative manner. Inspecting Eq. (3.5), we now assign a scaling
factor to each group of entries instead of using a single factor, i.e., we now use

‖w − w�‖2
Rx,�

≈
M∑

m=1

b�k,m‖wGm − w�
Gm

‖2, (3.13)

where b�k,m is the nonnegative weight for group m. The global cost (3.6) is then relaxed as follows:

Jglob”(w) = Jk(w) +
∑
��=k

M∑
m=1

b�k,m‖wGm − w�
Gm

‖2. (3.14)

Calculating the gradient vector of Eq. (3.14), following the same steps as for diffusion LMS and
introducing the following combination weights a�k,m for each group m:

akk,m = 1 − μ
∑

�∈Nk\{k}
b�k,m, (3.15)

a�k,m = μ b�k,m, � ∈ Nk\{k}, (3.16)

a�k,m = 0, � /∈ Nk, (3.17)

we arrive at the group diffusion LMS algorithm:

ψk,n = wk,n−1 + μ xk,n (dk(n) − x�
k,nwk,n−1), (3.18a)

[wk,n]Gm =
∑

�∈Nk

a�k,m[ψ�,n]Gm , for m = 1, . . . , M. (3.18b)

Parameters
⋃M

m=1{a�k,m} can be adjusted by the users. Each subset {a�k,m} now forms a left-
stochastic matrix Am, i.e., for m = 1, . . . , M

a�k,m ≥ 0,
∑

�∈Nk

a�k,m = 1, a�k,m = 0 if � /∈ Nk. (3.19)



3.3 GROUP DIFFUSION LMS 113

Appropriate selection of these coefficients can enhance the performance of diffusion LMS, especially
for scenarios with structural relationships within groups. In Section 3.4.3, we will introduce an
unsupervised strategy to adjust these weights in an online manner. One earlier version of the group
diffusion strategy (3.18a) and (3.18b) was introduced in [39] and applied there to the problem of A/D
converter tuning. In that application, the combination weights {a�k,m} were selected proportionally to
the SNR conditions within relevant frequency bands.

3.3.3 NETWORK BEHAVIOR
We now study the behavior of the group diffusion LMS algorithm (3.18) with constant combination
weights a�k,m that satisfy conditions (3.19). To proceed, we collect the information from across the
network into block vectors and matrices. In particular, we denote by wn and w� the stacked weight
estimate vector and the stacked optimum weight vector, respectively:

wn = col{w1,n, . . . , wN,n}, (3.20)

w� = col{w�
1, . . . , w�

N}. (3.21)

We consider the case where the w�
k are distinct. The weight error vector w̃k,n for each node k at

iteration n is defined by:

w̃k,n = wk,n − w�
k . (3.22)

These error vectors w̃k,n are also stacked on top of each other to get the vector:

w̃n = col{w̃1,n, . . . , w̃N,n}. (3.23)

We assume that the regression vectors xk,n arise from a zero-mean random process that is temporally
(over n) stationary, white, and independent over space (over k) with Rx,k = E{xk(n) x�

k (n)} > 0. This
independence assumption is widely used in the analysis of adaptive learning systems [40, App. 24.A],
[14, Chs. 10-11].

Mean weight behavior analysis
Subtracting optimum vectors w�

k from both sides of the adaptation equation (3.18a), and using

dk(n) − x�
k,nwk,n−1 = zk(n) − x�

k,nw̃k,n−1 (3.24)

gives

ψk,n − w�
k = w̃k,n−1 − μ xk,nx�

k,nw̃k,n−1 + μ xk,nzk(n). (3.25)

Before establishing the relation between the weight error vectors w̃n and w̃n−1, it is convenient to
introduce the N × N block matrix

A =
⎛
⎜⎝

A11 · · · A1N
...

. . .
...

AN1 · · · ANN

⎞
⎟⎠ . (3.26)

Each block A�k is an L × L diagonal matrix whose ith diagonal entry is a�k,m, where m refers to the
subset of indexes Gm to which index i belongs. In the single-task case, expression (3.26) reduces to



114 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

matrix A = A ⊗ IN considered in [14, Ch. 8] for analyzing the convergence behavior of diffusion
LMS, with (A)�k = a�k.

Matrix A can also be expressed as follows:

A = (
A1 ⊗ J1

) + · · · + (
AM ⊗ JM

)
, (3.27)

where Jm is an L × L diagonal matrix with diagonal entries defined as:

(Jm)ii = 1, if i ∈ Gm, (3.28)

(Jm)ii = 0, otherwise. (3.29)

Because the weights a�k,m satisfy condition (3.19), i.e., each matrix Am is left-stochastic, matrix A is
also left-stochastic.

With the above matrix A, it can be verified that:

w̃n = A� (ψn − w�) + (A� − I) w�, (3.30)

where ψn = col{ψ1,n, . . . , ψN,n}. Using Eq. (3.25), we write:

w̃n = A� (I − μRx,n)w̃n−1 + μA�pxz,n + (A� − I)w� (3.31)

with Rx,n = diag{x1,nx�
1,n, . . . , xN,nx�

N,n} and pxz,n = {x1,nz1(n), . . . , xN,nzN(n)}. Taking the expectation
of both sides of Eq. (3.31) and using the independence assumption, we arrive at the mean behavior
equation of the group diffusion LMS algorithm:

E{w̃n} = A� (I − μRx)E{w̃n−1} + (A� − I) w� (3.32)

with Rx = diag{Rx,1, . . . , Rx,N}. We shall now provide a condition on μ to guarantee the stability of
Eq. (3.32).

The convergence of Eq. (3.32) is determined by the stability of A� (I − μRx). Algorithm
parameters should be chosen to satisfy the mean stability condition:

ρ
(
A�(I − μRx)

)
< 1, (3.33)

where ρ(·) denotes spectral radius of its matrix argument. Let us first focus on matrix A. Let x =
col{x1, . . . , xN} be an arbitrary L × 1 block vector whose individual entries {xk} are vectors of size
L × 1 each. Considering Eq. (3.27), using that

∑N
i=1 aji,m = 1 with aji,m ≥ 0, and Jensen’s inequality,

we have: ∥∥∥∥∥∥
⎛
⎝ M∑

m=1

A�
m ⊗ Jm

⎞
⎠ x

∥∥∥∥∥∥
2

=
N∑

i=1

∥∥∥ M∑
m=1

N∑
j=1

aji,mJmxj

∥∥∥2

≤
N∑

i=1

M∑
m=1

N∑
j=1

aji,m
∥∥Jmxj

∥∥2

=
M∑

m=1

N∑
j=1

∥∥Jmxj
∥∥2. (3.34)



3.3 GROUP DIFFUSION LMS 115

Matrix Jm is actually an orthogonal projection matrix that sets to 0 in Eq. (3.34) the entries of xj that
are not indexed by Gm. Because {Gm}M

m=1 is a partition of the set of indexes, we have:

M∑
m=1

N∑
j=1

∥∥Jmxj
∥∥2 =

N∑
j=1

∥∥xj
∥∥2 = ‖x‖2. (3.35)

We conclude that

∥∥A�∥∥ =
∥∥∥ M∑

m=1

A�
m ⊗ Jm

∥∥∥2 ≤ 1. (3.36)

We know that the spectral radius of any matrix X satisfies ρ(X) ≤ ‖X‖, for any induced norm. Applying
this to A� (I − μRx), we have:

ρ
(
A�(I − μRx)

) ≤ ∥∥A�∥∥ ∥∥I − μRx
∥∥ (3.37)

≤ ∥∥I − μRx
∥∥. (3.38)

It then follows that the group diffusion LMS asymptotically converges in the mean, for any initial
condition, if the step size satisfies:

0 < μ <
2

maxk λmax(Rx,k)
. (3.39)

Setting n −→ ∞ in Eq. (3.32) leads to the asymptotic mean bias expression:

w̃∞ = [
I − A�(I − μRx)

]−1(A� − I) w�. (3.40)

Mean-square error behavior analysis
We shall now perform a mean-square error analysis of the group diffusion LMS. The purpose of this
analysis is to evaluate how the variance E{‖w̃n‖2} evolves with time. This analysis is based on the
energy conservation framework used in [13,23,32], which starts from the weight-error vector recursion
in the compact form:

w̃n = Bn w̃n−1 − gn − r (3.41)

with the transition matrix:

Bn = A�(I − μRx,n) (3.42)

the stochastic driving term:

gn = μA�pxz,n (3.43)

and the constant driving term:

r = (A� − I) w�. (3.44)

The expected values of the stochastic quantities (3.42) and (3.43) are given by:

B = A�(I − μRx), (3.45)

g = 0NL. (3.46)



116 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

We define the matrix

K = E{B�
n ⊗ B�

n } (3.47)

and approximate it by K ≈ B� ⊗ B� for sufficiently small step sizes. We also define:

G = E{gng�
n } = μ2A� diag{σ 2

z,1Rx,1, . . . , σ 2
z,nRx,N}A. (3.48)

We skip the derivations here and refer instead to [24,33]. Following similar arguments, the following
statements can be justified.

Theorem 3.1 (Mean-square stability). Consider the data model (3.1) and assume the indepen-
dence assumption holds. The group diffusion strategy (3.18) is mean-square stable when the matrix K
defined by Eq. (3.47), or its approximation, is stable. This condition is satisfied by sufficiently small
step sizes. �

Theorem 3.2 (Network learning curve). Consider the same setting of Theorem 3.1 and let ζn �
E{‖w̃n‖2/N} denote the average network mean-square deviation (MSD) at time n. Then, the learning
curve of the network corresponds to the evolution of ζn with time and is described by the following
recursion over n ≥ 0:

ζn+1 = ζn+
[(

vec{G�})�Knσ I + ‖r‖2
Knσ I

− ‖w̃0‖2
(I(NL)2−K)Knσ I

−2
[
γ �

n + (BE{w̃n})� ⊗ r�
]

σ I

]
,

(3.49)

γ n+1 = K�γ n + (K − I(NL)2 )�(BE{w̃n} ⊗ r) (3.50)

with σ I = vec{ 1
N INL}, ζ0 = 1

N ‖w̃0‖2, γ 0 = 0(NL)2×1. �
Theorem 3.3 (Steady-state MSD). Consider the same setting of Theorem 3.1. The steady-state

MSD of the group diffusion strategy (3.18) is given by:

ζ∞ = (
vec{G�})�σ + r��(r − 2B w̃∞) (3.51)

with w̃∞ determined by Eq. (3.40), and vec{�} = σ = 1
N (I(NL)2 − K)−1vec{INL}. �

Although Theorems 3.2 and 3.3 provide closed-form expressions for the network MSD and steady-
state MSD, it may not be practical to evaluate Eqs. (3.49)–(3.51) due to the size of the matrices
involved, which have dimensions (NL)2 × (NL)2. In what follows, we derive equivalent but more
compact expressions with matrices of size NL × NL (see Proof of Corollary 3.1).

Corollary 3.1 (Alternative transient MSD expression). Consider the same setting of Theo-
rem 3.1. The MSD learning curve of the group diffusion strategy (3.18), provided by Theorem 3.2,
can be equivalently expressed as follows:

ζn+1 = ζn + 1

N
trace

([
G + rr�

]
Bn�Bn

−w̃0w̃�
0

[
Bn�Bn − Bn+1�Bn+1] − 2�n − 2BE{w̃n}r�

)
, (3.52)

�n+1 = B�nB� + Br (B2 E{w̃n})� − r(BE{w̃n})� (3.53)

with ζ0 = 1
N ‖w̃0‖2 and �0 = 0NL. �



3.4 GROUPING STRATEGIES 117

Corollary 3.2 (Alternative steady-state MSD expression). Consider the same setting of
Theorem 3.1. The steady-state MSD of the group diffusion strategy (3.18), provided by Theorem 3.3,
can be equivalently expressed as follows:

ζ∞ =
∞∑

n=0

Bn (
G + (r − 2Bw̃∞) r�

)
(Bn)�. (3.54)

�
Expression (3.54) is obtained by performing a series expansion of Eq. (3.51).

3.4 GROUPING STRATEGIES
In many practical cases, information about the group structure is not available beforehand. It is thus
necessary to devise grouping strategies to endow agents with the ability to partition the estimated
parameter vectors and to associate appropriate combination weights to each group.

3.4.1 FIXED GROUPING STRATEGY
A simple strategy is to split parameter vectors into a number of contiguous groups with preset lengths,
possibly equal, and then assign a combination coefficient to each group, as illustrated in Fig. 3.1C.
Splitting the parameter vector into subvectors can improve the performance for some applications,
especially when there exist correlations among adjacent entries. However, this strategy may fail with
particular configurations. For instance, consider the case where only the odd entries of the parameter
vectors show some correlation. No matter how the group length is set, the algorithm will not be able to
benefit from a uniform grouping strategy except perhaps if the group size is set to one. This motivates
us to derive smart adaptive grouping strategies.

3.4.2 ADAPTIVE GROUPING STRATEGY
Adaptive grouping can be viewed as a clustering problem where we need to assign a label to each
entry of a parameter vector. Before proceeding with the derivation, it is important to keep in mind
that because we are considering algorithms with linear complexity (LMS-type algorithms) within the
context of online learning and distributed adaptation, grouping/clustering should neither be performed
in a centralized manner nor significantly increase the computational complexity. In other words,
deriving a grouping strategy with quadratic complexity would not make much sense in this context.
This constraint rules out most clustering algorithms used in machine learning and data analysis, e.g.,
hierarchical clustering, k-means or spectral clustering. In what follows, we introduce a simple but
efficient strategy. As this strategy is time-independent, we shall omit the time index in notation for
the sake of simplicity.

We start by introducing the following quantity that characterizes the deviation between the
intermediate estimates defined in Eq. (3.18a) at nodes k and �:

δk�,i =
∣∣(ψk)i − (ψ�)i

∣∣ for � ∈ Nk (3.55)



118 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

for i = 1, . . . , L. By averaging pairwise quantities δk�,i within the neighborhood, we then associate with
each node k with the following L quantities:

δk,i = 1

|Nk|
∑

�∈Nk

δk�,i for i = 1, . . . , L. (3.56)

Each δk,i shows how the ith entry of ψk deviates from those of its neighbors. Entries with similar δk,i
can be assigned to the same group because they have a similar average contrast level with respect to
their neighbors. In this way, groups of entries with small (resp., large) contrast will lead the multitask
diffusion algorithm to adopt a consensus (resp., noncooperative) strategy over these entries. Note that
each node k can calculate δk,i in Eq. (3.56) after collecting the estimates from its neighbors, after the
adaptation step (3.18a). We now propose the following steps to generate the groups:

1. Sort {δk,i}L
i=1 in ascending order to obtain the ordered sequence {δk,i}L

i=1;
2. Generate the difference sequence 	k,i = δk,i+1 − δk,i, and determine the K − 1 largest values 	k,i

to split {δk,i}L
i=1 into K sections where the largest changes occur;

3. Form a group with the original entries δk,i that are in a same section. Repeat this operation with the
K sections determined in Step 2.

The computational complexity of this procedure is dominated by the sorting operation in Step 1. A
complexity of O(L log L) can be achieved with an efficient sorting algorithm. This grouping strategy
derives from a vertex clustering algorithm commonly used in the literature [41]. Indeed, consider a
fully connected graph with L vertices associated to the L entries of the local estimate ψk. The edge
between vertices (i.e., entries) i and j is assigned a weight equal to |δk,i − δk,j|. The above grouping
procedure is then equivalent to generating a minimum spanning tree (MST) with Prim’s algorithm on
this graph [42], and then grouping the vertices into K clusters by cutting the most significant edges.

Before concluding this section, observe that Step 2 does not take relative differences into
consideration for small δk,i. We suggest determining the cutting positions by considering the K − 1
largest values of the normalized sequence ξk,i, with ξk,i = 0 if δk,i < τ and ξk,i = (δk,i+1 − δk,i)/δk,i if
δk,i ≥ τ , where τ denotes a given threshold.

3.4.3 ADAPTIVE COMBINATION STRATEGY
We now derive an adaptive combination strategy for group diffusion LMS. Motivated by Chen et al.
[23] and Zhao and Sayed [43], it consists of adjusting the combination weights a�k,m in an online
manner via instantaneous MSD minimization. Let us denote by w̃k,n the weight error vector wk,n − w�

k
after the combination step (3.18b). Considering groups Gm, the instantaneous MSD at each agent k can
be expressed as a function of a�k,m as follows:

E{‖w̃k,n‖2} =
M∑

m=1

E

{∥∥[w�
k]Gm −

∑
�∈Nk

a�k,m [ψ�,n]Gm

∥∥2
}

=
M∑

m=1

∑
�∈Nk

∑
p∈Nk

a�k,m apk,m

(
�

(m)
k,n

)
�p

, (3.57)



3.5 SIMULATIONS 119

where matrix �
(m)
k,n is the covariance matrix of the weight error for group m at node k and time instant

n, with (�, p)th entry given by:

(
�

(m)
k,n

)
�p

=
{

E

{
[w�

k − ψ�,n]�Gm
[w�

k − ψp,n]Gm

}
, �, p ∈ Nk,

0, otherwise.
(3.58)

To make the problem tractable, we approximate �
(m)
k,n by an instantaneous value and we drop its off-

diagonal entries. In addition, because w�
k is unknown, we approximate it by ŵ�

k as shown in Eq. (3.61).
The instantaneous MSD minimization then leads to the optimization problem:

min
ak,m

N∑
�=1

M∑
m=1

a2
�k,m

∥∥∥[ŵ�
k − ψ�,n]Gm

∥∥∥2

subject to 1�
N ak,m = 1, a�k,m ≥ 0,

a�k,m = 0 if � /∈ Nk,

(3.59)

where ak,m = [a1k,m, . . . , aNk,m]�. The above objective function promotes weak information exchange
via small a�k,m if the estimate of group Gm at node � is far from its counterpart at node k. The solution
of Eq. (3.59) is given by:

a�k,m = ‖[ŵ�
k − ψ�,n]Gm‖−2∑

j∈Nk
‖[ŵ�

k − ψ j,n]Gm‖−2
, for � ∈ Nk. (3.60)

We now introduce an instantaneous approximation ŵ�
k,n for w�

k at each node k and time instant n. In order
to reduce the MSD bias that may result from an inappropriate cooperation between nodes performing
distinct estimation tasks, a possible strategy is to use the local one-step ahead approximation:

ŵ�
k,n = ψk,n + μ′

k qk,n, (3.61)

where qk,n = [dk(n)−x�
k,nψk,n] xk,n is the instantaneous approximation of the negative gradient of Jk(w)

at ψk,n. Substituting this expression into Eq. (3.60) leads to the combination rule:

a�k,m(n) = ‖[ψk,n + μ′
k qk,n − ψ�,n]Gm‖−2∑

j∈Nk
‖[ψk,n + μ′

k qk,n − ψ j,n]Gm‖−2
(3.62)

for � ∈ Nk and m = 1, . . . , M. Furthermore, we observed in our experiments that the normalized
gradient qk,n ← qk,n/(‖qk,n‖ + ε) with ε a small positive constant can increase the robustness of the
resulting strategy.

3.5 SIMULATIONS
In this section, we shall first report simulation results that illustrate the theoretical findings, and
then simulate the adaptive grouping and combination weight adjustment algorithms. All agents were
initialized with zero parameter vector wk,0 = 0L for all k. Simulated curves were obtained by averaging
over 100 Monte-Carlo runs.



120 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

1

5
6

2

11

3

7

4

8

9 12
10

0.8 0.85 0.9 0.95 1 1.05
2
x

2 z

1.1 1.15 1.2
0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

1

2

3
4

5

6

7
8

9

10

1112

Iteration n

0 250 500 750 1000 1250 1500
−30

−25

−20

−15

−10

−5

0

5

10

Theoretical steady-state MSD

Theoretical transient MSD

Simulated transient MSD

Group diffusion LMS
(5 groups)

Non-cooperative LMS

Group diffusion LMS
(3 groups)

M
S

D
 (

dB
)

(A) (B)

(C)

FIG. 3.2

Validation of the mean-square error behavior analysis. (A) Network. (B) Variance of regressors and noise at
each node. (C) MSD learning curves.

3.5.1 MODEL VALIDATION
We considered the network with N = 12 nodes shown in Fig. 3.2A. The optimum parameter vectors
{w�

k}N
k=1 consisted of L = 15 entries. The first six entries were common across all nodes, that is,

[w�
1]G1

= · · · = [w�
N ]G1

with G1 = {1, . . . , 6}. (3.63)

These entries were sampled from a uniform distribution U (−1, 1). The next four entries were uniformly
sampled from U (−1, 1) for each node, so that there was no relationship between the entries of this
group, that is,

[w�
k]i = uki for i ∈ G2 = {7, . . . , 10} (3.64)



3.5 SIMULATIONS 121

with independent uki sampled from U (−1, 1). The last five entries were set to:

[w�
k]i = [wo]i + uki for i ∈ G3 = {11, . . . , 15} (3.65)

with [wo]i uniformly sampled from U (−1, 1), identical for all nodes, and i.i.d. perturbations uki sampled
from U (−0.1, 0.1). In the sequel, we shall refer to the generative model (3.63)–(3.65) by S1 for short.
Observe that nodes did not know this setup beforehand. Input vectors xn were zero-mean L × 1 random
vectors governed by a Gaussian distribution with covariance matrix Rx,k = σ 2

x,kIL. The noises zk(n)
were i.i.d. zero-mean Gaussian random variables, independent of any other signal with variances
σ 2

z,k. Variances σ 2
x,k and σ 2

z,k used in this experiment were sampled from U (0.8, 1.2) and U (0.18, 0.22),
respectively. Their values are depicted on the signal-noise variance plot shown in Fig. 3.2B.

First, we illustrate the theoretical model with constant combination coefficients as characterized in
Section 3.3.3. The following algorithm settings were considered:

• Noncooperative LMS. This is the limit case where the combination coefficient matrix A is set to I.
• Diffusion LMS. This is the limit case where there exists only one group. A uniform combination

matrix A with a�k = |Nk|−1 was used for this experiment. As for the noncooperative LMS, this
setting was used as a baseline.

• Group diffusion LMS with three groups. In this setting, the groups were set according to the
generative model. For the first group, A1 was set to a uniform combination matrix with
a�k,1 = |Nk|−1. For the second group, the combination matrix was set to A2 = I. For the third
group, the combination matrix was set to an intermediate version A3 = 0.5I + 0.5A1.

• Group diffusion LMS with five groups. We split the L entries into five groups of L/5 consecutive
entries. A uniform combination matrix A1 with a�k,1 = |Nk|−1 was used for the first group. Matrix
A2 was generated with the Metropolis rule, that is, a�k,2 = max{|Nk|, |N�|}−1 for k ∈ Nk\{k},
akk,2 = 1 − ∑

�∈Nk\{k} a�k,2, otherwise a�k,2 = 0, for the second group. The identity matrix was
used for the third and fourth groups, namely, A3 = A4 = I. For the fifth group, the combination
matrix was set to A5 = 0.5I + 0.5A1.

This experimental setup was considered to test the theoretical models rather than reveal the performance
gain using a grouping strategy. The step size was set to μ = 0.005. The resulting MSD curves are illus-
trated in Fig. 3.2C. The theoretical transient and steady-state MSD were evaluated using Eqs. (3.52)–
(3.54). The theoretical curves are generally consistent with the Monte Carlo simulated curves. It can
be observed that single-task diffusion LMS algorithm had a large MSD due to the bias caused by
averaging over the entries of the group G2. Group diffusion LMS with three groups performed the best,
because its three groups correspond to the generative model and we associated reasonable combination
coefficients to each group. Group diffusion LMS with five groups performed slightly worse than with
the three-group setting because the fourth group overlaps G2 and G3 of the generative model. This
simulation confirms that a grouping strategy should improve the performance, and also suggests that it
should be adaptive.

3.5.2 PERFORMANCE OF THE ADAPTIVE GROUPING STRATEGY
The aim of this section is to compare the static and adaptive grouping strategies along with the
adaptive method for setting the combination coefficients. The following algorithms and settings were
considered:



122 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

• Noncooperative LMS. This noncooperative algorithm was used as a reference for the performance
comparison.

• Multitask diffusion LMS in [23]. The number of groups considered with this algorithm is M = 1.
Nodes are, however, endowed with the adaptive combination function that allows them to adapt the
combination weights a�k in an online way. This algorithm was also used as a baseline for
performance comparison to illustrate the need for an adaptive grouping strategy.

• Group diffusion LMS with preset groups. First, we considered the same groups as the generative
model. Next we uniformly split the parameter vectors into M contiguous groups of the same size.
With this algorithm, nodes are endowed with the adaptive combination function only.

• Group diffusion LMS with adaptive grouping strategy. With this algorithm, nodes are endowed
with the adaptive variables grouping function and the adaptive combination function.

First, we considered the generative model S1 used for model validation in Section 3.5.1, namely,
Eqs. (3.63)–(3.65). The second generative model we considered, denoted by S2, consisted of a partition
into two groups of the parameter vectors entries. The first group involved all the odd entries as follows:

[w�
1]G1

= . . . = [w�
N ]G1

with G1 = {1, 3, . . . , 15}, for ∀k (3.66)

and the second group involved all even entries as follows:

[w�
k]i = uki for i ∈ G2 = {2, 4, . . . , 14}, for ∀k (3.67)

with uki randomly drawn from U (−1, 1).
Fig. 3.3 illustrates the MSD convergence behavior of the algorithms enumerated above. The

noncooperative LMS algorithm can be considered as a baseline for this comparative test because it does
not rely on any cooperation. The multitask diffusion LMS considered in [23] reached a slightly larger
MSD than the noncooperative LMS. This algorithm is able to adjust the combination weights a�k in an
adaptive manner, but it cannot take possible group structures into account. It processed the parameter
vectors as if they were significantly different and inhibited cooperation between nodes. This result
reveals the need for a grouping strategy. By setting the group structure in accordance with the generative
model, the group diffusion LMS with preset groups achieved the lowest MSD for both S1 and S2.

(A) (B)

–5

–10

–15

–20

–25

–5

–10

–15

–20

–25

FIG. 3.3

Comparison of MSD learning curves. (A) S1; (B) S2.



3.5 SIMULATIONS 123

With M = 3 preset uniform groups, the group diffusion LMS also led to a significant performance
improvement over the noncooperative LMS for S1, showing that preset groups can be beneficial. With
M = 5 groups, this algorithm still outperformed the noncooperative algorithm. A larger MSD than in
the case M = 3 was, however, observed, which shows that increasing the number of groups may not
always be beneficial. It is worth noting that the group diffusion LMS with preset groups of sizes M = 3
and M = 5 led to unfavorable performance with S2. The limits of this strategy involving preset uniform
groups of entries have already been discussed in Section 3.4.1. Finally, the proposed group diffusion
LMS with adaptive grouping and adaptive combination coefficients was run with M = 3 groups. Note
that M was thus voluntarily overestimated for S2. For experimental setups S1 and S2, it performed
almost as well as when using the ground truth groups. Fig. 3.4 and 3.6 show the group structures at

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Nodes

Nodes

Nodes

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

E
nt

rie
s

E
nt

rie
s

E
nt

rie
s

(A) (B)

(C)

FIG. 3.4

Estimated group structures for the setup S1, at different time instants n. (A) n = 50; (B) n = 250;
(C) n = 1000.



124 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

TimeTime(A) (B)
100 200 300 400 500 600 700 800 900 1000

Time
100 200 300 400 500 600 700 800 900 1000

E
nt

rie
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

E
nt

rie
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

E
nt

rie
s

FIG. 3.5

Estimated group structures for the setup S1, at different nodes k. (A) k = 1; (B) k = 6; (C) k = 9.

time instants n = 50, 250, and 1000 for group settings S1 and S2, respectively. The entries encoded
with the same grey level belong to the same group. Figs. 3.5 and 3.7 show the evolution over time of
the group structures at nodes k = 1, 6, and 9 for the group settings S1 and S2, respectively. All these
results are consistent with the generative models.

3.6 CONCLUSION AND PERSPECTIVES
In this paper, we introduced an adaptive grouping procedure into diffusion adaptation to take advantage
of structural similarities among parameter vectors to estimate. Simulation results illustrated the
effectiveness of the grouping strategy and of the adaptive information fusion rule.



PROOF OF COROLLARY 3.1 125

Nodes(A) (B)
1 2 3 4 5 6 7 8 9 10 11 12

E
nt

rie
s

E
nt

rie
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Nodes

Nodes

1 2 3 4 5 6 7 8 9 10 11 12

E
nt

rie
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FIG. 3.6

Estimated group structures for the setup S2, at different time instants n. (A) n = 50; (B) n = 250;
(C) n = 1000.

PROOF OF COROLLARY 3.1
The results below are based on the following properties of the Kronecker product:

vec(XYZ) = (Z� ⊗ X)vec(Y) and trace(XY) = (
vec(Y�)

)�vec(X).

Then, the first term in Eq. (3.49) can be rewritten as follows:

(
vec{G�})�Knσ I = 1

N
trace

(
G

[
Bn�Bn])

.



126 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

100 200 300 400 500 600 700 800 900 1000

E
nt

rie
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

E
nt

rie
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(C)

(A) (B)

E
nt

rie
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

100 200 300 400 500 600 700 800 900 1000

100 200 300 400 500 600

Time

TimeTime

700 800 900 1000

FIG. 3.7

Estimated group structures for the setup S2, at different nodes k. (A) k = 1; (B) k = 6; (C) k = 9.

The second term is given by:

‖r‖2
Knσ I

= 1

N
trace

(
rr�

[
Bn�Bn])

.

The third term can be expressed as follows:

‖w̃0‖2
(I(NL)2 −K)Knσ I

= 1

N
trace

(
w̃0w̃�

0
[
Bn�Bn − Bn+1�Bn+1])

.

The last term can be rewritten as:(
γ �

n + [BE{w̃n}]� ⊗ r�
)

σ I = trace(��
n ) + r�BE{w̃n},



REFERENCES 127

where �n is defined hereafter. With these expressions, we obtain the following update equation that
now depends on B rather than K:

ζn+1 = ζn + 1

N
trace

([
G + rr�

]
Bn�Bn

−w̃0w̃�
0

[
Bn�Bn − Bn+1�Bn+1] − 2�n − 2BE{w̃n}r�

)
.

The matrix form �n+1 of γ n+1 is updated as follows:

�n+1 = B�nB� + Br (B2 E{w̃n})� − r(BE{w̃n})�.

REFERENCES
[1] Bertsekas DP. A new class of incremental gradient methods for least squares problems. SIAM J Optimiz

1997;7(4):913–26.
[2] Rabbat MG, Nowak RD. Quantized incremental algorithms for distributed optimization. IEEE J Sel Topics

Areas Commun 2005;23(4):798–808.
[3] Blatt D, Hero AO, Gauchman H. A convergent incremental gradient method with constant step size. SIAM J

Optimiz 2007;18(1):29–51.
[4] Lopes CG, Sayed AH. Incremental adaptive strategies over distributed networks. IEEE Trans Signal Process

2007;55(8):4064–77.
[5] Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom

Control 2009;54(1):48–61.
[6] Kar S, Moura JMF. Distributed consensus algorithms in sensor networks: link failures and channel noise.

IEEE Trans Signal Process 2009;57(1):355–69.
[7] Srivastava K, Nedic A. Distributed asynchronous constrained stochastic optimization. IEEE J Sel Top Signal

Process 2011;5(4):772–90.
[8] Lopes CG, Sayed AH. Diffusion least-mean squares over adaptive networks: formulation and performance

analysis. IEEE Trans Signal Process 2008;56(7):3122–36.
[9] Cattivelli FS, Sayed AH. Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process

2010;58(3):1035–48.
[10] Chen J, Sayed AH. Diffusion adaptation strategies for distributed optimization and learning over networks.

IEEE Trans Signal Process 2012;60(8):4289–305.
[11] Chen J, Sayed AH. Distributed Pareto optimization via diffusion strategies. IEEE J Sel Top Signal Process

2013;7(2):205–20.
[12] Sayed AH, Tu SY, Chen J, Zhao X, Towfic ZJ. Diffusion strategies for adaptation and learning over networks.

IEEE Sig Process Mag 2013;30(3):155–71.
[13] Sayed AH. Diffusion adaptation over networks. In: Chellapa R, Theodoridis S, editors. E-reference signal

processing, vol. 3. Elsevier; 2014. p. 323–454.
[14] Sayed AH. Adaptation, learning, and optimization over networks. In: Foundations and trends in machine

learning, vol. 7. Boston-Delft: NOW Publishers; 2014. p. 311–801.
[15] Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.
[16] Chen J, Sayed AH. On the learning behavior of adaptive networks—Part I: Transient analysis. IEEE Trans

Inf Theory 2015;61(6):3487–517.

http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0085


128 CHAPTER 3 MULTITASK LEARNING OVER ADAPTIVE NETWORKS

[17] Chen J, Sayed AH. On the learning behavior of adaptive networks—Part II: Performance analysis. IEEE
Trans Inf Theory 2015;61(6):3518–48.

[18] Tu SY, Sayed AH. Diffusion strategies outperform consensus strategies for distributed estimation over
adaptive networks. IEEE Trans Signal Process 2012;60(12):6217–34.

[19] Bertrand A, Moonen M. Distributed adaptive node-specific signal estimation in fully connected sensor
networks—Part I: Sequential node updating. IEEE Trans Signal Process 2010;58(10):5277–91.

[20] Bertrand A, Moonen M. Distributed adaptive estimation of node-specific signals in wireless sensor networks
with a tree topology. IEEE Trans Signal Process 2011;59(5):2196–10.

[21] Chen J, Richard C, Sayed AH. Multitask diffusion adaptation over networks. IEEE Trans Signal Process
2014;62(16):4129–44.

[22] Nassif R, Richard C, Ferrari A, Sayed AH. Multitask diffusion adaptation over asynchronous networks. IEEE
Trans Signal Process 2016;64(11):2835–50.

[23] Chen J, Richard C, Sayed AH. Diffusion LMS over multitask networks. IEEE Trans Signal Process
2015;63(11):2733–48.

[24] Zhao X, Sayed AH. Distributed clustering and learning over networks. IEEE Trans Signal Process
2015;63(13):3285–300.

[25] Chen J, Richard C, Sayed AH. Adaptive clustering for multitask diffusion networks. In: Proceedings of
European signal processing conference (EUSIPCO), Nice, France; 2015. p. 200–4.

[26] Monajemi S, Sanei S, Ong SH, Sayed AH. Adaptive regularized diffusion adaptation over multitask networks.
In: Proceedings of IEEE international workshop on machine learning for signal processing (MLSP), Boston,
USA; 2015. p. 1–5.

[27] Khawatmi S, Zoubir AM, Sayed AH. Decentralized clustering over adaptive networks. In: Proceedings of
European signal processing conference (EUSIPCO), Nice, France; 2015. p. 2696–700.

[28] Monajemi S, Eftaxias K, Sanei S, Ong SH. An informed multitask diffusion adaptation approach to study
tremor in Parkinson’s disease. IEEE J Sel Top Signal Process 2016;10(7):1306–14.

[29] Wang Y, Tay WP, Hu W. Multitask diffusion LMS with optimized inter-cluster cooperation. In: Proceedings
of the IEEE statistical signal processing workshop (SSP), Palma de Mallorca, Spain; 2016. p. 1–5.

[30] Nassif R, Richard C, Ferrari A, Sayed AH. Proximal multitask learning over networks with sparsity-inducing
coregularization. IEEE Trans Signal Process 2016;64(23):6329–44.

[31] Chen J, Richard C, Hero AO, Sayed AH. Diffusion LMS for multitask problems with overlapping hypothesis
subspaces. In: Proceedings of the IEEE international workshop on machine learning for signal processing
(MLSP), Reims, France; 2014. p. 1–6.

[32] Chen J, Richard C, Sayed AH. Multitask diffusion adaptation over networks with common latent representa-
tions. IEEE J Sel Top Signal Process 2017;11(3):563–79.

[33] Hua J, Li C, Shen H. Distributed learning of predictive structures from multiple tasks over networks. IEEE
Trans Ind Elect 2017;64(5):4246–56.

[34] Bogdanović N, Plata-Chaves J, Berberidis K. Distributed diffusion-based LMS for node-specific parameter
estimation over adaptive networks. In: Proceedings of the IEEE international conference on acoustics, speech
and signal processing (ICASSP), Florence, Italy; 2014. p. 7223–7.

[35] Plata-Chaves J, Bogdanović N, Berberidis K. Distributed diffusion-based LMS for node-specific adaptive
parameter estimation. IEEE Trans Signal Process 2015;63(13):3448–60.

[36] Plata-Chaves J, Bahari HH, Moonen M, Bertrand A. Unsupervised diffusion-based LMS for node-specific
parameter estimation over wireless sensor networks. In: Proceedings of the IEEE international conference on
acoustics, speech and signal processing (ICASSP), Shanghai, China; 2016. p. 4159–63.

[37] Nassif R, Richard CA, Ferrari AA, Sayed AH. Diffusion LMS for multitask problems with local linear
equality constraints. IEEE Trans Signal Process 2017;65(19):4979–93.

http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0190


REFERENCES 129

[38] Hua F, Nassif R, Richard CA, Wang H. Penalty-based multitask estimation with non-local linear equality
constraints. In: Proceedings of the IEEE international workshop on computational advances in multi-sensor
adaptive processing (CAMSAP), Curaçao; 2017. p. 433–7.

[39] Ting SK. Adaptive techniques for mitigating circuit imperfections in high performance A/D converters. Ph.D.
thesis, Electrical Engineering Department, UCLA; 2014.

[40] Sayed AH. Adaptive filters. John Wiley & Sons; 2008.
[41] Asano T, Bhattacharya B, Keil M, Yao F. Clustering algorithms based on minimum and maximum spanning

trees. In: Proceedings of the 4th annual symposium on computational geometry (SCG), Urbana-Champaign,
USA; 1988. p. 252–7.

[42] Rosen K. Discrete mathematics and its applications. 7th ed. McGraw-Hill Science; 2011.
[43] Zhao X, Sayed AH. Clustering via diffusion adaptation over networks. In: Proceedings of the international

workshop on cognitive information processing (CIP), Baiona, Spain; 2012. p. 1–6.

http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00003-1/rf0220


CHAPTER

4BAYESIAN APPROACH TO
COLLABORATIVE INFERENCE IN
NETWORKS OF AGENTS

Kamil Dedecius∗, Petar M. Djurić†

Department of Adaptive Systems, Institute of Information Theory and Automation, The Czech Academy of Sciences,

Prague, Czech Republic∗ Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook,

NY, United States†

4.1 INTRODUCTION
With the rapid development of devices with high computational performance, the probabilistically
consistent and versatile Bayesian methods have become a popular standard in many applications
of signal processing [1]. Their main difference in comparison to traditional approaches consists
in the representation of the unknown variables of interest. They are described by probability
distributions whose location statistics (the mean, mode, or median) express the probable locations
of these variables while the dispersion statistics of the distribution (e.g., the variance) quantify the
associated uncertainty. An important facet of Bayesian theory is the universality of its methods.
According to Bayes’ theorem, one updates the initial knowledge of a considered variable, represented
by a prior distribution, by following the same generic steps regardless of whether the underlying
task is linear or nonlinear regression, filtering of state-space model parameters, or estimation of
hierarchical models.

In the last decade, signal processing has faced a host of new challenges related to the fast evolution
of spatially distributed systems with components—termed agents, sensors, nodes, or vertices and
here referred to as agents—that have relatively high sensing and computational performance, and
may communicate with other agents of the network. The applications of these systems range from
environment monitoring, disaster relief management, source localization, and precision agriculture to
medicine [2–5]. The first algorithms for processing of data acquired by agents were centralized. More
specifically, there the agents locally sense the relevant data and send them to a fusion center, responsible
for evaluation of (nearly) all necessary computations. Subsequently, the results are sent back to the
agents, if necessary. In this setting, the fusion center exploits all the data present in the network and
thus reaches the best possible estimation performance. The price for this is the high communication
and computation demands and the lack of redundancy, making the centralized algorithms prone to
failures [6].

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00004-3
Copyright © 2018 Elsevier Inc. All rights reserved.

131



132 CHAPTER 4 BAYESIAN APPROACH TO COLLABORATIVE INFERENCE

Table 4.1 Summary of Notation

Notation Description

K = {1, . . . , K} set of agents

K total number of agents

k ∈ K agent index

Nk neighborhood of agent k

|Nk| cardinality of the set Nk

t = 1, 2, . . . discrete time index

yt,k observation of kth agent at time t

zt,k explanatory variable observed by agent k at time t

θ model parameter

θ̂ model parameter point estimate

f (yt,k|zt,k, θ ) probability density of observations of agent k

πk(θ ) probability density of θ of agent k

η = η(θ ) natural parameter

T(·) sufficient statistic

ξt,k, νt,k hyperparameters of agent k at time t

ζt,k information of agent k at time t

akj ∈ [0, 1] weight assigned by agent k to agent j

E[·] expectation operator

D(·||·) Kullback-Leibler divergence

π̃k(·) combined posterior density of agent k

ξ̃t,k, ν̃t,k hyperparameters of π̃k(·)
Tr trace operator

det determinant

N (μ, �) normal distribution with mean μ and covariance �

In order to remove this drawback, fully distributed processing settings have been proposed. First,
incremental algorithms have been studied [7–13], where information is passed from agent to agent in
a cyclic Hamiltonian path connecting the whole network. Although this removes the need for a fusion
center and alleviates the communication and computational burden, the reliability of the system is
not improved as each agent and link are single points of failure. A recovery from such a failure by
constructing a new path is an NP-hard problem [4]. Then consensus [14–20] and diffusion strategies
[21–26] have been introduced, where the agents share information with their neighbors within a one-
hop distance. Both strategies offer significantly more robust solutions. The consensus strategies aim
at a general agreement in the value of the estimated variables of interest while the diffusion strategies
put emphasis on a local improvement of the estimation quality of each agent. Therefore, while the
diffusion algorithms intrinsically exploit a single time scale both for sensing and collaborative data
processing, the consensus algorithms usually need multiple iterations between two time instants. This
chapter focuses primarily on diffusion strategies.



4.2 BAYESIAN INFERENCE OVER NETWORKS 133

The existing diffusion algorithms mostly extend their nondistributed counterparts to distributed set-
tings. A majority of them exploit the least squares criterion and its variants, e.g., the least-mean-squares
methods [22,27–29], the recursive least-squares methods [21,26], and the Kalman filter [30,31].
There are also algorithms for distributed expectation maximization-based inference of mixture models
[32–34] and distributed particle filtering, e.g., in [35,36].

Quite surprisingly, most of the algorithms for distributed inference are independently developed
from the original nondistributed ones, e.g., the already-mentioned classical least-mean-squares method,
recursive least-squares method, and Kalman filter. However, because there is a common underlying
principle in Bayesian estimation, a unifying framework has been recently proposed [37]. Within this
framework, one can develop methods that can be applied to a wide class of inference tasks with minimal
modifications. For instance, the existing recursive least-squares method [21] or the Kalman filter [31]
are special cases when particular models and prior distributions are used. In [34], a quasi-Bayesian
algorithm for sequential estimation of mixture models was introduced. The components of the models
considered there belong to the exponential family of distributions. In [38], a diffusion approximate
Bayesian computation method was presented. The method extends the particle filtering principles to
cases of unknown or intractable models. The foundations of these approaches are described in the
present chapter.

4.2 BAYESIAN INFERENCE OVER NETWORKS
We consider a network to be represented by a connected undirected graph consisting of a set of vertices
termed agents. The agents are interconnected by a set of edges, which determine the network topology.
The set of agents is denoted by K = {1, 2, . . . , K}, where K is the number of agents in the network. (A
summary of notation for this chapter is presented in Table 4.1.) Each agent k ∈ K may communicate
only with agents in its close neighborhood Nk, here defined as a set of agents within one-hop distance
(note that k ∈ Nk). The agents independently observe outcomes yt,k of a common discrete-time
stochastic process {Yt; t = 1, 2, . . . } with an unknown parameter θ , and a known explanatory variable
zt,k, if it exists. For instance, zt,k may be a regressor.

For the sake of prediction, filtering, and smoothing, the agents employ a probabilistic model in
the form of a probability density f (yt,k|zt,k, θ ), or f (yt,k|θ ) if zt,k is not assumed. The value of θ remains
unknown, but its reliable estimation is of main interest in the rest of the chapter. The Bayesian approach
to estimating θ proceeds by updating the prior distributions of θ at time t, πk(θ |y0:t−1,k, z0:t−1,k), where
y0:t−1,k ≡ {y0,k, . . . , yt−1,k} and z0:t−1,k ≡ {z0,k, . . . , zt−1,k}, by using the new observation yt,k via Bayes’
theorem,

πk(θ |y0:t,k, z0:t,k) ∝ f (yt,k|zt,k, θ )πk(θ |y0:t−1,k, z0:t−1,k). (4.1)

Note that in writing this equation we assume that the observations are independent given the explanatory
variables zt,k and the parameter θ . In this chapter, we assume that the reader is familiar with the
principles of Bayesian inference, and skip technical details of derivation of posterior distributions
and their computations via Monte Carlo methods, variational approaches, and the like. There is a vast
literature on this topic, e.g., [39,40]. Next, we describe a prominent case where the posterior distribution
is analytically tractable and which will be used in the sequel.



134 CHAPTER 4 BAYESIAN APPROACH TO COLLABORATIVE INFERENCE

Suppose that the model f (yt,k|zt,k, θ ) belongs to the exponential family of distributions, i.e., that it
can be written in the form [41]

f (yt,k|zt,k, θ ) = h(yt,k, zt,k)g(θ ) exp
{
ηᵀ(θ ) T(yt,k, zt,k)

}
, (4.2)

where h(yt,k, zt,k) is a known function, g(θ ) is a normalizing log-partition function, η(θ ) is a natural
parameter, and T(yt,k, zt,k) is a sufficient statistic that completely summarizes all the information about θ

contained in yt,k and zt,k. Now, we assume that the prior distribution can be written in the conjugate form

πk(θ |y0:t−1,k, z0:t−1,k) = πk(θ |ξt−1,k, νt−1,k)
= q(ξt−1,k, νt−1,k)g(θ )νt−1,k exp

{
ηᵀ(θ ) ξt−1,k

}
, (4.3)

where ξt−1,k and νt−1,k are the prior hyperparameters. The former is of the same dimension as
T(yt,k, zt,k) and the latter is a scalar whereas q(ξt−1,k, νt−1,k) is a known function. Then Bayes’ theorem
(4.1) updates the prior hyperparameters according to [37,41]

ξt,k = ξt−1,k + T(yt,k, zt,k), (4.4)

νt,k = νt−1,k + 1. (4.5)

Naturally, it is possible to write

πk(θ |y0:t,k, z0:t,k) = πk(θ |ξt,k, νt,k). (4.6)

We point out here that in sequential processing at time t, πk(θ |y0:t,k, z0:t,k) is the posterior of θ . This
distribution is also the prior of θ for the processing that takes place at time instant t + 1.

4.2.1 STRATEGIES FOR INFERENCE OVER NETWORKS
There are various types of settings of inference over networks. First and foremost, a question of
paramount importance is whether the models and their parameters are the same for all the collaborating
agents. If the model parameters have a physical interpretation, then their homogeneity is usually
guaranteed. However, if fk(θ |·) are black box models that may have different structures, problems arise.
For the sake of simplicity, we adopt the assumption that the models are the same for all agents, and
that they are all interested in the same θ . The Bayesian treatment of inhomogeneous parameters is
studied in [42].

The next question is what kind of information may be shared among network agents. If there are
(virtually) no limitations in communication resources, the agents may share their observations yt,k
and explanatory variables zt,k (the sharing may be in the form of sufficient statistics T(yt,k, zt,k)), and
estimates θ̂k potentially accompanied by related statistical properties such as covariance matrices. If
the Bayesian approach to inference is employed, then the most legitimate way is to share the posterior
distributions πk(θ |·), or their hyperparameters (e.g., ξt,k and νt,k) whenever possible.

We discriminate among three possible strategies:

1. Incorporation of neighbors’ (and own) measurements. This step is often called adaptation (A) in
the literature.

2. Incorporation of estimates provided by neighbors. This is known as combination (C). Unlike in
adaptation, a combination criterion is required that ensures the result to be as close to the original
estimates as possible.



4.2 BAYESIAN INFERENCE OVER NETWORKS 135

3. Incorporation of both measurements and estimates of neighbors (i.e., implementation of both
adaptation and combination). There are two strategies, and they are known as ATC
(adapt-then-combine) or alternatively CTA (combine-then-adapt). It has been proved that ATC
outperforms CTA in terms of estimation quality [4,37].

4.2.2 SHARING OF MEASUREMENTS OR STATISTICS
Let us fix an agent k ∈ K and assume that at time t it has access to the neighbors’ observations yt,j and
explanatory variables zt,j, where j ∈ Nk. Alternatively, these observations may be surrogated by the
sufficient statistics T(yt,j, zt,j). Then agent k can improve its knowledge about θ by incorporating them
in the same way as its own sufficient statistic. If πk(θ |ζt−1,k) is the k’s prior distribution of θ at time t,
where ζt−1,k stands for all the information available to agent k by time t − 1, including any previously
shared information, the distributed variant of the Bayes’ theorem (4.1) reads

πk(θ |ζt,k) ∝ πk(θ |ζt−1,k)
∏

j∈Nk

f (yt,j|zt,j, θ ), (4.7)

where we assumed that the observations are conditionally independent. If the models f (yt,j|zt,j, θ )
belong to the exponential family of distributions and the prior distribution πk(θ |ζt−1,k) is a conjugate
distribution, then Bayes’ theorem reduces to the update of the k’s hyperparameters according to (see
Eqs. (4.4) and (4.5)),

ξt,k = ξt−1,k +
∑

j∈Nk

T(yt,j, zt,j), (4.8)

νt,k = νt−1,k + |Nk|, (4.9)

where |Nk| is the cardinality of the set Nk, i.e., the number of neighbors plus one.

4.2.3 MERGING OF BAYESIAN ESTIMATORS
Now we fix again an agent k ∈ K and assume that the network agents updated their prior distributions
by either own or shared measurements, and that their posterior distributions πj(θ |ζt,j) are shared with
the neighbors. That is, agent k has access to the set {πj(θ |ζt,j); j ∈ Nk}. Each member of this set may be
assigned a nonnegative weight akj ≤ 1 expressing the (subjective) probability that the related posterior
is true at the moment. The weights thus take values from a corresponding probability simplex and sum
to unity. For simplicity, we assume that the weights akj are constant and either uniform, or selected
according to a convenient rule, e.g., [5, Chap. 8]. A model-based Bayesian treatment of the weights can
be found in [37].

Keeping all the posterior distributions in the set would, however, quickly lead to an explosion of
its size. In order to prevent this situation, we aim to combine the individual posterior distributions to
a single distribution π̃k(θ |·), which best expresses the information in all of them. The Bayesian theory
advocates the use of the Kullback-Leibler divergence, D(·||·), as a proper dissimilarity (loss) measure
[41]. A theoretically consistent combination step is equivalent to seeking the minimizer of



136 CHAPTER 4 BAYESIAN APPROACH TO COLLABORATIVE INFERENCE

∑
j∈Nk

akjD
(
π̃k (θ |·) ‖πj (θ |·)) =

∑
j∈Nk

akjEπ̃k

[
log

π̃k (θ |·)
πj (θ |·)

]

= Eπ̃k

⎡
⎢⎢⎢⎣log

π̃k(θ |·)∏
j∈Nk

[πj(θ |·)]akj∫ ∏
j∈Nk

[πj(θ |·)]akj dθ

⎤
⎥⎥⎥⎦− log

∫ ∏
j∈Nk

[
πj(θ |·)]akj dθ

= D

⎛
⎝π̃k(θ |·)

∣∣∣∣∣
∣∣∣∣∣c
∏

j∈Nk

[
πj(θ |·)]akj

⎞
⎠+ const., (4.10)

where c is a proportionality constant assuring that the result is a valid density. The first equality in
Eq. (4.10) is due to the definition of the Kullback-Leibler divergence, and the second follows from easy
algebra. Because the Kullback-Leibler divergence is minimal if the arguments are equal, the minimizing
density has the form

π̃k (θ |·) ∝
∏

j∈Nk

[
πj(θ |·)]akj . (4.11)

There is a notable property of this combination rule. If the posterior distributions belong to the
exponential family, then Eq. (4.11) provides an analytically tractable way for obtaining the posterior
π̃k(θ |·) = π̃k(θ |ξ̃t,k, ν̃t,k). Then its hyperparameters are given by

ξ̃t,k =
∑

j∈Nk

akjξt,k, and ν̃t,k =
∑

j∈Nk

akjνt,k. (4.12)

The above equations suggest that the hyperparameters of the resulting distribution of the kth agent are
obtained by a linear combination of the hyperparameters of the individual distributions, ξt,j and νt,j,
j ∈ Nk. Recall from Eq. (4.5) that ξt,j and νt,j aggregate the agents’ observations.

A natural question is whether it is possible to proceed with swapped arguments of the divergence.
We proceed by writing,

∑
j∈Nk

akjD
(
πj (θ |·) ∣∣∣∣π̃k (θ |·)) =

∑
j∈Nk

akjEπj

[
log

πj (θ |·)
π̃k (θ |·)

]

=
∑

j∈Nk

akjEπj

[
log πj(θ |·)]

− E∑
j∈Nk

akjπj

⎡
⎣log

∑
j∈Nk

akjπj(θ |·)
⎤
⎦

+ E∑
j∈Nk

akjπj

[
log

∑
j∈Nk

akjπj (θ |·)
π̃k (θ |·)

]
(4.13)

= D

⎛
⎝∑

j∈Nk

akjπj(θ |·)
∣∣∣∣∣
∣∣∣∣∣π̃k(θ |·)

⎞
⎠+ const. (4.14)



4.2 BAYESIAN INFERENCE OVER NETWORKS 137

The first two terms in Eq. (4.13) do not depend on π̃k(θ |·), and the minimum of the divergence is
achieved by minimization of the last term, which leads to

π̃k(θ |·) =
∑

j∈Nk

akjπj(θ |·). (4.15)

The result of the minimization is a mixture of the neighbors’ posterior distributions. The number of
components is equal to |Nk|, and with time it will explode, unless a suitable component merging/
pruning procedure is implemented, e.g., [43].

Example: Covariance intersection
A nice example of the Kullback-Leibler optimal combination (4.11) is the merging of normal densities,
which belong to the exponential family of distributions. Assume that the posterior of θ ∈ Rn is πj(θ |·) ∼
N (μt,j, �t,j). If we drop the time indices for notational simplicity and rewrite the density in the form
(4.2), we obtain

πj
(
θ |μj, �j

) = (2π )− n
2 (det �j)−

1
2 e− 1

2 (θ−μj)ᵀ�−1
j (θ−μj)

∝ exp

{
Tr

([
μ
ᵀ
j �−1

j

− 1
2�−1

j

]ᵀ [
θᵀ
θθᵀ

])
− 1

2
μ
ᵀ
j �−1

j μj

}
, (4.16)

where the natural parameter and the sufficient statistic have the form

ηj =
[

μ
ᵀ
j �−1

j

− 1
2�−1

j

]
and T(θ ) =

[
θᵀ
θθᵀ

]
.

The combination of all the Gaussian distributions will produce another Gaussian. From Eq. (4.11) it
follows that

η̃k =
[

μ̃
ᵀ
k �̃−1

k
− 1

2 �̃−1
k

]
=
∑

j∈Nk

akjηj =
∑

j∈Nk

akj

[
μ
ᵀ
j �−1

j

− 1
2�−1

j

]
, (4.17)

and a little algebra yields the resulting mean vector and covariance matrix of the resulting Gaussian,

μ̃t,k = �̃t,k

⎛
⎝∑

j∈Nk

akj�
−1
t,j μt,j

⎞
⎠ and �̃t,k =

⎡
⎣∑

j∈Nk

akj�
−1
t,j

⎤
⎦

−1

. (4.18)

This result is known as covariance intersection. It is worth noting that the same rule applies to any
other distribution from the exponential family.

Which combination algorithm?
Both the presented algorithms that combine the posterior estimates are optimal in the Kullback-Leibler
sense, yet they may lead to significantly different results. The obvious question is which algorithm
should be used in a given situation. As mentioned above, the algorithm (4.11) should be used in
situations where model and parameter homogeneity are assumed. Further, its analytical tractability
under conjugate priors is a very attractive feature. On the other hand, the second algorithm (4.15)
is better in situations where the agents use different models and/or parameters. Then, the algorithm



138 CHAPTER 4 BAYESIAN APPROACH TO COLLABORATIVE INFERENCE

provides a (mixture) density that better fits the regions where the neighbors’ densities are large enough
(for more details, see [42]). As pointed out, the algorithm requires an additional procedure for pruning
and merging of the components to prevent the mixture from a rapid growth of its number of components.
A specific situation arises if (sequential) Monte Carlo methods are used for estimation or filtering, and
the posterior distribution is approximated by samples. Sampling from the mixture (4.15) is equivalent
to gathering a relevant number of samples from the neighbors. As this may be communication-
intensive, the posteriors may be approximated by a normal mixture at each agent as in the Gaussian
particle filter [44–46]. The combination rule (4.15) yields again a normal mixture from which sampling
is trivial.

Example
Let us briefly investigate the properties of the two combination algorithms on a simple example.
Assume that there are two normal posterior distributions available to agent 1,

π1(θ |·) = N (0, 1) with a11 = 0.5,

π2(θ |·) = N (1, 1) with a12 = 0.5.

It is straightforward to prove that the combination rule (4.11) yields a normal distribution,

π̃1(θ |·) = N (0.5, 1),

which is a good compromise between the two original distributions. The combination rule (4.15) yields
a mixture

π̃1(θ |·) = 0.5N (0, 1) + 0.5N (1, 1), (4.19)

which preserves the available information about the location of the mean values, but at the cost of
higher complexity.

Now, assume two normal distributions that differ only in the variance,

π1(θ |·) = N (0, 100) with a11 = 0.5,

π2(θ |·) = N (0, 1) with a12 = 0.5.

The combination rule (4.11) produces a normal distribution

π̃1(θ |·) = N (0, 1.98),

and the second combination rule (4.15) leads to a mixture

π̃1(θ |·) = 0.5N (0, 100) + 0.5N (0, 1). (4.20)

If we assume that agent 1 joined the network with an initial prior while the second agent already
performed several updates and has a good knowledge of θ , we see that the former combination rule
significantly improves the distribution of agent 1. If agent 2 uses a21 = 0.5 and a22 = 0.5 (has the
same beliefs as agent 1), the combined distribution of this agent would be the same as that of agent 1.



4.3 EXAMPLE: DIFFUSION KALMAN FILTER 139

Hence, a combination of a distribution that reflects high-ignorance with one with low ignorance, does
not much affect the latter.

4.3 EXAMPLE: DIFFUSION KALMAN FILTER
The first diffusion Kalman filter was proposed in [30]. Later in [31], it was improved with a covariance
intersection-based procedure, which was applied in the combination step. Below we derive the diffusion
Kalman filter from a Bayesian viewpoint. More on the diffusion Kalman filter but derived from a
different perspective can be found in the chapter on Distributed Kalman and Particle Filtering.

To begin, we assume a hidden Markov model of the form1

xt|xt−1, zt ∼ N
(
Atxt−1 + Btzt, Qt

)
, (4.21)

yt|xt ∼ N (Htxt, Rt) , (4.22)

where xt is an n-dimensional state vector, yt is an l-dimensional observation vector, zt is a known input
vector of length m, At, Bt, and Ht are matrices of compatible dimensions, Qt and Rt are n × n and 	 × 	

state and observation covariance matrices, respectively.
The observation model (4.22) is normal, so we rewrite it by using the exponential family form (4.2),

f (yt|xt) ∝ exp
{
−1

2
(yt − Htxt)ᵀR−1

t (yt − Htxt)
}

= exp

{
Tr
(

−1

2

[−1
xt

] [−1
xt

]ᵀ
︸ ︷︷ ︸

η(xt)

[
yᵀt
Hᵀ

t

]
R−1

t

[
yᵀt
Hᵀ

t

]ᵀ
︸ ︷︷ ︸

T(yt)

)}
. (4.23)

Because the model (4.22) is normal, it is advantageous to set the prior distribution to normal too, as
it is conjugate to the model and hence the posterior will be analytically tractable,

π (xt|y0:t−1, z0:t−1) = N (x−
t , P−

t ), x−
t ∈ Rn, P−

t ∈ Rn×n

∝ exp
{
−1

2
(xt − x−

t )ᵀ(P−
t )−1(xt − x−

t )
}

= exp

{
Tr
(

−1

2

[−1
xt

] [−1
xt

]ᵀ
︸ ︷︷ ︸

η(xt)

[
(x−

t )ᵀ
I

]
(P−

t )−1
[

(x−
t )ᵀ
I

]ᵀ
︸ ︷︷ ︸

ξt

)}
, (4.24)

where I is an identity matrix of appropriate dimensions. The minus superscripts denote parameters
of the Gaussian where the measurements from time t have not been incorporated yet, whereas the
plus signs signify that they have been used. Also, the state transition xt−1 → xt amounts to updating
N (x+

t−1, P+
t−1) → N (x−

t , P−
t ) according to Eq. (4.21).

Next, we return to the implementation of the Kalman filter over a network, where all the agents use
the same model. The matrices At, Bt, and Qt are the same for all the agents whereas Ht,k, and Rt,k are

1We temporarily drop the agent’s indices for simplicity. Also, instead of θ , the unknowns of interest here are the vectors xt.



140 CHAPTER 4 BAYESIAN APPROACH TO COLLABORATIVE INFERENCE

distinctive as are the variables zt,k. The adaptation step of the diffusion Kalman filter is similar to the
ordinary Kalman filter update. First, the state transition given by Eq. (4.21) is performed as usual,

πk(xt,k|ζt−1,k) =
∫

π (xt,k|xt−1, zt)πk(xt−1|ζt−1,k)dxt−1

= Nk

(
Atx

+
t−1,k + Btzt,k, AtP

+
t−1,kAᵀ

t + Qt

)
= Nk(x−

t,k, P−
t,k), (4.25)

and followed by the Bayesian update by the neighbors’ measurements

πk(xt|ζt,k) ∝ πk(xt,k|ζt−1,k)
∏

j∈Nk

f (yt,j|xt,j)

= Nk(x+
t,k, P+

t,k). (4.26)

Taking the exponential family form (4.23) and the conjugate form (4.24) into account, we see that

ξt,k = ξt−1,k +
∑

j∈Nk

[
yt,j
Ht,j

]
R−1

t,j

[
yt,j
Ht,j

]ᵀ
, (4.27)

νt,k = νt−1,k + |Nk|. (4.28)

Simple algebra reveals the recursions

P+
t,k =

⎡
⎣(P−

t,k)−1 +
∑

j∈Nk

Hᵀ
t,jR

−1
t,j Ht,j

⎤
⎦

−1

, (4.29)

x+
t,k = x−

t,k + P+
t,k

∑
j∈Nk

Hᵀ
t,jR

−1
t,j

(
yt,j − Ht,jx

−
t,k

)
. (4.30)

The above two equations describe the adaptation step.
The combination step operates directly with ξt,j according to Eq. (4.11). Application of Eq. (4.18)

from Section 4.2.3.1 shows that

π̃k(xt,k|ζt,k) =
∏

j∈Nk

[
Nj(x+

t,j, P+
t,j)
]akj = Nk(x̃+

t,k, P̃+
t,k) (4.31)

with the hyperparameters

P̃+
t,k =

⎡
⎣∑

j∈Nk

akj

(
P+

t,j

)−1

⎤
⎦

−1

, (4.32)

x̃+
t,k = P̃+

t,k

∑
j∈Nk

akj

(
P+

t,j

)−1
x+

t,j. (4.33)

The algorithm is summarized in Algorithm 4.1.



4.4 CONCLUSION 141

Algorithm 4.1 DIFFUSION KALMAN FILTER WITH ADAPT-THEN-COMBINE
(ATC) STRATEGY

Initialize agents k = 1, 2, . . . , K with the prior densities πk(θ |ζk,0). Set the weights akj. For t = 1, 2, . . . and each agent
k do:

Kalman prediction:

• Update the prior densities Nk(x+
t−1,k , P+

t−1,k) → Nk(x−
t,k , P−

t,k), Eq. (4.25).

Kalman update:

1. Acquire observations yt,j of neighbors j ∈ Nk .
2. Adaptation: Perform Kalman adaptation according to Eq. (4.26) by updating the hyperparameters via Eq. (4.27).
3. Obtain posterior densities πj(xt,j|ζt,j) of neighbors j ∈ Nk by acquiring their respective hyperparameters ξt,j, νt,j.
4. Combination: Combine posterior densities according by implementing Eqs. (4.32) and (4.33).

4.3.1 SIMULATION EXAMPLE
We illustrate the performance of the diffusion Kalman filter with a two-dimensional tracking problem.
The matrices of the model were time-invariant, and they were defined as follows:

A =

⎡
⎢⎢⎣

1 0 
 0
0 1 0 


0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , Q = q ·

⎡
⎢⎢⎢⎢⎣


3

3 0 
2

2 0

0 
3

3 0 
2

2

2

2 0 
 0

0 
2

2 0 


⎤
⎥⎥⎥⎥⎦ ,

H =
[

1 0 0 0
0 1 0 0

]
, R = r2 ·

[
1 0
0 1

]
,

where 
 = 0.1, q = 5.0, r = 0.1k, and k = 1, . . . , 15 is the agent’s number. That is, the agents
had different observation noise covariance matrices. The simulation was started from the origin of the
coordinate system. The state vector elements represent the position of the target in the plane and its
velocity components.

Figs. 4.1 and 4.2 show the topology of the network and the simulated trajectory with noisy
observations of agents 1 and 15, respectively. The Kalman filters were initialized with P+

0,k = 1000I4×4

and zero vectors x+
0,k. The combination weights akj were uniform and constant. Four strategies were

tested: (1) no cooperation (nocoop), (2) adaptation only (A-only), (3) combination only (C-only), and
(4) adapt then combine (ATC). Fig. 4.3 depicts the box plots of the mean square errors (MSEs) of the
estimation of all four elements of the state vector. We see that the collaboration among agents improved
the estimation performance. Further, the performance of the C-only strategy was superior to that of the
A-only strategy.

4.4 CONCLUSION
The Bayesian approach to the inference of unknown parameters of probabilistic models has numerous
attractive features. One of the most prominent is its wide applicability. Further, regardless of whether



142 CHAPTER 4 BAYESIAN APPROACH TO COLLABORATIVE INFERENCE

FIG. 4.1

Network layout.

FIG. 4.2

Simulated trajectory and observations of agents 1 and 15.

one deals with linear or nonlinear regression, state-space models, hierarchical models, or any other
model type, Bayesian inference relies on the same principles. Unlike in classical (frequentist) statistics,
the estimate is represented by a posterior distribution, quantifying not only its expected location but also
the uncertainty associated with it. The representation of estimates by posterior distributions remains
a cornerstone of the use of Bayesian principles in networked systems, where agents collaborate to
improve their own estimates. The main idea is that less-informed agents improve their knowledge while
well-informed ones do not reduce it.

There are many open problems that could be investigated. For instance, the determination of
combination weights is one, although several methods for choosing them have already been proposed
[37,47]. The described combination methods are a small sample from the set of possible approaches,
too. For instance, in [48], yet another approach was proposed where the agents fuse received
information from neighbors by using mixtures with weights proportional to predictive distributions
obtained from the posteriors of the respective agents. Furthermore, the topic of heterogeneous models
and/or parameters has attained a huge interest in the last years, but the only Bayesian treatment the



REFERENCES 143

FIG. 4.3

MSEs of various strategies.

authors are aware of was proposed in [42]. Naturally, the robustness to failures and the communication
and computational limitations of the agents form other interesting topics for research on collaborative
inference in networks of agents.

ACKNOWLEDGMENTS
The work of K. Dedecius was supported by the Czech Science Foundation, project No. 16-09848S. The work of
P.M. Djurić was supported by NSF under Award CCF-1618999.

REFERENCES
[1] Candy JV. Bayesian signal processing: classical, modern, and particle filtering methods. John Wiley & Sons;

2016.
[2] Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks. IEEE Commun Mag

2002;40(8):102–14.

http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0015


144 CHAPTER 4 BAYESIAN APPROACH TO COLLABORATIVE INFERENCE

[3] Liu Y, Li C, Tang WK, Zhang Z. Distributed estimation over complex networks. Information Sciences
2012;197:91–104.

[4] Sayed AH, et al. Adaptation, learning, and optimization over networks. In: Foundations and trends in machine
learning, vol. 7(4-5); 2014. p. 311–801.

[5] Sayed AH. Diffusion adaptation over networks. In: Chellapa R, Theodoridis S, editors. Academic Press
Library in Signal Processing, vol. 3. Academic Press, Elsevier; 2014. p. 323–454.

[6] Li W, Wang Z, Yuan Y, Guo L. Particle filtering with applications in networked systems: a survey. Complex
Intell Syst 2016;2(4):293–315.

[7] Athans M, Tsitsiklis JN. Convergence and asymptotic agreement in distributed decision problems. IEEE
Trans. Autom. Control 1982;21:692–701.

[8] Tsitsiklis J, Bertsekas DP, Athans M. Distributed asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE Trans Autom Control 1986;31(9):803–12.

[9] Bertsekas DP. A new class of incremental gradient methods for least squares problems. SIAM J Optim
1997;7(4):913–26.

[10] Nedic A, Bertsekas DP. Incremental subgradient methods for nondifferentiable optimization. SIAM J Optim
2001;12(1):109–38.

[11] Rabbat MG, Nowak RD. Quantized incremental algorithms for distributed optimization. IEEE J Sel Areas
Commun 2005;23(4):798–808.

[12] Lopes CG, Sayed AH. Incremental adaptive strategies over distributed networks. IEEE Trans Signal Process
2007;55(8):4064–77.

[13] Plata-Chaves J, Bogdanovic N, Berberidis K. Distributed incremental-based RLS for node-specific parameter
estimation over adaptive networks. In: Proceedings of the 21st European signal processing conference
(EUSIPCO); 2013. p. 1–5.

[14] DeGroot MH. Reaching a consensus. J Am Stat Assoc 1974;69(345):118–21.
[15] Olfati-Saber R, Murray RM. Consensus problems in networks of agents with switching topology and

time-delays. IEEE Trans Autom Control 2004;49(9):1520–33.
[16] Olfati-Saber R, Fax JA, Murray RM. Consensus and cooperation in networked multi-agent systems. Proc

IEEE 2007;95(1):215–33.
[17] Schizas ID, Giannakis GB, Luo ZQ. Distributed estimation using reduced-dimensionality sensor observations.

IEEE Trans Signal Process 2007;55(8):4284–99.
[18] Schizas ID, Mateos G, Giannakis GB. Distributed LMS for consensus-based in-network adaptive processing.

IEEE Trans Signal Process 2009;57(6):2365–82.
[19] Guldogan MB. Consensus Bernoulli filter for distributed detection and tracking using multi-static Doppler

shifts. IEEE Signal Process Lett 2014;21(6):672–6.
[20] Hlinka O, Hlawatsch F, Djurić PM. Distributed particle filtering in agent networks: a survey, classification,

and comparison. IEEE Signal Process Mag 2013;30(1):61–81.
[21] Cattivelli FS, Lopes CG, Sayed AH. Diffusion recursive least-squares for distributed estimation over adaptive

networks. IEEE Trans Signal Process 2008;56(5):1865–77.
[22] Cattivelli FS, Sayed AH. Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process

2010;58(3):1035–48.
[23] Bertrand A, Moonen M, Sayed AH. Diffusion bias-compensated RLS estimation over adaptive networks.

IEEE Trans Signal Process 2011;59(11):5212–24.
[24] Zhao X, Tu SY, Sayed AH. Diffusion adaptation over networks under imperfect information exchange and

non-stationary data. IEEE Trans Signal Process 2012;60(7):3460–75.
[25] Dedecius K, Sečkárová V. Dynamic diffusion estimation in exponential family models. IEEE Signal Process

Lett 2013;20(11):1114–7.
[26] Arablouei R, Dogancay K, Werner S, Huang YF. Adaptive distributed estimation based on recursive

least-squares and partial diffusion. IEEE Trans Signal Process 2014;62(14):3510–22.

http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0135


REFERENCES 145

[27] Lopes CG, Sayed AH. Diffusion least-mean squares over adaptive networks: formulation and performance
analysis. IEEE Trans Signal Process 2008;56(7):3122–36.

[28] Chen J, Richard C, Hero AO, Sayed AH. Diffusion LMS for multitask problems with overlapping hypothesis
subspaces. In: Proceedings of the IEEE international workshop on machine learning for signal processing;
2014. p. 1–6.

[29] Plata-Chaves J, Bogdanović N, Berberidis K. Distributed diffusion-based LMS for node-specific adaptive
parameter estimation. IEEE Trans Signal Process 2015;63(13):3448–60.

[30] Cattivelli FS, Sayed AH. Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans
Autom Control 2010;55(9):2069–84.

[31] Hu J, Xie L, Zhang C. Diffusion Kalman filtering based on covariance intersection. IEEE Trans Signal Process
2012;60(2):891–902.

[32] Towfic ZJ, Chen J, Sayed AH. Collaborative learning of mixture models using diffusion adaptation. In:
Proceedings of the IEEE international workshop on machine learning for signal processing; 2011. p. 1–6.

[33] Pereira SS, Pages-Zamora A, López-Valcarce R. A diffusion-based distributed EM algorithm for density
estimation in wireless sensor networks. In: Proceedings of the IEEE international conference on acoustics,
speech and signal processing; 2013. p. 4449–53.

[34] Dedecius K, Reichl J, Djurić PM. Sequential estimation of mixtures in diffusion networks. IEEE Signal
Process Lett 2015;22(2):197–201.

[35] Bruno MG, Dias SS. Collaborative emitter tracking using Rao-Blackwellized random exchange diffusion
particle filtering. EURASIP J Adv Signal Process 2014;2014(1):19.

[36] Dedecius K. Adaptive approximate filtering of state-space models. In: Proceedings of the European signal
processing conference (EUSIPCO); 2015. p. 2236–40.

[37] Dedecius K, Djurić PM. Sequential estimation and diffusion of information over networks: a Bayesian
approach with exponential family of distributions. IEEE Trans Signal Process 2017;65(7):1795–809.

[38] Dedecius K, Djurić PM. Diffusion filtration with approximate Bayesian computation. In: Proceedings of the
IEEE international conference on acoustics, speech and signal processing; 2015. p. 3207–11.

[39] Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. Chapman & Hall/CRC; 2003.
[40] Robert C. The Bayesian choice: from decision-theoretic foundations to computational implementation.

Springer Science & Business Media; 2007.
[41] Bishop CM. Pattern recognition and machine learning. New York, NY: Springer; 2006.
[42] Dedecius K, Sečkárová V. Factorized estimation of partially shared parameters in diffusion networks. IEEE

Trans Signal Process 2017;65(19):5153–63.
[43] Frühwirth-Schnatter S. Finite mixture and Markov switching models. Springer Science & Business Media;

2006.
[44] Kotecha JH, Djurić PM. Gaussian particle filtering. IEEE Trans Signal Process 2003;51(10):2592–601.
[45] Kotecha JH, Djurić PM. Gaussian sum particle filtering. IEEE Trans Signal Process 2003;51(10):2602–12.
[46] Hlinka O, Sluciak O, Hlawatsch F, Djurić PM, Rupp M. Likelihood consensus and its application to

distributed particle filtering. IEEE Trans Signal Process 2012;60(8):4334–49.
[47] Takahashi N, Yamada I, Sayed AH. Diffusion least-mean squares with adaptive combiners: formulation and

performance analysis. IEEE Trans Signal Process 2010;58(9):4795–810.
[48] Djurić PM, Dedecius K. Bayesian estimation of unknown parameters over networks. In: Proceedings of the

24th European signal processing conference (EUSIPCO); 2016. p. 1508–12.

http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00004-3/rf0245


CHAPTER

5MULTIAGENT DISTRIBUTED
OPTIMIZATION

Michael G. Rabbat∗, Alejandro Ribeiro†

McGill University and Facebook AI Research, Montreal, QC, Canada∗ Department of Electrical and Systems

Engineering, University of Pennsylvania, Philadelphia, PA, United States†

5.1 INTRODUCTION
In multiagent distributed optimization, each agent (or node) has a local objective function, and all
agents share the same goal of minimizing the sum (or average) of these local objective functions. To
achieve this goal the agents must exchange information over a network that restricts communications
to be between adjacent agents.

Problems of this form are motivated by several applications in which data collection is inherently
distributed, the most popular of which are decentralized control systems [1–3] and sensor networks
[4–6]. In both of these cases, nodes acquire local observations about a phenomenon of interest and
they want to integrate that information into a globally optimal control action or a globally optimal
estimate. While it is possible for nodes to communicate their observations to a central node or
fusion center, this is undesirable because it introduces a single point of failure and a communication
bottleneck that can affect the responsiveness of the system. It is therefore more convenient, and often
more communication-efficient [7], for nodes to only communicate statistics or some other summary
information (e.g., gradients of an objective function based on their local observations) while computing
the global estimate or control action in a distributed manner over the network.

Distributed optimization is also motivated in wireless and wired network resource allocation
problems [8–10]. In these scenarios, nodes in the network want to define local operating points such
as power allocation, band choice, transmit opportunities, and routes. These local decisions must be
consistent with the global operation of the network motivating the formulation of optimal aggregate
costs that are minimized in a distributed manner. A third motivation for distributed optimization
problems arises from large-scale machine learning problems [11–13]. Here, data is not collected over a
network but a very large dataset is intentionally split across multiple servers to facilitate computations.

Irrespective of the application, distributed optimization methods decouple the global objective by
introducing local variables that are recoupled by consensus constraints (Section 5.2). The consensus
constraints explicitly require equality of variables at adjacent nodes, which, by transitivity, implies
equality of the variables at all nodes. However, the fact that the constraints are explicit for neighboring
nodes only makes it possible to compute descent directions in a distributed manner. This observation is

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00005-5
Copyright © 2018 Elsevier Inc. All rights reserved.

147



148 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

the basis for all distributed optimization methods, although the way in which the constraints are handled
may differ significantly.

The decentralized gradient descent (DGD) method [14–17] incorporates consensus constraints as a
penalty function (Section 5.3). The basis for the algorithm is the observation that the gradient of the
resulting penalized function can be computed in a distributed manner. Alternatively, distributed dual
descent [18,19] and the alternating direction method of multipliers (ADMM) [4,20–24] work with the
Lagrangian dual function (Section 5.4). As is the case of DGD, the reason why these algorithms work
is that gradients of the dual function can be computed in a distributed manner. A feature common to
all these algorithms is that they operate on first-order information only. This has motivated interest in
second-order methods, one of which we survey in Section 5.5. Whether operating in the primal or dual
domain, distributed optimization methods can be thought of as methods that work iteratively through
descent or minimization steps in their local functions followed by information aggregation steps that
try to move the local variables toward minimizers of the global objective.

5.2 DISTRIBUTED OPTIMIZATION
We consider a group of agents i = 1, . . . , n each of which has access to a local convex function fi :
Rp → R defined over a column vector x ∈ Rp. The agents are interested in finding the minimum of
the aggregate function f : Rp → R defined as the one that takes values f (x) := ∑n

i=1 fi(x), and they
therefore collaborate to solve the optimization problem

X∗ := argmin
x∈Rp

f (x) = argmin
x∈Rp

n∑
i=1

fi(x). (5.1)

Here X∗ denotes the set of global minimizers of f (in general, the minimizer may not be unique), which
we assume is a nonempty set. Observe that because the functions fi are convex, the same holds true for
the aggregate function f . We also assume that the set of optimal values in Eq. (5.1) is nonempty so that
the optimization problem is well defined. Table 5.1 summarizes the main notation used throughout this
chapter.

Table 5.1 Notation Used in This Chapter

Notation Description

xi(k) ∈ Rp optimization variable at agent i after iteration k

x(k) ∈ Rnp (stacked) optimization variable for all agents

n number of agents

fi local objective at agent i

v Lagrange multiplier vector

λj(A) jth largest eigenvalue of matrix A

A adjacency matrix

B incidence matrix

D degree matrix

L Laplacian matrix



5.2 DISTRIBUTED OPTIMIZATION 149

Methods for solving the convex program in Eq. (5.1) when all the functions fi are available at a
central location are well developed. The assumptions in distributed optimization are that only agent i
has access to function fi and that it is impossible or inadvisable to group all information at a central
location. Instead, we assume a pattern of local connectivity described by a graph G = (V , E) with node
set V = {1, . . . , n} and a symmetric edge set E containing 2m elements. Edges consist of pairs (i, j)
where the presence of a pair in the set E signifies the ability of agent i to communicate with agent j.
That the edge set is symmetric means that having e = (i, j) ∈ E implies e′ = (j, i) ∈ E. If we think of a
pair of edges e = (i, j) and e′ = (j, i) as defining a single connection between agents i and j, it follows
that there are m connections in the graph. When there is an edge e(i, j) ∈ E, we say that agents i and
j are adjacent, or are neighbors, in the graph and we let n(i) := {j : (i, j) ∈ E} denote the set of all
neighbors of agent i.

Given that grouping information is precluded by the problem formulation and that communication
can only happen between neighboring agents, our goal is to design an algorithm that operates through
iterative message exchanges between i and j and so that agents eventually find a point close to the
optimal set X∗. To do so we begin by introducing local variables xi ∈ Rp that we group in the vector
x = [x�

1 , . . . , x�
n ]� ∈ Rnp and consider the problem of finding

x̃ ∈ argmin
x∈Rnp

F(x) :=
n∑

i=1

fi(xi). (5.2)

The optimization problem in Eq. (5.2) is clearly not equivalent to Eq. (5.1). In fact, the variables xi are
decoupled in Eq. (5.2) and the solution is equivalent to simply letting the agents operate in isolation to
find the locally optimal argument x̃i := argminx∈Rp fi(xi).

This is easily remedied, at least in theory, by adding constraints of the form xi = xj for all pairs of
neighboring nodes to formulate the problem of finding

x∗ ∈ argmin
x∈Rnp

n∑
i=1

fi(xi)

s.t. xi = xj, for all i = 1, 2, . . . , n, and j ∈ n(i). (5.3)

If the graph is connected, i.e., if there is a chain of edges connecting any node to any other node, then
the problem (5.3) is equivalent to the problem in Eq. (5.1) in the sense that a solution to Eq. (5.3) is
of the form x∗ = [x∗T , . . . , x∗T ]T where x∗ ∈ X∗. This must be the case because any argument that is
feasible in Eq. (5.3) must be such that xk = xl for any arbitrary pair of nodes k and l, not just neighbors,
because the graph is connected.

We can think of problem (5.1) as a centralized problem that needs aggregation of information to
find the optimal variable x∗. The problem in Eq. (5.2) is simply a collection of local problems that can
each be solved independently from each other, and different from Eq. (5.1). The problem in Eq. (5.3)
is a distributed collaborative formulation in which each agent i wants to locally determine a variable
xi that is optimal for the aggregate function f without ever having explicit access to the functions fk of
other agents k �= i. While it may seem that the distinction between Eqs. (5.1) and (5.3) is just a matter
of semantics, we will see that this is not the case. The structure of Eq. (5.3) makes it possible to locally
compute descent directions of properly relaxed formulations as we explain in Section 5.2.2.



150 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

Example 5.1 (Distributed-least squares estimation). To illustrate some of the concepts men-
tioned above, consider a distributed formulation of the linear least-squares problem. Suppose that the
local data at agent i consists of a vector hi ∈ Rp and a scalar yi ∈ R, such that

yi = h�
i x + wi,

where x ∈ Rp is an unobserved parameter vector to be estimated (the same across all agents), and wi

is unobserved white noise. The local objective at agent i is fi(x) = (yi − h�
i x)2. Thus, the (centralized)

optimization problem we would like to solve, analogous to Eq. (5.1), is the familiar least-squares
problem,

minimize
x∈Rp

n∑
i=1

(yi − h�
i x)2 = ‖y − Hx‖2

2,

where we have stacked the individual values yi into a vector y ∈ Rn, and H is a n × p matrix, the ith
row of which is h�

i .
In the unconstrained distributed reformulation (5.2), each agent locally seeks to find xi ∈ Rp that

minimizes (yi − h�
i xi)2. For p > 1, this local problem is underdetermined and there are infinitely many

solutions. However, once the variables xi are coupled through the consensus constraints, as in Eq. (5.3),
if n ≥ p and the columns of H are linearly independent (so the rank of H is p), then there is a unique
consensus solution. �

5.2.1 MATRIX REPRESENTATIONS OF GRAPHS
For convenience of representation and to understand convergence properties, we will rewrite the
constraints xi = xj for all i and j ∈ n(i) that appear in Eq. (5.3) utilizing matrix representations of
graphs. The representations we use here are weighted versions of the edge incidence matrix and the
Laplacian matrix.

To define these matrices, associate a nonnegative weight wij with each edge e = (i, j) of the graph.
The weights are symmetric and normalized so that they sum up to one,

wij = wji,
∑

j:(i,j)∈E

wij = 1; (5.4)

i.e., the n × n matrix W with entries wi,j is symmetric and doubly stochastic. Recall that because we
are considering symmetric graphs, the presence of the edge e = (i, j) implies the presence of the edge
e′ = (j, i). Thus, the symmetry condition in Eq. (5.4) simply extends the symmetry of the graph to the
edge weights.

Next we will construct the weighted edge-vertex incidence matrix, which is useful for expressing
the constraint that we wish the solution to be a consensus. Rather than using both edges e = (i, j) and
e′ = (j, i), which would lead to redundant constraints, let us adopt the convention that we will only use
those edges (i, j) ∈ E for which i < j. The weights in Eq. (5.4) are used to construct a weighted edge
incidence matrix B ∈ Rm×n, with entries given by



5.2 DISTRIBUTED OPTIMIZATION 151

Be,v = B(i,j),v =

⎧⎪⎨
⎪⎩

√wij if v = i,

−√wij if v = j,

0 otherwise.

(5.5)

Rows of the matrix B represent edges of the graph and columns represent nodes. Moreover, the matrix
is sparse: each row contains only two (out of n) nonzero entries. The incidence matrix B is used to
define the Laplacian as the matrix L ∈ Rn×n given by

L = BT B. (5.6)

It is easy to verify that the diagonal components of L are Lii = 1 and that off-diagonal components are
Lij = −wij for all e = (i, j) ∈ E, and Lij = 0 for (i, j) /∈ E. The symmetry of the graph implies that the
Laplacian is a symmetric matrix.

In the distributed optimization methods that we discuss below, the spectral properties of the
Laplacian are important. Begin by observing that because the weights sum to one, we must have L1 = 0,
where 1 denotes the vector of all ones and 0 is a vector of all zeros. This means that 0 is an eigenvalue
of L associated with eigenvector 1. In particular, this fact implies that the Laplacian is not full rank. It
can be shown that all other eigenvalues are nonzero for connected graphs. We will use λ to denote the
smallest nonzero eigenvalue of L and � to denote its largest eigenvalue. Observe that � ≤ 2 because
the weights are normalized to sum to 1. The condition number of the graph is defined as ρ := �/λ. It
is important to emphasize that the condition number is a property of the graph that is affected by the
choice of weights. Proper selection of weights is important to reduce the condition number of the graph.

5.2.2 CONSTRAINT RELAXATIONS
The edge incidence matrix allows concise writing of the constraints in Eq. (5.3). Indeed, let I ∈ Rp×p

be the identity matrix and consider a p-dimensional Kronecker product extension of B that we write as
B = B ⊗ I. It follows that the constraints in Eq. (5.3) are equivalent to Bx = 0 and that we can rewrite
Eq. (5.3) as

x∗ := argmin
x∈Rnp

F(x) =
n∑

i=1

fi(xi), s.t. Bx = 0. (5.7)

For each edge e = (i, j) ∈ E, the constraint Bx = 0 has one row of the form wij(xi − xj) = 0 (based on
the definition of B). This is, of course, the same as having xi = xj except that the weights can be used
to (de)emphasize some specific constraints in the algorithm.

The challenge in solving Eq. (5.3) lies in the coupling introduced by the problem constraints. It is
then natural that we attempt to overcome this problem by introducing constraint relaxations. The first
relaxation that we consider is to replace the constraint Bx = 0 by a quadratic penalty. This results in
the optimization problem

x∗
α := argmin

x∈Rnp
αF(x) + 1

2

∥∥Bx
∥∥2, (5.8)

where α is a coefficient to control the relative importance of the objective F(x) and the constraint
Bx = 0. The problems in Eqs. (5.7) and (5.8) are not equivalent but they are close for large α. It is



152 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

ready to see that the norm of the difference between x∗
α and x∗ is of order ‖x∗

α − x∗‖ = O(1/α) [16].
We say that Eq. (5.8) is a primal relaxation of Eq. (5.7) and we will see that it leads to the distributed
gradient descent (DGD) method that we cover in Section 5.3.

Alternatively, we can introduce a dual constraint relaxation. To do that, define the nonnegative
Lagrange multiplier v associated with the constraint Bx = 0 and define the Lagrangian

L(x, v) := F(x) + v�Bx. (5.9)

Further define the Lagrangian minimizer variable x(v) := argminx∈Rnp L(x, v) and the dual function as
the corresponding Lagrangian minimum

g(v) := min
x∈Rnp

L(x, v) = L(x(v), v) = F(x(v)) + vT Bx(v). (5.10)

The dual problem is now defined as the maximization of the dual function and the optimal Lagrange
multiplier is the corresponding maximizing argument

v∗ := argmax
v∈R2m

g(v). (5.11)

The importance of the Lagrangian maximizers x(v) is that they can be interpreted as being optimal
with respect to a linear penalization of the constraint Bx = 0, as opposed to the quadratic penalty as
in the case of primal relaxations such as Eq. (5.8). The importance of the optimal dual variable v∗ is
that when this variable is used as a penalty coefficient, the Lagrangian maximizer x(v∗) can be used
to recover the optimal primal variable x∗ under certain technical conditions [25]. Specifically, for any
convex program it is known that x∗ is a subset of x(v∗),

x∗ ⊆ x(v∗) = argmin
x∈Rnp

L(x, v∗) = argmin
x∈Rnp

f (x) + v∗T Bx. (5.12)

Thus, if, e.g., the Lagrangian maximizer x(v∗) is unique we know that x∗ is also a singleton that must
be equal to x(v∗). In cases when x(v∗) is not unique, it is still possible to recover x∗ from the knowledge
of the optimal dual variable v∗. In any event, the important point here is that the problem of computing
x∗ has been transformed to the problem of determining v∗. This latter process can be distributed and
forms the basis for the dual methods that we discuss in Section 5.4.

5.3 DISTRIBUTED GRADIENT DESCENT
DGD is an established distributed method to solve Eq. (5.3) that relies on the solution of Eq. (5.8)
through gradient descent. To explain this, define fα(x) := αf (x)+(1/2)‖Bx‖2 and introduce an iteration
index k so that xk represents the iteration k estimate of the optimal argument x∗

α of Eq. (5.8). Further
let gk := ∇fα(xk) denote the gradient of the objective at iteration k and observe that we can write it
as gk = α∇f (xk) + BTBxk. Further observe that it follows from Eq. (5.6) that the matrix product BTB
reduces to L = BTB where L = L⊗ I is a p-dimensional Kronecker product extension of the Laplacian
L. We can then write the gradient gk as



5.3 DISTRIBUTED GRADIENT DESCENT 153

gk := ∇fα(xk) = α∇f (xk) + Lxk. (5.13)

We can now introduce a possibly time varying step size εk and utilize the gradient expression in
Eq. (5.13) to define the gradient descent recursion

xk+1 = xk − εkgk = xk − εk
[
α∇f (xk) + Lxk

]
. (5.14)

The important observation here is that Eq. (5.14) can be implemented in a distributed manner. Formally,
recall that the variable xk = [x1,k; . . . ; xn,k] ∈ Rnp contains n components xi,k ∈ Rp associated with
each of the n nodes. We similarly decompose the gradient gk = [g1,k; . . . ; gn,k] ∈ Rnp in n components
gi,k ∈ Rp so that gi,k denotes the gradient of fα(x) with respect to xi evaluated at xk. The following
proposition explains that it is possible for node i to compute gi,k while utilizing information that is
either available locally or at some neighboring node j ∈ n(i).

Proposition 5.1. Recall the definition xk = [x1,k; . . . ; xn,k] ∈ Rnp and write the gradient gk =
∇fα(xk) as gk = [g1,k; . . . ; gn,k] ∈ Rnp where gk,i = ∇xi fα(xk) is the local gradient of fα with respect to
the local variable xi ∈ Rp. The local gradient is explicitly given by

gi,k = α∇fi(xi,k) + xi,k −
∑

j∈n(i)
wijxj,k. (5.15)

Proof. Using the definition of the function fα , it follows that the gradient gk,i = ∇xi fα(xk) can be
written as gk,i = α∇xi f (xk) + ∇xi‖Bx‖2/2. Begin by recalling that f (xk) = ∑n

i=1 fi(xi) to conclude
that its gradient with respect to xi is ∇xi f (xk) = ∇xi fi(xi,k) because this is the only term that depends
on xi in the sum. To compute the gradient ∇xi‖Bx‖2/2 observe that the quadratic form ‖Bx‖2/2 can
be written as (1/2)xTBTBx = xTLx. Thus, the variable xi appears only as a square x2

i because of
the diagonal elements Lii = 1 and as a component of the cross products with neighbors −wijxixj

because of the nonzero diagonal elements Lij = wij. We can then conclude that ∇xi(‖Bx‖2/2) =
xi,k − ∑

j∈n(i) wijxj,k. Substituting ∇xi f (xk) = ∇xi fi(xi) and ∇xi(‖Bx‖2/2) = xi,k − ∑
j∈n(i) wijxj,k into

gk,i = α∇xi f (xk) + ∇xi‖Bx‖2/2 the result in Eq. (5.15) follows. �
That the gradient component gi,k in Eq. (5.15) can be computed locally at node i follows because

the variable xi and the function fi are available at i whereas the variables xj,k can be obtained from
neighbors. Because in gradient descent the component gi,k updates the variable xi,k, it follows that
Eq. (5.14) is equivalent to the n iterations

xi,k+1 = xi,k − εkgi,k = xi,k − εk

⎛
⎝α∇fi(xi,k) + xi,k −

∑
j∈n(i)

wijxj,k

⎞
⎠ ∀i = 1, . . . , n. (5.16)

Because the gradient component gi,k can be computed locally, the gradient iteration in Eq. (5.16) can
be implemented locally as well. This yields the DGD method that we summarize in Algorithm 5.1.
The core of the algorithm is in lines 3 and 4 that represent the implementation of Eqs. (5.15) and
(5.16). Implementation of these steps requires exchanging variables with neighboring nodes, which
is undertaken in line 2. The algorithm is repeated continuously, as indicated in line 1, or until a
convergence criterion is satisfied.



154 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

Algorithm 5.1 DISTRIBUTED GRADIENT DESCENT (DGD) METHOD AT NODE I
Require: Initial iterate xi,0, weights wij, penalty coefficient α, step sizes εk .

1: for k = 0, 1, 2, . . . do
2: Exchange iterates xi,k with neighbors j ∈ n(i).

3: Evaluate gradient gi,k = α∇fi(xi,k) + xi,k −
∑

j∈n(i)
wijxj,k .

4: Update local iterate: xi,k+1 = xi,k − εk gi,k .
5: end for

Because Eq. (5.16) is equivalent to Eq. (5.14) and the latter is a gradient descent method for fα it
follows that xk converges to x∗

α if the conditions that guarantee convergence of gradient descent methods
are satisfied. If the function fα is strongly convex this can be accomplished by choosing a fixed step size
εk = ε that is sufficiently small. The convergence rate is linear with a constant that is controlled by the
condition number of fα which, in turn, is a combination of the condition number of f and the condition
number of L [16].

Remark 5.1. If we consider constant step sizes εk = ε and we define w̃ii = (1 − ε), w̃ij = εwij, and
α̃ = εα, it is easy to see that Eq. (5.16) can be alternatively written as

xi,k+1 =
∑

j∈n(i)∪i

w̃ijxj,k − α̃∇fi(xi,k), (5.17)

where we observe the sum of the weights w̃ij is
∑

j∈n(i)∪i w̃ij = 1. The expression in Eq. (5.17) is the
original formulation of DGD, which has an interesting interpretation. Because the sum of the weights
w̃ij is one, we interpret

∑
j∈n(i)∪i w̃ijxj,k as an average of local and neighboring variables. We further

reinterpret α̃ as a step size and think of DGD as the sequential application of an averaging step followed
by a local gradient descent step.

5.4 DUAL METHODS
5.4.1 DUAL ASCENT
We will proceed to develop a distributed algorithm for solving Eq. (5.7) based on the dual ascent
method. In the case of symmetric communication graphs G that we focus on here, there is redundancy
in having two separate constraint equations for edges e = (i, j) and e′ = (j, i). Instead, we will
work with the simplified setting where we only impose one constraint for each edge (e.g., keeping
the version where i < j). Now the edge incidence matrix B ∈ Rm×n can be defined analogously to
Eq. (5.5), but with

Be,i = B(i,j),i = √
wij and Be,j = B(i,j),j = −√

wij.

Recall that the Lagrangian function for Eq. (5.7) is

L(x, v) =
n∑

i=1

fi(xi) + v�Bx, (5.18)



5.4 DUAL METHODS 155

where v ∈ Rmp is a vector of Lagrange multipliers and B = B ⊗ Ip. By Lagrangian duality
theory we know that solutions to Eq. (5.7) lie at saddle points of L (with suitably chosen Lagrange
multipliers) [26].

The dual ascent method seeks to find such a saddle point. Let v0 ∈ Rmp denote an arbitrary initial
Lagrange multiplier vector. Then for k = 1, 2, . . . , the dual ascent method repeats the steps

xk = argmin
x∈Rnp

L(x, vk−1), (5.19)

vk = vk−1 − ηkBxk, (5.20)

where {ηk}k≥1 is a sequence of positive step sizes.
Let Li,+ = {el = (il, jl) ∈ E | jl = i} and Li,− = {el = (il, jl) ∈ E | il = i} denote the sets of edges

containing i, where i is either greater than or less than the index of its neighbor. Based on the definition
of B, the Lagrangian function can be written as

L(x, v) =
n∑

i=1

fi(xi) −
m∑

l=1

vl(xil − xjl )

=
n∑

i=1

⎡
⎣fi(xi) + xi

⎛
⎝ ∑

l∈Li,+
vl −

∑
l∈Li,−

vl

⎞
⎠

⎤
⎦ .

Thus, when the Lagrange multipliers vk are fixed, the function L(x, vk) is separable in the per-node
vectors x1, . . . , xn, and thus node i can solve for xk

i in Eq. (5.19) locally via

xk
i = argmin

x∈Rp
fi(xi) + xk

⎛
⎝ ∑

l∈Li,+
vk−1

l −
∑

l∈Li,−
vk−1

l

⎞
⎠ , (5.21)

without coordinating with other nodes. Moreover, node i’s subproblem only depends on a subset of
the Lagrange multipliers—those associated with edges incident to node i. Similarly, the update of the
Lagrange multipliers vk

l in Eq. (5.20) associated with edge el = (il, jl) only depends on the values xk
il

and xk
jl

at nodes il and jl.
This suggests the distributed algorithm defined in Algorithm 5.2, which we refer to as distributed

dual ascent, where each node i maintains a copy of its local variable xi as well as copies of the Lagrange
multipliers vl for those edges incident to i (i.e., for l ∈ Li,+ ∪ Li,−).

Algorithm 5.2 DISTRIBUTED DUAL ASCENT
Require: Initialize all Lagrange multipliers v0

l such that if el = (il, jl), then both nodes il and jl know the value of v0
l .

1: for k = 1, 2, . . ., at each node i in parallel do
2: Locally solve for xk

i as in Eq. (5.21);

3: Send the new value xk
i to all neighbors and receive values xk

j from each of its neighbors;

4: Compute new multipliers vk
l according to Eq. (5.20).

5: end for



156 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

Distributed dual ascent only involves communication in line 3, and this communication is local
because the only nodes that need to maintain a copy of vl are those at the ends of the edge el. Hence, the
communication structure of this algorithm respects the underlying communication network topology
[27,28].

Moreover, the dual ascent algorithm is guaranteed to converge to the minimizer x� of Eq. (5.7) under
the assumption that the functions fi are strictly convex, in addition to some regularity conditions [25].
Unfortunately these conditions are rather strong and one would prefer to have a convergent algorithm
in more general settings. This can be accomplished by modifying the Lagrangian function as discussed
next.

5.4.2 ALTERNATING DIRECTION METHOD OF MULTIPLIERS
Notice that the linear equality constraints in Eq. (5.7) enter into the Lagrangian function (5.18) as a term
that is linear in the variables x. To overcome limitations of the dual ascent method, a common approach
is to modify the Lagrangian by adding a quadratic term. Specifically, for ρ > 0, the augmented
Lagrangian is defined as

Lρ (x, v) =
n∑

i=1

fi(xi) + v�Bx + ρ

2

∑
(i,j)∈E

∥∥xi − xj
∥∥2

2 . (5.22)

Observe that, for any feasible point x, we have xi = xj for all i and j, and so the additional penalty
terms in the augmented Lagrangian vanish. Nevertheless, the quadratic terms make the augmented
Lagrangian strongly convex, even when the objective functions are not necessarily strongly convex, and
this greatly aids in developing methods with convergence guarantees for a broader class of objective
functions [25,29].

One algorithm based on the augmented Lagrangian is the method of multipliers, [29] which, for
k = 1, 2, . . . , repeats the steps

xk = argmin
x∈Rnp

Lρ (x, vk−1), (5.23)

vk = vk−1 + ρBxk. (5.24)

However, the quadratic terms also introduce coupling between different variables xi and xj, and
consequently the augmented Lagrangian is not separable in x1, . . . , xn. Thus, the nodes must coordinate
in order to perform the xk update in Eq. (5.23).

A common approach to arrive at a method that does not involve coupling across all nodes is to
update the per-node blocks x1, . . . , xn of x one at a time. This leads to the celebrated alternating
direction method of multipliers (ADMM) [30]. To describe the ADMM more precisely, let us denote
by Li,ρ(xi, x−i, v) the augmented Lagrangian where we separate out the variable xi at node i from the
rest of the network x−i; i.e., x−i = [xj : j �= i] is the length-(n − 1) vector obtained from x by removing
the ith entry.

One instance of the ADMM is shown in Algorithm 5.3. Each node i maintains a copy of its local
variable, xi, its multipliers vl for those edges incident to i as well as copies of the local variables xj for
its neighbors in the network.



5.4 DUAL METHODS 157

Algorithm 5.3 ALTERNATING DIRECTION METHOD OF MULTIPLIERS
Require: Initialize all Lagrange multipliers v0

l such that if el = (il, jl), then both nodes il and jl know the value of v0
l .

Also, each node i initializes x0
i and sends this to each of its neighbors.

1: for k = 1, 2, . . ., do
2: for each node i = 1, . . . , n do
3: Update xk

i = argminxi∈Rp Li,ρk (xi, x̃k−1
−i , vk−1), where x̃k−1

−i contains the latest values of nodes other than i;

specifically, for j < i these will have already been updated to xk
j , and for j > i they will be equal to xk−1

j ;

4: Communicate xk
i to all neighbors of i;

5: end for

6: Compute new multipliers vk
l according to Eq. (5.24).

7: end for

The description of the ADMM given in Algorithm 5.3 has the nodes update sequentially according
to their indices, 1, 2, . . . , in the inner loop (lines 2–5). Of course, indices have been assigned to the
nodes in an arbitrary way at this point, so this order is arbitrary. It is possible to change the order at
each outer loop, or more generally to allow the order to be random as long as asymptotically all nodes
perform updates equally often.

It is known that the ADMM converges to an optimal solution at a linear rate when the functions fi
are convex [31,32]. Moreover, versions of the ADMM where the node that updates at each step of the
inner loop is chosen randomly are also known to converge at the same rate [33–36].

Note that, from the perspective of node i,

Li,ρ (xi, x̃k−1
−i , vk−1) = fi(xi) + xi

⎛
⎝ ∑

l∈Li,+
vl −

∑
l∈Li,−

vl

⎞
⎠ + ρ

2

∑
j∈Ni

∥∥xi − xj
∥∥2

2 + ci(x−i, v),

where the terms encapsulated into ci(x−i, v) only involve components xi′ of x for nodes i′ that are not
neighbors of i and multipliers vl associated with edges not incident to node i. Hence, the update at node
i in line 3 of Algorithm 5.3 is equivalent to

xk
i = argmin

xi∈Rp
fi(xi) + xi

⎛
⎝ ∑

l∈Li,+
vl −

∑
l∈Li,−

vl

⎞
⎠ + ρ

2

∑
j∈Ni

∥∥xi − xj
∥∥2

2 ,

which depends on information that is available at node i after it has communicated with its immediate
neighbors. Hence, these updates can be implemented locally without the need to communicate or
coordinate across the network.

In practice, the optimization subproblem arising in the update of xk
i is typically not solved exactly.

Instead, an approximate solution may be used [37], or surrogate subproblems may be solved (e.g., using
a linear [38] or quadratic [39] approximation of fi) without sacrificing the convergence properties of
the ADMM. Another practical issue that arises when applying the ADMM is to find a suitable choice
of the penalty parameter ρ, which may be constant or may vary from iteration to iteration (typically



158 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

nondecreasing). Theoretical conditions relating the value of ρ to the rate of convergence, and hence
providing guidelines for its selection, are available in the case when the functions fi are quadratic [40]
or strongly convex [41].

Finally, we remark that there has recently been interest in exploring convergence properties of the
ADMM when the functions fi are not necessarily convex [42,43]. In such settings, convergence to local
solutions may still be guaranteed when the parameter ρ is chosen to be sufficiently large.

5.5 SECOND-ORDER METHODS
Instead of solving Eq. (5.8) with a gradient descent algorithm as in DGD, we can solve Eq. (5.8) using
Newton’s method. To implement Newton’s method we need to compute the Hessian Hk := ∇2fα(xk) of
fα evaluated at xk so as to determine the Newton step dk := −H−1

k gk. Start by differentiating fα twice
in order to write Hk as

Hk := ∇2fα(xk) = αGk + L, (5.25)

where the matrix Gk ∈ Rnp×np is a block diagonal matrix formed by blocks Gii,k ∈ Rp×p containing
the Hessian of the ith local function,

Gii,k = ∇2fi(xi,k). (5.26)

It follows from Eqs. (5.25) and (5.26) that the Hessian Hk is block sparse with blocks Hij,k ∈ Rp×p

having the sparsity pattern of L, which is the sparsity pattern of the graph. The diagonal blocks are of
the form Hii,k = I + α∇2fi(xi,k) and the off-diagonal blocks are not null only when j ∈ n(i) in which
case Hij,k = wijI.

While the Hessian Hk is sparse, the inverse of Hk is not, and we need the inverse to compute
the Newton direction dk := H−1

k gk. To overcome this problem we will split Hk into the sum of
two matrices, one that is block diagonal and the other containing the remaining elements of Hk, and
then we will rely on a Taylor’s expansion of the inverse. This splitting technique is inspired from
the Taylor’s expansion used in [44,45]. To be precise, write Hk = Dk − Jk where the matrix Dk is
defined as

Dk := αGk + I, (5.27)

and Jk is a matrix we will determine below. The block diagonal matrix Gk is positive definite because
the local functions are assumed to be strongly convex, and thus the matrix Dk is block diagonal and
positive definite. The ith diagonal block Dii,k ∈ Rp of Dk can be computed and stored by node i as
Dii,k = α∇2fi(xi,k) + I. To have Hk = Dk − Jk we must define Jk := Dk − Hk. Considering the
definitions of Hk and Dk in Eqs. (5.25) and (5.27), it follows that

Jk := J = I − L. (5.28)

Observe that J is independent of time and only depends on the Laplacian matrix L. As in the case of
the Hessian Hk, the matrix J is block sparse with blocks Jij ∈ Rp×p having the sparsity pattern of L,



5.5 SECOND-ORDER METHODS 159

which is the sparsity pattern of the graph. Node i can compute the off diagonal blocks Jij = wijI using
information about its neighbors’ weights. Notice that the diagonal blocks are Jii = 0.

Proceed now to factor D1/2
k from both sides of the splitting relationship to write Hk = D1/2

k

(I − D−1/2
k JD−1/2

k )D1/2
k . When we consider the Hessian inverse H−1, we can use the Taylor series

(I − X)−1 = ∑∞
j=0 Xj with X = D−1/2

k JD−1/2
k to write

H−1
k = D−1/2

k

∞∑
l=0

(
D−1/2

k JD−1/2
k

)l
D−1/2

k . (5.29)

Observe that the sum in Eq. (5.29) converges if the absolute value of all the eigenvalues of the matrix
D−1/2BD−1/2 are strictly less than 1. It can be seen that this is true [46]. When the series converge,
we can use truncations of this series to define approximations to the Newton step, as we explain in the
following section.

Remark 5.2. The Hessian decomposition Hk = Dk − J with the matrices Dk and J in Eqs. (5.27)
and (5.28), respectively, is not the only valid decomposition that we can use in this approach. Any
decomposition of the form Hk = Dk ± Jk is valid if Dk is positive definite and the eigenvalues of the
matrix D−1/2

k JkD−1/2
k are in the interval (−1, 1). For example, an alternative decomposition is given

by the matrices Dk = αGk and J = L. This decomposition has the advantage of separating the effects
of the function in Dk and the effects of the network in J. The decomposition in Eqs. (5.27) and (5.28)
exhibits a faster convergence of the series in Eq. (5.29) because the matrix Dk in Eq. (5.27) accumulates
more weight in the diagonal than the matrix Dk = αGk. The study of alternative decompositions is an
interesting area for future work.

5.5.1 DISTRIBUTED APPROXIMATIONS OF THE NEWTON STEP
Network Newton (NN) is defined as a family of algorithms that relies on truncations of the series in
Eq. (5.29). The Lth member of this family, NN-L, considers the first L + 1 terms of the series to define
the approximate Hessian inverse

Ĥ
(L)−1

k := D−1/2
k

L∑
l=0

(
D−1/2

k JD−1/2
k

)l
D−1/2

k . (5.30)

NN-L uses the approximate Hessian Ĥ
(L)−1

k as a curvature correction matrix that is used in lieu of
the exact Hessian inverse H−1 to estimate the Newton step; i.e., instead of descending along the

Newton step dk := −H−1
k gk we descend along the NN-L step d(L)

k := −Ĥ
(L)−1

k gk, which we intend

as an approximation of dk. Using the explicit expression for Ĥ
(L)−1

k in Eq. (5.30) we write the NN-L
step as

d(L)
k = − D−1/2

k

L∑
l=0

(
D−1/2

k JD−1/2
k

)l
D−1/2

k gk, (5.31)



160 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

where, we recall, the vector gk is the gradient of objective function fα defined. The NN-L update formula
can then be written as

yk+1 = xk + ε d(L)
k , (5.32)

where ε is a properly selected step size. The algorithm defined by recursive application of Eq. (5.32) can
be implemented in a distributed manner because the truncated series in Eq. (5.30) has a local structure
controlled by the parameter L. To explain this statement better, define the components d(L)

i,k ∈ Rp of

the NN-L step d(L)
k = [d(L)

1,k; . . . ; d(L)
n,k]. A distributed implementation of Eq. (5.32) requires that node

i computes d(L)
i,k so as to implement the local descent xi,k+1 = xi,k + εd(L)

i,k . The key observation here

is that the step component d(L)
i,k can indeed be computed through local operations. Specifically, begin

by noting that as per the definition of the NN-L descent direction in Eq. (5.31), the sequence of NN
descent directions satisfies

d(l+1)
k = D−1

k Jd(l)
k − D−1

k gk = D−1
k

(
Jd(l)

k − gk

)
. (5.33)

Then observe that because the matrix J has the sparsity pattern of the graph, this recursion can be
decomposed into local components

d(l+1)
i,k = D−1

ii,k

( ∑
j∈n(i)∪{i}

Jijd
(l)
j,k − gi,k

)
. (5.34)

The matrix Dii,k = α∇2fi(xi,k) + 2(1 − wii)I is stored and computed at node i. The gradient component
gi,k = (1−wii)xi,k−∑

j∈n(i) wijxj,k+α∇fi(xi,k) is also stored and computed at i. Node i can also evaluate

the values of the matrix blocks Jii = (1 − wii)I and Jij = wijI. Thus, if the NN-k step components d(l)
j,k

are available at neighboring nodes j, node i can then determine the NN-(k + 1) step component d(l+1)
i,k

upon being communicated that information.
The expression in Eq. (5.34) represents an iterative computation embedded inside the NN-L

recursion in Eq. (5.32). For each time index k, we compute the local component of the NN-0 step
d(0)

i,k = −D−1
ii,kgi,k. Upon exchanging this information with neighbors we use Eq. (5.34) to determine

the NN-1 step components d(1)
i,k . These can be exchanged and plugged in Eq. (5.34) to compute

d(2)
i,k . Repeating this procedure L times, nodes ends up having determined their NN-L step component

d(L)
i,k .

The resulting NN-L method is summarized in Algorithm 5.4. The descent iteration in Eq. (5.32) is
implemented in line 11. Implementation of this descent requires access to the NN-L descent direction
d(L)

i,k , which is computed by the loop in lines 6–10. Line 6 initializes the loop by computing the NN-0

step d(0)
i,k = −D−1

ii,kgi,k. The core of the loop is in line 9, which corresponds to the recursion in Eq. (5.34).
Line 8 stands for the variable exchange that is necessary to implement line 9. After L iterations through
this loop, the NN-L descent direction d(L)

i,k is computed and can be used in line 11. Both lines 6 and
9 require access to the local gradient component gi,k. This is evaluated in line 5 after receiving the
prerequisite information from neighbors in line 4. Lines 1 and 3 compute the blocks Jii,k, Jij,k, and Dii,k
that are also necessary in lines 6 and 9.



5.6 PRACTICAL CONSIDERATIONS 161

Algorithm 5.4 NETWORK NEWTON-L METHOD AT NODE I
Require: Initial iterate xi,0. Weights wij. Penalty coefficient α.

1: J matrix blocks: Jii = (1 − wii)I and Jij = wijI
2: for k = 0, 1, 2, . . . do
3: D matrix block: Dii,k = α∇2fi(xi,k) + 2(1 − wii)I
4: Exchange iterates xi,k with neighbors j ∈ n(i).
5: Gradient: gi,k = (1 − wii)xi,k −

∑
j∈n(i)

wijxj,k + α∇fi(xi,k)

6: Compute NN-0 descent direction d(0)
i,k = −D−1

ii,kgi,k
7: for l = 0, . . . , L − 1 do
8: Exchange elements d(l)

i,k of the NN-l step with neighbors

9: NN-(l + 1) step: d(l+1)
i,k = D−1

ii,k

[ ∑
j∈n(i),j=i

Jijd
(l)
j,k − gi,k

]

10: end for
11: Update local iterate: xi,k+1 = xi,k + ε d(L)

i,k .
12: end for

Remark 5.3. By trying to approximate the Newton step, NN-L ends up reducing the number of
iterations required for convergence. Furthermore, the larger L is, the closer the NN-L step gets to
the Newton step, and the faster NN-L converges. We justify these assertions both analytically and
numerically in [46]. It is important to observe, however, that reducing the number of iterations reduces
the computational cost but not necessarily the communication cost. In DGD, each node i shares its
decision vector xi,k ∈ Rp with each of its neighbors j ∈ n(i). In NN-L, node i exchanges not only the
decision vector xi,k ∈ Rp with its neighboring nodes, but it also communicates iteratively the local

components of the descent directions {d(l)
i,k}L−1

l=0 ∈ Rp so as to compute the descent direction d(L)
i,k .

Therefore, at each iteration, node i sends |Ni| vectors of size p to the neighboring nodes in DGD while
in NN-L it sends (L + 1)|Ni| vectors of the same size. Unless the original problem is well conditioned,
NN-L also reduces total communication cost until convergence, even though the cost of each individual
iteration is larger [46]. However, the use of large L is unwarranted because the added benefit of better
approximating the Newton step does not compensate for the increase in communication cost.

5.6 PRACTICAL CONSIDERATIONS
5.6.1 SYNCHRONOUS VERSUS ASYNCHRONOUS METHODS
All the distributed optimization methods described above are synchronous: nodes perform their updates
and communicate in a coordinated manner. That is, all nodes perform local computations in parallel,
and then they communicate. The iteration counter, k, can be viewed as incrementing in a consistent way
across all the nodes. Synchronous methods have many advantages: they are relatively straightforward
to describe and implement and they are also easy to debug because their execution is deterministic.
However, they also have a drawback: all nodes progress at the pace of the slowest node [47]. This can
be highly undesirable when one or a few nodes are significantly slower than the others, e.g., if their
processor speed is slower, computing the gradient of their local objective function is significantly more
complex than the others, or their communication link supports a much lower rate than others. This
motivates the use of asynchronous methods.



162 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

In an asynchronous multiagent method, we allow nodes to proceed with computation and commu-
nication at their own pace. The hope is that this will allow the overall system to make progress toward
the solution significantly faster than synchronous methods when there is one or more slow node.

The reader should take note that the term “asynchronous” has sometimes been used to mean
different things in the distributed optimization literature. For example, in the context of the ADMM, it
has been used to mean that the order in which nodes perform their local updates is randomized [33,35].
In the context of gossip and consensus algorithms, it is sometimes used to mean that a single pair
of neighboring nodes updates and communicates in one iteration, rather than all pairs of neighboring
nodes [48]. When communication takes place over a wireless network, it may also be taken to mean
that one node updates and broadcasts information to its neighbors in each iteration [49].

More generally, and most relevant to the current discussion, asynchronous methods typically refer
to those in which nodes may perform updates at different rates, messages may be received after some
delay, and the communication topology may change over time [50,51]. For this general model, there
is still no de facto distributed method with strong convergence guarantees available in the literature
that addresses all the challenges listed above in the setting considered in this chapter. Recent progress
has been made in a variety of directions, including accounting for (individually) heterogeneous update
rates [52], delays [53–55], and time-varying networks [56,57]. A promising framework for addressing
these challenges is the push-sum approach, which we briefly describe next.

5.6.2 PUSH-SUM METHODS
In the discussion of the distributed gradient method in Section 5.3, the weight matrix W played an
important role. There, we assumed that the network was symmetric and that W was stochastic, which
together imply that W is doubly stochastic: its row and columns sum to unity. In many practical
situations, ensuring that the communication network is symmetric or that the weight matrix W is doubly
stochastic can be difficult or impossible, especially in asynchronous implementations [47]. At a high
level, this is because ensuring that the weights W are symmetric and stochastic for each update requires
that nodes coordinate with all their neighbors, and a fundamental reason to use asynchronous methods
is to reduce the amount of coordination required. In the asynchronous setting there are two alternatives
one may consider.

1. Each node may be responsible for assigning weights to the messages it has received when
performing an update. This corresponds to giving each node control of its row of the matrix W, in
which case we arrive at an algorithm where W is row-stochastic (but not column-stochastic).

2. Each node may be responsible for assigning weights to the messages it sends. This corresponds to
giving each node control of its column of the matrix W, and leads to algorithms where W is
column-stochastic (but not row-stochastic).

The second approach, where W is column-stochastic, results in methods associated with the name
“push-sum” in the literature, which turn out to have a number of practical advantages. The name push-
sum comes from the fact that, when nodes update, they assign weights and then send (i.e., push) these
messages to their neighbors. The messages wait in a queue at each neighbor until that node is ready to
update, and when a node updates, it sums all the messages it has received.

Unsurprisingly, column-stochastic matrices are related to Markov chains. In asynchronous push-
sum methods, because the node or nodes performing an update vary over time, we have a sequence



5.7 CONCLUSION 163

of time matrices W1, W2, . . . , one for each update time, where the columns of nonupdating nodes are
equal to the corresponding column of the identity matrix (because nothing changes with respect to those
nodes’ states). Moreover, it is the product of such matrices that appears in the analysis of such methods,
after unrolling updates such as Eq. (5.16) over multiple steps.

Products of column-stochastic matrices are also column-stochastic, and the ergodicity theory of
Markov chains provides conditions under which products of column-stochastic matrices converge to
a limiting column-stochastic matrix where all columns are identical [58]. Let x0 denote an initial
state vector across the network, and let W∞ = . . . W3W2W1 denote a product of column-stochastic
matrices. When the product converges to an ergodic limit, so W∞ is a column-stochastic matrix where
all columns are identical, then W∞ = π1�, where π is the stationary distribution of the process.
Consequently, y = W∞x0 = (1�x0)π is such that each entry of y is a scaled version of the sum 1�x0.
If we take x0 = 1, the vector of all ones, then we get y = nπ . Of course, if we only run a finite number
of such iterations then the convergence will be approximate.

Push-sum methods operate by running two copies of this iteration in parallel. One copy may take
as input, e.g., the gradient at each node and output yj ≈ πj

∑n
i=1 ∇fi(xk

i ) at node j. The second copy
is initialized with the value 1 at every node, and it outputs zj ≈ nπj at node j. Then, by dividing
each element of yj by zj, we recover the average gradient. Thus, even though column-stochastic
matrices do not necessarily lead to uniform stationary distributions, we can compensate to de bias the
algorithm. (Note: If we had instead used row-stochastic matrices, it would not be possible to unmix the
contributions of each node, and the resulting algorithm would be equivalent to minimizing

∑n
i=1 πifi(x),

where the contribution to the cost function would depend on the stationary distribution π , and hence
on the structure of the matrices Wk.)

Push-sum methods were originally developed to solve the problem of distributed averaging [59].
They were first adapted for distributed optimization in [60], and follow-up work has developed push-
sum based first-order methods with extrapolation to converge at faster rates when the functions fi are
strongly convex [61,62], as well as methods that are suited to run over time-varying and directed
graphs [56,57]. Developing push-sum distributed optimization methods to handle the full complexity
of the asynchronous scenario remains an open and active area of research.

5.7 CONCLUSION
In this chapter we have introduced the problem of consensus-based multiagent convex optimization.
We described two different approaches to the design of multiagent algorithms. In the first approach,
consensus is achieved by adding a penalty to the separable objective function. The penalty contains one
term for each edge in the communication graph, and these terms grow quadratically with the difference
between the optimization variables at neighboring agents. The standard DGD algorithm can be viewed
as performing gradient descent on this penalized objective, and thus this is one point of departure for
developing other decentralized methods.

A second, alternative approach is to explicitly enforce a consensus by introducing constraints to
ensure that the optimization variables at neighboring agents are identical. Addressing the constraints
via duality leads to approaches such as dual ascent and the ADMM. Examining the Lagrangian function
of the constrained problem also reveals that this approach can be seen as imposing a linear penalty.



164 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

Multiagent convex optimization has received considerable attention in the research community
during the past 15 years, and we now have a solid understanding of theoretical tools and analyses
of these methods, including ways to accelerate rates of convergence of first-order methods [63–65]
and distributed second-order methods (e.g., as discussed in Section 5.5). We believe the time is ripe for
implementations of these methods as well as their use in applications. The discussion of practical issues
in Section 5.6, such as dealing with asynchrony and directed communication topologies, addresses
some of the issues we have observed to appear in practical implementations, which are not always
considered in theoretical studies of multiagent optimization algorithms.

Throughout this chapter we focused on static communication topologies. Another issue that is likely
to arise in practical applications (e.g., when agents communicate over a wireless networks) is that the
communication topology will vary with time. The issue of time-varying topologies has been studied
extensively in the literature, and there are several results guaranteeing asymptotic convergence; see
[66] for a recent survey. In general, in the time-varying setting it is not required that the communication
topology be connected at every iteration. Rather, convergence to an optimal solution can still be
guaranteed even if the communication topology is not connected at any iteration, as long as an aggregate
topology (taking the union of edges over some number b > 0 of consecutive iterations, so-called b-
connectivity) is sufficiently well connected. Worst-case rates of convergence in this general setting are
typically much slower than in the case of static connected graphs, mainly due to the potentially very
slow convergence of averaging in the time-varying setting. However, in the special case where the graph
at each iteration can be modeled as being an independent and identically distributed (i.i.d.) sample from
a family of random graphs, where the expected graph is connected, then convergence rate guarantees
(in expectation) that depend on spectral properties of the expected graph can be recovered [67]. An
interesting direction for future work could be to consider a regime between these two extremes to better
understand what convergence guarantees can be obtained in the setting of time-varying topologies under
stronger assumptions than b-connectivity, but without assuming i.i.d. topologies.

Finally, although we have focused on multiagent algorithms for convex optimization in this chapter,
there has also been work on algorithms for nonconvex optimization [68–72]. In this case, convergence
is only guaranteed to a stationary point.

REFERENCES
[1] Bullo F, Cortés J, Martinez S. Distributed control of robotic networks: a mathematical approach to motion

coordination algorithms. Princeton University Press; 2009.
[2] Cao Y, Yu W, Ren W, Chen G. An overview of recent progress in the study of distributed multi-agent

coordination. IEEE Trans Ind Inf 2013;9:427–38.
[3] Lopes CG, Sayed AH. Diffusion least-mean squares over adaptive networks: formulation and performance

analysis. IEEE Trans Signal Process 2008;56(7):3122–36.
[4] Schizas ID, Ribeiro A, Giannakis GB. Consensus in ad hoc WSNS with noisy links—Part I: Distributed

estimation of deterministic signals. IEEE Trans Signal Process 2008;56(1):350–64.
[5] Khan UA, Kar S, Moura JM. Diland: an algorithm for distributed sensor localization with noisy distance

measurements. IEEE Trans Signal Process 2010;58(3):1940–7.
[6] Rabbat M, Nowak R. Distributed optimization in sensor networks. In: Proceedings of the 3rd international

symposium on information processing in sensor networks. ACM; 2004. p. 20–7.

http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0035


REFERENCES 165

[7] Rabbat M, Nowak R. Distributed optimization in sensor networks. In: Proceedings of the ACM/IEEE
international conference on information processing in sensor networks (IPSN), Berkeley, CA, USA; 2004.
p. 20–7.

[8] Ribeiro A. Ergodic stochastic optimization algorithms for wireless communication and networking. IEEE
Trans Signal Process 2010;58(12):6369–86.

[9] Ribeiro A. Optimal resource allocation in wireless communication and networking. EURASIP J Wirel
Commun Netw 2012;2012(1):1–19.

[10] Rabbat MG, Nowak RD. Decentralized source localization and tracking [wireless sensor networks]. In: IEEE
international conference on acoustics, speech, and signal processing, 2004. ICASSP’04, vol. 3. IEEE; 2004.
p. iii-921–iii-924.

[11] Bekkerman R, Bilenko M, Langford J. Scaling up machine learning: parallel and distributed approaches.
Cambridge University Press; 2011.

[12] Tsianos KI, Lawlor S, Rabbat MG. Consensus-based distributed optimization: practical issues and applica-
tions in large-scale machine learning. In: 2012 50th annual Allerton conference on communication, control,
and computing (Allerton); 2012. p. 1543–50.

[13] Cevher V, Becker S, Schmidt M. Convex optimization for big data: scalable, randomized, and parallel
algorithms for big data analytics. IEEE Signal Process Mag 2014;31(5):32–43.

[14] Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom
Control 2009;54(1):48–61.

[15] Jakovetic D, Xavier J, Moura JM. Fast distributed gradient methods. IEEE Trans Autom Control
2014;59(5):1131–46.

[16] Yuan K, Ling Q, Yin W. On the convergence of decentralized gradient descent. arXiv preprint
arXiv:13107063; 2013.

[17] Shi W, Ling Q, Wu G, Yin W. Extra: an exact first-order algorithm for decentralized consensus optimization.
arXiv preprint arXiv:14046264; 2014.

[18] Duchi JC, Agarwal A, Wainwright MJ. Dual averaging for distributed optimization: convergence analysis and
network scaling. IEEE Trans Autom Control 2012;57(3):592–606.

[19] Tsianos KI, Lawlor S, Rabbat MG. Push-sum distributed dual averaging for convex optimization. In: 2012
IEEE 51st annual conference on decision and control (CDC); 2012. p. 5453–8.

[20] Ling Q, Ribeiro A. Decentralized linearized alternating direction method of multipliers. In: 2014 IEEE
international conference on acoustics, speech and signal processing (ICASSP); 2014. p. 5447–51.

[21] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the
alternating direction method of multipliers. In: Foundations and trends® in machine learning, vol. 3(1); 2011.
p. 1–122.

[22] Shi W, Ling Q, Yuan K, Wu G, Yin W. On the linear convergence of the ADMM in decentralized consensus
optimization. IEEE Trans Signal Process 2014;62(7):1750–61.

[23] Mota JF, Xavier JM, Aguiar PM, Puschel M. D-ADMM: a communication-efficient distributed algorithm for
separable optimization. IEEE Trans Signal Process 2013;61(10):2718–23.

[24] Chang TH, Hong M, Wang X. Multi-agent distributed optimization via inexact consensus ADMM. IEEE
Trans Signal Process 2015;63(2):482–97.

[25] Bertsekas D. Nonlinear programming. 2nd ed. Athena Scientific; 1999.
[26] Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004.
[27] Rabbat M, Nowak R, Bucklew J. Generalized consensus algorithms in networked systems with erasure links.

In: Proceedings of the IEEE workshop on signal processing advances in wireless communications, New York;
2005. p. 1088–92.

[28] Schizas I, Ribeiro A, Giannakis G. Consensus in ad hoc WSNs with noisy links—Part I: Distributed
estimation of deterministic signals. IEEE Trans Signal Process 2008;56(1):350–64.

[29] Nocedal J, Wright S. Numerical optimization. 2nd ed. Springer; 2006.

http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0150


166 CHAPTER 5 MULTIAGENT DISTRIBUTED OPTIMIZATION

[30] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the
alternating direction method of multipliers. In: Foundations and trends in machine learning, vol. 3(1); 2010.
p. 1–122.

[31] Hong M, Luo Z. On the linear convergence of the alternating direction method of multipliers. Math. Program.
2017;162(1–2):165–99.

[32] Shi W, Ling Q, Yuan K, Wu G, Yin W. On the linear convergence of the ADMM in decentralized consensus
optimization. IEEE Trans Signal Process 2014;62(7):1750–61.

[33] Wei E, Ozdaglar A. On the o(1/k) convergence of asynchronous distributed alternating direction method of
multipliers. In: Proceedings of the IEEE global conference on signal and information processing, Austin, TX,
USA; 2013.

[34] Wei E, Ozdaglar A. On the o(1/k) convergence of asynchronous distributed alternating direction method of
multipliers; 2013. Preprint, available at http://arxiv.org/abs/1307.8254.

[35] Iutzeler F, Bianchi P, Ciblat P, Hachem W. Asynchronous distributed optimization using a randomized
alternating direction method of multipliers. In: Proceedings of the IEEE conference on decision and control,
Florence, Italy; 2013.

[36] Iutzeler F, Bianchi P, Ciblat P, Hachem W. Explicit convergence rate of a distributed alternating direction
method of multipliers. IEEE Trans Signal Process 2016;61(4):892–904.

[37] Eckstein J, Yao W. Approximate ADMM algorithms derived from Lagrangian splitting. Comput Optim Appl
2017;68(2):363–405.

[38] Ling Q, Shi W, Wu G, Ribeiro A. DLM: decentralized linearized alternating direction method of multipliers.
IEEE Trans Signal Process 2014;63(15):4051–64.

[39] Mokhtari A, Shi W, Ling Q, Ribeiro A. DQM: decentralized quadratically approximated alternating direction
method of multipliers. IEEE Trans Signal Process 2016;64(19):5158–73.

[40] Teixeira A, Ghadimi E, Shames I, Sandberg H, Johansson M. The ADMM algorithm for distributed
quadratic problems: parameter selection and constraint preconditioning. IEEE Trans Signal Process
2016;64(2):290–305.

[41] Nishihara R, Lessard L, Recht B, Packard A, Jordan M. A general analysis of the convergence of ADMM. In:
Proceedings of the international conference on machine learning, Lille, France; 2015.

[42] Magnússon S, Weeraddana P, Rabbat M, Fischione C. On the convergence of alternating direction Lagrangian
methods for nonconvex structured optimization problems. IEEE Trans Control Netw Syst 2016;3(3):296–309.

[43] Hong M, Luo Z, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a
family of nonconvex problems. SIAM J Optim 2016;26(1):337–64.

[44] Zargham M, Ribeiro A, Ozdaglar A, Jadbabaie A. Accelerated dual descent for network flow optimization.
IEEE Trans Autom Control 2014;59(4):905–20.

[45] Zargham M, Ribeiro A, Jadbabaie A. Accelerated dual descent for constrained convex network flow
optimization. 2013 IEEE 52nd annual conference on decision and control (CDC); 2013. p. 1037–42.

[46] Mokhtari A, Ling Q, Ribeiro A. Network Newton—Part II: Convergence rate and implementation; 2015.
[47] Tsianos K, Lawlor S, Rabbat M. Consensus-based distributed optimization: practical issues and applications

in large-scale machine learning. In: 50th Allerton conference on communication, control, and computing;
2012.

[48] Dimakis A, Kar S, Moura J, Rabbat M, Scaglione A. Gossip algorithms for distributed signal processing.
Proc IEEE 2010;98(11):1847–64.

[49] Srivastava K, Nedić A. Distributed asynchronous constrained stochastic optimization. IEEE J Sel Top Signal
Process 2011;5(4):772–90.

[50] Tsitsiklis J, Bertsekas D, Athans M. Distributed asynchronous deterministic and stochastic gradient optimiza-
tion algorithms. IEEE Trans Autom Control 1986;31(9):803–12.

[51] Bertsekas DP, Tsitsiklis JN. Parallel and distributed computation: numerical methods. 1st ed. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc.; 1989.

http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0170
http://arxiv.org/abs/1307.8254
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0260


REFERENCES 167

[52] Tsianos K, Rabbat M. Asynchronous decentralized optimization in heterogeneous systems. In: Proceedings
of the IEEE conference on decision and control, Los Angeles, CA, USA; 2014.

[53] Tsianos K, Rabbat M. Distributed consensus and optimization under communication delays. In: Proceedings
of the Allerton conference on communication, control, and computing, Monticello, IL, USA; 2011.

[54] Tsianos K, Rabbat M. Distributed dual averaging for convex optimization under communication delays. In:
Proceedings of the American control conference, Montreal, Canada; 2012.

[55] Wu T, Yuan K, Ling Q, Yin W, Sayed A. Decentralized consensus optimization with asynchrony and delays.
In: Proceedings of the Asilomar conference on signals, systems, and computers, Pacific Grove, CA, USA;
2016.

[56] Nedić A, Olshevsky A. Distributed optimization over time-varying directed graphs. IEEE Trans Autom
Control 2015;60(3):601–15.

[57] Nedić A, Olshevsky A. Stochastic gradient-push for strongly convex functions on time-varying directed
graphs. IEEE Trans Autom Control 2016;61(12):3936–47.

[58] Seneta E. Nonnegative matrices and Markov chains. George Allen & Ullwin Ltd; 1973.
[59] Kempe D, Dobra A, Gehrke J. Gossip-based computation of aggregate information. In: Proceedings of the

44th annual IEEE symposium on foundations of computer science; 2003.
[60] Tsianos K, Rabbat M. Push-sum distributed dual averaging for convex optimization. In: Proceedings of the

IEEE conference on decision and control, Maui, HI, USA; 2012.
[61] Zeng J, Yin W. ExtraPush for convex smooth decentralized optimization over directed networks; 2015.

Available on arXiv at http://arxiv.org/abs/1511.02942.
[62] Xi C, Khan U. DEXTRA: a fast algorithm for optimization over directed graphs. IEEE Trans Autom Control

2017;62(10):4980–93.
[63] Jakovetic D, Xavier J, Moura J. Fast distributed gradient methods. IEEE Trans Autom Control

2014;59(5):1131–46.
[64] Shi W, Ling Q, Wu G, Yin W. EXTRA: an exact first order algorithm for decentralized consensus

optimization. SIAM J Optim 2015;25(2):944–66.
[65] Nedić A, Olshevsky A, Shi W. Achieving geometric convergence for distributed optimization over time-

varying graphs; 2016. Accepted at SIAM J Optim 2017, available on arXiv at https://arxiv.org/abs/1607.03218.
[66] Nedić A, Olshevsky A, Rabbat MG. Network topology and communication-computation tradeoffs in

decentralized optimization; 2017. Preprint, available at http://arxiv.org/abs/1709.08765.
[67] Boyd S, Ghosh A, Prabhakar B, Shah D. Randomized gossip algorithms. IEEE Trans Inf Theory

2006;52(6):2508–30.
[68] Bianchi P, Fort G, Hachem W. Performance of a distributed stochastic approximation algorithm. IEEE Trans

Inf Theory 2013;59(11):7405–18.
[69] Zhu M, Martínez S. An approximate dual subgradient algorithm for distributed non-convex constrained

optimization. IEEE Trans Autom Control 2013;58(6):1534–9.
[70] Zhang S, Choromanska A, LeCun Y. Deep learning with elastic averaged SGD. In: Proceedings of the

advances in neural information processing systems; 2015.
[71] Di Lorenzo P, Scutari G. NEXT: in-network nonconvex optimization. IEEE Trans Signal Inf Process Netw

2016;2(2):120–36.
[72] Tatarenko T, Touri B. Non-convex distributed optimization. IEEE Trans Autom Control 2017;62(8):3744–57.

http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0305
http://arxiv.org/abs/1511.02942
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0315
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0325
https://arxiv.org/abs/1607.03218
http://arxiv.org/abs/1709.08765
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0340
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0345
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0350
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0355
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0360
http://refhub.elsevier.com/B978-0-12-813677-5.00005-5/rf0365


CHAPTER

6DISTRIBUTED KALMAN AND
PARTICLE FILTERING

Ali H. Sayed∗, Petar M. Djurić†, Franz Hlawatsch‡

School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland∗ Department of

Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, United States† Institute of

Telecommunications, TU Wien, Vienna, Austria‡

6.1 DISTRIBUTED SEQUENTIAL STATE ESTIMATION
Distributed strategies can be applied to solving state-space filtering and smoothing problems [1–18].
In these applications, agents interconnected by communication links seek to track the state of some
underlying state-space model based on their own measurements and information exchanged with their
neighbors.

Many natural and man-made systems can be modeled as dynamic systems described by state-
space models [19–21]. The state of a dynamic system comprises certain system-related quantities of
interest, such as the location and velocity of a moving vehicle or the concentration of a pollutant in
a chemical plume. The state is time-varying and unknown. Each agent acquires local measurements
and benefits from sharing information with neighboring agents. In this chapter, we consider distributed
time-sequential methods for estimating the state from recurring measurements acquired by spatially
distributed agents, where each agent is able to communicate only with a limited set of spatially close
neighboring agents [1–8,10–18].

The objective of this chapter is to provide an overview of distributed state-space estimation for
linear and nonlinear models, with emphasis on filtering and prediction problems while noting that
similar techniques can be applied to smoothing problems [12]. In the first part of our treatment, we
motivate and examine the diffusion Kalman filter for one-step prediction by following the general
approach outlined in [12,15,18]. Similar diffusion strategies for fixed-lag and fixed-point smoothing
appear in [12]. We focus on the diffusion Kalman form because it has been shown in [15,18,22,23] that
diffusion implementations have superior stability and tracking performance when optimizing aggregate
costs in response to streaming data. In the second part of the chapter, we describe distributed particle
filtering, where we focus on both consensus-based and diffusion-based approaches. The methods we
present can be used in a wide range of applications including surveillance, localization and navigation,
environmental and agricultural monitoring, target tracking, exploration, search and rescue, the Internet
of Things, and logistics.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00006-7
Copyright © 2018 Elsevier Inc. All rights reserved.

169



170 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

6.1.1 THE SETUP
The problem of interest is the estimation of a state xn ∈ RN , where n ∈ {1, 2, . . .} is a discrete time
index, from sequences of measurements {z1,k, z2,k, . . . , zn,k}, with zi,k ∈ Rp, observed up to the current
time n at K different agents k ∈ {1, 2, . . . , K}. More specifically, we are interested in estimating xn in a
time-sequential and distributed manner. Time-sequential processing means that the estimation of xn at
time n recursively reuses relevant results from the estimation of xn−1 at time n − 1 while incorporating
the new measurements zn,k, k = 1, 2, . . . , K. Distributed processing means that the estimation of xn is
done locally at the individual agents, which exchange relevant information in a spatially local manner.
Such a distributed (decentralized) mode of operation has important advantages over a centralized mode
[16,17]. For example, it does not require a fusion center collecting all the measurements, which would
constitute a “single point of failure.” It also does not need communication between distant points or the
use of complex routing strategies. The distributed solution is robust to network node and link failures
and is able to adapt to changing network topologies. Moreover, the computational complexity and
communication cost per agent scale well with the network size (number of agents).

The topology of local information exchange is defined by a decentralized network of agents in
which each agent k is able to communicate with a certain set of “neighbor” agents Nk ⊆ {1, 2, . . . , K}.
This set Nk also includes agent k. Usually, the neighbors of an agent are located in its proximity.
Practical examples of decentralized agent networks include robotic networks, networks of unmanned
terrestrial, aerial, or underwater vehicles, and networks of cameras. We assume that the agent network
is connected, i.e., each agent is connected to any other agent via one or multiple “communication hops.”

Because the measurements are dispersed among the agents rather than available at a single
processing unit, an important aspect of any distributed estimation algorithm is the dissemination
of agent-related (and possibly other) information through the network via local communication.
Various dissemination schemes are available, such as consensus [24,25], gossip [26,27], and diffusion
[12,15,18]. A performance benchmark for a distributed algorithm is the performance that would be
achieved by a centralized algorithm that has direct access to all the measurements. The amount of
communication that is required for good performance is an important property of a distributed algorithm
because communication increases the power consumption and processing delay of the agents.

A summary of the notation used in this chapter is presented in Table 6.1.

6.2 DISTRIBUTED KALMAN FILTERING
In the first part of our treatment, we motivate and examine the diffusion Kalman filter for one-step
prediction by following the general approach outlined in [12,15,18]. We start with a brief description
of the network topology and an introduction of the data model.

6.2.1 NETWORK TOPOLOGY
We consider a network consisting of K agents connected according to some graph topology. A left-
stochastic K × K matrix A = (a�k) is associated with the topology, where each entry a�k denotes a



6.2 DISTRIBUTED KALMAN FILTERING 171

Table 6.1 Summary of Notation

Notation Description

n ∈ {1, 2, . . .} discrete time index

xn ∈ RN state vector at time k

k ∈ {1, 2, . . . , K} agent index

K number of agents

zn,k ∈ Rp measurement vector of agent k at time n

zn
�= (zT

n,1 zT
n,2 · · · zT

n,K )T vector of all agent measurements at time n

z1:n
�= (zT

1 zT
2 · · · zT

n )T all-agents measurement sequence up to time n

Nk ⊆ {1, 2, . . . , K} set of neighboring agents of agent k (including agent k)

dk = |Nk| cardinality of set Nk

A a left-stochastic matrix

J adjacency matrix

1K K × 1 vector with elements equal to 1

δnj Kronecker delta function

∝ equal up to a constant factor

Fn and Gn state matrices of the linear state-space model

Hn,k local data matrix of the linear state-space model

Qn covariance matrix of the state noise process

Rn,k covariance matrix of the measurement noise process

�0 covariance matrix of the intitial state

IN N × N identity matrix

gn(xn−1, un) state-evolution function at time k

un state noise at time n

f (xn|xn−1) state-transition probability density function

hn,k(xn, vn,k) measurement function of agent k at time n

vn,k measurement noise of agent k at time n

f (zn,k|xn) local likelihood function of agent k

f (zn|xn) global (all-agents) likelihood function

f (xn|z1:n) posterior probability density function

E[·] expectation

x(m)
n mth particle of the state xn

w(m)
n weight of the particle x(m)

n

M number of particles

q(xn|x(m)
n−1) proposal probability density function

ln(·) natural logarithm

N (·; μ, �) Gaussian probability density function



172 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

nonnegative scaling factor that will be used to scale some of the data transitioning from agent � to
agent k (likewise for ak�). The left-stochasticity of A means that it satisfies

AT1K = 1K , (6.1)

so that the entries on each column of A add up to one (the symbol 1K represents a K × 1 vector of
ones). We assume that the graph is strongly connected. The connectedness condition means that, for
any two agents � and k, there always exist paths with nonzero scaling weights in A linking � and k in
either direction; the path from � to k does not need to agree with the reverse path from k to �. Strong-
connectedness additionally means that there exists at least one agent in the graph with akk > 0. That
is, at least one agent places some trust or confidence on its local data. These conditions are satisfied
by most graphs of interest. It follows from the strong-connectedness condition that the left-stochastic
matrix A is primitive [15].

6.2.2 LINEAR STATE-SPACE MODELS
We consider a linear state-space model defined by

xn+1 = Fnxn + Gnun, n = 0, 1, . . . , (6.2)

zn,k = Hn,kxn + vn,k, n = 0, 1, . . . ; k = 1, 2, . . . , K, (6.3)

where Fn and Gn are state matrices, and Hn,k is a local data matrix. The noise vectors un and vn,k are
assumed to be realizations of zero-mean white processes that are uncorrelated with covariance matrices
denoted by Qn and Rn,k, respectively, that is,

E

[(
un
vn,k

)(
uj
vj,k

)T
]

�=
(

Qn 0
0 Rn,k

)
δnj, (6.4)

where δnj denotes the Kronecker delta: it is equal to one when n = j and zero otherwise. The
measurement noise vectors vn,k are also assumed to be independent of each other across space (i.e.,
for different k), that is,

E
[
vn,kv

T
j,�
] = Rn,kδk�δnj. (6.5)

The initial state vector, x0, is assumed to have zero mean and covariance matrix

E
[
x0xT

0
] = �0 > 0, (6.6)

and it is uncorrelated with un and vn,k, for all n and k. The notation �0 > 0 signifies that �0 is a positive
definite matrix. We further assume that Rn,k > 0. The parameter matrices {Fn, Gn, Qn, �0, Hn,k, Rn,k}
are considered known by each agent k. Note that no Gaussian assumptions are made.

6.2.3 NONCOOPERATIVE FILTERING
Assume initially that each agent k in the network acts individually and uses solely its local data stream
zn,k, n = 1, 2, . . . , to track the state vector xn. In this case, agent k can run the well-known Kalman filter
in any of its various forms (covariance, measurement and time-update, or information form) to carry
out this task [19,28,29]. For instance, let x̂ind

n,k|j denote the linear least-mean-squares error (LLMSE)



6.2 DISTRIBUTED KALMAN FILTERING 173

estimate of xn by agent k using all the local measurements up to time j, i.e., {z1,k, z2,k, . . . , zj,k}. The
superscript “ind” is used to emphasize that these estimators are based on individual (noncooperative)
behavior. We denote the corresponding estimation error and error-covariance matrix by

x̃ind
n,k|j

�= xn − x̂ind
n,k|j, (6.7)

Pind
n,k|j

�= E

[
x̃ind

n,k|j
(
x̃ind

n,k|j
)T]. (6.8)

Then, it is well known [28,29] that predicted (when j = n − 1) and/or filtered (when j = n) state
estimates can be computed by agent k by one of several forms, listed below.

Covariance form of the noncooperative Kalman filter
start with x̂ind

0,k|−1 = 0, Pind
0,k|−1 = �0.

repeat at every agent k for n ≥ 0 :

eind
n,k = zn,k − Hn,kx̂ind

n,k|n−1

Rind
e,n,k = Rn,k + Hn,kPind

n,k|n−1HT
n,k

Kind
p,n,k = FnPind

n,k|n−1HT
n,k

(
Rind

e,n,k

)−1

x̂ind
n+1,k|n = Fnx̂ind

n,k|n−1 + Kind
p,n,keind

n,k

Pind
n+1,k|n = FnPind

n,k|n−1FT
n − Kind

p,n,kRind
e,n,k

(
Kind

p,n,k

)T + GnQnGT
n

end

(6.9)

Measurement- and time-update form of the noncooperative Kalman filter
start with x̂ind

0,k|−1 = 0, Pind
0,k|−1 = �0.

repeat at every agent k for n ≥ 0 :

(measurement-update)

eind
n,k = zn,k − Hn,kx̂ind

n,k|n−1

Rind
e,n,k = Rn,k + Hn,kPind

n,k|n−1HT
n,k

x̂ind
n,k|n = x̂ind

n,k|n−1 + Pind
n,k|n−1HT

n,k

(
Rind

e,n,k

)−1
eind

n,k

Pind
n,k|n = Pind

n,k|n−1 − Pind
n,k|n−1HT

n,k

(
Rind

e,n,k

)−1
Hn,kPind

n,k|n−1

(time-update)

x̂ind
n+1,k|n = Fnx̂ind

n,k|n
Pind

n+1,k|n = FnPind
n,k|nFT

n + GnQnGT
n

end

(6.10)



174 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

Information form of the noncooperative Kalman filter

start with x̂ind
k,0|−1 = 0,

(
Pind

k,0|−1

)−1 = �−1
0 .

repeat at every agent k for n ≥ 0 :(
Pind

n,k|n
)−1 =

(
Pind

n,k|n−1

)−1 + HT
n,kR−1

n,k Hn,k(
Pind

n,k|n
)−1

x̂ind
n,k|n =

(
Pind

n,k|n−1

)−1
x̂ind

n,k|n−1 + HT
n,kR−1

n,k zn,k

x̂ind
n,k+1|n = Fnx̂ind

n,k|n
Pind

n+1,k|n = FnPind
n,k|nFT

n + GnQnGT
n

end

(6.11)

Clearly, these noncooperative forms assume that the agents act individually. However, because all
the agents are tracking the same state vector xn, it is expected that the mean-square-error performance
can improve through cooperation by having neighboring agents share with each other information about
their own estimators. We consider one initial form of cooperation before extending it to arrive at the
diffusion Kalman filter later in Section 6.2.7.

6.2.4 INCREMENTAL COOPERATION
Consider an arbitrary agent k and let Nk denote its neighborhood, i.e., the collection of all agents �

that are connected to agent k by edges and that can share information with it. This set includes also the
agent k. The set comprises all agents � for which a�k > 0; its cardinality is denoted by dk = |Nk|.

In addition to its own measurement vector zn,k, at each time instant n, agent k has also access to
the measurement vectors {zn,�} from its neighbors, � ∈ Nk \ {k}. In this way, at every time instant n,
agent k has access to |Nk| measurement vectors (its own measurements and the ones collected from its
neighbors) and denoted by {zn,k1 , zn,k2 , . . . , zn,kdk

}. In this notation, we are referring to the neighbors of

agent k (including agent k itself) by the indices {k1, k2, . . . , kdk }. Let x̂loc
n,k|j denote the LLMSE estimate

of xn obtained by agent k (including agent k) by using these local (or neighborhood) measurements
from time 0 up to time j. The superscript “loc” is used to emphasize that these estimators are based on
local neighborhood measurements. We denote the corresponding estimation error and error-covariance
matrix by

x̃loc
n,k|j

�= xn − x̂loc
n,k|j, (6.12)

Ploc
n,k|j

�= E

[
x̃loc

n,k|j
(
x̃loc

n,k|j
)T]. (6.13)

Then, as shown in listing (6.14), the predicted (when j = n−1) and filtered (when j = n) state estimates
can be computed by agent k by running multiple measurement updates, one for each neighbor of k
[28,29]. In this listing, we are denoting the state estimate at the end of the incremental loop through the
neighborhood by ψn,k, which is equal to the filtered estimate x̂loc

n,k|n that results from the dk measurement
updates. This equality is highlighted by the symbol (�) placed next to one of the equations in listing
(6.14). The corresponding error covariance matrix of x̂loc

n,k|n is denoted by Ploc
n,k|n. Although the variables

ψn,k and x̂loc
n,k|n are identical in the incremental implementation, we keep separate notations for both



6.2 DISTRIBUTED KALMAN FILTERING 175

symbols because they will be distinct and will play different roles in the diffusion form derived further
ahead in Section 6.2.7. In particular, the (�) assignment will be replaced by Eq. (6.48).

Measurement- and time-update incremental form
start with x̂loc

0,k|−1 = 0, Ploc
0,k|−1 = �0.

repeat at every agent k for n ≥ 0 :

(incremental measurement-updates)

set auxiliary variables:

ψ
(0)
n,k ← x̂loc

n,k|n−1 (N × 1 vector)

P(0)
n,k ← Ploc

n,k|n−1 (N × N matrix)

for each neighbor m = 1, 2, . . . , dk do:

en,km = zn,km − Hn,kmψ
(m−1)
n,k

Re,n,km = Rn,km + Hn,km P(m−1)
n,k HT

n,km

ψ
(m)
n,k = ψ

(m−1)
n,k + P(m−1)

n,k HT
n,km

R−1
e,n,km

en,km

P(m)
n,k = P(m−1)

n,k − P(m−1)
n,k HT

n,km
R−1

e,n,km
Hn,km P(m−1)

n,k

end

Ploc
n,k|n ← P(dk)

n,k

ψn,k ← ψ
(dk)
n,k

x̂loc
n,k|n ← ψ

(dk)
n,k (�)

(time-update)

x̂loc
n+1,k|n = Fnx̂loc

n,k|n
Ploc

n+1,k|n = FnPloc
n,k|nFT

n + GnQnGT
n

end

(6.14)

It can be verified that the following relations hold for the variables in the incremental form (6.14);
see the proof in [12, Appendix B]:

(
Ploc

n,k|n
)−1 =

(
Ploc

n,k|n−1

)−1 + Sn,k (6.15)

with

Sn,k
�=
∑

�∈Nk

HT
n,�R−1

n,�Hn,�, (6.16)

and

(
Ploc

n,k|n
)−1

x̂loc
n,k|n =

(
Ploc

n,k|n−1

)−1
x̂loc

n,k|n−1 + qn,k (6.17)



176 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

with

qn,k
�=
∑

�∈Nk

HT
n,�R−1

n,�zn,�. (6.18)

Recursions (6.14) compute the optimal local estimate x̂loc
n,k|n of agent k by incorporating solely the

measurements {zn,�} from the neighborhood Nk. This is a limited form of cooperation because the
recursions (6.14) are not exploiting the fact that besides the measurements {zn,�}, the neighbors of
agent k also have their own estimates of xn. These estimates are given by x̂loc

n,�|n. It is expected that by
additionally exploiting the neighborhood estimates, agent k should be able to achieve two objectives:
(a) enhance its state estimation accuracy and (b) have its local estimate x̂loc

n,k|n approach the desired global
estimate x̂n|n of the state vector xn (which would be produced by an optimum centralized estimator that
has access to all the measurements in the network). We shall use this measurement to motivate and
derive the diffusion Kalman filter. First, however, we take a brief digression and review a well-known
data fusion construction [28,29], which will be used to form approximate local estimates.

6.2.5 DATA FUSION
A problem that is encountered often in applications deals with the need to fuse together data collected
from several sources in order to enhance the accuracy of the estimation process. This is similar to the
scenario we are facing in the network context, except that the graph topology and the time evolution of
the data add a new level of complexity in the form of cross-correlations.

Thus, assume for a moment that we have a collection of K agents that is distributed over some
region in space without paying particular attention to whether they are connected by a communication
link or not. All agents are interested in estimating the same parameter vector of size N × 1, denoted
generically by x, which is assumed to be zero-mean and to have a positive definite covariance matrix
�x = E[xxT]. For example, the agents could be tracking a moving object with the goal of estimating
its speed and direction of motion. Each agent k collects a measurement vector zk of size p × 1 that is
related to the desired x via the linear measurement model (observe that in the discussion in this section
we are not dealing with sequential processing of the data and, therefore, the time index is dropped),

zk = Hkx + vk, (6.19)

where Hk is the model matrix that maps x to zk at agent k and vk is zero-mean measurement noise with
a positive definite covariance matrix Rk = E[vkv

T
k ].

Assume initially that the measurements from all agents can be collected centrally at some fusion
center. For example, each agent k could transmit its measurement vector zk and its model parameters
{Hk, Rk} to the fusion center. The data collected at the fusion center thus satisfy the linear model:

⎛
⎜⎜⎜⎝

z1
z2
...

zK

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
�= z

=

⎛
⎜⎜⎜⎝

H1
H2

...
HK

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
�= H

x +

⎛
⎜⎜⎜⎝

v1
v2
...

vK

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
�= v

. (6.20)



6.2 DISTRIBUTED KALMAN FILTERING 177

We assume that the noises {vk} across all agents k are uncorrelated with each other so that the
covariance matrix of the aggregate noise vector v is

Rv = blkdiag{R1, R2, . . . , RK}. (6.21)

Now, it is well known that the LLMSE estimate of x that is based on z is given by [28,29]

x̂ =
(
�−1

x + HTR−1
v H

)−1
HTR−1

v z (6.22)

with the resulting minimum mean-square-error (MMSE) matrix equal to

P
�= E

[
x̃x̃T] =

(
�−1

x + HTR−1
v H

)−1
, (6.23)

where x̃ = x − x̂ denotes the estimation error. Note that P is a matrix of size N × N.
The solution (6.22) requires all agents to transmit their raw data {zk, Hk, Rk} to the fusion center.

A more efficient fusion method, one that reduces the communications overhead, can be derived by
allowing the agents to perform some local processing and to share the results of this processing step
rather than their raw data. Specifically, assume that each agent estimates x using first its own data zk.
We denote the resulting estimator by x̂k and it is given by

x̂k =
(
�−1

x + HT
k R−1

k Hk

)−1
HT

k R−1
k zk. (6.24)

The corresponding MMSE matrix is

Pk =
(
�−1

x + HT
k R−1

k Hk

)−1
. (6.25)

Next, assume that the agents share the processed data {x̂k, Pk} with the fusion center instead of the raw
data {zk, Hk, Rk}. We now show that the desired global quantities {x̂, P} can be recovered directly from
the locally generated data {x̂k, Pk}.

To begin with, observe that we can rework expression (6.23) for the global MMSE matrix as follows:

P−1 = �−1
x +

K∑
k=1

HT
k R−1

k Hk =
K∑

k=1

P−1
k − (K − 1)�−1

x . (6.26)

This expression allows the fusion center to determine P−1 directly from knowledge of the quantities
{P−1

k , �−1
x }. Note further that the global estimate expression (6.22) can be rewritten as

P−1x̂ = HTR−1
v z =

K∑
k=1

HT
k R−1

k zk =
K∑

k=1

P−1
k x̂k. (6.27)

Therefore, we arrive at the following alternative method to fuse the data from multiple agents:

P−1 =
K∑

k=1

P−1
k − (K − 1)�−1

x , (6.28)

P−1x̂ =
K∑

k=1

P−1
k x̂k. (6.29)



178 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

Observe that the individual estimates are scaled by the inverses of their MMSE matrices. It is useful
to note that the derivation of these expressions requires the noises across the agents to be uncorrelated
with each other, so that Rv is block diagonal.

6.2.6 APPROXIMATE FUSION RELATIONS
Let us now return to the network context and use the fusion expressions (6.28) and (6.29) to motivate
the diffusion Kalman filter. Let x̂n|n denote the filtered estimate of xn that is based on the measurements
zj,k from across all agents k = 1, 2, . . . , K at all times j up to time n. Let Pn|n denote the corresponding
error covariance matrix, i.e.,

Pn|n �= E
[
x̃n|nx̃T

n|n
]
, where x̃n|n �= xn − x̂n|n. (6.30)

These are the global quantities that we are interested in evaluating in a distributed manner. We can
employ the fusion expressions (6.28) and (6.29) to approximate these global variables in terms of the
noncooperative variables {x̂ind

n,k|n, Pind
n,k|n} as follows:

P−1
n|n ≈

K∑
k=1

(
Pind

k,n|n
)−1 − (K − 1)�−1

n , (6.31)

P−1
n|n x̂n|n ≈

K∑
k=1

(
Pind

n,k|n
)−1

x̂ind
n,k|n, (6.32)

where �n
�= E

[
xnxT

n

]
denotes the covariance matrix of xn, which satisfies the recursion

�n+1 = Fn�nFT
n + GnQnGT

n . (6.33)

Relations (6.31) and (6.32) are approximate expressions while relations (6.28) and (6.29) are exact
fusion formulae. To see why, recall that the global estimate x̂n|n is based on the measurements zj,k from
time j = 0 up to time j = n across all agents k. If we now appeal to the state-space model described
by Eqs. (6.2) and (6.3), it is easy to recognize that these measurements cannot generally be related
directly to the unknown xn via a linear model of the form (6.19). Exact fusion formulae in this case
are cumbersome and require the use of error cross-covariance matrices (see, e.g., [30–32]). The above
approximations, however, are sufficient for our purposes and they are commonly used in the literature
on data fusion methods, including the following simpler form:

P−1
n|n ≈

K∑
k=1

(
Pind

k,n|n
)−1

, (6.34)

where the term involving �−1
n is ignored. Expression (6.32) amounts to estimating x̂n|n by using a

covariance-weighted combination of the local estimates, x̂ind
n,k|n while expression (6.34) estimates the

error covariance matrix by pooling together the individual error covariances.
In principle, the same fusion expressions (6.28) and (6.29) could also be used to approximate the

same global variables {x̂n|n, Pn|n} in terms of the incremental (neighborhood) estimates {ψn,k, Ploc
n,k|n}

defined in Section 6.2.4, say as:



6.2 DISTRIBUTED KALMAN FILTERING 179

P−1
n|nx̂n|n ≈

K∑
k=1

(
Ploc

n,k|n
)−1

ψn,k, (6.35)

P−1
n|n ≈

K∑
k=1

(
Ploc

n,k|n
)−1

, (6.36)

where we recall that ψn,k = x̂loc
n,k|n. However, observe now that the construction of the estimates ψn,k

across agents relies on shared measurements. For example, the measurements from both agent k and
its neighbors influence the value of ψn,k; likewise, some of these same measurements influence the
value of other estimates because they belong to the neighborhoods of other agents as well. This data
redundancy is not present in the computation of the individual estimates x̂ind

n,k|n, where each agent k
relies solely on its local sequential data zn,k.

The presence of redundant information in the intermediate estimates ψn,k is due to the graph
topology, which defines the neighborhoods over the network. We can exploit this topology to replace
the approximations (6.35) and (6.36) by more revealing relations that bring forth the graph structure.
To do so, we let J denote the K ×K adjacency matrix of the network graph. This matrix consists of unit
and zero entries representing the connectivity of the agents, namely,

J�k =
{

1, if a�k > 0,
0, otherwise.

(6.37)

Although unnecessary in the final statement of the algorithm, we shall assume for the sake of the
derivation that there exists a vector s such that Js = 1K . For example, if J happens to be invertible,
then this vector s exists, is unique, and is given by s = J−11K . In general, however, it is not always
guaranteed that a vector s satisfying Js = 1K exists. It is nevertheless possible to verify that the matrix
J can be made invertible by flipping some of its diagonal entries (from zero to one and from one to
zero). By turning a diagonal entry of J from zero to one, we are in effect allowing the agent at that
location to rely on its local measurement. On the other hand, by turning a diagonal entry of J from one
to zero, we are disabling this feature. This action is tolerable because this measurement is not discarded
by the network as it is still used by the neighbors of the agent to update their estimates (as long as at
least one entry of the row of J with a diagonal entry equal to zero has a value equal to one). We denote
the entries of s by γk, k = 1, 2, . . . , K, or s = col{γk} so that

Js = 1K ⇐⇒
K∑

k=1

γkJ�k = 1, for every � = 1, 2, . . . , K. (6.38)

In a manner similar to Eqs. (6.32) and (6.34), we first use the fusion expressions (6.28) and
(6.29) to approximate the incremental estimators {ψn,k, Ploc

n,k|n} by using the noncooperative variables

{x̂ind
n,k|n, Pind

n,k|n} as follows:

(
Ploc

n,k|n
)−1

ψn,k ≈
K∑

�=1

J�k

(
Pind

n,�|n
)−1

x̂ind
n,�|n, (6.39)

(
Ploc

n,k|n
)−1 ≈

K∑
�=1

J�k

(
Pind

n,�|n
)−1

. (6.40)



180 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

Recall that the individual estimates x̂ind
n,k|n rely on independent streams of data and that J�k = 1 if

information can flow from agent � to agent k, and J�k = 0 otherwise.
Using the above relations we can now relate the global variables {x̂n|n, Pn|n} to the local variables

{ψn,k, Ploc
n,k|n} and replace Eqs. (6.35) and (6.36). Indeed, using the entries γk, we note that

K∑
k=1

γk

(
Ploc

n,k|n
)−1

ψn,k
(6.39)≈

K∑
�=1

⎛
⎝ K∑

k=1

γkJ�k

⎞
⎠

︸ ︷︷ ︸
=1

(
Pind

n,�|n
)−1

x̂ind
n,�|n

=
K∑

�=1

(
Pind

n,�|n
)−1

x̂ind
n,�|n

(6.32)≈ P−1
n|nx̂n|n (6.41)

and, similarly,

K∑
k=1

γk

(
Ploc

n,k|n
)−1 (6.40)≈

K∑
�=1

(
Pind

n,�|n
)−1 (6.34)≈ P−1

n|n. (6.42)

In summary, we arrive at the following approximate relations between the global variables {x̂n|n, Pn|n}
and the neighborhood variables {ψn,k, Ploc

n,k|n}:

P−1
n|nx̂n|n ≈

K∑
k=1

γk

(
Ploc

n,k|n
)−1

ψn,k, (6.43)

P−1
n|n ≈

K∑
k=1

γk

(
Ploc

n,k|n
)−1

. (6.44)

These relations replace Eqs. (6.35) and (6.36), where the graph structure is represented through the
scalars γk.

Remark (Covariance-intersection method). Expressions (6.43) and (6.44) have a form similar to
another commonly used fusion technique that relies on the use of the covariance-intersection (CI)
method [33,34] and which avoids the need for error cross-covariance matrices. In the CI method, the
global variables {x̂n|n, Pn|n} are estimated according to Eqs. (6.43) and (6.44) where the scalars γk are
instead treated as design parameters. Specifically, they are chosen as nonnegative convex combination
coefficients satisfying

∑K
k=1 γk = 1, γk ≥ 0, and their values are selected to optimize the resulting Pn|n,

say, by minimizing the trace or determinant of Pn|n, i.e.,

min{γk}
Tr(Pn|n) or min{γk}

det(Pn|n). (6.45)

6.2.7 DIFFUSION COOPERATION
Continuing with Eqs. (6.43) and (6.44), one difficulty with these expressions is that computation of
the global estimator x̂n|n requires access to the local estimators {ψn,�} from across the entire network.



6.2 DISTRIBUTED KALMAN FILTERING 181

We can obtain a decentralized solution that relies solely on local interactions as follows. Substituting
Eq. (6.44) into Eq. (6.43) gives

x̂n|n ≈
⎡
⎣ K∑

k=1

γk

(
Ploc

n,k|n
)−1

⎤
⎦

−1 K∑
k=1

γk

(
Ploc

n,k|n
)−1

ψn,k, (6.46)

which has the form of a convex weighted average, namely,

x̂n|n ≈
K∑

k=1

�kψn,k (6.47)

with nonnegative-definite coefficient matrices �k that add up to the identity matrix, i.e.,
∑K

k=1 �k =
IN . The result (6.47) suggests one useful approximation by which the local estimators {ψn,�} can be
fused within the neighborhood of every agent k to obtain a local version for x̂n|n, which we shall
denote by x̂n,k|n (we are removing the “loc” superscript). This local version is obtained by limiting the
convex combination operation (6.47) to the neighborhood of each agent, and by replacing the matrix
combination weights �� by convex combination scalars a�k. In this way, the computation (6.47) is
replaced locally by

x̂n,k|n ←
∑

�∈Nk

a�kψn,�. (6.48)

Comparing with the incremental listing (6.14), we see that the above calculation amounts to replacing
the assignment x̂loc

n,k|n ← ψn,k (marked by (�) in Eq. 6.14) by a local convex combination step. In
view of this substitution, the error covariances of the local estimators x̂n,k|n computed by Eq. (6.48)
are not given anymore by the matrices Pn,k|n in the listings (6.49) and (6.52) below (where again
we removed the superscript “loc”). In summary, we arrive at the listings (6.49) and (6.52) for the
diffusion Kalman filter in two equivalent forms: the measurement and time-update form and the
information form.

More generally, and in view of Eq. (6.47), a more enhanced fusion of the local estimators {ψn,�}
is possible by employing convex combination matrices in Eq. (6.48) rather than scalars; for example,
these combination matrices could be defined in terms of the inverses P−1

n,�|n as suggested by Eq. (6.46).
This construction, however, would entail added complexity and would require sharing of additional
information regarding these inverses. The implementation (6.49) from [12] employs scalar combination
coefficients {a�k} in order to reduce the complexity of the resulting algorithm. Reference [35] studies the
alternative fusion of the estimators {ψn,�} in the diffusion Kalman filter by exploiting information about

the inverses P−1
n,�|n and using covariance-intersection combinations over neighborhoods in a manner

similar to Eq. (6.45).



182 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

Diffusion Kalman filter (measurement- and time-update form)
start with x̂0,k|−1 = 0, P0,k|−1 = �0.

repeat at every agent k for n ≥ 0 :

(measurement-updates)

set auxiliary variables:

ψ
(0)
n,k ← x̂n,k|n−1 (N × 1 vector)

P(0)
n,k ← Pn,k|n−1 (N × N matrix)

for each neighbor � = 1, 2, . . . , dk do :

en,k�
= zn,k�

− Hn,k�
ψ

(�−1)
n,k

Re,n,k�
= Rn,k�

+ Hn,k�
P(�−1)

n,k HT
n,k�

ψ
(�)
n,k = ψ

(�−1)
n,k + P(�−1)

n,k HT
n,k�

R−1
e,n,k�

en,k�

P(�)
n,k = P(�−1)

n,k − P(�−1)
n,k HT

n,k�
R−1

e,n,k�
Hn,k�

P(�−1)
n,k

end

Pn,k|n ← P(dk)
n,k

ψn,k ← ψ
(dk)
n,k

(combination step)

x̂n,k|n =
∑

�∈Nk

a�kψ�,n

(time-update)

x̂n+1,k|n = Fnx̂n,k|n
Pn+1,k|n = FnPk,n|nFT

n + GnQnGT
n

end

(6.49)

We also note that the combination step in Eq. (6.52) is similar to the update used in the consensus
Kalman filter derived in [5] with one main difference. The consensus Kalman filter employs a specific
combination construction at the local level of the form:

x̂n,k|n = (1 + (1 − dk)ε) ψn,k +
∑

�∈Nk\{k}
ε ψn,�, (6.50)

where we recall that dk = |Nk|, and ε > 0 is a small weight that is equal for all the neighbors. In
comparison, the diffusion implementation (6.52), which can be written as

x̂n,k|n = akk ψn,k +
∑

�∈Nk\{k}
a�k ψn,�, (6.51)

allows more freedom in assigning generally different weights a�k to different neighbors [10,12].



6.2 DISTRIBUTED KALMAN FILTERING 183

Diffusion Kalman filter (information form)
start with x̂0,k|−1 = 0,

(
P0,k|−1

)−1 = �−1
0 .

repeat at every agent k for n ≥ 0 :

Sn,k =
∑

�∈Nk

HT
n,�R−1

n,�Hn,�

qn,k =
∑

�∈Nk

HT
n,�R−1

n,�zn,�

(Pn,k|n)−1 = (Pn,k|n−1)−1 + Sn,k

ψn,k = x̂n,k|n−1 + Pn,k|n(qn,k − Sn,kx̂n,k|n−1)

x̂n,k|n =
∑

�∈Nk

a�kψn,�

x̂n+1,k|n = Fnx̂n,k|n
Pn+1,k|n = FnPn,k|nFT

n + GnQnGT
n

end

(6.52)

6.2.8 PERFORMANCE ANALYSIS
In view of the approximations (6.44) and (6.48), it is important to examine the mean-square error
performance of the resulting diffusion Kalman filter. In this section, we examine how close the local
estimates {x̂n,k|n} get to the state variable xn by evaluating the size of the mean-square error in the steady
state after the filter has had sufficient time to learn.

We start by collecting all state estimation errors from across the network into an extended K × 1
block vector (whose individual entries are of size N × 1 each):

X̃ n|n �=

⎛
⎜⎜⎜⎝

x̃1,n|n
x̃n,2|n

...
x̃n,K|n

⎞
⎟⎟⎟⎠ , where x̃n,k|n �= xn − x̂n,k|n, (6.53)

and introduce supporting block-diagonal and Kronecker product matrices:

Un−1
�= 1K ⊗ un−1, (6.54)

Vn
�= blkcol{vn,1|n, v2,n|n, . . . , vn,K|n}, (6.55)

Pn|n �= blkdiag{Pn,1|n, Pn,2|n, . . . , Pn,K|n}, (6.56)

Hn
�= blkdiag{Hn,1, Hn,2, . . . , Hn,K}, (6.57)

Sn
�= blkdiag{Sn,1, Sn,2, . . . , Sn,K}, (6.58)

Rn
�= blkdiag{Rn,1, Rn,2, . . . , Rn,K}, (6.59)

J �= J ⊗ IN , (6.60)

A �= A ⊗ IN , (6.61)



184 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

where ⊗ denotes the Kronecker product operation. Subtracting xn from both sides of the expression for
ψn,k in Eq. (6.52), and using zn,� = Hn,�xn + vn,�, gives

ψ̃n,k = x̃n,k|n−1 − Pn,k|n(qn,k − Sn,kx̂n,k|n−1)

= x̃n,k|n−1 − Pn,k|n
∑

�∈Nk

HT
n,�R−1

n,�

(
zn,� − Hn,�x̂n,�|n−1

)

= (IN − Pn,k|nSn,k)x̃n,k|n−1 − Pn,k|n
∑

�∈Nk

HT
n,�R−1

n,�vn,�, (6.62)

where ψ̃n,k
�= xn − ψn,k. Using the combination step from Eq. (6.52) gives

x̃n,k|n =
∑

�∈Nk

a�k

(
(IN − Pn,�|nSn,�)x̃n,�|n−1 − Pn,�|n

∑
i∈N�

HT
n,iR

−1
n,i vn,i

)
. (6.63)

Using x̃n,�|n−1 = Fn−1x̃n−1,�|n−1 + Gn−1un−1, we arrive at the recursion

x̃n,k|n =
∑

�∈Nk

a�k

⎛
⎝(IN − Pn,�|nSn,�)Fn−1x̃n−1,�|n−1

+(IN − Pn,�|nSn,�)Gn−1un−1 − Pn,�|n
∑

i∈N�

HT
n,iR

−1
n,i vn,i

⎞
⎠ . (6.64)

This relation shows that the network error vector evolves according to the following dynamics:

X̃ n|n = AT(IN − Pn|nSn)(IK ⊗ Fn−1)X̃ n−1|n−1

+ AT(IKN − Pn|nSn)(IK ⊗ Gn−1)Un−1 − ATPn|nJ THT
nR−1

n Vn, (6.65)

which we rewrite more compactly as

X̃ n|n = FnX̃ n−1|n−1 + GnUn−1 − DnVn, (6.66)

where

Fn
�= AT(IKN − Pn|nSn)(IK ⊗ Fn−1), (6.67)

Gn
�= AT(IKN − Pn|nSn)(IK ⊗ Gn−1), (6.68)

Dn
�= ATPn|nJ THT

nR−1
n . (6.69)

If we now let PX̃ ,n denote the covariance matrix of the network error vector,

PX̃ ,n
�= E

[
X̃ n|nX̃

T
n|n
]
, (6.70)

it then follows from Eq. (6.66) that this matrix satisfies the Lyapunov recursion

PX̃ ,n = FnPX̃ ,n−1F
T
n + Gn(1K1

T
K ⊗ Qn−1)GT

n + DnRnDT
n . (6.71)



6.2 DISTRIBUTED KALMAN FILTERING 185

In order to analyze the stability and performance of the diffusion filter, we shall consider here the
following conditions; see [28] for definitions of the notions of stabilizability and detectability.

Assumption. It is assumed that the model parameters {F, G, Hk, Q, Rk} do not depend on the time
index, n. We further collect the measurement matrices in the neighborhood of agent k into the block
column matrix:

Hloc
k

�= blkcol{Hk1 , Hk2 , . . . , Hkdk
}, (6.72)

and assume that the pair (F, GQ1/2) is stabilizable and the pair (F, Hloc
k ) is detectable. �

Under the stabilizability and detectability conditions, it is known from the convergence properties
of the discrete Riccati recursions that each entry Pn,k|n of Pn|n converges to the quantity P+

k
defined by [28]:

(
P+

k

)−1 = (Pk)−1 + (
Hloc

k
)T(Rloc

k
)−1Hloc

k = (Pk)−1 + Sk, (6.73)

where

Rloc
k

�= blkdiag{Rk1 , Rk2 , . . . , Rkdk
}, (6.74)

and Pk is the unique stabilizing solution of the following discrete algebraic Riccati equation (DARE):

Pk = FP+
k FT + GQGT = FPkFT + GQGT − Kp,kRe,kKT

p,k, (6.75)

where

Kp,k
�= FPk

(
Hloc

k
)TR−1

e,k , Re,k
�= Rloc

k + Hloc
k Pk

(
Hloc

k
)T. (6.76)

Accordingly, the quantities {Pn|n,Fn,Gn,Dn} converge to steady-state values denoted by [12]:

P+ �= lim
n→∞Pn|n (block diagonal), (6.77)

F �= lim
n→∞Fn = AT(IKN − P+S)(IK ⊗ F), (6.78)

G �= lim
n→∞Gn = AT(IKN − P+S)(IK ⊗ G), (6.79)

D �= lim
n→∞Dn = ATP+J THTR−1, (6.80)

where S, H, and R are written without the time subscript n because their entries are now time-
independent. Furthermore, the stabilizability and detectability conditions ensure that (see Lemma 1
in [12]):

X �= (IKN − P+S)(IK ⊗ F) is block diagonal and stable. (6.81)

Note that the limiting matrix F in Eq. (6.78) has the form



186 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

F = ATX . (6.82)

We will verify soon that, under some conditions, F is also stable for any left-stochastic matrix A and,
in view of Lemma A.1 in Appendix A.1, the error covariance matrix PX̃ ,n in Eq. (6.71) converges to
the unique solution of the Lyapunov equation:

PX̃ = FPX̃FT + G(1K1
T
K ⊗ Q)GT + DRDT. (6.83)

Using the vec notation (which stacks the columns of a matrix on top of each other), we can solve for
PX̃ and write

vec
(
PX̃

) = (
I(KN)2 − FT ⊗ F

)−1vec
(
G(1K1

T
K ⊗ Q)GT + DRDT). (6.84)

In this way, the steady-state mean-square error at any agent k will be given by

lim
n→∞E

[
‖x̃n,k|n‖2

]
= Tr

(
PX̃ Ik

)
, (6.85)

where Ik is a K × K block diagonal matrix with blocks of size N × N; it contains the identity matrix
at block (k, k) and zeros everywhere else. That is, it holds that Ik = ekeT

k ⊗ IN , where ek is the basis
column vector of size K × 1 with unit entry at location k and zeros everywhere else. Consequently, the
average mean-square error across the network is

MSEav = 1

K
Tr
(
PX̃

)
. (6.86)

We verify the above claims by showing that the matrix F is stable and that, in view of this fact, the
Lyapunov recursion (6.71) converges to the unique solution of the Lyapunov equation (6.83). These
facts follow from the results of Lemmas A.1 and A.2.

6.3 DISTRIBUTED PARTICLE FILTERING
In the second part of this chapter, we discuss distributed particle filtering. We will focus on consensus-
based methods in Section 6.3.4 and on diffusion-based methods in Section 6.3.5. Before that, we present
the underlying state-space model, which generalizes Eqs. (6.2) and (6.3), and we discuss some basics
of sequential Bayesian estimation and review the particle filter (PF). We adopt a Bayesian framework
for estimation, which means that both the state xn and the measurements zn,k are modeled as random
vectors [36].

6.3.1 STATE-SPACE MODEL
Differently from Section 6.2, the state-space model is now allowed to be nonlinear. The temporal
dynamics or evolution of the state xn is characterized by the state-evolution model (a.k.a. state-transition
model or system model)

xn+1 = gn(xn, un), n = 0, 1, . . . , (6.87)



6.3 DISTRIBUTED PARTICLE FILTERING 187

which extends Eq. (6.2). In Eq. (6.87), gn(·, ·) is a known, generally nonlinear function, and un is
state noise that is statistically independent and identically distributed (i.i.d.) across time n and also
statistically independent of the state sequence. The probability density function (pdf) of un is assumed
known. Eq. (6.87) then determines the state-transition pdf f (xn|xn−1) for n = 1, 2, . . . .

Furthermore, the statistical dependence of the measurement zn,k of agent k ∈ {1, 2, . . . , K} on the
state xn is characterized by a measurement model

zn,k = hn,k(xn, vn,k), n = 1, 2, . . . ; k = 1, 2, . . . , K, (6.88)

which extends Eq. (6.3). In Eq. (6.88), hn,k(·, ·) is a known, generally nonlinear function, and vn,k is
measurement noise that is statistically independent across time n and across the agents k, and also
statistically independent of the state sequence and of the state noise. The pdf of vn,k is assumed
known. Eq. (6.88) then determines the local likelihood function of agent k, f (zn,k|xn), for n = 1, 2, . . . .
Because vn,k is assumed independent of vn,k′ for k′ �= k, the measurements zn,k at different agents k are
conditionally independent given the state xn. Thus, the global (all-agents) likelihood function f (zn|xn),
with zn

�= (zT
n,1 zT

n,2 · · · zT
n,K)T, factorizes into the local likelihood functions, i.e.,

f (zn|xn) =
K∏

k=1

f (zn,k|xn). (6.89)

The above independence assumptions can be relaxed; for example, the state noise process un and
the measurement noise processes vn,k may be allowed to be dependent [37]. Further, the conditional
independence of the measurements can be removed too [38,39]. Also, the noises in the state and
measurement equations do not have to be independent across time [40,41]. However, the independence
assumptions stated above are required for the consensus-based distributed PF (DPF) methods presented
below. We also note that the case where the state-evolution function gn(xn, un) is linear in both xn and un

and the measurement function hn,k(xn, vn,k) is linear in both xn and vn,k was considered in Section 6.2
(see Eqs. (6.2) and (6.3)). Furthermore, when the state noise un in Eq. (6.87) and the measurement
noise vn,k in Eq. (6.88) have Gaussian distributions, these distributions are completely characterized by
their first- and second-order moments. Finally, we point out that the network may be dynamic in that
the set of neighboring nodes may vary with time (i.e., we may have Nn,k instead of Nk). However, in
the rest of the chapter, we will continue to consider the network to be static.

The above state-evolution and measurement models along with the associated statistical assump-
tions imply two further conditional independence properties. First, the current state xn is conditionally

independent of all the past measurements, z1:n−1,k
�= (zT

1,k zT
2,k · · · zT

n−1,k)T, given the previous
state xn−1, i.e.,

f (xn|xn−1, z1:n−1,k) = f (xn|xn−1), (6.90)

for all k = 1, 2, . . . , K. Second, the current measurements zn,k are conditionally independent of all the
past measurements, z1:n−1,k′ , given the current state xn, i.e.,

f (zn,k|xn, z1:n−1,k′ ) = f (zn,k|xn), (6.91)

for any k′ ∈ {1, 2, . . . , K}, including in particular k′ = k.



188 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

6.3.2 SEQUENTIAL BAYESIAN ESTIMATION
We address the problem of sequential estimation of the state xn from the total (all-agents) measurement

sequence z1:n
�= (zT

1 zT
2 · · · zT

n )T. In the Bayesian context, this essentially amounts to calculating the
posterior pdf f (xn|z1:n), from which optimal Bayesian estimators and quantities characterizing their
performance can be derived. In particular, the MMSE estimator [36] is given by the first moment of
f (xn|z1:n), i.e.,

x̂MMSE
n = E[xn|z1:n] =

∫
RN

xnf (xn|z1:n) dxn, n = 1, 2, . . . . (6.92)

In a centralized scenario, based on the conditional independence properties (6.90) and (6.91), the
current posterior pdf f (xn|z1:n) can be calculated sequentially (recursively) from the previous posterior
pdf f (xn−1|z1:n−1) and the current all-agents measurement vector zn. This recursion consists of a
prediction step calculating f (xn|z1:n−1) from f (xn−1|z1:n−1) and a subsequent update or correction
step calculating f (xn|z1:n) from f (xn|z1:n−1). The prediction step involves the state-transition pdf
f (xn|xn−1), and the update step involves the global likelihood function f (zn|xn) and, thus, the all-agents
measurement vector zn. Unfortunately, the prediction and update steps as well as the calculation of the
MMSE estimate in Eq. (6.92) are usually computationally infeasible. A prominent exception is the case
of the linear-Gaussian state-space model, where optimal sequential Bayesian state estimation reduces
to the Kalman filter considered in Section 6.2.3 [19,28,29].

Several computationally feasible approximations to optimal sequential Bayesian state estimation
have been proposed in the centralized case; these include the extended Kalman filter [19,36,42], the
Gaussian sum filter [43], the unscented (sigma-point) Kalman filter [44,45], the cubature Kalman
filter [46], and the PF [20,47–49]. In particular, particle filters are well suited to any nonlinear state-
space model and any distributions of the state and measurement noises, and they perform well in
situations where Kalman filter-based methods perform poorly. This generally comes at the cost of an
increased computational complexity. Below, we will discuss distributed methods for particle filtering
in decentralized agent networks. We start with a review of the basic PF.

6.3.3 REVIEW OF THE PARTICLE FILTER
A PF performs an approximation of optimal sequential Bayesian state estimation that is based on Monte
Carlo simulation and importance sampling [20,47–49]. In a centralized scenario, the posterior pdf
f (xn|z1:n) is represented in an approximative manner by M randomly drawn samples or particles x(m)

n

and corresponding weights w(m)
n , where m = 1, 2, . . . , M. Specifically, at each time step n, propagation

of the posterior pdf (i.e., f (xn−1|z1:n−1) → f (xn|z1:n)) is replaced by propagation of the particles and
weights (i.e.,

{(
x(m)

n−1, w(m)
n−1

)}M
m=1 → {(

x(m)
n , w(m)

n
)}M

m=1). As in the case of optimal sequential Bayesian
estimation considered in Section 6.3.2, this propagation consists of a prediction step and an update or
correction step.

In the prediction step at time n, for each preceding particle x(m)
n−1, a new particle x(m)

n is sampled from

a suitably chosen proposal pdf (a.k.a. importance pdf) q(xn|x(m)
n−1). In the simplest case, q(xn|x(m)

n−1)
is chosen as f (xn|x(m)

n−1), i.e., the state-transition pdf f (xn|xn−1) conditioned on xn−1 = x(m)
n−1; the

resulting PF algorithm is known as the sequential importance resampling (SIR) filter. However, more



6.3 DISTRIBUTED PARTICLE FILTERING 189

sophisticated “adapted” proposal pdfs that also involve the current measurement zn can result in
improved estimation performance [49,50] (see the section “Distributed proposal adaptation”).

In the update step at time n, for each particle x(m)
n , a nonnormalized weight is calculated according to

w̃(m)
n = w(m)

n−1

f (zn|x(m)
n )f (x(m)

n |x(m)
n−1)

q(x(m)
n |x(m)

n−1)
, m = 1, 2, . . . , M. (6.93)

For the SIR filter, this simplifies to

w̃(m)
n = w(m)

n−1f (zn|x(m)
n ), m = 1, 2, . . . , M. (6.94)

Subsequently, the weights are normalized according to w(m)
n = w̃(m)

n /
∑M

m′=1 w̃(m′)
n . The set of particles

and normalized weights
{(

x(m)
n , w(m)

n
)}M

m=1 constitutes a Monte Carlo representation of the posterior pdf

f (xn|z1:n). From
{(

x(m)
n , w(m)

n
)}M

m=1, a corresponding approximation of the MMSE state estimate x̂MMSE
n

in Eq. (6.92) can be computed as the weighted sample mean, i.e.,

x̂n =
M∑

m=1

w(m)
n x(m)

n . (6.95)

Finally, if a suitable criterion is satisfied (as discussed in [20,51]), the set
{(

x(m)
n , w(m)

n
)}M

m=1 is
resampled to avoid an effect known as particle degeneracy. In the simplest case [51], the resampled
particles are obtained by sampling with replacement from the set

{(
x(m)

n , w(m)
n
)}M

m=1, where x(m)
n is

sampled with probability w(m)
n . This results in M resampled particles x(m)

n . The weights are redefined as
w(m)

n = 1/M.
This recursive algorithm is initialized at time n = 0 by M particles x(m)

0 , m = 1, 2, . . . , M, which are

drawn from a suitable prior pdf f (x0). The initial weights are equal, i.e., w(m)
0 = 1/M for all m.

In a distributed implementation based on a decentralized network of agents, each agent runs a local
instance of a PF, hereafter briefly referred to as “local PF.” The local PF at agent k observes only the
local measurements zn,k directly; however, it receives from the neighbor agents indirect information
about the measurements of the other agents in the network and also provides to the neighboring agents
indirect information about its own measurements. The type of information that is exchanged between
neighboring agents depends on the specific method used for distributed particle filtering. A DPF is
based on the PF algorithm summarized above. However, it modifies that algorithm to account for
the fact that each agent runs its own local PF, and it employs some networkwide distributed scheme
(such as consensus, gossip, or diffusion) to disseminate and fuse local information provided by the
agents. Several types of DPF methods have been proposed, including [13,17,52–64]. In what follows,
we discuss two classes of DPF methods that rely on consensus and diffusion schemes for distributed
information dissemination and fusion.

6.3.4 CONSENSUS-BASED METHODS
In a DPF that emulates the performance of the basic PF, the local PF at agent k attempts to track a
particle representation

{(
x(m)

n,k , w(m)
n,k

)}M
m=1 of the global posterior pdf f (xn|z1:n). According to Eq. (6.93),



190 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

this requires the global likelihood function (GLF) f (zn|xn) (evaluated at the current local particles, i.e.,
xn = x(m)

n,k ), rather than merely the local likelihood function (LLF) of agent k, f (zn,k|xn). Because agent
k by itself is only able to calculate the LLF, calculation of the GLF requires information provided by
the other agents.

DPF based on likelihood consensus
A recently proposed class of DPF algorithms performs a distributed calculation of the GLF using the
likelihood consensus (LC) scheme [13,56]. To develop that scheme, we first take the logarithm of
Eq. (6.89), which yields

ln f (zn|xn) =
K∑

k=1

ln f (zn,k|xn), (6.96)

where ln denotes the natural logarithm. We can thus write the GLF as

f (zn|xn) = exp
(
ln f (zn|xn)

) = exp
(
Kλ(xn; zn)

)
(6.97)

with

λ(xn; zn) �= 1

K
ln f (zn|xn) = 1

K

K∑
k=1

ln f (zn,k|xn), (6.98)

where Eq. (6.96) has been used in the last step. Hence, the GLF f (zn|xn) has been rewritten
in terms of the average of the K log-LLFs ln f (zn,k|xn), k = 1, 2, . . . , K. Because the log-
LLFs ln f (zn,k|xn) are functions of the unknown state xn ∈ RN , rather than simply numbers, we
cannot directly use a distributed averaging scheme such as the average consensus algorithm to
calculate λ(xn; zn).

The solution provided by the LC scheme is based on an approximate (finite-order) function
expansion of the log-LLFs ln f (zn,k|xn). Let {ϕr(xn)}R

r=1 denote a system of R functions that is known
to all agents. Possible choices of these functions include monomials [13], orthogonal polynomials [65],
Fourier basis functions [56], and spline functions [66]. We consider the approximations of the log-LLFs
given by

ln f (zn,k|xn) ≈
R∑

r=1

αn,k,r(zn,k) ϕr(xn), k = 1, 2, . . . , K (6.99)

with suitable expansion coefficients αn,k,r(zn,k), r = 1, 2, . . . , R. Note that these expansion coefficients
involve the local measurements zn,k, and thus they are different at different agents k. Inserting Eq. (6.99)
into Eq. (6.98) and changing the order of summation yields

λ(xn; zn) ≈ λ̃(xn; zn) �=
R∑

r=1

an,r(zn) ϕr(xn), (6.100)



6.3 DISTRIBUTED PARTICLE FILTERING 191

where

an,r(zn) �= 1

K

K∑
k=1

αn,k,r(zn,k). (6.101)

Using in Eq. (6.97) the approximation λ̃(xn; zn) instead of λ(xn; zn), we obtain a corresponding
approximation of the GLF, namely,

f (zn|xn) ≈ f̃ (zn|xn) �= exp
(
Kλ̃(xn; zn)

)
. (6.102)

Distributed calculation of the GLF
Within the approximation given by Eqs. (6.100) and (6.102), the distributed calculation of the GLF
f (zn|xn) at time n amounts to the distributed calculation of the R numbers an,r(zn), r = 1, 2, . . . , R, each
of which is an average of the respective local expansion coefficients αn,k,r(zn,k), k = 1, 2, . . . , K. Note
that because the measurements zn,k have been observed and thus are fixed, we now have to average
numbers instead of functions. Thus, the average expansion coefficients an,r(zn), r = 1, 2, . . . , R can
be calculated in a distributed manner via R instances of an average consensus algorithm [24,25]. In
addition (see Eq. (6.102)), each agent also needs to know the total number of agents, K. Distributed
algorithms for counting the number of agents are available (e.g., [67]).

In iteration i of the rth instance of the average consensus algorithm, which is used to calculate
an,r(zn), each agent k updates an “internal state” ζk,r according to

ζ
(i)
k,r =

∑
k′∈Nk

ω
(i)
k,k′ζ

(i−1)
k′,r . (6.103)

Here,
{
ω

(i)
k,k′
}

k′∈Nk
is a set of weights whose choice is discussed in [24,25,68]. Hence, ζ

(i)
k,r is a linear

combination of the preceding (i.e., at iteration i − 1) internal state of agent k and the preceding internal
states of the neighbor agents k′. The iteration is initialized by choosing the initial internal states as
ζ

(0)
k,r = αn,k,r(zn,k). Then, for a suitable choice of the weights, and using our assumption that the agent

network is connected, it can be shown [25] that the internal state ζ
(i)
k,r of each agent k converges to the

desired average an,r(zn), i.e.,

lim
i→∞ ζ

(i)
k,r = an,r(zn) = 1

K

K∑
k′=1

αn,k′,r(zn,k′ ). (6.104)

For a finite number imax of iterations, complete convergence cannot be achieved; this means that the
internal states ζ

(imax)
k,r will be (slightly) different from an,r(zn), and also (slightly) different across the

agents k.
Several standard choices of the weights ω

(i)
k,k′ are available [24,68]. A popular choice is given by the

Metropolis weights [24]



192 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

ωk,k′ =

⎧⎪⎨
⎪⎩

1

max{|Nk|, |Nk′ |} , k′ �= k,

1 −∑
k′′∈Nk\{k} ωk,k′′ , k′ = k.

(6.105)

Note that these weights do not depend on the iteration index i. Their calculation at agent k requires that
agent k knows both |Nk| and |Nk′ | for all k′ ∈ Nk. Certain other choices of the weights require less
knowledge [24].

In each iteration of the consensus scheme, agent k has to broadcast its internal states ζ
(i)
k,r, r =

1, 2, . . . , R to its neighbors k′ ∈ Nk \ {k}. Furthermore, agent k receives the internal states ζ
(i)
k′,r, r =

1, 2, . . . , R from its neighbors k′ ∈ Nk \ {k}. Thus, during one time step n, each agent k has to broadcast
a total of imaxR real numbers to its neighbors.

Calculation of the local expansion coefficients
The local expansion coefficients αn,k,r(zn,k), r = 1, 2, . . . , R arising in the log-LLF approximation
(6.99) are calculated locally at the respective agent k. This can be done by means of a least-squares
(LS) fit between the log-LLF ln f (zn,k|xn) and the approximating expansion

∑R
r=1 αn,k,r(zn,k) ϕr(xn). In

view of the way the local PF operates, the approximation does not need to be good for all possible
states xn but only in those regions of the state-space where the current particles x(m)

n,k are located.
Therefore, the LS fit at agent k minimizes, with respect to the vector of expansion coefficients

αn,k
�= (

αn,k,1(zn,k) · · ·αn,k,R(zn,k)
)T, the LS approximation error of the expansion (6.99) evaluated at

the particles x(m)
n,k , m = 1, 2, . . . , M, i.e.,

M∑
m=1

(
ln f
(
zn,k|x(m)

n,k

)−
R∑

r=1

αn,k,r(zn,k) ϕr
(
x(m)

n,k

))2
= ‖ξn,k − �n,kαn,k‖2 → min

αn,k
. (6.106)

Here, ξn,k
�=

(
ln f
(
zn,k|x(1)

n,k

) · · · ln f
(
zn,k|x(M)

n,k

))T
and �n,k is an M × R matrix with columns

φn,k,r
�=
(
ϕr
(
x(1)

n,k

) · · · ϕr
(
x(M)

n,k

))T
. Assuming that M ≥ R (i.e., there are at least as many particles

as expansion coefficients) and that �n,k has full rank, the solution to the LS problem (6.106) is
given by [69]

α̂n,k = �#
n,k ξn,k , with �#

n,k
�= (

�T
n,k�n,k

)−1
�T

n,k. (6.107)

Numerical aspects of computing α̂n,k in Eq. (6.107) are discussed in [69,70]. The elements α̂n,k,r of α̂n,k

are then used to initialize the LC according to ζ
(0)
k,r = α̂n,k,r.



6.3 DISTRIBUTED PARTICLE FILTERING 193

A summary of the LC-based DPF algorithm is provided in listing (6.108).

LC-based DPF

each agent starts with its own set of particles x(m)
0,k ∼ f (x0) and identical weights

w(m)
0,k =1/M, where m =1, 2, . . . , M.

repeat at every agent k for n ≥1 :

(propose a new set of particles)

x(m)
n,k ∼ q(xn|x(m)

n−1,k) , m =1, 2, . . . , M

(calculate an approximation f̃k(zn|xn) of the GLF f (zn|xn))
• calculate the coefficient vector α̂n,k according to Eq. (6.107)
• for r = 1, 2, . . . , R :

−initialize the internal LC state: ζ
(0)
k,r = α̂n,k,r

−for i = 1, 2, . . . , imax, update the internal LC state ζ
(i)
k,r according to Eq. (6.103)

−calculate f̃k(zn|xn) = exp
(

K
∑R

r=1 ζ
(imax)
k,r ϕr(xn)

)
(cf. Eqs. (6.102), (6.100))

(calculate the weights of the proposed particles)

• calculate nonnormalized weights:

w̃(m)
n,k = w(m)

n−1,k
f̃k(zn|x(m)

n,k ) f (x(m)
n,k |x(m)

n−1,k)

q(x(m)
n,k |x(m)

n−1,k)
, m =1, 2, . . . , M

• normalize weights:

w(m)
n = w̃(m)

n /
∑M

m′=1 w̃(m′)
n

(compute the state estimate)

x̂n,k = ∑M
m=1 w(m)

n,k x(m)
n,k

(if necessary, perform resampling [20,51])

end

(6.108)

Exponential family
An alternative LC scheme is possible if the LLFs of all the agents k (viewed as conditional pdfs of zn,k)
belong to the exponential family of distributions [71], i.e.,

f (zn,k|xn) = cn,k(zn,k) exp
(
bT

n,k(xn)dn,k(zn,k) − gn,k(xn)
)
, k = 1, 2, . . . , K, (6.109)

with some functions cn,k(·) ∈ R+, bn,k(·) ∈ Rq, dn,k(·) ∈ Rq, and gn,k(·) ∈ R, where q ≥ N. Inserting
this expression into Eq. (6.89) yields for the GLF

f (zn|xn) = Cn(zn) exp
(
KGn(xn; zn)

)
, (6.110)



194 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

where Cn(zn) �= ∏K
k=1 cn,k(zn,k) and

Gn(xn; zn) �= 1

K

K∑
k=1

(
bT

n,k(xn)dn,k(zn,k) − gn,k(xn)
)
. (6.111)

The normalization factor Cn(zn) does not depend on the state xn and is therefore irrelevant due to weight
normalization (see Section 6.3.3).

As an alternative to expanding the log-LLFs as in Eq. (6.99), we may use separate finite-order
function expansions of the state-dependent functions involved in Eq. (6.111) [13], i.e.,

bn,k(xn) ≈
Rb∑

r=1

βn,k,r ϕr(xn), gn,k(xn) ≈
Rg∑

r=1

γn,k,r ψr(xn), k = 1, 2, . . . , K. (6.112)

Here, the coefficients βn,k,r are vectors of the same dimension as bn,k(xn). The coefficients βn,k,r and
γn,k,r can again be calculated by means of LS fitting, similarly to the section “Calculation of the local
expansion coefficients”; note that one separate LS fit is required for each component of βn,k,r. Inserting
Eq. (6.112) into Eq. (6.111) and changing the order of summation yields

Gn(xn; zn) ≈ G̃n(xn; zn) �=
Rb∑

r=1

Bn,r(zn)ϕr(xn) −
Rg∑

r=1

�n,rψr(xn) (6.113)

with

Bn,r(zn) �= 1

K

K∑
k=1

βT
n,k,rdn,k(zn,k), �n,r

�= 1

K

K∑
k=1

γn,k,r. (6.114)

Using in Eq. (6.110) the approximation G̃n(xn; zn) instead of Gn(xn; zn) yields an approximation of
the GLF.

The Rb numbers Bn,r(zk), r = 1, 2, . . . , Rb and the Rg numbers �n,r, r = 1, 2, . . . , Rg are seen in

Eq. (6.114) to be averages of the local quantities an,k,r(zn,k) �= βT
n,k,rdn,k(zn,k) and γn,k,r, respectively.

Hence, they can be calculated in a distributed manner via Rb + Rg instances of an average consensus
algorithm, similarly to the section “Distributed calculation of the GLF.” Note that this distributed
calculation assumes that each agent k knows its own functions bn,k(·), dn,k(·), and gn,k(·), but not the
respective functions of the other agents k′ �= k.

This distributed calculation of (an approximation of) the GLF f (zn|xn) may be preferable
over the general scheme presented in the sections “DPF based on likelihood consensus,” “Distributed
calculation of the GLF,” and “Calculation of the local expansion coefficients” if it is easier to
approximate the functions bn,k(xn) and gn,k(xn) than the LLFs ln f (zn,k|xn). In particular, there is a
reduction in the number of real numbers each agent has to broadcast to its neighbors if Rb + Rg < R,
where R is the order of function expansion used in the general scheme.



6.3 DISTRIBUTED PARTICLE FILTERING 195

Gaussian measurement noise
An important special case of an exponential-family LLF arises with additive Gaussian measurement
noise [13]. Here, the measurement model of agent k in Eq. (6.88) is specialized according to

zn,k = mn,k(xn) + vn,k, n = 1, 2, . . . ; k = 1, 2, . . . , K, (6.115)

where mn,k(xn) is a generally nonlinear function and the additive measurement noise vn,k satisfies the
independence properties formulated in Section 6.3.1 and, in addition, is Gaussian with zero mean and
covariance matrix Cn,k. It follows that the LLF of agent k is given, up to a normalization factor, by

f (zn,k|xn) ∝ exp
(

−1

2

(
zn,k − mn,k(xn)

)TC−1
n,k

(
zn,k − mn,k(xn)

))
. (6.116)

This is easily verified to be an exponential-family LLF (6.109) with

bn,k(xn) = mn,k(xn), (6.117)

dn,k(zn,k) = C−1
n,k zn,k, (6.118)

gn,k(xn) = 1

2
mT

n,k(xn)C−1
n,k mn,k(xn). (6.119)

As in the section “Exponential family,” we may use separate function expansion approximations
of bn,k(xn) = mn,k(xn) and gn,k(xn). However, an alternative approach is possible because, according
to Eq. (6.119), gn,k(xn) is a function of mn,k(xn) [13]. Indeed, we may insert a function expansion
approximation of bn,k(xn) = mn,k(xn), i.e.,

mn,k(xn) ≈ m̃n,k(xn) �=
Rb∑

r=1

βn,k,r ϕr(xn), (6.120)

into Eq. (6.119) to obtain an “induced” function expansion approximation of gn,k(xn),

gn,k(xn) ≈ g̃n,k(xn) �= 1

2
m̃T

n,k(xn)C−1
n,k m̃n,k(xn)

= 1

2

Rb∑
r1=1

Rb∑
r2=1

βT
n,k,r1

C−1
n,k βn,k,r2

ϕr1 (xn)ϕr2 (xn). (6.121)

Using any one-to-one mapping of the double index (r1, r2) ∈ {1, 2, . . . , Rb} × {1, 2, . . . , Rb} to a single
index r ∈ {1, 2, . . . , Rg}, with Rg = R2

b, we can rewrite Eq. (6.121) as (cf. Eq. (6.112))

g̃n,k(xn) =
Rg∑

r=1

γn,k,r ψr(xn), (6.122)

where γn,k,r = 1
2 βT

n,k,r1
C−1

n,k βn,k,r2
and ψr(xn) = ϕr1 (xn)ϕr2(xn). It can be easily verified that the

resulting approximate GLF (cf. Eq. (6.89)) can be written as f̃ (zk|xk) ∝ exp
(− 1

2 Q̃n(zn, xn)
)

with

Q̃n(zn, xn) �= ∑K
k=1

(
zn,k − m̃n,k(xn)

)TC−1
n,k

(
zn,k − m̃n,k(xn)

)
. This equals the true GLF f (zk|xk), except

that the means mn,k(xn) are replaced by their approximations m̃n,k(xn).



196 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

Distributed Gaussian particle filter
The Gaussian PF (GPF) [72] uses a Gaussian approximation of the posterior pdf f (xn|z1:n). This
Gaussian approximation is derived from a weighted particle set, which is calculated in a similar way as
in the PF except that no resampling is required. Note that the measurement model is still allowed to be
non-Gaussian, as in Eq. (6.88).

In a distributed GPF, the local GPF at agent k propagates a Gaussian approximation
N (xn; μn,k, �n,k) of the global posterior pdf f (xn|z1:n). At time n, particles x(m)

n,k , m = 1, 2, . . . , M
are drawn from the preceding Gaussian approximation N (xn−1; μn−1,k, �n−1,k). Then, the prediction
and update steps are performed as described in Section 6.3.3. From the resulting weighted particles{(

x(m)
n,k , w(m)

n,k

)}M
m=1, a new Gaussian approximation N (xn; μn,k, �n,k) is determined according to

μn,k =
m∑

m=1

w(m)
n,k x(m)

n,k and �n,k =
M∑

m=1

w(m)
n,k x(m)

n,k x(m)T
n,k − μn,kμ

T
n,k. (6.123)

The weighted sample mean μn,k also constitutes the local approximation x̂n,k of the MMSE state

estimate x̂MMSE
n in Eq. (6.92), i.e., x̂n,k = μn,k.

Just as in the conventional DPF (cf. Eq. (6.93)), the update step of the local GPFs requires the
GLF evaluated at the current local particles, i.e., f (zn|xn) for xn = x(m)

n,k , m = 1, 2, . . . , M. An

approximation of f
(
zn|x(m)

n,k

)
can be calculated in a distributed manner by the LC as explained earlier.

However, the following variation yields a significant reduction of computational complexity at the cost
of some increase in local communications [13]. Inspired by the parallel GPF implementation proposed
in [73], the idea is to “distribute” the M particles over the K agents, such that each local GPF uses a
significantly reduced set of particles, and to combine the results of the local GPFs via additional average
consensus operations. The local GPF at agent k uses only Mk < M particles, where

∑K
k=1 Mk = M.

In the local weight update step at agent k, for each particle x(m)
n,k from the reduced local particle set,

m ∈ {1, 2, . . . , Mk}, a nonnormalized weight w̃(m)
n,k is calculated according to Eq. (6.93). This requires the

GLF evaluated at the Mk particles, i.e., f
(
zn|x(m)

n,k

)
, m = 1, 2, . . . , Mk, which was previously calculated

(approximately) by the LC. Furthermore, the sum of the resulting nonnormalized weights is calculated,
i.e., W̃n,k = ∑Mk

m=1 w̃(m)
n,k .

Next, from the weighted particles
{(

x(m)
n,k , w̃(m)

n,k

)}Mk
m=1, a local nonnormalized mean vector and a local

nonnormalized correlation matrix are calculated at each agent k as

μ′
n,k =

Mk∑
m=1

w̃(m)
n,k x(m)

n,k , R′
n,k =

Mk∑
m=1

w̃(m)
n,k x(m)

n,k x(m)T
n,k . (6.124)

Finally, the local means and correlations from all the agents are combined into a global mean and
covariance:

μ̄n,k = 1

Wn,k

K∑
k=1

μ′
n,k , �̄n,k = 1

Wn,k

K∑
k=1

R′
n,k − μ̄n,kμ̄

T
n,k, (6.125)



6.3 DISTRIBUTED PARTICLE FILTERING 197

where Wn,k
�= ∑K

k=1 W̃n,k. Approximations of the sums
∑K

k=1 μ′
n,k,

∑K
k=1 R′

n,k, and
∑K

k=1 W̃n,k can be
calculated in a distributed manner by means of an average consensus algorithm (again assuming that the
number of agents, K, is known to each agent). Subsequently, the division by Wn,k and the subtraction
of μ̄n,kμ̄

T
n,k in Eq. (6.125) are performed locally at each agent. This results in local approximations μn,k

and �n,k of, respectively, μ̄n,k and �̄n,k at each agent k. The state estimate at agent k, x̂n,k, is taken to
be μn,k.

Distributed proposal adaptation
The choice of the proposal pdf q(xn; x(m)

n−1) used in the weight update step (6.93) strongly affects the
performance of a PF. The proposal pdf should be similar to the posterior pdf f (xn|z1:n) [20]. Using the
state-transition pdf f (xn|x(m)

n−1) as the proposal pdf, as is done in the SIR filter, does not cater to this goal;
in particular, it does not take into account the current measurement zn. The design of a proposal pdf that
exploits the measurements is known as proposal adaptation [49,50]. In a DPF, the proposal pdfs used
by the local PFs should be adapted to the total (all-agents) measurement zn = (zT

n,1 zT
n,2 · · · zT

n,K)T.
A distributed method for this type of “global” proposal adaptation can again be based on the average

consensus principle [56]. In this method, each agent first calculates a “predistorted” local posterior pdf.
A Gaussian approximation of the global posterior pdf is then obtained by fusing all the predistorted
local posterior pdfs; this approximate global posterior pdf is used by the local PFs as a proposal pdf.
The method is inspired by [52] but employs a different predistortion that enables the use of a Gaussian
filter for calculating the predistorted local posterior pdfs. To derive the method, we note that the
global posterior pdf can be developed as f (xn|z1:n) = f (xn|z1:n−1, zn) ∝ f (zn|xn, z1:n−1)f (xn|z1:n−1) =
f (zn|xn)f (xn|z1:n−1), where Bayes’ rule and Eq. (6.91) have been used. Inserting Eq. (6.89), we further
obtain

f (xn|z1:n) ∝
( K∏

k=1

f (zn,k|xn)

)
f (xn|z1:n−1). (6.126)

We now define a predistorted, nonnormalized “local pseudoposterior pdf” at agent k as

f̃ (xn|z1:n−1, zn,k) �= f (zn,k|xn)
(
f (xn|z1:n−1)

)1/K . (6.127)

Furthermore, we consider the network-wide product of all the local pseudoposterior pdfs,

K∏
k=1

f̃ (xn|z1:n−1, zn,k) =
( K∏

k=1

f (zn,k|xn)

)
f (xn|z1:n−1) ∝ f (xn|z1:n), (6.128)

where Eq. (6.126) has been used in the last step. According to Eq. (6.128), the product of all the
local pseudoposterior pdfs equals the global posterior pdf up to a factor. This fact can be used to
calculate a Gaussian approximation of the global posterior pdf f (xn|z1:n)—note that f (xn|z1:n) involves
all the measurements and indeed would be a desirable proposal pdf—by a distributed evaluation of
the leftmost side of Eq. (6.128). To make this possible, we use Gaussian approximations of the local
pseudoposterior pdfs, i.e.,

f̃ (xn|z1:n−1, zn,k) ≈ N (xn; μ̃n,k, �̃n,k), (6.129)



198 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

and of the global posterior pdf, i.e.,

f (xn|z1:n) ≈ q(xn; zk) �= N (xn; μn, �n). (6.130)

Note that Eq. (6.130) also defines the global proposal pdf q(xn; zn). Inserting the approximations (6.129)
and (6.130) into the factorization f (xn|z1:n) ∝ ∏K

k=1 f̃ (xn|z1:n−1, zn,k) (see Eq. (6.128)) yields

N (xn; μn, �n) ∝
K∏

k=1

N (xn; μ̃n,k, �̃n,k). (6.131)

Using this relation and the rules for a product of Gaussian densities [52,74], the global mean μn and
global covariance �n—which determine q(xn; zn) = N (xn; μn, �n)—can be calculated from the local
means μ̃n,k and local covariances �̃n,k according to

μn = �n

K∑
k=1

(
�̃n,k

)−1
μ̃n,k, �n =

( K∑
k=1

(
�̃n,k

)−1

)−1

. (6.132)

Here, the sums
∑K

k=1

(
�̃n,k

)−1
μ̃n,k and

∑K
k=1

(
�̃n,k

)−1 can be computed in a distributed manner by
means of an average consensus algorithm.

The calculation of the local mean μ̃n,k and local covariance �̃n,k, as defined in Eq. (6.129), at agent
k is based on the observation that Eq. (6.127) can be interpreted as the update step of a Bayesian filter
using the predistorted predicted posterior pdf

(
f (xn|z1:n−1)

)1/K instead of the true predicted posterior
pdf f (xn|z1:n−1). Each agent first calculates a Gaussian approximation of the predicted posterior pdf,

f (xn|z1:n−1) ≈ N (xn; μ′
n,k, �′

n,k), (6.133)

where μ′
n,k = 1

M

∑M
m=1 x(m)′

n,k and �′
n,k = 1

M

∑M
m=1 x(m)′

n,k

(
x(m)′

n,k

)T − μ′
n,k

(
μ′

n,k

)T. Here,
{
x(m)′

n,k

}M
m=1 is a

set of temporary particles that are randomly drawn from f (xn|x(m)
n−1,k), where

{
x(m)

n−1,k

}M
m=1 is the set of

particles resulting from the preceding filtering step at time n − 1. The approximation (6.133) implies(
f (xn|z1:n−1)

)1/K ≈ N (xn; μ′
n,k, K�′

n,k). (6.134)

Using the Gaussian approximations (6.129) and (6.134) in Eq. (6.127) gives

N (xk; μ̃n,k, �̃n,k) = f (zn,k|xk)N (xk; μ′
n,k, K�′

n,k). (6.135)

This can be calculated by the update step of a Gaussian filter with input mean μ′
n,k, input covariance

K�′
n,k, and measurement zn,k. This Gaussian filter update step is performed locally at each agent and

produces μ̃n,k and �̃n,k. Examples of a Gaussian filter include the extended Kalman filter [19,36,42],
the unscented Kalman filter [44,45], the cubature Kalman filter [46], and the filters described in [75].

6.3.5 DIFFUSION-BASED METHODS
In this subsection, we address diffusion cooperation among agents as in Section 6.2.7 but implemented
with particle filtering [60]. However, now the considered state-space models are nonlinear and the pdfs



6.3 DISTRIBUTED PARTICLE FILTERING 199

of un in Eq. (6.87) and vn,k in Eq. (6.88) are assumed to be known up to proportionality constants. We
reiterate that these pdfs can be of any form.

The diffusion-based DPF presented here follows the spirit of cooperation from Section 6.2.7 in the
sense that the agents share moments (or parameters of approximating distributions) of the unknown
state. We assume that the agents at time n = 0 start with the generation of their own particles x(m)

0,k ,
m = 1, 2, . . . , M, which are drawn from a prior pdf f (x0), i.e.,

x(m)
0,k ∼ f (x0), m = 1, 2, . . . , M; k = 1, 2, . . . , K. (6.136)

Thus, before the tracking of the state starts, each agent has a representation of the prior pdf of x0 given

by
{

x(m)
0,k , w(m)

0,k = 1
M

}M

m=1
. Similarly, before processing the measurement vector zn,k, the local PF of

agent k has a representation of the posterior pdf of xn−1,k given by
{

x(m)
n−1,k, w(m)

n−1,k = 1
M

}M

m=1
, which

serves as a prior for the state xn.

Next, we explain how we obtain
{

x(m)
n,k , w(m)

n,k = 1
M

}M

m=1
from

{
x(m)

n−1,k, w(m)
n−1,k = 1

M

}M

m=1
. The PF of

each agent k propagates the particles x(m)
n−1,k to particles that represent possible values of the state at

time n. The propagation is carried out by drawing samples from the proposal pdf q(xn|x(m)
n−1,k), i.e.,

x̃(m)
n,k ∼ q(xn|x(m)

n−1,k), m = 1, 2, . . . , M; k = 1, 2, . . . , K. (6.137)

As described in Section 6.3.3, the PF subsequently computes the weights of these particles. This is
accomplished by

w̃(m)
n,k ∝ f (zn,k|x̃(m)

n,k )f (x̃(m)
n,k |x(m)

n−1,k)

q(x̃(m)
n,k |x(m)

n−1,k)
, (6.138)

where
∑M

m=1 w̃(m)
n,k = 1. With the particles x̃(m)

n,k and their weights w̃(m)
n,k , the agent k has a local

approximation of the posterior pdf of xn given by
{

x̃(m)
n,k , w̃(m)

n,k

}M

m=1
. The cooperation among the agents

requires that they exchange these approximating local posterior pdfs and fuse them to form new local
posteriors. The best approach in terms of accuracy would be that each agent broadcasts all the particles
and weights to its neighbors, but that would be quite costly in terms of communication load because
the number of particles and weights is usually large. An alternative is to use the particles and weights
to construct a parametric distribution, that is, estimate the parameters of an approximating distribution
of the weighted particles. Then, the agents would only exchange the parameters of the approximating
distribution.

In the sequel, the approximating distributions are multivariate Gaussians. Thus, the agents proceed
by computing the means and covariance matrices of the approximating Gaussians. First, the agents
obtain the means by

μ̃n,k =
M∑

m=1

w̃(m)
n,k x̃(m)

n,k , k = 1, 2, . . . , K, (6.139)



200 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

and then the covariance matrices by

�̃n,k =
M∑

m=1

w̃(m)
n,k

(
x̃(m)

n,k − μ̃n,k

) (
x̃(m)

n,k − μ̃n,k

)T
, k = 1, 2, . . . , K. (6.140)

In the next step, the agents exchange the means and covariance matrices with their neighbors and
follow up with merging all the Gaussian posteriors into one Gaussian. To that end, the agents use
coefficients a�k that quantify how much they trust their neighbors (defined earlier in Section 6.2.1, and
here with a�k representing how much agent k trusts agent �). We note that

∑
�∈Nk

a�k = 1. In the
chapter on Bayesian Approach to Inference from this book (see its Subsection 4.2.3), it is explained
that the Gaussian after merging has a covariance matrix and mean that can be expressed in terms of the
individual covariance matrices and means of the agents by

�n,k =
⎛
⎝ ∑

�∈Nk

a�k

(
�̃n,k

)−1

⎞
⎠

−1

(6.141)

and

μn,k = �n,k

⎛
⎝ ∑

�∈Nk

a�k

(
�̃n,k

)−1
μ̃n,k

⎞
⎠ , (6.142)

respectively. More specifically, this choice of μn,k and �n,k minimizes the weighted sum of Kullback-
Leibler distances

∑
�∈Nk

a�kD
(
Nn,k‖Ñn,�

)
, where Nn,k is the resulting Gaussian after merging, and

Ñn,�, � ∈ Nk are the Gaussians of agent k and its neighbors.
At this point, the agents have more than one way of proceeding. A simple way is that the agents use

the newly obtained Gaussian and that each draws a set of particles that represent it, i.e.,

x(m)
n,k ∼ N (xn; μn,k, �n,k), m = 1, 2, . . . , M; k = 1, 2, . . . , K. (6.143)

After generation of these particles, the agents have a discrete representation,
{

x(m)
n,k , w(m)

n,k = 1
M

}M

m=1
, of

the posterior pdf at time n that serves as a prior pdf of xn+1.
Another approach would be to avoid fusion of the local posteriors by Eqs. (6.141) and (6.142) and

instead draw particles directly from the mixture of Gaussians with components Ñ (xn; μ̃n,�, �̃n,�) and
weights a�k, i.e.,

x(m)
n,k ∼

∑
�∈Nk

a�kÑ (xn; μ̃n,�, �̃n,�), m = 1, 2, . . . , M; k = 1, 2, . . . , K. (6.144)

Once done, the posterior pdf is again represented by
{

x(m)
n,k , w(m)

n,k = 1
M

}M

m=1
.

An alternative direction is to first resample the original local particles x̃(m)
n,k according to their weights

w̃(m)
n,k . Let the resampled particles be denoted by x̄(m)

n,k . In the next step, these particles are rescaled and
shifted so that they correspond to particles of a Gaussian distribution with mean μn,k in Eq. (6.142) and
covariance �n,k in Eq. (6.141). It is not difficult to show that this can be achieved by



6.3 DISTRIBUTED PARTICLE FILTERING 201

x(m)
n,k = QT

n,kQ̃
−T
n,k

(
x̄(m)

n,k − μ̃n,k

)
+ μn,k, (6.145)

where Qn,k is defined by �n,k = QT
n,kQn,k and Q̃n,k by �̃n,k = Q̃

T
n,kQ̃n,k. The particles obtained by

Eq. (6.145) have all equal weights, and thus they represent the prior pdf for the state xn+1. This approach
is described in the listing (6.146). Note that the particles generated by Eqs. (6.143) and (6.144) are all
different whereas many of the ones obtained by Eq. (6.145) may be replicated.

Diffusion particle filter (adapt and then combine form)

each agent starts with its own set of particles x(m)
0,k ∼ f (x0), m = 1, 2, . . . , M.

repeat at every agent k for n ≥ 0 :

(propose a new set of particles)

x̃(m)
n,k ∼ q(xn|x(m)

n−1,k), m = 1, 2, . . . , M

(compute the weights of the proposed particles)

w̃(m)
n,k ∝ f (zn,k|x̃(m)

n,k )f (x̃(m)
n,k |x(m)

n−1,k)

q(x̃(m)
n,k |x(m)

n−1,k)

(find the parameters of a Gaussian distribution that approximates the posterior)
μ̃n,k = ∑M

m=1 w̃(m)
n,k x̃(m)

n,k

�̃n,k = ∑M
m=1 w̃(m)

n,k

(
x̃(m)

n,k − μ̃n,k

) (
x̃(m)

n,k − μ̃n,k

)T

(combine own posterior with the posteriors of the neighbors)

�n,k =
(∑

�∈Nk
a�k

(
�̃n,�

)−1
)−1

μn,k = �n,k

(∑
�∈Nk

a�k

(
�̃n,�

)−1
μ̃n,�

)
(resample the local particles according to their weights){(

x̃(m)
n,k , w̃(m)

n,k

)}M

m=1

resampling−→
{(

x̄(m)
n,k , w(m)

n,k = 1
M

)}M

m=1

(rescale and shift the resampled local particles)

x(m)
n,k = QT

n,kQ̃
−T
n,k

(
x̄(m)

n,k − μ̃n,k

)
+ μn,k, where Qn,k and Q̃n,k are defined by

�n,k = QT
n,kQn,k and �̃n,k = Q̃

T
n,kQ̃n,k, respectively

end

(6.146)

The performance of the diffusion cooperation can be improved if the calculation of the particle
weights of each agent involves the measurements of the respective neighbors. This requires that the
agents engage in two rounds of communication, one when they exchange their measurements with
their neighbors and the other when they exchange the parameters of their posterior pdfs. In this case,
the calculation of the weights in Eq. (6.138) is replaced by

w̃(m)
n,k ∝

(∏
�∈Nk

f (zn,�|x̃(m)
n,k )

)
f (x̃(m)

n,k |x(m)
n−1,k)

q(x̃(m)
n,k |x(m)

n−1,k)
. (6.147)

Everything else in the described process remains the same.



202 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

In summary, the diffusion-based particle filtering algorithm described in this subsection relies on
approximating the local posterior pdfs by Gaussians whose parameters are then exchanged with the
neighbors. Upon receiving the Gaussian parameters from its neighbors, each agent either uses them
to create a new Gaussian that serves as the final posterior pdf or simply exploits them directly as in
Eq. (6.143) or Eq. (6.144) to generate particles that represent the support of the final posterior pdf
and the prior pdf of xn+1. However, we reiterate that the underlying approximating distributions of{

x̃(m)
n,k , w̃(m)

n,k

}M

m=1
used by the agents do not have to be Gaussians.

6.4 CONCLUSIONS
In this chapter, we discussed the problem of distributed filtering in a network of agents. The filtering
amounts to estimating a hidden state process based on measurements that are acquired by the agents
and contain information about the state process. The agents cooperate by communicating relevant
information with their neighbors. Two main types of filtering methods were addressed. The first is
distributed Kalman filtering where the state-space models are linear and the state and measurement
noise processes are zero-mean and white vector processes with known covariance matrices. The second
type is distributed particle filtering where the models are nonlinear and the pdfs characterizing the state
and measurement noise processes are known up to proportionality constants. The distributed Kalman
filtering method was based on a diffusion strategy, with a discussion on the relation and differences
relative to a consensus-type implementation. The distributed particle filtering methods were based on
both consensus and diffusion strategies.

ACKNOWLEDGMENTS
The work of A. H. Sayed was supported by the NSF under grants ECCS-1407712 and CCF-1524250. The author
is grateful to the IEEE for allowing reproduction of material from [12] in this book chapter. The work of P. M.
Djurić was supported by the NSF under grant CCF-1618999. The work of F. Hawatsch was supported by the
Austrian Science Fund (FWF) under grant P27370-N30 and by the Czech Science Foundation (GAČR) under
grant 17-19638S.

A.1 APPENDIX
Lemma A.1 (Convergence of Lyapunov recursion). Consider a general Lyapunov recursion of

the form

Zn+1 = CnZnCT
n + Bn, (A.1)

where the matrix sequences {Bn, Cn} converge uniformly to {B, C} as n → ∞ with C being a stable
matrix (all its eigenvalues lie strictly inside the unit circle). Then, the sequence Zn converges to the
unique solution Z of the Lyapunov equation



A.1 APPENDIX 203

Z = CZCT + B. (A.2)

Proof. Using the vec notation we have

vec(Zn+1) = (Cn ⊗ Cn)vec(Zn) + vec(Bn) �= Tnvec(Zn) + dn, (A.3)

where we introduced the quantities Tn = (Cn ⊗ Cn) and dn = vec(Bn). We know from the assumptions
in the lemma that dn converges to d = vec(B) and Tn converges to T = (C⊗C), which is a stable matrix
because C is stable. It follows that vec(Zn) converges to vec(Z) = (I − C ⊗ C)−1d, which establishes
that the limiting Z is the solution to the Lyapunov equation (A.2). We can establish this convergence
result more formally as follows by adjusting the proof given for Theorem 1 in App. E of [12]. Let
zn = vec(Zn), z = vec(Z), Tn − T = ε�n, and dn − d = εδn, for some arbitrary scalar ε > 0 and
quantities {δn, �n}. Using z = Tz + d and zn+1 = Tnzn + dn, we get

zn+1 − z = T(zn − z) + ε�n(zn − z) + ε�nz + εδn. (A.4)

Now, because T is a stable matrix, there exists a submultiplicative matrix norm, denoted by ‖ · ‖ρ , such
that ‖T‖ρ = c < 1 [76]. Using this norm, and the triangle inequality, we have

‖zn+1 − z‖ρ ≤ ‖T‖ρ‖zn − z‖ρ + ε‖�n‖ρ‖zn − z‖ρ + ε‖�n‖ρ‖z‖ρ + ε‖δn‖ρ . (A.5)

In the limit, as n → ∞, we can choose ‖�n‖ρ ≤ 1 and ‖δn‖ρ ≤ 1, which implies that

‖zn+1 − z‖ρ ≤ (‖T‖ρ + ε)‖zn − z‖ρ + ε(‖z‖ρ + 1), as n → ∞. (A.6)

But because ‖T‖ρ < 1, we can select ε small enough such that ‖T‖ρ + ε < 1 and, hence,

lim
n→∞ ‖zn+1 − z‖ρ = ε(‖z‖ρ + 1)/(1 − ‖T‖ρ − ε). (A.7)

Because ε can be chosen arbitrarily small, it follows that ‖zn+1 − z‖ → 0 as n → ∞. �
Lemma A.2 (Stability of F). For any left-stochastic matrix A and block diagonal matrix D with

the 2-induced norms of its blocks strictly bounded by one, it holds that the matrix product B = ATD is
stable. Consequently, when ‖(IN − P+

k Sk)F‖2 < 1, the matrix F defined below is stable:

F �= ATX , X �= (IKN − P+S)(IK ⊗ F). (A.8)

Proof. This argument adjusts the proof given for Lemma 2 in [12], where the ρ-norm should be
replaced by the block-maximum norm defined as follows [77]. Let x = col{x1, x2, . . . , xK} denote a
K × 1 block column vector whose individual entries are themselves vectors of size N × 1 each. The
block-maximum norm of x is denoted by ‖x‖b,∞ and is defined as ‖x‖b,∞ = max1≤k≤K ‖xk‖. This
vector norm induces a block-maximum matrix norm. Let A denote an arbitrary K × K block matrix
with individual block entries of size N × N each. Then, the block-maximum norm of A is defined as



204 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

‖A‖b,∞ �= max
x�=0

‖Ax‖b,∞
‖x‖b,∞

. (A.9)

The block-maximum norm has several useful properties; see [77]. In particular, when A is K × K
left-stochastic and A = A ⊗ IN , then it can be verified that ‖AT‖b,∞ = 1. Likewise, when D is
block diagonal with the 2-induced norm of its diagonal blocks bounded by one, it is easy to check that
‖D‖b,∞ < 1. Consequently, for B = ATD we get

ρ(B) ≤ ‖B‖b,∞ ≤ ‖AT‖b,∞‖D‖b,∞ < 1, (A.10)

and we conclude that B is stable. Alternatively, we note that

‖Bn‖b,∞ ≤
(
‖AT‖b,∞

)n (‖D‖b,∞
)n −→ 0, as n → ∞. (A.11)

The matrix F in Eq. (A.8) has a form that fits into this formulation with D = (IKN−P+S)(IK⊗F) =
X , which is block diagonal. Moreover, because by assumption ‖(IKN − P+

k Sk)F‖2 < 1, it holds that
‖D‖b,∞ = ‖X‖b,∞ < 1. �

REFERENCES
[1] Zhu Y, You Z, Zhao J, Zhang K, Li XR. The optimality for the distributed Kalman filtering fusion with

feedback. Automatica 2001;37(9):1489–93.
[2] Coates M. Distributed particle filters for sensor networks. In: Proceedings of the 3rd ACM/IEEE international

symposium on information processing in sensor networks; 2004. p. 99–107.
[3] Spanos DP, Olfati-Saber R, Murray RM. Approximate distributed Kalman filtering in sensor networks with

quantifiable performance. In: Proceedings of the 4th ACM/IEEE international symposium on information
processing in sensor networks; 2005. p. 133–9.

[4] Ribeiro A, Giannakis GB, Roumeliotis SI. SOI-KF: distributed Kalman filtering with low-cost communica-
tions using the sign of innovations. IEEE Trans Signal Process 2006;54(12):4782–95.

[5] Olfati-Saber R. Distributed Kalman filtering for sensor networks. In: 46th IEEE conference on decision and
control; 2007. p. 5492–8.

[6] Khan UA, Moura JM. Distributing the Kalman filter for large-scale systems. IEEE Trans Signal Process
2008;56(10):4919–35.

[7] Cattivelli FS, Lopes CG, Sayed AH. Diffusion strategies for distributed Kalman filtering: formulation and
performance analysis. In: Proceedings of the IEEE IAPR workshop on cognitive information processing;
2008. p. 36–41.

[8] Cattivelli FS, Sayed AH. Diffusion mechanisms for fixed-point distributed Kalman smoothing. In: 16th
European signal processing conference; 2008. p. 1–5.

[9] Carli R, Chiuso A, Schenato L, Zampieri S. Distributed Kalman filtering based on consensus strategies. IEEE
J Sel Areas Commun 2008;26(4):622–33.

[10] Cattivelli F, Sayed AH. Diffusion distributed Kalman filtering with adaptive weights. In: Proceedings of
Asilomar conference on signals, systems and computers; 2009. p. 908–12.

[11] Olfati-Saber R. Kalman-consensus filter: optimality, stability, and performance. In: Proceedings of the 48th
IEEE conference on decision and control, held jointly with the 28th Chinese control conference; 2009.
p. 7036–42.

[12] Cattivelli FS, Sayed AH. Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans
Autom Control 2010;55(9):2069–84.

http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0065


REFERENCES 205

[13] Hlinka O, Slučiak O, Hlawatsch F, Djurić PM, Rupp M. Likelihood consensus and its application to
distributed particle filtering. IEEE Trans Signal Process 2012;60(8):4334–49.

[14] Djurić PM, Wang Y. Distributed Bayesian learning in multiagent systems: improving our understanding of its
capabilities and limitations. IEEE Signal Process Mag 2012;29(2):65–76.

[15] Sayed AH. Adaptation, learning, and optimization over networks. In: Foundations and trends® in machine
learning, vol. 7(4–5); 2014. p. 311–801.

[16] Zhao F, Guibas LJ. Wireless sensor networks: an information processing approach. Amsterdam, The
Netherlands: Morgan Kaufmann; 2004.

[17] Hlinka O, Hlawatsch F, Djurić PM. Distributed particle filtering in agent networks: a survey, classification,
and comparison. IEEE Signal Process Mag 2013;30(1):61–81.

[18] Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.
[19] Anderson BDO, Moore JB. Optimal filtering. Englewood Cliffs, NJ: Prentice Hall; 1979.
[20] Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaus-

sian Bayesian tracking. IEEE Trans Signal Process 2002;50(2):174–88.
[21] Li XR, Jilkov VP. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans Aerosp

Electron Syst 2003;39(4):1333–64.
[22] Tu SY, Sayed AH. Diffusion strategies outperform consensus strategies for distributed estimation over

adaptive networks. IEEE Trans Signal Process 2012;60(12):6217–34.
[23] Towfic ZJ, Chen J, Sayed AH. Excess-risk of distributed stochastic learners. IEEE Trans Inf Theory

2016;62(10):5753–85.
[24] Xiao L, Boyd S, Lall S. A scheme for robust distributed sensor fusion based on average consensus.

In: Proceedings of the 4th ACM/IEEE international symposium on information processing in sensor networks,
Los Angeles, CA; 2005. p. 63–70.

[25] Olfati-Saber R, Fax JA, Murray RM. Consensus and cooperation in networked multi-agent systems. Proc
IEEE 2007;95(1):215–33.

[26] Aysal TC, Yildiz ME, Sarwate AD, Scaglione A. Broadcast gossip algorithms for consensus. IEEE Trans
Signal Process 2009;57(7):2748–61.

[27] Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A. Gossip algorithms for distributed signal
processing. Proc IEEE 2010;98(11):1847–64.

[28] Kailath T, Sayed AH, Hassibi B. Linear estimation. Upper Saddle River, NJ: Prentice Hall; 2000.
[29] Sayed AH. Adaptive filters. Wiley; 2008.
[30] Chang KC, Saha RK, Bar-Shalom Y. On optimal track-to-track fusion. IEEE Trans Aerosp Electron Syst

1997;33(4):1271–6.
[31] Atherton DP, Bather JA, Briggs AJ. Data fusion for several Kalman filters tracking a single target. IEE Proc

Radar Sonar Navig 2005;152(5):372–6.
[32] Mitchell HB. Multi-sensor data fusion: an introduction. Springer; 2007.
[33] Julier SJ, Uhlmann JK. A non-divergent estimation algorithm in the presence of unknown correlations.

In: Proceedings of the American control conference, vol. 4; 1997. p. 2369–73.
[34] Uhlmann JK. Covariance consistency methods for fault-tolerant distributed data fusion. Inf Fusion

2003;4(3):201–15.
[35] Hu J, Xie L, Zhang C. Diffusion Kalman filtering based on covariance intersection. IEEE Trans Signal Process

2012;60(2):891–902.
[36] Kay SM. Fundamentals of statistical signal processing: estimation theory. Upper Saddle River, NJ: Prentice

Hall; 1993.
[37] Djurić PM, Khan M, Johnston DE. Particle filtering of stochastic volatility modeled with leverage. IEEE J

Sel Top Signal Process 2012;6(4):327–36.
[38] Hlinka O, Hlawatsch F. Distributed particle filtering in the presence of mutually correlated sensor noises. In:

Proceedings of IEEE international conference on acoustics, speech and signal processing; 2013. p. 6269–73.

http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0195


206 CHAPTER 6 DISTRIBUTED KALMAN AND PARTICLE FILTERING

[39] Moldaschl M, Gansterer WN, Hlinka O, Meyer F, Hlawatsch F. Distributed decorrelation in sensor networks
with application to distributed particle filtering. In: Proceedings of IEEE international conference on
acoustics, speech and signal processing. 2014. p. 6117–21.

[40] Urteaga I, Djurić PM. Sequential estimation of hidden ARMA processes by particle filtering: Part I. IEEE
Trans Signal Process 2017;65(2):482–93.

[41] Urteaga I, Djurić PM. Sequential estimation of hidden ARMA processes by particle filtering: Part II. IEEE
Trans Signal Process 2017;65(2):494–504.

[42] Tanizaki H. Nonlinear filters: estimation and applications. Berlin, Germany: Springer; 1996.
[43] Alspach D, Sorenson H. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans

Autom Control 1972;17(4):439–48.
[44] Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation. Proc IEEE 2004;92(3):401–22.
[45] van der Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models.

Ph.D. thesis, OGI School of Science and Engineering, Oregon Health and Science University, Hillsboro, OR;
2004.

[46] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Trans Autom Control 2009;54(6):1254–69.
[47] Gordon NJ, Salmond DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation.

IEE Proc F (Radar Signal Process) 1993;140(2):107–13.
[48] Djurić PM, Kotecha JH, Zhang J, Huang Y, Ghirmai T, Bugallo MF, Míguez J. Particle filtering. IEEE Signal

Process Mag 2003;20(5):19–38.
[49] Cappé O, Godsill SJ, Moulines E. An overview of existing methods and recent advances in sequential Monte

Carlo. Proc IEEE 2007;95(5):899–924.
[50] Bugallo MF, Elvira V, Martino L, Luengo D, Míguez J, Djurić PM. Adaptive importance sampling: the past,

the present, and the future. IEEE Signal Process Mag 2017;34(4):60–79.
[51] Li T, Bolic M, Djurić PM. Resampling methods for particle filtering: classification, implementation, and

strategies. IEEE Signal Process Mag 2015;32(3):70–86.
[52] Oreshkin BN, Coates MJ. Asynchronous distributed particle filter via decentralized evaluation of Gaussian

products. In: Proceedings of FUSION; 2010.
[53] Farahmand S, Roumeliotis SI, Giannakis GB. Set-membership constrained particle filter: distributed adapta-

tion for sensor networks. IEEE Trans Signal Process 2011;59(9):4122–38.
[54] Üstebay D, Coates M, Rabbat M. Distributed auxiliary particle filters using selective gossip. In: Proceedings

of IEEE international conference on acoustics, speech and signal processing; 2011. p. 3296–9.
[55] Mohammadi A, Asif A. Consensus-based distributed unscented particle filter. In: Proceedings of IEEE

statistical signal processing workshop; 2011. p. 237–40.
[56] Hlinka O, Hlawatsch F, Djurić PM. Consensus-based distributed particle filtering with distributed proposal

adaptation. IEEE Trans Signal Process 2014;62(12):3029–41.
[57] Bordin CJ, Bruno MGS. Consensus-based distributed particle filtering algorithms for cooperative blind

equalization in receiver networks. In: Proceedings of IEEE international conference on acoustics, speech
and signal processing; 2011. p. 3968–71.

[58] Bandyopadhyay S, Chung SJ. Distributed estimation using Bayesian consensus filtering. In: Proceedings of
American control conference; 2014. p. 634–41.

[59] Mohammadi A, Asif A. Distributed consensus + innovation particle filtering for bearing/range tracking with
communication constraints. IEEE Trans Signal Process 2015;63(3):620–35.

[60] Wang H, Djurić PM. Diffusion in networks by cooperative particle filtering. In: Proceedings of the IEEE
workshop on computational advances in multi-sensor adaptive processing; 2017.

[61] Yu JY, Coates MJ, Rabbat MG, Blouin S. A distributed particle filter for bearings-only tracking on spherical
surfaces. IEEE Signal Process Lett 2016;23(3):326–30.

[62] Li J, Nehorai A. Distributed particle filtering via optimal fusion of Gaussian mixtures. IEEE Trans Signal Inf
Process Netw 2018;4(2):280–92.

http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0315


REFERENCES 207

[63] Vázquez MA, Míguez J. A robust scheme for distributed particle filtering in wireless sensors networks. Signal
Process 2017;131:190–201.

[64] Savic V, Wymeersch H, Zazo S. Belief consensus algorithms for fast distributed target tracking in wireless
sensor networks. Signal Process 2014;95:149–60.

[65] Gautschi W. Orthogonal polynomials: computation and approximation. Oxford, UK: Oxford University Press;
2004.

[66] Unser M. Splines: a perfect fit for signal and image processing. IEEE Signal Process Mag 1999;16(6):22–38.
[67] Mosk-Aoyama D, Shah D. Fast distributed algorithms for computing separable functions. IEEE Trans Inf

Theory 2008;54(7):2997–3007.
[68] Xiao L, Boyd S. Fast linear iterations for distributed averaging. Syst Control Lett 2004;53(1):65–78.
[69] Björck Å. Numerical methods for least squares problems. Philadelphia, PA: SIAM; 1996.
[70] Lawson CL, Hanson RJ. Solving least squares problems. Philadelphia, PA: SIAM; 1995.
[71] Bishop CM. Pattern recognition and machine learning. New York, NY: Springer; 2006.
[72] Kotecha JH, Djurić PM. Gaussian particle filtering. IEEE Trans Signal Process 2003;51(10):2592–601.
[73] Bolić M, Athalye A, Hong S, Djurić PM. Study of algorithmic and architectural characteristics of Gaussian

particle filters. J Signal Process Syst 2010;61(2):205–18.
[74] Gales MJF, Airey SS. Product of Gaussians for speech recognition. Comput Speech Lang 2006;20(1):22–40.
[75] Ito K, Xiong K. Gaussian filters for nonlinear filtering problems. IEEE Trans Autom Control 2000;45(5):

910–27.
[76] Horn RA, Johnson CR. Matrix analysis. Cambridge University Press; 1990.
[77] Sayed AH. Diffusion adaptation over networks. In: Chellapa R, Theodoridis S, editors. Academic Press

library in signal processing, vol. 3. Academic Press, Elsevier; 2014. p. 323–454.

http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0325
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0330
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0335
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0340
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0345
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0350
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0355
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0360
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0365
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0370
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0375
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0380
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0385
http://refhub.elsevier.com/B978-0-12-813677-5.00006-7/rf0390


CHAPTER

7GAME THEORETIC LEARNING

Ceyhun Eksin∗, Brian Swenson†, Soummya Kar†, Alejandro Ribeiro‡

Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States∗

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States†

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States‡

7.1 INTRODUCTION
A prevalent idea in game theory is that a Nash equilibrium or rational behavior is a result of dynamic
processes of adaptation. As Arrow succinctly puts it: “The attainment of equilibrium process requires a
disequilibrium process.” This reflects the belief that individuals/players in a game learn to act rationally
through repetitive decision-making in the same situation. Based on this idea, there is an active research
area known as learning in games that focuses on developing individual-based adaptive dynamics. The
main objective is to show that bounded-rational decision-making rules can, over time, lead to a Nash
equilibrium.

A game consists of a set of players, each with a set of available actions, and a utility function that
determines its preferences. At a Nash equilibrium action profile, each player’s action is optimal with
respect to its utility function, given the actions of the other players in the game. In the setup of the
learning in games, players repetitively select actions based on past observations according to a simple
decision-making rule. Once players select their actions, the game is played, and the players acquire
new information through their observations or communications. In this setup, one can interpret the
motivation of reaching rational behavior as the players’ aspiration to learn the eventual actions of other
players, and play optimally with respect to them.

Traditionally, the learning in games literature has considered perfect global information access, that
is, at the end of each play individuals observe actions of other players or their realized payoff, which
depends on others’ action profiles. A more realistic setting is that the players have partial and noisy
access to game parameters and the history of game play. Considering the objective of justifying the
study of the Nash equilibrium concept in economics, the development of simple decision-making rules
based on partial and noisy information access is of value.

In addition, such partial and noisy information-based individual decision-making rules are poten-
tially applicable to the design of agent behavior in distributed engineering systems. Next, we present
several examples of engineering systems where game theory is relevant to motivate game-theoretic
learning algorithms robust to partial and noisy information access. For each system, we define the key
elements of a game, that is, the players and their action sets and preferences.
Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00007-9
Copyright © 2018 Elsevier Inc. All rights reserved.

209



210 CHAPTER 7 GAME THEORETIC LEARNING

Power control in wireless networks [1,2]. Users of a common radio channel are the players. Users
compete to maximize their signal-to-interference-noise ratio (SINR) by selecting their power levels.
Cognitive MIMO radio networks [3]. A cognitive radio system aims to increase the usage of frequency
resources by having secondary users that are allowed to utilize the channels in the absence of primary
users. In this system a game is played among secondary users with the goal to maximize the information
rate by selecting an appropriate transmission covariance matrix given power limitations.
Target assignment [4]. The players are a team of mobile robots. Each robot selects a subset of available
targets with the goal of maximizing the team’s collective damage.
Demand response management in energy systems [5,6]. End users of a smart grid are the players.
The smart grid operator employs a pricing strategy that depends on the total consumption of its users.
Each user makes hourly consumption decisions to minimize the cost of energy.
HVAC control in smart buildings [7]. A smart-energy building consists of several autonomous units.
HVAC units of a building are the players in a game that collectively would like to minimize power
consumption while keeping room temperature at desired levels.

In all these examples, the Nash equilibrium (NE) is a model of normative, and sometimes,
descriptive individual behavior. Yet, how players reach the Nash equilibrium is of concern. It is
impractical to assume perfect global information access where players observe or share the past actions
of every other player. Further, there often exist uncertainties in preference-relevant parameters. With
these considerations in mind, in this chapter we consider generalizations of the traditional learning in
games setup where individuals have local interactions over a network and have noisy information about
their preferences.

Specifically, individual preferences represented by utility functions depend on their own action, the
actions of other players, and a state of the world unknown to players. The goal is for each player to
learn about the strategies of other players and the state of the world by repetitively playing the game and
exchanging information with its neighbors in the network (see Fig. 7.1 for an illustration). A player’s
learning problem would have been a standard inference problem had the other players selected actions
from a stationary distribution. However, this is not the case. The fact that all players are trying to infer
about each other’s future strategy creates a nonstationary process and makes the inference problem
atypical. In particular, a player’s self-actions affect other players’ information, and hence their future
actions. In turn, this affects the information that the player receives and its forecasts about other’s future

FIG. 7.1

Network learning of player i. Player i exchanges information with its neighbors {1, 2, 3, 4} to learn about the
future actions of all the players {1, 2, . . . , 7}.



7.2 LEARNING IN GAMES PRELIMINARIES 211

play. The networked information access adds delays, further complicating the complex feedback effects
between own forecasts and actions and the future behavior of other players.

This chapter is organized as follows: We first present preliminaries of game theory and the setup of
learning in games (Section 7.2). In Sections 7.3 and 7.4, we respectively consider networked learning
dynamics in complete and incomplete information games. The difference between the complete and
incomplete information games is that in the latter, each player has differing information about the state
of the world.

7.2 LEARNING IN GAMES PRELIMINARIES
The basic elements of a game include a set of players N = {1, 2, . . . , N}, and for each player i ∈ N
an action set Ai and a utility function ui : A → R where A = ∏n

i=1 Ai is the action profile set (see
Table 7.1 for notational conventions used throughout the chapter). Accordingly, we define a complete
information game with the tuple � := (N ,A, {ui}i∈N ). We use −i to denote all players other than
player i. We sometimes refer to the action profile a ∈ A as a = (ai, a−i) where a−i ∈ A−i are the
actions of players other than i.

Example 7.1 (Target assignment game). Two robots (N = {1, 2}) would like to coordinate on
covering the left and right doors of a room (Ai = {L, R} for i ∈ N ). The utility function is given by
ui(L, L) = ui(R, R) = 0 for i ∈ N , u1(R, L) = 2 and u1(L, R) = 2, and u2(R, L) = 1 and u2(L, R) = 4.
The utility function values are given in normal form in Table 7.2, where row and column players are
players 1 and 2, respectively. �

When action profile a ∈ A yields a higher utility than the action profile a′ ∈ A, ui(a) > ui(a′),
player i prefers a over a′. A best response action of player i to the actions of other players a−i belongs
to the best response set defined as

Table 7.1 Notation

Notation Description

R: real numbers

1: indicator function

t: continuous time

E[·]: expectation operator

N : set of players

�(·): set of probability distributions over a set

yn: value of variable y at time n

1N : N × 1 ones vector

(x, y): tuple of x and y

n: discrete time

X : a set

i, j: player indices

yi: a variable belonging to i

{x, y}: set of x and y



212 CHAPTER 7 GAME THEORETIC LEARNING

Table 7.2 Normal Form of the Target Assignment Game
Robot 2

Left Right

Robot 1 Left (0,0) (2,4)

Right (2,1) (0,0)

BRi(a−i) := argmax
ai∈Ai

ui(ai, a−i). (7.1)

We define the joint best response function as BR : A → A with its ith element given by BRi.
An action profile a∗ ∈ A is a pure Nash equilibrium when no player has a profitable unilateral

deviation, that is, for all i = 1, 2, . . . , n

ui(a∗
i , a∗−i) ≥ ui(ai, a∗−i) ∀ ai ∈ Ai. (7.2)

In the target assignment game, there are two pure Nash equilibria (Left, Right) and (Right, Left).
We can also represent a pure NE action profile a∗ ∈ A as the fixed point of the best response set,

where for every player i

a∗
i ∈ BRi(a∗−i). (7.3)

Players can also randomize among their actions, implementing mixed strategies. A mixed strategy
σi is a probability distribution over the action space of player i denoted as �(Ai) where σi(ai) is the
probability that player i selects action ai ∈ Ai. We denote the mixed strategy profile of the players
as σ = {σ1, . . . , σn} ∈ �(A). The expected utility of player i given the strategy profile σ ∈ �(A) is
defined as

ui(σ ) =
∑
a∈A

ui(a)σ (a). (7.4)

Accordingly, a (mixed) NE is a strategy profile σ ∈ �(A) such that for any player i = 1, 2, . . . , N

ui(σi, σ−i) ≥ ui(σ ′
i , σ−i) ∀σ ′

i ∈ �(Ai). (7.5)

As in the fixed point definition in Eq. (7.3), we can equivalently represent the above NE definition using
the joint best response mapping,

σ ∈ BR(σ ). (7.6)

We define the set of NE strategies as NE := {σ ∈ �(A) : σ ∈ BR(σ )}. This set is nonempty for games
with finite action spaces [8].

The complete information game �(N ,A, {ui}i∈N ) assumes players know their utility functions
exactly. However, this is not realistic in various scenarios. For instance, in the target assignment game
considered in Example 7.1, the robots might have noisy information about their own utility and/or the
utility of the other player. In the following, we introduce incomplete information games to model such
scenarios of uncertainty.



7.2 LEARNING IN GAMES PRELIMINARIES 213

The utility function depends on preference relevant states of the world, which we denote as θ

belonging to a space �. That is, ui : A × � → R. In addition to the player set, action sets, and
utility functions, a characterizing element of the incomplete information game is the information
(type) of each player denoted by ti, which belongs to a type space Ti. Define the set of information
of players as T := ∏n

i=1 Ti. Assume the game has a common prior π ∈ �(� × T ) over the state
and information space. Define the interim belief of player i as pi ∈ �(� × T) as the conditional
probability distribution pi(·) := π (· | ti). A game of incomplete information is defined by the tuple
I := (N ,A, �, {ui}i∈N , π , T ).

Example 7.2 (Target assignment game incomplete information). Consider the setup in
Example 7.1. Assume there are two rooms θ ∈ {A, B}. Each room has a Left and Right door. When the
room is A, players have the same utility function as in Example 7.1. When the room is B, the players’
payoffs are flipped. The utility function values are given in normal form in Table 7.3. Assume that
robots have a common uniform prior about which room they are in. Further, each robot receives a
private signal xi = {A, B} for i = 1, 2 that reveals the correct room with some positive probability. The
incomplete information game is characterized by the tuple (N ,A, �, {ui}i∈N , π , {xi}i∈N ) where the
prior π is the uniform distribution over � = {A, B}, and the type of the player i is its private signal xi.

�
The strategy of player i in a game of incomplete information is a mapping from its type to the action

space, i.e., σi : Ti → Ai. The expected utility of player i from selecting action ai ∈ Ai against others’
strategy profile σ−i is given by

E[ui(ai, σ−i, θ ) | ti] =
∑

θ∈�,t−i∈T−i

ui(ai, σ−i(t−i), θ )pi(θ , t−i), (7.7)

where we make the utility function’s dependence on the state of the world θ explicit by writing ui(a, θ ) :
A × � → R. A strategy profile σ ∗ : T → A is a Bayesian-Nash equilibrium (BNE) of I if and only
if for all i ∈ N , ai ∈ Ai, and ti ∈ Ti

E[u(σ∗
i , σ∗−i, θ )

∣∣ti] ≥ E[u(ai, σ
∗−i, θ )

∣∣ti]. (7.8)

That is, σ ∗ is a BNE if and only if each agent plays a best response to other players’ strategies given its
interim belief at any possible realization of its information.

When players only know the common prior π and nothing else, the game is a complete information
game with utility functions defined as expectations of ui computed with respect to the prior π . That is,
define the expected utility of i with respect to prior as ûi(a) := ∑

θ∈� ui(a, θ )π (θ ). Then the complete
information game is given by the tuple �(π ) = (N ,A, �, {ui}i∈N , π ) = (N ,A, {ûi}i∈N ).

Table 7.3 Target Assignment Game With Two Rooms
A B

Robot 2 Robot 2

Left Right Left Right

Robot 1 Left (0,0) (2,4) Robot 1 Left (0,0) (2,1)

Right (2,1) (0,0) Right (2,4) (0,0)



214 CHAPTER 7 GAME THEORETIC LEARNING

The incomplete information game I with a finite set of types t ∈ T can be viewed as another
complete information game �′ with each possible information (type) representing a player. That is,
define N ′ = ⋃

i∈N Ti and the action space of player ti ∈ Ti as Ati = Ai, with utility function ûti (σ , θ ) =
E[ui(σ , θ )|ti] with the expectation operator defined as in Eq. (7.7). Then in the complete information
game �′ = (N ′, {Ati , ûti}ti∈N ′ ) each type ti is a different player taking an action ai from Ai. Hence, the
strategy profile of player i ∈ N , σi : Ti → Ai in the incomplete information game I is a list of actions
of types in Ti in the complete information game �′.

Learning dynamics
Consider the complete information game with common prior π on the state of the world θ ∈ �,
�(π ) = (N ,A, �, {ui}i∈N , π ), which we will refer as the stage game. The game �(π ) is repeatedly
played over stages n = 1, 2, . . . . At each stage n, there is a set of actions realized that we denote as
an = (a1,n, . . . , aN,n) where ai,n ∈ Ai. After each stage, each player acquires new information from
the most recent stage game and possibly other exogenous information sources. A learning algorithm
in game theory is a collection of individual assessment and behavior rules that respectively determines
how players process information and select the next stage action.

Formally, an assessment rule of player i denoted by μi,n maps i’s information to a probability
distribution on the future play of other players and the state of the world �(A−i × �). A behavior
rule denoted by �i,n maps the player’s assessment to an individual action.

Below we provide two simple examples of assessment and behavior rules for the target assignment
game of Example 7.1.
Stubborn players. Suppose each robot observes the past action of the other robot. A simple assessment
rule is to assume the other robot is going to switch doors in the next stage. According to this assessment
rule, robot 1 thinks that if robot 2 selects Left (Right) door at stage n then robot 2 will select Right (Left)
door at stage n + 1. That is, μ1,n(L) = R and μ1,n(R) = L. The simplest behavior rule is to do nothing
with an assessment and continue to select the same action at each stage. For instance, �i,n = L for all
i = 1, 2. In this example, the robots are stubborn, and there are no learning dynamics because of their
behavior rule.
Cournot best response dynamics. The canonical example of learning dynamics is best response
dynamics. In a general N-person game, each player observes the previous action of the other players
a−i,n. The assessment rule is that each player will repeat its previous action. That is, suppose
a−i,n = a′−i ∈ A−i then μi,n(a−i,n) = a′−i. Player i’s behavior rule is to take the action that maximizes
its utility function, given its assessment of other players’ next actions. That is, �i,n(μi,n(a−i,n)) =
BRi(μi,n(a−i,n)) where BRi(·) is as defined in Eq. (7.1).

The eventual action of robots in the target assignment game under the best response dynamics is
dependent on the initial actions chosen. Suppose both players select Left door initially, then the best
response dynamics lead to a cycle between action profiles where the action profile ai,n = (L, L) is
repeatedly followed by ai,n+1 = (R, R). However, if robots initially select different actions, i.e., play
action profile (L, R) or (R, L), then they continue to select their initial action. This is because both action
profiles are equilibria, and at the NE action profile, players best respond to other player’s actions as per
the definition in Eq. (7.3).

We note that, in both the examples above, the information that players receive at the end of each
stage is the other players’ actions. In a networked communication setting, this information is not readily
available to the players at the end of each stage.



7.2 LEARNING IN GAMES PRELIMINARIES 215

Important classes of games
Restrictions to the structure of the utility functions are common when studying the convergence of
the learning dynamics. In this chapter, we will reference the following classes of games: (i) potential,
(ii) congestion, (iii) quadratic, (iv) zero-sum, and (v) supermodular games. These classes of games are
relevant to applications in distributed engineering systems. In our exposition below, we omit the payoff
relevant state of the world θ for notational brevity.

Potential games. Suppose there exists a “potential function” u : A �→ R such that for all pairs of
action profiles a = (ai, a−i) and a′ = (a′

i, a−i), and players i, the local payoffs satisfy

ui(ai, a−i) − ui(a′
i, a−i) = u(ai, a−i) − u(a′

i, a−i). (7.9)

The existence of the potential function u implies an “alignment of interests” among players because
the joint action that maximizes u is a pure NE action profile of the game defined by the utilities ui,
i ∈ N [9].

Any technological system with a global objective can be modeled using a potential game. The target
assignment problem [4] and consensus problems are only two examples among many.

Congestion games. Let R = {1, . . . , m} denote a set of resources. For each i ∈ N , let Ai ⊆ 2R, where
2R denotes the power set of R. In particular, an action choice ai indicates a subset of resources being
utilized by player i.

In a congestion game, the cost associated with using a resource is dependent on the total number of
players using the same resource. For each r ∈ R, a ∈ A, let Nr(a) ∈ N denote the number of players
using resource r under the action profile a. More generally, for a subset of players K ⊆ N , the number
of players in K utilizing resource r given {aj}j∈K, is given by

Nr({aj}j∈K) :=
∑
j∈K

1(r ∈ aj), (7.10)

where 1(r ∈ aj) = 1 if r ∈ aj and 1(r ∈ aj) = 0 otherwise. Given a subset of players K, and
a corresponding set of actions {aj}j∈K, we represent the number of players using each resource by
#N({aj}j∈K), where #N :

∏
j∈KAj → Nm is a mapping with the rth entry in #N({aj}j∈K) given by

Nr({aj}j∈K).
For r ∈ R and k ∈ N, let cr(k) be the cost associated with using resource r given state θr, when there

are precisely k players simultaneously using the resource. For ai ∈ Ai and Nr(a−i) ∈ N, let the utility
of player i be given by

ui(ai, a−i) = −
∑
r∈ai

cr(Nr(a−i) + Nr(ai)), (7.11)

where we have written Nr(a) = Nr(a−i) + Nr(ai) explicitly to emphasize dependence of the utility on
the player i’s action ai and the actions of other players a−i. Note that within the class of congestion
games, players do not need to know the full action profile a = (a1, . . . , an) ∈ A precisely to compute
their utility. It is sufficient for each player to have knowledge of #N(a−i) ∈ Nm and their own action
ai ∈ Ai.

Congestion games are a subclass of the potential games. Internet congestion control [10] and
transportation network problems can be modeled using congestion games.



216 CHAPTER 7 GAME THEORETIC LEARNING

Quadratic games. The quadratic utility function is the sum of a quadratic term and a bilinear term,

ui(ai, a−i) := −1

2
a2

i +
∑

j∈N \{i}
βijaiaj, (7.12)

where βij ∈ R for all i ∈ N , j ∈ −i are real valued constants. Notice that because ∂2ui/∂a2
i = −1 < 0,

the payoff function in Eq. (7.12) is strictly concave with respect to the self action ai of agent i. Quadratic
utility functions are ubiquitous in stochastic optimal control [11,12] and distributed estimation [13,14].

Zero-sum games. There are two players N = {1, 2} where u1(a) = −u2(a) for any action profile
a ∈ A.
Supermodular games. A utility function ui : RN → R is supermodular if

ui(min{x, y}) + ui(max{x, y}) ≥ ui(x) + ui(y) (7.13)

for all x, y ∈ RN , where min({x, y}) denotes the component-wise minimum and max({x, y}) denotes
the component-wise maximum of x and y. The function is strictly supermodular if the inequality is
strict for any incomparable pair of vectors x and y. If ui is twice differentiable, strict supermodularity
is equivalent to requiring that ∂2f /∂xi∂xj > 0 for all 1 ≤ i < j ≤ n. Positive cross-partial derivatives
mean that when a player increases its action, it incentivizes other players to increase their actions; see
[15] for more on the theory of supermodular games.

Examples of supermodular games include currency attacks [16], power control problems in wireless
networks [1], and arms race models [17].

7.3 NETWORK LEARNING ALGORITHMS FOR COMPLETE INFORMATION
GAMES
In this section we study network-based learning in games with complete information. Recall that we
represent a complete information game using the tuple � = (N , (A, ui)i∈N ). In traditional game-
theoretic learning setups, players are assumed to be capable of having instantaneous access to all
information required by the learning process. This can be an unrealistic and impractical assumption
in many real-world setups. A more realistic assumption is to suppose that players are equipped with
an overlaid communication graph through which they may disseminate all information relevant to the
learning process. Formally, we say a learning algorithm is network-based if the following hold:

Assumption 7.1. Players are endowed with a preassigned communication graph G = (N , E),
where the vertices N correspond to the players, and the edge set E consists of communication links
between pairs of players that can communicate directly. The graph G is connected. We define the
neighbors of player i as Ni := {j ∈ N : (i, j) ∈ E}. �

Assumption 7.2. Players directly observe only their own actions. �
Assumption 7.3. A player may exchange information with immediate neighbors Ni, as defined by

G, at most once for each iteration or round of the repeated play. �
Remark 7.1. For clarity of presentation, in this chapter we focus on network-based learning

algorithms with synchronous information dissemination schemes. However, it is straightforward to
reformulate the above assumptions to allow for asynchronous information dissemination schemes. For



7.3 LEARNING IN COMPLETE INFORMATION GAMES 217

instance, an asynchronous version of the Cournot best response dynamics entails each player randomly
waking up to take best-response actions. Random activation of the players guarantees that players
update at different times. Considering again the target assignment game example (Example 7.2), in the
asynchronous best-response algorithm the robots converge to a Nash equilibrium of the game regardless
of the initial action profile, in contrast to the synchronous version, which cycles starting from certain
action profiles. Network-based learning in an asynchronous setting has been considered, for example,
in [18,19].

As an example of a network-based learning setup, consider the following traffic routing scenario.
Example 7.3. Suppose a group of drivers wishes to navigate a traffic grid. Each driver’s vehicle

is equipped with an onboard computer and is connected to neighboring vehicles in the group via an
ad hoc vehicular network. Each vehicle is equipped with a model of the traffic grid and knows its
starting point and destination. Prior to physically engaging in the commute, the drivers wish to compute
an equilibrium routing strategy. In particular, it is desired that, by repeatedly exchanging information
with neighboring vehicles in the network, the group of vehicles can negotiate on a equilibrium routing
strategy that can be recommended to the drivers.

The strategic problem of routing traffic can be modeled as a congestion game by letting each vehicle
be represented as a player. The set of actions for each player is the set of route choices available to the
vehicle. The utility function of each player is determined by travel time of the vehicle from starting
point to destination, as determined by the onboard traffic grid model.1 An equilibrium routing strategy
defines a route choice (possibly probabilistic) for each vehicle that optimizes the utility (travel time) of
each player (vehicle). �

A prototypical network-based learning algorithm proceeds as follows. As in a centralized learning
algorithm, each player chooses a sequence of actions (ai,n)n≥1.

Initialize

(i) Each player i chooses an arbitrary initial action, ai,1.

Iterate (n ≥ 1)

(ii) Players engage in one round of information exchange with immediate neighbors.
(iii) Using the information obtained from neighbors, each player i chooses a new action ai,n+1.

We say an algorithm converges to NE if the action sequence (ai,n)n≥1 (or some function thereof)
converges to the set of NE.

Remark 7.2. We emphasize that in a network-based algorithm, players are not assumed to be
capable of viewing their instantaneous payoff information (see Assumption 7.2). Consequently,
network-based learning differs significantly from distributed payoff-based learning schemes studied
in the game-theoretic learning literature, e.g., [20]. In payoff-based learning setups, it is assumed that
players physically engage in a game, and at the end of each round of game play, players may observe the
payoff received. In this setting, information is implicitly transmitted by physical interaction in the game,
and the challenge is to design algorithms that rely solely on the implicitly transmitted information.

1More precisely, we let the utility be the negative of the travel time so that players prefer to maximize their utility function.



218 CHAPTER 7 GAME THEORETIC LEARNING

In the network-based setting, players engage in a form of “virtual” game play in which no payoff
measurements are available (e.g., Example 7.3). That is, information cannot be transmitted by the
physical interaction in the game—all information dissemination must be carried out directly by the
algorithm. The challenge here is to design algorithms that handle information dissemination in an
efficient and practical manner.

The fictitious play (FP) algorithm is a canonical game-theoretic learning process [21,22]. In this
section we will review methods for implementing the FP algorithm in network-based settings.

Our focus on FP here is motivated by several factors. First, FP is a prototypical game-theoretic
learning algorithm—algorithms that rely on an underlying “myopic best response” structure are
intimately related with classical FP dynamics, e.g., [23–26]. Such algorithms are used in a variety of
settings including cognitive radio [27,28], deep learning [29], learning optimal strategies in large games
[29–31], and distributed traffic routing [32,33]. Second, FP has important robustness properties that
are crucial for network-based implementation of a learning algorithm [23,34]. These same robustness
properties also allow for asynchronous implementation [34,35] as well as low-complexity randomized
implementation [23,36]. Finally, we note that FP is accompanied with convergence rate estimates that
can be useful when considering practical engineering applications in signal processing and control
[37,38].

We note that, in addition to FP, a variety of network-based algorithms for learning in complete
information games have been studied in the literature. For example, [39] studies a network-based
algorithm for NE seeking in a two-network zero-sum game, [40] studies an algorithm for finding
NE in a spatial spectrum access game, and [41] studies a network-based, regret-based reinforcement
learning algorithm for tracking the polytope of correlated equilibria in time-varying games. The work
[42] presents a method for designing games with a prescribed local dependence. The works [18,19]
study gossip-based algorithms for computing NE in a network-based setting in games with continuous-
action spaces. In the following section we introduce classical FP and review salient properties of the
learning process relevant to engineering and network-based applications.

7.3.1 CLASSICAL FICTITIOUS PLAY
Consider the following dynamical system,

σ̇ ∈ BR(σ ) − σ , (7.14)

where σ is an absolutely continuous mapping from R to �(A).2 Note that the rest points of this
system coincide with the set of Nash equilibria as defined in Eq. (7.6). The dynamical system (7.14) is
known as continuous-time fictitious play [37,69]3. The discrete-time analog of this process is given by
the system

2The existence of such a σ and the general well posedness of the differential inclusion (7.14) is discussed in [43].
3In the literature, the nomenclature used to refer to (7.14) is somewhat varied. Instead of continuous-time fictitious play,
the system (7.14) is sometimes referred to as “best response dynamics” [53]. We prefer to use the term “continuous-time
fictitious play” here to emphasize that the classical fictitious play algorithm is merely an Euler discretization of (7.14). We
also note that authors sometimes use the term continuous-time fictitious play to refer to the closely related non-autonomous
systems σ (t) ∈ 1

t

(
BR(σ (t))−σ (t)

)
[37,69]. Since solutions of this later system are identical to solutions of (7.14) after a time

change [37], we prefer to simply work directly with the autonomous system (7.14).



7.3 LEARNING IN COMPLETE INFORMATION GAMES 219

an+1 ∈ BR(σn), (7.15)

σn = 1

n

n∑
s=1

1as , (7.16)

where 1a denotes the vertex of �(A) placing weight 1 on the action a ∈ A. Note that the discrete-time
process (σn)n≥1 may be expressed recursively as

σn+1 − σn ∈ 1

n + 1
(BR(σn) − σn) . (7.17)

This may be seen as an Euler discretization of the differential inclusion (7.14) in which the step size is
given by the diminishing sequence ( 1

n+1 )n≥1. As n → ∞ the continuous-time interpolation of Eq. (7.17)
more closely approximates a solution of Eq. (7.14). (This is made precise in [43].) In light of this
relationship, Eq. (7.14) can be thought of as the mean-field system associated with Eq. (7.17).

We refer to an absolutely continuous mapping σ : R → �(A) satisfying Eq. (7.14) for almost every
t ∈ R as a continuous-time FP process and we refer to a sequence (σn)n≥1 satisfying Eq. (7.17) as a
discrete-time FP process, or when there is no risk of confusion, simply as an FP process.

Our primary focus in this chapter will be on discrete-time learning algorithms. However, being
a mean-field approximation, continuous-time FP serves an important role, both as a means of gaining
intuition about the discrete-time system and as a means of rigorously deriving the asymptotic properties
of the discrete-time system [43].

The following theorem states the fundamental Nash convergence result for FP.
Theorem 7.1. Suppose � is a potential game, a zero-sum game, or a generic 2 × m

game. Then continuous-time FP converges to the set of Nash equilibria of � in the sense that
limt→∞ d(σ (t), NE) = 0. Likewise, discrete-time FP converges to the set of NE in the sense that
limn→∞ d(σn, NE) = 0. �

The class of potential games (see Eq. 7.9) is particularly important in the study of decentralized
learning algorithms [44]; such games have an extremely broad range of applications in the field of
multiagent systems [32,33,42,45–51]. In many engineering applications involving potential games, it
can be preferable to converge to pure equilibria rather than mixed equilibria [4,52]. This issue has been
studied in depth in the continuous-time setting. The following theorem demonstrates that while it is
possible for (continuous-time) FP to converge to mixed equilibria, this is an exceptional occurrence.

Before stating the theorem, we remark that when we say a property holds for almost every game or
almost every initial condition, we mean that the complement of the set where the property holds has
Lebesgue measure zero [53,54].

Theorem 7.2. For almost every potential game, and for almost every initial condition, continuous-
time FP converges to a pure-strategy equilibrium. �

In order to apply game-theoretic learning algorithms in practical applications, it is important to
understand the transient properties of the algorithm such as the rate of convergence. Given a game �,
we say that a continuous-time FP process (σ (t))t≥0 on � with initial condition σ (0) = σ0 converges at
an exponential rate if there exists a constant c = c(�, σ0) such that

d(σ (t), NE) ≤ ce−t.



220 CHAPTER 7 GAME THEORETIC LEARNING

The following result shows that the rate of convergence of (continuous-time) FP is generally
exponential [37,38].

Theorem 7.3. (i) In every zero-sum game and for every initial condition, the rate of convergence of
(continuous-time) FP is exponential. (ii) For almost every potential game and for almost every initial
condition, the rate of convergence of (continuous-time) FP is exponential. �

We note that while the results in Theorems 7.2 and 7.3 have been shown to hold for continuous-time
FP, they have not yet been formally extended to the discrete-time case.4

Finally, we remark on an important robustness property of fictitious play that plays a critical role in
network-based learning. In order to discuss the robustness property, we must first define the notion of
an ε-best response. The ε-best response map of player i, BRε :

∏
j�=i �(Aj) → �(Ai) is given by

BR(σ−i) :=
{
σi ∈ �(Ai) : ui(σi, σ−i) ≥ max

σ ′
i ∈�(Ai)

ui(σ ′
i , σ−i) − ε

}
,

and the (joint) best response map BR : �(A) → �(A)�(Ai) is given by

BR(σ ) = BR1(σ−1) × · · · × BRN(σN).

A (discrete-time) process (σn)n≥1 is said to be a weakened fictitious play process if

σn+1 − σn ∈ 1

n + 1

(
BRεn (σn) − σn

)
, (7.18)

where (εn)n≥1 is a sequence of positive numbers representing “perturbations” to the FP process. Note
that classical FP is a special case of Eq. (7.18) in which εn = 0 ∀n ≥ 1. The following theorem
shows that FP is robust to the perturbation introduced by the sequence (εn)n≥1, so long as εn decays
to zero.

Theorem 7.4. � is a potential game, a zero-sum game, or a generic 2 × m game. Suppose (σn)n≥1
is a weakened FP process on � satisfying limn→∞ εn = 0. Then the FP process converges to the set of
Nash equilibria in the sense that limn→∞ d(σn, NE) = 0. �

This theorem follows, roughly, by studying the asymptotic properties of continuous-time FP and
using the continuous-time process as a mean-field approximation of the discrete-time process [23,34].

The above robustness property allows for a breadth of practical applications, including low
complexity implementations of FP (e.g., [36] or the actor-critic algorithm in [23]) and asynchronous
implementations of FP [34]. Also, as we will see in the next section, it plays a critical role in ensuring
convergence in network-based implementations of FP.

7.3.2 NETWORK-BASED FICTITIOUS PLAY
In a network-based setting, players are unable to directly observe the game action history or their
own payoff history (see Remark 7.2). Information relevant to the learning process must be gradually
disseminated using the overlaid communication graph. As a prototype of a network-based learning
algorithm, in this section we consider the network-based implementation of FP.

4We note that modifications of the discrete-time FP process, such as the use of “inertia” [22,55], can be used to ensure
theoretic convergence of discrete-time FP to pure equilibria.



7.3 LEARNING IN COMPLETE INFORMATION GAMES 221

Due to the network-based information dissemination scheme, players may not have perfect
knowledge of the “true” empirical distribution5 σn at all times. For each i, j ∈ N , let σ̂ i

j,n denote an

estimate that player i maintains of σj,n. Let σ̂ i
n = (σ̂ i

j,n)j∈N denote player i’s estimate of σn. Players will

form their estimates σ i
n by exchanging information with neighbors. Let W denote a weight matrix to be

used in the information sharing protocol. We denote its element in the ith row and jth column by Wi,j.
We will assume the following.

Assumption 7.4. The weight matrix W is an N × N matrix that is doubly stochastic, aperiodic, and
irreducible, with sparsity conforming to the communication graph G. �

A prototypical network-based implementation of FP is given below.

Initialize

(i) Each player i chooses an arbitrary initial action ai(1). The initial empirical distribution for player i
is given by σi,1 = 1ai,1 . Each player initializes her local estimate of the empirical distribution as
σ̂ i

i,1 = 1ai,1 and σ̂ i
j,1 = 0, j �= i.

Iterate (n ≥ 1)

(ii) Each player i chooses their next-stage action according to the rule

ai,n+1 ∈ BRi(σ̂ i−i,n).

(iii) Each player i updates their personal empirical distribution as σi,n+1 = σi,n + 1
n+1

(
1ai,n+1 − σi,n

)
.

(iv) Each player i updates their estimate σ̂ i(n + 1) according to

σ̂ i
j,n+1 =

∑
k∈Ni

Wi,k

(
σ̂ k

j,n + (σj,n+1 − σj,n)χk=j

)
,

where χk=j = 1 if k = j and χk=j = 0 otherwise.

Step (ii) is the behavioral rule in which agents best-respond given the assessment of others’ behavior.
Steps (iii) and (iv) constitute the assessment rule of the learning algorithm. In step (iv), player i does
a weighted averaging of its neighbors’ estimates of the empirical frequency of player j. If player j
is a neighbor of player i, then player j appends the effect of its current action (σj,n+1 − σj,n) to its
estimate of self-empirical frequency. The effect of the current action on the empirical estimate is equal
to (1ai,n+1 − σi,n) weighted by 1/(n + 1) by step (iii).

The following theorem gives the convergence result for network-based FP [56].
Theorem 7.5. Let � be a potential game. Then the network-based FP algorithm converges to the

set of Nash equilibria in the sense that limn→∞ d(σn, NE) = 0. Furthermore, each player achieves
asymptotic strategy learning in the sense that limn→∞ d(σ̂ i

n, NE) = 0, ∀i ∈ N ; that is, players’
estimates of σn converge to the set of Nash equilibria. �

5An element of the sequence (σn)n≥1, as defined in Eq. (7.16), is commonly referred to as the empirical distribution of player
i, because σn tracks the empirical frequency with which player i uses each action.



222 CHAPTER 7 GAME THEORETIC LEARNING

The convergence of network-based FP follows from the robustness result given in Theorem 7.4.
More precisely, the distributed information dissemination protocol used in step (iv) ensures that
limn→∞ ‖σ̂ i

n − σn‖ = 0. Using the Lipschitz continuity of ui, this ensures that the network-based
FP process is in fact a weakened FP process, and convergence follows from the robustness result in
Theorem 7.4.

Remark 7.3. We note that the distributed information dissemination scheme used in the above
network-based FP algorithm (in particular, see step (iv)) is chosen as an example of a viable information
dissemination scheme. Using the robustness result in Theorem 7.4, we see that any distributed
information dissemination scheme and protocol for approximating σn can be used so long as it ensures
that limn→∞ ‖σ̂ i

n − σ (n)‖ = 0. See, e.g., [57–59] for examples of other information dissemination
protocols. Furthermore, using asynchronous variants of FP [34,35], one may formulate similar variants
of network-based FP relying on asynchronous communication schemes, e.g., [57].

7.4 NETWORK LEARNING ALGORITHMS FOR INCOMPLETE INFORMATION
GAMES
We consider learning dynamics for settings where players have differing information about a payoff-
relevant state of the world. Players start with an initial common prior estimate about the state of the
world, that is, the initial stage game is �(π ) = (N ,A, �, {ui}i∈N , π ). They then make noisy private
observations about the state of the world. The private signal of player i is denoted by xi belonging
to some space Xi. For instance, the private signal xi comes from a Gaussian distribution with mean
θ and a finite variance. We denote the beginning information of player i by hi,1. After receiving the
private signal, players have different posterior distributions about the state of the world and the other
players’ signals. That is, they are in a game of incomplete information defined by the tuple  :=
(N ,A, �, {ui}i∈N , π ,X ) with types of players given by {xi}i∈N .

In a game of incomplete information, the rational behavior is a BNE as per Eq. (7.8). Note that a
BNE strategy of a player is a function that maps any possible realization of the signal xi to an action
while an NE strategy corresponds to a distribution over the action space. In contrast to the learning
in complete information games, in a game of incomplete information learning a BNE involves each
player learning the other players’ action at every possible realization of the signal. Given the complete
information view of the incomplete information game  where we treat each possible type as a separate
player (see the discussion at the end of Section 7.2), the learning algorithms discussed in the previous
section can be applied in the following way. Assume xi belongs to a finite space Xi. For each possible
signal profile {xi}i∈N ∈ X run the fictitious play algorithm where the player i learns σxi . Then the BNE
strategy of player i is given by the σi = {σxi}xi∈Xi . In this case, the computational complexity of the
learning of a BNE increases with the cardinality of the signal space.

Another impracticality in learning a BNE is that there is a single realization of the private signal
in the first stage prior to the learning process. Hence, there is no need to learn the BNE for other
possible private signal realizations if the players can learn the NE for the realized signal profile.
In the learning process described above, players do not make use of the realization of the signal to
infer about the payoff-relevant state of the world. A refined learning goal for the game of incomplete
information is for players to aggregate information about the state of the world, i.e., learn the conditional
probability distribution π (θ | {xi}i∈N ), and play the NE of the complete information game with common
aggregate distribution π (θ | {xi}i∈N ) on θ , i.e., �(π (θ | {xi}i∈N )) = (N ,A, �, {ui}i∈N , π (θ | {xi}i∈N )).



7.4 LEARNING IN INCOMPLETE INFORMATION GAMES 223

For instance, in Example 2 each private signal carries information about the state of the world. So
instead of trying to learn contingent plans for any possible realization of the signal profile, i.e., learn
the BNE, robots may try to infer each other’s realized signal. Once robots learn each others’ signals,
they will have a common estimate of the state of the world, and can learn to predict the other player’s
action exactly. This information aggregation objective is not realizable with an algorithm designed for
a complete information game because there is not a mechanism to update estimates of the state of
the world.

In the following we present two approaches to information aggregation in incomplete information
games. In the first approach, players at each stage observe their neighbors’ actions, and play according
to the BNE strategy profile of the stage game with types defined as the individuals’ current information.
We consider the convergence properties of this Bayesian learning approach, and present quadratic
games with Gaussian signals as a special case that allows for tractable assessment and behavior. Second,
we present a modification to the network-based fictitious play algorithm described in the previous
section that allows for players to learn the state of the world and reach an NE.

7.4.1 BAYESIAN LEARNING IN NETWORKS
Players are in a game of incomplete information at each stage. At the beginning of each stage n,
players observe the past actions of their neighbors, denoted by aNi,n−1. At each stage, the information
of each player represents its type in the incomplete information game. We assume the state of the
world θ and the private signals {xi}i∈N come from some probability distribution π over the space
� := � × X . We represent the information of player i until time n by hi,n. The strategy of player i at
stage 1, denoted by σi,1, maps any possible information that player i can have to the action space Ai.
Together with the probability distribution π and the private signals, the strategy profile of the players at
stage 1, σ1, determines the realized action profile a1, which then determines the information of players
at stage n = 2. We denote the strategy profile of players across time by σ = (σ1, σ2, . . . ) where
σn = (σ1,n, . . . , σN,n) is the strategy profile at stage n. We can recursively define the partial history of
player i generated by the strategy profile σ at stage n denoted by hσ

i,n as follows. The strategy profile
of players at time n − 1 maps their information to an action profile, that is, ai,n−1 = σi,n−1(hσ

i,n−1) for
i ∈ N . Then, given the communication network G, the realized action profile an−1 ∈ A determines the
information of players in the next stage where player i observes its neighbors’ actions aNi,n−1, that is,
hσ

i,n = {hσ
i,n−1, aNi,n−1} and hi,1 = xi.

Given the knowledge of the strategy profile σ and prior π , players have a common prior distribution
πσ over the space of the state, signals, and the sequence of actions, i.e., over the path of play � ×
X × AN. The expectation operator with respect to πσ is denoted by E. Given the notation above, the
definition of an equilibrium strategy profile follows.

Definition 7.1. Players follow a Markov Perfect Bayesian Equilibrium (MPBE) strategy profile σ

when for all i, n, and mappings from the path of play to the space of actions that are measurable with
respect to player i’s information,6 i.e., functions σ ′

i,n : � → Ai, we have

E[ui(σi,n, σ−i,n, θ ) | hσ
i,n] ≥ E[ui(σ ′

i,n, σ−i,n, θ ) | hσ
i,n]. (7.19)

�

6To be formal, we need to define B the Borel sigma algebra of the space of exogenous variables �. At stage 1, let Hi,1 be
the smallest sub sigma-algebra of B that makes xi measurable. For n ≥ 2, we can define player i’s information Hσ

i,n and its
Markovian strategy σi,n : � → Ai that is measurable with respect to Hσ

i,n (see [60] for a formal definition).



224 CHAPTER 7 GAME THEORETIC LEARNING

According to this definition, the players follow BNE of the incomplete information game
whose information is induced by the actions generated by the BNE equilibrium strategies
before them. That is, the incomplete information game at stage t is given by the tuple n :=
(N ,A, �, {ui}i∈N , πσ , {hσ

i,n}i∈N ). Accordingly, the players are said to be Bayesian in that they form
beliefs about the future play of other opponents and the state of the world following Bayes’ rule. In
addition, each player uses its belief to maximize its current utility, that is, players are myopic. We
note that in this model players only observe the actions of their neighbors and do not share their past
experiences, signals, or beliefs with other players. Furthermore, players do not observe their realized
payoffs.

Remark 7.4. In the previous section, we defined network-based algorithms assuming the existence
of a communication graph and once per stage information exchange among the neighbors in the graph.
In this model, we assume players observe the actions of their neighbors on a network. Observing actions
is a form of information exchange among the actor and the observer, in that, while the actor does not
actively send a message, the observer is receiving a message from its neighbor. In the case that players
do not have such observational capabilities, this model also allows for players to actively share their
actions. In sum, the Bayesian learning algorithm is network-based, as defined in Section 7.3.

Given the MPBE behavior model, the question we would like to answer is whether players learn
to coordinate in a supermodular game, and whether they are able to aggregate their information on the
state of the world.

We assume the action space Ai is a compact subset of R and ui is continuous in all of its arguments.
We restrict attention to symmetric7 and strictly supermodular games. Our first result is that an MPBE
exists for this class of games—see Proposition 1 in [60]. Given the existence of the equilibrium
model, we have that players are able to coordinate their actions, and asymptotically reach consensus in
strategies and payoffs [60].

Theorem 7.6. Let σ be a MPBE. For all i, j ∈ N ,

• σi,n → σj,n almost surely as n goes to infinity.
• ui(σn, θ ) → uj(σn, θ ) almost surely as n goes to infinity.

�
The second result above (consensus in payoffs) is proven as a corollary to the first result (consensus

in actions). The second result means that prior to the start of the game, all players expect to receive
similar payoffs eventually regardless of the informativeness of their signals or their position in the
network. Even though players agree on their ex ante asymptotic payoffs, they might disagree on their
ex post conditional expected payoffs, as exemplified in [60]. The consensus in actions result can be
generalized to include endogenous private signals and time-varying directed networks [60].

Next, we consider optimal information aggregation in the following quadratic game, which is an
important special case of the model considered above

ui(a, θ ) = −(1 − λ)(ai − θ )2 − λ(ai − ā−i)2, (7.20)

where λ ∈ (0, 1) is a constant and ā−i = ∑
j�=i aj/(n − 1) is the average action of other players. The

utility function above is strictly supermodular because λ > 0. The first term is the estimation loss

7For all i, j ∈ N, Ai = Aj and ui(a, θ ) = uj(a′, θ ) if ai = a′
j and a−i is a permutation of a′−j.



7.4 LEARNING IN INCOMPLETE INFORMATION GAMES 225

measured by the distance between the realized state and player i’s action. The second term represents
the player’s preference to act in conformity with the rest of the population.

The quadratic utility function above yields a unique MPBE strategy profile σ . The uniqueness
follows by showing that the best response mapping is a contraction mapping using the fact that
λ ∈ (0, 1). This implies uniqueness of BNE in a stage game. Because the MPBE is a sequence of
stage game BNE, all stages have unique equilibria. Thus, MPBE must be unique.

Before we state the information aggregation result, we provide an example where information
aggregation fails even if players’ actions are in consensus.

Example 7.4. Assume the players i ∈ {1, 2} have the utility function above. The state of the world
θ ∈ {−1, 1} and players have common uniform prior. Each player receives an initial private signal
“Heads” (H) or “Tails” (T), that is, X = {H, T}. The joint distribution of the private signals is as follows:
if θ = 1, players with equal probability observe the signal profile (x1, x2) = (H, H) or (x1, x2) =
(T , T). Otherwise if θ = −1, players with equal probability observe the signal profiles (x1, x2) =
(H, T) or (x1, x2) = (T , H). Given the joint signal profile distribution, both payers receive the signal
H or T with equal probability regardless of θ ’s realization. Thus, the individual private signals are
completely uninformative. Hence their expectation of θ is zero. Further, each player knows the other
player’s expectation of θ is also zero. As a result, the initial equilibrium action of players is zero, that
is, σi,1(xi) = 0 for xi = {H, T} and i = {1, 2}. The first stage actions reveal no information to the other
players. Therefore, both players continue to take the same action in the following stages.

Next, consider the complete information setting where players observe the complete private signal
profile. The private signal profile (x1, x2) reveals the realized state θ . Hence, both players select θ as
their action for all n ≥ 1.

Comparing the two scenarios above, we observe that even though in both settings players select the
same action for all stages, in the first setting the consensus action is not the action they would choose
if they had access to the other player’s signal. �

This example shows that consensus need not imply information aggregation. However, note that the
parameters of the joint distribution of the signal profile are fine tuned to achieve this behavior in the
first setting. Any infinitesimal change to these parameters breaks the symmetry in the informativeness
of the signals. The following theorem shows that this example is not generic [60].

Theorem 7.7. Denote the space all probability measures over the state and signal profile, i.e., �,
by P. Let σP denote the unique MPBE of the quadratic game given prior P ∈ P. For a generic P ∈ P
and all i, σP

i,n → EP[θ | hσ∞] almost surely.8 �
The theorem states that players eventually select actions as if they have access to each others’ private

signals for any generic joint prior distribution of the private signals. That is, Example 7.4 belongs to a
meager set in the space of probability measures over �.

A special case of the utility function above is when λ = 0. In this case, estimation is the only
concern. The equilibrium action is the expectation of the state conditional on the information. This
problem is an instance of social learning. Bayesian social learning literature considers the information
aggregation when there are no payoff externalities among players, that is, the actions of players do
not affect each other’s payoffs directly. This theorem extends some of the results in Bayesian social
learning in networks [61–63] to the case when payoff externalities exist.

8A generic P ∈ P belongs to a residual subset of (P, d) where d denotes the total variation distance between measures.



226 CHAPTER 7 GAME THEORETIC LEARNING

Asymptotic properties aside, computing a BNE of a stage game is not straightforward, even in
quadratic games. In the following, we provide a tractable local filter for players to compute an MPBE
strategy when the private signals come from a Gaussian distribution.

Quadratic Gaussian network games
We consider the general form of the quadratic utility function in Eq. (7.12) with an additional bilinear
term in the state of the world and self-action,

ui(ai, a−i) := −1

2
a2

i +
∑
j∈−i

βijaiaj + δiaiθ , (7.21)

where βij ∈ R for i ∈ N , j ∈ −i, and δi for i ∈ N are real valued constants. We assume the private
signal profile x := (x1, . . . , xN) comes from a Gaussian distribution with mean θ1N and a diagonal
covariance matrix C.

Given its private signal, player i’s posterior distribution (belief) on the signal profile x and the
state of the world θ is Gaussian. Specifically, the expectation of private signals and the state (x, θ ) for
i = 1, . . . , N is given by

E[(x, θ ) | xi] = 1N+1eT
i x, (7.22)

where 1N+1 is an (N + 1) × 1 vector of ones, and ei is the canonical vector of size (N + 1) × 1 with one
in the ith element and zero elsewhere.

In the following we use induction to show that if at time n players’ beliefs are Gaussian with
expectations that are a linear combination of the private signal profile, then at time n their strategies are
linear in their expectation of the signal profile, and their beliefs remain Gaussian at time n + 1. We start
with the following induction step: Suppose that at time n player i has Gaussian beliefs on (x, θ ) given
its information hi,n with expectations that can be expressed as a linear combination of the signal profile,

E[x ∣∣ hi,n] = Li,nx, E[θ ∣∣ hi,n] = kT
i,nx, (7.23)

where Li,n ∈ RN×N and ki,n ∈ RN×1.
Computing the MPBE strategy at time n is equivalent to computing the BNE of the incomplete

information stage game. We can represent the BNE definition in Eq. (7.8) by using the fixed point
definition in Eq. (7.3), where the BNE strategy σi,n at stage n satisfies,

σi,n(hi,n) = argmax
ai

E[ui(ai, σ−i,n(h−i,n), θ )
∣∣ hi,n] (7.24)

for all hi,n and i ∈ N . The right side of the above equation can be simplified by taking the derivative of
the quadratic utility function in Eq. (7.21) with respect to ai, equating it to zero, and solving for ai,

σi,n(hi,n) =
∑
j∈−i

βijE[σj,n(hj,n) | hi,n] + δiE[θ | hi,n]. (7.25)

The second step of the induction is that player i’s strategy at time n is a linear combination of its
expectation of the private signals, that is,

σi,n(hi,n) = vT
i,nE[x | hi,n], (7.26)



7.4 LEARNING IN INCOMPLETE INFORMATION GAMES 227

where vi,n ∈ RN×1 is the strategy constant. When we substitute the above equation to Eq. (7.25), we
obtain the following set of linear equations,

vT
i,nE[x

∣∣hi,n] =
∑
j∈−i

βijE[vT
j,nE[x

∣∣hj,n]
∣∣hi,n] + δE[θ

∣∣hi,n]. (7.27)

Using the linearity of the expectation in Eq. (7.23), we can represent the above equation as

vT
i,nLi,nx =

∑
j∈−i

βijv
T
j,nLj,nLi,nx + δkT

i,nx. (7.28)

Recall that a BNE strategy satisfies the equation in Eq. (7.25) for all realizations of the history. This
implies that the above equation needs to hold for any realization of x. This we can ensure by equating
the coefficients that multiply each component of x above, yielding the following set of equalities,

LT
i,nvi,n =

∑
j∈−i

βijL
T
i,nLT

j,nvj,n + δki,n (7.29)

for all i ∈ N . Solving the set of equalities above for {vi,n}i∈N determines BNE strategies that are linear
in the expectation of the private signals as per Eq. (7.26). Together with the linear strategy constants
{vi,n}i∈N , the realized action at stage n can be expressed as a linear combination of the private signals
using the induction step in Eq. (7.23),

ai,n = σi,n(hi,n) = vT
i,nLi,nx. (7.30)

After selecting its action, player i observes its neighbors’ actions aNi,n, which as per the above
equation can be written as a linear combination of the private signals,

aNi,n = HT
i,nx :=

⎛
⎜⎜⎝

vT
ji,1,nLji,1,n

...
vT

ji,d(i),n
Lji,d(i),n

⎞
⎟⎟⎠ x, (7.31)

where Ni = (ji,1, . . . , ji,d(i)). This means that player i’s observations are Gaussian distributed. Hence,
player i can form its posterior estimate on the private signals and the state using a Kalman filter. In
particular, player i propagates its expectation of the private signals as follows,

E[x | hi,n+1] = E[x | hi,n] + Ki,n(aNi,n − E[aNi,n | hi,n]), (7.32)

where Ki,n ∈ RN×|Ni| is the Kalman filter gain. The computation of the gain matrix at each stage
requires keeping track of the variance-covariance matrix Mi,n (see [64] for details). Note that because
the observations of player i can be expressed as a linear combination the private signals (7.31), its
posterior distribution on the private signals remain Gaussian with mean estimates that are also linear
combinations of the private signals. This completes the induction argument.

The computation of equilibrium strategies, i.e., forming the set of linear stage BNE equations in
Eq. (7.29) and solving for vi,n as well as forming estimates on its observations E[aNi,n | hi,n], requires
each player to keep track of the mean estimate constants of the entire population {Li,n, ki,n}i∈N . For
this, even though player i does not observe other players’ information, it needs to keep track of how



228 CHAPTER 7 GAME THEORETIC LEARNING

they process their information. In a sense, each player simulates the population’s progress at each stage.
Details of this computation are presented in [64].

In Fig. 7.2, we present an outline of the quadratic network game (QNG) filter that allows player
i to compute its MPBE actions. A few remarks are in order. The QNG filter is designed for any
quadratic game. That is, the game does not have to be supermodular, implying that we do not have
nonnegativity assumption on the cross-product constants βij. The Gaussian distribution of the private
signals together with the existence of linear strategies yield that all players’ beliefs on the private signals
remain Gaussian at all stages. The Gaussian beliefs separate BNE action computation at each stage to
estimation and decision-making, i.e., assessment and behavior, components.

The QNG filter requires a high level of computational prowess from each player. In particular, each
player needs to solve the N2 equalities for N2 variables in Eq. (7.29). Further, each player needs to
keep track of how other players form their beliefs on the private signals to be able to form these sets of
equalities. This process is not computationally demanding in comparison to solving N2 equalities, as it
only involves 2N addition operations, yet it assumes that players know the network structure.

In the following we consider a numerical implementation of the QNG filter.

Simulation
A network of N = 50 autonomous robots wants to move in coordination and at the same time follow
a target direction θ ∈ [0◦, 10◦]. An action determines the direction of movement on a two-dimensional
space. The estimation and coordination goals of the robots can be captured by the beauty contest game
with utility functions given in Eq. (7.20). We let λ = 0.5.

FIG. 7.2

Quadratic network game (QNG) filter. We illustrate the process after actions of stage n are realized. The dashed
box encloses player i ’s belief formation and decision-making. After player i observes its neighbor’s action aNi ,n,
it updates its estimate of the realized signal profile according to Eq. (7.32). In forming estimates of other’s
actions, player i needs to construct the observation matrix in Eq. (7.31) and the gain matrix Ki,n. Given the
expectation of the private signals at time n + 1, player i takes its action following the linear strategy in
Eq. (7.26). In order to compute the linear strategy constant vi,n+1, it constructs and solves the set of linear
equations in Eq. (7.29). All players follow the same process simultaneously at each stage.



7.4 LEARNING IN INCOMPLETE INFORMATION GAMES 229

Meters

0 0.5 1

M
et

er
s

0

0.5

1

Meters

0 0.5 1

M
et

er
s

0

0.5

1

FIG. 7.3

Geometric (left) and random (right) networks. A geometric random network is created by placing the players
randomly on a 1 × 1 meter square and connecting pairs with a distance less than 0.25 meter between them. In
the random network, there exists a link between any pair of players with probability 0.1.

We evaluate the QNG filter in geometric and random networks (see Fig. 7.3). The geometric network
has a diameter9 of 6 whereas the random network has a diameter of 5. The target direction is chosen
to be θ = 5◦. Players receive noisy private signals Gaussian with mean θ and standard deviation equal
to 1◦. The direction of movement of each player over stages is depicted in Fig. 7.4. We observe that
players’ movement directions converge to the best estimates in the target direction in a finite number
of steps. That is, at the end of the convergence time T , we have E[θ | hi,T ] = E[θ | x] for all i ∈ N .
Further, convergence time is in the order of the diameter for both the networks. This means that players
learn the sufficient statistic to calculate the best estimate in the amount of time it takes for information
to propagate on the network.

7.4.2 NETWORK-BASED FICTITIOUS PLAY FOR INCOMPLETE INFORMATION GAMES
Given the computational and memory demands mentioned above, the QNG filter, while being
conceptually appealing and having desirable asymptotic properties for supermodular quadratic games,
is not practical. In the following, we provide an adaptation of the network-based FP algorithm discussed
in Section 7.3 to incomplete information games.

Assume each player i has a local belief πi,n that assigns probabilities to different realizations of the
state of the world θ . We assume players have a separate state learning process that updates their local
belief πi,n in addition to the steps of the network-based FP algorithm at stage n. We will be agnostic
to the specifics of the state learning process as long as the players’ local beliefs converge to a common
belief π on the state of the world. In particular, we make the following assumption.

9Diameter is the longest shortest path among all pairs of nodes.



230 CHAPTER 7 GAME THEORETIC LEARNING

Time

1 2 3 4 5 6 7

A
ct

io
n 

va
lu

es

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Time

1 2 3 4 5 6

A
ct

io
n 

va
lu

es

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

FIG. 7.4

Player actions for geometric (left) and random (right) networks in Fig. 7.3. Action consensus happens in the
order of the diameter of the corresponding networks.

Assumption 7.5. For all players i ∈ N , the local beliefs converge to a common belief π at a rate
faster than log n/n,

TV(πi,n, π ) = O(log n/n), (7.33)

where TV(·) is the total variation distance between the distributions.10 �
For example, the state learning process can involve information exchange among players where they

exchange their beliefs and implement a consensus-like updating procedure, or it can entail Bayesian
updates based on repeated noisy private signal observations about the state of the world.

Given this assumption, we have the following convergence result for the modified network-based
FP [65].

Theorem 7.8. Let �(π ) = (N ,A, �, {ui}, π ) be a potential game. Assume players follow the
network-based fictitious play algorithm with individual state learning processes that satisfy the above
assumption. Then, limn→∞ d(σn, NE) = 0. �

This theorem can also be seen as another application of the robustness result given in Section 7.3.
In particular, the uncertainty on the state and networked interactions perturbs the best response actions
of players, resulting in a weakened FP process.

The network-based FP for incomplete information is computationally less demanding than the QNG
filter. However, in terms of information exchange, the QNG filter is less demanding. The QNG filter
only requires the observation of neighbors’ actions while step (iv) of the network-based FP necessitates
exchanging entire estimates of other players’ empirical distributions with neighbors. In addition, the
state learning process might require additional information exchange or observations.

In the following, we present an implementation of the network-based FP for incomplete information
games.

10TV is the maximum absolute difference between the respective probabilities assigned to elements B of the Borel set B(�)
of the space �, i.e., TV(πi,n, π ) := supB∈B(�) |πi,n(B) − π (B)|.



7.5 SUMMARY AND DISCUSSION 231

Simulation
We consider the same simulation setup as the numerical example of the QNG filter. We discretize the
action space in order to implement the network-based FP, where Ai = {0◦, 1◦, 2◦, . . . , 10◦}. In the
setup, each robot receives an initial noisy signal related to the target direction θ , xi = θ + εi where εi

is drawn from a zero mean normal distribution with standard deviation equal to 1◦. Robots learn about
the state by averaging their neighbors’ estimates with initial estimates equal to the private signal xi.11

We consider two types of networks. The first network is a geometric network generated by randomly
placing the robots on a 1 unit × 1 unit square and drawing an edge between pairs that are less than 0.25
units away. The second network is a random network. We observe that the convergence of the algorithm
is faster in the random network (46 steps) than the geometric network (113 steps) in Fig. 7.5.

In comparison to the QNG filter, the network-based FP for incomplete information takes longer in
terms of the number of stages. As can be expected, the computation time of each stage is much faster
for the network-based FP algorithm. In sum, the total simulation time until convergence takes longer
for the QNG filter.

7.5 SUMMARY AND DISCUSSION
Game theoretic learning entails a population of players sequentially predicting each others’ future
actions, selecting individual actions based on their predictions, and making new observations based on
the history of play. The goal of each player is to successfully predict others’ upcoming actions and play

Time

0 50 100 150

A
ct

io
n 

va
lu

es

0

1

2

3

4

5

6

7

Time

0 50 100 150

A
ct

io
n 

va
lu

es

0

1

2

3

4

5

6

7

FIG. 7.5

Robots’ actions for geometric (left) and small-world (right) networks. Solid lines correspond to each robots’
actions over time. The dotted dashed line is equal to the value of the state of the world θ = 5◦ and the dashed
line is the optimal estimate of the state given all the signals, which is equal to 5.3◦. Agents reach consensus in
the movement direction 5◦ faster in the small-world network than the geometric network.

11Note that the averaging dynamics in connected networks do not satisfy the assumption of convergence in TV distance in
Eq. (7.33). That is, the numerical setup does not necessarily meet the assumption of Theorem 7.8.



232 CHAPTER 7 GAME THEORETIC LEARNING

optimally with respect to those actions. The discussion in this chapter presumed that players can only
exchange messages over a communication/observation network, and cannot measure their individual
payoffs. In discussing network-based learning algorithms, we considered two important subcategories
of games: complete and incomplete information games. We presented network-based fictitious play
algorithms for both categories of games. We also considered Bayesian learning in the case of incomplete
information games, and discussed its asymptotic and computational properties.

Many research topics relevant to game theoretic learning have not been explored in this chapter. We
discuss two of these active research areas below.

Payoff-based learning algorithms
In these algorithms, players measure their realized utility at each stage; see [22] for a general discussion.
Most prominent payoff-based algorithms include log-linear learning that guarantees convergence to a
local maximum of the potential function of a potential game [66], and “no-regret” based algorithms
that have the desirable property of convergence to broader solution concepts than Nash equilibria, such
as correlated equilibria [67,68].

Utility design
In this chapter, we primarily considered convergence to Nash equilibria. When considering social
welfare or global objectives in technological settings, convergence to Nash equilibria can be undesired
as an NE can be highly inefficient. In response to the inefficiencies of Nash equilibria, besides designing
learning algorithms that avoid convergence to inefficient Nash equilibria, another research area focuses
on the design of utility functions [42,52,66]. The design of utility functions is particularly relevant to
engineered systems where players can be programmed. The goal in these studies is to improve both the
best and the worst Nash equilibrium.

REFERENCES
[1] Altman E, Altman Z. S-modular games and power control in wireless networks. IEEE Trans Autom Control

2003;48(5):839–42.
[2] Wang B, Wu Y, Liu KJR. Game theory for cognitive radio networks: an overview. Comput Netw

2010;54(14):2537–61.
[3] Scutari G, Palomar DP. Mimo cognitive radio: a game theoretical approach. IEEE Trans Signal Process

2010;58(2):761–80.
[4] Arslan G, Marden JR, Shamma JS. Autonomous vehicle-target assignment: a game-theoretical formulation.

J Dyn Syst Meas Control 2007;129(5):584–96.
[5] Mohsenian-Rad A, Wong VW, Jatskevich J, Schober R, Leon-Garcia A. Autonomous demand-side manage-

ment based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans Smart
Grid 2010;1(3):320–31.

[6] Yang P, Tang G, Nehorai A. A game-theoretic approach for optimal time-of-use electricity pricing. IEEE
Trans Power Syst 2013;28(2):884–92.

[7] Forouzandehmehr N, Perlaza SM, Han Z, Poor HV. A satisfaction game for heating, ventilation and air
conditioning control of smart buildings. In: 2013 IEEE Global communications conference (GLOBECOM).
IEEE; 2013. p. 3164–9.

[8] Nash JF, et al. Equilibrium points in n-person games. Proc Natl Acad Sci U S A 1950;36(1):48–9.

http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0045


REFERENCES 233

[9] Monderer D, Shapley LS. Potential games. Games Econ Behav 1996;14(1):124–43.
[10] Alpcan T, Basar T. A game-theoretic framework for congestion control in general topology networks.

In: 2002, Proceedings of the 41st IEEE conference on decision and control, vol. 2. IEEE; 2002. p. 1218–24.
[11] Lamperski A, Doyle JC. On the structure of state-feedback LQG controllers for distributed systems with

communication delays. In: Proceedings of the 50th IEEE decision and control and European control
conference (CDC-ECC), Orlando, FL, USA; 2011. p. 6901–6.

[12] Nayyar A, Mahajan A, Teneketzis D. Optimal control strategies in delayed sharing information structures.
IEEE Trans Autom Control 2011;56(7):1606–20.

[13] Cattivelli F, Sayed A. Analysis of spatial and incremental LMS processing for distributed estimation. IEEE
Trans Signal Process 2011;59(4):1465–80.

[14] Xiao J, Ribeiro A, Zhi-Quan L, Giannakis G. Distributed compression-estimation using wireless sensor
networks. IEEE Signal Process Mag 2006;23:27–41.

[15] Topkis DM. Supermodularity and complementarity. Princeton University Press; 1998.
[16] Vives X. Complementarities and games: new developments. J Econ Lit 2005:437–79.
[17] Milgrom P, Roberts J. Rationalizability, learning, and equilibrium in games with strategic complementarities.

Econometrica 1990;58(6):1255–77.
[18] Salehisadaghiani F, Pavel L. Distributed Nash equilibrium seeking: a gossip-based algorithm. Automatica

2016;72:209–16.
[19] Koshal J, Nedic A, Shanbhag UV. A gossip algorithm for aggregative games on graphs. In: Proceedings of

the 51st IEEE conference on decision and control; 2012. p. 4840–5.
[20] Marden JR, Young HP, Arslan G, Shamma JS. Payoff-based dynamics for multi-player weakly acyclic games.

SIAM J Control Optim 2009;48(1):373–96.
[21] Fudenberg D, Levine DK. The theory of learning in games, vol. 2. MIT Press; 1998.
[22] Young HP. Strategic learning and its limits, vol. 2002. Oxford University Press; 2004.
[23] Leslie DS, Collins EJ. Generalised weakened fictitious play. Games Econ Behav 2006;56(2):285–98.
[24] Fudenberg D, Levine DK. Consistency and cautious fictitious play. J Econ Dyn Control 1995;19(5):1065–89.
[25] Coucheney P, Gaujal B, Mertikopoulos P. Penalty-regulated dynamics and robust learning procedures in

games. Math Oper Res 2014;40(3):611–33.
[26] Wang Y, Saad W, Han Z, Poor HV, Başar T. A game-theoretic approach to energy trading in the smart grid.

IEEE Trans Smart Grid 2014;5(3):1439–50.
[27] Dabcevic K, Betancourt A, Marcenaro L, Regazzoni CS. A fictitious play-based game-theoretical approach

to alleviating jamming attacks for cognitive radios. In: IEEE ICASSP; 2014. p. 8158–62.
[28] Wang B, Wu Y, Liu KR. Game theory for cognitive radio networks: an overview. Comput Netw

2010;54(14):2537–61.
[29] Heinrich J, Lanctot M, Silver D. Fictitious self-play in extensive-form games. In: Proceedings of the 32nd

international conference on machine learning, ICML; 2015. p. 805–13.
[30] Ganzfried S, Sandholm T. Computing an approximate jam/fold equilibrium for 3-player no-limit Texas

hold’em tournaments. In: Proceedings of the 7th international joint conference on autonomous agents and
multiagent systems, vol. 2. International Foundation for Autonomous Agents and Multiagent Systems; 2008.
p. 919–25.

[31] Sandholm T. The state of solving large incomplete-information games, and application to poker. AI Mag
2010;31(4):13–32.

[32] Lambert TJ, Epelman MA, Smith RL. A fictitious play approach to large-scale optimization. Oper Res
2005;53(3):477–89.

[33] Garcia A, Reaume D, Smith RL. Fictitious play for finding system optimal routings in dynamic traffic
networks. Transp Res B Methodol 2000;34(2):147–56.

[34] Swenson B, Kar S, Xavier J, Leslie DS. Robustness properties in fictitious-play-type algorithms. SIAM
J Control Optim 2017;55(5):3295–318.

http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0175


234 CHAPTER 7 GAME THEORETIC LEARNING

[35] Swenson B, Kar S, Xavier J. On asynchronous implementations of fictitious play for distributed learning.
In: 2015 49th Asilomar conference on signals, systems and computers. IEEE; 2015. p. 1119–24.

[36] Swenson B, Kar S, Xavier J. Single sample fictitious play. IEEE Trans Autom Control 2017;62(11):6026–31.
[37] Harris C. On the rate of convergence of continuous-time fictitious play. Games Econ Behav

1998;22(2):238–59.
[38] Swenson B, Kar S. On the exponential rate of convergence of fictitious play in potential games; 2017. arXiv

preprint arXiv:170708055.
[39] Gharesifard B, Cortes J. Distributed convergence to Nash equilibria in two-network zero-sum games.

Automatica 2013;49(6):1683–92.
[40] Chen X, Huang J. Spatial spectrum access game: Nash equilibria and distributed learning. In: Proceedings

of the thirteenth ACM international symposium on mobile ad hoc networking and computing. ACM; 2012.
p. 205–14.

[41] Gharehshiran ON, Krishnamurthy V, Yin G. Distributed tracking of correlated equilibria in regime switching
noncooperative games. IEEE Trans Autom Control 2013;58(10):2435–50.

[42] Li N, Marden JR. Designing games for distributed optimization. IEEE J Sel Top Signal Process
2013;7(2):230–42.

[43] Benaïm M, Hofbauer J, Sorin S. Stochastic approximations and differential inclusions. SIAM J Control Optim
2005;44(1):328–48.

[44] Marden JR, Arslan G, Shamma JS. Cooperative control and potential games. IEEE Trans Syst Man Cybern
B Cybern 2009;39(6):1393–407.

[45] Scutari G, Barbarossa S, Palomar DP. Potential games: a framework for vector power control problems with
coupled constraints. In: Proceedings of the IEEE international conference on acoustics, speech and signal
processing, vol. 4. IEEE; 2006. p. 241–4.

[46] Xu Y, Anpalagan A, Wu Q, Shen L, Gao Z, Wang J. Decision-theoretic distributed channel selection
for opportunistic spectrum access: strategies, challenges and solutions. IEEE Commun Surv Tutorials
2013;15(4):1689–713.

[47] Zhu M, Martínez S. Distributed coverage games for energy-aware mobile sensor networks. SIAM J Control
Optim 2013;51(1):1–27.

[48] Ding C, Song B, Morye A, Farrell JA, Roy-Chowdhury AK. Collaborative sensing in a distributed PTZ
camera network. IEEE Trans Image Process 2012;21(7):3282–95.

[49] Nie N, Comaniciu C. Adaptive channel allocation spectrum etiquette for cognitive radio networks. Mob Netw
Appl 2006;11(6):779–97.

[50] Chu X, Sethu H. Cooperative topology control with adaptation for improved lifetime in wireless ad hoc
networks. In: Proceedings of IEEE international conference on computer communications. IEEE; 2012.
p. 262–70.

[51] Srivastava V, Neel JO, MacKenzie AB, Menon R, DaSilva LA, Hicks JE, et al. Using game theory to analyze
wireless ad hoc networks. IEEE Commun Surv Tutorials 2005;7(4):46–56.

[52] Marden JR, Wierman A. Overcoming limitations of game-theoretic distributed control. In: Proceedings of
the 48th IEEE conference on decision and control, 2009 held jointly with the 2009 28th Chinese control
conference. CDC/CCC 2009. IEEE; 2009. p. 6466–71.

[53] Swenson B, Murray R, Kar S. On best-response dynamics in potential games; submitted for publication.
https://arxiv.org/abs/1707.06465.

[54] Swenson B, Murray R, Kar S. Regular potential games; submitted for publication. https://arxiv.org/abs/
1707.06466.

[55] Marden JR, Arslan G, Shamma JS. Joint strategy fictitious play with inertia for potential games. IEEE Trans
Autom Control 2009;54(2):208–20.

[56] Swenson B, Kar S, Xavier J. Empirical centroid fictitious play: an approach for distributed learning in
multi-agent games. IEEE Trans Signal Process 2015;63(15):3888–901.

http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0285


REFERENCES 235

[57] Dimakis AG, Kar S, Moura JM, Rabbat MG, Scaglione A. Gossip algorithms for distributed signal processing.
Proc IEEE 2010;98(11):1847–64.

[58] Kar S, Moura JM. Convergence rate analysis of distributed gossip (linear parameter) estimation: fundamental
limits and tradeoffs. IEEE J Sel Top Signal Process 2011;5(4):674–90.

[59] Chen J, Sayed AH. Diffusion adaptation strategies for distributed optimization and learning over networks.
IEEE Trans Signal Process 2012;60(8):4289–305.

[60] Molavi P, Eksin C, Ribeiro A, Jadbabaie A. Learning to coordinate in social networks. Oper Res
2015;64(3):605–21.

[61] Djuric PM, Wang Y. Distributed Bayesian learning in multiagent systems. IEEE Signal Process Mag
2012;29:65–76.

[62] Rosenberg D, Solan E, Vieille N. Informational externalities and emergence of consensus. Games Econ Behav
2009;66(2):979–94.

[63] Mueller-Frank M. A general framework for rational learning in social networks. Theor Econ 2013;8:1–40.
[64] Eksin C, Molavi P, Ribeiro A, Jadbabaie A. Bayesian quadratic network game filters. IEEE Trans Signal

Process 2014;62(9):2250–64.
[65] Eksin C, Ribeiro A. Distributed fictitious play for multi-agent systems in uncertain environments. IEEE Trans

Autom Control 2017;63(4):1177–84.
[66] Marden JR, Shamma JS. Game theory and distributed control. In: Handbook of game theory 2012;4:861–900.
[67] Hart S, Mas-Colell A. A simple adaptive procedure leading to correlated equilibrium. Econometrica

2000;68(5):1127–50.
[68] Hart S, Mas-Colell A. A general class of adaptive strategies. J Econ Theory 2001;98(1):26–54.
[69] Krishna V, Sjöström T. On the convergence of fictitious play. Math Oper Res 1998;23(2):479–511.

http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0315
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0325
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0330
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0335
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0340
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf0345
http://refhub.elsevier.com/B978-0-12-813677-5.00007-9/rf9005


CHAPTER

8GRAPH SIGNAL PROCESSING

José M.F. Mouraa∗
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States∗

8.1 INTRODUCTION
It is by now a cliché that data is everywhere, and we are and will be inundated by data. According to
a 2014 study by IDC [1], in 2020 alone, all digital data created, replicated, and consumed will amount
to 44 zetabytes. A zetabyte is 1021 bytes, so we will produce yearly data quantified by the number 44
followed by 21 zeros. To have a more physical feeling for this staggering amount of data, we compare
it to a coarse estimate of the entire collection of books, reports, written texts, maps, images, audio
recordings, and videos in the US Library of Congress (LOC) (charged with maintaining a copy of
every book ever printed in the United States). This estimate may vary, but we consider it to be three
petabytes [2]. Then, the 44 zetabytes of data produced worldwide in the year 2020 will be roughly
equivalent to 15 million LOCs. IDC has recently updated this estimate to 163 zetabytes by 2025 [3,4].
But these data will be very different from the data we are traditionally concerned with in disciplines
such as statistics, signal or image processing, computer vision, or machine learning. Beyond traditional
time series, speech, audio, radio, radar, biomedical signals, or images and videos, these data arise from
the 11 billion internet-of-things (IOT) devices in 2016 that are estimated to triplicate to 30 billion in
2020, from the activity of billions of cell phone users of the many service providers; from public and
private urban transportation systems; in health care from the digital records of patients, providers, visits,
exams, tests, results, costs, insurance, hospital procedures; from interactions among social network
agents, corporate financial data, hyperlinked blogs, or tweeters, metabolic networks, protein interaction
networks, just to mention some examples. These Big Data are often characterized by three, five, or
seven V: Variety, Volume, Velocity, Veracity, Variability, Value, and Visualization. In many contexts,
these data are produced by scattered sources such as the thousands of webcams monitoring traffic in
urban centers, i.e., the data are distributed. Besides numerical, the data can be Boolean, ordinal, or
categorical. Finally, the data is unlikely to fit neatly in a table; in other words, the data are unstructured.
The goal of this chapter is to introduce data analytic tools to process these data that are much like the
classical tools used with time series, images, or videos, but now applied to the variety of unstructured
Big Data of today.

aThis work is partially supported by NSF grant CCF # 1513936.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00008-0
Copyright © 2018 Elsevier Inc. All rights reserved.

239



240 CHAPTER 8 GRAPH SIGNAL PROCESSING

While this chapter focuses on the analytics of these unstructured data, which we will call Data
Science, we start by contrasting the goal of the chapter and Data Science with two other close topics,
namely, Network Science and Network Processes.

Network Science. In the last decade and a half, graphs have permeated the study of complex social,
biological, and technological systems [5–8] of high dimensional data, or of the dynamics of networked
processes such as epidemics, to refer to a few application domains. These studies often lead to first
representing the application data by a graph, and then addressing the questions of interest by focusing
on and analyzing the structure of the graph. This is the domain of Network Science [9] that has received
considerable attention [6–8]. For an illustrative Network Science approach to problems, consider the
rise and dominance of the Medici elite family in 15th century Florence through marriage, economics,
and the patronage of the Medicean networks [10]. Marriage network data in [10] is partially shown
[11] by the graph in Fig. 8.1 where nodes are families and edges are marital linkages among families.
Reference [10] shows that the “in-betweenness centrality” [12] for the Medici family marriage network
is Cb = 0.362 while for oligarch families it is Cb = 0.184 (see footnote 31 in [10]). Similarly, for
economic relations, it is Cb = 0.429 for Medici families and Cb = 0.198 for other elite families [10].
Further, as noted in footnote 32 in [10], the Medici family is more like a star or spoke network, with
sparse ties among families tied by marriage or economic relations to the Medici patriarch (average
degree of these neighbors of the Medici being 2). This contrasts with oligarch families where the

Peruzzi

Castellani

Barbadori

Strozzi

Bischeri

Pucci

Lamberteschi

Guadagni

Ginori

Ridolfi

Tornabuori

Albizzi

Medici

Acciaiuoli

Salviati

Pazzi

FIG. 8.1

Fifteenth-century Florentine marriages [11].



8.1 INTRODUCTION 241

average degree of their neighbors could be as high as 6.5. This centrality explains the dependence of
Medici partners on the Medici that played a significant intermediary role as facilitator of transactions
among them. The point here is that, in Network Science, a graph represents the data, and, once the graph
is available, the questions of interest are not addressed by analyzing the data, but rather by analyzing
the structure of the graph. Network Science focuses on topological and structural properties of the
network with quantities of interest such as in- and out-degrees of nodes, degree distribution, number of
connected components, size of the giant component, graph diameter, and average shortest path length
as well as parameters such as the clustering coefficient that measures network cohesiveness or various
other centrality measures. Network models include the Erdös Rényi random graphs, small world graphs,
preferential attachment and scale-free random graphs [13], regular graphs, and hub networks [6–8].

Network Processes. The spread of epidemics, fake news, memes, diffusion of opinions, and voting
patterns are all examples of network processes of great interest in the social and life sciences, for
example. These processes collect the state of all the agents (nodes) in the network. Their dynamics as
the process evolves in time are governed by local rules of interaction among the agents. For example, in
epidemics, a healed node becomes infected by coming into contact with another infected node [14–18].
Studies of these processes consider the emergence of global behaviors from these local interactions.
These are difficult questions because the network state space is very large—for an interacting system
of N agents and a binary state for each agent, the cardinality of this state space is 2N . For a small
network of N = 200, this is 2200 = 1060. This is a staggering large number that makes the analysis of
general processes over general networks an almost impossible task. Often, the literature studies these
systems for large time, large scale or network size (fluid dynamics) limit, restricting attention to global
process parameters such as the fraction of nodes in a given state, say, the fraction of infected nodes, or
the fraction of nodes adopting a particular opinion, or fraction of voters voting in the same candidate
or party. Further, the literature frequently analyzes these systems under simple conditions that abstract
out the network topology—full mixing or complete network where an agent can interact with any other
agent. Corresponding limiting models lead to systems of ordinary differential equations governing the
dynamics of the global quantities of interest. Our recent work in this area studies the dynamics of
network processes for arbitrary network topologies. References [19,20] introduce the scaled network
process under which the network process is a reversible Markov process [21], and for which we find
its equilibrium probability distribution (time asymptotics) that explicitly exhibits the network topology
through its adjacency matrix. From this equilibrium distribution, we can address global questions such
as which configuration, i.e., network state, in the long run is more likely to occur, or structural questions
such as which parts or substructures of the network are more likely to be infected. These questions
depend on both the topology of the network and the local rules of interaction among agents.

In [22,23], we consider the qualitative behavior of these processes in the limit of large networks.
Under this limit and appropriate conditions, the dynamics of global statistics, for example the fraction
of infected nodes, follow nonlinear ordinary differential equations (NLODE). The qualitative behavior
of these equations, requiring establishing the basins of attraction for the limit points of NLODEs,
addresses issues such as which opinion or virus may survive when several compete for attention or
multiple viruses cohabit the network [22,24].

Data Science. To remove the un from unstructured, we assume that the data is indexed by
the N nodes of a graph G = (V , E). The edges in E of G represent dependencies among the data. The
nodes in V can be thought of as the sources of data, for example, agents in a social network, individuals
in a population, tweeters, or bloggers in networks of hyperlinked blogs [25]. The data at each node
of V can itself be a time series, an image, a video, or other features collected or produced by the agent



242 CHAPTER 8 GRAPH SIGNAL PROCESSING

or characterizing the node. For example, we may be interested in a college cohort, say from Carnegie
Mellon. We may abstract a network where the nodes are the students in the class and the edges express
direct relations among them, for example, their friendships or degree of acquaintance. The data can be
their grades, extracurricular activities, time spent studying, the particular dormitory where they live.
These data relate to each student, and so the data are indexed by the nodes of the friendship network.
We may then pursue the question of predicting the grade point average of current juniors in the fall
of their senior year. Coupled to the available data associated with the lifestyle and course grades of
each student, the underlying cohort network graph should lead to better predictions than treating the
data independently of the social relations among students. We consider a second example. Fig. 8.2 on
the left represents a small fragment (20,000 users) of a much larger network of subscribers of a cell
phone service provider in a given month, say, month m. Nodes are users and their level of activity
(who calls whom) is represented by edges among them. The data in this case indicate simply whether
a user maintains service in a given month or drops the service; with reference to the left of Fig. 8.2,
this binary valued data is given by the two colors labeling the nodes of the graph—blue users keep
their service and red users drop or churn the service. Given the past history of subscribers who have
churned in each month, the service provider is interested in predicting which subscribers are at risk of
churning, i.e., which blue nodes in month m become red in month m+1. Because the churn rate is very
small, this detection problem is extremely challenging, like finding a needle in a haystack. A successful
solution (high probability of detecting churners while keeping the probability of false alarm very small)
requires taking into account the underlying graph structure. In [26], we find a set of network features
that are input to a classifier, leading to a probability of churn detection of 71% with a positive false
alarm rate of 0.08%; see the right of Fig. 8.2. In other words, if the user base is 100 million and the
average monthly churn rate is 1%, of the 1 million expected churners, the detector in [26] correctly finds
about 700,000 of these potential churners, missing 300,000 of them while misclassifying only 80,000
as churners of the remaining 99,000,000 subscribers. The analytics of the data indexed by nodes of
a graph G is the purview of Data Science that we consider in this chapter, in particular, we study
graph signal processing (GSP) that extends to graph-based data the methods developed over the last
60 years for time and image signals. We introduce GSP by building it from classical discrete signal
processing (DSP). To do this, we will provide in section 8.3 a quick abridged review of DSP concepts.
But first we briefly review related literature.

0

0.6

0.7

0.8

C
hu

rn
 d

et
ec

tio
n 

ra
te 0.9

1

0.1

Naive Bayes+Decision Tree
Naive Bayes
Decision Tree

0.2

False positive rate

0.3 0.4

FIG. 8.2

Left: Snippet of a cell phone service provider user network in a given month: blue dots (dark gray in print
versions) keep the service and red dots (light gray in print versions) drop the service in the month of service.
Right: Churn detection error performance from [26].



8.3 DSP: A QUICK REFRESHER 243

8.2 BRIEF REVIEW OF THE LITERATURE
GSP studies data indexed by graphs. Other approaches that process data indexed by graphs include
Markov random fields and, in particular, Gauss-Markov random fields [27–32], graphical models
[33–37], data reduction approaches such as [38–41], spectral graph clustering [42–45], or geometric
diffusion [46–48], to mention a few. Work on extending wavelets to irregularly spaced data and in
sensor networks [49–51] is closer to the perspective of GSP. Reference [52] studies compressed sensing
for networked data and [53–56] explore a number of issues such as wavelets on graphs, denoising, and
sampling on graphs.

In [57–60], we developed algebraic signal processing for time signals and space signals. The
algebraic signal processing theory introduces a signal model as a triplet of an algebra of filters, a
signal module, and a linear mapping. We showed that this signal model can be defined under certain
conditions by an appropriate definition of the shift filter. The algebraic signal processing leads in a
principled way to GSP as we developed in [61–63]. An approach to GSP that uses the graph Laplacian
is in [64].

To avoid a too mathematical introduction to GSP, we introduce GSP by illustrating how to cast DSP
in the context of GSP. To do this, we start with a brief refresher on DSP in the next section.

8.3 DSP: A QUICK REFRESHER
Discrete signal processing (DSP) [65–69] studies time or image signals.1 We briefly review time
signals and their representations, filtering, delay and impulse response, frequency, spectrum, Fourier,
z-transform, and related concepts.

We start with N (complex valued) numbers S = {
sα0 , . . . , sαN−1

}
. To define a time signal, we need

an ordering of these numbers so that we know which number precedes and which number succeeds a
given number. Let such ordering be given by the N-tuple s = (s0, . . . , sN−1). Tuples are ordered. We
refer to the indexing parameter n as time, and time takes values n = 0, . . . , N − 1. Entry sn of s is
the signal sample sn at time n that precedes the sample sn+1 and succeeds sample sn−1. The N-tuple is
usually referred to as the (finite) discrete time signal or sequence. Common (abuse of) notation refers
to the signal as simply the samples sn or s[n], where the time interval n = 0, . . . , N − 1 is taken for
granted.

Remark. To avoid details with the finiteness of time, we assume the signal is extended to the left
of n = 0 and right of n = N − 1. Of the many possible extensions, we consider periodic extensions
whereby we reduce sN = s0 and more generally sn = sn mod N . �

The z-transform provides a second useful representation of the signal. The z-transform of the (finite)
signal s is then

s(z) = s0z0 + s1z−1 + · · · + sN−1z−(N−1).

The z-transform is not to be interpreted as a polynomial in the complex variable z. The symbol z−1 is a
place holder and stands for the delay. The power z−n is the nth delay.

1We consider here only linear DSP with a finite number N of samples.



244 CHAPTER 8 GRAPH SIGNAL PROCESSING

When we develop GSP, we work with vector notation s = [s0 · · · sN−1]�, so, we recast DSP in
vector notation also. The time signal is now interpreted as a vector in CN . A vector collects all signal
samples; time is hidden or represented by the index of the coordinates of the vector.

Because CN is a vector space, it has a basis with respect to which we can represent any vector as a
linear combination of the vectors in the basis. We choose first the standard basis E = {e0, . . . , eN−1}.
This is an ordered basis. Using this standard basis in the vector space CN , the signal s is written as

s = s0

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
e1

+ · · · + sN−1

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
eN

,

where the basis vector en is represented in the standard basis by the standard vector en+1.2 This equation
explicitly indicates that, in the vector representation of the signal, the sampled signal at time n = 0 is
s0 [1 0 · · · 0]�, and more generally at time n it is snen. The vectors of the standard basis are the (unit)
impulses; for example, en is the impulse signal centered at time n, zero everywhere except at time n
where it is one. So, the representation above gives the signal s as a linear combination of the unit
impulses en. This representation in matrix-vector form is

s = [
e1 e2 · · · eN−1

]
︸ ︷︷ ︸

E=IN

⎡
⎢⎣

s0

s1
...

sN−1

⎤
⎥⎦

︸ ︷︷ ︸
sE

,

where E is the matrix of the standard basis vectors that as expected is IN , the N-dimensional identity
matrix. Using the notation in [70], the vector of the representation (called component vector) with
respect to the standard basis is sE = s.

Because the signal3 s is an element of the vector space CN , it can be represented as a linear
combination of the vectors of any other ordered basis B = {b0, . . . , bN−1}. These basis’ vectors
are themselves time signals. To determine sB that represents the signal s in the new basis B, let
the component vectors representing the vectors of the basis B in the standard basis E be bn, n =
0, . . . , N − 1, and let

B = [
b0 · · · bN−1

]
.

The component vector bn collects the (ordered) samples of the signal bn. Then, the signal s is
represented in the basis B as

s = B sB. (8.1)

2Representing a basis vector en by a vector en+1 is definitely confusing notation. It will become clear why when we consider,
for example, the z-transform of signals.
3We emphasize that a signal s is an ordered set of (complex valued) numbers or (complex valued) N-tuple. The vector
representation s of s assumes a reference basis in CN .



8.3 DSP: A QUICK REFRESHER 245

On the left of Eq. (8.1), we have the component vector s of the signal s with respect to the standard
basis in CN ; on the right, we have the component vector sB of the same signal s, now with respect to
the basis B. Then,

sB = B−1 s. (8.2)

For example, if B =
{

exp
(

j 2π
N kn

)
, k = 0, . . . , N − 1

}
0≤n≤N−1

is the Fourier basis of N complex

exponentials, then sB is the vector of Fourier coefficients of the signal s and Eqs. (8.1) and (8.2) are the
Fourier synthesis and Fourier analysis expressions of s (inverse Fourier transform and Fourier transform
of the signal).

Filters process signals. The simplest filter is the delay

sn−1 = z−1sn.

Consider a signal sin and its delayed version sout. Let their component vectors be sin and sout,
respectively. Because delay is a linear operation, we have

sout = Asin. (8.3)

The matrix A representing the periodic shift is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . .

. . .
. . . 0

0 0 · · · 1 0 0
0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (8.4)

This matrix is the cyclic shift. By replacing it in Eq. (8.3),

sout =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . .

. . .
. . . 0

0 0 · · · 1 0 0
0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

sin

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
. . .

. . .
. . . 0

0 0 · · · 1 0 0
0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

s0
s1
...

sN−1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

sN−1
s0
...

sN−2

⎤
⎥⎥⎥⎦ .



246 CHAPTER 8 GRAPH SIGNAL PROCESSING

A generic filter h is given by its z-transform

h(z) = h0z0 + h1z−1 + · · · + hN−1z−(N−1).

In vector notation, and with respect to the standard basis E, the filter is represented by the matrix H, a
polynomial in the cyclic shift

H = h(A)

= h0A0 + h1A1 + · · · + hN−1A(N−1)

= h0I + h1A + · · · + hN−1A(N−1)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

h0 hN−1 · · · h2 h1
h1 h0 hN−1 h2
... h1 h0

. . .
...

hN−2
. . .

. . . hN−1
hN−1 hN−2 · · · h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This is a circulant matrix. It is of course specified by the filter coefficients that can also be read out from
the first row of the filter H.

Filters are shift invariant. This can be seen from the z-transform representation

z · h(z) = h(z) · z

or from the matrix representation

A · h(A) = h(A) · A.

Either of these equations states that filtering first by h(z) (or h(A)) a signal and then delaying the filtered
output leads to the same signal as delaying first the signal by z (or A) and then filtering by h(z) (or h(A))
the delayed signal. Finally, we observe that, from the Cayley-Hamilton Theorem [71,72], A satisfies its
characteristic polynomial �(A), where �(λ) is the determinant of λI−A. The characteristic polynomial
�(A) has degree N, so, in DSP, as described so far, linear filters are (matrix) polynomials with degree
at most N − 1.

We consider the Fourier Transform. Without presenting details, we observe that the shift and filters
are circulant matrices. As such, they are diagonalizable and diagonalized by the (inverse) of the discrete
Fourier transform matrix (DFT). Because the DFT matrix is unitary and symmetric, its inverse is simply
its conjugate DFT∗. In other words,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · · · · 1
1 0 0 · · · · · · 0
0 1 0 · · · · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 1 0 0
0 0 · · · · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= DFT∗ · � · DFT (8.5)



8.3 DSP: A QUICK REFRESHER 247

= 1√
N

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 ej 2π
N ej 2π

N 2 · · · ej 2π
N (N−1)

1 ej 2π
N 2 ej 2π

N 4 · · · ej 2π
N 2(N−1)

...
...

...

1 ej 2π
N (N−1) ej 2π

N (N−1)2 · · · ej 2π
N (N−1)(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.6)

·

⎡
⎢⎢⎢⎢⎣

1

e−j 2π
N

. . .

e−j 2π
N (N−1)

⎤
⎥⎥⎥⎥⎦ (8.7)

· 1√
N

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 e−j 2π
N e−j 2π

N 2 · · · e−j 2π
N (N−1)

1 e−j 2π
N 2 e−j 2π

N 4 · · · e−j 2π
N 2(N−1)

...
...

...

1 e−j 2π
N (N−1) e−j 2π

N (N−1)2 · · · e−j 2π
N (N−1)(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (8.8)

where (·)∗ stands for complex conjugate. We remark:

1. Spectral components: The columns of the inverse DFT∗ of the DFT matrix

vn = 1√
N

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

ej 2π
N n

ej 2π
N 2n

...

ej 2π
N (N−1)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, n = 0, . . . , N − 1

are the N eigenvectors of A and form a complete orthonormal basis for CN . These vectors are the
spectral components.

2. Frequencies: The diagonal entries of � are the eigenvalues of the time shift A. In Physics and in
operator theory, these eigenvalues are the frequencies of the signal. In DSP it is more common to
call frequencies

�n = − 1

2π j
ln λn

= − 1

2π j
ln e−j 2π

N n

= 1

N
n, n = 0, . . . , N − 1.

The N (time) frequencies �n are all distinct, positive, equally spaced, and increasing from 0 to N−1
N .

The spectral components are the complex exponential sinusoidal functions. For example, corresponding
to the zero frequency is the DC spectral component (a vector whose entries are constant and all equal
to 1√

N
).



248 CHAPTER 8 GRAPH SIGNAL PROCESSING

This completes our brief review of DSP. It recasts well known DSP facts in a vector formulation
that is appropriate for immediate generalization to GSP, as we show in the next section.

8.4 GRAPH SIGNAL PROCESSING
As we observed in Section 8.3, DSP [65–69] studies time or image signals. GSP4 [61,62,73] generalizes
DSP to graph signals, i.e., signals whose samples are indexed by nodes v ∈ V of a generic directed,
undirected, or mixed graph G = (V , E), rather than necessarily by time instants or pixels of an image
as with DSP. We follow the presentation in [61,62]. GSP as introduced in these references and in this
chapter recovers DSP when we apply GSP to time signals or images. This is satisfying because when
we extend a theory such as DSP to a broader context such as GSP, the new theory should revert to the
original theory when applied to the original problem. In other words, GSP as described here if applied
to time signals or images should recover the DSP presented in Section 8.3. This is not the case with
other versions of GSP.

The main points in Section 8.3 when presenting DSP can be summarized as:

1. Set of numbers: Start with a set of N (complex valued) unordered numbers.
2. Graph signal: Order the numbers to get a signal (ordered tuple).
3. Shift: Define a shift.
4. Shift invariance: Assume filters are shift invariant.
5. Graph spectral analysis: Diagonalize the shift.

8.4.1 GRAPH SIGNALS
We first discuss graph signals. We start with an unordered set of complex valued numbers, possibly
repeated, S = {

sα0 , . . . , sαN−1

} ⊂ C. We assume that a graph G = (V , E) is given. In G, V =
{0, . . . , N − 1} is the set of N nodes and E is the set of edges. We further assume that each of the N data
in S is assigned to a node of the graph G. The data in S is now ordered by the assumed ordering of
the nodes of the graph and is given by an N-tuple s = (s0, . . . , sn, . . . , sN−1). We can think of S as a
scrambled version of the samples of the graph signal s. The component sn of the N-tuple graph signal s,
the nth sample of graph signal s, is now indexed by node n ∈ V of the graph G.

The graph G can be arbitrary, i.e., it may be directed, undirected, or mixed (having both directed and
undirected edges). For example, a directed edge from node i to node j captures dependency of the data sj

in node j, or sample sj, on the data si in node i. This dependency will be made clear in Section 8.4.2.
As an example, we consider a time signal and its associated graph. Assume the time signal s =

(s0, . . . , sn, . . . , sN−1) where, see Section 8.3, the samples are indexed by time. We construct a graph,
see Fig. 8.3, where the N nodes are the time instants 0 through N − 1 and the label of the nodes are the
numerical values of the time samples s0 through sN−1. Because sample sn+1 at time n + 1 follows the
sample sn at time n, node n is connected to node n+1 by a directed edge. Assuming a cyclic or periodic

4Like for DSP, we consider here only linear graph signal processing and finite graph signals, i.e., graphs with a finite
number N of nodes.



8.4 GRAPH SIGNAL PROCESSING 249

FIG. 8.3

Time cyclic graph.

signal extension sn = sn mod N , see remark at the beginning of Section 8.3, node N − 1 is connected
back to node 0. This is a directed cyclic graph and it is associated with time signals.

One way to define a graph is through its adjacency matrix A [74]. The rows and columns of the
adjacency matrix are labeled by its nodes from 0 to N − 1. Entry Aij �= 0 of A is a weighted in-edge to
node i from node j (or equivalently a weighted out-edge from node j to node i). Node j is an in-neighbor
of node i, and node i is an out-neighbor of node j. The set of in-neighbors of i is its in-neighborhood
Ni, and similarly for its out-neighborhood. If Aij = Aji �= 0, the edge (i, j) is undirected. If Aij = 0,
there is no in-edge to node i from node j. The graph may have cycles. Because Aij can be arbitrarily
valued, the graph adjacency matrix is a weighted matrix. Returning to time signals and the associated
graph in Fig. 8.3, we note that the adjacency matrix of the time cyclic graph is the cyclic shift matrix in
Eq. (8.4).

Because the graph signal assigns to each node n ∈ V one of the complex numbers in S, a graph
signal s is a map

s : V → C.

As mentioned in Section 8.3, we work with vectors rather than tuples. With respect to the standard basis
in CN , the graph signal is given by the component vector

s =
⎡
⎢⎣

s0
...

sN−1

⎤
⎥⎦ ∈ CN .

As an example, the impulse graph signal centered at node n is given by

δn =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...
1
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which is zero everywhere, except at node n where it is one.



250 CHAPTER 8 GRAPH SIGNAL PROCESSING

8.4.2 GRAPH SHIFT
The most elementary filtering operation in DSP is the delay given by the time shift z−1. We saw in
Section 8.3 that the matrix representation A of the time shift z−1 is given by the cyclic shift matrix
given in Eq. (8.4). But, as we observed after Fig. 8.3, this matrix is the adjacency matrix of the time
graph illustrated in Fig. 8.3. In other words, the shift matrix A representing the time shift z−1 is the
adjacency matrix of the graph associated with the time signal.

We adopt here (in reverse) this insight and propose as graph shift A for graph signals s indexed by
nodes of an arbitrary graph G = (V , E) the adjacency matrix of the graph. In other words, the shifted
version of the sample sn of the graph signal is given by a weighted sum of the samples of the graph
signal at the in-neighbors of node n

sn =
N−1∑
i=0

Anisi

=
∑

i∈Nn

Anisi,

where the weights Ani are the entries of the adjacency matrix A and Nn is the in-neighborhood of
node n. Collecting all the data in the signal vector s, we get that the output sout of the graph shift A to
the input sin = s is given by

sout = Asin, (8.9)

where, we emphasize again, the graph shift is the adjacency A of the graph.
Remark. The samples of the graph signal are indexed by the nodes of the graph. Relabeling the

nodes changes the graph signal component vector and the shift matrix. Let π be a permutation of the
nodes of the graph. Then, for example, Eq. (8.9) becomes

π sout = π AπTπsin,

where recall π−1 = πT . Relabeling the nodes, correspondingly permutes the entries of the graph signal
and the shift matrix is conjugated by the same permutation π , i.e., the rows of A are reordered by π

and the columns reordered by the inverse of π . �

8.4.3 GRAPH FILTERS AND GRAPH CONVOLUTION
A graph filter h is represented by a matrix H, and graph filtering or graph filtering convolution by h is
matrix-vector multiplication

sout = H · sin.

Shift Invariance. In DSP, shift invariant filters play an important role. In this chapter, we restrict
attention to shift invariant filters. Shift invariance means that we can commute the operations of shifting
and filtering. In other words, the filter is shift invariant if first shifting the input signal sin and then



8.4 GRAPH SIGNAL PROCESSING 251

filtering the shifted input by the graph filter h or first filtering sin by h and then shifting the output signal
leads to the same graph signal. In matrix-vector product form

A · (H · sin)︸ ︷︷ ︸
filter input︸ ︷︷ ︸

shift filtered input

= H · (A · sin)︸ ︷︷ ︸
shift input︸ ︷︷ ︸

filter shifted input

.

Because this is true for every graph signal, we conclude that for shift invariant filters

A · H = H · A, (8.10)

and the graph filter h and the graph shift commute.
As explained in [58,61,62,72], if �(A) = m(A), where �(A) and m(A) are the characteristic

polynomial and the minimal polynomial of the shift A, then the shift invariant filters h are polynomials
of the shift. In other words, if Eq. (8.10) holds for graph filter H, then

H = h(A),

where h(·) is, by the Cayley-Hamilton Theorem [75], a polynomial of degree at most N −1. Also, if the
shift is diagonalizable, shift invariant filters and the shift share the same (complete set of orthonormal)
eigenvectors. This means that if vn is a spectral component (eigenvector of A) with corresponding
eigenvalue λn

H · vn = h (λn) vn,

i.e., although graph filtering by H is in general a matrix-vector multiplication, graph filtering of
a spectral component reduces to scalar multiplication by the polynomial filter evaluated at the
eigenvalue λn. In words, the spectral components are invariant to graph filters.

8.4.4 GRAPH FOURIER TRANSFORM AND GRAPH SPECTRAL DECOMPOSITION
We now consider the graph Fourier transform (GFT). For simplicity, we focus on shifts A with N
distinct eigenvalues λn, n = 0, . . . , N −1. These shifts A are diagonalizable and their characteristic and
minimal polynomials are equal, �(A) = m(A). As argued in Section 8.4.3, shift invariant filters are
then polynomials of the shift. The general case of k < N distinct eigenvalues and nondiagonalizable
shifts is considered in [61–63] and fully treated in [76]; we refer the reader to these references for full
details.

In an analogy with classical DSP and Section 8.3, see Eq. (8.5), the inverse of the graph Fourier
transform is the matrix of eigenvectors of the shift

A = [
v1 · · · vN−1

]
︸ ︷︷ ︸

GFT−1

diag
[
λ1, . . . , λN−1

] [
v1 · · · vN−1

]−1︸ ︷︷ ︸
GFT

(8.11)

= GFT−1� GFT (8.12)

= GFTH� GFT, (8.13)



252 CHAPTER 8 GRAPH SIGNAL PROCESSING

where GFT−1 is the matrix of eigenvectors of A and diag is a diagonal matrix. Because A is
diagonalizable, it has a complete eigenbasis. So the graph Fourier transform GFT is unitary and
GFT−1 = GFTH .

In the sequel, we also use the following representation for the GFT.

GFT = WH =

⎡
⎢⎢⎣

wH
1
...

wH
N−1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

vH
1
...

vH
N−1

⎤
⎥⎥⎦ ,

because the GFT is unitary.
The N distinct eigenvalues {λn}0≤n≤N−1 of A are the graph frequencies and the eigenvectors

{vn}0≤n≤N−1 of A that are the columns of GFTH are the graph spectral components.
Given a signal s, with vector component s, its graph Fourier transform is then

ŝ = GFT · s

=

⎡
⎢⎢⎣

vH
1 · s

...
vH

N−1 · s

⎤
⎥⎥⎦ .

This is the analysis formula of the graph Fourier transform. The synthesis of the original signal from
its graph Fourier decomposition is

s = GFTH · ŝ

=
N−1∑
n=0

ŝnvn

=
N−1∑
n=0

(
vH

n · s
)

vn

=
N−1∑
n=0

〈vH
n , s〉 vn, (8.14)

where vn are the spectral components. In Eq. (8.14), 〈·, ·〉 is the dot or scalar product. This is the graph
signal equivalent expansion of the time domain Fourier series representation of the signal.

Remark. The vectors {wn}0≤n≤N−1 are the left graph eigenvectors of the graph shift A. Because the
graph shift A is assumed to be diagonalizable, the left and right eigenvectors wn and vn can be chosen
to be the same. �



8.4 GRAPH SIGNAL PROCESSING 253

Graph Filter Frequency Response. Given a shift invariant filter h, its graph frequency response is(
h (λ0) , . . . , h

(
λN−1

))
,

the polynomial filter h evaluated at the graph frequencies λn, n = 0, . . . , N − 1.
Graph Convolution Theorem. Following [61], see Equation (27) therein, we have the following

result for filtering with shift invariant filters

sout = H · sin

= h(A) · sin

= h
(

GFTH� GFT
)

· sin

= GFTH ·
⎡
⎢⎣h(�) · GFT · sin︸ ︷︷ ︸

GFT of s

⎤
⎥⎦

︸ ︷︷ ︸
Filtering in spectral domain︸ ︷︷ ︸

Inverse GFT

. (8.15)

This is the graph signal processing version of the Convolution Theorem of classical DSP. Filtering can
be accomplished in the node domain as a matrix-vector multiplication. In alternative, as per Eq. (8.15),
(1) we first GFT the input graph signal by ŝin = GFT · sin, then (2) graph filter in the spectral domain
as a pointwise multiplication of ŝin, the GFT of the graph signal sin, with the graph frequency response
h(�) of the graph filter h, followed, finally, by (3) the inverse GFT of the graph filtered output in the
graph spectral domain as GFTH · [h(�) · GFT · sin].

Graph Frequency Ordering. To define the concepts of low, band, and high pass signals and filters,
we need to order the graph frequencies. Because the underlying graph most likely will contain direct
edges, the graph shift A is in general nonsymmetric and hence the graph frequencies may be complex
valued. Because the complex numbers C is not an ordered field, there remains then the question of
how to order the graph frequencies. In [63], we chose to order the graph frequencies through the total
variation of the spectral components.

For time signals, the total variation of a signal s is

TV(s) =
N−1∑
n=0

∣∣sn − sn−1 mod N
∣∣ .

The total variation TV(s) of the time signal s measures how the signal varies over time. In [63], see
equation below Fig. 3, we compute the TV for the time spectral components as

TV (vn) =
∣∣∣∣1 − cos

2πn

N

∣∣∣∣ +
∣∣∣∣sin

2πn

N

∣∣∣∣ .

This expression gives that TV (vn) = TV (vN−n). The total variation for the DC-spectral component of
time signals is zero. This agrees with our intuition—because the DC-spectral component of a time
signals is a constant signal, its total variation across time is zero. This corresponds to the lowest
time frequency �0 = 0. We can also compute from the above expression that the TV (vn) is strictly



254 CHAPTER 8 GRAPH SIGNAL PROCESSING

increasing from n = 0 to n = N
2 , if N is even, or N−1

2 if N is odd. So, with time signals, the frequencies
can be ordered by ordering the associated spectral components according to their TV.

We use this method of ordering time frequencies to order the graph frequencies. From [63], the
graph total variation of spectral component v is

TVG(v) = ∥∥v − Anormv
∥∥

1 ,

where the normalized graph shift is

Anorm = 1

|λmax|A,

and λmax is the eigenvalue of A with largest magnitude, i.e., |λmax| ≥ |λn|, ∀n. This normalization is
used to guarantee that the shifted signal is properly scaled for comparison with the original nonshifted
graph signal. It follows that, for spectral component v,

TVG(v) =
∣∣∣∣1 − λ

|λmax|
∣∣∣∣ ‖v‖1 ,

where ‖ · ‖1 is the vector 	1 norm. From here, it follows Theorem 2 in [63] that states that, given two
distinct complex eigenvalues or graph frequencies λm and λn of the graph shift A with eigenvectors or
spectral components vm and vn, respectively, the total variation of these spectral components satisfies

TVG (vm) < TVG (vn)

if the graph frequency λm is located closer to the value |λmax| on the complex plane than the graph
frequency λn. Using these results we can order the graph frequencies and from this ordering define low,
band, and high pass graph signals and graph filters; see [63] where we illustrate these concepts with the
dataset of hyperlinked political blogs [25].

8.4.5 FURTHER TOPICS AND APPLICATIONS
There is significant work that extends GSP to many other areas in signal and data processing. Sampling
is considered in, for example [55,77–80], and interpolation in [73]. Uncertainty principles are in
[81–83]. Reference [84] considers approximation of signals supported on graphs. References [85,86]
extend classical multirate signal processing theory to graphs. In [87–89], the authors consider
interpolation of graph signals, spectral estimation of graph processes, and blind identification of graph
filters. A recent topic of interest is graph learning from data; see a sample of work related to this topic
in [90–94].

There is an increasing set of applications of GSP. In our original work [61,62,73], we illustrated
the application of GSP in filter design for denoising, for classification, for lossy compression of graph
signals, and for analysis of graph signals, for detection of malfunctioning in sensor networks. Reference
[95] applies GSP to image inpainting and other problems of graph signal recovery by variation mini-
mization. In [96], GSP is applied to semisupervised multiresolution classification using adaptive graph
filtering with application to indirect bridge structural health monitoring and [97] applies GSP to fast
resampling of three-dimensional point clouds via graphs. In [98], multiresolution representations for
piecewise-smooth signals on graphs are developed. In recent work [99], we apply GSP to convolutional



REFERENCES 255

neural networks (CNN), replacing the image or regular lattice-like convolution step in CNN by graph
convolution, leading to noticeable increased performance over other existing approaches.

In this chapter, we studied GSP assuming the graph shift is the adjacency matrix of the graph. There
is a healthy literature that develops GSP with other definitions for the graph shift. In [64], GSP is
developed adopting the graph Laplacian as shift and several subsequent works have adopted this shift.
In [100,101], variations on the adjacency matrix as shift are discussed with different trade-offs with
respect to adopting the adjacency matrix as shift as done here and in our original work [61]. We note
that, following the algebraic signal processing [57–60,102], there is no “optimal” or “best choice” of
shift. Different shifts lead to different signal models, and the question is which of these is better suited
and leads to better results in the context of a specific application.

A final note on the spectral decomposition of graph signals. In [76], we show that in many
applications the shift has repeated eigenvalues or is not diagonalizable. The graph Fourier transform
is then dependent on choices of basis associated with corresponding invariant or spectral subspaces.
So, care should be taken to completely specify these choices before claiming results on graph Fourier
decompositions. Also, the concepts of frequency and spectral components are then to be handled with
care. Further, if the shift is not diagonalizable, we work with the Jordan form of the shift that is
numerically sensitive and the spectral components are (oblique) projections on subspaces of dimension
larger than one. We refer to [76] for further details.

8.5 CONCLUSION
This chapter considered GSP that extends classical DSP to data that is indexed by the nodes of a graph.
We studied linear GSP with an underlying graph with a finite number of nodes. We introduced the main
concepts of classic DSP but for graph signals, i.e., data indexed by the nodes of the graph G. The shift
plays an important role in GSP. We worked here with the shift that is identified with the adjacency
matrix of the graph. Shift invariant filters are polynomials of the shift. We discussed the graph Fourier
transform that introduces the graph frequency, and, by a suitable ordering of the graph frequencies, we
were able to define low, band, and high pass graph signals and graph filters.

REFERENCES
[1] Turner V. The digital universe of opportunities: rich data and the increasing value of the internet of things.

tech. rep.. IDC; 2014. https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm.
[2] Johnston L. A “Library of Congress” worth of data: it’s all in how you define it; 2012. https://blogs.

loc.gov/thesignal/2012/04/a-library-of-congress-worth-of-data-its-all-in-how-you-define-it/ [Recovered 17
December 2017].

[3] Reinsel D, Gantz J, Rydning J. Data age 2025: the evolution of data to life-critical don’t focus on big data;
focus on the data that’s big. tech. rep.. IDC; 2017. An IDC White Paper, Sponsored by Seagate. https://www.
seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf.

[4] Weissberger A. IDC directions 2016: IOT (internet of things) outlook vs current market assessment. IEEE
Communications Society, ComSoc blog; 2016. http://techblog.comsoc.org/2016/03/09/idc-directions-2016-
iot-internet-of-things-outlook-vs-current-market-assessment/.

[5] Börner K, Sanyal S, Vespignani A. Network science. Ann Rev Inf Sci Technol 2007;41(1):537–607.
[6] Newman M. Networks: an introduction. Oxford University Press; 2010.

https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://blogs.loc.gov/thesignal/2012/04/a-library-of-congress-worth-of-data-its-all-in-how-you-define-it/
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
http://techblog.comsoc.org/2016/03/09/idc-directions-2016-iot-internet-of-things-outlook-vs-current-market-assessment/
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0035


256 CHAPTER 8 GRAPH SIGNAL PROCESSING

[7] Jackson MO. Social and economic networks. Princeton University Press; 2010.
[8] Easley D, Kleinberg J. Networks, crowds, and markets: reasoning about a highly connected world.

Cambridge University Press; 2010.
[9] National Research Council. Network science. Washington, DC: The National Academies Press; 2005. ISBN

978-0-309-10026-7. https://doi.org/10.17226/11516. https://www.nap.edu/catalog/11516/network-science.
[10] Padgett JF, Ansell CK. Robust action and the rise of the Medici, 1400-1434. Am J Sociol

1993;98(6):1259–319.
[11] Bbuuggzz. 15th century Florentine marriages data from Padgett and Ansell.pdf. File licensed under the

Creative Commons Attribution-Share Alike 3.0 Unported license; 2013. https://commons.wikimedia.org/
wiki/File:15th_Century_Florentine_Marriges_Data_from_Padgett_and_Ansell.pdf [Retrieved 8 December
2017].

[12] Freeman LC. Centrality in social networks conceptual clarification. Soc Networks 1978;1(3):215–39.
[13] Barabási AL. Network science. Cambridge University Press; 2016.
[14] Barrat A, Barthelemy M, Vespignani A. Dynamical processes on complex networks. Cambridge University

Press; 2008.
[15] Liggett TM. Interacting particle systems, vol. 276. Springer Science & Business Media; 2012.
[16] Kipnis C, Landim C. Scaling limits of interacting particle systems, vol. 320. Springer Science & Business

Media; 2013.
[17] Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex networks.

Rev Mod Phys 2015;87(3):925.
[18] Lanchier N. Interacting particle systems. In: Stochastic modeling. Springer; 2017. p. 235–44.
[19] Zhang J, Moura JMF. Diffusion in social networks as SIS epidemics: beyond full mixing and complete

graphs. IEEE J Sel Top Signal Process 2014;8(4):537–51.
[20] Zhang J, Moura JMF. Role of subgraphs in epidemics over finite-size networks under the scaled SIS process.

J Complex Networks 2015;3(4):584–605.
[21] Kelly FP. Reversibility and stochastic networks. Cambridge University Press; 2011.
[22] Santos A, Moura JMF, Xavier JM. Bi-virus SIS epidemics over networks: qualitative analysis. IEEE Trans

Netw Sci Eng 2015;2(1):17–29.
[23] Santos AA, Kar S, Moura JMF, Xavier J. Thermodynamic limit of interacting particle systems over

dynamical networks. In: 2016 50th Asilomar conference on signals, systems and computers. IEEE; 2016. p.
997–1000.

[24] Santos A, Moura JMF, Xavier JM. Sufficient condition for survival of the fittest in a bi-virus epidemics.
In: 2015 49th Asilomar conference on signals, systems and computers. IEEE; 2015. p. 1323–7.

[25] Adamic LA, Glance N. The political blogosphere and the 2004 U.S. election: divided they blog.
In: Proceedings of the 3rd international workshop on link discovery. ACM; 2005. p. 36–43.

[26] Deri JA, Moura JMF. Churn detection in large user networks. In: 2014 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE; 2014. p. 1090–4.

[27] Kindermann R, Snell JL. Markov random fields and their applications, vol. 1. American Mathematical
Society; 1980.

[28] Rue H, Held L. Gaussian Markov random fields: theory and applications. CRC Press; 2005.
[29] Besag J. Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B Methodol

1974:192–236.
[30] Chellappa R, Jain A, editors. Markov random fields. Theory and application. Boston, MA: Academic Press;

1993.
[31] Moura JMF, Balram N. Recursive structure of noncausal Gauss-Markov random fields. IEEE Trans Inf

Theory 1992;38(2):334–54.
[32] Balram N, Moura JMF. Noncausal Gauss Markov random fields: parameter structure and estimation. IEEE

Trans Inf Theory 1993;39(4):1333–55.

http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0045
https://doi.org/10.17226/11516
https://www.nap.edu/catalog/11516/network-science
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0055
https://commons.wikimedia.org/wiki/File:15th_Century_Florentine_Marriges_Data_from_Padgett_and_Ansell.pdf
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0165


REFERENCES 257

[33] Lauritzen SL. Graphical models, vol. 17. Clarendon Press; 1996.
[34] Wainwright MJ, Jordan MI. Graphical models, exponential families, and variational inference.

In: Foundations and trends® in machine learning, vol. 1(1–2); 2008. p. 1–305.
[35] Koller D, Friedman N. Probabilistic graphical models: principles and techniques. MIT Press; 2009.
[36] Jordan M, Sudderth E, Wainwright M, Willsky A. Major advances and emerging developments of graphical

models [from the guest editors]. IEEE Signal Process Mag 2010;27(6):17–138.
[37] Sudderth EB, Ihler AT, Isard M, Freeman WT, Willsky AS. Nonparametric belief propagation. Commun

ACM 2010;53(10):95–103.
[38] Tenenbaum JF, Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction.

Science 2000;290:2319–23.
[39] Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science

2000;290:2323–6.
[40] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural

Comput 2003;15(6):1373–96.
[41] Donoho DL, Grimes C. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data.

Proc Natl Acad Sci U S A 2003;100(10):5591–6.
[42] Belkin M, Niyogi P. Using manifold structure for partially labeled classification. In: Advances in neural

information processing systems (NIPS); 2002. p. 953–60.
[43] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering.

In: Advances in neural information processing systems; 2002. p. 585–91.
[44] Ng AY, Jordan MI, Weiss Y. On spectral clustering: analysis and an algorithm. In: Advances in neural

information processing systems; 2002. p. 849–56.
[45] Schaeffer SE. Graph clustering. Comput Sci Rev 2007;1(1):27–64.
[46] Coifman RR, Lafon S, Lee A, Maggioni M, Nadler B, Warner FJ, Zucker SW. Geometric diffusions

as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Nat Acad Sci
2005;102(21):7426–31.

[47] Coifman RR, Lafon S, Lee A, Maggioni M, Nadler B, Warner FJ, Zucker SW. Geometric diffusions as a
tool for harmonic analysis and structure definition of data: multiscale methods. Proc Natl Acad Sci U S A
2005;102(21):7432–7.

[48] Coifman RR, Maggioni M. Diffusion wavelets. Appl Comput Harmon Anal 2006;21(1):53–94.
[49] Ganesan D, Greenstein B, Estrin D, Heidemann J, Govindan R. Multiresolution storage and search in sensor

networks. ACM Trans Storage 2005;1:277–315.
[50] Wagner R, Cohen A, Baraniuk RG, Du S, Johnson DB. An architecture for distributed wavelet analysis and

processing in sensor networks. In: Information processing in sensor networks (IPSN); 2006. p. 243–50.
[51] Wagner R, Delouille V, Baraniuk RG. Distributed wavelet de-noising for sensor networks. In: Proc. IEEE

conference on decision and control (CDC); 2006. p. 373–9.
[52] Haupt J, Bajwa WU, Rabbat M, Nowak R. Compressed sensing for networked data. IEEE Signal Process

Mag 2008;25(2):92–101.
[53] Narang SK, Ortega A. Local two-channel critically sampled filter-banks on graphs. In: IEEE international

conference on image processing (ICIP); 2010. p. 333–6.
[54] Hammond DK, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory. J Appl Comput

Harmon Anal 2011;30(2):129–50.
[55] Narang SK, Ortega A. Downsampling graphs using spectral theory. In: IEEE international conference on

acoustics, speech and signal processing (ICASSP); 2011. p. 4208–11.
[56] Narang SK, Ortega A. Perfect reconstruction two-channel wavelet filter banks for graph structured data.

IEEE Trans Signal Process 2012;60(6):2786–99.
[57] Püschel M, Moura JMF. The algebraic approach to the discrete cosine and sine transforms and their fast

algorithms. SIAM J Comp 2003;32(5):1280–316.

http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0290


258 CHAPTER 8 GRAPH SIGNAL PROCESSING

[58] Püschel M, Moura JMF. Algebraic signal processing theory; 2006. 67 p. http://arxiv.org/abs/cs.IT/0612077.
[59] Püschel M, Moura JMF. Algebraic signal processing theory: foundation and 1-D time. IEEE Trans Signal

Process 2008;56(8):3572–85.
[60] Püschel M, Moura JMF. Algebraic signal processing theory: 1-D space. IEEE Trans Signal Process

2008;56(8):3586–99.
[61] Sandryhaila A, Moura JMF. Discrete signal processing on graphs. IEEE Trans Signal Process

2013;61(7):1644–56.
[62] Sandryhaila A, Moura JMF. Big data analysis with signal processing on graphs: representation and

processing of massive data sets with irregular structure. IEEE Signal Process Mag 2014;31(5):80–90.
[63] Sandryhaila A, Moura JMF. Discrete signal processing on graphs: frequency analysis. IEEE Trans Signal

Process 2014;62(12):3042–54.
[64] Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing

on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal
Process Mag 2013;30:83–98.

[65] Oppenheim AV, Schafer RW. Digital signal processing. Englewood Cliffs, NJ: Prentice-Hall; 1975.
[66] Oppenheim AV, Willsky AS. Signals and systems. Englewood Cliffs, NJ: Prentice-Hall; 1983.
[67] Siebert WM. Circuits, signals, and systems. Cambridge, MA: The MIT Press; 1986.
[68] Oppenheim AV, Schafer RW. Discrete-time signal processing. Englewood Cliffs, NJ: Prentice-Hall; 1989.
[69] Mitra SK. Digital signal processing. A computer-based approach. New York: McGraw Hill; 1998.
[70] Bendersky E. Change of basis in linear algebra (posted on web); 2015. https://eli.thegreenplace.net/2015/

change-of-basis-in-linear-algebra/ [Accessed 11 December 2017].
[71] Gantmacher FR. Matrix theory. New York: Chelsea; 1959. p. 21.
[72] Lancaster P, Tismenetsky M. The theory of matrices: with applications. Elsevier; 1985.
[73] Narang SK, Gadde A, Ortega A. Signal processing techniques for interpolation in graph structured data.

In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2013.
p. 5445–9.

[74] Chung FRK. Spectral graph theory. American Mathematical Society; 1996.
[75] Gantmacher FR, Brenner JL. Applications of the theory of matrices. Courier Corporation; 2005.
[76] Deri JA, Moura JMF. Spectral projector-based graph Fourier transforms. IEEE J Sel Top Signal Process

2017;11(6):785–95. https://doi.org/10.1109/JSTSP.2017.2731599.
[77] Anis A, Gadde A, Ortega A. Towards a sampling theorem for signals on arbitrary graphs. In: 2014 IEEE

international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2014. p. 3864–8.
[78] Chen S, Varma R, Sandryhaila A, Kovačević J. Discrete signal processing on graphs: sampling theory. IEEE

Trans Signal Process 2015;63(24):6510–23.
[79] Puy G, Tremblay N, Gribonval R, Vandergheynst P. Random sampling of bandlimited signals on graphs.

Appl Comput Harmon Anal 2018;44(2):446–75.
[80] Anis A, Gadde A, Ortega A. Efficient sampling set selection for bandlimited graph signals using graph

spectral proxies. IEEE Trans Signal Process 2016;64(14):3775–89.
[81] Agaskar A, Lu YM. Uncertainty principles for signals defined on graphs: bounds and characterizations.

In: 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2012.
p. 3493–6.

[82] Agaskar A, Lu YM. A spectral graph uncertainty principle. IEEE Trans Inf Theory 2013;59(7):4338–56.
[83] Pasdeloup B, Alami R, Gripon V, Rabbat M. Toward an uncertainty principle for weighted graphs. In: 2015

23rd European signal processing conference (EUSIPCO). IEEE; 2015. p. 1496–500.
[84] Zhu X, Rabbat M. Approximating signals supported on graphs. In: IEEE international conference on

acoustics, speech and signal processing (ICASSP); 2012. p. 3921–24.
[85] Teke O, Vaidyanathan P. Extending classical multirate signal processing theory to graphs—Part I: Funda-

mentals. IEEE Trans Signal Process 2017;65(2):409–22.

http://arxiv.org/abs/cs.IT/0612077
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0315
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0325
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0330
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0335
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0340
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0345
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0350
https://eli.thegreenplace.net/2015/change-of-basis-in-linear-algebra/
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0360
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0365
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0370
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0375
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0380
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0385
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0390
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0395
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0400
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0405
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0410
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0415
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0420
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0425
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0430


REFERENCES 259

[86] Teke O, Vaidyanathan P. Extending classical multirate signal processing theory to graphs—Part II:
M-channel filter banks. IEEE Trans Signal Process 2017;65(2):423–37.

[87] Segarra S, Marques AG, Leus G, Ribeiro A. Interpolation of graph signals using shift-invariant graph filters.
In: 2015 23rd European signal processing conference (EUSIPCO). IEEE; 2015. p. 210–4.

[88] Marques AG, Segarra S, Leus G, Ribeiro A. Stationary graph processes and spectral estimation; 2016. arXiv
preprint arXiv:160304667.

[89] Segarra S, Mateos G, Marques AG, Ribeiro A. Blind identification of graph filters. IEEE Trans Signal
Process 2017;65(5):1146–59.

[90] Mei J, Moura JMF. Fitting graph models to big data. In: 2015 49th Asilomar conference on signals, systems
and computers. IEEE; 2015. p. 387–90.

[91] Mei J, Moura JMF. Signal processing on graphs: estimating the structure of a graph. In: 2015 IEEE
international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2015. p. 5495–9.

[92] Mei J, Moura JMF. Signal processing on graphs: performance of graph structure estimation. In: 2016 IEEE
international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2016. p. 6165–9.

[93] Mei J, Moura JMF. Signal processing on graphs: causal modeling of unstructured data. IEEE Trans Signal
Process 2017;65(8):2077–92.

[94] Egilmez HE, Pavez E, Ortega A. Graph learning from data under Laplacian and structural constraints. IEEE
J Sel Top Signal Process 2017;11(6):825–41.

[95] Chen S, Sandryhaila A, Moura JMF, Kovačević J. Signal recovery on graphs: variation minimization. IEEE
Trans Signal Process 2015;63(17):4609–24.

[96] Chen S, Cerda F, Rizzo P, Bielak J, Garrett JH, Kovačević J. Semi-supervised multiresolution classification
using adaptive graph filtering with application to indirect bridge structural health monitoring. IEEE Trans
Signal Process 2014;62(11):2879–93.

[97] Chen S, Tian D, Feng C, Vetro A, Kovačević J. Fast resampling of 3D point clouds via graphs. IEEE Trans
Signal Process 2017;66(3):666–81.

[98] Chen S, Singh A, Kovačević J. Multiresolution representations for piecewise-smooth signals on graphs.
https://arxiv.org/abs/1803.02944; March 2018.

[99] Du J, Zhang S, Wu G, Moura JMF, Kar S. Topology adaptive graph convolutional networks; 2017. ArXiv
preprint arXiv:1710.10370.

[100] Girault B, Gonçalves P, Fleury E. Translation on graphs: an isometric shift operator. IEEE Signal Process
Lett 2015;22(12):2416–20. https://doi.org/10.1109/LSP.2015.2488279.

[101] Gavili A, Zhang XP. On the shift operator, graph frequency, and optimal filtering in graph signal processing.
IEEE Trans Signal Process 2017;65(23):6303–18. https://doi.org/10.1109/TSP.2017.2752689.

[102] Püschel M, Moura JMF. Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and
DSTs. IEEE Trans Signal Process 2008;56(4):1502–21.

http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0435
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0440
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0445
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0450
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0455
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0460
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0465
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0470
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0475
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0480
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0485
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0490
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0495
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0500
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0505
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0510
http://refhub.elsevier.com/B978-0-12-813677-5.00008-0/rf0520


CHAPTER

9SAMPLING AND RECOVERY
OF GRAPH SIGNALS

Paolo Di Lorenzo∗, Sergio Barbarossa∗, Paolo Banelli†

Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome,

Rome, Italy∗ Department of Engineering, University of Perugia, Perugia, Italy†

9.1 INTRODUCTION
In a large number of applications involving sensor, transportation, communication, social, or biological
networks, the observed data can be modeled as signals defined over graphs, or graph signals for short.
As a consequence, over the last few years, there has been a surge of interest in developing novel
analysis methods for graph signals, thus leading to the research field known as graph signal processing
(GSP); see, e.g., [1,2]. The goal of GSP is to extend classical processing tools to the analysis of signals
defined over an irregular discrete domain, represented by a graph, and one interesting aspect is that
such methods typically come to depend on the graph topology; see, e.g., [2–6].

A fundamental task in GSP is to infer the values of a graph signal by interpolating the samples
collected from a known set of vertices. In the GSP literature, this learning task is known as interpolation
from samples, and emerges whenever cost constraints limit the number of vertices that we can directly
observe. This arises in several applications such as semisupervised learning of categorical data [7],
environmental monitoring [8], and missing value prediction as in matrix completion problems [9].
Interpolation methods on graphs rely on the implicit assumption that nodes close to each other have
similar values, i.e., the graph encodes similarity among the values observed over the vertices. For
instance, in an item-item graph in a recommendation system, a user would rate two similar items with
similar ratings [10]. In the same way, predicting the functions of proteins based on a protein network
relies on some notion of closeness among the nodes [11]. In other words, the signals of interest must be
smooth functions over the graph. In GSP, the smoothness assumption is typically formalized in terms
of (approximate) bandlimitedness over a graph Fourier basis, and enables recovery of the signal after
sampling over a selected subset of vertices.

A first seminal contribution to sampling theory in GSP is given by [12], where a sufficient condition
for unique recovery is stated for a given sampling set; the approach was then extended in [13,14]. Most
of the works on graph sampling theory assume that a portion of the graph Fourier basis is explicitly
known. For example, the work in [6] provides conditions that guarantee unique reconstruction of signals
spanned over a subset of vectors composing the graph Fourier basis, proposing also a greedy method to
select the sampling set in order to minimize the effect of sample noise in the worst case. Reference [15]
exploited a smart partitioning of the graph in local sets, and proposed iterative methods to reconstruct
bandlimited graph signals from sampled data. The work in [16] creates a conceptual link between

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00009-2
Copyright © 2018 Elsevier Inc. All rights reserved.

261



262 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

the uncertainty principle and the sampling of graph signals, and proposes several optimality criteria
(e.g., the mean-square error) to select the sampling set in the presence of noise. Another valid approach
is the so-called aggregation sampling [17], which involves successively shifting a signal using the
adjacency matrix and aggregating the values at a given node. Greedy sampling strategies with provable
performance guarantees were proposed in [18] in a Bayesian reconstruction setting.

If the size of the graph signal is very large as, e.g., in web-scale graphs [19], complexity becomes
a crucial issue, such that in many cases we cannot assume to know or efficiently compute the graph
Fourier basis. Some works have then proposed sampling methods that do not require such previous
knowledge. For instance, the work in [20] proposes efficient methods to select the sampling set based
on powers of the variation operator to approximate the bandwidth of the graph signal. There are also
alternative approaches that do not consider graph spectral information and rely only on vertex-domain
characteristic, e.g., maximum graph cuts [21] and spanning trees [22]. Finally, there exist randomized
sampling strategies, e.g., [23–25]. The work in [23] provides an efficient design of sampling probability
distribution over the nodes, deriving bounds on the reconstruction error in the presence of noise
and/or approximatively bandlimited signals. Reference [24] exploits compressive sampling arguments
to derive random sampling strategies with variable density, thus also proposing a fast technique to
estimate the optimal sampling distribution accurately. Last, the work in [25] proposes a sampling
strategy tailored for large-scale data based on random walks on graphs.

The sampling strategies described so far involve batch methods for sampling and recovery of graph
signals. In many applications such as, e.g., transportation networks, brain networks, or communication
networks, the observed graph signals are typically time-varying. This requires the development of
effective methods capable of learning and tracking dynamic graph signals from a carefully designed,
possibly time-varying, sampling set. Some previous works have considered this specific learning task,
see, e.g., [26–29]. Specifically, [26] proposed an LMS estimation strategy enabling adaptive learning
and tracking from a limited number of smartly sampled observations. The LMS method in [26] was
then extended to the distributed setting in [27]. The work in [28] proposed a kernel-based reconstruction
framework to accommodate time-evolving signals over possibly time-evolving topologies, leveraging
spatiotemporal dynamics of the observed data. Finally, reference [29] proposes a distributed method
for tracking bandlimited graph signals, assuming perfect observations and a fixed sampling strategy.

In this chapter, we review some of the recent advances related to sampling and recovery of signals
defined over graphs. Due to space limitations, this review will be limited to some specific contributions.
The structure of the chapter is explained in the sequel. Section 9.2 defines the adopted notation and
recalls some background on GSP. In Section 9.3, we illustrate the conditions for perfect recovery of
bandlimited graph signals from samples collected according to design criteria proposed to mitigate the
effect of noise or model mismatching. Finally, Section 9.4 illustrates algorithms and optimal sampling
strategies for adaptive recovery and tracking of dynamic graph signals, where both sampling set and
signal values are allowed to vary with time.

9.2 NOTATION AND BACKGROUND
In this section, we first introduce the notation that we will use throughout the chapter. Then, we briefly
recall some basic notions from GSP that will be instrumental for the derivations and arguments of the
following sections.



9.2 NOTATION AND BACKGROUND 263

Notation. We indicate scalars by normal letters (e.g., a); vector variables with bold lowercase letters
(e.g., a) and matrix variables with bold uppercase letters (e.g., A). Scalars ai and aij correspond to
the ith entry of a and the ijth entry of A, respectively. We indicate by ‖a‖2 and ‖A‖2 the �2 norm
and the spectral norm of the vector a and matrix A, respectively. If A is rectangular, we denote by
σi(A) the ith singular value of A; if A is square, λi(A) represents the ith eigenvalue of A. The trace
operator of matrix A is indicated with Tr(A); diag(a) is a diagonal matrix having a as main diagonal;
rank(A) denotes the rank of matrix A; det(A) represents the determinant of A, whereas pdet(A) is the
pseudo-determinant of A, i.e., the product of all nonzero eigenvalues of A. The superscript H denotes
the Hermitian operator, i.e., the conjugate transposition of a vector or matrix, whereas A† denotes the
pseudoinverse of matrix A. E{·} represents the expectation operator. A set of elements is denoted by a
calligraphic letter (e.g., S), and |S| represents the cardinality of set S, i.e., the number of elements of
S. The symbols ∪, ∩, and \ denote union, intersection, and difference among sets, respectively. Given
a set S, we denote its complement set as Sc, i.e., V = S∪Sc and S∩Sc = ∅. 1 denotes the vector of all
ones whereas 1S is the set indicator vector whose ith entry is equal to one, if i ∈ S, or zero otherwise.
Background. We consider a graph G = (V , E) consisting of a set of N nodes V = {1, 2, . . . , N},
along with a set of weighted edges E = {aij}i,j∈V , such that aij > 0, if there is a link from node j to
node i, or aij = 0, otherwise. The adjacency matrix A of a graph is the collection of all the weights
aij, i, j = 1, . . . , N. The combinatorial Laplacian matrix is defined as L = diag(1TA) − A. A signal
x over a graph G is defined as a mapping from the vertex set to the set of complex numbers, i.e.,
x : V → C. The graph G is endowed with a graph-shift operator S defined as an N × N matrix whose
entry (i, j), denoted with Sij, can be nonzero only if i = j or the link (j, i) ∈ E . The sparsity pattern
of matrix S captures the local structure of G; common choices for S are the adjacency matrix [2], the
Laplacian [1], and its generalizations [20]. We assume that S is diagonalizable, i.e., there exists an
N × N matrix U = [u1, . . . , uN] and an N × N diagonal matrix � that can be used to decompose S as
S = U�U−1. When S is normal, i.e., when SSH = SHS, matrix U is unitary and U−1 = UH .

Recovery of a signal from its sampled version is possible under the assumption that x admits a
sparse representation. The basic idea when addressing the problem of sampling graph signals is to
suppose that S plays a key role in explaining the signal of interest. More specifically, we assume that x
can be expressed as a linear combination of a subset of the columns of U, i.e.,

x = Us, (9.1)

where s ∈ CN is either exactly or approximately sparse. In this context, vectors {ui}N
i=1 are interpreted

as the graph Fourier basis, and {si}N
i=1 are the corresponding graph signal frequency coefficients, i.e.,

s = UHx (9.2)

takes the role of the Graph Fourier Transform (GFT) of signal x. As an example, in many cases the graph
signal exhibits clustering features, i.e., it is a smooth function over each cluster (e.g., in semisupervised
learning [7]), but it may vary arbitrarily from one cluster to the other. In such a case, if the columns
of U are chosen to represent clusters, the only nonzero (or approximately nonzero) entries of s are
the ones associated with the clusters. In the case of undirected graphs, U may be composed from the
eigenvectors of the Laplacian, which have well-known clustering properties [30].

The localization properties of graph signals in vertex and frequency domains will play an important
role in the ensuing arguments. To introduce such properties, we first define the matrix UF ∈ CN×|F |,



264 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

which represents the collection of all the columns of U associated with a subset of frequency indices
F ⊆ {1, . . . , N}. Then, we introduce the N × N band-limiting operator

BF = UFUH
F . (9.3)

The role of BF is to project a vector x onto the subspace spanned by the columns of UF . Thus, we say
that a vector x is perfectly localized over the frequency set F (or F-bandlimited) if

BFx = x = UF sF , (9.4)

where BF is given in Eq. (9.3), and the second equality comes from Eq. (9.1) where we have exploited
the sparsity of s, which is different from zero (and equal to sF ∈ C|F |) only in the frequency support
F . Similarly, given a subset of vertices S ⊆ V , we define the N × N vertex-limiting operator

DS = diag{1S }. (9.5)

Thus, we say that a vector x is perfectly localized over the subset S ⊆ V (or S-vertex-limited) if
DSx = x, with DS defined as in Eq. (9.5). We also denote by BF the set of all F-bandlimited signals,
and by DS the set of all S-vertex-limited signals. The operators DS and BF are self-adjoint and
idempotent, and represent orthogonal projectors onto the sets DS and BF , respectively. Differently
from continuous-time signals, a graph signal can be perfectly localized in both vertex and frequency
domains. This property is formally stated in the following theorem [16, Th. 2.1].

Theorem 9.1. There is a graph signal x perfectly localized over both vertex set S and frequency
set F (i.e., x ∈ BF ∩DS ) if and only if the operator BFDSBF has an eigenvalue equal to one; in such
a case, x is the eigenvector of BFDSBF associated with the unit eigenvalue. �

Perfect localization onto the sets S and F can be equivalently expressed in terms of the operator
DSUF [16], i.e., it holds if and only if

‖DSUF‖2 = ‖BFDSBF‖2 = 1. (9.6)

In the following section, we will illustrate the theory behind sampling and recovery of signals
defined over graphs.

9.3 SAMPLING AND RECOVERY
Let us consider the observation of an F-bandlimited graph signal over the sampling set S. The
observation model can be cast as:

yS = PT
S x = PT

SUF sF , (9.7)

where yS ∈ C|S| is the observation vector over the vertex set S, and PS ∈ RN×|S| is a sampling
matrix whose columns are indicator functions for nodes in S, and such that the orthogonal projector
over DS is given by DS = PSPT

S [cf. Eq. (9.5)]. The problem of recovering a bandlimited graph signal
from its samples is then equivalent to the problem of properly selecting the sampling set S, and then
recovering x from yS by inverting the system of equations in Eq. (9.7). This approach is known as
selection sampling and was addressed, for example, in [6,12,13,16].



9.3 SAMPLING AND RECOVERY 265

In the sequel, we will first consider the conditions for perfect recovery of bandlimited graph signals.
Then, we will illustrate the effect of noise and model mismatching on the reconstruction performance.
Also, because the identification of the sampling set S plays a key role in the conditions for signal
recovery and in the reconstruction performance, we will illustrate optimization strategies to design the
sampling set. Finally, we will illustrate results of numerical simulations carried out over synthetic and
realistic data.

9.3.1 SAMPLING AND PERFECT RECOVERY OF BANDLIMITED GRAPH SIGNALS
We will now address the fundamental problem of assessing the conditions and the means for perfect
recovery of x from yS . To this aim, we introduce the operator DSc = I − DS , which projects onto the
complement vertex set Sc = V \ S. Starting from Eq. (9.7), the necessary and sufficient conditions for
perfect recovery are stated in the following Theorem [16, Th. 4.1].

Theorem 9.2. Any F-bandlimited graph signal x can be perfectly recovered from its samples
collected over the vertex set S if and only if

‖DSc UF‖2 < 1, (9.8)

i.e., if there are no F-bandlimited signals that are perfectly localized on Sc.
Proof. From Eq. (9.7), a sufficient condition for signal recovery is the existence of the pseudoinverse

matrix Q = (PT
SUF )† = (UH

FDSUF )−1UH
FPS . Because UH

FDSUF = I−UH
FDSc UF , we obtain that Q

exists if ‖UH
FDScUF‖2 = ‖DScUF‖2 < 1, i.e., if Eq. (9.8) holds true. Conversely, if ‖DScUF‖2 = 1,

there exist bandlimited signals that are perfectly localized over Sc [cf. Eq. (9.6)]. Thus, if we sample
one of these signals over S, it would be impossible to recover x from those samples. This proves that
condition (9.8) is also necessary. �

Theorem 9.2 and its proof also suggest the reconstruction formula:

x̂ = UF (PT
SUF )†yS = UF (UH

FDSUF )−1UH
FPSyS , (9.9)

which guarantees reconstruction of the bandlimited graph signal x if condition (9.8) holds true, and
has computational complexity equal to O(N|F |2). The above reconstruction formula is also known as
consistent reconstruction [31] because it keeps the observed samples unchanged.

Let us consider now the implications of condition (9.8) of Theorem 9.2 on the sampling strategy.
To fulfill Eq. (9.8), we need to guarantee that there exist no signals that are perfectly localized over the
vertex set Sc and the frequency set F . Because, in general, we have

yS = PT
SUF sF + PT

Sc UF sF , (9.10)

we need to guarantee that PT
SUF sF 
= 0 for any nontrivial vector sF , which requires PT

SUF to be full
column rank, i.e.,

rank(PT
SUF ) = rank(UF ) = |F |. (9.11)

Of course, a necessary condition to satisfy Eq. (9.11) is that

|S| ≥ |F |. (9.12)



266 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

However, condition (9.12) is not sufficient because PT
SUF may loose rank, depending on graph

topology and samples’ location. As a particular case, if the graph is not connected, the vertices can
be labeled so that the Laplacian (adjacency) matrix can be written as a block diagonal matrix, with a
number of blocks equal to the number of connected components. Correspondingly, each eigenvector
of L can be expressed as a vector having all zero elements, except for the entries corresponding to
the connected component. This implies that, if there are no samples over the vertices corresponding to
the nonnull entries of the eigenvectors with index included in F , PT

SUF looses rank. More generally,
even if the graph is connected, there may easily occur situations where matrix PT

SUF is not rank-
deficient but it is ill-conditioned, depending on graph topology and samples’ location. This case is
particularly dangerous when the true signal is only approximately bandlimited (which is the case for
most signals in practice) or when the samples are noisy. In such cases, not all sampling sets of given
size are equally good, and it becomes fundamental to understand which is the best sampling set that
achieves the smallest reconstruction error.

The optimal samples’ location depends on the network topology. From the above theory, it turns out
that this dependency is strictly related to the structure of the eigenvectors of the Laplacian matrix. If the
graph is circulant,1 the eigenvectors of its Laplacian matrix are the Fourier vectors, so that they have
constant modulus. However, as soon as a graph departs from the circularity conditions, the Laplacian
eigenvectors tend to be more localized or, equivalently, to have some zero entries. It is not infrequent
to have eigenvectors that have only two coefficients different from zero [32]. Indeed, as illustrated in
[33], there is a strict relation between symmetries of a graph and sparsity of its Laplacian eigenvectors.
This means that as soon as a graph topology departs from a circulant structure, we need to take care
of the strategy to be adopted to select the samples’ location to guarantee a proper reconstruction of
the overall graph signal from a subset of observations. In the sequel, we will first illustrate the effect
of noise and model mismatching on graph signal reconstruction, and then we will describe sampling
strategies satisfying several optimization criteria.

9.3.2 THE EFFECT OF NOISE AND MODEL MISMATCHING
Let us consider first the reconstruction of bandlimited signals from noisy samples, where the
observation model is given by:

yS = PT
S (x + v) = PT

SUF sF + PT
Sv, (9.13)

where v is a zero-mean noise vector with covariance matrix Rv = E{vvH}. To design an interpolator in
the presence of noise, we consider the best linear unbiased estimator (BLUE), which is given by [34]:

x̂ = UF
(

UH
FPS

(
PT
SRvPS

)−1
PT
SUF

)−1
UH
FPS

(
PT
SRvPS

)−1
yS . (9.14)

The estimator in Eq. (9.14) minimizes the least square error and, if noise is Gaussian in Eq. (9.13), it
coincides with the minimum variance unbiased estimator, which attains the Cramér-Rao lower bound.
It is immediate to see that Eq. (9.14) is an unbiased estimator, i.e., E{x̂} = x. Furthermore, the mean
square error (MSE) is given by [34]:

1A graph is circulant if there exists some ordering of nodes for which the adjacency matrix (or, equivalently, the Laplacian
matrix) of the graph is circulant.



9.3 SAMPLING AND RECOVERY 267

MSE = E‖x̂ − x‖2 = Tr

{(
UH
FPS

(
PT
SRvPS

)−1
PT
SUF

)−1
}

. (9.15)

As a particular case, if noise is spatially uncorrelated, i.e., Rv = diag{r2
1, . . . , r2

N}, and letting uH
F ,i be

the ith row of matrix UF , we obtain:

MSE = Tr

{(
UH
FDSR−1

v UF
)−1

}
= Tr

⎧⎪⎨
⎪⎩

⎛
⎝∑

i∈S
uF ,iu

H
F ,i/r2

i

⎞
⎠

−1
⎫⎪⎬
⎪⎭ . (9.16)

This illustrates how, in the presence of uncorrelated noise, the design of the sampling set should
minimize the trace of the inverse of matrix UH

FDSR−1
v UF .

So far we assumed that the true signal x is perfectly bandlimited, i.e., x ∈ BF . However, in most
applications, the signals are only approximately bandlimited. In such a case, the recovery formula in
Eq. (9.9) applied to such signals leads to a reconstruction error, which is analyzed next. In general, an
approximately bandlimited graph signal can be expressed as

x = xF + �x, (9.17)

where xF = BFx is the bandlimited component, whereas �x = BF cx represents the model mismatch.
Sampling the signal over the vertex set S and using Eq. (9.9) as a recovery formula, then an upper
bound (i.e., a worst case) on the reconstruction error is given by [31]:

‖x̂ − x‖ ≤ ‖�x‖
cos(θmax)

, (9.18)

where θmax represents the maximum angle between the subspaces BF and DS , which is defined as:

cos(θmax) = inf‖z‖=1
‖DS z‖2

subject to BF z = z.
(9.19)

In particular, from Eq. (9.19), it is easy to see that cos(θmax) > 0 if condition (9.8) holds true.
Intuitively, the bound in Eq. (9.18) says that, for the worst-case error to be minimum, the sampling and
reconstruction subspaces should be as aligned as possible. Therefore, for approximatively bandlimited
signals, an optimal sampling set should be selected in order to maximize the smallest maximum angle
between the subspaces BF and DS . Interestingly, from Eqs. (9.19) and (9.3), it appears clear that

cos(θmax) = σmin(DSUF ) (9.20)

Thus, in the presence of model mismatching, the design of the sampling set should maximize
the minimum singular value of matrix DSUF or, equivalently, the minimum eigenvalue of matrix
UH
FDSUF .

In the next section, we will illustrate the strategies used to optimize the selection of the sampling set.

9.3.3 SAMPLING STRATEGIES
As previously mentioned, when sampling graph signals, besides choosing the right number of samples,
whenever possible it is also fundamental to have a strategy indicating where to sample as the samples’



268 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

location plays a key role in the performance of reconstruction algorithms. In principle, in the ideal
case (9.7), any sampling set S that satisfies condition (9.8) enables unique reconstruction through the
interpolation formula in Eq. (9.9). However, in the presence of noise or model mismatching, from
Eqs. (9.16) and (9.18)–(9.20), it is clear that the quality of reconstruction is strongly affected by a
careful design of the sampling set S. Different costs can then be defined to measure the reconstruction
error and are based on optimal design of experiments [35]. For instance, if we seek for the optimal
sampling set Sopt of size M, as the set that minimizes the mean squared error in Eq. (9.16), we have:

SA-opt = arg min
|S|=M

Tr

{(
UH
FDSR−1

v UF
)−1

}
. (9.21)

This is analogous to the so-called A-optimal design [35], and is equivalent to the one proposed in
[16]. Similarly, if we aim to design the optimal sampling set of size M to minimize the worst-case
reconstruction error in the presence of model mismatching [cf. Eqs. (9.18)–(9.20)], we have:

SE-opt = arg max
|S|=M

σmin(DSUF ), (9.22)

which is equivalent to the so-called E-optimal design [35]. The above criterion is equivalent to the one
proposed in [6] and, in general, it is useful to find a stable sampling set that satisfies condition (9.8). To
select the optimal sampling set, we should solve one of the problems in Eq. (9.21) or Eq. (9.22), which
entails the selection of an M-element subset of V that optimizes the adopted design criterion. This
is a finite combinatorial optimization problem (which is known to be NP-hard [36]) whose solution
in general requires an exhaustive search over all the possible combinations. Because the number of
possible subsets grows factorially as |V| increases, a brute-force approach quickly becomes infeasible
also for graph signals of moderate dimensions. To cope with this issue, in the sequel, we will introduce
lower complexity methods based on: i) greedy approaches, and ii) convex relaxations.

Algorithm 9.1 GREEDY SELECTION OF GRAPH SAMPLES
Input Data : UF , M;
Output Data : S, the sampling set.

Function : initialize S ≡ ∅
while |S| < M

s = arg max
j

f (S ∪ {j});
S ← S ∪ {s};

end

Greedy sampling
In this section, we will consider a numerically efficient albeit suboptimal greedy algorithm to tackle
the problem of selecting the sampling set. The greedy approach is described in Algorithm 9.1. The
simple idea underlying such a method is to iteratively add to the sampling set those vertices of the
graph that lead to the largest increment of an adopted performance metric, i.e., a specific set function
f (S) : 2V → R. We will set f (S) = −Tr

{
(UH

FDSR−1
v UF )−1

}
if we use an A-optimality design as

in Eq. (9.21), or f (S) = σmin(DSUF ) if we consider an E-optimality design as in Eq. (9.22). In fact,



9.3 SAMPLING AND RECOVERY 269

because Algorithm 9.1 starts from the empty set, when |S| < |F |, matrix UH
FDSR−1

v UF is inevitably
rank-deficient, and its inverse does not exist. In this case, considering an A-optimality criterion, we can
use f (S) = −Tr

{
(UH

FDSR−1
v UF )†}, which becomes equivalent to Eq. (9.21) when condition (9.8) is

satisfied.
In general, the performance of the greedy strategy will be suboptimal with respect to an exhaustive

search procedure. Nevertheless, if the set function f (S) satisfies some structural properties, the greedy
Algorithm 9.1 can be proved to be close to optimality. In particular, submodularity plays a similar
role in combinatorial optimization to convexity in continuous optimization and shares other features of
concave functions [37].

Definition 9.1. A set function f : 2V → R is submodular if and only if the derived set functions
fa : 2V\{a} → R

fa(S) = f (S ∪ {a}) − f (S) (9.23)

are monotone decreasing, i.e., if for all subsets a,A,B ⊆ V it holds that

if A ⊆ B ⇒ fa(A) ≥ fa(B).

�
Intuitively, submodularity is a diminishing returns property where adding an element to a smaller

set gives a larger gain than adding one to a larger set. The maximization of monotone increasing
submodular functions is still NP-hard, but the greedy heuristic can be used to obtain a solution that
is provably close to optimality, with a solution having objective value within 1 − 1/e of the optimal
combinatorial solution [38].

Unfortunately, both set functions in Eqs. (9.21) and (9.22) are not submodular functions [39].2

Thus, even if the design criteria in Eqs. (9.21) and (9.22) are useful to minimize the effect of noise [cf.
Eq. (9.15)] and model mismatching [cf. Eqs. (9.18)–(9.20)], respectively, we do not have theoretical
performance guarantees when applying Algorithm 9.1 to solve such problems. Nevertheless, in the
literature of experimental design, a further design criterion is often considered as a surrogate for
Eq. (9.21) [or Eq. (9.22)], which writes as:

SD-opt = arg max
|S|=M

log det
(

UH
FDSR−1

v UF
)

= arg max
|S|=M

log det

⎛
⎝∑

i∈S
uF ,iu

H
F ,i/r2

i

⎞
⎠ . (9.24)

This is analogous to the so-called D-optimal design [35], and is equivalent to one of the methods
proposed in [16] for graph signals sampling. This design strategy aims at maximizing the volume of the
parallelepiped built with the selected rows {uH

F ,i}i∈S of matrix UF (weighted by the inverse of the noise

variances {r2
i }i∈S ), and the rationale is to design a well-suited basis for the graph signal that we want

to estimate. Interestingly, the set function f (S) = log det(UH
FDSR−1

v UF ) is a monotone increasing

2Interestingly, in a Bayesian recovery setting [18], the negative of the MSE function was proved to be approximately
submodular.



270 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

submodular function [40]. Thus, in this case, the greedy approach in Algorithm 9.1 can be used to
solve Eq. (9.24) with provable performance guarantees. In the implementation of Algorithm 9.1, when
|S| < |F | and matrix UH

FDSR−1
v UF is rank-deficient, we can use f (S) = log pdet(UH

FDSR−1
v UF ),

which is equivalent to Eq. (9.24) when sampling condition (9.8) on perfect recovery is satisfied.

Convex relaxation
Another possible algorithmic solution to problems such as Eqs. (9.21), (9.22), (9.24), is to resort to
convex relaxation techniques; see, e.g., [41–43]. To this aim, let us introduce the indicator vector
d = {di}N

i=1, such that the ith entry is binary and given by di = 1 if node i belongs to the sampling set
S, and di = 0 otherwise. Using the indicator vector d, we can build a general sampling design problem
that can be cast as:

min
d

f (d)

s.t. 1T d = M,

d ∈ {0, 1}N ,

(9.25)

where f (d) = Tr
{
(UH

Fdiag(d)R−1
v UF )−1

}
for the A-optimal design [cf. Eq. (9.21)], f (d) =

−σmin(diag(d)UF ) for the E-optimal design [cf. Eq. (9.22)], and f (d) = − log det(UH
Fdiag(d)R−1

v UF )
for the D-optimal design [cf. Eq. (9.24)].

Problem (9.25) has still combinatorial complexity due to the integer nature of the optimization
variable d. Nevertheless, we can simply relax the indicator variable d to be a real vector belonging to
the hypercube [0, 1]N , thus leading to the following formulation:

min
d∈[0,1]N

f (d)

s.t. 1T d = M.

(9.26)

It is now easy to check that problem (9.26) is convex for all objective functions f (d) defined by
the design criteria in Eqs. (9.21), (9.22), (9.24), and its global solution can be found using efficient
numerical methods [44]. Of course, because Eq. (9.26) is a relaxed version of Eq. (9.25), its real
solution d∗ might need a further selection/thresholding step in order to generate a valid integer vector,
as required by Eq. (9.25). For instance, a possible solution is to select the M sampling nodes as the ones
associated with the M largest entries of d∗. Finally, one can also formulate the sampling design problem
in the opposite way with respect to Eq. (9.25). In particular, we might be interested in searching for
the optimal indicator vector d that minimizes the number of collected samples, i.e., the �0 norm of
the vector d, under a performance requirement on the function f (d), e.g., the MSE in Eq. (9.16). This
category of design problems takes the name of sparse sensing [42,43] and, using similar relaxation
arguments as before, such criteria lead to convex optimization problems.

In the next section, we will illustrate some numerical results aimed at assessing the performance of
the described sampling and recovery strategies.

9.3.4 NUMERICAL RESULTS
In the sequel, we consider the application of the described sampling and recovery methods to two real
graphs: a power network and a road network.



9.3 SAMPLING AND RECOVERY 271

20 40 60 80 100

Number of samples

−8

−7

−6

−5

−4

−3

−2

−1

M
S

E
 (

dB
)

D-optimality

(A) (B)

E-optimality
Random
A-optimality

FIG. 9.1

Sampling and recovery over the IEEE 118 Bus graph. (A) Graph topology and sampling set; (B) MSE versus
number of samples.

Sampling over power grids. The first example involves the IEEE 118 Bus Test Case, i.e., a portion
of the American Electric Power System (in the Midwestern United States) as of December 1962. The
graph is composed of 118 nodes (i.e., buses); its topology (i.e., transmission lines connecting buses)
is depicted in Fig. 9.1A [45] and the signal at each node encodes the entries of the eigenvector of the
Laplacian matrix associated with the second smallest eigenvalue (these entries highlight the presence of
three distinct clusters in the network). As illustrated in [46], the dynamics of the power generators give
rise to smooth graph signals, so that the bandlimited assumption is justified, although in an approximate
sense. In our example, we randomly generate a low pass signal with |F | = 12 and we take a number
of samples equal to |S| = 12. The squares in Fig. 9.1A correspond to the samples selected using the
greedy Algorithm 9.1 and the A-optimality design in Eq. (9.21). It is interesting to see how the method
distributes samples over the clusters and puts the samples, within each cluster, quite far apart from each
other. Finally, we compare the reconstruction performance obtained by the considered greedy sampling
strategies [cf. Eqs. (9.21), (9.22), and (9.24)] and by random sampling. To this aim we consider graph
signal recovery in the presence of an uncorrelated zero mean Gaussian random noise with unit variance,
and considering |F | = 20. Thus, Fig. 9.1B reports the MSE in Eq. (9.16) versus the number of samples
collected over the graph. As expected, the MSE decreases as the number of samples increases. We
can also notice how random sampling performs quite poorly whereas the A-optimal design (and the
D-optimal design) outperforms all other strategies.
Traffic flow prediction over road networks. The second example considers sampling of a portion
of the road network in the neighborhood of Mazzini Square, which is in the city of Rome, Italy.
We have placed landmarks (nodes of the graph) over the streets in a regular fashion, and connected
adjacent landmarks on the same lane and at the junctions, thus obtaining the graph topology depicted in
Fig. 9.2A. The signal lying on the vertices of the graph represents the flow (number of vehicles per unit
of time) of cars passing through the landmark during a period of 30 seconds, and was obtained using



272 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

0

2

4

6

8

10

12

14

16

10 20 30 40 50

Bandwidth

−16

−15

−14

−13

−12

−11

−10

−9

N
M

S
E

 (
dB

)

(A) (B)

D-optimality
E-optimality
A-optimality

FIG. 9.2

Sampling and recovery of vehicular flows over road networks. (A) Graph topology and sampling set; (B) NMSE
versus bandwidth.

a realistic simulator of urban mobility, namely, SUMO [47]. The similarity of values of the signal over
adjacent nodes makes the signal smooth, but only approximatively bandlimited. In this sense, there is
a mismatching between the observed signal and the bandlimited model used for processing. The goal
is to infer the traffic situation over all the road networks from a small number of collected samples.
Thus, we consider a bandwidth equal to |F | = 30, and we take a number of samples equal to |S| = 40.
The green squares in Fig. 9.2A correspond to the samples selected using the convex relaxation in
Eq. (9.26) and the E-optimality design in Eq. (9.22). It is interesting to see how the method distributes
almost uniformly the samples over the streets and the junctions. Finally, we compare the reconstruction
performance obtained by the sampling strategies based on convex relaxation [cf. Eqs. (9.21), (9.22),
and (9.24)] in the presence of model mismatching. To this aim, Fig. 9.2B reports the normalized MSE
(NMSE), i.e., NMSE = ‖x̂ − x‖2/‖x‖2, versus the graph signal bandwidth, and selecting |S| = |F |.
From Fig. 9.1B, as expected, the NMSE decreases if we use a larger bandwidth. Furthermore, in this
case, the E-optimal design outperforms all other strategies, as expected from Eqs. (9.18)–(9.20).

9.3.5 �1-NORM RECONSTRUCTION OF GRAPH SIGNALS
Let us consider now a different observation model where a bandlimited graph signal x ∈ BF is observed
everywhere, but a subset of nodes S is strongly corrupted by noise, i.e.,

y = x + DSv, (9.27)

where the noise is arbitrary but bounded, i.e., ‖v‖1 < ∞. This model is relevant, for example, in sensor
networks where a subset of sensors can be damaged or highly interfered. The problem in this case
is whether it is possible to recover the graph signal x exactly, i.e., irrespective of noise. Even though
this is not a sampling problem, the solution is still related to sampling theory. Clearly, if the signal x



9.3 SAMPLING AND RECOVERY 273

is bandlimited and if the indexes of the noisy observations are known, the answer is simple: x ∈ BF
can be perfectly recovered from the noisy-free observations, i.e., by completely discarding the noisy
observations if the sampling theorem condition (9.8) holds true. But, of course, the challenging situation
occurs when the location of the noisy observations is not known. In such a case, we may resort to an
�1-norm minimization, by formulating the problem as follows [16]:

x̂ = arg min
x∈B

‖y − x‖1. (9.28)

We provide next some theoretical bounds on the cardinality of S and F enabling perfect recovery of the
bandlimited graph signal using Eq. (9.28). To this purpose, we recall the following lemma from [16].

Lemma 9.1. Let us define μ := maxj∈F i∈V
∣∣uj(i)

∣∣, where uj(i) is the ith entry of the jth vector of
the graph Fourier basis. If for some unknown S, we have

|S| <
1

2μ2 |F | , (9.29)

then the �1-norm reconstruction method (9.28) recovers x ∈ B perfectly, i.e., x̂ = x, for any arbitrary
noise v present on at most |S| vertices. �

An example of �1 reconstruction based on Eq. (9.28) is useful to grasp some interesting features. We
consider the IEEE 118 bus graph in Fig. 9.1A. The signal is assumed to be bandlimited with a spectral
content limited to the first |F | eigenvectors of the Laplacian matrix. In Fig. 9.3, we report the behavior
of the NMSE associated with the �1-norm estimate in Eq. (9.28) versus the number of noisy samples,
considering different values of bandwidth |F |. As we can notice from Fig. 9.3, for any value of |F |,

20 40 60 80 100

Number of noisy samples

−100

−90

−80

−70

−60

−50

−40

−30

−20

N
M

S
E

 (
dB

)

FIG. 9.3

�1-Norm reconstruction: NMSE versus number of noisy samples.



274 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

there exists a threshold value such that, if the number of noisy samples is lower than the threshold,
the reconstruction of the signal is error free. As expected, a smaller signal bandwidth allows perfect
reconstruction with a larger number of noisy samples.

9.4 ADAPTIVE SAMPLING AND RECOVERY
In this section, we consider processing methods capable of learning and tracking dynamic graph signals
from a carefully designed, possibly time-varying, sampling set. To this aim, let us assume that, at
each time n, noisy samples of the signal are taken over a (randomly) time-varying subset of vertices,
according to the following model:

y[n] = DS[n] (x + v[n]) = DS[n]UF sF + DS[n]v[n], (9.30)

where DS[n] = diag{di[n]}N
i=1 ∈ RN×N [cf. Eq. (9.5)], with di[n] denoting a random sampling binary

coefficient, which is equal to 1 if i ∈ S[n], and 0 otherwise (i.e., S[n] represents the instantaneous,
random sampling set at time n); and v[n] ∈ CN is zero-mean, spatially and temporally independent
observation noise, with covariance matrix Rv = diag{r2

1, . . . , r2
N}. The estimation task consists in

recovering the vector x (or, equivalently, its GFT sF ) from the noisy, streaming, and partial observations
y[n] in Eq. (9.30). Following an LMS approach [48], from Eq. (9.30), the optimal estimate for sF can
be found as the vector that solves the following optimization problem:

min
s

E‖DS[n](y[n] − UF s)‖2, (9.31)

where in Eq. (9.31) we have exploited the fact that DS[n] is an idempotent matrix for any fixed n
[cf. Eq. (9.5)]. An LMS-type solution optimizes Eq. (9.31) by means of a stochastic steepest-descent
procedure, relying only on instantaneous information. Thus, letting x̂[n] be the current estimates of
vector x, the LMS algorithm for graph signals evolves as illustrated in Algorithm 9.2 [26].

Algorithm 9.2 LMS ON GRAPHS

Start with random x̂[0]. Given a step size μ > 0, for n ≥ 0, repeat:

x̂[n + 1] = x̂[n] + μ BFDS[n] (y[n] − x̂[n]) .

In the sequel, we illustrate how the design of the sampling strategy affects the reconstruction
capability of Algorithm 9.2. To this aim, let us denote the expected sampling set by S = {i =
1, . . . , N | pi > 0}, i.e., the set of nodes of the graph that are sampled with a probability pi = E{di[n]}
strictly greater than zero. Also, let Sc be the complement set of S. Then, the following results illustrate
the conditions for adaptive recovery of graph signals [26,49].

Theorem 9.3. Any F-bandlimited graph signal can be reconstructed via the adaptive Algorithm 9.2
if and only if ∥∥∥DSc

UF
∥∥∥

2
< 1, (9.32)

i.e., if there are no F-bandlimited signals that are perfectly localized on Sc. �



9.4 ADAPTIVE SAMPLING AND RECOVERY 275

Differently from batch sampling and recovery of graph signals, see, e.g., [6,12,13,16,17], condition
(9.32) depends on the expected sampling set. In particular, it implies that there are no F-bandlimited
signals that are perfectly localized over the set Sc. As a consequence, the adaptive Algorithm 9.2 with
probabilistic sampling does not need to collect all the data necessary to reconstruct one shot the graph
signal at each iteration, but can learn acquiring the needed information over time. The only important
thing required by condition (9.32) is that a sufficiently large number of nodes is sampled in expectation.

We now illustrate the mean-square performance of Algorithm 9.2. The main results are summarized
in Theorem 9.4 [49].

Theorem 9.4. Assume spatial and temporal independence of the random variables extracted by the
sampling process {di[n]}i,n. Then, for any initial condition, Algorithm 9.2 is mean-square error stable
if the sampling probability vector p and the step size μ satisfy Eq. (9.32) and

0 < μ <
2λmin

(
UH
F diag(p)UF

)
λ2

max
(

UH
F diag(p)UF

) .

Furthermore, under a small step-size assumption, the MSE writes as:

MSE = lim
n→∞ E‖x̂[n] − x[n]‖2

= μ

2
Tr

[(
UH
F diag(p)UF

)−1
UH
F diag(p)RvUF

]
(9.33)

and the convergence rate α is well approximated by

α = 1 − 2μλmin
(

UH
F diag(p)UF

)
. (9.34)

�
The results of Theorem 9.4 are instrumental to devise optimal probabilistic sampling strategies for

Algorithm 9.2, which are described in the sequel.

9.4.1 PROBABILISTIC SAMPLING STRATEGIES
We consider a sampling design that seeks for the probability vector p that minimizes the total sampling
rate over the graph, i.e., 1Tp, while guaranteeing a target performance in terms of MSE in Eq. (9.33)
and of convergence rate in Eq. (9.34) [49]. Then, the optimization problem can be cast as:

min
p

1T p

s.t. λmin
(

UH
F diag(p)UF

)
≥ 1 − ᾱ

2μ
,

Tr

[(
UH
F diag(p)UF

)−1
UH
F diag(p)RvUF

]
≤ 2γ

μ
,

0 ≤ p ≤ pmax.

(9.35)

The first constraint imposes that the convergence rate of the algorithm is larger than a desired value, i.e.,
α in Eq. (9.34) is smaller than a target value, say, e.g., ᾱ ∈ (0, 1). Furthermore, as illustrated in [49], the
first constraint on the convergence rate also guarantees adaptive signal reconstruction, i.e., condition



276 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

(9.32) holds true. The second constraint guarantees a target mean-square performance, i.e., the MSE in
Eq. (9.33) must be less than or equal to a prescribed value, say, e.g., γ > 0. Finally, the last constraint
limits the probability vector to lie in the box pi ∈ [0, pmax

i ], for all i, with 0 ≤ pmax
i ≤ 1 denoting an

upper bound on the sampling probability at each node that might depend on external factors such as,
e.g., limited energy, processing and/or communication resources, node or communication failures, etc.

Unfortunately, problem (9.35) is nonconvex due to the presence of the nonconvex constraint on the
MSE. To handle the nonconvexity of Eq. (9.35), we exploit an upper bound of the MSE function in
Eq. (9.33), given by:

MSE(p) ≤ MSE(p) � μ

2

Tr
(

UH
F diag(p)RvUF

)
λmin

(
UH
F diag(p)UF

) , for all p ∈ RN . (9.36)

Of course, replacing the MSE function with the bound (9.36), the second constraint in Eq. (9.35) is
always satisfied. Furthermore, the function in Eq. (9.36) has the nice property to be pseudoconvex
because it is the ratio between a convex and concave function, which are both differentiable and positive
for all p satisfying the other constraints [50]. Thus, exploiting the upper bound (9.36), we can formulate
a surrogate optimization problem for the selection of the probability vector p, which can be cast as:

min
p

1T p

subject to

λmin
(

UH
F diag(p)UF

)
≥ 1 − ᾱ

2μ
,

Tr
(

UH
F diag(p)CvUF

)
λmin

(
UH
F diag(p)UF

) ≤ 2γ

μ
,

0 ≤ p ≤ pmax.

(9.37)

Because the sublevel sets of pseudoconvex functions are convex sets [50], it is straightforward to see
that the approximated problem (9.37) is convex, and its global solution can be found using efficient
numerical tools [44].

9.4.2 DISTRIBUTED ADAPTIVE RECOVERY
The implementation of Algorithm 9.2 would require collecting all the data {yi[n]}i:di[n]=1, for all n, in a
single processing unit that performs the computation. In many practical systems, data are collected in a
distributed network, and sharing local information with a central processor might be either unfeasible or
not efficient, owing to the large volume of data, time-varying network topology, and/or privacy issues.
Motivated by these observations, in this section we extend the LMS strategy in Algorithm 9.2 to a
distributed setting where the nodes perform the reconstruction task via online in-network processing,
only exchanging data between neighbors defined over a sparse (but connected) communication network,
which is described by the graph Gc = (V , Ec). Proceeding as in [27] to derive distributed solution
methods for problem (9.31), let us introduce local copies {si}N

i=1 of the global variable s, and recast
problem (9.31) in the following equivalent form:



9.4 ADAPTIVE SAMPLING AND RECOVERY 277

min
{si}N

i=1

N∑
i=1

E

∣∣∣di[n]
(

yi[n] − uH
F ,isi

)∣∣∣2 (9.38)

subject to si = sj for all i = 1, . . . , N, j ∈ Ni,

where uH
F ,i is the ith row of matrix UF (supposed to be known at node i, or computable in distributed

fashion, see, e.g., [51]), and Ni = {j|aij > 0} is the local neighborhood of node i. To solve problem
(9.31), we consider an Adapt-Then-Combine (ATC) diffusion strategy [27], and the resulting algorithm
is reported in Algorithm 9.3. The first step in Eq. (9.39) is an adaptation step where the intermediate
estimate ψ i[n] is updated adopting the current observation taken by node i, i.e., yi[n]. The second step
is a diffusion step where the intermediate estimates ψ j[n], from the (extended) spatial neighborhood

N i = Ni
⋃{i}, are combined through the weighting coefficients {wij}. Several possible combination

rules have been proposed in the literature, such as the Laplacian or the Metropolis-Hastings weights,
see, e.g., [52–54]. Finally, given the estimate si[n] of the GFT at node i and time n, the last step produces
the estimate xi[n + 1] of the graph signal value at node i [cf. Eq. (9.30)]. Here, we assume that graphs
G (i.e., the one used for GSP) and Gc (i.e., the one describing the communication pattern among nodes)
might have in general distinct topologies. We remark that both graphs play an important role in the
proposed distributed processing strategy (9.39). First, the processing graph determines the structure
of the regression data uF ,i used in the adaptation step of Eq. (9.39). In fact, {uH

F ,i}i are the rows of
the matrix UF , whose columns are the eigenvectors of the Laplacian matrix associated with the set of
support frequencies F . Then, the topology of the communication graph determines how information
is spread all over the network through the diffusion step in Eq. (9.39). This illustrates how, when
reconstructing graph signals in a distributed manner, we have to take into account both the processing
and communication aspects of the problem.

Algorithm 9.3 DIFFUSION LMS ON GRAPHS

Start with random si[0], for all i ∈ V . Given combination weights {wij}i,j, step-sizes μi > 0, for each time n ≥ 0 and
for each node i, repeat:

ψ i[n] = si[n] + μidi[n]uF ,i(yi[n] − uH
F ,isi[n]) (adaptation)

si[n + 1] =
∑

j∈N i

wijψ j[n] (diffusion) (9.39)

xi[n + 1] = uH
F ,isi[n + 1] (reconstruction)

9.4.3 NUMERICAL RESULTS
In this section, we first illustrate the performance of the probabilistic sampling method in Eq. (9.37)
over the IEEE 118 bus graph. Then, we consider an application to dynamic inference of brain activity.
Optimal probabilistic sampling. As a first example, let us consider an application to the IEEE 118
Bus Test Case in Fig. 9.1A. The spectral content of the graph signal is assumed to be limited to the



278 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

S
am

pl
in

g 
pr

ob
ab

ili
ty

0 20 40 60 80 100

Node index

0

0.002

0.004

0.006

0.008

0.01

N
oi

se
 p

ow
er

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

S
am

pl
in

g 
pr

ob
ab

ili
ty

FIG. 9.4

Optimal probabilistic sampling over the IEEE 118 graph.

first ten eigenvectors of the Laplacian matrix of the graph. The observation noise in Eq. (9.30) is zero-
mean Gaussian with a diagonal covariance matrix Rv , where each element is illustrated in Fig. 9.4
(bottom). The other parameters are μ = 0.1, and γ = 10−3. Then, in Fig. 9.4 (top and middle), we
plot the optimal probability vector obtained solving (9.37) for two different values of ᾱ. In all cases,
the constraints on the MSE and convergence rate are attained strictly. From Fig. 9.4 (top and middle),
we notice how the method increases the sampling rate if we require a faster convergence (i.e., a smaller
value of ᾱ); it also finds a very sparse probability vector and usually avoids assigning large sampling
probabilities to nodes having large noise variances. Interestingly, with the proposed formulation, sparse
sampling patterns are obtained thanks to the optimization of the sampling probabilities, which are
already real numbers, without resorting to any relaxation of complex integer optimization problems
[cf. Eq. (9.25)].



9.5 CONCLUSIONS 279

0 50 100 150 200 250 300 350 400

Time index

−1500

−1000

−500

0

500

1000

1500

2000

E
C

oG

True signal

LMS on graphs

FIG. 9.5

True ECoG and estimate across time.

Inference of brain activity. The last example presents test results on electrocorticography (ECoG)
data, captured through experiments conducted in an epilepsy study [55]. Data were collected over a
period of five days where the electrodes recorded 76 ECoG time series, consisting of voltage levels
measured in different regions of the brain. Two temporal intervals of interest were picked for analysis,
namely, the preictal and ictal intervals. In the sequel, we focus on the ictal interval. Further details about
data acquisition and preprocessing are provided in [55]. The GFT matrix UF is learnt from the first 200
samples of ictal data, using the method proposed in [56], and imposing a bandwidth equal to |F | = 30.
In Fig. 9.5, we illustrate the true behavior of the ECoG present at an unobserved electrode chosen at
random over the first 400 samples of ictal data, along with an estimate carried out using Algorithm 9.2
(with μ = 1.5). The sampling set is fixed over time (i.e., pi = 1 for all i), and chosen according to
the E-optimal design in Eq. (9.24), selecting 32 samples. As we can notice from Fig. 9.5, the method
is capable of efficiently inferring and tracking the unknown dynamics of ECoG data at unobserved
regions of the brain.

9.5 CONCLUSIONS
In this chapter, we have reviewed some of the methods recently proposed to sample and interpolate
signals defined over graphs. First, we have recalled the conditions for perfect recovery under a
bandlimited assumption. Second, we have illustrated sampling strategies, based on greedy methods or
convex relaxations, aimed at reducing the effect of noise or aliasing on the recovered signal. Then, we
considered �1-norm reconstruction, which allows perfect recovery of graph signals in the presence of
a strong impulsive noise over a limited number of nodes. Finally, adaptive methods based on (possibly



280 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

distributed) LMS strategies were illustrated to enable tracking and recovery of time-varying signals
over graphs. Several interesting problems need further investigation, e.g., sampling and recovery in the
presence of directed/switching topologies, adaptation of sampling in time-varying scenarios, distributed
implementations, and the extension of GSP methods to incorporate multiway relationships among data,
e.g., under the form of hypergraphs or simplicial complexes.

REFERENCES
[1] Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing

on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal
Process Mag 2013;30(3):83–98.

[2] Sandryhaila A, Moura JMF. Discrete signal processing on graphs. IEEE Trans Signal Process
2013;61:1644–56.

[3] Sandryhaila A, Moura JM. Discrete signal processing on graphs: frequency analysis. IEEE Trans Signal
Process 2014;62(12):3042–54.

[4] Chen S, Sandryhaila A, Moura JM, Kovacevic J. Signal recovery on graphs: variation minimization. IEEE
Trans Signal Process 2015;63(17):4609–24.

[5] Zhu X, Rabbat M. Approximating signals supported on graphs. In: IEEE international conference on
acoustics, speech and signal processing; 2012. p. 3921–4.

[6] Chen S, Varma R, Sandryhaila A, Kovačević J. Discrete signal processing on graphs: sampling theory. IEEE
Trans Signal Process 2015;63:6510–23.

[7] Gadde A, Anis A, Ortega A. Active semi-supervised learning using sampling theory for graph signals.
In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining.
ACM; 2014. p. 492–501.

[8] Janssen S, Dumont G, Fierens F, Mensink C. Spatial interpolation of air pollution measurements using
CORINE land cover data. Atmos Environ 2008;42(20):4884–903.

[9] Candès EJ, Recht B. Exact matrix completion via convex optimization. Found Comput Math 2009;9(6):717.
[10] Gomez-Uribe CA, Hunt N. The Netflix recommender system: algorithms, business value, and innovation.

ACM Trans Manag Inf Syst 2016;6(4):13.
[11] Yamanishi Y, Vert JP, Kanehisa M. Protein network inference from multiple genomic data: a supervised

approach. Bioinformatics 2004;20(suppl_1):i363–70.
[12] Pesenson IZ. Sampling in Paley-Wiener spaces on combinatorial graphs. Trans Am Math Soc

2008;360(10):5603–27.
[13] Narang S, Gadde A, Ortega A. Signal processing techniques for interpolation in graph structured data. In:

IEEE international conference on acoustics, speech, and signal processing; 2013. p. 5445–9.
[14] Anis A, Gadde A, Ortega A. Towards a sampling theorem for signals on arbitrary graphs. In: 2014 IEEE

international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2014. p. 3864–8.
[15] Wang X, Liu P, Gu Y. Local-set-based graph signal reconstruction. IEEE Trans Signal Process

2015;63(9):2432–44.
[16] Tsitsvero M, Barbarossa S, Di Lorenzo P. Signals on graphs: uncertainty principle and sampling. IEEE Trans

Signal Process 2016;64(18):4845–60.
[17] Marques AG, Segarra S, Leus G, Ribeiro A. Sampling of graph signals with successive local aggregations.

IEEE Trans Signal Process 2016;64(7):1832–43.
[18] Chamon LF, Ribeiro A. Greedy sampling of graph signals; 2017. arXiv:170401223.
[19] Tremblay N, Puy G, Gribonval R, Vandergheynst P. Compressive spectral clustering. In: International

conference on machine learning; 2016. p. 1002–11.

http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0100


REFERENCES 281

[20] Anis A, Gadde A, Ortega A. Efficient sampling set selection for bandlimited graph signals using graph
spectral proxies. IEEE Trans Signal Process 2016;64(14):3775–89.

[21] Narang SK, Ortega A. Local two-channel critically sampled filter-banks on graphs. In: 17th IEEE interna-
tional conference on image processing. IEEE; 2010. p. 333–6.

[22] Nguyen HQ, Do MN. Downsampling of signals on graphs via maximum spanning trees. IEEE Trans Signal
Process 2015;63(1):182–91.

[23] Chen S, Varma R, Singh A, Kovačević J. Signal recovery on graphs: fundamental limits of sampling strategies.
IEEE Trans Signal Inf Process Netw 2016;2(4):539–54.

[24] Puy G, Tremblay N, Gribonval R, Vandergheynst P. Random sampling of bandlimited signals on graphs. Appl
Comput Harmon Anal 2018;44(2):446–75.

[25] Tremblay N, Amblard P-O, Barthelmé S. Graph sampling with determinantal processes. In: European signal
processing conference (Eusipco); 2017.

[26] Di Lorenzo P, Barbarossa S, Banelli P, Sardellitti S. Adaptive least mean squares estimation of graph signals.
IEEE Trans Signal Inf Process Netw 2016;2(4):555–68.

[27] Di Lorenzo P, Banelli P, Barbarossa S, Sardellitti S. Distributed adaptive learning of graph signals. IEEE
Trans Signal Process 2017;65(16):4193–208.

[28] Romero D, Ioannidis VN, Giannakis GB. Kernel-based reconstruction of space-time functions on dynamic
graphs. IEEE J Sel Top Signal Process 2017;11(6):856–69.

[29] Wang X, Wang M, Gu Y. A distributed tracking algorithm for reconstruction of graph signals. IEEE J Sel Top
Signal Process 2015;9(4):728–40.

[30] Godsil C, Royle GF. Algebraic graph theory, vol. 207. Springer Science & Business Media; 2013.
[31] Eldar YC. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors.

J Fourier Anal Appl 2003;9(1):77–96.
[32] Teke O, Vaidyanathan P. Uncertainty principles and sparse eigenvectors of graphs. IEEE Trans Signal Process

2017;65(20):5406–20.
[33] Banerjee A, Jost J. On the spectrum of the normalized graph Laplacian. Linear Algebra Appl

2008;428(11-12):3015–22.
[34] Kay SM. Fundamentals of statistical signal processing. Prentice Hall PTR; 1993.
[35] Winer BJ, Brown DR, Michels KM. Statistical principles in experimental design, vol. 2. McGraw-Hill New

York; 1971.
[36] Nemhauser GL, Wolsey LA. Integer and combinatorial optimization. In: Interscience series in discrete

mathematics and optimization. John Wiley & Sons; 1988.
[37] Lovász L. Submodular functions and convexity. In: Mathematical programming the state of the art. Springer;

1983. p. 235–57.
[38] Nemhauser GL, Wolsey LA, Fisher ML. An analysis of approximations for maximizing submodular set

functions-i. Math Program 1978;14(1):265–94.
[39] Summers TH, Cortesi FL, Lygeros J. Correction to “On Submodularity and Controllability in Complex

Dynamical Networks”. Available at: http://www.utdallas.edu/∼tyler.summers/papers/TCNS_Correction.pdf.
[40] Shamaiah M, Banerjee S, Vikalo H. Greedy sensor selection: leveraging submodularity. In: 2010 49th IEEE

conference on decision and control. IEEE; 2010. p. 2572–7.
[41] Joshi S, Boyd S. Sensor selection via convex optimization. IEEE Trans Signal Process 2009;57(2):451–62.
[42] Chepuri SP, Leus G. Sparsity-promoting sensor selection for non-linear measurement models. IEEE Trans

Signal Process 2015;63(3):684–98.
[43] Chepuri SP, Leus G. Sparse sensing for distributed detection. IEEE Trans Signal Process 2016;64(6):1446–60.
[44] Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004.
[45] Sun K, Zheng DZ, Lu Q. A simulation study of OBDD-based proper splitting strategies for power systems

under consideration of transient stability. IEEE Trans Power Syst 2005;20(1):389–99.

http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0195
http://www.utdallas.edu/$\sim $tyler.summers/papers/TCNS_Correction.pdf
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0230


282 CHAPTER 9 SAMPLING AND RECOVERY OF GRAPH SIGNALS

[46] Pasqualetti F, Zampieri S, Bullo F. Controllability metrics, limitations and algorithms for complex networks.
IEEE Trans Control Netw Syst 2014;1(1):40–52.

[47] Behrisch M, Bieker L, Erdmann J, Krajzewicz D. Sumo-simulation of urban mobility: an overview.
In: International conference on advances in system simulation. ThinkMind; 2011.

[48] Sayed AH. Adaptive filters. John Wiley & Sons; 2011.
[49] Di Lorenzo P, Banelli P, Isufi E, Barbarossa S, Leus G. Adaptive graph signal processing: algorithms and

optimal sampling strategies; to appear in IEEE Transactions on Signal Processing, 2018. arXiv:170903726.
[50] Avriel M, Diewert WE, Schaible S, Zang I. Generalized concavity. SIAM; 2010.
[51] Di Lorenzo P, Barbarossa S. Distributed estimation and control of algebraic connectivity over random graphs.

IEEE Trans Signal Process 2014;62(21):5615–28.
[52] Barbarossa S, Sardellitti S, Di Lorenzo P. Distributed detection and estimation in wireless sensor networks,

vol. 2. Academic Press Library in Signal Processing; 2014. p. 329–408.
[53] Xiao L, Boyd S, Kim SJ. Distributed average consensus with least-mean-square deviation. J Parallel Distrib

Comput 2007;67(1):33–46.
[54] Cattivelli FS, Sayed AH. Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process

2010;58:1035–48.
[55] Kramer MA, Kolaczyk ED, Kirsch HE. Emergent network topology at seizure onset in humans. Epilepsy Res

2008;79(2):173–86.
[56] Gavish M, Donoho DL. Optimal shrinkage of singular values. IEEE Trans Inf Theory 2017;63(4):2137–52.

http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00009-2/rf0285


CHAPTER

10BAYESIAN ACTIVE LEARNING ON
GRAPHS

Kwang-Sung Jun∗, Robert Nowak†

Wisconsin Institute for Discovery, Madison, WI, United States∗ Department of Electrical and Computer Engineering,

University of Wisconsin-Madison, Madison, WI, United States†

10.1 BAYESIAN ACTIVE LEARNING ON GRAPHS
Suppose we are given a graph where each node is associated with a categorical label. An edge between
two nodes encodes their similarity. Most node labels are, however, unknown to us. We consider a label
prediction task on such a graph where node labels can be queried with some cost.

There are many applications where the data is represented as a graph or constructed to be so.
In social networks or citation networks, the graph naturally arises where each friendship or citation
relationship is represented as an edge and carries important information between two nodes. For
example, in document classification problems, two documents tend to be of the same topic when one
cites the other. Even when there is no graph information in the data, a graph can be constructed based
on known or computed (dis-)similarities between data points.1 The advantage of the graph construction
is that it captures the manifold structure of the data, which often results in low generalization error. For
example, handwritten digits can be recognized efficiently through graph-based learning algorithms [2].
In all these examples, the edge existence or weights often carries how strongly two nodes are related,
which can be used to make label predictions on unlabeled nodes. Note that this is precisely an instance
of so-called transduction (or semisupervised learning [1], more broadly) as the test set covariates (graph
information in our case) are available during training the model, unlike the standard supervised learning
setting.

The goal of this chapter is to perform active learning.2 That is, if we have the freedom to choose
which node labels to query, can we judiciously select informative nodes in order to minimize the
prediction error on the entire graph while querying as few labels as possible? The active learning
problem in the graph setting was first considered in [4]. Since then, there has been a flurry of research
activities [5–10].

Before defining the problem formally, let us consider a few introductory examples where active
learning can be effective. Consider a star graph with n nodes where there exists a center node and the

1Popular construction methods include the k-nearest-neighbor graph; see [1, Section 6.2] for details.
2We refer to Settles [3] for a complete survey.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00010-9
Copyright © 2018 Elsevier Inc. All rights reserved.

283



284 CHAPTER 10 BAYESIAN ACTIVE LEARNING ON GRAPHS

(A) (B)

FIG. 10.1

Introductory graph examples: (A) stars; (B) linear chain.

rest of the nodes are all “dongles” that have one and only one edge to the center node. Construct a
larger graph with k star graphs (total kn nodes); see Fig. 10.1A. Assume that the labels of the dongle
nodes are each +1 or −1 at random and the center node’s label is decided by the majority label of the
dongles; in other words, the center node is “representative” of the rest. In this case, it might be wise to
query the labels of the k center nodes first because then afterwards we can predict the labels of each
component with error no larger than 0.5. This shows the importance of using the graph structure.

As another example, consider a linear chain graph with n nodes where the labels are ±1; see
Fig. 10.1B. Assume that there exists only one edge in the graph that connects −1 and +1 (i.e., cut), and
the location of the cut is not known. One can see that performing a binary search takes O(log(n)) time
to find the cut after which we incur no prediction error. This is better than randomly choosing which
node labels to observe, which takes O(n) time in most cases. This example shows the importance of
adaptivity; one can use what labels have been observed to narrow down the cut location faster.

With these introductory examples in mind, we now formally define the active learning problem and
present a popular label-generation model that encodes our assumption on the labels.

Notations
Denote by 1 and 0 the vector of all 1s and all 0s, respectively. Let 1{A} be 1 if A is true and 0 otherwise.
A boldfaced lowercase and uppercase letter are vectors (e.g., y) and matrices (e.g., M), respectively,
where each component is denoted without boldfacing (e.g., yi and Mij). We use M·i (Mi·) to refer to the
ith column (row). One exception is Y ∈ {±1}n that denotes the random vector of node labels, which
must not be interpreted as a matrix; this will be clear from the context as Y appears in probability
statements only. Denote by I the identity matrix. � refers to the set of labeled nodes, and u is the set
of unlabeled nodes. We denote by Y� a subvector of length |�| that slices the components of Y by the
indices in �. Similarly, we denote by M�u the submatrix sliced from M by taking rows and columns
indicated by � and u.

10.1.1 PROBLEM DEFINITION
We are given a weighted undirected graph G = (N, E) with nodes N = {1, . . . , n}, edges E, and weights
W ∈ Rn×n where Wij = Wji ≥ 0, ∀i ≤ j, and Wij = 0 if there is no edge between i and j. We assume



10.1 BAYESIAN ACTIVE LEARNING ON GRAPHS 285

Wii = 0, ∀i. The node labels Y1, . . . , Yn ∈ {±1} are jointly drawn from a distribution.3 These labels are,
however, mostly unknown to the algorithm. Let �(1) ⊆ N be the set of nodes whose labels are known
initially. The algorithm must perform a sequential task specified in the following protocol.

For time step t = 1, 2, . . .

1. Predict: Make a label prediction Ŷi on each unlabeled node i �∈ �(t). Let Ŷi := Yi, ∀i ∈ �(t). An
algorithm suffers an error rate εt = 1

n

∑n
i=1 1{Ŷi �= Yi}, which is unknown to the algorithm.

2. Query: Select an unlabeled node q and query its label. Receive the label Yq. Update

�(t+1) = �(t) ∪ {q}.
The goal is to achieve low error rates {εt} for time steps of interest. Depending on the application, one
might aim to have the lowest error at a specific time step t′ or low error on average. In general, we would
like to enjoy low error rate in the “small sample size” regime as the motivation of active learning is to
use a small budget to build a good enough model. Among various approaches for performing Predict
and Query, we focus on those motivated by a specific Bayesian model we describe in the following
section.

Note that the protocol above is different from the so-called batch active learning where the query
budget k is given and an algorithm must choose k nodes and query their labels altogether rather than
querying one at a time sequentially. Still, a batch active learning algorithm can be used to perform the
above sequential active learning task.

10.1.2 BINARY MARKOV RANDOM FIELD: A BAYESIAN MODEL OF GRAPH LABELS
Consider the following probabilistic model for the random variable Y ∈ {±1}n:

P(Y = y) = 1

Z
exp

⎛
⎝−β

2

∑
i<j

Wij(yi − yj)2

⎞
⎠ , (10.1)

where Z is the normalization factor and β > 0 is a strength parameter. The model above prefers
labelings y ∈ {±1}n that vary smoothly along the edges; i.e., a larger weight Wij implies a higher
likelihood of yi = yj. We refer to the model above as the binary Markov random field (BMRF).

One can rewrite the above in a simpler form. Let L := D − W be the graph Laplacian where D is a
diagonal matrix with Dii = ∑n

j=1 Wij. Then, Eq. (10.1) can be written as

P(Y = y) = 1

Z
exp

(
−β

2
y�Ly

)
. (10.2)

We fix β = 1 for the rest of the chapter for simplicity. One can obtain results for β �= 1 by replacing L
with βL.

Note that BMRF would be equivalent to the Gaussian random field (GRF) if we relax the labels to
belong to real values: Y ∈ Rn. Indeed, Eq. (10.1) takes the same form as a Gaussian distribution with
covariance L−1. For this reason, some researchers refer to BMRF as the “Gaussian Markov random
field” or the “binary Gaussian random field.”

3A multiclass generalization is straightforward via the one-vs-the-rest reduction, which is elaborated in Section 10.3.4.



286 CHAPTER 10 BAYESIAN ACTIVE LEARNING ON GRAPHS

Note that, while L is a singular matrix (verify that L · 1 = 0), one can simply add δI to L for some
δ > 0, which does not change the original BMRF model after normalization.

10.1.3 PREDICTIONS BY BMRF
Consider performing the task Predict with BMRF. Let � be the set of labeled nodes and u =
{1, . . . , n}\� be the set of unlabeled nodes. Ideally, one should compute the marginal P(Yi = 1 | Y� =
y�) for each i ∈ u and threshold it at 1

2 , which is called the Bayes decision rule and is optimal when
the labels are truly drawn from BMRF. Unfortunately, there is no known polynomial time algorithm
for computing the marginal; a naive computation involves summing over exponentially many possible
labelings of Yu ∈ {±1}|u|. This motivates us to look for approximate computations.

A popular and efficient approximation is label propagation (LP), proposed by Zhu et al. [2]. LP
predicts the unknown labels Yu as follows:

ŷu := −(Luu)−1Lu�y�. (10.3)

For brevity, we use the notation L−1
uu for (Luu)−1 hereafter. The predicted value ŷi for i ∈ u, which is

a real value in [−1, 1], provides a “soft label” that encodes not only the predicted label but also the
strength of the belief. For final predictions, one should take the sign of ŷi.

The LP prediction is motivated by relaxing the binary labels Y of a BMRF model to continuous.
Then, the BMRF model becomes a Gaussian distribution, and the LP prediction is equivalent to the
posterior mean of Yu conditioned on Y� = y�.

10.2 ACTIVE LEARNING IN BMRF: EXPECTED ERROR MINIMIZATION
Active learning asks which node labels one should choose to observe in order to minimize the prediction
error rate εt for time steps of interest. Suppose for now that we make the optimal predictions. That is,
given a set of labeled nodes � ⊂ N with labels y�, we follow the Bayes decision rule:

Ŷ∗
i (Y� = y�) := arg max

y∈{±1}P(Yi = y | Y� = y�), (10.4)

where Y� = y� indicates that we condition on the event that the random variable Y� is equal to y�.
Note Ŷ∗

i (Y� = y�) = Yi for i ∈ � trivially. We hereafter use Ŷ∗
i and omit (Y� = y�) when it is clear

from the context. Because the BMRF fully specifies how the labels are generated, given a set of labeled
nodes � ⊂ N, the expected error rate of the prediction is a well-defined mathematical quantity. At time
t, a natural strategy is to query the node that minimizes the expected error at time t + 1. Even though
this greedy choice does not necessarily allow us to minimize the expected error at any time later than
t + 1, it is still an attractive heuristic that leads to a tractable method. We refer to this query strategy as
expected error minimization (EEM).

Define the unlabeled nodes u := N\�. Let us study what the expected error rate of the Bayes
decision rule looks like after querying q ∈ u. We define the expected error after knowing the label Yq

as follows, which we call the lookahead risk of node q:



10.3 ALGORITHMS TO APPROXIMATE EEM 287

R+q(Y� = y�) := EYqEYu\{q}

⎡
⎣1

n

n∑
i=1

1{Ŷ∗
i �= Yi}

∣∣∣∣∣∣ Yq, Y� = y�

⎤
⎦ , (10.5)

where Ŷ∗
i depends on Yq as well as Y�. Notice that we take the expectation over Yq as well because we

do not know the label of node q yet. We use R+q(y�) as a shorthand for R+q(Y� = y�).
EEM chooses the query that minimizes the lookahead risk:

q∗ = arg min
q∈N\� R+q(y�). (10.6)

Define Py�
(·) := P(·|Y� = y�) for brevity and the zero-one risk

R(Yq = y, y�) := EYu\{q}

⎡
⎣ n∑

i=1

1

n
1{Ŷ∗

i �= Yi}
∣∣∣∣∣∣ Yq = y, Y� = y�

⎤
⎦

= 1

n

n∑
i=1

(
1 − max

y′∈{±1}
PYq=y,y�

(Yi = y′)
)

. (10.7)

Then,

R+q(y�) =
∑

y∈{±1}
R(Yq = y, y�)Py�

(Yq = y). (10.8)

Notice that the key quantity is the posterior marginal distribution PYq=y,y�
(Yi = y′) in Eq. (10.7) and

Py�
(Yq = y) in Eq. (10.8). An efficient computation of the posterior marginal would lead to an algorithm

for Predict due to Eq. (10.4) and also to an algorithm for Query due to Eq. (10.6). However, there is
no known polynomial time algorithm to compute the marginal, as mentioned before. Such a difficulty
calls for various approximate methods for EEM.

10.3 ALGORITHMS TO APPROXIMATE EEM
Approximate EEM methods fall into two main categories: (i) relax the binary labels in BMRF to
continuous (now a GRF model) in which the lookahead risk has a closed-form solution, or (ii) keep
the binary labels but approximate the marginal in Eq. (10.8).

10.3.1 CONTINUOUS RELAXATION
The first category is to relax the binary labels in BMRF to continuous. We now pretend the labels are
real-valued, ignoring the fact that we actually observe binary labels only. This relaxation results in a
GRF model as discussed before. In GRF, it is standard to make a prediction Ŷi for node i as ŷi defined
in Eq. (10.3), which is the posterior mean. Now that the zero-one error 1{Ŷi �= Yi} does not make sense,
considering alternative error notions for continuous labels leads to new algorithms.



288 CHAPTER 10 BAYESIAN ACTIVE LEARNING ON GRAPHS

V-optimality (VOpt)
V-optimality (VOpt) proposed by Ji and Han [6] chooses the squared error (Ŷi − Yi)2, which is easy to
work with and natural in GRFs. Then, the lookahead risk for the GRF is defined as follows, which has
a closed form solution:

RV+q := EYqEYu\{q}

⎡
⎣ n∑

i=1

(
Ŷi − Yi

)2

∣∣∣∣∣∣ Yq, Y� = y�

⎤
⎦ = tr

(
L−1

(u\{q}) (u\{q})
)

, (10.9)

where tr(·) is the trace of a matrix. In GRF, ŷi is the optimal prediction for the squared error, and so the
risk is now the sum of the posterior variances, thus the name VOpt where V means variance.

One noticeable feature of VOpt is that the lookahead risk is independent of y�. That is, it depends
on “which nodes” are labeled but not “what labels” these nodes possess. Such a method is said to
be nonadaptive. One can see that this is not ideal to solve the linear chain case described in the
introduction. However, nonadaptive methods fit well the batch active learning problem as they do not
require knowing the label of the queries.

�-optimality (SOpt)
�-optimality (SOpt) proposed by Ma et al. [8] makes a nonintuitive choice of error called survey error:
(
∑n

i=1 Ŷi −∑n
i=1 Yi)2. This measures the squared difference of the estimated proportion of the positive

labels, which seems to be necessary but not sufficient for achieving a low classification error. The SOpt
lookahead risk is defined as follows:

R�+q := EYqEYu\{q}

⎡
⎢⎣

⎛
⎝ n∑

i=1

Ŷi −
n∑

i=1

Yi

⎞
⎠

2
∣∣∣∣∣∣∣ Yq, Y� = y�

⎤
⎥⎦ = 1�L−1

(u\{q}) (u\{q})1, (10.10)

where Ŷi = ŷi; see Eq. (10.3). Surprisingly, SOpt turns out to perform well in practice, especially so in
earlier rounds of active learning as SOpt prefers querying “influential” nodes (such as hubs) much more
than other algorithms do. Specifically, VOpt, as pointed out by Ma et al. [8], tends to query outliers as
they have a large variance in GRF while in practice outliers do not convey much information. It is easy
to see that SOpt is nonadaptive as well.

Comparison
To see the difference between VOpt and SOpt, define C := L−1

uu and C′ := L−1
(u\{q}) (u\{q}). The one-step

covariance update rule (or Schur complement) says

(
C′ 0
0 0

)
= C − C·qCq·

Cqq
, (10.11)

where we assume that the node q corresponds to the last row and column of C for ease of exposition.
This allows us to not only compute the lookahead risk faster when L−1

uu is available but also understand
the behavior of VOpt and SOpt. As C is the covariance matrix of the Gaussian distribution, we rewrite



10.3 ALGORITHMS TO APPROXIMATE EEM 289

Cij = ρijσiσj, where σi = √
Cii and ρij is the correlation coefficient between i and j. Then, one can

rewrite the query selection q∗ made by VOpt and SOpt as follows [8]:

VOpt: q∗ = arg max
q∈u

∑
i∈u C2

qi

Cqq
= arg max

q∈u

∑
i∈u

ρ2
qiσ

2
i , (10.12)

SOpt: q∗ = arg max
q∈u

(
∑

i∈u Cqi)2

Cqq
= arg max

q∈u

(∑
i∈u

ρqiσi

)2

. (10.13)

Both optimalities involve the term
∑

i∈u ρ2
qiσ

2
i , which means they favor querying nodes that correlate

highly with those having large variance. SOpt, however, has extra cross terms:
∑

i,j∈u:i�=j(ρqiσi) ·(ρqjσj).
As pointed out by [8], by the Cauchy-Schwarz inequality, these cross terms are maximized when they
are equal. Thus, SOpt additionally favors nodes that have consistent global influence (e.g., hubs).

10.3.2 APPROXIMATION OF THE MARGINAL
Another direction for approximating the lookahead risk is to avoid relaxing BMRF to GRF in the
first place. We now stick to the lookahead risk (10.8) that is based on the zero-one error but try to
approximate the marginal Py�

(Yq = y). We then choose the query minimizing the lookahead risk (10.6)
where the marginal is approximated.

Zhu-Lafferty-Ghahramani (ZLG)
Zhu et al. [4] proposed a simple approximation that we call Zhu-Lafferty-Ghahramani (ZLG). Note
that the LP prediction ŷu is always in [−1, 1] due to the property of the harmonic function (see [2] for
detail). ZLG simply takes the following shifted and scaled version of ŷi as the marginal probability of
node i ∈ u:

Py�
(Yi = 1) ≈ 1

2 (ŷi + 1) .

Note that 1
2 (ŷi + 1) coincides with the probability of a random walk on the graph arriving at a positive

node before arriving at a negative node, as pointed out by Zhu et al. [2]. This way, ZLG can be seen as
approximating the marginal of node i being positive with “how close i is to positive nodes” measured
by the random walk.

Two-step approximation (TSA)
Jun and Nowak [11] proposed a two-step approximation (TSA) to the posterior marginal distribution
Py�

(Yk). The key lies in the following log probability ratio approximation: log P(Yk=1,Y�=y�)
P(Yk=−1,Y�=y�) ≈

log μ(Yk=1,Y�=y�)
μ(Yk=−1,Y�=y�) for some μ(·). Define the sigmoid function σ (z) := (1 + exp(−z))−1. Then,

P(Yk = 1 | Y� = y�) = P(Yk = 1, Y� = y�)
P(Yk = 1, Y� = y�) + P(Yk = −1, Y� = y�)

= σ (logP(Yk = 1, Y� = y�) − logP(Yk = −1, Y� = y�))
≈ σ (log μ(Yk = 1, Y� = y�) − log μ(Yk = −1, Y� = y�)). (10.14)



290 CHAPTER 10 BAYESIAN ACTIVE LEARNING ON GRAPHS

We construct μ(Yk = yk, Y� = y�) as a two-step upperbound on P(Yk = yk, Y� = y�) as follows. We
describe the details in Appendix.

Lemma 10.1. Let u := u\{k} be the set of unlabeled nodes except k. For yk ∈ {±1},

logP(Yk = yk, Y� = y�) ≤ −ykLk�y� + 1

2
(Lukyk + Lu�y�)�L−1

uu (Lukyk + Lu�y�) + C′

=: log μ(Yk = yk, Y� = y�)

for some C′ that is independent of yk. �
Let fk := log μ(Yk = 1, Y� = y�) − log μ(Yk = −1, Y� = y�) be the decision value for node k. fk

can be written compactly as

fk = −2Lk�y� + 2LkuL−1
uu Lu�y�. (10.15)

All in all, we can rewrite Eq. (10.14) as

Py�
(Yk = 1) ≈ σ (fk).

Note that one can compute the decision value fk for all k ∈ u at once as follows. Denote by ◦
the Hadamard product and [fk]k∈u a vector whose kth component has value fk. Using the one-step
covariance update rule (10.11), one can show that

[fk]k∈u = 2 ·
[

1

(L−1
uu )kk

]
k

◦ (−L−1
uu Lu�y�). (10.16)

Comparison
Let σLinear(z) := 1

2 (z + 1) that is valid for z ∈ [−1, 1]. Then, we can write the approximations of ZLG
and TSA as follows:

ZLG: [P(Yk = 1 | Y� = y�)]k ≈ σLinear(ŷu),

TSA: [P(Yk = 1 | Y� = y�)]k ≈ σ

(
2 ·

[
1

(L−1
uu )kk

]
k

◦ ŷu

)
,

where we apply σLinear and σ elementwise. Both methods utilize ŷu, the decision value used in LP,
and the classification rule based on the TSA marginal happens to be equivalent to LP. Besides using
a different sigmoid function, TSA further weights ŷu by 1/(L−1

uu )kk where (L−1
uu )kk is always positive.

(L−1
uu )kk can be interpreted as the variance of node k in the GRF context. The larger the variance of a

node, the closer its decision value is to 0 and the closer the marginal probability is to 1/2. Such variance
information is not utilized in ZLG.

One difference is that replacing occurrences of L with βL in ZLG (and VOpt/SOpt) results in
no effect of β whereas in TSA there exists an effect of β; the smaller the β, the closer the marginal
probabilities is to 1/2. An edge connecting two nodes with different labels is called a cut. We have
observed that β changes the balance between exploration (searching for new parts of the graph that
contain a cut) and exploitation (nailing down on the exact cut). However, parameter tuning in active
learning is hard in general and is left as an open problem.



10.3 ALGORITHMS TO APPROXIMATE EEM 291

10.3.3 CASE STUDY: LINEAR CHAIN
We compare all the methods presented in this chapter using a simple linear chain example. In Fig. 10.2,
we consider a linear chain example where there are 18 nodes with edges between node i and i + 1 with
weight 1 for all 1 ≤ i ≤ 17. Labels for nodes 1 and 11 are known to the algorithm a priori. We denote
labeled nodes by ✓ where initial labels are in gray, the first two queries are in black, and the last two are
with daggers. Symbols +/− indicate the predicted labels by LP after four queries. The method BMRF
refers to the EEM strategy based on the exact marginal computations, which we manage to compute
thanks to the small graph size.

For the first query, an algorithm sees that there is at least one cut between nodes 1 and 11. ZLG
drills into this region and spends its next four queries in nailing down the cut. Consequently, it does not
query any node to the right side of node 11 and incurs a large error. In other words, ZLG “exploits” a
known cut region but does not “explore” for unknown cut regions. To see why, the posterior marginal
P(Yk = −1 | Y� = y�) for k = 12, . . . , 18 under BMRF with exact computation is (0.88, 0.79, 0.72,
0.67, 0.63, 0.60, 0.57) and under TSA is (0.88, 0.73, 0.66, 0.62, 0.60, 0.58, 0.57), which shows a similar
trend. When computing the lookahead risk, the exact marginal and TSA both pick node 16. However,
under ZLG the marginals are (1, 1, . . . , 1) for nodes 12–18, which means the expected errors on these
nodes are already 0 and thus querying one of them does not help.

In SOpt, the first two queries include exploration query (node 16). Then, the next two queries include
node 3, which does not reduce the error rate; node 8 would have a reduced error. SOpt selects queries
by which nodes have been labeled, ignoring what labels they have. In fact, this nonadaptivity is a
common characteristic of many graph-based active learning algorithms [5,7–9]. Due to the lack of
exploration queries, SOpt is suboptimal in this example. VOpt shares the same issue, so we omit it here.
In contrast, the exact computation of EEM (BMRF) and TSA naturally balance between exploration
and exploitation.

10.3.4 IMPLEMENTATION
We now describe how to implement active learning methods efficiently. At time step t, VOpt and SOpt
have to compute the inverse Laplacian L−1

uu , spending O(n2) time by applying the one-step covariance
update rule (10.11) on the previous inverse Laplacian. Both methods can then find q∗ efficiently
using Eq. (10.12) or (10.13), which spends O(n2) time.

†

†

†

†

†

†

†

†

FIG. 10.2

A linear chain example and various QUERY algorithms.



292 CHAPTER 10 BAYESIAN ACTIVE LEARNING ON GRAPHS

While ZLG and TSA compute the inverse Laplacian L−1
uu in the same way, computing the lookahead

risk needs some work as we also need to compute L−1
(u\{q})(u\{q}) for each q ∈ u. A naive computation

of these quantities would require total O(n3) time. Fortunately, there exists an efficient computation for
ZLG and TSA.

Using the following lemma, one can compute the “lookahead marginal” of ZLG without
L−1

(u\{q})(u\{q}). This leads to computing the lookahead risk (10.8) for ZLG in O(n2) time.

Lemma 10.2. Let g := −L−1
uu Lu�y� be the LP prediction for the nodes u. Let u = u\{q} and

� = � ∪ {q}. Define g+q,y to be the LP predictions for nodes u after observing Yq = y; i.e., g+q,y :=
−L−1

uu Lu�y�. Define C := L−1
uu . Then,

g+q,y = g + y − gq

Cqq
C·q,

where the equality ignores the component in the RHS corresponding to the node q. �
TSA has a similar way to achieve the same time complexity as ZLG.

Lemma 10.3. Consider the same assumptions as Lemma 10.2. Define f := 2
[

1
Ckk

]
k

◦
(−L−1

uu Lu�y�) = 2
[

1
Ckk

]
k

◦ g to be the TSA’s decision values for nodes u. Define f+q,y to be the

TSA decision values for nodes u after observing Yq = y; i.e., f+q,y := 2

[
1

(L−1
uu )kk

]
k

◦ (−L−1
uu Lu�y�).

Then, ∀k ∈ u,

f+q,y = 2

⎡
⎣(

Ckk −
C2

kq

Cqq

)−1⎤
⎦

k

◦
(

g + y − gq

Cqq
C·q

)
,

where the equality ignores the component in the RHS corresponding to the node q. �

A multiclass extension
Note that there is no need to handle multiclass explicitly in VOpt and SOpt as nonadaptive methods
do not depend on the observed labels. Let K be the number of classes and assume y ∈ {1, . . . , K}.
For ZLG and TSA, one can handle the multiclass case by instantiating one algorithm for each class
in the so-called one-vs-the-rest manner (total K runs). After computing each one-vs-the-rest marginal
(binary), we compute the multiclass marginal distribution (now a multinomial) by normalizing the
binary marginals. Finally, the multiclass zero-one risk is a trivial extension of Eq. (10.7):

R(Yq = y, y�) = 1

n

n∑
i=1

(
1 − max

y′∈{1,...,K}
PYq=y,y�

(Yi = y′)
)

. (10.17)

10.4 EXPERIMENTS
We run simulations on both synthetic and real-world datasets to compare various Bayesian active
learning methods. Throughout, all methods start from one labeled node that is chosen uniformly at



10.4 EXPERIMENTS 293

random. We break ties uniformly at random when there exist ties for choosing a query.4 For TSA, we
use β = 1.

Toy Data. The first toy dataset is a linear chain with 15 nodes where each edge has weight 1. We
choose an edge uniformly at random and make it a cut; i.e., assign a positive label on one side and a
negative label on the other side. We repeat the experiment 50 times where we assign new labels before
each trial. We plot the accuracy versus the number of queries in Fig. 10.3A with the confidence bounds
on the accuracies in gray. After 10 queries, we observe a cluster of methods that outperforms the rest.
This cluster consists of methods that are equipped with exploitation queries and thus able to nail down
the exact cut. The rest are nonadaptive methods that are blind to observed labels. This experiment
confirms the importance of the exploitation queries.

The second toy dataset is the 10-by-10 grid graph; see Fig. 10.3B. We assign positive labels to a
3-by-3 box at the bottom left and another one at the top right, and negative labels to the rest. Then,
for each negative node adjacent to a positive node, we assign a positive label with probability 1/2.
This makes the boundary “jittered”. We repeat the experiment 50 times where we assign new jittered
labels before each trial. We show the result in Fig. 10.3C. Overall, there is no absolute winner. For very

0.8

0.85

0.9

0.95

1

(A) (B) (C)

(D) (E) (F)

Random
VOpt
SOpt
ZLG
TSA
BMRF

0.75

0.8

0.85

0.9

0.95

1

Random
VOpt
SOpt
ZLG
TSA

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10 10 20 30 40 50

0 20 40 60 0 20 40 60 0 20 40 60
0.3

0.4

0.5

0.6

0.7

Random
VOpt
SOpt
ZLG
TSA

Random
VOpt
SOpt
ZLG
TSA

Random
VOpt
SOpt
ZLG
TSA

FIG. 10.3

Experiment results. Plots show accuracy versus the number of queries. In gray are error bars. (A) Linear chain;
(B) Jittered box dataset; (C) Jittered box; (D) DBLP; (E) CORA; (F) CITESEER.

4This happens quite often for ZLG in earlier time steps where all the observed node labels are the same.



294 CHAPTER 10 BAYESIAN ACTIVE LEARNING ON GRAPHS

Table 10.1 Real-World Dataset
Summary

Name |N| |E|
The Number
of Classes

DBLP 1711 2898 4

CORA 2485 5069 7

CITESEER 2109 3665 6

early time periods, both VOpt and SOpt perform better than the rest because they perform exploration
only—rough locations of the two positive boxes are discovered fast. On the other hand, ZLG incurs
very low accuracy in the first half for the following two reasons: (i) before discovering a positive node,
every node has the same lookahead risk and ZLG resorts to tie-breaking uniformly at random, and
(ii) after discovering the first positive node, ZLG drills down the exact boundary of it while completely
not knowing the existence of the other positive box. In the end, however, ZLG becomes the best
because it does not waste queries on exploration. TSA, our method, balances between exploration
and exploitation and performs well on average.

Real-World Data We use exactly the same dataset as [8],5 which is summarized in Table 10.1.
DBLP is a coauthorship network, and both CORA and CITESEER are citation networks; see [8] for
detail. We repeat the experiment 50 times and plot the results in Fig. 10.3D–F. Overall, SOpt is better
than ZLG for earlier time periods, but ZLG is better for later time periods (except for CITESEER),
which we believe is due to the fact that ZLG lacks exploration queries and SOpt lacks exploitation
queries. In contrast, TSA is as good as SOpt for earlier time periods and as good as or even better
than ZLG for later time periods in all three datasets as TSA is able to balance between exploration and
exploitation.

ACKNOWLEDGMENTS
This work was partially supported by MURI grant ARMY W911NF-15-1-0479 and NIH grant 1 U54
AI117924-01.

APPENDIX
We provide proofs of the lemmas in this appendix.

5The dataset can be downloaded from http://www.autonlab.org/autonweb/21763.



A.1 PROOF OF LEMMA 10.1 295

A.1 PROOF OF LEMMA 10.1
Let A := Lkk + y�

� L��y� and g(yu) := −
(

1
2 y�

u Luuyu + ykLkuyu + y�
� L�uyu

)
. With these definitions,

one can show that

logP(Yk = yk, Y� = y�) = − log(Z) − 1

2
A − ykLk�y� + log

⎛
⎝∑

yu

exp(g(yu))

⎞
⎠ .

Note that the last term is the log-sum-exp function that is similar to the max operator. This intuition
leads to our first upper bound, which simply upper bounds individual terms in the summation by the
largest term:

log

⎛
⎝∑

yu

exp(g(yu))

⎞
⎠ ≤ max

yu∈{±1}|u|
g(yu) + |u| log 2.

We now have an integer optimization problem, which is hard in general. We relax the domain of yu to
real, which leads to our second upper bound:

max
yu∈{±1}|u|

g(yu) ≤ max
yu∈R|u|

g(yu) = max
yu∈R|u|

−
(

1

2
y�

u Luuyu + (ykLku + y�
� L�u)yu

)
.

We now have a concave quadratic maximization problem. We find the closed form solution as follows.
By equating the objective function’s derivative to zero, −Luuyu −ykLku −y�

� L�u = 0. This leads to the

solution y∗
u := −L−1

uu (Lukyk +Lu�y�) = −L−1
uu

(
Luk Lu�

) (
yk

y�

)
. By plugging in y∗

u into the objective

function, we have

max
yu∈R|u|

−
(

1

2
y�

u Luuyu + (ykLku + y�
� L�u)yu

)

= max
yu∈R|u|

−
(

1

2
y�

u Luu + ykLku + y�
� L�u

)
yu

=
(

−1

2
(ykLku + y�

� L�u) + ykLku + y�
� L�u

)
L−1

uu (Lukyk + Lu�y�)

= 1

2
(ykLku + y�

� L�u)L−1
uu (Lukyk + Lu�y�).

Altogether,

logP(Yk = yk, Y� = y�) ≤ − log(Z) − 1

2
A − ykLk�y�

+ 1

2
(ykLku + y�

� L�u)L−1
uu (Lukyk + Lu�y�) + |u| log 2.



296 CHAPTER 10 BAYESIAN ACTIVE LEARNING ON GRAPHS

A.2 PROOF OF LEMMAS 10.2 AND 10.3
We prove Lemma 10.2 only because the same proof technique can be applied to Lemma 10.3; we refer
to [11] for a precise proof of Lemma 10.3.

The original proof can be found in [4]. Let y0 ∈ {±1}. The proof starts by adding a node named 0
with label y0 to the graph and adding an edge between node 0 and q with weight w0 while leaving Yq

unobserved. The new node is a “dongle” attached to node q. The intuition is that as w0 approaches ∞,
we effectively assign the label y0 to Yq. Let L+ := D+ −W+ be the graph Laplacian of this augmented
graph. Denote by eq the indicator vector that has 1 for dimension corresponding to node q. We define
g+0 as the decision vector in the augmented graph as follows (later, we will take w0 to infinity to get
g+q,y):

g+0 = (L+
uu)−1W+

u(�∪{0})y�∪{0}
= (w0eqe�

q + Duu − Wuu)−1 · (w0y0eq + Wu�y�)

= (w0eqe�
q + Luu)−1 · (w0y0eq + Wu�y�).

Let C := L−1
uu . Applying the matrix inversion lemma, (w0eqe�

q + Luu)−1 = C − C·qCq·
w−1

0 +Cqq
. Then,

g+0 =
(

C − C·qCq·
w−1

0 + Cqq

)
· (w0y0eq + Wu�y�)

= w0y0C·q + CWu�y� − w0y0C·qCqq

w−1
0 + Cqq

− C·qCq·Wu�y�

w−1
0 + Cqq

(a)= y0C·q + w0y0C·qCqq

w−1
0 + Cqq

+ g − w0y0C·qCqq

w−1
0 + Cqq

− C·qCq·Wu�y�

w−1
0 + Cqq

= y0C·q
w−1

0 + Cqq
+ g − C·qCq·Wu�y�

w−1
0 + Cqq

w0→∞−→ y0C·q
Cqq

+ g − C·qCq·Wu�y�

Cqq

(b)= g + y0 − gq

Cqq
· C·q,

where (a) and (b) is by g = CWu�y�. As a sanity check, one can see that g+0
q = y0. We obtain g+q,y by

simply removing the coordinate in g+0 corresponding to the node q. This concludes the proof.

REFERENCES
[1] Zhu X. Semi-supervised learning literature survey. Tech. Rep. 1530, Computer Sciences, University of

Wisconsin-Madison; 2005.
[2] Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions.

In: Proceedings of the international conference on machine learning (ICML); 2003. p. 912–9.
[3] Settles B. Active learning literature survey. Computer Sciences Technical Report 1648, University of

Wisconsin-Madison; 2009.

http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0020


REFERENCES 297

[4] Zhu X, Lafferty J, Ghahramani Z. Combining active learning and semi-supervised learning using Gaussian
fields and harmonic functions. In: ICML workshop on the continuum from labeled to unlabeled data in
machine learning and data mining; 2003. p. 58–65.

[5] Guillory A, Bilmes JA. Label selection on graphs. In: Advances in neural information processing systems
(NIPS); 2009. p. 691–9.

[6] Ji M, Han J. A variance minimization criterion to active learning on graphs. In: Proceedings of the
international conference on artificial intelligence and statistics (AISTATS); 2012. p. 556–64.

[7] Gu Q, Han J. Towards active learning on graphs: an error bound minimization approach. In: Proceedings of
the IEEE international conference on data mining (ICDM); 2012. p. 882–7.

[8] Ma Y, Garnett R, Schneider J. Sigma-optimality in active learning on Gaussian random fields. In: Advances
in neural information processing systems (NIPS); 2013. p. 2751–9.

[9] Gadde A, Anis A, Ortega A. Active semi-supervised learning using sampling theory for graph signals.
In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining;
2014. p. 492–501.

[10] Gadde A, Ortega A. A probabilistic interpretation of sampling theory of graph signals. In: Proceedings of the
IEEE international conference on acoustics, speech and signal processing, ICASSP; 2015. p. 3257–61.

[11] Jun KS, Nowak R. Graph-based active learning: a new look at expected error minimization. In: IEEE global
conference on signal and information processing (GlobalSIP) symposium on non-commutative theory and
applications; 2016. p. 1325–9.

http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00010-9/rf0060


CHAPTER

11DESIGN OF GRAPH FILTERS AND
FILTERBANKS

Nicolas Tremblay∗, Paulo Gonçalves†, Pierre Borgnat‡

CNRS, GIPSA-lab, Univ. Grenoble Alpes, Grenoble, France∗ ENS de Lyon, Univ Lyon 1, CNRS, Inria, LIP & IXXI,

Univ Lyon, Lyon, France† ENS de Lyon, Univ Lyon 1, CNRS, Laboratoire de Physique & IXXI,

Univ Lyon, Lyon, France‡

11.1 GRAPH FOURIER TRANSFORM AND FREQUENCIES
Basic operations in graph signal processing consist of processing signals indexed on graphs either by
filtering them or by changing their domain of representation in order to better extract or analyze the
important information they contain. The aim of this chapter is to review general concepts underlying
such filters and representations of graph signals. We first recall the different Graph Fourier Transforms
that have been developed in the literature, and show how to introduce a notion of frequency analysis for
graph signals by looking at their variations. Then, we move to the introduction of graph filters that are
defined like the classical equivalent for one-dimensional signals or two-dimensional images, as linear
systems that operate on each frequency of a signal. Some examples of filters and their implementations
are given. Finally, as alternate representations of graph signals, we focus on multiscale transforms
that are defined from filters. Continuous multiscale transforms such as spectral wavelets on graphs
are reviewed as well as the versatile approaches of filterbanks on graphs. Several variants of graph
filterbanks are discussed for structured as well as arbitrary graphs with a focus on the central point of
the choice of the decimation or aggregation operators.

11.1.1 INTRODUCTION
Graph signal processing (GSP) has been introduced recently using at least two complementary
formalisms: on one hand, the discrete signal processing on graphs [1] (see also Chapter 8) that
emphasizes the adjacency matrix as a shift operator on graphs and develops an equivalent of discrete
signal processing (DSP) for signals on graphs; and on the other hand, the approaches rooted in graph
spectral analysis, which rely on the spectral properties of a Laplacian matrix on a graph [2–4]. Both
approaches yield a harmonic analysis of graph signals via the definition of a Graph Fourier Transform
(GFT): an operator projecting signals in the spectral domain of the chosen matrix. While the technical
details vary, and some interpretations in the vertex domain may differ, the fundamental objective of
both approaches is to decompose a signal onto components of different frequencies and to design filters

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00011-0
Copyright © 2018 Elsevier Inc. All rights reserved.

299



300 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

that can extract or modify parts of a graph signal according to these frequencies, e.g., providing notions
of low pass, band pass, or high pass filters for graph signals. In this section, both approaches (along
with other variations) are seen as specific instances of a general guideline for defining GFT and its
associated frequency analysis.

Notations
Vectors are written in bold with small letters and matrices in bold and capital letters. Let G = (V , E , A)
be a graph with V the set of N nodes, E the set of edges, and A the weighted adjacency matrix in RN×N .
If Aij = 0, there is no connection from node i to node j, otherwise, Aij is the weight of the edge starting
from i and pointing1 to j. If an undirected edge exists between i and j, then Aij = Aji. We restrict
ourselves to adjacency matrices with positive or null entries: Aij ≥ 0. Also, the symbol I denotes the
identity matrix (its dimension should be clear from the context), and δi is a vector whose ith entry is
equal to 1 while all other entries are equal to 0. Finally, we will denote by |E | the number of edges in
the graph.

11.1.2 GRAPH FOURIER TRANSFORM
Definition 11.1 (Graph signal). A graph signal is a vector x ∈ RN whose component xi is

considered to be defined on vertex i. �
GFT is defined via a choice of reference operator2 admitting a spectral decomposition. Representing

a graph signal in this spectral domain is interpreted as a GFT. We review the standard properties and
the various definitions proposed in the literature.

Consider a matrix R ∈ RN×N . To be admissible as a reference operator for the graph, it is often
required that for any pair of nodes i �= j, Rij and Rji are equal to zero if i and j are not connected, as this
will help for efficient implementations of filters (see Section 11.2.4). We assume furthermore that R is
diagonalizable in C. In fact, if R is not diagonalizable, one needs to consider Jordan’s decomposition,
which is beyond this chapter’s scope. We refer the reader to [1] and Chapter 8 for technical details
on how to handle this case. Nevertheless, in practice, we claim that it often suffices to consider only
diagonalizable operators because: (i) diagonalizable matrices in C are dense in the space of matrices;
and (ii) graphs under consideration are generally measured (should they model social, sensor, or
biological networks) with some inherent noise. Thus, if one ends up unluckily with a nondiagonalizable
matrix, a small perturbation within the noise level will make it diagonalizable, provided the graphs have
no specific regularities that need to be kept. Still, we may assume with only a small loss of generality
that the reference operator R has a spectral decomposition:

R = U�U−1 (11.1)

with U and � in CN×N . The columns of U, denoted as uk, are the right eigenvectors of R while the
rows of U−1, denoted as v�

k , are its left eigenvectors. � is the diagonal matrix of the eigenvalues {λk}.

1In the literature, the converse convention is sometimes chosen (e.g., in [1]), hence the A� occasionally appearing in this
chapter.
2In the literature, this reference operator is often noted S for “shift.” Nevertheless, the shift interpretation is essentially valid
if one considers S to be the adjacency matrix (see discussion in Section 11.2.1). In a general setting, we prefer to denote by
R the reference operator.



11.1 GRAPH FOURIER TRANSFORM AND FREQUENCIES 301

The GFT is defined as the transformation of a graph signal from the canonical “node” basis to its
representation in the eigenvector basis:

Definition 11.2 (Graph Fourier Transform). For a given diagonalizable reference operator
R = U�U−1 associated with a graph G, the GFT of a graph signal x ∈ RN is:

FGx .= x̂ .= U−1x. (11.2)

�
The GFT’s coefficients are simply the projections on the left eigenvectors of R:

∀k = 1, . . . , N
(
FG x

)
k = x̂k = vT

k x. (11.3)

Moreover, the GFT is invertible: U x̂ = UU−1x = x. In general, the complex Fourier modes uk are not
orthogonal to each other. However, when R is symmetric, the following additional properties hold true.

The special case of symmetric reference operators. If in addition to being real, R is also symmetric,
then U and � are real matrices, and U may be found orthonormal, that is: U−1 = U�. In this case,
vk = uk, the GFT of x is simply x̂ = U�x with coefficients x̂k = u�

k x, and the Parseval relation
holds: ||x̂||2 = ||x||2. Hereafter, when a symmetric operator R is encountered, one should have these
properties in mind.

Finally, the interpretation of the graph Fourier modes uk in terms of oscillations and frequencies
will be the scope of Section 11.1.3. In the following, we list possible choices of reference operators, all
diagonalizable with different U and �, thus all defining different possible GFTs.

GFT for undirected graphs
Undirected graphs are characterized by symmetric adjacency matrices: ∀(i, j) Aij = Aji. This does not
necessarily mean that R has to be chosen symmetric as well, as we will see with the example R = Lrw.
The following choices of R are the most common in the undirected case.

The combinatorial Laplacian [symmetric]. The first choice for R, advocated in [2–4], is to use the
graph’s combinatorial Laplacian, having properties studied in [5]. It is defined as L = D − A where
D is the diagonal matrix of nodes’ strengths, defined as Dii = di = ∑

j Aij. If the adjacency matrix
is binary (i.e., unweighted), this strength reduces to the degree of each node. The advantages of using
L are twofold. (i) It is an intuitive manner to define the GFT: L being the discretized version of the
continuous Laplacian operator which admits the Fourier modes as eigenmodes, it is fair to use by
analogy the eigenvectors of L as graph Fourier modes. Moreover, this choice is associated with a
complete theory of vector calculus (e.g., gradients) for graph signals [6] that is useful to solve partial
differential equations on graphs. (ii) L has well-known mathematical properties [5], giving ways to
characterize the graph or functions and processes on the graph (see also [7]). Most prominently, it is
semidefinite positive (SDP) and its eigenvalues, being all positive or null, will serve in the following to
bind eigenvectors with a notion of frequency.

The normalized Laplacian [symmetric]. A second choice for R is the normalized Laplacian

Ln = D− 1
2 LD− 1

2 = I − D− 1
2 AD− 1

2 . An interesting property of this choice of Laplacian is that
all its eigenvalues lie between 0 and 2 [5].



302 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

The adjacency matrix, or deformed Laplacian [symmetric]. Another choice for R is the adjacency
matrix3 A�, as advocated in [1]. One readily sees that the eigenbasis U of A� and the eigenbasis of the

deformed Laplacian Ld = I − A�
||A||2 , where ||.||2 is the operator 2-norm, are the same. Therefore, the

corresponding GFTs are equivalent and, for consistency in the presentation, we will use R = Ld here.
The random walk Laplacian [not symmetric]. The random walk Laplacian is yet another Laplacian
reading: Lrw = D−1L = I − D−1A, where D−1A serves also to describe a uniform random walk on
the graph. Even though Lrw is not symmetric, we know it is diagonalizable in R. In fact, if uk is an

eigenvector of Ln with eigenvalue λk, then D− 1
2 uk is an eigenvector of Lrw with the same eigenvalue.

Thus, Lrw has the same eigenvalues as Ln, and its Fourier basis U is real but not orthonormal.
Other possible definitions of the reference operator. For instance, the consensus operator (of the form
I − σL with some suitable σ ) [8], a geometric Laplacian [9], or some other deformed Laplacian one
may think of, are valid alternatives.
All these operators imply a different spectral domain (different U and �) and, provided one has a nice
frequency interpretation (which is the object of Section 11.1.3), they all define possible GFTs. In the
graph signal processing literature, the first three operators (L, Ln, and Ld) are the most widely used.

GFT for directed graphs
For directed graphs, the adjacency matrix is no longer symmetric—Aij is not necessarily equal to
Aji—which does not automatically imply that the reference operator R is not symmetric (e.g., the
case R = Q below). This case is of great interest in some applications where the graph is naturally
directed, such as hyperlink graphs (there is a directed edge between website i and website j if there
is a hyperlink in website i directing to j). In directed graphs, the degree of node i is separated in its
out-degree, dout = ∑

j Aij, and its in-degree, din = ∑
j Aji.

Some straightforward approaches [not symmetric]. It is possible to readily transpose the previous
notions to the directed case, choosing either Dout or Din to replace D in the different formulations: e.g.,

L = Din − A� as in [10], Lrw = I − D−1
outA as in [11], Ln = I − D

− 1
2

out AD
− 1

2
out . A notable choice is

to directly use Ld = I − A�
||A||2 as in [1] (we recall that Ld and R = A� are equivalent for they share

the same eigenvectors and thus, define the same GFT). These matrices are no longer strictly speaking
Laplacians as they are no longer SDP, but one may nonetheless consider them as reference operators
defining possible GFTs. Note that these definitions entail choosing (rather arbitrarily) either Dout or Din
in their formulations, with the notable exception of Ld. In fact, Ld naturally generalizes to the directed
case and is a classical choice of R in this context [1].
Chung’s directed Laplacian [symmetric]. A less common approach in the graph signal processing
community is the one provided by the directed Laplacians introduced by Chung [12]. To define these
Laplacians, let us first introduce the random walk transition matrix (or operator) defined as P = D-1

outA.
It admits a stationary probability4 π ∈ RN+ such that π�P = π�. Writing � = diag(π ), Chung defines
the following two directed Laplacians:

3We use A� instead of A for consistency purposes with [1], whose convention for directed edges in the adjacency matrix is
converse to ours: what they call A is what we call A�. Without any influence in the undirected case, it has an impact in the
directed case.
4Assuming the random walk is ergodic, i.e., irreducible and nonperiodic.



11.1 GRAPH FOURIER TRANSFORM AND FREQUENCIES 303

Q = � − �P + P��

2
, (11.4)

Qn = �− 1
2 Q�− 1

2 = I − �
1
2 P�− 1

2 + �− 1
2 P��

1
2

2
. (11.5)

Both the combinatorial Q and the normalized Qn directed Laplacians verify the properties of Laplacian
matrices: SDP, negative (or null) entries everywhere except on the diagonal and real symmetric. It is
easy to see that Eqs. (11.4) and (11.5) generalize the definitions of the undirected case because for an
undirected graph, � = D, �P = A; hence Q is the combinatorial Laplacian L, and Qn is its normalized
version Ln.

Other possible definitions of the reference operator. The previous definitions of Lrw and Ld for
undirected graphs may also be generalized to the directed Laplacian framework to obtain:

Qrw = I − P + �−1P��

2
and Qd = I − �P + P��

||�P + P��||2
. (11.6)

Additional notes. Other GFTs for directed graphs were proposed via the Hermitian Laplacian as
introduced in [13], which generalizes A�. A very different approach is to construct a Graph Fourier
basis directly from an optimization scheme, requiring some notion of smoothness, or generalization of
it; see [14,15]. We will not consider this recent approach here.

11.1.3 FREQUENCIES OF GRAPH SIGNALS
To complement the notion of GFT, one needs to introduce some frequency analysis of the Fourier modes
on the graph. The general way of doing so is to compute how fast a mode oscillates on the graph, and
the tool of preference is to compute their variations across all edges of the graph. Let us first note the
following facts:

• In the undirected case, L is semidefinite positive (SDP). In fact, one may write:

VL(x) = x�Lx = 1

2

∑
(i,j) ∈E

Aij
(
xi − xj

)2 ≥ 0. (11.7)

This function is also called the Dirichlet form. Similarly, Ln is also SDP:

VLn (x) = x�Lnx = 1

2

∑
(i,j) ∈E

Aij

(
xi√
di

− xj√
dj

)2

≥ 0. (11.8)

As far as we know, the Dirichlet forms of Lrw and Ld do not have such a nice formulation as a sum
of local quadratic variations over all edges of the graph. They are nevertheless SDP because:
(i) Lrw and Ln have the same spectrum; (ii) the symmetry of Ld implies real eigenvalues, and the
maximum eigenvalue of A/||A||2 being 1 by definition of the norm, the minimum eigenvalue of
Ld is 0.



304 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

• In the directed case, all directed Laplacians Q, Qn, Qrw, and Qd are SDP due to similar
arguments. Q and Qn also have Dirichlet forms in terms of a sum of local quadratic variations, e.g.:

VQ(x) = x�Qx = 1

2

∑
(i,j) ∈E

πiPij
(
xi − xj

)2 ≥ 0. (11.9)

The other reference operators L = Din − A�, Lrw = I − D−1
outA, Ln = I − D

− 1
2

out AD
− 1

2
out ,

Ld = I − A�
||A||2 are not SDP as their eigenvalues may be complex. Nevertheless, the real part of

their eigenvalues is always nonnegative. This is quite clear for Ld. For L = Din − A�, as the sum
of row i of A� is equal to din(i), Gershgorin circle theorem ensures that the real part of all
eigenvalues of L are nonnegative. For Lrw: as P = D−1

outA is a stochastic matrix, the
Perron-Frobenius theorem ensures that its eigenvalues are in the disk of radius 1 in the complex
plane, hence the real part of Lrw’s eigenvalues are nonnegative. As Lrw and Ln have the same set
of eigenvalues, it is also true for Ln.

To sum up, all the reference operators considered are either SDP (with real nonnegative eigenvalues)
or have eigenvalues whose real component is nonnegative.

Definition 11.3 (Graph frequency). Let R be a reference operator. If its eigenvalues are real, the
generalized graph frequency ν of a graph Fourier mode uk is:

ν(uk) = λk ≥ 0. (11.10)

If its eigenvalues are complex, two different definitions of the generalized graph frequency ν of a graph
Fourier mode uk exist:

ν(uk) = Re(λk) ≥ 0 or ν(uk) = |λk| ≥ 0. (11.11)

�
Remark. In the case of complex eigenvalues, it is a matter of choice whether we consider the

imaginary part of the eigenvalues or not. There is no current consensus on this question. A second
remark deals with the case of a multiple eigenvalue λk, i.e., if there are several eigenvectors associated
to the same λk, then, only one frequency ν(λk) is defined for the associated eigenspace.

Justification: the link between frequency and variation. Two types of variation measures have been
considered in the literature to show the consistency between this definition of graph frequencies and
a notion of oscillation over the graph. The first one is based on the quadratic forms of the Laplacian
operators. For instance, in the undirected case with the combinatorial Laplacian, Eq. (11.7) applied to
any normalized Fourier mode uk defined from L reads:

VL(uk) = u�
k Luk = 1

2

∑
(i,j) ∈E

Aij
(
uk(i) − uk(j)

)2 = λk ||uk||22 = λk. (11.12)

The larger the local quadratic variations of uk, the larger its frequency λk. Eqs. (11.8) and (11.9) (as
well as its counterpart for Qn) enable making this variation-frequency link for Ln, Q, and Qn. The
second general type of variation that has been defined [16] is the total variation between a signal and its



11.1 GRAPH FOURIER TRANSFORM AND FREQUENCIES 305

shifted version on the graph (where “shifting” a signal is understood as applying the adjacency matrix
to it). For instance, in the case of Ld, the associated variation reads5:

VLd (x) =
∣∣∣∣
∣∣∣∣x − 1

|μmax|A�x

∣∣∣∣
∣∣∣∣
2

= ||Ldx||2 , (11.13)

where μi designate the eigenvalues of A and μmax the one of maximum magnitude. The variation of
the graph Fourier mode uk from Ld thus reads:

VLd (uk) = ||Lduk||2 = |λk| ||uk||2 = |λk|. (11.14)

The larger the total variation of uk, that is, the further is uk from its shifted version along the graph,
the larger its frequency.6 For L = Din − A�, a similar approach detailed in [10] links the variation of
uk to its frequency |λk|.

It may also happen that for some operator R, none of these two types of variations (quadratic forms
or total variation) show natural. Then, one may use the variation VR’ based on another related operator
R’ to define frequencies. For instance, in [11,17], the authors considered the random walk Laplacians
R = P = D−1

outA as the reference operator to define the GFT while the directed combinatorial Laplacian
R’ = Q is used to measure the variations. With these choices, they showed that VQ(uk) is equal to
Re(λk) up to a normalization constant. Another example of such a case is in [18] where one of the
reference operators to build filters is the isometric translation introduced in [19] while the variational
operators are built upon the combinatorial Laplacian. Note finally that other notions of variations such
as the Hub authority score can be drawn from the literature. We refer the reader to [20] for details on
that as well as a complementary discussion on GFTs and their related variations.

Definition 11.3 associates graph frequencies only to graph Fourier modes. For an arbitrary signal,
we have the following definition of its frequency analysis:

Definition 11.4 (Frequency analysis). The frequency analysis of any graph-signal x on G is given
by its components (FGx)k at frequency ν(uk), as given in Definition 11.3. �

11.1.4 IMPLEMENTATION AND ILLUSTRATION
Implementation. The implementation of the GFT requires diagonalizing R, costing O(N3) operations
in general and O(N2) memory space to store U, and applying U to a signal x to obtain x̂ = U−1x
costs O(N2) operations. These costs are prohibitive for large graphs (N � 104 nodes). Recent works
investigate how to reduce these costs, by tolerating an approximation on x̂. In the cases where R
is symmetric, the authors in [21,22] suggest approximating U by a product of O(N log N) Givens
rotations [23], using a truncated Jacobi algorithm. The resulting approximated fast GFT requires
O(N2 log2 N) operations to compute the Givens rotations, and O(N log N) operations to compute the
approximate GFT of x. The difficulty in designing fast GFTs boils down to the difficulty of deciphering

5In [16], the �1 norm is used but the �2 norm can be used equivalently: this is a matter of how one wants to normalize the
eigenvectors. In this chapter, we consider the classical Euclidean norm, hence �2.
6There is a direct correspondence between λi, the eigenvalues of Ld, and μi: λi = 1 −μi/|μmax|. We thus recover the results
in [16]: the closer is μk from |μmax| in the complex plane, the smaller the total variation of the associated Fourier mode uk.



306 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

(C)

0

0.5

1
L

Ln

Ld
0 0.5 1

L

Ln

Ld0 0.5 1
0

0.1

0.2

(D)

−0.4

−0.2

0

0.2

0.4

(A) (B) −0.4

−0.2

0

0.2

0.4

FIG. 11.1

Two graph signals and their GFTs. Plots (A) and (B) represent, respectively, a low-frequency and a
high-frequency graph signal on the binary Karate club graph [24]. Plots (C) and (D) are their corresponding
GFTs computed for three reference operators: L, Ln, and Ld (equivalent to the GFT defined via the adjacency
matrix).

eigenvalues that are very close to one another. This difficulty disappears once we consider smooth
filtering operations that are much easier to efficiently approximate, as we will see in the next section.

Illustrations. To illustrate the GFT and the notion of frequency, we show in Fig. 11.1 two graph signals
on the Karate club graph [24], corresponding to instances of a low-frequency and a high-frequency
signal, respectively. We also show their GFTs, computed for three different choices of R: L, Ln, and Ld.
We see that the choice of normalization and the choice of whether to take explicitly the degree matrix
into account in the definition of R has a quantitative impact on the GFTs. Nevertheless, qualitatively, a
graph signal that varies slowly (resp. rapidly) along any path of the graph is low frequency (resp. high
frequency). In Fig. 11.2, we show how the GFT is not only sensitive to the graph signal but also to the
underlying graph structure. In fact, we observe that for a given graph signal, modifications in the graph
structure (here adding three links of weight ω) induce modifications in the signal’s GFT.

11.2 GRAPH FILTERS
In this section, we assume that the reference operator R of the graph on which we wish to design filters
is diagonalizable in C as in the previous section. The order of the eigenvalues and eigenvectors is chosen
as frequency increasing. That is, given a choice of frequency definition (either ν(λk) = Re(λk) ∈ R+
or ν(λk) = |λk| ∈ R+), one has ν(u1) ≤ ν(u2) ≤ · · · ≤ ν(uN).



11.2 GRAPH FILTERS 307

−0.4

−0.2

0

0.2

0.4

w

0.5 1
0

0.5

1

(A) (B)

w = 0
w = 2
w = 4
w = 10

0

FIG. 11.2

Sensitivity of the GFT to the graph’s topology. Plot (A) represents the same low-frequency graph signal as in
Fig. 11.1A, but the underlying graph structure is altered by adding three edges with same weight ω (the three
new edges are on the left side of the graph). Plot (B) represents the variation of its GFT (here choosing R = Ln)
with respect to the edges’ weight ω.

11.2.1 DEFINITION OF GRAPH FILTERS
The reference operator R has an eigendecomposition as in Eq. (11.1), and it can also be written as a
sum of projectors on all its eigenspaces:

R =
∑
λ

λ Prλ, (11.15)

where the sum is on all different eigenvalues λ and Prλ is the projector on the eigenspace associated
with eigenvalue λ, i.e.:

Prλ =
∑
λk=λ

ukv�
k .

Definition 11.5 (Wide-sense definition of a graph filter).
The most general definition of a graph filter is an operator that acts separately on all the eigenspaces

of R, depending on their eigenvalue λ. Mathematically, any function:

h : C → R (11.16)

λ → h(λ) (11.17)

defines a graph filter H such that:

H =
∑
λ

h(λ) Prλ =
∑

k

h(λk)ukv�
k . (11.18)

�
To each eigenspace of R with eigenvalue λ is associated a filtering weight h(λ) that attenuates or

increases the importance of this eigenspace in the decomposition of the signal of interest. In fact, one
may write the action of H on a signal x as:



308 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

Hx =
∑
λ

h(λ) Prλ x. (11.19)

For any function g, let us write g(�) as a shorthand notation for diag(g(λ1), . . . , g(λN)). A graph filter
can be written as:

H = U h(�) U−1. (11.20)

Using functional calculus of operators, this is equivalently written as H = h(R), which calls for some
interpretation remarks. In fact, this expression opens the way to interpret what is the action of a graph
filter in the vertex domain. Firstly, note that applying R to a graph signal is in fact a local computation on
the graph: on each node, the resulting transformed signal is a weighted sum of the values of the original
signal on its (direct) neighbors. Therefore, in the node space, a filter H = h(R) can be interpreted as an
operator that weights the information on the signal transmitted through edges of the graph, the same way
classical filters are built on the basic operation of time-shift. This fundamental analogy shift/reference
operator was first made in [1] and explains why in the GSP literature, reference operators are often
called “shift operators”.

Now, to illustrate the notion of graph filtering in the spectral domain, consider the graph signal
x = ∑

k αkuk and y = Hx. The kth Fourier component of x being, by construction, x̂k = v�
k x = αk, its

filtered version reads:

y = Hx =
∑

k

h(λk)αkuk. (11.21)

Hence, the kth Fourier component of the filtered signal is ŷk = h(λk) αk, recalling the classical
interpretation of filtering as a multiplication in the Fourier domain. We call h(λ) the frequency response
of the filter.

In many cases, it is more convenient and natural to restrict ourselves to functions h that associate the
same real number to all values of λ ∈ {λ s.t. ν(λ) = ν ∈ R+}. That is, considering any two eigenvalues
λ1 and λ2 associated with the same frequency ν(λ1) = ν(λ2), we restrict ourselves to functions h such
that h(λ1) = h(λ2). This entails the following narrowed-sense definition of a graph filter.

Definition 11.6 (Narrowed-sense definition of a graph filter). Any function:

h : R+ → R (11.22)

ν → h(ν) (11.23)

defines a narrowed-sense graph filter H such that:

H =
∑
λ

h(ν(λ)) Prλ = Uh(v(�))U−1. (11.24)

�
Remark. If the eigenvalues are real, both Definitions 11.5 and 11.6 are equivalent because

ν(λ) = λ ∈ R+.
Examples of narrowed-sense filters.

• The constant filter equal to c: h(ν) = c. In this case, h(ν(�)) = cI and H = cI: all frequencies are
allowed to pass, and no component is filtered out.



11.2 GRAPH FILTERS 309

• The Kronecker delta in ν∗: h(ν) = δν,ν∗ . If there exists one (or several) eigenvalues λ of R such
that ν(λ) = ν∗, then H = ∑

λ s.t. ν(λ)=ν∗ Prλ. If not, then H = 0. For this filter, only the frequency
ν∗ is allowed to pass.

• The ideal low-pass with cut-off frequency νc: h(ν) = 1 if ν ≤ νc, and 0 otherwise. In this case:
H = ∑

λ,s.t.ν(λ)≤νc
Prλ, i.e., only frequencies up to νc are allowed to pass.

• The heat kernel h(ν) = exp−ν/ν0 : the weight associated with ν is exponentially decreasing with the
frequency ν. Actually y = H x0 is the solution of the graph diffusion (or heat) equation (see [2]) at
time t = 1/ν0 with initial condition x0.

11.2.2 PROPERTIES OF GRAPH FILTERS
From now on, in order to simplify notations and concepts in this introductory chapter on graph filtering,
we will restrict ourselves to symmetric reference operators, such as L, Ln, or Ld in the undirected case,
or the directed Laplacians Q or Qn in the directed case. In this case, the eigenvalues are real such that
the frequency definition is straightforward ν(λ) = λ, both filter definitions are equivalent such that the
frequency response reads:

h : R+ → R (11.25)

λ → h(λ), (11.26)

and one may find a real orthonormal graph Fourier basis U such that U−1 = U�. A filtering operator
associated with h thereby reads:

H = Uh(�)U� ∈ RN×N . (11.27)

All results presented in the following may be (carefully) generalized to the unsymmetric case.
Definition 11.7. We write Cp the set of finite-order polynomials in R:

Cp =
⎧⎨
⎩H s.t. H =

n∑
i=0

aiR
i, {ai}i=0,...,n ∈ Rn+1, n ∈ N\{+∞}

⎫⎬
⎭ . (11.28)

�
Proposition 11.1. Cp is equal to the set of graph filters. �
Proof. Consider H ∈ Cp. Then, defining h(λ) = ∑n

i=0 aiλ
i, one has: H = ∑n

i=0 aiRi =
U

∑n
i=0 ai�

iU� = Uh(�)U�, i.e., H is a filter. Now, consider H a filter, i.e., there exists h such that
H = Uh(�)U�. Consider the polynomial

∑N−1
i=0 aiλ

i that interpolates through all pairs (λi, h(λi)). The
maximum degree of such a polynomial is N −1 as there are maximum N points to interpolate, and may
be smaller if eigenvalues have multiplicity larger than one. Thereby, one may write: H = Uh(�)U� =
U

∑N−1
i=0 ai�

iU� = ∑N−1
i=0 aiRi. Writing n = N − 1, this means that H ∈ Cp. �

Consequence. An equivalent definition of a graph filter is a polynomial in R.
Definition 11.8. We write Cd the set of all diagonal operators in the graph Fourier space:

Cd = {H, s.t. U�HU is diagonal}. (11.29)

�



310 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

Proposition 11.2. The set of graph filters is included in Cd. Both sets are equal if all eigenspaces
of R are simple (i.e., all eigenvalues are of multiplicity one). �

Proof. By definition of graph filters, they are included in Cd. Now, in general, an element of Cd is
not necessarily a graph filter. In fact, given H ∈ Cd, all diagonal entries of U�HU may be chosen
independently, which is not the case for the diagonal entries of h(�) corresponding to the same
eigenspace. Thus, both sets are equal if all eigenspaces are of dimension one. �
Consequence. In the case where all eigenvalues are simple, an equivalent definition of a graph filter is
a diagonal matrix in the graph Fourier basis.

Definition 11.9. We write Cc the set of matrices that commute with R:

Cc = {H s.t. RH = HR}. (11.30)

�
Proposition 11.3. Cp ⊆ Cc. The equality holds if all eigenvalues of R are simple. �
Proof. A polynomial in R necessarily commutes with R, thus Cp ⊆ Cc. Now, in general, an element

in Cc is not necessarily in Cp. In fact, if H ∈ Cc, then �Y = Y� with Y = U�HU. Suppose � = λI.
In this case, commutativity does not constrain Y at all, thereby H is not necessarily in Cp. Now, if we
suppose that all eigenvalues have multiplicity one, i.e., all diagonal entries of � are different, the only
solution for Y is to be a diagonal matrix, i.e., Cc = Cd. We showed in Proposition 11.2 that the set of
graph filters is equal to Cd if all eigenvalues have multiplicity one, therefore: Cc = Cp if all eigenvalues
have multiplicity one. �
Consequence. In the case where all eigenvalues are simple, an equivalent definition of a graph filter is
a linear operator that commutes with R.

11.2.3 SOME DESIGNS OF GRAPH FILTERS
From the previous sections, it should now be clear that the frequency response of a filter H only
alters the frequencies ν(λ) corresponding to the discrete set of eigenvalues of R (see Eq. 11.18). More
generally though, the frequency response of a graph filter can be defined over a continuous range of λ’s,
leading to the notion of universal filter design, i.e., a filter whose frequency response h(λ) is designed
for all λ’s and not only adapted to the specific eigenvalues of R. On the contrary, a graph-dependent
filter design depends specifically on these eigenvalues.
FIR filters. From the results of Section 11.2.2, a natural class of graph filters is given in the form of
finite impulse response (FIR) filters, as by Eq. (11.28) with a polynomial of finite order, which realizes
a weighted moving average (MA) filtering of a signal. Also, one can design any universal filter by
fitting the desired response h(λ) with a polynomial

∑n
i=0 aiλ

i. The larger n is, the closer the filter can
approximate the desired shape. If the approximation is done only using the h(λk), the design is graph-
dependent, else it is universal if fitting some function h(λ).

Let us then go back to the interpretation of R as a graph shift operator in the node space, (as
studied or recalled for instance in [1,20,25,26]), and see how it operates for FIR filters. Applied to
a graph signal, the terms Ri in Eq. (11.28), act as an i-hop local computation on the graph: on each
node, the resulting filtered signal is a weighted sum of the values of the original signal lying in
its ith neighborhood, that is, nodes attainable with a path of length i along the graph. Then, as for
classical signals, FIR filters only imply a finite neighborhood of each node, and this will translate in
Section 11.2.4 into distributed, fast implementations of these filters. Still, FIR filters are usually poor



11.2 GRAPH FILTERS 311

at approximating filters with sharp changes of desired frequency response, as illustrated, for instance,
in Fig. 1 of [25].

ARMA filters. A more versatile approximation of h(λ) can be obtained with a rational design [25,27,28]:

h(λ) =
∑q

i=0 biλ
i

1 + ∑p
i=1 aiλ

i
= pq(λ)

pp(λ)
. (11.31)

Such a rational filter is called an auto-regressive moving average filter of order (p, q) and is commonly
noted ARMA(p, q). Again, it is known from classical DSP that an ARMA design, being a IIR (infinite
impulse response) filter, is more adaptable at approximating various shapes of filters, especially with
sharp changes in the frequency response. The filtering relation y = Hx for ARMA filters can be written
in the node domain as: (1 + ∑p

i=1 aiRi)y = (
∑q

i=0 biRi)x. This ARMA filter expression will lead
to the distributed implementation, discussed later in Section 11.2.4. For instance, for an ARMA(1,0)
(i.e., an AR(1)) one will have to use: y = −a1Ry + b0x.

Example. A first design of low pass graph filtering is given by the simplest least-square denoising
problem, where the Dirichlet form xTRx is used as a Tikhonov regularization promoting smoothness
on the graph. Using the (undirected) Laplacian and assuming one observes y, the filter is given by:

x∗ = arg min
x

1

2
||x − y||22 + γ x�Lx (11.32)

The solution is then given in the spectral domain (for L) by (Fx∗)k = hAR(1)(λk)(Fy)k with hAR(1)(λ) =
1/(1 + γ λ). It turns out to be a (universal) AR(1) filter. �
Design of coefficients. To design the coefficients of ARMA filters, the classical approach is to find
the set of coefficients ai and bi to approximate the desired h(λ) as a rational function. However, as
recalled in [25,27], the usual designs in DSP are not easily transposed to the GSP framework because
the frequency response is given in terms of the λ’s, and not in terms of jω or ejω.

Henceforth, it has been studied in [25,27] how to approximate the filter coefficients in a universal
manner (i.e., with no specific reference to the graph spectrum) using a Shank’s method: 1) Determine
the ai by first finding a polynomial approximation Ph(λ) of h(λ), and solve the system of equations
pp(λ)Ph(λ) = pq(λ) to identify the ai’s. Then 2) solve the least-square problem to minimize∫
λ
|pq(λ)/pp(λ) − h(λ)|2dλ w.r.t. λ to find the bi’s.
A second method is to approximate the filter response in a graph-dependent design, on the specific

frequencies λk only. To do so, the method in [29], instead of fitting the polynomial ratio, solves the
following optimization problem:

min
a,b

N−1∑
k=0

∣∣∣∣∣∣h(λk)

⎛
⎝1 +

p∑
i=1

aiλ
i
k

⎞
⎠ −

q∑
i=0

biλ
i
k

∣∣∣∣∣∣
2

. (11.33)

Using again a polynomial approximation Ph(λ), the solution derives from the least-square solution (see
details in [29]).

AR filters to model random processes. We do not discuss much in this chapter about random processes
on graphs; for that, see the framework to study stationary random processes on graphs in [26,30], and
Chapter 12. Still, a remark can be made for the parametric modeling of random processes. As introduced



312 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

in [1], one can model a process on a graph as the output of a graph filter, generally taken as an ARMA
filter. Here, we discuss the case of AR filters. The linear prediction is written as:

x̃ =
p∑

i=1

aiR
ix. (11.34)

The coefficients of this filter can directly be obtained by numerical inversion of x = Ba where
B = (Rx, R2x, . . . , Rpx). The solution is given by the pseudoinverse: a# = (B�B)−1B�x, which
minimizes the squared error ||x − Ba||22, w.r.t to a. Another possibility would be to estimate the
coefficients of the AR model by means of the orthogonality principle leading to the Yule-Walker (YW)
equations, as follows:

E

{
(Rkx)�Rx)

}
=

p∑
i=1

aiE
{

(Rix)�Rkx
}

= 0. (11.35)

Depending on the structure of the reference operator R, we have:

1. If R is symmetric (R� = R, as often for undirected graph), the autocorrelation function involved
in this YW system is: ρx(m, n) = E

{
(Rmx)�Rnx

} = γx(m + n);
2. When R is unitary (for instance with R as the isometric operator from [19]), the corresponding

autocorrelation will be ρx(m, n) = E
{
(Rmx)�Rnx

} = γx(n − m) and the usual techniques to solve
the YW system can be used.

Experimentally, it was found that the isometric operator of [19] or a consensus operator is the one that
offers a more exact and stable modeling [18].

11.2.4 IMPLEMENTATIONS OF GRAPH FILTERS
Given a frequency response h, how to efficiently filter a graph signal x?
The direct approach. It consists in first diagonalizing R to obtain U and �, then computing the filter
matrix H = Uh(�)U�, and finally left-multiplying the graph signal x by H to obtain its filtered
version. The overall computational cost of this procedure is O(N3) arithmetic operations due to the
diagonalization and O(N2) memory space as the GFT U is dense in general.
The polynomial approximate filtering approach. More efficiently though, we can first quickly estimate
λmin and λmax (for instance via the power method) and second, look for a polynomial that best
approximates h(λ) on the whole interval [λmin, λmax]. Let us call h̃i the coefficients of this approximate
polynomial. We have:

Hx = Uh(�)U�x  U
p∑

i=0

h̃i�
iU�x =

p∑
i=0

h̃iR
ix. (11.36)

The number of required arithmetic operations is O(p|E |), where p is a trade-off between precision
and computational cost. Also, the easier is h approachable by a low-order polynomial, the better the
approximation. At the same time, the larger p is, the more accurate the approximation is. The authors
of [31] recommend Chebyshev polynomials as an approximation basis as they are known to be optimal
in the ∞-norm sense. In some circumstances, other choices can be preferred. For instance, when



11.2 GRAPH FILTERS 313

approximating the ideal low pass, Chebyshev polynomials yield Gibbs oscillations around the cut-
off frequency that turn penalizing for smooth filters. In that case, other choices are possible [32], such
as the Jackson-Chebyshev polynomials that attenuate such unwanted oscillations.

The Lanczos approximate filtering approach. In [33], and based on works by Gallopoulos and Saad
[34], the authors propose an approximate filtering approach based on Lanczos iterations. Given a signal
x, the Lanczos algorithm computes an orthonormal basis Vp ∈ RN×p of the Krylov subspace associated
with x: Kp(L, x) = span(x, Lx, . . . , Lp−1x), as well as a small tridiagonal matrix Hp ∈ Rp×p such that:
V∗

pLVp = Hp. The approximate filtering then reads:

Hx  ||x||2Vph(Hp)δ1. (11.37)

At fixed p, this approach has a typical complexity in O(p|E |), possibly raised to O(p|E | + Np2) if a
reorthonomalization is needed to stabilize the algorithm; that is a cost that is comparable to that of the
polynomial approximation approach. Theoretically, the quality of approximation is similar (see [33] for
details). In practice, however, it has been observed that if the spectrum is regularly spaced, polynomial
approximations should be preferred while the Lanczos method has an edge over others in the case of
irregularly spaced spectra. This is understandable as Krylov subspaces are also used for diagonalization
purposes (see for instance, chapter 6 of [35]) and thus naturally adapt to the underlying spectrum.

Distributed implementation of ARMA filters. The ARMA filters being defined through a rational
fraction are IIR filters. Henceforth, the polynomials approach to distribute and fasten the computation
are not the most efficient ones. The methods developed in [27,28] yield a distributed implementation of
ARMA filters. The first point is to remember that the rational filter of Eq. (11.31) can be implemented
from its partial fraction decomposition as a sum of polynomial fractions of order 1 only. Then, the
distributed implementation of filtering x can be done by studying the first-order recursion [27]:

y(t + 1) = cMy(t) + dx, (11.38)

where y(t + 1) is the filter output at iteration t. The operator M is chosen equal to (λmax − λmin)I − R,
with the same eigenvectors as R, and with a minimal spectral radius that ensures good convergence
properties for the recursion. The coefficients c and d are chosen in C so that, with r = −d/c and ρ =
1/c, the proposed recursion reproduces the effect of the following ARMA(1,0) filter: h(λ) = r/(λ−ρ).
The coefficients r and ρ are the residue and the pole of the rational function, respectively.

Because M is local in the graph, the recursive application of Eq. (11.38) is local and the algorithm is
then naturally distributed on the graph, with a memory and operation at each recursion in O(K|E |) for
K filters in parallel to compute the output of an ARMA(K, K) filter. This approach is shown in [27,28]
to converge efficiently. Moreover, in [25], the behavior of this design is also studied in time-varying
settings, when the graph and signal are possibly time varying; it is then shown that the recursion can
remain stable and usable as a distributed implementation of IIR filters.

Illustration. We show in Fig. 11.3 an example of a filtering operation on a graph signal. We consider
here the case of a Tikhonov denoising (see Eq. 11.32), i.e., with a frequency response equal to
h(λ) = 1/(1 + γ λ).



314 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

FIG. 11.3

Illustration of graph filters: a denoising toy experiment. The input signal x is a noisy version (additive Gaussian
noise) of the low-frequency graph signal displayed in Fig. 11.1. We show here the filtering operation in the
graph Fourier domain associated with R = Ln.

11.3 FILTERBANKS AND MULTISCALE TRANSFORMS ON GRAPHS
To process and filter signals on graphs, it is attractive to develop the equivalent of multiscale transforms
such as wavelets, i.e., ways to decompose a graph signal on components at different scales, or
frequency ranges. The road to multiscale transforms on graphs has originally been tackled in the
vertex domain [36] to analyze data on networks. Thereafter, a general design of multiscale transforms
was based on the diffusion of signals on the graph structure, leading to the powerful framework of
diffusion wavelets [37,38]. These latter works were already based on diffusion operators, usually a
Laplacian or a random walk operator, whose powers are decomposed in order to obtain a multiscale
orthonormal basis. The objective was to build a kind of equivalent of discrete wavelet transforms for
graph signals.

In this chapter, we focus on two other constructions of multiscale transforms on graphs that are
more related to the GFT. The frequency analysis and filters described here are: (1) the method of [3],
which develops an analog of continuous wavelet transform on graphs, (2) approaches that combine
filters on graphs with graph decompositions through decimation (pioneered in [4] with decimation of
bipartite graphs) or aggregation of nodes; in a nutshell, these methods are very close to the filter banks
implementation of discrete wavelets [39].

11.3.1 CONTINUOUS MULTISCALE TRANSFORMS
In the following, we work with undirected graphs and R = Ln = I−D− 1

2 AD− 1
2 , whose eigenvalues are

contained in the interval [0, 2]. The generalization to other operators can be done using the guidelines
of previous sections.



11.3 FILTERBANKS AND MULTISCALE TRANSFORMS ON GRAPHS 315

The first continuous multiscale transform based on the GFT was introduced via the spectral graph
wavelet transform [3] (using similar concepts as in diffusion polynomial frames [40]). These wavelets
were defined by analogy to the classical wavelets in the following sense. Classically, a wavelet family
{ψs,τ (t)} centered around time τ and at scale s is the translated and dilated version of a mother wavelet
ψ(t), generally defined as a zero-mean, square integrable function. Mathematically it is expressed for
all s ∈ R+ and τ ∈ R as:

ψs,τ (t) = 1

s
ψ

(
t − τ

s

)
(11.39)

or equivalently, in the frequency domain, with F the continuous Fourier transform:

F[ψs,τ ](ω) = F[ψ](sω)F[δτ ](ω) = ψ̂(sω)e−iωτ . (11.40)

Then, for a signal x, the wavelet coefficient at scale s and instant τ is given by the inner product
Ws,τ x = 〈x, ψs,τ 〉.

By analogy, transposing Eq. (11.40) with GFT, a spectral graph wavelet ψs,a at scale s and node a
reads7:

ψs,a = Uh(s�)U�δa, (11.41)

where the graph filter h(λ) plays the role of the wavelet band pass filter ψ̂(ω). The shifted scaled wavelet
identifies to the impulse response of h(sλ) to a Dirac localized on node a. In particular, the shape of the
filter originally proposed in [3] was:

hSGW(λ) =

⎧⎪⎨
⎪⎩

λ−α
1 λα for λ < λ1

q(λ) for λ1 ≤ λ ≤ λ2

λ
β
2 λ−β for λ > λ2

with α, β, λ1, and λ2 four parameters, and q(λ) the unique cubic polynomial interpolation that
preserves continuity and the derivative’s continuity. Several properties on the obtained wavelets may
be theoretically derived, for instance the notion of locality (the fact that a wavelets’ energy is mostly
contained around the node on which it is centered). Given a selection of scales S = (s1, . . . , sm) and
a graph signal x, the signal wavelet coefficient associated with the node a and the scale s ∈ S reads:
Ws,ax = ψ�

s,ax. Then, a question that naturally arises is that of invertibility of the wavelet transform:
can one recover any signal x from its wavelet coefficients? As defined here, the wavelet transform is
not invertible as it does not take into account—due to the zero-mean constraint of the wavelets—the
signal’s information associated with the null frequency, i.e., associated with the first eigenvector u1. To
enable invertibility, one may simply add any low pass filter h0(λ) to the set of filters {hSGW(sλ)}s∈S of
the wavelet transform. We write φa their associated atoms:

φa = Uh0(�)U�δa. (11.42)

7Note that the scale parameter stays continuous but the localization parameter is discretized to the set of nodes a of the graph.



316 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

The following theorem derives:
Theorem 11.1 (Theorem 5.6 in [3]). Given a set of scales S, the set of atoms {{ψs,a}s∈S ∪{φa}}a∈V

forms a frame with bounds A, B given by:

A = min
λ∈[0,λmax]

G(λ), (11.43)

B = max
λ∈[0,λmax]

G(λ), (11.44)

where G(λ) = (h0(λ))2 + ∑
s∈S (hSGW(sλ))2. �

In theory, invertibility is guaranteed provided that A is different from 0. Nevertheless, in practice,
one should strive to design filter shapes (wavelet and low pass filters) and to choose a set of scales such
that A is as close as possible to B in order to deal with well-conditioned inverses. Doing so, we obtain
the so-called tight (or snug) frames, i.e., frames such that A = B (or A ≈ B). An approach is to use
classical dyadic decompositions using band limited filters such as in Table 1 of [41]. Another desirable
property of such frames is their discriminatory power: the ability to discern different signals only by
considering their wavelet coefficients. For a filterbank to be discriminative, each filter element needs to
take into account information from a similar number of eigenvalues of the Laplacian. The eigenvalues
of an arbitrary graph being unevenly spaced on [0, λmax], one needs to compute or estimate the exact
density of the spectrum of the graph under consideration [42].

11.3.2 DISCRETE MULTISCALE TRANSFORMS
A second general way to generate multiscale transforms is via a succession of filtering and decimation
operations, as in Fig. 11.4. This scheme is usually cascaded as in Fig. 11.5, and each level of the
cascade represents a scale of description of the input signal. Thereby, as soon as decimation enters into
the process, we talk about “discrete” multiscale transforms, as the scale parameter can no longer be
continuously varied. For details on this particular approach to multiscale transforms in classical signal
processing, we refer, e.g., to the book by Strang and Nguyen [39]. In the following, we directly consider
the graph-based context. Let us first settle notations:

• The decimation operator may be generally defined by partitioning the set of nodes V into two sets
V0 and V1. As this subdivision is a partition, we have V0 ∪ V1 = V and V0 ∩ V1 = ∅. Moreover, let
us define ↓Vi the downsampling operator associated with Vi: given any graph signal x, yi =↓Vi x is
the reduction of x to Vi. We also define the upsampling operator ↑Vi=↓�

Vi
. Given yi a signal

defined on Vi, ↑Vi yi is the zero-padded version of yi on the whole graph. The combination of both
operators reads: ↑Vi↓Vi= diag(IVi), where IVi is the indicator function of Vi. Moreover, we define:

J = 2 ↑V0
↓V0

− I = diag(IV0
) − diag(IV1

). (11.45)

• We define two analysis filters: a low pass graph filter H0 and a high pass graph filter H1, as well as
two synthesis graph filters G0 and G1. All filters are associated with their frequency responses
h0(λ), h1(λ), g0(λ) and g1(λ).

The signal y0 =↓V0 H0x is called the approximation of x, whereas y1 =↓V1 H1x is generally
understood as the necessary details to recover x from its approximation.



11.3 FILTERBANKS AND MULTISCALE TRANSFORMS ON GRAPHS 317

FIG. 11.4

A filterbank seen as a succession of filtering and decimating operators.

FIG. 11.5

A cascaded filterbank (here two levels).

Given the scheme of Fig. 11.4, one writes the processed signal x̃ as:

x̃ = (
G0 ↑V0

↓V0
H0 + G1 ↑V1

↓V1
H1

)
x (11.46)

= 1

2
(G0H0 + G1H1) x + 1

2
(G0JH0 − G1JH1) x. (11.47)

When designing such discrete filterbanks, and in order to enable perfect reconstruction (∀x ∈ RN

x̃ = x), one deals with two main equations linking all four filters and the matrix J:

G0H0 + G1H1 = 2I, (11.48)

G0JH0 − G1JH1 = 0. (11.49)

Left-multiplying by U� and right-multiplying by U, one obtains equivalently:

g0(�)h0(�) + g1(�)h1(�) = 2I, (11.50)

g0(�)U�JUh0(�) − g1(�)U�JUh1(�) = 0. (11.51)

Eq. (11.50) is purely spectral, and may be seen as a set of N equations:

∀λi g0(λi)h0(λi) + g1(λi)h1(λi) = 2. (11.52)

On the other hand, Eq. (11.51) is not so simple due to the decimation operation and needs to be
investigated in detail.

In 1D classical signal processing (equivalent to the undirected circle graph), the decimation operator
samples one every two nodes. Moreover, given x′ =↑2↓2 x, one classically has the following aliasing
phenomenon (Theorem 3.3 of [39]):



318 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

F[x′](ω) = 1

2
(F[x](ω) + F[x](ω + π )) . (11.53)

This means that the decimation operations may be explicitly described in the Fourier space, which
greatly simplifies calculations by enabling writing Eq. (11.51) as a purely spectral equation as well.
Moreover, this also entails that the combined filtering-decimation operations may be understood as a
global multiscale filter (yet with discrete scales), thereby connecting with the previous approach. Now,
the central question that remains is how to mimic the filtering/decimation approach on general graphs?

In Section 11.3.2.1, it will be shown that for very well-structured graphs such as bipartite graphs or
m-cyclic graphs, generalizations of the decimation operator may be defined and their effect explicitly
described as graph filters. Then the case of the arbitrary graph is studied in Section 11.3.2.2 where the
“one every two nodes” paradigm is not transposable directly; several approaches to do that will then be
reviewed.

Filterbanks on bipartite graphs and other strongly structured graphs
Filterbanks on bipartite graphs. Bipartite graphs are graphs where the nodes are partitioned in two sets
of nodes A and B such that all links of the graph connect a node in A with a node in B. On bipartite
graphs, the “one-every-two-node” paradigm has a natural extension: decimation ensembles are set to
V0 = A and V1 = B. Leveraging the fact that bipartite graphs’ spectra are symmetrical8 around the
value 1, Narang and Ortega [4] show the bipartite graph spectral folding phenomenon:

∀λ PrλJ = JPr2−λ (11.54)

(with Prλ as in Eq. 11.15). This means that for any filter H = Uh(�)U� one has:

GJ = Ug(�)U�J = JUg(2I − �)U�. (11.55)

Eq. (11.51) therefore boils down to a second set of N purely spectral equations:

∀λi g0(2 − λi)h0(λi) − g1(2 − λi)h1(λi) = 0. (11.56)

Eqs. (11.52) and (11.56) give us 2N equations linking the 4N parameters of the four filters to ensure
perfect reconstruction. The other 2N degrees of liberty are free to be used to design filterbanks with
other desirable properties of filterbanks, such as (bi-)orthogonality, compact-supportness of the atoms,
and of course also to adapt to the specific application for which these filters are designed.
Filterbanks on other regular structures. Extending these ideas, several authors have proposed similar
approaches to define filterbanks on other regular structures such as M-block cyclic graphs [43] or
circulant graphs [44,45]. In any case, writing decimation operations exactly as graph filters requires
regular structures on graphs inducing at least some regularity in the spectrum one may take advantage
of. All these approaches lead to exact reconstruction procedures. However, arbitrary graphs do not have
such regularities, and other approaches are required.

Filterbanks on arbitrary graphs
In order to extend the filterbanks approach to arbitrary graphs, one needs to either generalize the
decimation operator or to bypass decimation via aggregation operators. We discuss in this last part
some solutions that were proposed in the literature. A complementary and thoughtful discussion on

8That is, if λ is an eigenvalue of L, then so is 2 − λ.



11.3 FILTERBANKS AND MULTISCALE TRANSFORMS ON GRAPHS 319

graph decimation, graph aggregation, and graph reconstruction can be found in sections III and IV of
[46]. For that, the two key questions are:

• How to generalize the decimation operator on arbitrary graphs? We will see that generalized
decimation operators either try to mimic the classical decimation and attempt to sample “one every
two nodes”, or aggregate nodes to form supernodes according in general to some graph-cut
objective function.

• How to build the new coarser-scale graph from the decimated nodes (or aggregated supernodes)?
In fact, after each decimation, if one wants to cascade the filterbank, a new coarse-grain graph has
to be built in order to define the next level’s graph filters. The nodes (resp. supernodes) are set
thanks to decimation (resp. aggregation), but how do we link them together?

Graph decimation. The first work to generalize filterbanks on arbitrary graphs is due to Narang and
Ortega [4] and consists in decomposing the graph into an edge-disjoint collection of bipartite subgraphs,
and then to apply the scheme presented in Section 11.3.2.1 on each of the subgraphs. In this collection,
each subgraph has the same node set, and the union of all subgraphs sums to the original graph.
To perform this decomposition (which is not unique), the same authors propose a coloring-based
algorithm, called Harary’s decomposition. Sakiyama and Tanaka [47] also used this decomposition
as one of their design’s cornerstones. Unsatisfied by the NP-completeness of the coloring problem
(even though heuristics exist), Nguyen and Do [48] propose another decomposition method based on
maximum spanning trees.

The bipartite paradigm’s main advantage comes from the fact that decimation has an explicit
formulation in the graph’s Fourier space, thereby enabling exact filter designs depending on the given
task. In our opinion, when applied to arbitrary graphs, its main drawback comes from the nonunicity
of the bipartite subgraphs decomposition as well as the seeming arbitrariness of such a decomposition:
from a graph signal point-of-view, what is the meaning of a bipartite decomposition? Letting go of
this paradigm and slightly changing the general filterbank design presented in Section 11.3.2.1, other
generalized graph decimations have been proposed. For instance, in [49], the authors propose separating
the graph in two sets V0,V1 according to its max cut, i.e., maximizing

∑
i∈V0

∑
j∈V1

Wij. In [46],
the authors suggest similarly partitioning the graph into two sets according to the polarity of the last
eigenvector (i.e., the eigenvector associated with the highest frequency). In [50], the authors use an
original approach based on random forests to sample nodes, where they have a probabilistic version of
“equally spaced” nodes on the graph.
Graph aggregation. Another paradigm in graph reduction is graph aggregation, where, instead of
selecting nodes as in decimation, one aggregates entire regions of the graph in “supernodes.” In general,
these methods are based on first clustering the nodes in a partition P = {V1,V2, . . . ,VJ}. Each of these
subsets will define a supernode of the coarse graph; this reduced graph thus contains J supernodes.
Once a rule is chosen to connect these supernodes together (the object of the next paragraph), the coarse
graph is fully defined, and the method may be iterated to obtain a multiresolution of the initial graph’s
structure. All these methods differ mainly on the choice of the algorithm or the objective function to
find this partition. For instance, one may find methods based on random walks [51], on short time
diffusion distances [52], on the algebraic distance [53], etc. Other multiresolution approaches may also
be found in [54–56]. One may also find many approaches from the network science community in the
field of community detection [57,58], and in particular multiscale community detection [59–61]. All
these methods are concerned with providing a multiresolution description of the graph structure, but
do not consider any graph signal. Recently, GSP filterbanks have been proposed to define a multiscale



320 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

representation of graph signals based on these approaches. In [62], we proposed such an approach
where we defined a generalized Haar filterbank: instead of averaging and differentiating over pairs
of nodes as in the classical Haar filterbank, we average and differentiate over the subsets Vj of a
partition in subgraphs. In [63], the authors proposed a similar approach and defined other types of
filterbanks such as the hierarchical graph Laplacian eigentransform. Another similar Haar filterbank
may be found in [38]. All these methods are independent of exactly which aggregation algorithm one
chooses to find the partition. Let us also cite methods that provide multiresolution approaches without
necessarily defining low pass and high pass filters explictly in the graph Fourier domain [38,64,65].
Finally, let us point out that these methods may be extended to graph partitions P containing
overlaps, as in [66].
Coarse graph reconstruction. Once one decided how to decimate nodes, or how to partition them
in supernodes, how should one connect these nodes together in order to form a consistent reduced
graph? In order to satisfy constraints such as interlacement (coarsely speaking, that the spectrum of the
reduced graph is representative of the spectrum of the initial graph) and sparsity, Shuman et al. [46]
propose a Kron reduction followed by a sparsification step. The Laplacian of the reduced graph is
thus defined as the Schur complement of the initial graph’s Laplacian relative to the unsampled nodes.
The sparsification step is performed via a sparsifier based on effective resistances by Spielman and
Srivastava [67] that approximately preserve the spectrum. In [50], the authors propose another approach
to the intuitive idea that the initial and coarse graph should have similar spectral properties: they looked
for the coarse Laplacian matrix that satisfies an intertwining relation. In [48], the authors connect nodes
according to the set of nested bipartite graphs obtained by their maximum spanning tree algorithm. In
aggregation methods [62,63], there is an inherent natural way of connecting supernodes: the weight of
the link between supernodes i and j is equal to the sum of the weights of the links connecting nodes in
Vi to nodes in Vj.
Illustrations. We show in Fig. 11.6 an example of multiresolution analysis of a given graph signal on
the Minnesota traffic graph, using a method of successive graph aggregation to compute the details and
approximations at different scales. The specific method for this illustration is the one detailed in [62].

FIG. 11.6

An example of multiresolution analysis of a graph signal (from [62]). Left: original smooth graph signal (sum of
the five lowest Fourier modes normalized by its maximum absolute value) defined on the Minnesota traffic
graph. The vertical scale bar of this figure is valid for all graph signals represented on this figure. Top row:
successive approximations of the graph signal. The horizontal scale bar on the bottom of each figure
corresponds to the weights of the links of the corresponding coarsened graph. Lower row: for each of the
successive approximations, we represent the upsampled reconstructed graph signal obtained from the
corresponding approximations.



REFERENCES 321

11.4 CONCLUSION
The purpose of this chapter was to introduce the reader to a basic understanding of a GFT. We stressed
how it can be generally introduced for undirected or directed graphs by choosing a reference operator
whose spectral domain will define the frequency domain for graph signals. Then, we led the reader
to the more elaborated designs of graph filters and multiscale transforms on graphs. The first section
is voluntarily introductory and almost self-contained. Indeed, we endeavored to delineate a general
guideline that shows, in an original manner, that there is no major discrepancy between choosing a
Laplacian, an Adjacency, or a random walk operator as long as one chooses accordingly the appropriate
notion of frequency to analyze graph signals. Then, after a proper definition of graph filters, our
objective was to review the literature and to propose guidelines and pointers to the relevant results
on graph filters and related multiscale transforms. This last part being written as a review, we beg for
the reader’s indulgence as many details are skipped and some works are only reported here in a sketchy
manner.

ACKNOWLEDGMENTS
Work supported by the ANR grant Graphsip ANR-14-CE27-0001-02 and ANR-14-CE27-0001-03, the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir, and the
LabEx MILyon (ANR-10-LABX-0070).

REFERENCES
[1] Sandryhaila A, Moura JMF. Discrete signal processing on graphs. IEEE Trans Signal Process 2013;61(7):

1644–56.
[2] Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing

on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal
Process Mag 2013;30(3):83–98. https://doi.org/10.1109/MSP.2012.2235192.

[3] Hammond DK, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory. Appl Comput
Harmon Anal 2011;30(2):129–50.

[4] Narang SK, Ortega A. Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE
Trans Signal Process 2012;60(6):2786–99. https://doi.org/10.1109/TSP.2012.2188718.

[5] Chung FRK. Spectral graph theory, vol. 92. American Mathematical Society; 1997.
[6] Grady L, Polimeni JR. Discrete calculus: applied analysis on graphs for computational science. Springer;

2010.
[7] Barrat A, Barthlemy M, Vespignani A. Dynamical processes on complex networks. Cambridge University

Press; 2008.
[8] Kar S, Moura JMF. Consensus + innovations distributed inference over networks: cooperation and sens-

ing in networked systems. IEEE Signal Process Mag 2013;30(3):99–109. https://doi.org/10.1109/MSP.
2012.2235193.

[9] Rabiei H, Richard F, Coulon O, Lefevre J. Local spectral analysis of the cerebral cortex: new gyrification
indices. IEEE Trans Med Imaging 2017;36(3):838–48. https://doi.org/10.1109/TMI.2016.2633393.

[10] Singh R, Chakraborty A, Manoj BS. Graph Fourier transform based on directed Laplacian.
In: 2016 international conference on signal processing and communications (SPCOM); 2016. p. 1–5.
https://doi.org/10.1109/SPCOM.2016.7746675.

http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0055


322 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

[11] Sevi H, Rilling G, Borgnat P. Multiresolution analysis of functions on directed networks. In: Wavelets and
sparsity XVII; 2017.

[12] Chung F. Laplacians and the Cheeger inequality for directed graphs. Ann Comb 2005;9(1):1–19. http://link.
springer.com/article/10.1007/s00026-005-0237-z.

[13] Yu G, Qu H. Hermitian Laplacian matrix and positive of mixed graphs. Appl Math Comput 2015;269(Sup-
plement C):70–6. https://doi.org/10.1016/j.amc.2015.07.045.

[14] Sardellitti S, Barbarossa S, Lorenzo PD. On the graph Fourier transform for directed graphs. IEEE J Sel Top
Signal Process 2017;11(6):796–811. https://doi.org/10.1109/JSTSP.2017.2726979.

[15] Shafipour R, Khodabakhsh A, Mateos G, bibinfoauthorNikolova E. A digraph Fourier transform with spread
frequency components. In: Proceedings of IEEE global conference on signal and information processing;
2017.

[16] Sandryhaila A, Moura JMF. Discrete signal processing on graphs: frequency analysis. IEEE Trans Signal
Process 2014;62(12):3042–54. https://doi.org/10.1109/TSP.2014.2321121.

[17] Sevi H, Rilling G, Borgnat P. Analyse fréquentielle et filtrage sur graphes dirigés. In: 26e Colloque sur le
Traitement du Signal et des Images. GRETSI-2017; 2017. p. id. 220.

[18] Ben Alaya S, Gonçalves P, Borgnat P. Linear prediction on graphs based on autoregressive models. In: Graph
signal processing workshop; 2016.

[19] Girault B, Goncalves P, Fleury E. Translation on graphs: an isometric shift operator. IEEE Signal Process Lett
2015;22(12).

[20] Anis A, Gadde A, Ortega A. Efficient sampling set selection for bandlimited graph signals using
graph spectral proxies. IEEE Trans Signal Process 2016;64(14):3775–89. https://doi.org/10.1109/TSP.2016.
2546233.

[21] LeMagoarou L, Gribonval R, Tremblay N. Approximate fast graph Fourier transforms via multi-layer sparse
approximations. IEEE Trans Signal Inf Process Netw 2017. https://doi.org/10.1109/TSIPN.2017.2710619.

[22] LeMagoarou L, Tremblay N, Gribonval R. Analyzing the approximation error of the fast graph Fourier
transform. In: Proceedings of the Asilomar conference on signals, systems, and computers; 2017.

[23] Givens W. Computation of plane unitary rotations transforming a general matrix to triangular form. J Soc Ind
Appl Math 1958;6(1):26–50. http://www.jstor.org/stable/2098861.

[24] Zachary W. An information flow model for conflict and fission in small groups. J Anthropol Res
1977;33(4):452–73.

[25] Isufi E, Loukas A, Simonetto A, Leus G. Autoregressive moving average graph filtering. IEEE Trans Signal
Process 2017;65(2):274–88. https://doi.org/10.1109/TSP.2016.2614793.

[26] Marques AG, Segarra S, Leus G, Ribeiro A. Stationary graph processes and spectral estimation. IEEE Trans
Signal Process 2017;65(22):5911–26. https://doi.org/10.1109/TSP.2017.2739099.

[27] Loukas A, Simonetto A, Leus G. Distributed autoregressive moving average graph filters. IEEE Signal
Process Lett 2015;22(11):1931–5. https://doi.org/10.1109/LSP.2015.2448655.

[28] Shi X, Feng H, Zhai M, Yang T, Hu B. Infinite impulse response graph filters in wireless sensor networks.
IEEE Signal Process Lett 2015;22(8):1113–7.

[29] Liu J, Isufi E, Leus G. Autoregressive moving average graph filter design. In: 6th joint WIC/IEEE symposium
on information theory and signal processing in the Benelux; 2016.

[30] Perraudin N, Vandergheynst P. Stationary signal processing on graphs. IEEE Trans Signal Process
2017;65(13):3462–77. https://doi.org/10.1109/TSP.2017.2690388.

[31] Shuman D, Vandergheynst P, Frossard P. Chebyshev polynomial approximation for distributed signal
processing. In: 2011 International conference on distributed computing in sensor systems and workshops
(DCOSS); 2011. p. 1–8. https://doi.org/10.1109/DCOSS.2011.5982158.

[32] Tremblay N, Puy G, Gribonval R, Vandergheynst P. Compressive spectral clustering. In: Proceedings of
the 33rd international conference on machine learning (ICML), vol. 48. JMLR: W&CP; 2016. p. 1002–11.
http://jmlr.csail.mit.edu/proceedings/papers/v48/tremblay16.pdf.

http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0060
http://link.springer.com/article/10.1007/s00026-005-0237-z
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0115
http://www.jstor.org/stable/2098861
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0160
http://jmlr.csail.mit.edu/proceedings/papers/v48/tremblay16.pdf


REFERENCES 323

[33] Susnjara A, Perraudin N, Kressner D, Vandergheynst P. Accelerated filtering on graphs using Lanczos
method; 2015. arXiv preprint arXiv:150904537. https://arxiv.org/abs/1509.04537.

[34] Gallopoulos E, Saad Y. Efficient solution of parabolic equations by Krylov approximation methods. SIAM J
Sci Stat Comput 1992;13(5):1236–64. https://doi.org/10.1137/0913071.

[35] Saad Y. Numerical methods for large eigenvalue problems. 2nd ed. Classics in Applied Mathematics 66.
SIAM; 2011. ISBN 1-61197-072-5 978-1-61197-072-2.

[36] Crovella M, Kolaczyk E. Graph wavelets for spatial traffic analysis. In: INFOCOM 2003. Twenty-second
annual joint conference of the IEEE computer and communications. IEEE societies, vol. 3; 2003. p. 1848–57.

[37] Coifman RR, Maggioni M. Diffusion wavelets. Appl Comput Harmon Anal 2006;21(1):53–94.
[38] Gavish M, Nadler B, Coifman RR. Multiscale wavelets on trees, graphs and high dimensional data: theory

and applications to semi supervised learning. In: Proceedings of the 27th international conference on machine
learning (ICML-10); 2010. p. 367–74.

[39] Strang G, Nguyen T. Wavelets and filter banks. SIAM; 1996.
[40] Maggioni M, Mhaskar HN. Diffusion polynomial frames on metric measure spaces. Appl Comput Harmon

Anal 2008;24(3):329–53. https://doi.org/10.1016/j.acha.2007.07.001.
[41] Leonardi N, Van De Ville D. Tight wavelet frames on multislice graphs. IEEE Trans Signal Process

2013;61(13):3357–67. https://doi.org/10.1109/TSP.2013.2259825.
[42] Shuman DI, Wiesmeyr C, Holighaus N, Vandergheynst P. Spectrum-adapted tight graph wavelet and

vertex-frequency frames. IEEE Trans Signal Process 2015;63(16):4223–35. https://doi.org/10.1109/TSP.
2015.2424203.

[43] Teke O, Vaidyanathan PP. Extending classical multirate signal processing theory to graphs; Part I: Fundamen-
tals. IEEE Trans Signal Process 2017;65(2):409–22. https://doi.org/10.1109/TSP.2016.2617833.

[44] Ekambaram VN, Fanti GC, Ayazifar B, Ramchandran K. Circulant structures and graph signal processing.
In: 2013 IEEE international conference on image processing; 2013. p. 834–8. https://doi.org/10.1109/ICIP.
2013.6738172.

[45] Kotzagiannidis MS, Dragotti PL. Splines and wavelets on circulant graphs. CoRR 2016;abs/1603.04917.
http://arxiv.org/abs/1603.04917.

[46] Shuman DI, Faraji MJ, Vandergheynst P. A multiscale pyramid transform for graph signals. IEEE Trans Signal
Process 2016;64(8):2119–34. https://doi.org/10.1109/TSP.2015.2512529.

[47] Sakiyama A, Tanaka Y. Oversampled graph Laplacian matrix for graph filter banks. IEEE Trans Signal
Process 2014;62(24):6425–37. https://doi.org/10.1109/TSP.2014.2365761.

[48] Nguyen HQ, Do MN. Downsampling of signals on graphs via maximum spanning trees. IEEE Trans Signal
Process 2015;63(1):182–91. https://doi.org/10.1109/TSP.2014.2369013.

[49] Narang SK, Ortega A. Local two-channel critically sampled filter-banks on graphs. In: 2010 17th IEEE
international conference on image processing (ICIP); 2010. p. 333–6.

[50] Avena L, Castell F, Gaudillière A, Mélot C. Intertwining wavelets or multiresolution analysis on graphs
through random forests; 2017.

[51] Lafon S, Lee AB. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction,
graph partitioning, and data set parameterization. IEEE Trans Pattern Anal Mach Intell 2006;28(9):1393–403.
https://doi.org/10.1109/TPAMI.2006.184.

[52] Livne OE, Brandt A. Lean algebraic multigrid (LAMG): fast graph Laplacian linear solver. SIAM J Sci
Comput 2012;34(4):B499–522. https://doi.org/10.1137/110843563.

[53] Ron D, Safro I, Brandt A. Relaxation-based coarsening and multiscale graph organization. Multiscale Model
Simul 2011;9(1):407–23. https://doi.org/10.1137/100791142.

[54] Dhillon I, Guan Y, Kulis B. Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans
Pattern Anal Mach Intell 2007;29(11):1944–57. https://doi.org/10.1109/TPAMI.2007.1115.

[55] Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci
Comput 1998;20(1):359–92. https://doi.org/10.1137/S1064827595287997.

https://arxiv.org/abs/1509.04537
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0225
http://arxiv.org/abs/1603.04917
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0280


324 CHAPTER 11 DESIGN OF GRAPH FILTERS AND FILTERBANKS

[56] Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview. Data Min Knowl Disc
2012;2(1):86–97. https://doi.org/10.1002/widm.53.

[57] Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci U S A 2006;103(23):
8577–82.

[58] Fortunato S. Community detection in graphs. Phys Rep 2010;486(3–5):75–174.
[59] Reichardt JA, Bornholdt S. Statistical mechanics of community detection. Phys Rev E 2006;74(1):016110.

https://doi.org/10.1103/PhysRevE.74.016110.
[60] Schaub MT, Delvenne JC, Yaliraki SN, Barahona M. Markov dynamics as a zooming lens for multiscale

community detection: non clique-like communities and the field-of-view limit. PLOS One 2012;7(2):e32210.
[61] Tremblay N, Borgnat P. Graph wavelets for multiscale community mining. IEEE Trans Signal Process

2014;62(20):5227–39. https://doi.org/10.1109/TSP.2014.2345355.
[62] Tremblay N, Borgnat P. Subgraph-based filterbanks for graph signals. IEEE Trans Signal Process

2016;64(15):3827–40. https://doi.org/10.1109/TSP.2016.2544747.
[63] Irion J, Saito N. Applied and computational harmonic analysis on graphs and networks. In: Wavelets and

sparsity XVI, vol. 9597; 2015. p. 95971F. https://doi.org/10.1117/12.2186921.
[64] Lee AB, Nadler B, Wasserman L. Treelets: an adaptive multi-scale basis for sparse unordered data. Ann Appl

Stat 2008;2(2):435–71. http://www.jstor.org/stable/30244207.
[65] Mishne G, Talmon R, Cohen I, Coifman RR, Kluger Y. Data-driven tree transforms and metrics. IEEE Trans

Signal Inf Process Netw 2017. https://doi.org/10.1109/TSIPN.2017.2743561.
[66] Szlam AD, Maggioni M, Coifman RR, Bremer Jr JC. Diffusion-driven multiscale analysis on manifolds and

graphs: top-down and bottom-up constructions. In: Proc SPIE, vol. 5914; 2005. p. 59141D.
[67] Spielman DA, Srivastava N. Graph sparsification by effective resistances. SIAM J Comput 2011;40(6):

1913–26. https://doi.org/10.1137/080734029.

http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0315
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0320
http://www.jstor.org/stable/30244207
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0330
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0335
http://refhub.elsevier.com/B978-0-12-813677-5.00011-0/rf0340


CHAPTER

12STATISTICAL GRAPH SIGNAL
PROCESSING: STATIONARITY
AND SPECTRAL ESTIMATION

Santiago Segarra∗, Sundeep Prabhakar Chepuri†, Antonio G. Marques‡, Geert Leus†

Massachusetts Institute of Technology, Cambridge, MA, United States∗ Delft University of Technology, Delft, The

Netherlands† Department of Signal Theory and Communications, King Juan Carlos University, Madrid, Spain‡

12.1 RANDOM GRAPH PROCESSES
12.1.1 INTRODUCTION
Most of the tools in graph signal processing are deterministic in nature, e.g., graph signal denoising
using diffusion [1], sampling and reconstruction of graph signals [2–7], graph filter design [8–11],
and so on. Only recently, statistical signal processing methods tailored to graph signals have been
introduced. As we know from classical signal processing focusing on spatiotemporal signals, statistical
methods allow one to take statistical information into account when designing optimal sampling and
reconstruction schemes, e.g., Wiener filtering for denoising, interpolation, prediction, and so on [12].
This generally leads to a better average performance compared to deterministic methods. Key to the
majority of statistical methods is the concept of weak stationarity, which means that the first- and
second-order statistics of the random process do not change over space and/or time. The extension of
this concept to graph signals is not trivial due to the fact that these signals have an irregular structure,
which is generally characterized by a so-called graph shift (a generalization of the shift in time and/or
space). This is what will be discussed in the current chapter.

The first works discussing stationary graph processes observe that in contrast to a shift in time
and/or space, a graph shift is not energy preserving [13,14]. Hence, these papers base their definition
of a weakly stationary graph process on a new isometric graph shift. However, this new shift cannot
be carried out by means of local operations and hence the connection between stationarity and locality
is lost. Therefore, in this chapter, we present definitions based on the original graph shift, allowing for
stationarity tests and estimation schemes based on local information. Stationary graph processes are
also characterized by a power spectral density (PSD) and this chapter provides a rigorous treatment of
various PSD estimators, including nonparametric and parametric methods. Our treatment of stationary
graph processes is based on the comprehensive study presented in [15]. Graph stationarity was also
studied in [16], where the analysis is carried out using the Laplacian matrix as the graph shift operator.
In this chapter, the proposed framework is also extended to random processes that are jointly stationary

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00012-2
Copyright © 2018 Elsevier Inc. All rights reserved.

325



326 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

in the time and vertex domain [17]. This paves the way for statistical tools for random processes over
two domains: the regular time domain and the irregular graph domain.

The field of compressive sensing has recently been extended to compressive covariance sens-
ing [18], which is based on the idea that the covariance matrix or PSD of a spatiotemporal process
can be estimated from compressed measurements without any prior assumptions on sparsity or
smoothness. A special case of compressive covariance sensing occurs when the compression is realized
by subsampling (below the Nyquist rate), also known as sparse covariance sensing. This allows one to
design statistical signal processing tools from only a subset of measurements. The last part of the
chapter explains how these ideas can be extended to random graph processes, where the covariance
matrix does not have any apparent structure, as for spatiotemporal processes [19]. We demonstrate how
the covariance matrix—and thus the PSD—of a graph process can be estimated from a subset of the
nodes without the use of priors. Again, nonparametric as well as parametric methods are considered
and we additionally show how to select the nodes in a greedy fashion.

12.1.2 CHAPTER ORGANIZATION
The definition of weakly stationary graph processes is presented in Section 12.2 along with discussions
about the relation with the classical definition in time. Section 12.2.1 introduces the notion of
power spectral density (PSD) followed by a recollection of relevant examples and useful properties.
The characterization of stationarity for graph processes that also vary over time is presented in
Section 12.2.2. Because stationary processes are easier to understand in the frequency domain,
Section 12.3 is devoted to the study of different methods for spectral estimation, which can also
be used to improve the estimate of the covariance matrix itself. These include both nonparametric
and parametric approaches. Finally, in Section 12.4 we discuss methods to estimate the PSD and the
covariance of random graph processes using only observations from a subset of nodes. We also develop
a low-complexity and near-optimal method to select the nodes in a greedy manner.

12.1.3 NOTATION
Let G = (N , E) be a directed graph or network with a set of N nodes N and directed edges E such
that (i, j) ∈ E if there exists an edge from node i to node j. We associate with G the graph shift operator
(GSO) S, defined as an N × N matrix whose entry Sj,i �= 0 only if i = j or if (i, j) ∈ E [9,20]. The
sparsity pattern of S captures the local structure of G, but we make no specific assumptions on the
values of the nonzero entries of S; hence the GSO can represent the adjacency matrix, the Laplacian,
or other graph-related matrices. In this chapter we assume that S is normal to guarantee the existence
of a unitary matrix V = [v1, v2, . . . , vN] and a diagonal matrix � such that S = V�VH . We use
x = [x1, . . . , xN]T ∈ RN to denote a generic graph signal and x̃ := VHx to denote its frequency
representation, with VH being the graph Fourier transform (GFT) [9]. Finally, we use H : RN → RN

to denote a linear shift-invariant graph filter of the form

H =
L−1∑
l=0

hlS
l = Vdiag(h̃)VH = Vdiag

(
�Lh

)
VH , (12.1)



12.2 WEAKLY STATIONARY GRAPH PROCESSES 327

where h̃ denotes the frequency response of the filter H, �L is an N × L Vandermonde matrix with
entries �k,l = λl−1

k , and h is a vector collecting the polynomial coefficients. The notation ◦, ⊗, and
� denote the elementwise, Kronecker, and Khatri-Rao matrix products, respectively. The notation ⊕
stands for the Kronecker sum.

12.2 WEAKLY STATIONARY GRAPH PROCESSES
We extend three equivalent definitions of weak stationarity in time to the graph domain, the most
common being the invariance of the first and second moments to time shifts. We will see that under
certain conditions those definitions can be rendered equivalent for the graph domain as well. Intuitively,
stating that a graph process is stationary is an inherently incomplete assertion because we need to
declare which graph we are referring to. Hence, the proposed definitions depend on the GSO S, so that
a process x can be stationary in S but not in S′ �= S.

Defining a standard zero-mean white random process n as one with mean E [n] = 0 and covariance
E

[
nnH

] = I, we state our first definition of graph stationarity.
Definition 12.1. Given a normal shift operator S, a zero-mean random process x is weakly

stationary with respect to S if it can be written as the response of a linear shift-invariant graph filter
H = ∑N−1

l=0 hlSl to a zero-mean white input n. �
The definition states that stationary graph processes can be written as the output of graph filters

when excited with a white input. This generalizes the well-known fact that stationary processes in time
can be expressed as the output of linear time-invariant systems with white noise as input. If we write
x = Hn, the covariance matrix Cx := E

[
xxH

]
of the process x is given by

Cx = E

[
(Hn)(Hn)H

]
= HE

[
nnH

]
H = HHH , (12.2)

which shows that the color of x is determined by the filter H. We can think of Definition 12.1 as a
constructive definition of stationarity because it describes how a stationary process can be generated.
Alternatively, one can define stationarity from a descriptive perspective by imposing requirements on
the moments of the random graph process in either the vertex or the frequency domain.

Definition 12.2. Given a normal shift operator S, a zero-mean random process x is weakly
stationary with respect to S if the following two equivalent properties hold

(a) For any set of nonnegative integers a, b, and c ≤ b it holds that

E

[(
Sax

)((
SH

)b
x
)H

]
= E

[(
Sa+cx

)((
SH

)b−c
x
)H

]
. (12.3)

(b) Matrices Cx and S are simultaneously diagonalizable. �

The statements in Definition 12.2a and b can indeed be shown to be equivalent [15]. These
two statements generalize known definitions of stationarity in time. Definition 12.2a generalizes the
requirement that the second moment of a stationary process must be invariant to time shifts whereas
Definition 12.2b extends the requisite that the covariance of time stationary processes must be circulant.



328 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

In Definition 12.2a we require the correlation to be invariant to how we shift our signal—namely,
forward Sx or backward SHx—as long as the total number of shifts remains constant. Indeed, in both
the left and right hand sides of Eq. (12.3) the signal is shifted a total of a + b times. This generalizes
what happens to stationary signals in time, where correlation depends on the total number of shifts but
not on the particular time instants. More specifically, when S is a directed cycle we have that SH = S−1.
Also, notice that for the directed cycle SN = I. Then, if we set a = 0, b = N and c = l, Eq. (12.3) boils
down to E

[
xxH

] = E
[
Slx(Slx)H

]
, which is the definition of a stationary signal in time. Intuitively,

accumulating the same number of shifts in both sides of Eq. (12.3) is necessary because the operator S,
in general, does not preserve the energy. Thus, requiring E

[
xxH

] = E
[
Slx(Slx)H

]
for stationarity with

respect to a general GSO would be infeasible. Definition 12.2a strikes the right balance of being valid
for general normal GSOs while particularizing to the accepted classical definition when S represents
the domain of time signals.

Definition 12.2b characterizes stationarity from a graph frequency perspective by requiring the
covariance Cx to be diagonalized by the GFT matrix V. When particularized to time, Definition 12.2b
requires Cx to be diagonalized by the Fourier matrix and, therefore, must be circulant. This fact is
exploited in classical signal processing to define the PSD of a stationary process as the eigenvalues of
the circulant covariance matrix, motivating the PSD definition in Section 12.2.1.

Thus far, we have presented three extensions of the concept of stationarity into the realm of graph
processes, two of which are equivalent and, hence, grouped in Definition 12.2. At this point, the
attentive reader might have a natural inquiry. Are Definitions 12.1 and 12.2 equivalent for general
graphs, as they are for stationarity in time? In fact, it can be shown that Definitions 12.1 and 12.2 are
equivalent for any graph S that is normal and whose eigenvalues are all distinct [15]. Fig. 12.1 presents
a concise summary of the definitions discussed in this section.
Coexisting approaches. Stationary graph processes were first defined and analyzed in [13]. The
fundamental problem identified there is that GSOs do not preserve energy in general and therefore
cannot be isometric [21]. This problem is addressed in [14] with the definition of an isometric
graph shift that preserves the eigenvector space of the Laplacian GSO but modifies its eigenvalues.

FIG. 12.1

Equivalent definitions of a weakly stationary graph process. Three equivalent definitions for weak stationarity in
time and their corresponding extensions to the graph domain. In graphs, two of the definitions are always
equivalent and the third one is equivalent for shifts with distinct eigenvalues.



12.2 WEAKLY STATIONARY GRAPH PROCESSES 329

A stationary graph process is then defined as one whose probability distributions are invariant with
respect to multiplications with the isometric shift. One drawback of this approach is that the isometric
shift is a complex-valued operator and has a sparsity structure (if any) different from S. By contrast, the
vertex-based definition in Eq. (12.3) is based on the original GSO S, which is local and real-valued. As
a result, Eq. (12.3) provides intuition on the relations between stationarity and locality, which can
be leveraged to develop stationarity tests or estimation schemes that work with local information.
Graph stationarity was also studied in [16] where the requirement of having a covariance matrix
diagonalizable by the eigenvectors of the Laplacian GSO is adopted as a definition. This condition
is shown to be equivalent to statistical invariance with respect to the translation operator introduced
in [22]. When the shift S coincides with the Laplacian of the graph and the eigenvalues of S are all
distinct, Definitions 12.1 and 12.2 are equivalent to those in [13,16]. Hence, the definitions presented
here differ from [16] in that we consider general normal shifts instead of Laplacians and that we see
Definition 12.1 as a definition, not a property. These are mathematically minor differences that are
important in practice though; see [15,23] for more details.

12.2.1 POWER SPECTRAL DENSITY
Stationarity reduces the degrees of freedom of a random graph process, thus facilitating its description
and understanding. It follows from Definition 12.2b that one can express the remaining degrees of
freedom in the frequency domain via the notion of PSD, as defined next.

Definition 12.3. The PSD of a random process x that is stationary with respect to S = V�VH is
the nonnegative N × 1 vector p

p := diag
(

VHCxV
)

. (12.4)

�
Observe that because Cx is diagonalized by V (see Definition 12.2b) the matrix VHCxV is diagonal

and it follows that the PSD in Eq. (12.4) corresponds to the eigenvalues of the positive semidefinite
covariance matrix Cx. Thus, Eq. (12.4) is equivalent to

Cx = Vdiag(p)VH . (12.5)

Zero-mean white noise is an example of a random process that is stationary with respect to any
graph shift S. The PSD of white noise with covariance E[nnH] = σ 2I is p = σ 21. Also notice that, by
definition, any random process x is stationary with respect to the shift S = Cx defined by its covariance
matrix, with corresponding PSD p = diag(�). This can be exploited in the context of network topology
inference. Given a set of graph signals {xr}R

r=1 it is common to infer the underlying topology by building
a graph Gcorr whose edge weights correspond to cross-correlations among the entries of the signals. In
that case, the process generating those signals is stationary in the shift given by the adjacency of Gcorr;
see [23] for details. A random process x is also stationary with respect to the shift given by its precision
matrix, which is defined as the (pseudo-)inverse � = C†

x. The PSD, in this case, is p = diag(�)†.
This is particularly important when x is a Gaussian Markov Random Field (GMRF) whose Markovian
dependence is captured by the unweighted graph GMF . It is well known [24, Ch. 19] that in these cases
�i,j can be nonzero only if (i, j) is either a link of GMF , or an element in the diagonal. Thus, any GMRF



330 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

is stationary with respect to the sparse shift S = �, which captures the conditional dependence between
the elements of x.

Two important properties that hold for random processes in time can be shown to be true as well for
the PSD of graph processes.

Property 12.1. Let x be stationary in S with covariance Cx and PSD px. Consider a filter H with
frequency response h̃ and define y := Hx. Then, the process y:

(a) Is stationary in S with covariance Cy = HCxHH .
(b) Has a PSD given by py = |h̃|2 ◦ px, where | · |2 is applied elementwise. �

Property 12.2. Given a process x stationary in S = V�VH with PSD p, define the GFT process as
x̃ = VHx. Then, it holds that x̃ is uncorrelated and its covariance matrix is

Cx̃ := E

[
x̃x̃H

]
= E

[
(VHx)(VHx)H

]
= diag(p). (12.6)

�

Property 12.1 is a statement of the spectral convolution theorem for graph signals. Property 12.2
is fundamental to motivate the analysis and modeling of stationary graph processes in the frequency
domain, which we undertake in the remainder of this chapter. It also shows that if a process x is
stationary in the shift S = V�VH , then the GFT VH provides the Karhunen-Loève expansion of the
process.

The concept of stationarity and, consequently, that of PSD can be extended to processes defined
jointly in a graph and over time. Before we review this extension in the ensuing section, we discuss
requirements on the first moment of stationary graph processes.
The mean of stationary graph processes. While Definitions 12.1 and 12.2 assume that the random
process x has mean x̄ := E [x] = 0, traditional stationary time processes are allowed to have a (nonzero)
constant mean x̄ = α1, with α being an arbitrary scalar. Stationary graph processes, by contrast, are
required to have a first-order moment of the form x̄ = αvk, i.e., a scaled version of an eigenvector of
S. This choice: (i) takes into account the structure of the underlying graph; (ii) maintains the validity
of Property 12.1; and (iii) encompasses the case vk = 1 when S is either the adjacency matrix of a
directed cycle or the Laplacian of any graph, recovering the classical first-order requirement for weak
stationarity.

12.2.2 JOINT TIME AND GRAPH STATIONARITY
In many real-world network applications, observations are taken periodically, giving rise to a sequence
X = [x1, x2, . . . , xT ] ∈ RN×T of graph signals. Each signal has size N the number of nodes in the
network and there are T of those signals. Up to this point, we have been focusing on the statistical
variation across the vertices of the network. That is, we took one particular column of X and analyzed
the statistical relations between the signal values at different vertices. The purpose of this section is
to carry out this analysis jointly across rows and columns of X. The ultimate goal is to present the
conditions under which a random process is considered to be jointly stationary in both the vertex and
the time domain [17].

The first step to analyze the statistical properties of the vertex-time process X, which whenever
convenient will be represented as x = vec(X), is to identify its graph support. As shown in Fig. 12.2,



12.2 WEAKLY STATIONARY GRAPH PROCESSES 331

FIG. 12.2

Support of a vertex-time process. The shift SV captures the dependence across the nodes of the underlying
network. Solid lines represent the edges in SV . Dashed lines represent connections between the same node at
two consecutive time instants.

for every time instant one can plot a graph that accounts for the graph support of the corresponding
column of X. With this representation, a horizontal path in the picture represents a particular node at
different time instants. To account for the time variation, node n at time t is the origin of a link toward
its successor (node n at time t + 1) as well as the destination of a link from its predecessor (node n
at time t − 1). Suppose that the spatial graph SV = VV�VVH

V is the same for all columns, as is the
case in Fig. 12.2, and let us use ST = VT �T VH

T , the adjacency of the directed cycle, to denote the
support of the time domain. Then, it holds that the graph support of X, which will be denoted as SJ ,
is given by the Cartesian product [25] of SV and ST . Mathematically, this implies that the joint shift
SJ ∈ RNT×NT can be written as

SJ = ST ⊕ SV = IT ⊗ SV + ST ⊗ IV , (12.7)

where IT and IV are identity matrices of appropriate size. Using basic properties of the Kronecker
product, it follows from Eq. (12.7) that the eigendecomposition of the joint shift is given by SJ =
(VT ⊗ VV )(�T ⊕ �V )(VT ⊗ VV )H , revealing that the GFT associated with SJ is VT ⊗ VV , the
Kronecker product of the GFTs associated1 with ST and SV [26].

Once the graph support of the joint process and its corresponding GFT have been identified, for X
to be jointly stationary in SV and ST it suffices to particularize the definitions presented in the previous
section for the shift SJ , giving rise to the following result.

Definition 12.4. A process X is jointly stationary in SV and ST if the covariance matrix Cx =
E[vec(X)vec(X)T ] can be written as Cx = (VT ⊗ VV )diag(px)(VT ⊗ VV )H . �

Clearly, the nonnegative vector px of length NT stands for the PSD of X. If the eigenvalues of SJ
are nonrepeated, the definition is equivalent to requiring Cx to be written as a (positive semidefinite)
graph filter on the shift operator SJ .

While Definition 12.4 describes the spectral properties of the covariance of a jointly stationary
process, it is also of interest to understand its implications in the vertex and time domains. To that end,
recall that ei represents the ith canonical vector, the signal xt = Xet ∈ RN collects the values of the
process at time instant t, and the signal χn = XTen ∈ RT collects the values of the process at node n

1Recall that the fact of ST being the directed cycle implies that the GFT VH
T is the T × T DFT matrix so that [VT ]k,k′ =

1√
T

exp(j 2π
T kk′).



332 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

for the different time instants. Noting that submatrices of Cx will describe how subsets of the elements
of X are correlated, the result stated next follows from Definition 12.4.

Property 12.3. If X is jointly stationary in SV and ST , then it holds that:

1. Any submatrix of Cx of the form CV
t,t′ = E[xtxT

t′ ] = E[XeteT
t′ X

T ] ∈ RN×N is jointly diagonalizable
with SV .

2. Any submatrix of Cx of the form CT
n,n′ = E[χnχ

T
n′ ] = E[XTeneT

n′X] ∈ RT×T is jointly
diagonalizable with ST and, hence, it is circulant. �
The statement in Property 12.3.2 is equivalent to saying that E[Xn,tXn′,t′ ] = E[Xn,t+aXn′,t′+a], which

is the classical requirement for a multivariate time series to be considered stationary [27, Sec. 2.1.3].
Particularizing the results in Property 12.3 for t = t′ and n = n′ yields the subsequent property.

Property 12.4. If X is jointly stationary in SV and ST , then it holds that:

1. All the graph signals xt = Xet are stationary in SV
2. All the time-varying signals χn = XTen are stationary in ST . �

The result above is not an equivalence. That is, there may be processes that satisfy the two conditions
stated in Property 12.4 but do not possess the structure in Definition 12.4. Even if those processes
cannot be considered jointly stationary, they are likely to arise in practice, so that the design of signal
processing schemes that leverage their structure is of interest.
Remark. Definition 12.4 is also valid if the joint shift SJ is defined as either the Kronecker product
or the strong product [25] between graphs SV and ST . The reason is that for any of these three graph
products, the eigenbasis of the joint shift is VT ⊗ VV [25,26].

Jointly stationary and separable processes
We close this section by elaborating on a subclass of jointly stationary processes of particular relevance.
To that end, let matrix HV be a generic graph filter in the shift SV and, similarly, HT a generic linear
time-invariant filter. Those filters are used in the following definition.

Definition 12.5. Let X be a process jointly stationary in SV and ST . Then, the process X is called
separable if it can be written as X = HVWHT

T , where W ∈ RN×T is a zero-mean white process with
E[Wi,jWi,j] = 1 and E[Wi,jWi′, j′ ] = 0 for all (i, j) �= (i′, j′). �

From the previous definition one can view the jointly stationary and separable process X as one
generated by processing each of the columns of W with the same graph filter and, then, each of the
resultant rows with the same linear time-invariant filter. Note that one can also apply first the time-
invariant filter HT and then the graph filter HV . Upon defining Cx,V = HVHT

V , Cx,T = HT HT
T ,

px,V = diag(VH
VCx,VVV ) and px,V = diag(VH

VCx,T VT ), it is easy to show that the following properties
hold.

Property 12.5. Let X = HVWHT
T be a jointly stationary and separable process in SV and ST .

Then, it holds that:

1. The correlation of X can be factorized as Cx = Cx,T ⊗ Cx,V .
2. The PSD of x can be written as px = px,T ⊗ px,V . �

The factorable structure of the correlation implies that, for any given (t, t′), the covariance
CV

t,t′ = E[xtxT
t′ ] is a scaled version of Cx,V . In other words, after a trivial scaling, the covariance of



12.3 POWER SPECTRAL DENSITY ESTIMATORS 333

any of the columns of the separable process X is the same. Similarly, it holds that CV
n,n′ = E[χnχ

T
n′ ]

is a scaled version of Cx,T for all (n, n′). The fact of the PSD being factorable reveals that the
number of degrees of freedom of the PSD of a jointly stationary and separable process is N + T ,
which contrasts with the NT degrees of freedom of a generic jointly stationary process. This more
parsimonious description of the PSD vector—equivalently, of the covariance matrix—can be exploited
when designing spectral (covariance) estimation schemes for processes obeying Definition 12.5.

12.3 POWER SPECTRAL DENSITY ESTIMATORS
We can exploit the fact that x is a stationary graph process in S = Vdiag(�)VH to design efficient
estimators of the covariance Cx. In particular, instead of estimating Cx directly, which has N(N + 1)/2
degrees of freedom, one can estimate p first, which only has N degrees of freedom, and then leverage
that Cx = Vdiag(p)VH .

Motivated by this, the focus of this section is on estimating p, the PSD of a stationary random graph
process x, using as input either one or a few realizations {xr}R

r=1 of x. To illustrate the developments in
Sections 12.3 and 12.4, we will use as a running example a random process defined on the well-known
Zachary’s Karate club network [28] (Figs. 12.3 and 12.4). As shown in Fig. 12.4, this graph consists of
34 nodes or members of the club and 78 undirected edges symbolizing friendships among members.2

12.3.1 NONPARAMETRIC PSD ESTIMATORS
Nonparametric estimators—as opposed to their parametric counterparts—do not assume any specific
generating model on the process x. This more agnostic view of x comes with the price of needing, in
general, to observe more graph signals to achieve satisfactory performance. In this section, we extend
to the graph setting the periodogram, the correlogram, and the least-squares (LS) estimator, which are
classical unbiased nonparametric estimators. Moreover, for the special case where the observations are
Gaussian, we derive the Cramér-Rao lower bound. We also discuss the windowed average periodogram,
which attains a better performance when a few observations are available by introducing bias in a
controlled manner while drastically reducing the variance.

Periodogram, correlogram, and LS estimator
From Eq. (12.6) it follows that one may express the PSD as p = E

[|VHx|2]. That is, the PSD is given
by the expected value of the squared frequency components of the random process. This leads to a
natural approach for the estimation of p from a finite set of R realizations of the process x. Indeed, we
compute the GFT x̃r = VHxr of each observed signal xr and estimate p as

p̂pg := 1

R

R∑
r=1

∣∣x̃r
∣∣2 = 1

R

R∑
r=1

∣∣∣VHxr

∣∣∣2 . (12.8)

2The process to assess the performance of the different PSD estimators was created using the generating filter H = ∑3
l=0 hlSl

where S was set as the Laplacian matrix and the filter coefficients as h = [1, −0.15, 0.075, −10−4]T (cf. Definition 12.1).
The coefficients were chosen for the filter to be of low order and to have a low pass behavior, as can be appreciated from the
“True PSD” curves in Fig. 12.3, where most of the energy is concentrated in the low frequencies.



334 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

(A) (B)

(C) (D) 

0 5 10 15 20 25 30 35

Frequency index

0

0.5

1

1.5
P

ow
er

 s
pe

ct
ra

l d
en

si
ty True PSD

Periodogram (R =1)
Periodogram (R =10)
Periodogram (R =100)
Periodogram (R =1000)

0 5 10 15 20 25 30 35

Frequency index

0

0.5

1

1.5

2

2.5

3

P
ow

er
 s

pe
ct

ra
l d

en
si

ty True PSD
Win. Period. (M = 1)
Win. Period. (M = 4)

0 5 10 15 20 25 30 35

Frequency index

0

0.5

1

1.5

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

True PSD
Win. Period. (R =1)
Win. Period. (R =10)
Win. Period. (R =100)
Win. Period. (R =1000)

0 5 10 15 20 25 30 35

Frequency index

0

0.5

1

1.5

P
ow

er
 s

pe
ct

ra
l d

en
si

ty True PSD
MA estimation (R =1)
MA estimation (R =10)

FIG. 12.3

Power spectral density estimation. All estimators are based on the same random process defined on the Karate
club network [28]. (A) Periodogram estimation with different numbers of observations. (B) Windowed average
periodogram from a single realization and a different number of windows. (C) Windowed average periodogram
for four windows and a varying number of realizations. (D) Parametric MA estimation for 1 and 10 realizations.

The estimator in Eq. (12.8) is termed periodogram due to its evident similarity with its homonym in
classical estimation. It is simple to show that p̂pg is an unbiased estimator, that is, E

[
p̂pg

] = p. A more
detailed analysis of the performance of p̂pg, for the case where the observations are Gaussian, is given
in Proposition 12.1.

An alternative nonparametric estimation scheme, denominated correlogram, can be devised by
starting from the definition of p in Eq. (12.4). Namely, one may substitute Cx in Eq. (12.4) by the
sample covariance Ĉx = (1/R)

∑R
r=1 xrxH

r computed based on the available observations to obtain

p̂cg := diag
(

VHĈxV
)

:= diag

⎡
⎣VH

⎡
⎣ 1

R

R∑
r=1

xrxH
r

⎤
⎦ V

⎤
⎦ . (12.9)

Notice that the matrix VHĈxV is in general, not diagonal because the eigenbasis of Ĉx differs from
V, the eigenbasis of Cx. Nonetheless, we keep only the diagonal elements vH

i Ĉxvi for i = 1, . . . , N as



12.3 POWER SPECTRAL DENSITY ESTIMATORS 335

our PSD estimator. It can be shown that the correlogram p̂cg in Eq. (12.9) and the periodogram p̂pg in
Eq. (12.8) lead to identical estimators, as is the case in classical signal processing.

The correlogram can also be interpreted as an LS estimator. The decomposition in Eq. (12.5) allows
a linear parameterization of the covariance matrix Cx as

Cx(p) =
N∑

i=1

piviv
H
i . (12.10)

This linear parameterization will also be useful for the sampling schemes developed in Section 12.4.
Vectorizing Cx in Eq. (12.10) results in a set of N2 equations in p

cx = vec(Cx) =
N∑

i=1

pivec(viv
H
i ) = Gnpp, (12.11)

where vec(vivH
i ) = v∗

i ⊗ vi. Relying on the Khatri-Rao product, we then form the N2 × N matrix Gnp
as

Gnp := [v∗
1 ⊗ v1, . . . , v∗

N ⊗ vN] = V∗ � V.

Using the sample covariance matrix Ĉx as an estimate of Cx, we can match the estimated covariance
vector ĉx = vec(Ĉx) to the true covariance vector cx in the LS sense as

p̂ls = argmin
p

‖ĉx − Gnpp‖2
2 = (GH

npGnp)−1GH
npĉx. (12.12)

In other words, the LS estimator minimizes the squared error tr[(Ĉx − Cx(p))T (Ĉx − Cx(p))]. From
expression (12.12) it can be shown that the ith element of p̂ls is vH

i Ĉxvi. Combining this with Eq. (12.9),
we get that the LS estimator p̂ls and the correlogram p̂cg—and hence the periodogram as well—are all
identical estimators.

The estimators derived in this subsection do not assume any data distribution and are well suited
for cases where the data probability density function is not available. In what follows, we provide
performance bounds for these estimators under the condition that the observed signals are Gaussian.

Mean squared error and the Cramér-Rao bound
Suppose that the data consists of realizations from a sequence of independent and identically distributed
(i.i.d.) Gaussian random vectors {xr}R

r=1, where for each r, the vector xr ∼ N (0, Cx(p)). Under this
setting, we can characterize the variance, hence the mean squared error (MSE), of the periodogram
estimator (as well as the equivalent correlogram and LS estimators). In the following proposition, we
present expressions for its bias and variance.

Proposition 12.1. Let {xr}R
r=1 be independent samples of the process x stationary in S with PSD p.

Then, the bias bpg of the periodogram estimator in Eq. (12.8) is zero,

bpg := E

[
p̂pg

]
− p = 0. (12.13)



336 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

Further define the covariance of the periodogram as �pg := E
[
(p̂pg − p)(p̂pg − p)H

]
. If the process x

is Gaussian and S is symmetric, then �pg can be written as

�pg := E

[
(p̂pg − p)(p̂pg − p)H

]
= (2/R)diag2(p). (12.14)

�
As was mentioned before, Proposition 12.1 states that the periodogram is an unbiased estimator, i.e.,

E
[
p̂pg

] = p, as expected given its classical counterpart. While Eq. (12.13) is valid for any distribution,
observe that the covariance expression in Eq. (12.14) requires the process x to be Gaussian. This
requirement stems from the fact that the derivation of �pg involves fourth-order moments of x. This is
natural because an analogous limitation arises for time signals [29, Sec. 8.2]. Notice also that the PSD
estimates of different frequencies are uncorrelated, because Eq. (12.14) reveals that �pg is a diagonal
matrix. A proof of the above result along with generalizations for the cases in which S is not necessarily
symmetric (but normal) can be found in [15].

The MSE of the periodogram, defined as MSE(p̂pg) := E
[‖(p̂pg − p)‖2

2

]
, can be readily computed

using the result in Proposition 12.1

MSE(p̂pg) = ‖bpg‖2
2 + tr[�pg] = (2/R)‖p‖2

2. (12.15)

As becomes apparent from Eq. (12.15), the periodogram is expected to yield large relative errors when
only a few observations R are available. In Fig. 12.3A we show the periodogram estimation for different
numbers of observations R. Notice that, indeed, when R = 1 the estimation is very poor. Nonetheless,
when increasing R the estimation tends to the true PSD. A method that can achieve better performance
for lower values of R—windowed average periodogram—will be introduced after showing that the
periodogram is an efficient estimator.

The Cramér-Rao bound provides a lower bound on the covariance of unbiased estimators when the
available data records are finite. The Cramér-Rao bound matrix is equal to the inverse of the Fisher
information matrix, F, and it is given by F = (R/2) diag−2(p); see, e.g., [30, Ch. 6.13]. The efficiency
of the periodogram follows readily by comparing F−1 with Eq. (12.14).

Windowed average periodogram
When only one or just a few observations of the process x are available, the periodogram and
correlogram yield large errors [cf. Eq. (12.15)]. A way to overcome this roadblock is to artificially
generate multiple signals from the few available ones. Bartlett and Welch methods are classical
examples of this procedure because they utilize windows to generate multiple samples of the process,
even if only a single realization is given [31, Sec. 2.7]. Intuitively, a long signal is partitioned into pieces
where each piece can be considered as a different signal. This operation introduces bias in the estimator
but reduces variance to the point that the overall MSE can be improved. The frequency counterparts
of such classical methods are filter banks, where the signal is partitioned in the Fourier domain. Both
the windowed average periodogram—including Bartlett and Welch methods—and the filter banks can
be extended for the estimation of graph processes. In this section, we only focus on the former, but
extensions of this analysis as well as a full derivation of filter-bank estimators can be found in [15].



12.3 POWER SPECTRAL DENSITY ESTIMATORS 337

The application of a window w to a signal3 x entails a component-wise multiplication to produce
the signal xw = diag(w)x, where we assume that windows are normalized to have energy ‖w‖2

2 = N.
We may leverage the definition of the GFT to write

x̃w = VHxw = VHdiag(w)x = VHdiag(w)Vx̃ =: W̃x̃, (12.16)

where we implicitly defined W̃ := VHdiag(w)V as the dual of the windowing operator in the frequency
domain. For time signals the frequency representation of a window is its Fourier transform and the
dual operator of windowing is the convolution between the spectra of the window and the signal. This
parallelism is lost for graph signals. Nonetheless, Eq. (12.16) can be used to design windows with
small spectral distortion, i.e., windows for which W̃ ≈ I. Recall that our objective is to generate
multiple signals from only one, thus instead of focusing on a single window we consider a bank of M
windows W = {wm}M

m=1 and use it to construct the windowed signals xm := diag(wm)x. Based on
these windowed signals, we build the windowed average periodogram as

p̂W := 1

M

M∑
m=1

∣∣∣VHxm

∣∣∣2 = 1

M

M∑
m=1

∣∣∣VHdiag(wm)x
∣∣∣2 . (12.17)

The name given to p̂W becomes apparent when comparing Eq. (12.17) with Eq. (12.8). Indeed, the
former is almost equivalent to the latter with the caveat that the M signals considered in Eq. (12.17)
are not independent. As a consequence, the variance decreases slower than 1/M with the number of
windows, this being the rate found in Proposition 12.1 for the averaging of R independent signals.
Moreover, the dependence between the different xm introduces a distortion (bias) in the estimator.
To state these effects more formally, we construct the dual operators associated with each window
W̃m := VHdiag(wm)V [cf. Eq. (12.16)], and use them to define the power spectrum mixing matrix of
windows m and m′ as the componentwise product W̃m,m′ := W̃m ◦ W̃

∗
m′ . Based on the spectrum mixing

matrices, the following proposition presents the bias and covariance of p̂W .
Proposition 12.2. Let p̂W be the windowed average periodogram computed based on a window

bank W = {wm}M
m=1 and single observation x of a stationary process in S. Then, the bias of p̂W is

given by

bW := E
[
p̂W

] − p =
⎛
⎝ 1

M

M∑
m=1

W̃m,m − I

⎞
⎠ p. (12.18)

Furthermore, if x is Gaussian and S is symmetric, the trace of the covariance
�W := E

[
(p̂W − E

[
p̂W

]
)(p̂W − E

[
p̂W

]
)H

]
is given by

tr[�W ] = 2

M2

M∑
m=1, m′=1

tr
[(

W̃m,m′p
)(

W̃m,m′p
)H

]
. (12.19)

�
Expression (12.18) reveals that the bias of p̂W is given by the discrepancy between the average

spectrum mixing of the windows—depending on both the window silhouette wm and the underlying

3To keep notation simple, in this subsection we use x to denote a realization of process x.



338 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

graph through V—and the identity matrix. Notice that even if the individual spectrum mixing matrices
W̃m,m are far from the identity, a small bias can still be achieved by controlling their average. The
covariance expression in Eq. (12.19) can be further decomposed into a term akin to Eq. (12.14) plus
another one that quantifies the added effect of dependency between the windowed signals; see [15]
for more details. Furthermore, as done in Eq. (12.15), we can use Proposition 12.2 to obtain a closed-
form expression for the MSE of p̂W that can then guide the design criteria for optimal window banks.
However, the associated optimization problems are nonconvex. Although some basic developments in
this area are presented in [15], the efficient design of optimal windows is still an open problem.

In Fig. 12.3B we illustrate the windowed average periodogram estimation for M = 4 random
windows for a single observation of the random process on the Karate club network. Notice that the
estimation is better than the one obtained by the (regular) periodogram, i.e., M = 1. In Fig. 12.3C
we present the windowed average periodogram estimation for M = 4 but with an increasing number
of observations. Notice that for a low number of observations (R = 1 and R = 10) the estimation
improves that of the periodogram [cf. Fig. 12.3A]. Nonetheless, it can be seen that this estimator is
biased because there is still a residual error, even for large values of R.

12.3.2 PARAMETRIC PSD ESTIMATORS
A stationary graph process x can always be represented as the response of a graph filter H when applied
to a white input [cf. Definition 12.1]. The cases where H depends on just a few parameters—much less
than N—ultimately result in a further reduction of the degrees of freedom of the process x. In particular,
we may obtain a parametric description of the PSD of x as a function of the few coefficients of H. In
this section, we leverage this reduction in degrees of freedom to design PSD estimators. We discuss
in detail the case where H corresponds to a moving average (MA) model, and then briefly review the
constructions for an autoregressive (AR) model. For the combined ARMA model, the developments
for the MA and AR processes can be mimicked; see [15] for more details on the ARMA model.

Moving average graph processes
Consider a vector of coefficients β = [β0, . . . , βL−1]T , for L � N, and assume that the stationary
process x is generated as x = H(β)n where n is white and H(β) = ∑L−1

l=0 βlSl. From this generative
model, it immediately follows that the covariance of x can be written as a function of β, i.e.,
Cx(β) = H(β)HH(β). Regarding the PSD of x, from the definition in Eq. (12.4) we have that
p(β) = diag

(
VHCx(β)V

)
, from where it follows that the PSD of x is equal to the squared magnitude of

the frequency representation of the filter. The dependence of Cx and p on β are explicitly stated below

Cx(β) =
L−1∑

l=0,l′=0

βl Sl βl′ (SH)l′ , p(β) = |h̃(β)|2 = |�Lβ|2. (12.20)

The covariance and PSD expressions in Eq. (12.20) correspond to the natural graph counterparts of MA
time processes generated by FIR filters; see [15] for discussions on the relevance of these processes.

The estimation of β can now be pursued in either the graph or frequency domain through covariance
or PSD fitting, respectively. More specifically, in the graph domain, we compute the sample covariance
Ĉx and use a matrix distortion function DC(Ĉx, Cx(β)) to measure the dissimilarity between Ĉx and



12.3 POWER SPECTRAL DENSITY ESTIMATORS 339

Cx(β). Alternatively, in the frequency domain, we compute the periodogram p̂pg as in Eq. (12.8) and
use a vector distortion function Dp(p̂pg, |�Lβ|2) to compare the periodogram p̂pg with the PSD |�Lβ|2.
We then select the coefficients β that lead to the minimal distortion, as specified below, for either the
graph or the frequency domain

β̂ := argmin
β

DC(Ĉx, Cx(β)), β̂ := argmin
β

Dp(p̂pg, |�Lβ|2). (12.21)

Notice that both the functional forms of Cx(β) and p(β) in Eq. (12.20) are indefinite quadratics in β.
Hence, the optimization problems in Eq. (12.21) will not be convex in general. In the particular case
where the distortion Dp is given by the squared 	2 norm of the difference, i.e., Dp(p̂pg, |�Lβ|2) =
‖p̂pg − |�Lβ|2‖2

2, efficient (phase-retrieval) solvers with probabilistic guarantees are available [32,33].
Alternative tractable formulations of Eq. (12.21) are discussed in [15], one of which is described next.

When S is symmetric, the expression (12.20) reduces to

Cx =
Q−1∑
k=0

bkSk, pn =
Q−1∑
k=0

bkλ
k
n. (12.22)

Here, Q := min{2L − 1, N} unknown expansion coefficients {bk}Q−1
k=0 are collected in the vector

b = [b0, b1, . . . , bQ−1]T ∈ RQ. By ignoring the structure in b, i.e., the relation between b and β,
we arrive at a linear parameterization of Cx using the set of Q symmetric matrices {S0, S, . . . , SQ−1} as
a basis. Vectorizing Cx in Eq. (12.22), we obtain

cx = vec(Cx) =
Q−1∑
k=0

bkvec(Sq) = Gmab, (12.23)

where we implicitly defined the matrix Gma := [
vec(S0), . . . , vec(SQ−1)

]
. Because Cx depends linearly

on b—as opposed to quadratically on β—we may efficiently solve Eq. (12.21) for some choices of DC.
For example, the LS estimate of b is given by b̂ = (GH

maGma)−1GH
maĉx. We illustrate the implementation

of this relaxation in Fig. 12.3D. Notice that the PSD estimation is quite faithful even for R = 1, and it
slightly improves for R = 10.

Autoregressive graph processes
A stationary process can be better and better approximated as an MA process by increasing the
order of the associated FIR filter. However, the merits of the parametric estimators depend on having
a small number of parameters describing the generating process. For some stationary processes,
an AR model using an infinite impulse response filter leads to a more parsimonious description.
For example, consider the diffusion process driven by the graph filter H = ∑∞

l=0 αlSl, where α

represents the diffusion rate. For small enough α, the filter can be rewritten as H = (I − αS)−1,
with frequency response h̃ = diag(I − α�−1). Thus, H can be viewed as a single-pole AR filter,
leading to a more meager description. More generally, an AR filter of order M can be described as
H = α0

∏M
m=1(I − αmS)−1 for some vector of parameters α = [α0, . . . , αM]T . Correspondingly, the

frequency response of this filter is given by h̃ = α0 diag
(∏M

m=1(I − αm�)−1
)
. If we define the graph



340 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

process x = Hn with n white, we may leverage the previous expressions to obtain explicit formulas for
the covariance and PSD of x as a function of the parameters α,

Cx(α) = α2
0

M∏
m=1

(I − αmS)−1(I − αmS)−H , p(α) = α2
0 diag

⎛
⎝ M∏

m=1

|I − αm�|−2

⎞
⎠ . (12.24)

The mechanism to obtain the corresponding parametric PSD estimator is equivalent to the one explained
for MA processes, where Cx(β) and p(β) in Eq. (12.20) are replaced by Cx(α) and p(α) in Eq. (12.24).
The associated optimization problems [cf. Eq. (12.21)] will be nonconvex in general and become
intractable for large orders M.

Yule-Walker schemes [31, Sec. 3.4] tailored to graph signals may be of help, as discussed next. The
all-pole filter H−1(α) = ∏M

k=1(I − αkS) can be alternatively expressed as H−1(a) = I − ∑M
k=1 akSk,

where a = [a1, a2, . . . , aM]T . Thus, the AR signal satisfies the equations

x =
M∑

k=1

akSkx + n. (12.25)

In other words, the graph signal x depends linearly on the M shifted graph signals {Skx}M
k=1 according

to the above AR model. As a result, the covariance matrix of x and its vectorized form can be expressed
as

Cx =
M∑

k=1

akSkCx+Cnx, cx = vec(Cx) =
M∑

k=1

akvec(SkCx) + vec(Cnx) ≈ Gara, (12.26)

where we have defined Gar := [vec(SCx), . . . , vec(SMCx)] and where we have assumed that
Cnx = E[nxH] is a small error term. Note that in contrast to the previous linear equations for
the nonparametric (12.11) and MA (12.23) models, the system matrix Gar now explicitly depends
on the unknown covariance Cx. Still, when the sample covariance matrix Ĉx is available, we can

solve Eq. (12.26) through LS as â = (Ĝ
H
arĜar)−1Ĝ

H
arĉx, where Ĝar is defined as Gar replacing Cx

by Ĉx.

12.4 NODE SUBSAMPLING FOR PSD ESTIMATION
Compression or data reduction is preferred for large-scale graph processes as the size of the datasets
often inhibits a direct computation of the second-order statistics. In this section, we focus on recovering
the second-order statistics of stationary graph processes from subsampled graph signals. We refer to this
problem as graph covariance sampling [19].

The fact that we reconstruct the power spectrum instead of the graph signal itself enables us to
sparsely sample the nodes, even in the absence of any spectral priors such as smoothness, sparsity,
or band-limitedness with known support. The proposed concept basically generalizes the field of
compressive covariance sensing [18] to the graph setting, which is not trivial. This is because,
for weakly stationary signals with a regular support or signals supported on a circulant graph, the
covariance matrix has a clear structure (e.g., Toeplitz, circulant) that enables an elegant subsampler
design. However, for second-order stationary graph signals residing on arbitrary graphs, the covariance
matrix in general does not admit any clear structure that can be easily exploited.



12.4 NODE SUBSAMPLING FOR PSD ESTIMATION 341

12.4.1 THE SAMPLING PROBLEM
Consider the problem of estimating the graph power spectrum of the weakly stationary graph signal
x ∈ RN from a set of K � N linear observations stacked in y ∈ RK , given by

y = 	x, (12.27)

where 	 is a known K ×N selection matrix with Boolean entries, i.e., 	 ∈ {0, 1}K×N and where several
realizations of y may be available. The matrix 	 is referred to as the subsampling or sparse sampling
matrix. Such a sparse sampling scheme generally results in a reduction in the storage and processing
costs. Moreover, for applications where nodes correspond to sensing devices—such as weather stations
in climatology and electroencephalography probes in brain networks—it also leads to smaller hardware
and communications costs.

The covariance matrices Cx = E[xxH] ∈ RN×N and Cy = E[yyH] ∈ RK×K contain the second-
order statistics of x and y, respectively. In practice, a sample covariance matrix is computed based on R
signal observations. More precisely, suppose that R observations of the uncompressed and compressed
graph signals are available, denoted by the vectors {xr}R

r=1 and {yr}R
r=1, respectively. Then forming the

sample covariance matrix, Ĉx = (1/R)
∑R

r=1 xrxH
r , from R snapshots of x costs O(N2R) while forming

the sample covariance matrix, Ĉy = (1/R)
∑R

r=1 yryH
r , from R snapshots of y only costs O(K2R).

Therefore, when K � N, there will clearly be a significant reduction in the storage and processing
costs due to compression.

12.4.2 COMPRESSED LS ESTIMATOR
In this section, we will extend the previously derived LS estimators (for nonparametric as well as
parametric PSD estimation) to the case where only compressed graph signals are available. The reason
we only focus on those estimators is not because they lead to the best performance, but because they
can be used to design the best subset of nodes to sample.

Let us condense the linearly structured covariance matrix Cx for the nonparametric case
(see Eq. 12.10), the parametric MA case with symmetric shifts (see Eq. 12.22), and the parametric
AR case (see Eq. 12.26), in a single expression as

Cx(θ) =
L∑

i=1

θiQi; θ = [θ1, . . . , θL]T , (12.28)

where for the nonparametric case, we have L = N, θ := p, and Qi := vivH
i , for the MA case with

symmetric shifts, we have L = Q, θ := b, and Qi := Si−1, and for the AR case, we have L = M,
θ := a, and Qi := Si−1Cx.

Using the compression scheme described in Eq. (12.27), the covariance matrix Cy of the subsampled
graph signal y can be related to Cx as

Cy(θ) = 	Cx	T =
L∑

i=1

θi	Qi	
T . (12.29)



342 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

This means that the expansion coefficients of Cy with respect to the set {	Q1	
T , . . . , 	QL	T}

are the same as those of Cx with respect to the set {Q1, . . . , QL}, and they are preserved under
linear compression. It is not clear at this point whether these expansion coefficients, which basically
characterize the graph power spectrum, can be uniquely recovered from Cy(θ ).

Vectorizing Cy as cy = vec(Cy) = (	 ⊗ 	)vec(Cx) ∈ RK2
we obtain

cy = (	 ⊗ 	)Gθ , (12.30)

where G = [vec(Q1), . . . , vec(QL)]. When only a finite number of observations are available, we use
the compressed sample data covariance matrix Ĉy instead of Cy, leading to the approximation ĉy ≈
(	 ⊗ 	)Gθ .

The parameter θ is identifiable from this system of equations if (	 ⊗ 	)G has full column rank,
which requires K2 ≥ L. Assuming that this is the case, the graph power spectrum (thus the second-order
statistics of x) can be estimated in closed form via LS as

θ̂ = [(	 ⊗ 	)G]†ĉy. (12.31)

It can be shown that a full row rank (wide) matrix 	 ∈ RK×N yields a full column rank matrix
(	 ⊗ 	)G if and only if the matrix (	 ⊗ 	)G is tall, i.e., K2 ≥ L, and null(	 ⊗ 	) ∩ range(G) = {0}.
When this is the case, we can recover the graph power spectrum by observing only O(

√
L) nodes.

An important remark is required at this point with respect to the parametric AR model. Note
from Eq. (12.26) that in this case the matrix G depends itself on the uncompressed covariance matrix
Cx, which is unknown. Hence, Eq. (12.31) cannot be directly applied. One option is to simply assume
we roughly know it and although this is not going to lead to a good estimate, it might be good enough for
designing a suboptimal sampling scheme (see Section 12.4.3). Another option is to restrict ourselves to
particular subsampling schemes that preserve the linear structure in Eq. (12.26) but for the compressed
data instead of the uncompressed data; see [19] for more details.

12.4.3 SPARSE SAMPLER DESIGN
We have seen so far that the design of the subsampling matrix 	 is crucial for the reconstruction of the
covariance of the random graph process. In this subsection, we design a sparse subsampling matrix 	

to ensure that the observation matrix (	 ⊗ 	)G has full column rank and the solution for θ has a small
error.

Algorithm 12.1 GREEDY ALGORITHM
1. Require X = ∅, K.
2. for k = 1 to K
3. s∗ = argmax

s/∈X
f (X ∪ {s})

4. X ← X ∪ {s∗}
5. end
6. Return X

Consider a structured sparse sampling matrix 	(z) ∈ {0, 1}K×N , such that the entries of this matrix
are determined by a binary component selection vector z = [z1, . . . , zN]T ∈ {0, 1}N , where zi = 1
indicates that the ith node is selected by 	(z).



12.4 NODE SUBSAMPLING FOR PSD ESTIMATION 343

Uniqueness and sensitivity of the LS solution developed in the previous subsection depends on the
spectrum (i.e., the set of eigenvalues) of the matrix

T(z) = [(	(z) ⊗ 	(z))G]T [(	(z) ⊗ 	(z))G] = GT (diag(z) ⊗ diag(z)) G.

More specifically, the performance of LS is better if the spectrum of the matrix (	 ⊗ 	)G is more
uniform, i.e., its condition number is close to unity [34]. Thus, a sparse sampler z can be obtained by
solving

argmax
z∈{0,1}N

f (z) s.t. ‖z‖0 = K, (12.32)

with either f (z) = −tr[T−1(z)], f (z) = λmin (T(z)), or f (z) = log det [T(z)]. These functions balance
the spectrum of T(z).

Although the above problem can be solved using standard convex relaxation techniques [35], due
to the involved complexity of solving the relaxed convex problem and keeping in mind the large-scale
problems that might arise in the graph setting, we will now focus on the optimization problem (12.32)
with f (z) = log det [T(z)] as it can be solved near optimally using a low-complexity greedy algorithm.
To do so, we introduce the concept of submodularity, a notion based on the property of diminishing
returns. This is useful for solving discrete combinatorial optimization problems of the form (12.32)
(see e.g., [36]). Submodularity can be formally defined as follows.

Definition 12.6. Given two sets X and Y such that for every X ⊆ Y ⊆ N and s ∈ N \Y , the set
function f : 2N → R defined on the subsets of N is said to be submodular, if it satisfies f (X ∪ {s}) −
f (X ) ≥ f (Y ∪ {s}) − f (Y). �

Suppose the submodular function is monotone nondecreasing, i.e., f (X ) ≤ f (Y) for all X ⊆ Y ⊆
N and normalized, i.e., f (∅) = 0, then a greedy maximization of such a function as summarized in
Algorithm 12.1 is near optimal with an approximation factor of (1 − 1/e); see [37].

To use this framework, we have to rewrite f (z) = log det [T(z)] as a set function

f (X ) = log det

⎡
⎣ ∑

(i,j)∈X×X
gi,jg

T
i,j

⎤
⎦ , (12.33)

where the index set X is related to the component selection vector z as X = {m | zm = 1, m = 1, . . . , N}
and the column vectors gi,j correspond to the rows of G as G = [g1,1, g1,2, . . . , gN,N]T . We use such an
indexing because the sampling matrix 	 ⊗ 	 results in a Kronecker structured (row) subset selection.

Modifying this set function slightly to

f (X ) = log det

⎡
⎣ ∑

(i,j)∈X×X
gi,jg

T
i,j + εI

⎤
⎦ − N log ε, (12.34)

we obtain a normalized, nondecreasing, submodular function on the set X ⊂ N . Here, ε > 0 is a
small constant. In Eq. (12.34), εI is needed to carry out the first few iterations of Algorithm 12.1 and
−N log ε ensures that f (∅) is zero. It is worth mentioning that the greedy algorithm is linear in K while
computing Eq. (12.34) dominates the computational complexity. Finally, random subsampling (i.e., z
having random 0 or 1 entries) is not suitable as it might not always result in a full-column rank model
matrix.



344 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

In Fig. 12.4, we illustrate the PSD estimation based on the observations from a subset of nodes for
100 realizations of the random process on the Karate club network. For the nonparametric model, the
selected graph nodes obtained from Algorithm 12.1 are indicated with a black circle in Fig. 12.4A.
Based on the observations from these 20 selected graph nodes, the PSD estimate obtained using LS is
shown in Fig. 12.4B. It can be seen that the PSD estimate based on the observations from a subset of
nodes fits reasonably well to the true PSD.

(A) (B) 

(C) (D) 

0 255 10 15 20 30 35
0

0.5

1

1.5

True PSD

Least squares (R = 100, K = 20)

True PSD

Least squares (R = 100, K = 4)

0 255 10 15 20 30 35
0

0.5

1

1.5

FIG. 12.4

PSD estimation from a subset of nodes. Estimators are based on a random process defined on the Karate club
network [28]. (A) Graph sampling for nonparametric PSD estimation. Here, 20 out of 34 nodes are observed.
The sampled nodes are highlighted by the circles around the nodes. (B) Nonparametric PSD estimation based
on observations from 20 nodes and 100 data snapshots. (C) Graph sampling for parametric MA PSD
estimation. Here, 4 out of 34 nodes are observed. (D) Parametric MA PSD estimation based on observations
from 4 nodes and 100 data snapshots.



REFERENCES 345

For the parametric MA model, wherein the PSD is parametrized with Q = 7 MA parameters, the
selected graph nodes obtained from Algorithm 12.1 are shown in Fig. 12.4C and the reconstructed PSD
using LS is shown in Fig. 12.4D. In this case, we sample only 4 out of 34 graph nodes and yet obtain a
PSD estimate that fits very well to the true PSD.

12.5 DISCUSSION AND THE ROAD AHEAD
In this chapter, we have introduced the concept of weakly stationary graph processes and their related
power spectral density. We discussed the links between the different definitions as well as the relations
with classical signal processing. Furthermore, we extended this idea to processes that are jointly
stationary in the vertex and time domain, where the subclass of separable processes is of particular
importance due to their more parsimonious description. The chapter has also focused on estimating
the PSD and the covariance using nonparametric as well as parametric methods. Equivalences and
differences with classical PSD techniques for spatiotemporal signals have been established. Finally, we
presented different techniques to estimate the PSD and the covariance from only a subset of the nodes
without any loss of identifiability. This can be viewed as a particular instance of sparse covariance
sampling. In this context, we also proposed a greedy method to select the best nodes to sample in order
to guarantee a satisfying estimation of the PSD and the covariance.

While this chapter only covers weakly stationary graph processes, a definition of strict stationarity
is still open. One option could be to define a strictly stationary graph process as the output of filtering
i.i.d. noise. Ergodicity is also a concept that we did not discuss in this chapter. Ergodicity in a graph
signal processing context would mean that the statistics of the graph process could be derived from
successive graph shifts of a single realization (observed at one or multiple nodes) [38]. Due to the
finite length of graph signals, this will entail certain problems and exact estimates of the statistics (even
asymptotically) will rarely be possible. How to model nonstationary graph processes in an intuitively
pleasing way is another unexplored area. A way forward in this direction could be the introduction of
so-called node-varying graph filters [39], where the variation of the filter taps can be expanded in a
particular basis. Filtering white or i.i.d. noise using such filters leads to a nonstationary graph process
that is parametrized by a limited number of coefficients. Yet, other parametrized graph filter structures
could be employed as a model for nonstationary graph processes, e.g., edge-variant graph filters [40]
or median graph filters [41,42]. Finally, in this chapter, we limited ourselves to normal graph shift
operators that are endowed with a unitary matrix of eigenvectors. Stationarity for nonnormal graph
shifts (whether diagonalizable or not) is a topic for future research. Some of the concepts discussed
in this chapter can be easily extended to nonorthonormal and/or generalized eigenvectors but others
require more research.

REFERENCES
[1] Zhang F, Hancock ER. Graph spectral image smoothing using the heat kernel. Pattern Recogn

2008;41(11):3328–42.
[2] Pesenson I. Sampling in Paley-Wiener spaces on combinatorial graphs. Trans Am Math Soc

2008;360(10):5603–27.

http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0015


346 CHAPTER 12 STATISTICAL GRAPH SIGNAL PROCESSING

[3] Chen S, Sandryhaila A, Moura J, Kovačević J. Signal recovery on graphs: variation minimization. IEEE Trans
Signal Process 2015;63(17):4609–24.

[4] Chen S, Varma R, Sandryhaila A, Kovačević J. Discrete signal processing on graphs: sampling theory. IEEE
Trans Signal Process 2015;63(24):6510–23.

[5] Anis A, Gadde A, Ortega A. Towards a sampling theorem for signals on arbitrary graphs. In: IEEE
international conference on acoustics, speech and signal processing (ICASSP); 2014. p. 3864–8.

[6] Marques AG, Segarra S, Leus G, Ribeiro A. Sampling of graph signals with successive local aggregations.
IEEE Trans Signal Process 2016;64(7):1832–43.

[7] Segarra S, Marques AG, Leus G, Ribeiro A. Reconstruction of graph signals through percolation from seeding
nodes. IEEE Trans Signal Process 2016;64(16):4363–78.

[8] Shuman DI, Vandergheynst P, Frossard P. Distributed signal processing via Chebyshev polynomial approxi-
mation. CoRR 2011;abs/1111.5239.

[9] Sandryhaila A, Moura JMF. Discrete signal processing on graphs: frequency analysis. IEEE Trans Signal
Process 2014;62(12):3042–54.

[10] Shi X, Feng H, Zhai M, Yang T, Hu B. Infinite impulse response graph filters in wireless sensor networks.
IEEE Signal Process Lett 2015;22(8):1113–7.

[11] Isufi E, Loukas A, Simonetto A, Leus G. Autoregressive moving average graph filtering. IEEE Trans Signal
Process 2017;65(2):274–88.

[12] Hayes MH. Statistical digital signal processing and modeling. John Wiley and Sons; 2009.
[13] Girault B. Stationary graph signals using an isometric graph translation. In: European signal processing

conference (EUSIPCO); 2015. p. 1516–20.
[14] Girault B, Gonçalves P, Fleury E. Translation on graphs: an isometric shift operator. IEEE Signal Process Lett

2015;22(12):2416–20.
[15] Marques AG, Segarra S, Leus G, Ribeiro A. Stationary graph processes and spectral estimation. IEEE Trans

Signal Process 2017;65(22):5911–26.
[16] Perraudin N, Vandergheynst P. Stationary signal processing on graphs. IEEE Trans Signal Process

2017;65(13):3462–77.
[17] Perraudin N, Loukas A, Grassi F, Vandergheynst P. Towards stationary time-vertex signal processing.

In: IEEE international conference on acoustics, speech and signal processing (ICASSP); 2017. p. 3914–8.
[18] Romero D, Ariananda DD, Tian Z, Leus G. Compressive covariance sensing: structure-based compressive

sensing beyond sparsity. IEEE Signal Process Mag 2016;33(1):78–93.
[19] Chepuri SP, Leus G. Graph sampling for covariance estimation. IEEE Trans Signal Inf Process Netw

2017;3(3):451–66.
[20] Sandryhaila A, Moura JMF. Discrete signal processing on graphs. IEEE Trans Signal Process

2013;61(7):1644–56.
[21] Gavili A, Zhang XP. On the shift operator, graph frequency and optimal filtering in graph signal processing.

IEEE Trans Signal Process 2017;65(23):6303–18.
[22] Shuman DI, Ricaud B, Vandergheynst P. Vertex-frequency analysis on graphs. Appl Comput Harmon Anal

2016;40(2):260–91.
[23] Segarra S, Marques AG, Mateos G, Ribeiro A. Network topology inference from spectral templates. IEEE

Trans Signal Inf Process Netw 2017;3(3):467–83.
[24] Murphy KP. Machine learning: a probabilistic perspective. MIT Press; 2012.
[25] Imrich W, Klavzar S. Product graphs: structure and recognition. Wiley; 2000.
[26] Sandryhaila A, Moura J. Big data analysis with signal processing on graphs: representation and processing of

massive data sets with irregular structure. IEEE Signal Process Mag 2014;31(5):80–90.
[27] Lütkepohl H. New introduction to multiple time series analysis. Springer; 2007.
[28] Zachary WW. An information flow model for conflict and fission in small groups. J Anthropol Res

1977;33(4):452–73.

http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0145


REFERENCES 347

[29] Hayes MH. Statistical digital signal processing and modeling. John Wiley & Sons; 2009.
[30] Scharf LL. Statistical signal processing. Reading, MA: Addison-Wesley; 1991.
[31] Stoica P, Moses RL. Spectral analysis of signals. Upper Saddle River, NJ: Pearson/Prentice Hall; 2005.
[32] Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt 1982;21(15):2758–69.
[33] Candes EJ, Li X, Soltanolkotabi M. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans Inf

Theory 2015;61(4):1985–2007.
[34] Golub GH, Van Loan CF. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences.

Baltimore, MD: Johns Hopkins University Press; 1996.
[35] Chepuri SP, Leus G. Sparse sensing for statistical inference. Found Trends Signal Process

2016;9(3–4):233–368.
[36] Krause A. Optimizing sensing: theory and applications. Ph.D. dissertation, School of Computer Science.

Pittsburgh, PA: Carnegie Mellon University; 2008.
[37] Nemhauser GL, Wolsey LA, Fisher ML. An analysis of approximations for maximizing submodular set

functions—I. Math Program 1978;14(1):265–94.
[38] Gama F, Ribeiro A. Weak law of large numbers for stationary graph processes. In: IEEE international

conference on acoustics, speech and signal processing (ICASSP); 2017. p. 4124–8.
[39] Segarra S, Marques AG, Ribeiro A. Optimal graph-filter design and applications to distributed linear network

operators. IEEE Trans Signal Process 2017;65(15):4117–31.
[40] Coutino M, Isufi E, Leus G. Distributed edge-variant graph filters. In: IEEE international workshop on

computational advances in multi-sensor adaptive processing (CAMSAP); 2017.
[41] Segarra S, Marques AG, Arce GR, Ribeiro A. Center-weighted median graph filters. In: Global conference

on signal and information processing (GlobalSIP); 2016. p. 336–40.
[42] Segarra S, Marques AG, Arce G, Ribeiro A. Design of weighted median graph filters. In: IEEE international

workshop on computational advances in multi-sensor adaptive processing (CAMSAP); 2017.

http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00012-2/rf0215


CHAPTER

13INFERENCE OF GRAPH
TOPOLOGY

Gonzalo Mateos∗, Santiago Segarra†, Antonio G. Marques‡

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States∗ Institute

for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, United States† Department

of Signal Theory and Communications, King Juan Carlos University, Madrid, Spain‡

13.1 INTRODUCTION
Coping with the challenges found at the intersection of Network Science and Big Data necessitates
fundamental breakthroughs in modeling, identification, and controllability of distributed network
processes often conceptualized as signals defined on graphs [1–3]. For instance, graph-supported
signals can model vehicle trajectories over road networks [4]; economic activity observed over a
network of production flows between industrial sectors [5,6]; infectious states of individuals susceptible
to an epidemic disease spreading on a social network [7]; gene expression levels defined on top of gene
regulatory networks [8–10]; brain activity signals supported on brain connectivity networks [11–13];
and media cascades that diffuse on online social networks [14,15], to name a few. There is an evident
mismatch between our scientific understanding of signals defined over regular domains (time or space)
and graph-valued signals. Knowledge about time series was developed over the course of decades
and boosted by real needs in areas such as communications, speech, or control. On the contrary, the
prevalence of network-related signal processing problems and the access to quality network data are
recent events [1].

Under the assumption that the signals are related to the topology of the graph where they are
supported, the goal of graph signal processing (GSP) is to develop algorithms that fruitfully leverage
this relational structure, and can make inferences about these relationships when they are only partially
observed [5,10,16]. Most GSP efforts to date assume that the underlying network is known, and then
analyze how the graph’s algebraic and spectral characteristics impact the properties of the graph signals
of interest. However, such an assumption is often untenable in practice and arguably most graph
construction schemes are largely informal, distinctly lacking an element of validation. In studies of, e.g.,
functional brain connectivity or regulation among genes, inference of nontrivial pairwise interactions
between signal elements (i.e., blood oxygen-level dependent time series per voxel or gene expression
levels, respectively) is often the goal per se.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00013-4
Copyright © 2018 Elsevier Inc. All rights reserved.

349



350 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

In this chapter we present a framework to leverage information available from graph signals to
learn the underlying graph topology. The unknown graph represents direct relationships between signal
elements, which one aims to recover from observable indirect relationships generated by a diffusion
process on the graph. The fresh look advocated here leverages concepts from convex optimization
and stationarity of graph signals in order to identify the graph-shift operator (a matrix representation
of the graph) given only its eigenvectors. These spectral templates can be obtained, e.g., from the
sample covariance of independent graph signals diffused on the sought network. The novel idea is to
find a graph-shift operator that, while being consistent with the provided spectral information, endows
the network with certain desired properties such as sparsity or minimum-energy edge weights. The
focus of the chapter is on inferring undirected graphs. The recovery of directed graphs from diffused
observations is briefly discussed in the last section of the chapter.

13.2 GRAPH INFERENCE: A HISTORICAL OVERVIEW
Network topology inference is a prominent problem in Network Science [10,17]. Because networks
typically encode similarities between nodes, several topology inference approaches construct graphs
whose edge weights correspond to nontrivial correlations or coherence measures between signal
profiles at incident nodes. In this vein, informal (but widely popular) scoring methods rely on ad hoc
thresholding of user-defined score functions such a Pearson product-moment correlation, Spearman
rank correlation, or mutual information. Formal hypothesis-testing methods to assess nontrivial
correlations have been proposed as well [10, Ch. 7.3.1]. Because in graph inference settings one
performs a hypothesis test per node pair, the problem of multiple testing is prevalent and often addressed
via, e.g., false discovery rate (FDR) procedures.

Acknowledging that the observed correlations can be due to latent network effects, alternative
statistical methods rely on inference of full partial correlations to eliminate potential confounding
variables [10, Ch. 7.3.2]. Under Gaussianity assumptions, this line of work has well-documented
connections with covariance selection [18] and sparse precision matrix estimation [19–23] as well
as high-dimensional sparse linear regression [24]. Extensions to directed graphs include structural
equation models (SEMs) [14,25,26], Granger causality [17,27], or their nonlinear (e.g., kernelized)
variants [28,29].

Recent GSP-based network inference frameworks postulate instead that the network exists as a
latent underlying structure, and that observations are generated as a result of a network process defined
in such a graph [30–35]. For instance, network structure is estimated in [33] to unveil unknown relations
among nodal time series adhering to an autoregressive model involving graph filter dynamics. Different
from [32–35] that operate on the graph domain, the goal here is to identify graphs that endow the
given observations with desired spectral (frequency-domain) characteristics. Two works have recently
explored this approach by identifying a matrix representation of the network given its eigenvectors [30,
31], and rely on observations of stationary graph signals [36–38]. Different from [34,35,39,40] that
infer structure from signals assumed to be smooth over the sought graph, here the measurements are
assumed related to the graph via filtering (e.g., modeling the diffusion of an idea or the spreading of a
disease). Smoothness models can be subsumed as special cases encountered when diffusion filters have
a low-pass frequency response.



13.3 GRAPH INFERENCE FROM DIFFUSED SIGNALS 351

13.3 GRAPH INFERENCE FROM DIFFUSED SIGNALS
A weighted and undirected graph G consists of a node set N of cardinality N, an edge set E of unordered
pairs of elements in N , and edge weights Aij ∈ R such that Aij = Aji �= 0 for all (i, j) ∈ E . The edge
weights Aij are collected as entries of the symmetric adjacency matrix A and the node degrees in the
diagonal matrix D := diag(A1). These are used to form the combinatorial Laplacian matrix Lc := D−A
and the normalized Laplacian L := I − D−1/2AD−1/2. More broadly, one can define a generic graph-
shift operator (GSO) S ∈ RN×N as any matrix whose off-diagonal sparsity pattern is equal to that of
the adjacency matrix of G [2]. Although the choice of S can be adapted to the problem at hand, most
existing works set it to either A, Lc, or L. See Table 13.1 for a summary of relevant notation.

13.3.1 STRUCTURE OF A NETWORK DIFFUSION PROCESS
The main focus of this chapter is on identifying graphs that explain the structure of a random signal.
Formally, let x = [x1, . . . , xN]T ∈ RN be a graph signal in which the ith element xi denotes the signal
value at node i of an unknown graph G with symmetric shift operator S. Further suppose that we are
given a zero-mean white signal w with covariance matrix E

[
wwT

] = I. We say that S represents the
structure of the signal x if there exists a diffusion process in the GSO S that produces the signal x from
the white signal w, that is,

x = α0

∞∏
l=1

(I − αlS)w =
∞∑

l=0

βlS
lw. (13.1)

Table 13.1 Notation

Notation Description

x vector with ith entry xi

X matrix with (i, j)th entry Xij

I set

XI submatrix of X formed by the rows indexed by I
(·)T matrix transpose

(·)† matrix pseudoinverse

vec(·) matrix vectorization operator

σmin(·) minimum singular value of argument matrix

⊗ Kronecker product

� Khatri-Rao (columnwise Kronecker) product

tr{·} matrix trace

‖x‖p vector �p-norm

‖X‖p vector �p-norm of the vectorized form of X
‖X‖M(p) induced matrix �p-norm

‖X‖F :=
√

tr{XT X} matrix Frobenius norm

diag(x) diagonal matrix with (i, i)th entry xi

I identity matrix

0 all-zero vector

1 all-one vector



352 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

While S encodes only one-hop interactions, each successive application of the shift percolates
(correlates) the original information across an iteratively increasing neighborhood; see e.g. [41]. The
product and sum representations in Eq. (13.1) are common and equivalent models for the generation of
random signals. Indeed, any process that can be understood as the linear propagation of a white input
through a static, undirected graph can be written in the form in Eq. (13.1). These include, for example,
processes generated by the so-called diffusion Laplacian kernels [42].

The justification to say that S is the structure of x is that we can think of the edges of S as direct
(one-hop) relationships between the elements of the signal. The diffusion described by Eq. (13.1)
generates indirect relationships. In this context, the network topology inference problem is to recover
the fundamental relationships described by S from a set X := {xr}R

r=1 of R independent snapshots of
the random signal x. We show next that this is an underdetermined problem.

Because we focus on the inference of undirected graphs, the shift operator S is symmetric and
diagonalizable. Hence, upon defining the orthogonal eigenvector matrix V := [v1, . . . , vN] and the
eigenvalue matrix � := diag(λ) with λ := [λ1, . . . , λN]T , it holds that

S = V�VT= Vdiag(λ)VT . (13.2)

Further observe that while the diffusion expressions in Eq. (13.1) are polynomials on the GSO of
possibly infinite degree, the Cayley-Hamilton theorem implies that they are equivalent to polynomials
of a degree smaller than N. Upon defining the vector of coefficients h := [h0, . . . , hL−1]T and the graph
filter H ∈ RN×N as H := ∑L−1

l=0 hlSl, the generative model in Eq. (13.1) can be rewritten as

x =
(L−1∑

l=0

hlS
l
)

w = Hw (13.3)

for some particular h and L. Because a graph filter H is a polynomial on S [2], graph filters are
linear graph-signal operators that have the same eigenvectors as the shift (i.e., the operators H and
S commute).

More important for the arguments in Sections 13.3 and 13.4, the filter representation in Eq. (13.3)
can be used to show that the eigenvectors of S are also eigenvectors of the covariance matrix
Cx := E

[
xxT

]
. To that end, notice that because w is white the said covariance is given by

Cx = E

[
Hw

(
Hw

)T
]

= HE

[
wwT

]
HT = HHT . (13.4)

If we further use the spectral decomposition of the shift in Eq. (13.2) to express the filter as H =∑L−1
l=0 hl(V�VT )l = V(

∑L−1
l=0 hl�

l)VT , we can write the covariance matrix as

Cx = V

(L−1∑
l=0

hl�
l
)2

VT . (13.5)

A consequence of Eq. (13.5) is that the eigenvectors of the shift S and the covariance Cx are the
same. Alternatively, one can say that the difference between Cx in Eq. (13.5), which includes indirect
relationships between components, and S in Eq. (13.2), which includes exclusively direct relationships,
is only on their eigenvalues. While the diffusion in Eq. (13.1) obscures the eigenvalues of S, the
eigenvectors V remain present in Cx as templates of the original spectrum. Additional motivation for
the model in (13.5) is provided in Remark 13.1.



13.3 GRAPH INFERENCE FROM DIFFUSED SIGNALS 353

Identity (13.5) also shows that the problem of finding a GSO that generates x from a white input w
with unknown coefficients [cf. Eq. (13.1)] is underdetermined. As long as the matrices S and Cx have
the same eigenvectors, filter coefficients that generate x through a diffusion process on S exist. In fact,
the covariance matrix Cx itself is a GSO that can generate x through a diffusion process and so is the
precision matrix C−1

x . To sort out this ambiguity, which amounts to selecting the eigenvalues of the
shift, we assume that the GSO of interest is optimal in some sense. This pursuit is the subject of the
next section, where we formally state the graph inference problem.

Remark 13.1 (Graph stationarity meets topology inference). Recently, a group of works has
generalized the definition of stationarity to graph processes [36–38]. In a nutshell, a graph signal is
stationary in a particular GSO S if either the signal can be expressed as the output of a graph filter
with white inputs [36, Def. 2], or if its covariance matrix is simultaneously diagonalizable with S
[36, Def. 3]. These are precisely the conditions in Eqs. (13.3) and (13.5), respectively. Hence, our
problem of identifying a GSO that explains the fundamental structure of x is equivalent to the problem
of identifying a shift S in which the signal x is stationary. Notice that this is equivalent to saying that the
mapping between the sought shift S and the covariance matrix Cx is given by a (matrix) polynomial,
including Cx = S and Cx = S−1 as particular cases. Advances dealing with identification of undirected
networks from diffused nonstationary graph signals are outlined in Section 13.5.

13.3.2 OPTIMAL GRAPH SHIFT OPERATOR
Given estimates V̂ of the filter eigenvectors (e.g., obtained from observations X := {xr}R

r=1 via the

eigenvectors of the sample covariance Ĉx = 1
R

∑R
r=1 xrxT

r ), recovery of S amounts to selecting its
eigenvalues � and to that end we assume that the shift of interest is optimal in some sense. At the
same time, we should account for the discrepancies between V̂ and the actual eigenvectors of S, due to
finite sample size constraints and noise corrupting the observations in X . Accordingly, we seek a shift
operator S that: (a) is optimal with respect to (often convex) criteria f (S); (b) belongs to a convex set S
that specifies the desired type of shift operator (e.g., the adjacency A or Laplacian L); and (c) is close

to V̂�V̂
T

as measured by a convex matrix distance d(·, ·). Formally, one can solve

S∗ := argmin
�,S∈S

f (S), s.t. d(S, V̂�V̂
T ) ≤ ε, (13.6)

which is a convex optimization problem provided f (S) is convex, and ε is a tuning parameter chosen
based on a priori information on the imperfections. Within the scope of the signal model (13.1), the
formulation (13.6) entails a general class of network topology inference problems parametrized by the
choices in (a)–(c) above. Following a formal statement of the problem, we briefly outline the spectrum
of alternatives for points (a)–(c), while concrete choices are made for the analysis and numerical tests
in Sections 13.4 and 13.5.
Problem statement. Given a set X := {xr}R

r=1 of R independent samples of the random signal x
adhering to Eq. (13.1), estimate the optimal description of the structure of x in the form of the graph-
shift operator S∗ ∈ S defined in Eq. (13.6).
Criteria. The selection of f (S) allows incorporating physical characteristics of the desired graph into the
formulation while being consistent with the spectral templates V̂. For instance, the matrix pseudonorm
f (S) = ‖S‖0, which counts the number of nonzero entries in S, can be used to minimize the number of



354 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

edges toward identifying sparse graphs (e.g., of direct relations among signal elements); f (S) = ‖S‖1
is a convex proxy for the aforementioned edge cardinality function. Alternatively, the Frobenius norm
f (S) = ‖S‖F can be adopted to minimize the energy of the edges in the graph, or f (S) = ‖S‖∞
can be selected to obtain shifts S associated with graphs of uniformly low edge weights. This can be
meaningful when identifying graphs subject to capacity constraints.
Constraints. The constraint S ∈ S in Eq. (13.6) incorporates a priori knowledge about S. If we let
S = A represent the adjacency matrix of an undirected graph with nonnegative weights and no self-
loops, we can explicitly write S as follows

SA :=
{

S | Sij ≥ 0, S ∈ MN , Sii = 0,
∑

j

Sj1 = 1
}

. (13.7)

The first condition in SA encodes the nonnegativity of the weights whereas the second condition
incorporates that G is undirected, hence, S must belong to the set MN of real and symmetric N × N
matrices. The third condition encodes the absence of self-loops, thus, each diagonal entry of S must be
null. Finally, the last condition fixes the scale of the admissible graphs by setting the weighted degree
of the first node to 1, and rules out the trivial solution S = 0. Other GSOs such as the normalized
Laplacian L can be accommodated in this framework via minor adaptations to S; see [30].

The form of the convex matrix distance d(·, ·) depends on the particular application. For instance,

if ‖S − V̂�V̂
T‖F is chosen, the focus is more on the similarities across the entries of the shifts while

‖S − V̂�V̂
T‖M(2) focuses on their spectrum.

13.3.3 JOINT INFERENCE OF MULTIPLE GRAPHS
So far we have dealt with the identification of a single graph from signal observations under
the assumption that the available observations are stationary on the sought shift. However, many
contemporary setups involve multiple related networks, each with a subset of available observations.
This is the case in multihop communication networks in dynamic environments where links are created
or destroyed as nodes change their position; in neuroscience where observations for different patients
are available and the objective is to estimate their brain functional networks, and in gene-to-gene
networks where the goal is to identify pairwise interactions between genes when measurements for
different tissues of the same patient are available. Looking at the joint identification of multiple shifts
can be useful even if the interest is only in one of the networks because joint formulations exploit
additional sources of information and, hence, are likely to give rise to better solutions. Although
noticeably less than its single-network counterpart, joint inference of multiple networks has attracted
attention, especially for the case of (Gaussian) Markov random fields, which give rise to sparse
precision matrices [43–47], and in the context of dynamic (time-varying) graphs [48–50]. All the
aforementioned works consider that the multiple graphs share a common node set while being allowed
to have different edge sets, a structure often referred to as a multilayer graph [51]. Given the previous
motivation, in this section we extend the problem formulation in Eq. (13.6) to encompass the case of
joint network inference.

To formally state our joint network topology inference problem, consider a scenario with K different
graphs {G(k)}K

k=1 defined over the same set N of nodes, but with possibly different sets of edges and
weights. This implies the existence of K different GSOs {S(k)}K

k=1, all represented by N × N matrices,



13.4 ROBUST NETWORK TOPOLOGY INFERENCE 355

whose sparsity pattern and nonzero values may be different across k. Suppose that, associated with
each of the graphs, we have access to a set of graph signals collecting information attached to the
nodes. Formally, we use X(k) := [x(k)

1 , . . . , x(k)
Rk

] ∈ RN×Rk to denote the matrix containing the Rk graph

signals associated with graph G(k). As done for the case of a single graph, we assume that {x(k)
i }Rk

i=1 are
independent realizations of a random process x(k) whose structure is represented by S(k) [cf. Eq. (13.1)].
In order to justify the concept of joint inference, we further assume that graphs k and k′ are similar,
which we encode as some matrix distance d(S(k), S(k′)) being small. Hence, the problem of joint network
inference amounts to finding {S(k)}K

k=1 when given the signals {X(k)}K
k=1 generated as in Eq. (13.1) and

under the assumption of similarity between different graphs.

Mimicking the development in Section 13.3.2, given estimates {V̂(k)}K
k=1 of the eigenvectors of each

of the sought GSOs (e.g., obtained from the sample covariances of the different sets of observations
{X(k)}K

k=1), recovery of the GSOs boils down to selecting the optimal eigenvalues {�(k)}K
k=1. In this

respect, problem (13.6) can be extended to obtain

{S∗(k)}K
k=1 := argmin

{�(k), S(k)∈S}K
k=1

K∑
k=1

γkf (S(k)) +
∑
k<k′

νk,k′d1(S(k), S(k′)) (13.8)

s.t d2(S(k), V̂
(k)

�(k)V̂
(k)T ) ≤ ε, for all k,

where the weights γk and νk,k′ respectively encode the relative importance of the optimality criterion
on each GSO and the level of similarity between pairs of GSOs. As discussed in Section 13.3.2, the
optimal criterion f and the constraint set S can be selected to promote or enforce specific properties
in the sought graphs. Specific to formulation (13.8), we can also choose the distance function d1 to
promote different modes of similarity between GSOs. For example, choosing as distance d1 the norms
‖S(k) − S(k′)‖0 or ‖S(k) − S(k′)‖1 would promote the pair of shifts to have the same sparsity pattern and
weights whereas selecting d1 as ‖S(k) −S(k′)‖F would promote similar weights regardless of the sparsity
pattern.

For more details and results about the problem of jointly inferring multiple graph shift operators, in-
cluding provable guarantees of the associated algorithms, we refer the reader to [52]. For concreteness,
the remainder of this chapter focuses on the problem of inferring a single graph.

13.4 ROBUST NETWORK TOPOLOGY INFERENCE
This section deals with robust network inference problems from imperfect (noisy or incomplete)
spectral templates.

13.4.1 NOISY SPECTRAL TEMPLATES
We first address the case where knowledge of an approximate version of the spectral templates
V̂ = [v̂1, . . . , v̂N] is available, e.g., from the eigenvectors of a sample covariance matrix Ĉx. For the

particular case of sparse shifts, adopting f (S) = ‖S‖1 as the criterion in Eq. (13.6) and d(S, V̂�V̂
T

) =
‖S − V̂�V̂

T‖F yields



356 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

S∗
1 := argmin

�,S∈S
‖S‖1, s.t. ‖S − V̂�V̂

T‖F ≤ ε. (13.9)

Note that ‖S‖1 in Eq. (13.9) refers to the �1 norm of the vectorized version of S. Moreover, further
uncertainties can be introduced in the definition of the feasible set S, e.g., in the scale of the admissible
graphs for the case of S = SA (cf. Proposition 13.1 and [30] for additional details).

To assess the effect of the noise in recovering the sparsest S (henceforth denoted as S∗
0, the solution

of Eq. (13.9) when f (S) = ‖S‖0), some additional notation must be introduced. Define Ŵ := V̂ � V̂ ∈
RN2×N , where � denotes the Khatri-Rao product. Let s∗

0 := vec(S∗
0), denote by D the diagonal indices

such that (s∗
0)D = diag(S∗

0) and partition its complement Dc into K and Kc, with the former indicating
the positions of the nonzero entries of s∗

0Dc := (s∗
0)Dc , where matrix calligraphic subscripts select

rows. Denoting by † the matrix pseudoinverse, we define M̂ := (I − ŴŴ
†
)Dc ∈ RN2−N×N2

, i.e., the

orthogonal projector onto the kernel of Ŵ
T

constrained to the off-diagonal elements in Dc. With e1
denoting the first canonical basis vector, we construct

R̂ := [M̂, e1 ⊗ 1N−1] ∈ RN2−N×N2+1 (13.10)

by horizontally concatenating M̂ and a column vector of size |Dc| with ones in the first N − 1
positions and zeros elsewhere. Further, we drop the nonnegativity constraint in SA—to obtain S̃A—
and incorporate the scale ambiguity by augmenting d(S, S′) as d̃(S, S′) = (d(S, S′)2 + (

∑
j Sj1 −1)2)1/2.

With this notation, the following result on robust recovery of network topologies holds (see [30] for a
proof).

Proposition 13.1. Assuming that there exists at least one S′ such that d̃(S∗
0, S′) ≤ ε, the solution

ŝ∗
1 := vec(Ŝ

∗
1) to Eq. (13.9) for S = S̃A with scale ambiguity satisfies

‖ŝ∗1 − s∗0‖1 ≤ Cε, with C = 2C1 + 2C2C3 (13.11)

if the two following conditions are satisfied:

(1) rank(R̂K) = |K|; and
(2) There exists a constant δ > 0 such that

ψ := ‖IKc (δ−2R̂R̂
T + IT

Kc IKc )−1IT
K‖M(∞) < 1. (13.12)

Constants C1, C2, and C3 are given by

C1 =
√|K|

σmin(R̂T
K)

, C2 = 1 + ‖R̂
T‖2C1

1 − ψ
, C3 = ‖R̂

†‖2N, (13.13)

where σmin(·) denotes the minimum singular value of the argument matrix. �
When given noisy versions V̂ of the spectral templates of our target GSO, Proposition 13.1

quantifies the effect that the noise has on the recovery. More precisely, the recovered shift is guaranteed
to be at a maximum distance from the desired shift bounded by the tolerance ε times a constant, which
depends on R̂ and the support K. This also implies that as the number of observed signals increases we
recover the true GSO. In particular, as the number of observed signals increases, the sample covariance



13.4 ROBUST NETWORK TOPOLOGY INFERENCE 357

Ĉx tends to the covariance Cx and, for the cases where the latter has no repeated eigenvalues, the
noisy eigenvectors V̂ tend to the eigenvectors V of the desired shift; see, e.g., [53, Th. 3.3.7]. In
particular, with better estimates V̂ the tolerance ε in Eq. (13.9) needed to guarantee feasibility can
be made smaller, entailing a smaller discrepancy between the recovered S∗

1 and the sparsest shift S∗
0.

In the limit when V̂ = V and under no additional uncertainties, the tolerance ε can be made zero and
Eq. (13.11) guarantees perfect recovery under conditions (1) and (2).

13.4.2 INCOMPLETE SPECTRAL TEMPLATES
Thus far we have assumed that an estimate of the entire set of eigenvectors V = [v1, . . . , vN] is known.
However, there are scenarios where only some of the eigenvectors (say K out of N) are available. This
would be the case when, e.g., the given signal ensemble is bandlimited and V is found as the eigenbasis
of the low-rank Cx. More generally, if Cx contains repeated eigenvalues there is a rotation ambiguity
in the definition of the associated eigenvectors. Hence, in this case, we keep the eigenvectors that can
be unambiguously characterized and, for the remaining ones, we include the rotation ambiguity as an
additional constraint in our optimization problem.

Formally assume that the K first eigenvectors VK = [v1, . . . , vK] are those that are known. For
simplicity of exposition, suppose as well that VK is estimated to be error free. Then, the network
topology inference problem with incomplete spectral templates can be formulated as

S̄∗
1 := argmin

S∈S ,SK̄ ,λ
‖S‖1, s.t. S = SK̄ + ∑K

k=1λkvkvT
k , SK̄VK = 0, (13.14)

where we already particularized the objective to the �1-norm convex relaxation. The formulation in
Eq. (13.14) enforces S to be partially diagonalized by the known spectral templates, VK , while its
remaining component SK̄ is forced to belong to the orthogonal complement of range(VK). Notice that,
as a consequence, the rank of SK̄ is at most N − K. An advantage of using only partial information of
the eigenbasis as opposed to the whole V is that the set of feasible solutions in Eq. (13.14) is larger
than that in Eq. (13.6). This is particularly important when the templates do not come from a prescribed
GSO but, rather, one has the freedom to choose S provided it satisfies certain spectral properties (see
[41] for examples in the context of distributed estimation).

GSO recovery guarantees can be derived for problem (13.14) [30]. To formally state these, define
WK := VK � VK and ϒ := [IN2 , 0N2×N2 ]. Also, define matrices B(i,j) ∈ RN×N for i < j such that

B(i,j)
ij = 1, B(i,j)

ji = −1, and all other entries are zero. Based on this, we denote by B ∈ R(N
2)×N2

a matrix

whose rows are the vectorized forms of B(i,j) for all i, j ∈ {1, 2, . . . , N} where i < j. In this way, Bs = 0
when s is the vectorized form of a symmetric matrix. Further, we define the following matrices

P1 :=

⎡
⎢⎢⎢⎢⎣

I − WKW†
K

ID
B

0NK×N2

(e1 ⊗ 1N )T

⎤
⎥⎥⎥⎥⎦

T

, P2 :=

⎡
⎢⎢⎢⎢⎢⎣

WKW†
K − I

0N×N2

0(N
2)×N2

I ⊗ VT
K

01×N2

⎤
⎥⎥⎥⎥⎥⎦

T

, (13.15)



358 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

and P := [PT
1 , PT

2 ]T . With this notation and denoting by J the indices of the support of s∗
0 = vec(S∗

0),
the following result is proved in [30].

Proposition 13.2. Whenever S = SA and assuming problem (13.14) is feasible, S̄
∗
1 = S∗

0 if the two
following conditions are satisfied:

(1) rank([P1
T
J , PT

2 ]) = |J | + N2; and
(2) There exists a constant δ > 0 such that

η := ‖ϒJ c (δ−2PPT + ϒT
J cϒJ c )−1ϒT

J ‖M(∞) < 1. (13.16)

�
The proposition provides sufficient conditions for the relaxed problem in Eq. (13.14) to recover the

sparsest graph, even when not all the eigenvectors are known. In practice it is observed that for a smaller
number K of known spectral templates, the value of η in Eq. (13.16) tends to be larger, indicating a less
favorable setting for recovery.

Notice that scenarios that combine the settings in Sections 13.4.1 and 13.4.2, i.e., where the
knowledge of the K templates is imperfect, can be handled by combining the formulations in problems
(13.9) and (13.14). This can be achieved upon implementing the following modifications to problem
(13.14): considering the shift S′ as a new optimization variable, replacing the first constraint in problem
(13.14) with S′ = SK̄ + ∑K

k=1λkvkvT
k , and adding d(S, S′) ≤ ε as a new constraint [cf. (13.9)].

Laplacian graph shift operators. Counterparts to the optimizations in problems (13.9) and (13.14)
as well as for the recovery guarantees in Propositions 13.1 and 13.2 can be derived for the case of
(normalized) Laplacian operators. This requires changing the definition of S and accounting for the
fact that the Laplacian has a zero eigenvalue; see the numerical tests in the following section and [30]
for further details.

13.4.3 NUMERICAL TESTS
Here we test the proposed topology inference methods on different synthetic and real-world graphs.
A comprehensive performance evaluation is carried out through comparisons with state-of-the-art
methods and a test case that illustrates how our framework can promote sparsity on a given network.
Comparison with baseline statistical methods. First we analyze the performance of the topology
inference algorithm (13.9) (henceforth referred to as SpecTemp) in comparison with two workhorse
statistical methods, namely, (thresholded) correlation networks [10, Ch. 7.3.1] and graphical lasso [19].
The goal is to recover the adjacency matrix of an undirected and unweighted graph with no self-loops
from the observation of filtered graph signals X := {xr}R

r=1. For the implementation of SpecTemp, we

use the eigendecomposition of the sample covariance Ĉx in order to extract noisy spectral templates V̂.
We then solve problem (13.9) for S = SA, where ε is selected as the smallest value that admits a feasible
solution. For the correlation-based method, we keep the absolute value of the sample correlation of the
observed signals, force zeros on the diagonal, and set all values below a certain threshold to zero. This
threshold is determined during a training phase; see [30] for additional details. Lastly, for graphical
lasso we follow the implementation in [19] that finds S by solving

max
S0

log det S − tr
{

ĈxS
}

− ρ‖S‖1, (13.17)



13.4 ROBUST NETWORK TOPOLOGY INFERENCE 359

where the tuning parameter ρ is selected during the training phase. We then force zeros on the diagonal
and keep the absolute values of each entry.

We test the recovery of adjacency matrices S = A of Erdős-Rényi (ER) random graphs with N = 20
nodes and edge probability p = 0.2. We vary the number of observed signals from 101 to 106 in powers
of 10. Each signal is generated by passing white Gaussian noise through a graph filter H. Two different
types of filters are considered. As a first type we consider a general filter H1 = Vdiag(ĥ1)VT , where
the entries of ĥ1 are independent and chosen randomly between 0.5 and 1.5. The second type is a
specific filter of the form H2 = (δHI + S)−1/2, where the constant δH is chosen so that δHI + S is
positive definite to ensure that H2 is real and well defined. According to Eq. (13.4), this implies that
the precision matrix of the filtered signals is given by C−1

x = H−2
2 = δHI + S, which coincides with

S in the off-diagonal elements. For each combination of filter type and number of observed signals, we
generate 10 ER graphs that are used for training and 20 ER graphs that are used for testing. Based on
the 10 training graphs, the optimal threshold for the correlation method and parameter ρ for graphical
lasso [cf. Eq. (13.17)] are determined and then used for the recovery of the 20 testing graphs. Given
that for SpecTemp we are fixing ε beforehand, no training is required.

As a figure of merit we use the F-measure, i.e., the harmonic mean of edge precision and edge
recall, that solely takes into account the support of the recovered graph while ignoring the weights.
In Fig. 13.1 we plot the performance of the three methods as a function of the number of filtered
graph signals observed for filters H1 and H2, where each point is the mean F-measure over the 20
testing graphs. When considering a general graph filter H1, SpecTemp clearly outperforms the other
two. For instance, when 105 signals are observed, our average F-measure is 0.81 while the measures
for correlation and graphical lasso are 0.29 and 0.25, respectively. Moreover, of the three methods,
the proposed approach in Eq. (13.9) is the only consistent one, i.e., achieving perfect recovery with

101 102 103 104 105 106
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SpecTemp for H1

GLasso for H1

Correl. for H1

SpecTemp for H2

GLasso for H2

Correl. for H2

FIG. 13.1

Comparison with baseline statistical methods. Performance comparison between the proposed SpecTemp
approach (13.9), graphical lasso [19], and correlation-based recovery. For general filters, SpecTemp
outperforms the competing alternatives.



360 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

increasing number of observed signals. Although striking at first glance, the deficient performance of
the baseline statistical methods was expected. For general filters H1, neither the correlation nor the
precision matrices are sparse or share the support of the GSO to be recovered S. When analyzing the
specific case of graph filters H2, where the precision matrix exactly coincides with the desired graph-
shift operator, graphical lasso outperforms both SpecTemp and the correlation-based method. This
is not surprising because graphical lasso was designed for the recovery of sparse precision matrices
and is optimal (in the maximum-likelihood sense) for Gaussian signals. Notice, however, that for a
large number of observations, SpecTemp, without assuming any specific filter model, also achieves
perfect recovery and yields an F-measure equal to 1. Consequently, if a practitioner knows a priori that
the sought graph is (close to) the precision matrix and Gaussian signal assumptions are tenable, then
graphical lasso will be the preferred method. However, for the general case in which this information
is unavailable, SpecTemp is a more prudent alternative.

Comparison with GSP methods. Here we compare the network topology inference approach (13.6)
with the state-of-the art algorithms in [34,35], which are designed to identify the Laplacian of a graph
from observations of smooth graph signals. We select f (S) = ‖S‖1 and d(S1, S2) = ‖S1 − S2‖2

F
in Eq. (13.6), resulting in the SpecTemp formulation in Eq. (13.9). We study the recovery of the
combinatorial Laplacian S = Lc of the Barabási-Albert preferential attachment graphs [54], with
N = 20 generated from m0 = 4 initially placed nodes, where each new node is connected to m = 3
existing ones. Collecting the observations {xr}R

r=1 as the columns of matrix X, the approach in [34]
seeks to recover S = Lc by solving

min
S,Y

‖X − Y‖2
F + α tr

{
YT SY

}
+ β‖S‖2

F (13.18)

s.t. tr {S} = N, Sij = Sji ≤ 0, i �= j, S1 = 0,

where α and β are tuning parameters. Notice that problem (13.18) is not jointly convex in S and Y,
thus, we adopt an alternating minimization scheme to solve it as suggested in [34]. By contrast, [35]
recovers S as S = diag(A1) − A where A is obtained by solving

min
A

2tr
{

XT [diag(A1) − A]X
}

− α 1T log(A1) + β

2
‖A‖2

F (13.19)

s.t. Aij = Aji ≥ 0, diag(A) = 0,

where, again, α and β are tuning parameters. The convexity of problem (13.19) facilitates its
implementation; see [35] for details. We adopt two models for smooth graph signals: i) multivariate
normal signals with covariance given by the pseudoinverse of Lc, i.e., x1 ∼ N (0, L†

c); and ii) white
signals filtered through an autoregressive (diffusion) process, that is x2 = (I + Lc)−1w, where
w ∼ N (0, I). For both settings we generate 10 training graphs and 100 testing graphs, and for every
graph we generate R = 1000 graph signals. The training set is used to set the parameters α and β in
Eqs. (13.18) and (13.19), and it serves the purpose of selecting the best ε [cf. Eq. (13.9)]. To increase
the difficulty of the recovery task, every signal x is perturbed as x̂ = x + σ x ◦ z, for σ = 0.1 and
z ∼ N (0, I), where ◦ denotes the elementwise product. We assess the performance via the F-measure,
the �2 relative error of recovery of the edges, and the �2 relative error of recovery of the degrees. The
performance achieved by each method in the testing sets is summarized in Table 13.2. In all but one



13.4 ROBUST NETWORK TOPOLOGY INFERENCE 361

Table 13.2 Comparison With GSP Methods

Inverse Laplacian Diffusion

Barabási-Albert Proposed Kalofolias Dong et al. Proposed Kalofolias Dong et al.

F-measure 0.926 0.855 0.873 0.945 0.845 0.894

Edge error 0.143 0.173 0.209 0.135 0.154 0.235

Degree error 0.108 0.124 0.169 0.109 0.092 0.188

Performance comparison between the proposed SpecTemp approach (13.9), Kalofolias (13.19), and Dong et al. (13.18).
Bold values indicate the best performance according to the different metrics.

case, SpecTemp attains the highest F-measures and the lowest errors for both signal models. Similar
results were found for ER graphs; see [30].

Network deconvolution. The network deconvolution problem is the identification of an adjacency
matrix S = A that encodes direct dependencies when given an adjacency T that includes indirect
relationships. The problem is a generalization of channel deconvolution and can be solved by making
T = S (I − S)−1 [55]. This solution assumes a diffusion as in Eq. (13.1) but for the particular case of
a single-pole-single-zero graph filter. A more general approach is to assume that T can be written as a
polynomial of S but be agnostic to the form of the filter. This leads to problem formulation (13.9) with
V given by the eigenvectors of T. Note that here matrix T is not necessarily an empirical covariance
matrix.

In this context, our goal is to identify the structural properties of proteins from a mutual information
graph of the co-variation between the constitutional amino-acids [56]; see [55] for details. For example,
for a particular protein, we want to recover the structural graph in Fig. 13.2A (left) when given the
graph of mutual information in Fig. 13.2A (right). Notice that the structural contacts along the first
four subdiagonals of the graphs were intentionally removed to assess the capability of the methods in
detecting the contacts between distant amino acids. The graph recovered by network deconvolution [55]
is illustrated in Fig. 13.2B (left), whereas the one recovered using SpecTemp is depicted in Fig. 13.2B
(right). Comparing both recovered graphs, SpecTemp leads to a sparser graph that follows more closely
the desired structure to be recovered. To quantify this latter assertion, in Fig. 13.2C we plot the fraction
of the real contact edges recovered for each method as a function of the number of edges considered, as
done in [55]. For example, if for a given method the 100 edges with the largest weight in the recovered
graph contain 40% of the edges in the ground truth graph, we say that the 100 top edge predictions
achieve a fraction of recovered edges equal to 0.4. As claimed in [55], network deconvolution improves
the estimation when compared to raw mutual information data. Nevertheless, from Fig. 13.2C it follows
that SpecTemp outperforms network deconvolution. Notice that when ε = 0 [cf. Eq. (13.9)] we are
forcing the eigenvectors of S to coincide exactly with those of the matrix of mutual information S′.
However, because S′ is already a valid adjacency matrix, we end up recovering S = S′. By contrast,
for larger values of ε, the additional flexibility in the choice of eigenvectors allows us to recover shifts
S that more closely resemble the ground truth. For example, when considering the top 200 edges, the
mutual information and network deconvolution methods recover 36% and 43% of the desired edges,
respectively, while our method for ε = 1 achieves a recovery of 53%. In Fig. 13.2D we present this
same analysis for a different protein and similar results can be appreciated.



362 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

0 50 100 150 200 250

Top predictions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
ra

ct
io

n 
of

 r
ec

ov
er

ed
 e

dg
es

F
ra

ct
io

n 
of

 r
ec

ov
er

ed
 e

dg
es

SpecTemp (ε = 0.0)
SpecTemp (ε = 0.5)
SpecTemp (ε = 1.0)
Mutual information
Network deconvolution

0 50 100 150 200 250

Top predictions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
SpecTemp (ε = 0.0)
SpecTemp ( ε = 0.5)
SpecTemp (ε = 1.0)
Mutual information
Network deconvolution

(A) (B)

(C) (D)

FIG. 13.2

Identifying the structural properties of proteins. (A) Real and (B) inferred contact networks between amino-acid
residues for protein BPT1 BOVIN. Ground truth contact network (A, left), mutual information of the covariation
of amino-acid residues (A, right), contact network inferred by network deconvolution (B, left), contact network
inferred the proposed SpecTemp approach (13.9) (B, right). (C) Fraction of the real contact edges between
amino acids recovered for each method as a function of the number of edges considered. (D) Counterpart of
(C) for protein YES HUMAN.

13.5 NONSTATIONARY DIFFUSION PROCESSES
We now deal with more general nonstationary signals x that adhere to linear diffusion dynamics
(13.1) in G, but where the input covariance Cw = E

[
wwT

]
can be arbitrary. In other words, we

relax the assumption of w being white, which led to the stationary signal model dealt with so far
(cf. Remark 13.1). Such a broader model is, for instance, relevant to (geographically) correlated sensor
network data, or to models of opinion dynamics where (even before engaging in discussion) the network
agents can be partitioned into communities according to their standing on the subject matter.

For generic (nonidentity) input covariance matrix Cw, we face the challenge that the signal
covariance [cf. Eq. (13.4)]

Cx = HCwHT (13.20)

is no longer simultaneously diagonalizable with S. This rules out using the eigenvectors of the sample
covariance Ĉx as spectral templates of S. Still, as argued following Eq. (13.3) the eigenvectors of
the GSO coincide with those of the graph filter H that govern the underlying diffusion dynamics.
This motivates using snapshot observations X := {xr}R

r=1 together with additional information on



13.5 NONSTATIONARY DIFFUSION PROCESSES 363

the excitation input w (either realizations of the graph signal, sparsity assumptions, or its covariance
matrix Cw [26]) to identify the filter H, with the ultimate goal of estimating its eigenvectors V [57].
These spectral templates are then used as inputs to the GSO identification problem (13.6), exactly as in
the stationary setting of Sections 13.3 and 13.4. Accordingly, focus is henceforth placed on the graph
filter (i.e., system) identification task.

13.5.1 LINEAR GRAPH FILTER IDENTIFICATION
Consider m = 1, . . . , M diffusion processes on G, and assume that the observed nonstationary signal
xm corresponds to an input wm diffused by an unknown graph filter H = ∑L−1

l=0 hlSl, which encodes the
structure of the network via S. In this section, we show how additional knowledge about realizations of
the input signals wm can be used to identify H and, as a byproduct, its eigenvectors V.
Input-output signal realization pairs. Suppose first that realizations of M input-output pairs
{wm, xm}M

m=1 are available, which can be arranged in the data matrices W = [w1, . . . , wM] and
X = [x1, . . . , xM]. The goal is to identify a symmetric filter H ∈ MN such that the observed signals xm

and the predicted ones Hwm are close in some sense. In the absence of measurement noise this simply
amounts to solving a system of M linear matrix equations

xm = Hwm, m = 1, . . . , M. (13.21)

When noise is present, using the workhorse least-squares (LS) criterion the filter can be estimated as

Ĥ = argmin
H∈MN

M∑
m=1

‖xm − Hwm‖2
2. (13.22)

Because H is symmetric, the free optimization variables in Eq. (13.22) correspond to, say, the lower
triangular part of H, meaning the entries on and below the main diagonal. These NH := N(N + 1)/2
nonredundant entries can be conveniently arranged in the so-termed half-vectorization of H, i.e., a
vector vech(H) ∈ RNH from which one can recover vec(H) ∈ RN2

via duplication. Indeed, there exists
a unique duplication matrix DN ∈ {0, 1}N2×NH such that one can write DNvech(H) = vec(H). The
Moore-Penrose pseudoinverse of DN , denoted as D†

N , possesses the property vech(H) = D†
Nvec(H).

With this notation in place, several properties of the solution Ĥ of Eq. (13.22) are stated next.
Proposition 13.3. Regarding the graph filter problem (13.22), it holds that:

(a) The entries of the symmetric solution Ĥ are given by

vech(Ĥ) =
[(

WT ⊗ IN
)
DN

]†
vec(X). (13.23)

(b) rank
((

WT ⊗ IN
)
DN

) ≤ NH − (N − rank(W) + 1)(N − rank(W))/2.
(c) The minimizer of Eq. (13.22) is unique if and only if rank(W) = N.

�
Proposition 13.3 asserts that if the excitation input set {wm}M

m=1 is sufficiently rich, i.e., if M ≥ N and
the excitation signals are linearly independent, the entries of the diffusion filter H can be found as the
solution of an LS problem. Interestingly, the fact of H having only NH = N(N + 1)/2 different entries



364 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

cannot be exploited to reduce the number of input signals required to identify H. The reason being that
the matrix (WT ⊗ IN)DN is rank deficient if WT has a nontrivial nullspace. Symmetry, however, can be
exploited to enhance the estimation performance in overdetermined scenarios with noisy observations.

Once Ĥ is estimated using Eq. (13.23), the next step is to decompose the filter as

Ĥ = V̂�̂V̂
T

and use V̂ as input for the GSO identification problem (13.6). Note that obtaining
such an eigendecomposition is always possible because filter estimates Ĥ ∈ MN are constrained to be
symmetric.

13.5.2 QUADRATIC GRAPH FILTER IDENTIFICATION
In a number of applications, realizations of the excitation input wm may be challenging to acquire, but
information about the statistical description of wm could still be available. To be specific, assume that
the excitation inputs are zero mean and their covariance Cw,m = E

[
wmwT

m

]
is known. Further suppose

that for each input wm, we have access to a set of observations {x(r)
m }Rm

r=1, which are then used to estimate

the output covariance as Ĉx,m = 1
Rm

∑Rm
r=1 x(r)

m (x(r)
m )T . Because under Eq. (13.3) the true covariance is

Cx,m = E
[
xmxT

m

] = HCw,mHT [cf. Eq. (13.20)], the aim is to identify a filter H such that matrices Ĉx,m

and HCw,mHT are close.
Assuming for now perfect knowledge of the signal covariances, the above rationale suggests

studying the solutions of the following system of matrix quadratic equations

Cx,m = HCw,mHT , m = 1, . . . , M. (13.24)

To gain some initial insights, let us focus first on one of the matrix equations in Eq. (13.24) (or
alternatively, suppose that M = 1). Given the eigendecomposition of the symmetric and positive
semidefinite (PSD) covariance matrix Cx,m = Vx,m�x,mVT

x,m, the principal square root of Cx,m

is the unique symmetric and PSD matrix C1/2
x,m , which satisfies Cx,m = C1/2

x,mC1/2
x,m . It is given by

C1/2
x,m = Vx,m�

1/2
x,mVT

x,m, where �
1/2
x,m stands for a diagonal matrix with the nonnegative square roots

of the eigenvalues of Cx,m.

With this notation in place, let us introduce the matrices Cwxw,m := C1/2
w,mCx,mC1/2

w,m and

Hww,m := C1/2
w,mHC1/2

w,m. Clearly, Cwxw,m is both symmetric and PSD. Regarding the transformed
filter Hww,m, note that by construction we have that Hww,m is symmetric. Moreover, if H is assumed
to be PSD, then so will be Hww,m. These properties will be instrumental toward characterizing the
solutions of the matrix quadratic equation Cx,m = HCw,mHT in Eq. (13.24), which can be recovered
from the solutions Hww,m of

Cwxw,m = C1/2
w,mCx,mC1/2

w,m = C1/2
w,mHCw,mHC1/2

w,m = Hww,mHww,m. (13.25)

Positive semidefinite graph filters. Suppose that H is PSD (henceforth denoted by H ∈ M++
N ), so that

Hww,m in Eq. (13.25) is PSD as well. Such filters arise, for example, in heat diffusion processes of the
form x = (

∑∞
l=0 β lLl

c)w with β > 0, where the Laplacian GSO Lc is PSD and the filter coefficients
hl = β l are all positive. In this setting, the solution of Eq. (13.25) is unique and given by the principal
square root

Hww,m = C1/2
wxw,m. (13.26)



13.5 NONSTATIONARY DIFFUSION PROCESSES 365

Consequently, if Cw,m is nonsingular then the definition of Hww,m can be used to recover H via

H = C−1/2
w,m C1/2

wxw,mC−1/2
w,m . (13.27)

The previous arguments demonstrate that the assumption H ∈ M++
N gives rise to a strong identifiability

result. Indeed, if {Cx,m}M
m=1 are known perfectly, the graph filter is identifiable even for M = 1.

However, in pragmatic settings where only empirical covariances are available, the observation of
multiple (M > 1) diffusion processes can improve the performance of the system identification task.
Given empirical covariances {Ĉx,m}M

m=1 respectively estimated with enough samples Rm to ensure that

they are full rank, we define Ĉwxw,m := C1/2
w,mĈx,mC1/2

w,m for each m. The quadratic equation (13.27)
motivates solving the LS problem

Ĥ = argmin
H∈M++

N

M∑
m=1

‖Ĉ
1/2
wxw,m − C1/2

w,mHC1/2
w,m‖2

F . (13.28)

Whenever the number of samples Rm—and accordingly the accuracy of the empirical covariances
Ĉx,m—differs significantly across diffusion processes m = 1, . . . , M, it may be prudent to introduce
nonuniform coefficients to downweigh those residuals in Eq. (13.28) with inaccurate covariance esti-
mates.

Symmetric graph filters. Consider now a more general setting whereby H is only assumed to be
symmetric, and once more let us start by considering only one of the M equations in Eq. (13.24) to
gain insights. With the unitary matrix Vwxw,m denoting the eigenvectors of Cwxw,m = C1/2

w,mCx,mC1/2
w,m

and with bm ∈ {−1, 1}N being a binary (signed) vector, one can conclude that the set of solutions to
Cwxw,m = Hww,mHww,m [cf. Eq. (13.25)] is given by

Hww,m = C1/2
wxw,mVwxw,mdiag(bm)VT

wxw,m. (13.29)

That is, while for the case where H was PSD we had that the solution was unique and given by C1/2
wxw,m,

when H is symmetric, any matrix obtained by changing the sign of one (or more) of the eigenvalues of
C1/2

wxw,m is also a feasible solution. Leveraging this and provided that the input covariance matrix Cw,m
is nonsingular, it follows that all symmetric solutions to Cx,m = HCw,mHT are described by the set

Hsym
m =

{
H ∈ MN |H = C−1/2

w,m C1/2
wxw,mVwxw,mdiag(bm)VT

wxw,mC−1/2
w,m and bm ∈ {−1, 1}N

}
. (13.30)

Which, as pointed out earlier, confirms that in the absence of the PSD assumption, the problem for
M = 1 is nonidentifiable. Inspection of Hsym

m shows that there are 2N possible solutions to the quadratic
equation (13.20), which are parameterized by the binary vector bm. For the PSD setting the solution is
unique and corresponds to bm = 1.

For M > 1, the set of feasible solutions to the system of Eq. (13.24) is naturally given by

Hsym
1:M =

M⋂
m=1

Hsym
m .



366 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

Upon defining the tall matrices Am := (C−1/2
x,m Vwxw,m) � (C−1/2

x,m C1/2
wxw,mVwxw,m) ∈ RN2×N and using

those to rewrite Hsym
m in Eq. (13.30), the feasible set Hsym

1:M can be compactly written as

Hsym
1:M =

M⋂
m=1

{
H ∈ MN |vec(H) = Ambm and bm ∈ {−1, 1}N

}
. (13.31)

Because Hsym
1:M is the intersection of M finite size sets, it is conceivable that for larger values of M,

the cardinality of Hsym
1:M will be reduced to render the problem identifiable (up to an unavoidable sign

ambiguity because if H ∈ MN is a solution of Eq. (13.24), so is −H).
Imperfect observations: In pragmatic settings where only empirical covariances {Ĉx,m}M

m=1 are
available, {Am}M

m=1 cannot be perfectly estimated. Hence, the equalities vec(H) = Ambm must be

relaxed and Âm := (C−1/2
x,m V̂wxw,m) � (C−1/2

x,m Ĉ
1/2
wxw,mV̂wxw,m) must be used in lieu of Am. Provided that

covariances are estimated with enough samples to ensure full rankness, our approach is to solve the LS
problem

min
{bm}M

m=1

∑
m,m′

‖Âmbm − Âm′bm′ ‖2
2 s.t. bm ∈ {−1, 1}N for all m. (13.32)

Note that both terms within the �2 norm in Eq. (13.32) should equal vec(H) in a noiseless setting. Thus,
we are minimizing this discrepancy across the M processes considered. If the accuracy of the empirical
covariances Ĉx,m differs significantly across diffusion processes m = 1, . . . , M, it may be prudent
to introduce nonuniform coefficients to weigh the residuals, taking into account those accuracies.
While the objective in Eq. (13.32) is convex in the unknowns {bm}M

m=1, the binary constraints render
the optimization nonconvex. An efficient algorithm to find a solution to Eq. (13.32) with theoretical
guarantees is discussed next.
Algorithmic approach: Here we explain how the graph filter identification task can be tackled using
a semidefinite relaxation (SDR) [58]. This convexification technique has been successfully applied to
a wide variety of nonconvex quadratically constrained quadratic programs (QCQP) in applications
such as MIMO detection [59] and transmit beamforming [60]. To that end, we first cast the filter
identification (perfect-observations based) problem as a Boolean quadratic program (BQP).

Proposition 13.4. Consider the unknown binary vectors bm ∈ {−1, 1}N and the known observation
matrices Am ∈ RN2×N, and use those to define

b := [bT
1 , . . . , bT

M]T ∈ {−1, 1}NM , (13.33)

� :=

⎡
⎢⎢⎢⎣

A1 −A2 0 · · · 0 0
0 A2 −A3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · AM−1 −AM

⎤
⎥⎥⎥⎦ ∈ RN2(M−1)×NM . (13.34)

If rank(�) = NM − 1 then the symmetric diffusion filter H∗ can be exactly recovered (up to a sign) as
vec(H∗) = A1b∗

1, where b∗
1 is the first N × 1 subvector of the solution to the following BQP problem



13.5 NONSTATIONARY DIFFUSION PROCESSES 367

b∗ = argmin
b∈{−1,1}NM

bT�T�b. (13.35)

�
Problem (13.35) offers a natural formulation for the pragmatic setting whereby {Cx,m}M

m=1 are

replaced by sample estimates {Ĉx,m}M
m=1, and one would aim at minimizing Eq. (13.32). Given a

solution of Eq. (13.35) with �̂ replacing �, the entries of H ∈ HN can be estimated as

vec(Ĥ) = 1

M

M∑
m=1

Âmb∗
m. (13.36)

Even though the BQP is a classical NP-hard combinatorial optimization problem [58], via SDR
one can obtain near-optimal solutions with provable approximation guarantees. To derive the SDR of
Eq. (13.35), first introduce the NM × NM symmetric PSD matrices W := �T� and B := bbT . By
construction, the binary matrix B has rank one and its diagonal entries are Bii = b2

i = 1. Conversely,
any matrix B ∈ RNM×NM that satisfies B  0, Bii = 1, and rank(B) = 1 necessarily has the form
B = bbT , for some b ∈ {−1, 1}NM . Using these definitions, one can write bTWb = trace(bTWb) =
trace(WbbT ) = trace(WB) and accordingly problem (13.35) is equivalent to

min
B

trace(WB) (13.37)

s.t. B  0, rank(B) = 1, Bii = 1, i = 1, . . . , NM.

The only source of nonconvexity in problem (13.37) is the rank constraint, and dropping it yields the
convex SDR. The resultant problem is a semidefinite program (SDP), which can be solved using an off-
the-shelf interior-point method [61]. It is immediate that if the solution of the relaxed problem (denoted
as B∗) is a rank-one matrix, then B∗ = b∗(b∗)T solves the original BQP as well. However, in general
it holds that rank(B∗) �= 1 and an algorithm to generate a feasible solution of problem (13.35) from B∗
must be put forth. An effective scheme that comes with theoretical guarantees is to adopt the so-termed
Gaussian randomization procedure, which is the one that achieved the best performance in [62]. For
general details on this method we refer the readers to [58,63].
Nonsymmetric graph filters. We finally describe the more challenging case of inferring directed graphs
(see [67] for further details). As in the previous sections, we start by assuming that perfect knowledge
of the signal covariances is available and focus on one of the M matrix equations in (13.24). After
doing this, the interest is on characterizing the set of real and possibly asymmetric H solving Cx,m =
HCw,mHT . This problem is strongly related to that of finding the square roots of Cx,m. Indeed, with

C1/2
x,m denoting the principal square root of Cx,m and with U denoting an N × N orthogonal matrix (such

that UmUT
m = I), it is not difficult to show that any square matrix Hw,m such that Hw,mHT

w,m = Cx,m is

of the form Hw,m = C1/2
x,mUm. This can be leveraged to show the following result.

Lemma 13.1. Let Um be an orthogonal matrix. Then, if Cw,m and Cx,m are full rank, the set Hnsym
m

containing all the (possibly asymmetric) matrices H that solve Eq. (13.24) for a particular m is given by

Hnsym
m =

{
H|H = C1/2

x,mUmC−1/2
w,m and UmUT

m = I
}

. (13.38)

A simple substitution suffices to show that every H of the form in Eq. (13.38) solves Eq. (13.24).
Conversely, given an H that solves Eq. (13.24), form the matrix Um = C−1/2

x,m HC1/2
w,m. Observe



368 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

that if Um is orthogonal then H ∈ Hnsym
m . Orthogonality of Um follows because UmUT

m =
C−1/2

x,m HCw,mHTC−1/2
x,m = I, where the last equality comes from the fact that H solves Eq. (13.24).

It is instructive to compare Hnsym
m with its counterpart for the symmetric case Hsym

m . Note that for
the symmetric case, the solution set was spanned by unitary matrices of the form diag(bm) with bm ∈
{−1, 1}N . Because there are only 2N of such matrices, the cardinality of Hsym

m was at most 2N . By
contrast, the solution set (13.38) is spanned by matrices of the form Um ∈ UN , where UN denotes the
Stiefel manifold containing all N ×N real orthogonal matrices. Because UN contains an infinite number
of elements, so does Hnsym

m . In fact, it is known that UN has dimension N(N − 1)/2 [64]. Hence, if the
matrices Cx,m and Cw,m are both nonsingular, it follows that Hnsym

m in Eq. (13.38) is also a manifold
with dimension N(N − 1)/2, the same than that of UN .

For the general case of M > 1, the set of feasible solutions is just given by the intersection of
Eq. (13.38) for all diffusing processes, i.e.,

Hnsym
1:M =

M⋂
m=1

Hnsym
m =

M⋂
m=1

{
H|H = C1/2

x,mUmC−1/2
w,m and UmUT

m = I
}

.

To gain insights on the size of Hnsym
1:M note that for each additional m one has N2 new constraints

(corresponding to the N2 observations provided by Cx,m and Cw,m) and only N(N − 1)/2 new degrees
of freedom (those corresponding to Um). Hence, it is conceivable that as M increases, the problem
becomes identifiable (up to the unresolvable sign ambiguity).
Imperfect observations: As before, when only empirical covariances are available, the equalities in
Eq. (13.38) must be relaxed and {Cx,m}M

m=1 must be replaced with {Ĉx,m}M
m=1. Provided that the latter

can be estimated with enough samples to ensure full rankness, our approach is to solve the following
least-squares (LS) problem with manifold constraints

min
{Um}M

m=1

∑
m,m′

‖Ĉ
1/2
x,mUmC−1/2

w,m − Ĉ
1/2
x,m′Um′C−1/2

w,m′ ‖2
F (13.39)

s.t. Um ∈ UN for all m.

As pointed out after presenting problem (13.32), the counterpart of the above optimization for the sym-
metric case, we note that: (i) in a noiseless setting both terms within the Frobenius norm in Eq. (13.39)
should equal H, hence, the goal is to minimize the discrepancy across the M observed processes; and
(ii) weighted versions of the objective are pertinent if either the accuracy of the empirical covariances
Ĉx,m or the conditioning number of the input covariances Cw,m vary significantly across m = 1, . . . , M.
Regarding the algorithms to solve problem (13.39), even though the objective function is convex in
{Um}M

m=1, the set UN is not. As a result, optimization methods tailored to the Stiefel manifold must be
used [65,66], which is the subject of the next section.

Before doing so, we note that, as discussed after the definition of Hnsym
1:M , it is expected that as the

number M of observed processes increases, recoverability of problem (13.39) improves, provided that
the excitation input matrices C1/2

w,m bear sufficiently new information. By increasing M in one unit, we
are introducing a new matrix variable Um that lives in a lower-dimensional manifold of size N(N−1)/2.
But, on the other hand, we are incorporating M new matrix cost terms, each of them with N2 scalar
terms. Hence, the overall effect should boost recovery, as confirmed in [67].



13.5 NONSTATIONARY DIFFUSION PROCESSES 369

Algorithmic approach: While a number of gradient methods are available for manifold constrained
optimization [65,66,68], these can only guarantee convergence to a stationary point, which depends on
the particular initialization. To partially address this issue, we propose a two-step algorithm whereby:
(i) we first find a judicious filter initialization H(0) by solving a biconvex recovery problem; and
(ii) we refine such an initialization by solving a modified version of problem (13.39) using a gradient
method projected onto the Stiefel manifold UN .

To be more specific, let us describe first how the initialization in step (i) is obtained. To that end, we
introduce the auxiliary variables HL and HR and reformulate the recovery filter problem as a biconvex
optimization with linear constraints HL = HR = H, namely

{H(0)
L , H(0)

R } = arg min
HL,HR

M∑
m=1

‖Ĉx,m − HLCw,mHR||2F s.t. HL = HR. (13.40)

Problem (13.40) can be tackled using an alternating LS scheme, or a more sophisticated scheme based
on the Alternating Direction Method of Multipliers (ADMM) [69], which has been applied to a wide
variety of linearly constrained convex and nonconvex problems.

Once the solution to this first problem (denoted as H(0)) has been obtained, in the second step we
consider the following slightly modified version of Eq. (13.39)

min
H,{Um}M

m=1

∑
m

‖H − Ĉ
1/2
x,mUmC−1/2

w,m ‖2
F (13.41)

s.t. Um ∈ UN for all m,

which is again a quadratic convex objective with nonconvex manifold constraints. Problem (13.41) is
then solved using a gradient method that, at each iteration, projects the iterates of each Um onto the
Stiefel manifold UN . For the first gradient iteration, the filter H is initialized as H = H(0), the output
of the first step. Because multiple local optima exist, we run the first step with I1 random initializations
and, for each of those, we solve problem (13.41). We then collect all of the obtained outputs and select
as the final solution the one leading to the sparsest shift. We refer to [67] for additional details.

13.5.3 NUMERICAL TESTS
Here we illustrate the recovery of two real-world graphs in order to assess the performance of some of
the proposed network topology inference algorithms from nonstationary diffusion processes.
Brain graph. Consider a brain graph G with N = 66 nodes or neural regions and edge weights given
by the density of anatomical connections between regions [70]. Denoting by S = A the weighted adja-
cency of the brain graph, we consider two types of filters H1 = ∑2

l=0 hlAl and H2 = (I+αA)−1, where
the coefficients hl and α are drawn uniformly on [0, 1]. We then generate M random input-output pairs
{xm, wm}M

m=1 (cf. Section 13.5.1.0.0.1), where signals are filtered by either H1 or H2, and estimate the

filter using Eq. (13.23). Problem (13.9) with V̂ given by the eigenvectors of the estimated filter is then
solved in order to infer the brain graph. In Fig. 13.3A (top) we plot the recovery error ‖S∗

1−S‖F/‖S‖F as
a function of M for both types of filters. First, notice that the performance is roughly independent of the
filter type. More importantly, for M ≥ N, the optimal filter estimation is unique (cf. Proposition 13.3)
and leads to perfect recovery. We also consider the case where the observation of the output signals xm is



370 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

2010 30 40 50 60 70

Number of observations

R
ec

ov
er

y 
er

ro
r

Number of observations

10−2

10−1

100

R
ec

ov
er

y 
er

ro
r

0.5

0

1

2000 400 600 800 1000

Noisy FIR
Noisy IIR

Noiseless FIR
Noiseless IIR

(A)

(B)
101 102 103 104 105

Number of observations

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
ec

ov
er

y 
er

ro
r

M = 1
M = 5
M = 10

FIG. 13.3

Inference of graph topology from nonstationary signals. (A) Brain network recovery error for FIR and IIR filters
versus number of observed signals in noiseless (top) and noisy (bottom) settings. (B) Error in recovering a social
network as a function of the number of opinion profiles observed and parametrized by the number of topics M.

noisy; see Fig. 13.3A (bottom). For this latter case, even though the estimation improves with increasing
M, a larger number of observations is needed to guarantee successful recovery of the brain graph.
Social network. We consider the social network of a karate club studied by Zachary [71], represented
by a graph G consisting of N = 34 nodes or members of the club and undirected edges symbolizing
friendships among them. Denoting by L the normalized Laplacian of G, we define the GSO S = I−αL
with α = 1/λmax(L), modeling the diffusion of opinions between the members of the club. A signal x
can be regarded as a unidimensional opinion of each club member regarding a specific topic, and each
application of S can be seen as an opinion update. Our goal is to recover L—hence, the social structure
of the Karate club–from the observations of opinion profiles. We consider M different processes in the
graph corresponding, e.g., to opinions on M different topics and assume that an opinion profile xm is
generated by the diffusion through the network of an initial signal wm. More precisely, for each topic



REFERENCES 371

m = 1, . . . , M, we model wm as a zero-mean process with known covariance Cw,m. We are then given

a set {x(r)
m }R

r=1 of opinion profiles generated from different sources {w(r)
m }R

r=1 diffused through a filter of

unknown nonnegative coefficients β. From these R opinion profiles we build an estimate Ĉx,m of the
output covariance and, leveraging the fact that S is PSD and β ≥ 0 (cf. Section 13.5.2), we estimate the
unknown filter Ĥ by solving Eq. (13.28). Lastly, we use the eigenvectors V̂ of Ĥ to solve Eq. (13.9),
where S is modified accordingly for the recovery of a normalized Laplacian; see [30]. In Fig. 13.3B
we plot the shift recovery error as a function of the number of observations R and for three different
values of M. As R increases, the estimate Ĉx,m becomes more reliable, entailing a better estimation
of the underlying filter and, ultimately, leading to more accurate eigenvectors V̂. Hence, we observe a
decreasing error with increasing R. Moreover, for a fixed R, the error in the estimation of Ĉx,m can be
partially overcome by observing multiple processes, thus, larger values of M lead to smaller errors.

13.6 DISCUSSION
With S = V�VT being the eigendecompositon of the shift operator associated with an undirected
graph G, we studied the problem of identifying S (hence the topology of G) using a two-step approach
where: (i) we first estimate the eigenvectors V; and (ii) we then use V as input to find the eigenvalues �

robustly via a convex optimization problem. Under the assumption that observed signals X = {xr}R
r=1

resulted from diffusion dynamics on the graph or, equivalently, that they were (graph) stationary in S,
it was shown that V could be estimated from the eigenvectors of the sample covariance of X . As a
consequence, several well-established methods for topology identification based on Pearson and partial
correlations can be viewed as particular instances of the approach here presented. Contrasting with
the stationary setting where S and the covariance matrix of the observed signals are simultaneously
diagonalizable, for general (nonstationary) diffusion processes they are not. There is a workaround
that entails estimating the unknown diffusion (graph) filter, a polynomial in the shift operator that
preserves the sought eigenbasis V. To carry out this initial system identification step, extra information
is required on the input signal driving the diffusion process on the graph. Numerical tests showcase the
effectiveness of the developed topology inference framework in recovering synthetic and real-world
graphs.

ACKNOWLEDGMENTS
The authors want to thank A. Ribeiro, R. Shafipour, Y. Wang, and C. Uhler for their collaboration in the papers
that serve as foundation of this chapter, as well as the financial support of the Spanish MINECO grants OMICRON
(TEC2013-41604-R) and KLINILYCS (TEC2016-75361-R).

REFERENCES
[1] Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing

on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal
Process Mag 2013;30(3):83–98.

[2] Sandryhaila A, Moura JMF. Discrete signal processing on graphs. IEEE Trans Signal Process
2013;61(7):1644–56.

http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0015


372 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

[3] Sandryhaila A, Moura JMF. Big Data analysis with signal processing on graphs. IEEE Signal Process Mag
2014;31(5):80–90.

[4] Deri JA, Moura JMF. New York city taxi analysis with graph signal processing. In: Proceedings of the IEEE
global conference on signal and information processing; 2016. p. 1275–9.

[5] Marques AG, Segarra S, Leus G, Ribeiro A. Sampling of graph signals with successive local aggregations.
IEEE Trans Signal Process 2016;64(7):1832–43.

[6] Romero D, Ma M, Giannakis GB. Kernel-based reconstruction of graph signals. IEEE Trans Signal Process
2017;65(3):764–78.

[7] Barrat A, Barthelemy M, Vespignani A. Dynamical processes on complex networks. New York, NY:
Cambridge University Press; 2008.

[8] Mittler R, Vanderauwera S, Gollery M, Breusegem FV. Reactive oxygen gene network of plants. Trends Plant
Sci 2004;9(10):490–8.

[9] Segarra S, Huang W, Ribeiro A. Diffusion and superposition distances for signals supported on networks.
IEEE Trans Signal Inf Process Netw 2015;1(1):20–32.

[10] Kolaczyk ED. Statistical analysis of network data: methods and models. New York, NY: Springer; 2009.
[11] Sporns O. Networks of the brain. MIT Press; 2011.
[12] Huang W, Goldsberry L, Wymbs NF, Grafton ST, Bassett DS, Ribeiro A. Graph frequency analysis of brain

signals. IEEE J Sel Topics Signal Process 2016;10(7):1189–203.
[13] Ménoret M, Farrugia N, Pasdeloup B, Gripon V. Evaluating graph signal processing for neuroimaging through

classification and dimensionality reduction. In: Proceedings of the IEEE global conference on signal and
information processing; 2017.

[14] Baingana B, Mateos G, Giannakis GB. Proximal-gradient algorithms for tracking cascades over social
networks. IEEE J Sel Topics Signal Process 2014;8:563–75.

[15] Gomez-Rodriguez M, Song L. Diffusion in social and information networks: research problems, probabilistic
models and machine learning methods. In: Proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, Sydney, NSW, Australia, August 10–13; 2015. p. 2315–6.

[16] Chen S, Varma R, Sandryhaila A, Kovačević J. Discrete signal processing on graphs: sampling theory. IEEE
Trans Signal Process 2015;63(24):6510–23.

[17] Sporns O. Discovering the human connectome. Boston, MA: MIT Press; 2012.
[18] Dempster AP. Covariance selection. Biometrics 1972;28(1):157–75.
[19] Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics

2008;9(3):432–41.
[20] Banerjee O, Ghaoui LE, d’Aspremont A. Model selection through sparse maximum likelihood estimation for

multivariate gaussian or binary data. J Mach Learn Res 2008;9:485–516.
[21] Lake BM, Tenenbaum JB. Discovering structure by learning sparse graph. In: Annual cognitive science

conference; 2010. p. 778–83.
[22] Slawski M, Hein M. Estimation of positive definite M-matrices and structure learning for attractive gaussian

markov random fields. Linear Algebra Appl 2015;473:145–79.
[23] Egilmez HE, Pavez E, Ortega A. Graph learning from data under Laplacian and structural constraints. IEEE

J Sel Topics Signal Process 2017;11(6):825–41.
[24] Meinshausen N, Buhlmann P. High-dimensional graphs and variable selection with the lasso. Ann Stat

2006;34:1436–62.
[25] Cai X, Bazerque JA, Giannakis GB. Inference of gene regulatory networks with sparse struc-

tural equation models exploiting genetic perturbations. PLoS Comput Biol 2013;9(5):e1003068.
https://doi.org/10.1371/journal.pcbi.1003068.

[26] Shen Y, Baingana B, Giannakis GB. Tensor decompositions for identifying directed graph topologies and
tracking dynamic networks. IEEE Trans Signal Process 2017;65(14):3675–87.

http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0135


REFERENCES 373

[27] Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL. Beta oscillations in a large-scale
sensorimotor cortical network: directional influences revealed by Granger causality. PNAS 2004;101:
9849–54.

[28] Karanikolas GV, Giannakis GB, Slavakis K, Leahy RM. Multi-kernel based nonlinear models for connectivity
identification of brain networks. In: Proceedings of the IEEE international conference on acoustics, speech,
signal process, Shanghai, China, March 20–25; 2016.

[29] Shen Y, Baingana B, Giannakis GB. Kernel-based structural equation models for topology identification of
directed networks. IEEE Trans Signal Process 2017;65(10):2503–16.

[30] Segarra S, Marques AG, Mateos G, Ribeiro A. Network topology inference from spectral templates. IEEE
Trans Signal Inf Process Netw 2017;3(3):467–83.

[31] Pasdeloup B, Gripon V, Mercier G, Pastor D, Rabbat MG. Characterization and inference of graph
diffusion processes from observations of stationary signals. IEEE Trans Signal Inf Process Netw 2017.
https://doi.org/10.1109/TSIPN.2017.2742940.

[32] Thanou D, Dong X, Kressner D, Frossard P. Learning heat diffusion graphs. IEEE Trans Signal Inf Process
Netw 2017;3(3):484–99.

[33] Mei J, Moura JMF. Signal processing on graphs: causal modeling of unstructured data. IEEE Trans Signal
Process 2017;65(8):2077–92.

[34] Dong X, Thanou D, Frossard P, Vandergheynst P. Learning Laplacian matrix in smooth graph signal
representations. IEEE Trans Signal Process 2016;64(23):6160–73.

[35] Kalofolias V. How to learn a graph from smooth signals. In: International conference on artificial intelligence
and statistics (AISTATS). J Mach Learn Res; 2016. p. 920–9.

[36] Marques AG, Segarra S, Leus G, Ribeiro A. Stationary graph processes and spectral estimation. IEEE Trans
Signal Process 2017;65(22):5911–26.

[37] Perraudin N, Vandergheynst P. Stationary signal processing on graphs. IEEE Trans Signal Process
2017;65(13):3462–77.

[38] Girault B. Stationary graph signals using an isometric graph translation. In: Proceedings of European signal
processing conference; 2015. p. 1516–20.

[39] Chepuri SP, Liu S, Leus G, Hero AO. Learning sparse graphs under smoothness prior. In: Proceedings of
the IEEE international conference on acoustics, speech, signal process, New Orleans, LA, March 5–9; 2017.
p. 6508–12.

[40] Rabbat MG. Inferring sparse graphs from smooth signals with theoretical guarantees. In: Proceedings of the
IEEE international conference on acoustics, speech, signal process, New Orleans, LA, March 5–9; 2017.
p. 6533–7.

[41] Segarra S, Marques AG, Ribeiro A. Optimal graph-filter design and applications to distributed linear network
operators. IEEE Trans Signal Process 2017;65(15):4117–31.

[42] Smola AJ, Kondor R. Kernels and regularization on graphs. In: Learning theory and kernel machines.
Springer; 2003. p. 144–58.

[43] Guo J, Levina E, Michailidis G, Zhu J, et al. Joint estimation of multiple graphical models. Biometrika
2011;98(1):1–15.

[44] Danaher P, Wang P, Witten DM. The joint graphical lasso for inverse covariance estimation across multiple
classes. J R Stat Soc Ser B Stat Methodol 2014;76(2):373–97.

[45] Ryali S, Chen T, Supekar K, Menon V. Estimation of functional connectivity in fMRI data using stability
selection-based sparse partial correlation with elastic net penalty. NeuroImage 2012;59(4):3852–61.

[46] Honorio J, Samaras D. Multi-task learning of gaussian graphical models. In: Proceedings of the 27th
international conference on machine learning (ICML-10); 2010. p. 447–54.

http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0235


374 CHAPTER 13 INFERENCE OF GRAPH TOPOLOGY

[47] Varoquaux G, Gramfort A, Poline JB, Thirion B. Brain covariance selection: better individual functional
connectivity models using population prior. In: Advances in neural information processing systems; 2010.
p. 2334–42.

[48] Zhou S, Lafferty J, Wasserman L. Time varying undirected graphs. Mach Learn 2010;80(2–3):295–319.
[49] Kalofolias V, Loukas A, Thanou D, Frossard P. Learning time varying graphs. In: 2017 IEEE international

conference on acoustics, speech and signal processing (ICASSP); 2017. p. 2826–30.
[50] Baingana B, Giannakis GB. Tracking switched dynamic network topologies from information cascades. IEEE

Trans Signal Process 2017;65(4):985–97. https://doi.org/10.1109/TSP.2016.2628354.
[51] Oselio B, Kulesza A, Hero AO. Multi-layer graph analysis for dynamic social networks. IEEE J Sel Top

Signal Process 2014;8(4):514–23. https://doi.org/10.1109/JSTSP.2014.2328312.
[52] Segarra S, Wang Y, Uhler C, Marques AG. Joint inference of networks from stationary graph signals.

In: Proceedings of Asilomar conference on signals, systems, computers, Pacific Grove, CA; 2017.
[53] Ortega JM. Numerical analysis: a second course. Classics in applied mathematics. Society for Industrial and

Applied Mathematics; 1990.
[54] Bollobás B. Random graphs. Cambridge University Press; 2001.
[55] Feizi S, Marbach D, Medard M, Kellis M. Network deconvolution as a general method to distinguish direct

dependencies in networks. Nat Biotech 2013;31(8):726–33.
[56] Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, et al. Protein 3d structure computed

from evolutionary sequence variation. PLoS ONE 2011;6(12):e28766.
[57] Shafipour R, Segarra S, Marques AG, Mateos G. Network topology inference from non-stationary graph

signals. In: Proceedings of the IEEE international conference on acoustics, speech, signal process; 2017. p.
5870–4.

[58] Luo ZQ, Ma WK, So AMC, Ye Y, Zhang S. Semidefinite relaxation of quadratic optimization problems. IEEE
Signal Process Mag 2010;27(3):20–34.

[59] Tan PH, Rasmussen LK. The application of semidefinite programming for detection in CDMA. IEEE J Sel
Areas Commun 2001;19(8):1442–9.

[60] Gershman AB, Sidiropoulos ND, Shahbazpanahi S, Bengtsson M, Ottersten B. Convex optimization-based
beamforming. IEEE Signal Process Mag 2010;27(3):62–75.

[61] Ye Y. Interior point algorithms-theory and analysis; 1998.
[62] Shafipour R, Segarra S, Marques AG, Mateos G. Identifying the topology of undirected networks from

diffused non-stationary graph signals. IEEE Trans Signal Process 2018. https://arxiv.org/abs/1801.03862.
[63] Nesterov Y. Semidefinite relaxation and nonconvex quadratic optimization. Optim Methods Softw

1998;9(1–3):141–60.
[64] Boothby WM. An introduction to differentiable manifolds and Riemannian geometry. Academic Press; 2002.
[65] Absil PA, Mahony R, Sepulchre R. Optimization algorithms on matrix manifolds. Princeton University Press;

2009.
[66] Boumal N, Mishra B, Absil PA, Sepulchre R, et al. Manopt, a matlab toolbox for optimization on manifolds.

J Mach Learn Res 2014;15(1):1455–9.
[67] Shafipour R, Segarra S, Marques AG, Mateos G. Topology inference of directed networks from diffused graph

signals. In: IEEE Data Science Workshop; 2018.
[68] Manton JH. Optimization algorithms exploiting unitary constraints. IEEE Trans Signal Process

2002;50(3):635–50.
[69] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Found Trends Mach Learn 2011;3(1):1–122.
[70] Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural core of

human cerebral cortex. PLoS Biol 2008;6(7):e159.
[71] Zachary WW. An information flow model for conflict and fission in small groups. J Anthropol Res

1977;33(4):452–73.

http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0315
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0325
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0330
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0335
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0340
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0345
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0350
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0355
http://refhub.elsevier.com/B978-0-12-813677-5.00013-4/rf0360


CHAPTER

14PARTIALLY ABSORBING
RANDOM WALKS: A UNIFIED
FRAMEWORK FOR LEARNING
ON GRAPHS

Xiao-Ming Wu∗, Zhenguo Li†, Shih-Fu Chang‡

Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative

Region∗ Huawei Noah’s Ark Lab, Shatin, Hong Kong Special Administrative Region† Department of Electrical

Engineering and Department of Computer Science, Columbia University, New York, NY, United States‡

14.1 INTRODUCTION
As large amounts of graph-structured data become available in various domains such as social networks,
the Internet, and knowledge bases, the importance of learning on graphs is growing. Analyzing graph
structures and estimating relations between vertices benefit numerous applications, including web
search [1], recommender systems [2,3], question answering systems [4], community detection [5], text
analysis [6,7], spam filtering [8,9], image segmentation [10], and biological data mining [11].

In the past two decades, many popular tools have been developed for solving learning tasks on
graphs, including ranking [12], semisupervised classification [13,14], and local clustering [15,16].
These mainly include models based on random walks such as personalized PageRank for web-page
ranking [1] and hitting and commute times [17,18] for proximity analysis; models based on Laplacian
regularization such as the regularized Laplacian kernel matrices for collaborative filtering [3] and the
Gaussian harmonic function method for semisupervised learning [13]; kernel learning for pairwise
constraint propagation [19,20]; and many other graph-theoretic proximity measures [21,22].

Despite the widespread popularity of some models that are used in various applications, recent
studies have shown of their limitations in modeling the graph topology, including the commute and
hitting times [2,18], the personalized PageRank [23], and the Gaussian harmonic function method [24].
To prevent the improper use of these models in practice and to reach their full potential, a unified
framework is needed for understanding their behavior and connections, and further facilitating model
selection and design.

In this chapter, we present a unified framework called partially absorbing random walks (ParWalks)
[23]. A ParWalk is a second-order Markov chain that allows partial absorption at each state. We
show that by setting the absorbing capacity of each state properly, various popular models, including
personalized PageRank, hitting times, the pseudoinverse of the graph Laplacian matrix, and the

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00014-6
Copyright © 2018 Elsevier Inc. All rights reserved.

375



376 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

Gaussian harmonic function method, could be reproduced by ParWalks. The unified framework enables
model comparison and selection and opens the door for model design. In particular, we show that if
the absorbing capacity of each state is small, the probabilities of ParWalks absorbed at a query vertex
can well encode graph cluster structures [23,25]. This result not only justifies existing models such
as hitting times to a fixed vertex, the normalized personalized PageRank, and the pseudoinverse of
the graph Laplacian matrix, but also allows us to design new models. Our analysis and models are
supported by extensive experiments on both synthetic and real data.

14.2 PARTIALLY ABSORBING RANDOM WALKS
14.2.1 THE PARWALK MODEL
Let us consider a simple diffusion process illustrated in Fig. 14.1A. At the beginning, a unit flow
(shaded) is injected at a vertex on the graph. At the first step, some fraction of the flow (right-shaded)
is “absorbed” at the vertex while the rest (left-shaded) propagates to its neighbors. Whenever the flow
passes a vertex, some fraction of it will get absorbed at that vertex. As this process continues, the
amount of flow absorbed will accumulate and there will be less and less flow left running on the graph.
After a certain number of steps, the unit flow will mostly be absorbed. Note that if the fraction of flow
absorbed at each vertex is the same, this diffusion process is essentially the same as the bookmark-
coloring algorithm in [26], though both of them were proposed independently.

We can describe the above diffusion process in terms of random walks. Let us define a discrete-time
stochastic process X = {Xt : t ≥ 0} on the state set {1, 2, . . . , n}. Note that for random walks on a graph,
the state set is the set of vertices of the graph. The initial state X0 is given, say X0 = i, the next state

t = 0 t = 1 t = 2
(A)

(B) (C)i j

k

pii pjj

pkk

i

i ′

j

k

k ′

j ′

FIG. 14.1

Partially absorbing random walks. (A) A flow diffusion perspective (see text). (B) A second-order Markov chain.
(C) An equivalent standard Markov chain with additional sinks.



14.2 PARTIALLY ABSORBING RANDOM WALKS 377

X1 is determined by the transition probability P(X1 = j|X0 = i) = pij, and the subsequent states are
determined by the following transition probabilities

P(Xt+2 = j|Xt+1 = i, Xt = k) =
⎧⎨
⎩

1, j = i, i = k,
0, j �= i, i = k,
P(Xt+2 = j|Xt+1 = i) = pij, i �= k,

(14.1)

where t ≥ 0. Note that the process X is time homogeneous, i.e., the transition probabilities in Eq. (14.1)
are independent of t. By the definition, if the previous and current states are the same, the process will
remain in the current state forever. Otherwise the next state is conditionally independent of the previous
state given the current state, i.e., the process behaves like an ordinary random walk.

As illustrated in Fig. 14.1B, the stochastic process X at each state i will be stuck at i with some
probability pii. Hence, we shall call X the partially absorbing random walk, and pii the absorbing
capacity of state i. If 0 < pii < 1, then we say that i is a partially absorbing state. If pii = 1, then we
say that i is a fully absorbing state. We will refer to both as absorbing states without being confusing.
Finally, if pii = 0, then we say that i is a nonabsorbing state. Note that if pii ∈ {0, 1} for every state
i ∈ N, the above process will reduce to a standard Markov chain [27].

We can see that a ParWalk is a second-order Markov chain completely specified by the first-order
transition probabilities {pij}. It is also not difficult to observe that any ParWalk can be realized as a
standard Markov chain by adding a sink vertex (a fully absorbing state) to each vertex (Fig. 14.1C),
and with the transition probability from state i to sink i′ exactly as pii.

14.2.2 THE ABSORPTION PROBABILITIES OF PARWALKS
In the following, we will show that the probability of a ParWalk starting from any state i to be absorbed
at any state j (within a finite number of steps) can be derived in a closed form.

Before we proceed further, let us first define some notations used in this chapter (see Table 14.1
for a summary of notations). We consider undirected graphs that are connected, weighted, and without
self-loops. Denote by G = (V , W) a graph with a set V of n vertices, where W = [wij] ∈ Rn×n

(wii = 0) is a symmetric nonnegative affinity matrix that specifies the edge weight. Denote by
D = diag(d1, d2, . . . , dn) the degree matrix, where di = ∑

j wij is the degree of vertex i. The graph
Laplacian [28] is defined as L := D − W, and the symmetric normalized graph Laplacian is defined as

Lsym = D− 1
2 LD− 1

2 . Let λ1, λ2, . . . , λn ≥ 0 be arbitrary, and set � = diag(λ1, λ2, . . . , λn), which we
will refer to as a regularizer. Denote by α a positive scalar.

The first order transition probabilities of a ParWalk on the graph G can be defined as follows:

pij =
⎧⎨
⎩

αλi
αλi+di

, i = j,
wij

αλi+di
, i �= j.

(14.2)

Clearly, the absorbing capacity pii of state i is determined by α and λi. The larger αλi is, the larger
the absorbing capacity is. Let A = [aij] ∈ Rn×n be the absorption probability matrix, where aij is the
probability of the ParWalk from i to be absorbed at j. We can derive A as follows.

Theorem 14.1. Suppose λi > 0 for some i. Then A = (L + α�)−1α�. �
Proof. Because α > 0, and λi > 0 for some i, the matrix L + α� is positive definite and hence

nonsingular. Moreover, the matrix D + α� is nonsingular because D is nonsingular. Thus, the matrix



378 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

Table 14.1 Notations

Notation Description

V set of all vertices in a graph

W affinity weight matrix

wij edge weight between vertices i and j

D degree matrix

di degree of vertex i

L graph Laplacian matrix

Lsym normalized graph Laplacian matrix

L† pseudoinverse of the graph Laplacian matrix

� regularizer matrix

λi scalar regularizer of vertex i

I identity matrix

H hybrid regularizer matrix combining D and I

A absorption probability matrix

aij probability of a ParWalk starting from state i absorbed at
state j

M normalized absorption probability matrix

pij transition probability of a ParWalk from state i to state j

pii absorbing capacity of state i

α balancing scalar

I − (D + α�)−1W = (D + α�)−1(L + α�) is also nonsingular. We can observe that the absorbing
probabilities {aij} satisfy the following equations:

aii = αλi

αλi + di
× 1 +

∑
j�=i

wij

αλi + di
aji, (14.3)

aij =
∑
k �=i

wik

αλi + di
akj, i �= j. (14.4)

Upon writing Eqs. (14.3), (14.4) in matrix form, we have

(I − (D + α�)−1W)A = (D + α�)−1α�, (14.5)

whence A = (I − (D + α�)−1W)−1(D + α�)−1α� = (L + α�)−1α�. �
It is easy to see that as long as there is at least one absorbing state in the graph, a ParWalk starting

from any vertex will eventually be absorbed. The following corollary confirms that A is indeed a
probability matrix.

Corollary 14.1. Suppose λi > 0 for some i. Then A is a nonnegative matrix with each row summing
up to 1.

Proof. See Appendix. �



14.3 A UNIFIED VIEW FOR LEARNING ON GRAPHS 379

14.2.3 HIGHER-ORDER PARWALKS
We can naturally generalize the construction of a ParWalk to mth order (m > 2), i.e., the process is
absorbed at a state only after staying at it for m-consecutive steps. Mathematically, it is defined by the
following transition probabilities:

P(Xt+m+1 = j|Xt+m = im, . . . , Xt = i1) =
⎧⎨
⎩

1, j = im = · · · = i1,
0, j �= im, im = · · · = i1,
P(Xt+m+1 = j|Xt+m = im) = pimj, else.

(14.6)

Similar to second-order ParWalks, an mth order ParWalk is also completely specified by the first-
order transition probabilities {pimj}. The absorption probabilities of an mth order ParWalk, with its
first-order transition probabilities defined as in Eq. (14.2), can be derived similarly as a second-order
ParWalk, though in a much more complicated form. However, it turns out that an mth order ParWalk
does not have additional modeling power than a second-order ParWalk, as explained below.

Suppose that Ã is the absorption probability matrix of an mth order ParWalk with its first-order
transition probabilities {pij}i,j defined as in Eq. (14.2). We can construct a second-order ParWalk X
such that its absorption probability matrix A is exactly the same as Ã. The transition probabilities of X
can be defined as:

P(Xt+2 = j|Xt+1 = i, Xt = k) =

⎧⎪⎪⎨
⎪⎪⎩

1, j = i, i = k,
0, j �= i, i = k,
pm

ii , j = i, i �= k,
pij

1−pii
(1 − pm

ii ), j �= i, i �= k.

(14.7)

To see the rationale behind this definition, note that for j �= i,

P(Xt+2 = j|Xt+1 = i) = pij
1 − pm

ii
1 − pii

= pij + piipij + p2
iipij + · · · + pm−1

ii pij.

By the definition, it is not difficult to see that A = Ã. Also, the second-order ParWalk X can be realized

by choosing λ′
i such that

αλ′
i

αλ′
i+di

= pm
ii =

(
αλi

αλi+di

)m
.

14.3 A UNIFIED VIEW FOR LEARNING ON GRAPHS
The absorption probabilities of a ParWalk can be used to measure the proximity between any two
vertices on a graph, which can be utilized for learning tasks including ranking, semisupervised
classification, and clustering. In this section, we show that ParWalks emcompass various popular
models for learning on graphs. We first consider the case of ParWalks starting from a fixed vertex,
and then consider the case of ParWalks absorbed at a fixed vertex (Fig. 14.2).

14.3.1 PARWALKS STARTING FROM A FIXED STATE
In the following, we will show that the personalized PageRank algorithm [1], the kernel matrix
(L + αI)−1 used in collaborative filtering [3], and the Gaussian harmonic function method for label
propagation [13] and its variants are all special cases of ParWalks starting from a fixed state.



380 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

–3 –2 –1 0 1 2 3

–3

–2

–1

0

1

2

3

(A)

(B)

FIG. 14.2

Two synthetic datasets. (A) Three two-dimensional Gaussians of 900 points. The circle indicates the query
point. The graph construction is described in Section 14.4. The degree of a vertex is indicated by the colormap.
Best viewed in color. (B) Two 20-dimensional Gaussians of 600 points with the first two dimensions plotted. The
cross denotes a query point. The triangle and the circle denote the labeled point for each Gaussian respectively.
For illustration purpose, points within each Gaussian are arranged to appear consecutively in both datasets.



14.3 A UNIFIED VIEW FOR LEARNING ON GRAPHS 381

Clearly, the probabilities of a ParWalk starting from a fixed vertex i and absorbed at each vertex
on the graph correspond to the ith row of the absorption probability matrix A. The following theorem
shows that when the absorbing capacity of each vertex is sufficiently small, the rows of A will converge
to a distribution proportional to the regularizer (λ1, λ2, . . . , λn), regardless of the graph structure.

Theorem 14.2. Suppose λi > 0 for all i. Then

lim
α→0+(L + α�)−1α� = 1λ̄

�, (14.8)

where (λ̄)i = λi/(
∑n

j=1 λj). In particular, limα→0+(L + αI)−1αI = 1
n 11�.

Proof. See Appendix. �

Relation with personalized PageRank
In the personalized PageRank [1] algorithm, a random walk at each step returns to some vertex i with
probability 0 < β < 1, where β is often referred to as the “teleportation” probability. Denote by a
the stationary distribution of the random walk. Denote by e the indicator vector of i, i.e., (e)i = 1 and
(e)j = 0 for j �= i. Then the equilibrium equation for the random walk can be written as:

a� = βe� + (1 − β)a�D−1W (14.9)

⇐⇒a�D−1(1 − β)
(

D − W + β

1 − β
D

)
= βe�

⇐⇒a� = e�
(

L + β

1 − β
D

)−1 β

1 − β
D. (14.10)

By Eq. (14.10), it can be seen that the personalized PageRank vector of i is exactly the ith row of the
absorption probability matrix A with α = β

1−β
and � = D. It is also not difficult to check that the

absorbing capacity of each state is constant and equal to β. This indicates that a ParWalk will tend
to be absorbed at vertices with larger degrees due to their denser connection with the graph. Indeed,
by Theorem 14.2, the absorption probabilities will be dominated by the degree of vertices as β → 0
(α → 0), which can be seen from Fig. 14.3A–F. We can also see that even for such a simple dataset,
for a wide range of α, there are no clear gaps between clusters in the absorption probabilities.

Relation with the kernel matrix (L + αI)−1

The Laplacian regularized kernel matrix (L + αI)−1 has been found empirically successful as a
proximity measure in ranking and collaborative recommendation [3]. Obviously, it is equal to the
absorption probability matrix A with � = I, up to a constant factor 1/α. By Eq. (14.2), we can see that
when α is small, the absorbing capacity pii = α

α+di
of vertex i is approximately inversely proportional

to its degree di.
In contrast to personalized PageRank, setting partial absorption in this way cancels out the bias in

di and makes absorption probabilities evenly distributed within each cluster, as shown in Fig. 14.3G–L.
We can also see that the gaps between clusters become clearer when α becomes smaller. Even when
α → 0 and the absorption probabilities converge to a constant (see Theorem 14.2), the gaps still exist,
demonstrating that they are desirable for representing the cluster structure.



382 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

0 300 600 900
0

0.02

0.04

0.06

0 300 600 900
0

0.005

0.01

0 300 600 900
0

1

2

3
x 10−3

x 10−3

x 10−3x 10−3x 10−3

0 300 600 900
0

2

4
x 10−3

0 300 600 900
0

2

4

6
x 10−3

0 300 600 900
0

0.005

0.01

0 300 600 900
0

0.01

0.02

0.03

0 300 600 900
0

0.05

0.1

0.15

0.2

0 300 600 900
0

2

4

0 300 600 900
0

1

2

0 300 600 900
0.5

1

1.5

0 300 600 900
1.06

1.08

1.1

1.12

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

FIG. 14.3

Absorption probabilities of ParWalks starting from a fixed vertex indicated by the black circle in Fig. 14.2A. The
horizontal axis is the index of a point, and the vertical axis is the probability of a ParWalk absorbed at that point.
(A)–(F) Absorption probabilities of ParWalks with � = αD, α = 10−k , k = 1, 2, . . . , 6; (G)–(L) Absorption
probabilities of ParWalks with � = αI, α = 10−k , k = 1, 2, . . . , 6.



14.3 A UNIFIED VIEW FOR LEARNING ON GRAPHS 383

Relations with the harmonic function method and its variants
The seminal Gaussian harmonic function (GHF) method for label propagation [13] can be interpreted
in absorbing random walks, thus is naturally a special case of ParWalks. In the GHF method, the labeled
vertices are fully absorbing states, and the unlabeled vertices are nonabsorbing states. To classify an
unlabeled instance i, one needs to compute and compare the probabilities of a random walk starting
from i and absorbed at the labeled vertices of different classes. The regularized GHF method [29] is
also a ParWalk with λi = 1 at the labeled vertices while λi = 0 at the unlabeled vertices. The local and
global consistency method [14], with the unnormalized Laplacian instead of the normalized Laplacian,
is a ParWalk with � = I. A variant of this method is a ParWalk with � = D, which is the same as
personalized PageRank. If we add an additional sink to the graph, a variant of the GHF method [30]
and a variant of the regularized GHF method [31] can all be included as instances of ParWalks.

From Fig. 14.3, we can see that for ParWalks starting from a fixed state, the choice of � is crucial.
It seems that setting � = I is the only way to avoid the bias introduced by �. However, it is entirely
different for ParWalks ending at a fixed state. We will see in the following that in that case even a
random � can work very well.

14.3.2 PARWALKS ABSORBED AT A FIXED STATE
The probability vector of ParWalks absorbed at a fixed vertex j is exactly the jth column of the
absorption probability matrix A. For simplicity, it is equivalent to consider the symmetric matrix
M = [mij] ∈ Rn×n = (L + α�)−1, whose jth column is equal to the jth column of A up to a constant
factor 1/αλj. In the following, we will show that M can be decomposed into a constant matrix plus a
proximity matrix, where the latter converges to a meaningful limit when α → 0.

Denote by L̄ = �− 1
2 L�− 1

2 . It is easy to see that L̄ is symmetric and positive semidefinite. Note that
L̄ has the same rank n − 1 as L (because the graph is connected), and has eigenvalue 0 of multiplicity
1. Let L̄ = U�U� be the eigen-decomposition of L̄ with eigenvalues 0 = γ1 < γ2 ≤ · · · ≤ γn, and

orthonormal eigenvector matrix U = (u1, . . . , un), with u1 = (
√

λ1√∑
i λi

, . . . ,
√

λn√∑
i λi

)�. Denote by L̄† the

pseudoinverse of L̄, and denote by 1 the all-one vector. The following theorem decomposes M.

Theorem 14.3. M = C + E, where C = 1

α
∑

i λi
11�, and E = �− 1

2

(
n∑

i=2

1

γi + α
uiu�

i

)
�− 1

2 .

Proof. By definition,

M = (L + α�)−1 = �− 1
2 (�− 1

2 L�− 1
2 + αI)−1�− 1

2 = �− 1
2

⎛
⎝ n∑

i=1

(γi + α)uiui
�

⎞
⎠

−1

�− 1
2

= �− 1
2

⎛
⎝ n∑

i=1

1

γi + α
uiui

�
⎞
⎠ �− 1

2 = 1

α
∑

i λi
11� + �− 1

2

⎛
⎝ n∑

i=2

1

γi + α
uiu

�
i

⎞
⎠ �− 1

2 .

�
Corollary 14.2. lim

α→0
E = �− 1

2 L̄†�− 1
2 .

Proof. It follows from L̄† = ∑n
i=2

1
γi

uiu�
i . �



384 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

By Theorem 14.3, M is completely determined by E because C is a constant matrix. By

Corollary 14.2, when α → 0, E converges to the pseudoinverse of L̄ doubly normalized by �− 1
2 ,

which encodes the graph structure. In the following, we will show that M (or the column vectors of
A) encompasses and relates various well-known proximity measures. To demonstrate their ability in
capturing global graph structures, we compare them on a more challenging synthetic dataset two 20-
dimensional Gaussians, as shown in Fig. 14.2B. The graph construction and parameter settings are
described in Section 14.4.

Relation with the normalized personalized PageRank
The personalized PageRank vector normalized by vertex degree was shown to be highly effective in
retrieving local clusters [15]. Suppose that a is the personalized PageRank vector of some vertex i.
We have shown before that a is equal to the ith row of A with � = D. It is easy to see that the
normalized vector, a./d, is equal to the ith column of A, up to a constant factor 1/λi. The comparisons
of personalized PageRank and the normalized one are shown in Fig. 14.4A and B. We can see that
while the former completely fails in representing the cluster structure, the latter works amazingly well.
It is surprising that a simple normalization would make such a difference.

Relation with the hitting times
The hitting time hij is defined as the average number of steps for a random walk from vertex i to hit
vertex j for the first time. Denote by ei the indicator vector of i, i.e., (ei)i = 1 and (ei)j = 0 for j �= i. hij

can be computed as [18]:

hij = d(V)

〈
1√
dj

ej, L†
sym

(
1√
dj

ej − 1√
di

ei

)〉
(14.11)

= d(V)

(
1

dj
ej

�L†
symej − 1√

didj
ei

�L†
symej

)
, (14.12)

where d(V) is the sum of the degrees of all vertices in the graph. For a fixed vertex j, consider the hitting
times of random walks from any vertex i to j, (hij)i=1,...,n. By Eq. (14.12), (hij)i=1,...,n is determined by

the second term 1√
didj

ei
�L†

symej (as the first term is constant), which is the (i, j) entry of D− 1
2 L†

symD− 1
2 .

Note that for � = D, we have L̄ = Lsym, and by Corollary 14.2, limα→0 E = D− 1
2 L†

symD− 1
2 . Also

note that smaller hij indicates that vertices i and j are more similar. Hence, in measuring the proximities
between j and other vertices, the hitting times (hij)i=1,...,n are essentially the same as the jth column of
M with � = D when α is sufficiently small.

There is a sharp contrast between the hitting times from a fixed vertex i and the hitting times to
a fixed vertex i, as shown in Fig. 14.4C and D. We can see that the former totally fails to capture the
cluster structure of high-dimensional data, which verifies the analysis in [18]. In contrast, the latter does
very well.

Relation with the pseudoinverse of the graph Laplacian and the commute times
For � = I, we have L̄ = L, and by Corollary 14.2, limα→0 E = L†, where L† is the pseudoinverse of
the graph Laplacian matrix. This establishes the equivalence between L† and M = (L + αI)−1 (when



1
4

.3
A

U
N

IFIED
VIEW

FO
R

LEA
R

N
IN

G
O

N
G

R
A

P
H

S
3

8
5

0 300 600
0

0.005

0.01

0.015

0 300 600
3.387

3.388

3.389

3.39

0 300 600
0

1

2

0 300 600
1200

1300

1400

1500

0 300 6000

1

2

0 300 600
−0.5

0

0.5

1

0 300 600
0

2

4

0 300 600
3.416

3.417

3.418

x 10−3

x 10−3
x 104

x 104

x 10−3

0 300 600
1.6

1.65

1.7

1.75
´10–3

0 300 600
0

0.5

1

(A) (D) (G) (J)

(B) (E) (H)

(C) (F) (I)

FIG. 14.4

Proximities between other points and the query point i in the two Gaussians in Fig. 14.2B. The query point i is denoted as a blue cross in
Fig. 14.2. (A) The personalized PageRank vector of i. (B) The normalized personalized PageRank vector of i. (C) Hitting times of a random
walk from i to hit other points. (D) Hitting times of random walks from other points to hit i. (E) Commute times between i and other points. (F)
The ith row of L†. (G) The probabilities of a ParWalk with a random � starting from i to be absorbed at other points. (H) The probabilities of
ParWalks with a random � starting from other points to be absorbed at i. (I) The probabilities of absorbing random walks starting from other
points to be absorbed at the two labeled points in Fig. 14.2B, denoted by dots and triangles, respectively. (J) The probabilities of ParWalks
starting from other points to be absorbed at the two labeled points, denoted by dots and triangles, respectively.



386 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

α is sufficiently small) in measuring the proximity between any two vertices, which also gives a new
interpretation of L† in terms of absorption probability. As expected, L† (Fig. 14.4F) works as well as
the kernel matrix (L + αI)−1 we have seen earlier.

A closely related proximity measure is the commute time cij = hij + hji between two vertices i and

j, which can be computed as cij = d(V)(L†
ii + L†

jj − 2L†
ij). For a fixed j, (cij)j=1,...,n is determined by L†

ii

and L†
ij. The first term could be problematic, as it can be interpreted as the self-absorption probability

aii of vertex i, which does not reflect the relation between vertices i and j. We can see from Fig. 14.4E
that the commute times fail to encode the cluster structure of the high-dimensional Gaussians, which
also verifies the analysis in [18].

Random regularizers
We have seen that for two different regularizers � = I and � = D, the probabilities of ParWalks
absorbed at a fixed state (column vectors of A) can well represent the graph cluster structure.
Surprisingly, it turns out that an almost arbitrary � can work as well. In Fig. 14.4G and H, we compare
the ith row and the ith column vector of A with a random � (λj uniformly sampled from the open
interval (0,1), for j = 1, . . . , n). Similar with � = I and � = D, the row vector does not encode the
cluster structure while the column vector does. The fact that a random � can do so well suggests the
great potential of ParWalks for model design.

Absorption probabilities of absorbing random walks
Let the two labeled points in Fig. 14.2B (the triangle and the circle) be fully absorbing states, and
other unlabeled points be nonabsorbing states. The probabilities of an absorbing random walk from
any unlabeled vertex to be absorbed at the two labeled vertices are plotted in Fig. 14.4I. We can see that
for each labeled vertex, the absorption probability vector well encodes the cluster structure. However,
starting from any unlabeled vertex, an absorbing random walk always has a larger probability to be
absorbed at the circle than at the triangle. Therefore, if we assign labels to an unlabeled vertex by
directly comparing the absorption probabilities as in the Gaussian harmonic function method [13],
wrong labels will be assigned for points in the lower Gaussian. This verifies the analysis in [24] that the
Gaussian harmonic function method is ill-posed for high-dimensional data. In contrast, the probabilities
of ParWalks absorbed at the two labeled points can well differentiate the unlabeled vertices, as shown
in Fig. 14.4I, which demonstrates the potential of ParWalks for semisupervised classification.

Comparisons of different regularizers
We have shown by experiments that ParWalks with different regularizer � perform similarly on the two
20-dimensional Gaussians in Fig. 14.2B. A natural question that follows is what their differences are. To
see that, we compare them on another synthetic dataset—two 20-dimensional Gaussians with different
variances. The ranking results by ParWalks with � = I and � = D on this dataset can be visualized in
Fig. 14.5C, D, G, and H, where the top-ranked 400 points are denoted in magenta. The mean average
precisions (MAP) are summarized in Fig. 14.5B. The MAP is computed as the mean of the average
precision (AP) scores for each query, and each vertex in the same class is taken as a query. We can
see that when the query (indicated by the blue cross) is from the sparse Gaussian, � = D works much
better than � = I. In contrast, when the query is from the dense Gaussian, � = I is better than � = D.



14.3 A UNIFIED VIEW FOR LEARNING ON GRAPHS 387

Sparse Dense All
I 0.5403

Data MAP

∧ = I ∧ = D ∧ = H

∧ = I ∧ = D ∧ = H

0.9992 0.7698
D 0.9888 0.7888 0.8888
H 0.9720 0.9516 0.9618

(A () B)

(C) (D) (E)

(F) (G) (H)

FIG. 14.5

Ranking results by ParWalks with different regularizers. (A) Two 20-dimensional Gaussians with variances 1
and 0.16, respectively, and 400 points in each Gaussian. (B) Mean average precision (MAP). (C)–(E) Ranking
w.r.t. the query (denoted by the big cross) in the sparse Gaussian. The top 400 ranked points are denoted by
small crosses. (F)–(H) Ranking w.r.t. the query (denoted by the big cross) in the dense Gaussian. The top 400
ranked points are denoted by small crosses. (A) Data; (B) MAP; (C) � = I; (D) � = D; (E) � = H; (F) � = I;
(G) � = D; (H) � = H.



388 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

We can intuitively explain the behaviors of regularizer � = I and � = D. For � = I, the absorbing
capacity of vertex i is pii = α

α+di
. When α → 0, it is inversely proportional to the degree of i. This

means a ParWalk can move more freely in the dense cluster than in the sparse cluster. If the query is
from the dense cluster, a ParWalk from the dense cluster can hit the query more easily than a ParWalk
from the sparse cluster. Hence vertices in the dense cluster will mostly be ranked at the top. On the con-
trary, if the query is in the sparse cluster, ParWalks from the sparse cluster but far away from the query
will hardly get to it, due to the large absorption of the low degree vertices. Hence, many vertices in the
sparse clusters will not be ranked at the top. This explains why � = I works better on dense clusters.

For � = D, the absorbing capacity of vertex i is pii = αdi
αdi+di

= α
1+α

, which is constant at every
vertex. This means a ParWalk has the same mobility at every vertex. However, because the connections
within the sparse cluster are weaker than they are in the dense cluster, ParWalks from the sparse cluster
can move to the dense cluster more easily than the other way around. If the query is from the sparse
cluster, ParWalks from the dense cluster will hardly reach the query. So vertices in the sparse cluster
will be ranked at the top. However, if the query is from the dense cluster, ParWalks from the sparse
cluster could be likely to reach the query. Hence, some vertices in the sparse cluster could be ranked
ahead of those in the dense cluster. This explains why � = D works better on sparse clusters.

The complementary behavior of � = I and � = D poses a new challenge. For data with varying
densities such as the two Gaussians in Fig. 14.5A, what regularizer should we use? Without knowing
whether a query is from a dense or a sparse cluster, how can we choose the appropriate model? As in
practice, there is currently no reliable way to detect the neighborhood density of the query, so can we
design a new regularizer that can automatically adapt to the data density?

First, as � = D works well on sparse clusters, it suggests that the regularizer (λis) for vertices
of low degree should be set relatively small (e.g., following D). Second, because � = D does not
perform well on dense clusters, it suggests that the regularizer for high-degree vertices should not be
set too large. Third, as � = I works well on dense clusters, it suggests that a constant regularizer
may be suitable for high degree vertices. Combining these arguments, we propose a new regularizer
� = H = diag(h1, h2, . . . , hn) with

hi = min(d̂, di), i = 1, . . . , n, (14.13)

where d̂ is the τ th largest entry in (d1, d2, . . . , dn) (e.g., the median). One can see that H is essentially a
mix of I and D it equals D on vertices with a degree smaller than d̂, and stays constant otherwise.

The superiority of H can be immediately seen in Fig. 14.5B, E, and H, where H appears to be a nice
compromise between I and D. On the dense Gaussian, H is very close to I and much better than D. On
the sparse Gaussian, H is very close to D and much better than I. Overall, H performs superior than
either I or D. For H to work, d̂ should not be set too large or too small. If d̂ is too large, H behaves like
D and there is no sufficient regularization for dense data. If d̂ is too small, H behaves like I and cannot
do well on sparse data. In this chapter, we set d̂ = median (d1, d2, . . . , dn) in all the experiments. More
discussions about I, D, and H can be found in [32].

14.4 EXPERIMENTS
In this section, we apply ParWalks for image retrieval and semisupervised classification on real
benchmark datasets, and compare their performance with several state-of-the-art models.



14.4 EXPERIMENTS 389

14.4.1 IMAGE RETRIEVAL
For image retrieval, we first construct a data graph with each image as a vertex. Then for each query
image, we rank the images with respect to the query and compute the average precision (AP). For
each dataset, we compute the mean average precision (MAP) on each class and the entire dataset
(the average of the MAP on all classes). We compare the performance of models including ParWalks
with regularizers � = I, � = D, and � = H, personalized PageRank (PR), and manifold ranking
(MR) [12].

Parameter setup
We construct a weighted 20-NN graph for each dataset, including the synthetic data in Figs. 14.2 and
14.5A. The edge weight between vertices i and j is set as wij = exp(−d2

ij/σ ) if i is within j’s 20 nearest
neighbors or vice versa, otherwise wij = 0. dij is the Euclidean distance between vertices i and j. We
set σ = 0.2 × s with s being the average square distance of each vertex to its 20th nearest neighbor. For
ParWalks, we use the same α = 1e−6 for different regularizers. For personalized PageRank, we set the
teleportation parameter β = 0.15 as suggested in [1]. For manifold ranking, we set the regularization
parameter to 0.99 as suggested in [12].

Datasets
We conduct image retrieval on three real datasets: USPS, MNIST, and CIFAR-10. The USPS1 dataset
contains 9298 images of handwritten digits from 0 to 9 of size 16 × 16, with 1553, 1269, 929, 824,
852, 716, 834, 792, 708, and 821 in each class. We use each instance as a query for image retrieval
on all the 9298 images. Some sample images are displayed in Fig. 14.7. Another popular handwritten
digit dataset is the MNIST2 [33] dataset, which contains 70,000 images of handwritten digits from 0
to 9 of size 28 × 28, with 6903, 7877, 6990, 7141, 6824, 6313, 6876, 7293, 6825, and 6958 in each
class. It consists of a training set of 60,000 examples and a test set of 10,000 examples. We use each
instance in the test set as a query for image retrieval on all the 70,000 images. The CIFAR-103 dataset
consists of 60,000 tiny color images of size 32x32 in 10 mutually exclusive classes, with 6000 in each
class. There are 50,000 training images and 10,000 test images. Each image is represented by a 512-
dimensional GIST feature vector [34]. We use each test image as a query for image retrieval on all the
60,000 images. Some sample images are displayed in Fig. 14.6.

Experimental results
The results are displayed in Table 14.2, where d̂ denotes the median degree of vertices in each class
and the entire graph. From the values of d̂, we can see that the data graphs constructed are of varying
densities. Some image clusters can be highly dense because images of that class have more similar
features, e.g., digit “1” and “9” in USPS (Fig. 14.7A and D) and MNIST, “plane” (Fig. 14.6A) and
“ship” in CIFAR. But some image clusters can be rather sparse due to fewer similar features, e.g., digit
“2” and “4” in USPS (Fig. 14.7B and C) and MNIST, “dog” (Fig. 14.6B) and “cat” in CIFAR.

1https://web.stanford.edu/~hastie/ElemStatLearn/datasets/zip.info.txt.
2http://yann.lecun.com/exdb/mnist/.
3http://www.cs.toronto.edu/~kriz/cifar.html.



390 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

(A)

(B)

FIG. 14.6

Sample images from the CIFAR-10 dataset. (A) Plane. (B) Dog.

We can draw several observations from the results. First, we can see that ParWalks with regularizers
I, D, and H all outperform personalized PageRank and manifold ranking by a large margin on each
dataset. Second, regularizers I and D show distinctive yet complementary behaviors. For example, I is
much better than D on dense classes, e.g., “plane” and “ship” in CIFAR, digit “1” in MNIST, and digit
“9” in USPS. In contrast, D performs much better than I on sparse classes, e.g., digits “2”, “4”, and “5”
in USPS, and “auto”, “cat”, “dog”, “horse”, and “truck” in CIFAR. Third, the proposed regularizer H
adapts to the data density and combines the strengths of I and D (as highlighted), thus achieving the
best overall performance (last column in Table 14.2) on all three datasets. The results demonstrate the
superiority of ParWalks and verify our analysis.



14.4 EXPERIMENTS 391

(A) (B)

(C) (D)

FIG. 14.7

Sample images from the USPS dataset. (A) Digit 1. (B) Digit 2. (C) Digit 4. (D) Digit 9.

Table 14.2 Mean Average Precision on the USPS, MNIST, and CIFAR Datasets

0 1 2 3 4 5 6 7 8 9 All

USPS

d̂ 0.76 18.66 0.04 0.13 0.27 0.05 0.83 1.68 0.17 1.70 0.47

I 0.9805 0.9882 0.8760 0.8926 0.6462 0.7781 0.9401 0.9194 0.7460 0.7296 0.8497

D 0.9819 0.9751 0.9057 0.8926 0.6816 0.7972 0.9231 0.9153 0.7450 0.6959 0.8514

H 0.9797 0.9871 0.9101 0.8961 0.6819 0.7971 0.9408 0.9167 0.7679 0.7231 0.8601
PR 0.8860 0.9720 0.6080 0.7639 0.4879 0.5684 0.8374 0.8253 0.6255 0.7022 0.7277

MR 0.9570 0.9871 0.8272 0.8273 0.4671 0.6303 0.9167 0.8225 0.6750 0.7191 0.7829

MNIST

d̂ 0.30 11.18 0.07 0.15 0.36 0.15 0.49 1.06 0.11 0.79 0.32

I 0.9877 0.9759 0.9269 0.8867 0.7916 0.8004 0.9745 0.8848 0.8118 0.6602 0.8700

D 0.9881 0.9249 0.9324 0.8744 0.8102 0.8097 0.9706 0.8502 0.8161 0.6573 0.8634

H 0.9868 0.9746 0.9397 0.8831 0.8002 0.8070 0.9742 0.8832 0.8341 0.6613 0.8744
PR 0.8867 0.7444 0.6574 0.7006 0.5941 0.5750 0.8303 0.6916 0.5874 0.5916 0.6859

MR 0.9803 0.9436 0.8897 0.8166 0.6355 0.7152 0.9546 0.7883 0.7140 0.6463 0.8084

plane auto bird cat deer dog frog horse ship truck All
CIFAR

d̂ 0.65 0.15 0.33 0.13 0.36 0.15 0.27 0.16 0.51 0.16 0.23

I 0.2999 0.2760 0.1570 0.1320 0.1703 0.1848 0.2949 0.2243 0.3195 0.2493 0.2308

D 0.2387 0.3049 0.1454 0.1562 0.1581 0.2141 0.2901 0.2488 0.2835 0.2741 0.2314

H 0.2917 0.2945 0.1552 0.1496 0.1621 0.2054 0.2891 0.2342 0.3128 0.2609 0.2356
PR 0.2335 0.2050 0.1418 0.1007 0.2136 0.1403 0.2612 0.1571 0.2655 0.1701 0.1889

MR 0.2296 0.1513 0.1286 0.0821 0.1715 0.1022 0.1924 0.1201 0.2321 0.1124 0.1522



392 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

Table 14.3 Statistics of the Nine Datasets

# Examples # Classes # Dimensions

USPS 9298 10 256

YaleB 5760 10 1200

satimage 6435 6 36

imageseg 2310 7 19

ionosphere 351 2 34

iris 150 3 4

protein 116 6 20

spiral 100 2 3

soybean 47 4 35

14.4.2 SEMISUPERVISED CLASSIFICATION
For semisupervised classification, we compare ParWalks with a random � with several popular
semisupervised classification methods, including the Gaussian harmonic function (GHF) method
coupled with and without class mass normalization (CMN) [13], and the local and global consistency
(LGC) method [14].

Semisupervised classification with ParWalks
Denote the indices of labeled vertices as i1, . . . , im. To classify an unlabeled vertex k, we assign k to the
class of the labeled vertex ĵ, where ĵ = arg max

j∈{i1,...,im}
ajk. Simply put, we find the labeled vertex from which

a ParWalk has the largest probability to be absorbed at vertex k. Our method is based on the analysis in
Section 14.3.2 that the column vectors of A encode the cluster structure.

Parameter setup
As in Section 14.4.1, we set α = 1e − 6 for ParWalks. We set the regularization parameter in the
LGC method as 0.9.4 We use nine real datasets for this experiment, including USPS, YaleB,5 and seven
popular UCI datasets,6 as summarized in Table 14.3.

We construct a weighted 20-NN graph for each dataset, except for YaleB, imageseg, and iris, where
we build 50-NN, 50-NN, and 25-NN graphs, respectively, to ensure that the graphs are connected. As
in Section 14.4.1, the edge weight between vertices i and j is set as wij = exp(−d2

ij/σ ) if i is within j’s k
nearest neighbors or vice versa, and wij = 0 otherwise. And σ = 0.2 × r, where r is the average square
distance between each point to its 20th nearest neighbor. For USPS and YaleB, we randomly sample
20 instances as labeled data. For other datasets, we randomly sample 10 instances as labeled data. We
make sure that at least one label is sampled for each class. The classification accuracy is averaged over
100 trials.

4We also tested other regularization parameters, but found LGC performed best with 0.9.
5https://computervisiononline.com/dataset/1105138686.
6https://archive.ics.uci.edu/ml/datasets.html.



14.5 CONCLUSIONS 393

Table 14.4 Classification Accuracy on the Nine
Datasets

GHF GHF+CMN LGC ParWalks

USPS 0.445 0.775 0.821 0.880
YaleB 0.733 0.847 0.884 0.906
satimage 0.650 0.741 0.725 0.781
imageseg 0.595 0.624 0.638 0.665
ionosphere 0.699 0.724 0.731 0.752
iris 0.902 0.894 0.903 0.928
protein 0.440 0.511 0.477 0.572
spiral 0.754 0.726 0.729 0.835
soybean 0.889 0.856 0.816 0.905

Experimental results
The results are summarized in Table 14.4. We can see clearly that ParWalks with a random �

consistently outperforms other methods (as highlighted in bold), which justifies our method and
demonstrates its superiority. The harmonic function method without the class mass normalization
performs poorly on high-dimensional data, e.g., USPS, YaleB, satimage, and ionosphere, which
confirms the analysis in [24]. However, as shown in Section 14.3.2 and Fig. 14.5I, the absorption
probability vectors actually encode the cluster structure. Hence, a post processing such as the class mass
normalization could help improve the performance significantly, as shown in Table 14.4 (GHF+CMN).
The results of LGC are better than GHF and GHF+CMN, but not comparable to ParWalks. We refer
readers to [35] for more comparisons and discussions.

14.5 CONCLUSIONS
In this chapter, we introduce a stochastic process called partially absorbing random walks (ParWalks).
We provide a unified view of a variety of popular models for learning on graphs under this framework.
By comparing them, we identify conditions under which ParWalks can reliably capture graph structures,
which opens the door for model selection and model design. We also conduct extensive experiments to
verify our arguments and proposals. We refer interested readers to [35] for more theoretical analysis and
insights. It was recently shown in [36] that ParWalks can be easily scaled up on top of vertex-centric
graph engines such as VENUS [37] or PowerGraph [38]. Also, our model was successfully applied to
the Huawei App Store for large-scale app push recommendation, and significantly outperformed other
state-of-the-art methods [36]. We expect our model and analysis to benefit many more applications
in practice.

ACKNOWLEDGMENT
This research received support from the grant 1-ZVJJ funded by the Hong Kong Polytechnic University.



394 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

APPENDIX

A.1 PROOFS
Lemma A.1. Suppose λi > 0 for some i, then any eigenvalue of (� + D)−1W is of magnitude less

than 1.
Proof. Let C = (� + D)−1W. We can see that all eigenvalues of C are real, because C is similar

to the real symmetric matrix (� + D)−1/2W(� + D)−1/2. Let v be any eigenvalue of C. We claim that
|v| < 1. Let u = (u1, u2, . . . , un)� be an eigenvector associated with v, where ui ∈ R for i = 1, 2, . . . , n.
Observe that C is nonnegative and the sum of each row of C is less than or equal to 1. Since λi > 0 for
some i, the sum of the ith row of C is less than 1. If |ui| = maxj{|uj|}, then |vui| = |C(i, :)u| < |ui|,
yielding |v| < 1. Otherwise, there must be a k �= i, |uk| = maxj{|uj|} and |uk| > |ui|. It is easy to see
that C(k, :)u �= vuk if |v| ≥ 1, which contradicts the assumption that Cu = vu. Hence, we conclude
that |v| < 1. �

Lemma A.2. Suppose λi > 0 for some i. Then,

(� + L)−1� =
∑
t≥0

((� + D)−1W)t(� + D)−1�. (A.1)

Proof. (�+L)−1 = (�+D−W)−1 = (I−(�+D)−1W)−1(�+D)−1 = ∑
t≥0((�+D)−1W)t(�+

D)−1, where the last equation follows from Lemma A.1. �
Proof of Corollary 14.1. The nonnegativity of A follows directly from Lemma A.2 because each

matrix in the summation is nonnegative. Denote by 1 the all-one vector and 0 the zero vector. Because
L + α� is nonsingular, it suffices to show that (L + α�)(A1 − 1) = 0, which follows by plugging in
A = (L + α�)−1α� and using the fact that L1 = 0.

Proof of Theorem 14.2. Note that because �−1L is similar to the symmetric and positive
semidefinite matrix L̄ = �−1/2L�−1/2, they have same real eigenvalues. Let L̄ = UEU� be the
eigen-decomposition of L̄ with eigenvalues 0 = γ1 < γ2 ≤ · · · ≤ γn (γ2 > 0 due to the connectivity of
the graph). Then the eigen-decomposition of �−1L can be written as

�−1L = VEV−1, with V = �−1/2U (V−1 = U��1/2). (A.2)

By Eq. (A.2), we have

(L + α�)−1α� =
(

1

α
�−1L + I

)−1
= VEαV−1, (A.3)

where

Eα = diag

(
1,

α

γ2 + α
, . . . ,

α

γn + α

)
. (A.4)

Hence,

lim
α→0+(L + α�)−1α� = �−1/2U(:, 1)U(:, 1)��1/2 = 1λ̄

�, (A.5)

where in the last equation we have used the fact that U(:, 1) =
( √

λ1√∑
i λi

, . . . ,
√

λn√∑
i λi

)�
.



REFERENCES 395

REFERENCES
[1] Page L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: bringing order to the web. tech.

rep.. Stanford InfoLab; 1999.
[2] Brand M. A random walks perspective on maximizing satisfaction and profit. In: Proceedings of the 2005

SIAM international conference on data mining. SIAM; 2005. p. 12–9.
[3] Fouss F, Pirotte A, Renders J, Saerens M. Random-walk computation of similarities between nodes of a graph

with application to collaborative recommendation. IEEE Trans Knowl Data Eng 2007;19(3):355–69.
[4] Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, et al. Building Watson: an overview

of the DeepQA project. AI Mag 2010;31(3):59–79.
[5] Fortunato S. Community detection in graphs. Phys Rep 2010;486(3):75–174.
[6] Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T. Collective classification in network data.

AI Mag 2008;29(3):93.
[7] Balmin A, Hristidis V, Papakonstantinou Y. ObjectRank: authority-based keyword search in databases.

In: Proceedings of the thirtieth international conference on very large data bases, vol. 30. VLDB Endowment;
2004. p. 564–75.

[8] Gyöngyi Z, Garcia-Molina H, Pedersen J. Combating web spam with trustrank. In: Proceedings of the thirtieth
international conference on Very large data bases, vol. 30. VLDB Endowment; 2004. p. 576–87.

[9] Wu B, Chellapilla K. Extracting link spam using biased random walks from spam seed sets. In: Proceedings
of the 3rd international workshop on adversarial information retrieval on the web. ACM; 2007. p. 37–44.

[10] Grady L. Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 2006;28(11):1768–83.
[11] Parthasarathy S, Tatikonda S, Ucar D. A survey of graph mining techniques for biological datasets. In:

Managing and mining graph data. Springer; 2010. p. 547–80.
[12] Zhou D, Weston J, Gretton A, Bousquet O, Schölkopf B. Ranking on data manifolds. In: Advances in neural

information processing systems; 2004. p. 169–76.
[13] Zhu X, Ghahramani Z, Lafferty JD. Semi-supervised learning using Gaussian fields and harmonic functions.

In: Proceedings of the 20th international conference on machine learning. ACM; 2003. p. 912–9.
[14] Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B. Learning with local and global consistency.

In: Advances in neural information processing systems 16. MIT Press; 2004. p. 321–8.
[15] Andersen R, Chung F, Lang K. Local graph partitioning using PageRank vectors. In: 47th Annual IEEE

symposium on foundations of computer science, 2006. FOCS’06. IEEE; 2006. p. 475–86.
[16] Andersen R, Chung F. Detecting sharp drops in PageRank and a simplified local partitioning algorithm.

Theory Appl Models Comput 2007:1–12.
[17] Lovász L. Random walks on graphs: a survey. In: Combinatorics, Paul Erdos is Eighty, vol. 2(1); 1993.

p. 1–46.
[18] Von Luxburg U, Radl A, Hein M. Hitting and commute times in large random neighborhood graphs. J Mach

Learn Res 2014;15:1751–98.
[19] Li Z, Liu J, Tang X. Pairwise constraint propagation by semidefinite programming for semi-supervised

classification. In: Proceedings of the 25th international conference on machine learning; 2008. p. 576–83.
[20] Wu XM, So MC, Li Z, Li SY. Fast graph Laplacian regularized kernel learning via semidefinite-quadratic–

linear programming. In: Advances in neural information processing systems; 2009. p. 1964–72.
[21] Sarkar P, Moore AW. Random walks in social networks and their applications: a survey. In: Social network

data analytics. Springer; 2011. p. 43–77.
[22] Li Z, Fang Y, Liu Q, Cheng J, Cheng R, Lui J. Walking in the cloud: parallel SimRank at scale. Proc VLDB

Endowment 2015;9(1):24–35.
[23] Wu XM, Li Z, So MC, Wright J, Chang SF. Learning with partially absorbing random walks. In: Advances

in neural information processing systems 25. Curran Associates, Inc.; 2012. p. 3077–85.

http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0120


396 CHAPTER 14 PARTIALLY ABSORBING RANDOM WALKS

[24] Nadler B, Srebro N, Zhou X. Statistical analysis of semi-supervised learning: the limit of infinite unlabelled
data. In: Advances in neural information processing systems; 2009. p. 1330–8.

[25] Wu XM, Li Z, Chang SF. Analyzing the harmonic structure in graph-based learning. In: Advances in neural
information processing systems; 2013. p. 3129–37.

[26] Berkhin P. Bookmark-coloring algorithm for personalized PageRank computing. Internet Math
2006;3(1):41–62.

[27] Kemeny J, Snell J. Finite markov chains. Springer; 1976.
[28] Chung FR. Spectral graph theory. American Mathematical Society; 1997.
[29] Chapelle O, Zien A. Semi-supervised classification by low density separation. In: Proceedings of the tenth

international workshop on artificial intelligence and statistics. Max-Planck-Gesellschaft; 2005. p. 57–64.
[30] Kveton B, Valko M, Rahimi A, Huang L. Semi-supervised learning with max-margin graph cuts.

In: International conference on artificial intelligence and statistics; 2010. p. 421–8.
[31] Bengio Y, Delalleau O, Le Roux N. Label propagation and quadratic criterion. In: Semi-supervised learning;

2006. p. 193–216.
[32] Wu XM, Li Z, Chang SF. New insights into Laplacian similarity search. In: Proceedings of the IEEE

conference on computer vision and pattern recognition; 2015. p. 1949–57.
[33] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc

IEEE 1998;86(11):2278–324.
[34] Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J

Comput Vis 2001;42(3):145–75.
[35] Wu XM. Learning on graphs with partially absorbing random walks: theory and practice. Ph.D. thesis,

Columbia University; 2016.
[36] Guo H, Tang R, Ye Y, Li Z, He X. A graph-based push service platform. In: International conference on

database systems for advanced applications. Springer; 2017. p. 636–48.
[37] Cheng J, Liu Q, Li Z, Fan W, Lui JC, He C. VENUS: vertex-centric streamlined graph computation on a

single PC. In: 2015 IEEE 31st international conference on data engineering (ICDE). IEEE; 2015. p. 1131–42.
[38] Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. Powergraph: distributed graph-parallel computation on

natural graphs. In: OSDI, vol. 12; 2012. p. 2.

http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00014-6/rf0195


CHAPTER

15METHODS FOR DECENTRALIZED
SIGNAL PROCESSING WITH BIG
DATA

Hoi-To Wai∗, Anna Scaglione∗, Eric Moulines†

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, United States∗

CMAP, Ecole Polytechnique, Palaiseau, France†

15.1 INTRODUCTION
The growing demand for data analytics and the end of Moore’s scaling law are fueling the trend
toward virtualization of distributed resources. The advances made in decentralized signal processing
algorithms are part of this trend as they enable networked machines to solve large-scale inference
problems through the implementation of relatively simple local data processing and communication
policies [1].

In a decentralized setting, the data are distributed over a network of N agents, modeled as an
undirected graph G = (V , E), where V = {1, . . . , N} is the set of agents and the set of edges
E ⊆ V × V describes the network connectivity. In general, each node will only be able to reach
directly a set of neighbors, which is a relatively small fraction of the nodes in V . It is thus important
to apply decentralized optimization algorithms that rely on near-neighbor information exchanges (c.f.
Section 15.1.1). Fortunately, a substantial class of machine learning algorithms is amenable to be solved
in a decentralized fashion because their formulation can be cast as a constrained optimization problem
in the following form:

min
θ∈Rd

F(θ) s.t. θ ∈ C, where F(θ) := 1

N

N∑
i=1

fi(θ ), (15.1)

using N connected agents. Here we consider a smooth optimization setting where fi(θ ) is a continuously
differentiable (possibly nonconvex) function held by the ith agent and C is a closed and bounded convex
set in Rd.

A common instance of Eq. (15.1) is the empirical risk minimization (ERM) problem (see Fig. 15.1),
where the private risk function fi(θ ) models the loss of θ incurred over the private data held by
agent i, e.g.,

fi(θ ) = 1

|�i|
∑
k∈�i

�i(θ , yi,k), (15.2)

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00015-8
Copyright © 2018 Elsevier Inc. All rights reserved.

399



400 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

FIG. 15.1

Decentralized signal processing for big data. Illustrating the scenario considered in this chapter. Our focus
is to tackle a (possibly nonconvex) optimization problem (15.1) in a decentralized setting, where the private
data are held by machines/agents connected on a network G.

where �i(θ , yi,k) quantifies the mismatch between a statistical model parameterized by θ and the kth
data entry, yi,k, held by agent i. In this instance, C corresponds to a regularization constraint imposed
on θ that promotes desirable properties such as sparsity or a low rank, which capture prior knowledge
about the solutions that can help overcome the curse of dimensionality in searching for a solution in Rd.
Problem (15.1) also covers a number of applications in control theory and signal processing, including
system identification [2], matrix completion [3], and sparse learning [4,5]. While in most instances
the inclusion of the high-dimensional constraint is a fundamental ingredient to attain good estimation
performance, the curse of dimensionality returns to haunt us due to the significant computational cost
added when enforcing such constraints through a projection step, aimed at ensuring feasible iterates.
We refer to this class of algorithms as decentralized projection-based algorithms and review them in
Section 15.1.1.

Unlike the projection-based algorithms, projection-free optimization methods have been recently
studied to address the curse of dimensionality caused by these high-dimensional constraints from the
computational standpoint. This chapter aims at giving a friendly and up-to-date introduction to both
projection-based algorithms and projection-free decentralized optimization algorithms, discussing in
depth their implementation issues and convergence properties. The projection-free decentralized opti-
mization algorithms introduced and studied in this chapter are rooted in the classical centralized Frank-
Wolfe (FW) algorithm [6] and are, therefore, referred to as the decentralized FW (DeFW). From the
algorithmic perspective, the FW algorithm replaces the costly projection step in projection-based algo-
rithms with a constrained linear optimization, which often admits a computationally efficient solution.

The rest of the chapter is organized as follows. In Section 15.2, we discuss both the classical
decentralized projected gradient descent algorithm and the newly proposed DeFW algorithm and
study their convergence rates for both convex and nonconvex optimization. In Section 15.3 we
showcase a concrete machine learning application of the algorithms surveyed, solving a low-rank
matrix completion problem on distributed data. We conclude in Section 15.4 by presenting numerical
results on both synthetic data and real data corroborating our theoretical claims.



15.1 INTRODUCTION 401

15.1.1 BACKGROUND
There is a vast literature on decentralized optimization algorithms to tackle Eq. (15.1). The first class
of them is characterized by a common basic primitive for distributed computation called average
consensus protocol, with the earliest references dating back to the 1980s [7] (see, e.g., [8] for a review).
This basic protocol is combined more or less directly with ideas that stem from the vast literature
on iterative solutions of centralized optimization problems. In particular, the rich theory on first-order
optimization methods, such as gradient descent, has been a prolific source of inspiration. For example,
Nedich and Ozdaglar [9] and Ram et al. [10] proposed one of the first examples of a decentralized
projected subgradient descent method; Chen [11] characterized the convergence rate of the method in
[10] and a few other proximal gradient-like methods; and Jakovetic et al. [12] studied a decentralized
version of the Nesterov-type accelerated gradient descent method. Later Shi et al. [13], Nedić et al.
[14], and Qu and Li [15] proposed a decentralized gradient descent method with a linear convergence
rate that is extremely efficient. Related works are also [16,17] and the references therein. Along the
same line are the Newton-type methods considered in, e.g., [18,19], which take inspiration from the
vast literature on second-order methods.

Another class of popular decentralized algorithms is developed from the primal-dual optimization
framework. Here, the most popular example is the alternating direction of multiplier method (ADMM)
[20]. Interestingly, the decentralized implementations often follow by reformulating the optimization
problem into problems with a consensus constraint, after which the standard primal dual optimization
procedure can be applied. Compared to the methods developed from first/second-order optimization,
these algorithms offer greater flexibility in handling complex constraints. Recent advances in this
direction include Duchi et al. [21] and Wei and Ozdaglar [22], which analyzed the convergence
rate of the general algorithm; Chang et al. [23] and Simonetto and Jamali-Rad [24] which analyzed
the decentralized algorithm for problems with a complex constraint structure; and Hong [25], which
analyzed the convergence of primal-dual algorithms for nonconvex optimization. Other decentralized
algorithms have also been developed, e.g., [26,27], based on fundamentally different ideas from the
ones cited above. The interested readers are referred to Chapter 5 for a comprehensive treatment of the
aforementioned decentralized optimization methods.

It is worth mentioning that most of the analyses of decentralized algorithms assume convexity, while
nonconvex decentralized optimization has received far less attention (exceptions are, e.g., [16,25–29]).
As nonconvex problems are often encountered in control theory, signal processing, and machine
learning, it is important to fill this gap.

As mentioned in the introduction, big data analytics often map onto the solution of high-dimensional
constrained problems. The constraints are essential to solving the problem and finding the needle in
the haystack; unfortunately, using a projection operator (or more generally the proximal operator) in
handling these large problems becomes computationally prohibitive. The goal of this chapter is to
introduce and analyze the DeFW algorithm as an attractive alternative for handling such problem. Note
that the centralized FW algorithm has already found many applications in optimal control [30], matrix
completion [31], image and video colocation [32], electric vehicle charging [33], and traffic assignment
[34]; see the overview article [35]. Additionally, the convergence of the centralized FW algorithm has
been studied for convex problems [6,35] and a few results shed some light on its convergence properties
for nonconvex problems [36–38].



402 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

15.1.2 NOTATIONS AND MATHEMATICAL PRELIMINARIES
To prepare the reader for what follows, this section introduces the basic notation as well as some
assumptions and definitions used throughout this chapter.

For any d ∈ N, we use the notation [d] to refer to the set {1, . . . , d}. We use boldfaced lower-case
letters to denote vectors and boldfaced upper-case letters to denote matrices. For a vector x (or a matrix
X), the notation [x]i (or [X]i,j) denotes its ith element (or (i, j)th element). The vectorization of a matrix
X ∈ Rm1×m2 is denoted by vec(X) = [x1; x2; . . . ; xm2 ] ∈ Rm1m2 such that xi is the ith column of X.
The vector ei ∈ Rd is the ith unit vector such that [ei]j = 0 for all j �= i and [ei]i = 1. For some
positive finite constants C1 and nonnegative functions f (t), g(t), the notations f (t) = O(g(t)) indicate
f (t) ≤ C1g(t).

We denote by E the Euclidean space embedded in Rd and the Euclidean norm is denoted by ‖ · ‖2.
The binary operator 〈·, ·〉 denotes the inner product on E. In addition, E is equipped with a norm ‖ · ‖.
Let G, L, μ be nonnegative constants. Consider a function f : Rd → R, the function f is G-Lipschitz if
for all θ , θ ′ ∈ E,

|f (θ ) − f (θ ′)| ≤ G‖θ − θ ′‖. (15.3)

Notice that the norm on the right side does not need to be the standard Euclidean norm, e.g., it can be the
trace-norm of matrices. The function f is L-smooth if for all θ , θ ′ ∈ E, ‖∇f (θ ′)−∇f (θ)‖2 ≤ L‖θ ′−θ‖2.
The equation above implies that for all θ , θ ′ ∈ E,

f (θ ) − f (θ ′) ≤ 〈∇f (θ ′), θ − θ ′〉 + L

2
‖θ − θ ′‖2

2. (15.4)

The function f is μ-strongly convex if for all θ , θ ′ ∈ E,

f (θ ) − f (θ ′) ≤ 〈∇f (θ), θ − θ ′〉 − μ

2
‖θ − θ ′‖2

2, (15.5)

moreover, f is convex if the equation above is satisfied with μ = 0. Consider Problem (15.1), its
constraint set C ⊆ E is convex and bounded with the diameter defined as:

ρ := max
θ ,θ ′∈C

‖θ − θ ′‖, ρ̄ := max
θ ,θ ′∈C

‖θ − θ ′‖2, (15.6)

note that ρ is defined with respect to (w.r.t.) the norm ‖ · ‖ while ρ̄ is defined w.r.t. the Euclidean norm.
When the objective function F is μ-strongly convex with μ > 0, the optimal solution to Eq. (15.1) is
unique and denoted by θ�, we also define

δ := min
s∈∂C

‖s − θ�‖2, (15.7)

where ∂C is the boundary set of C. If δ > 0, the solution θ� is in the interior of C.
In the following developments, the effects of the network interactions are captured mathematically

by a doubly stochastic matrix, A ∈ RN×N+ , that can be interpreted as a weighted adjacency matrix
associated with the network graph G = (V , E); that is, Aij ≥ η for some η > 0 if (i, j) ∈ E. Because
the matrix is doubly stochastic A�1 = A1 = 1 and it is assumed that the second largest singular value,
σ2(A), is strictly less than one, which implies that the graph is a single component, this matrix is the
mixing matrix required by the average consensus protocol [7]. A communication round corresponds to



15.2 DECENTRALIZED OPTIMIZATION ALGORITHMS 403

the network nodes sharing a message through the network edges once. To keep our discussion simple,
we shall focus on the static network setting where A is time invariant.

15.2 DECENTRALIZED OPTIMIZATION ALGORITHMS
Next, two possible decentralized methods are described that are appropriate to solve problem instances
in the same form as Eq. (15.1). The first algorithm is the classical decentralized projected gradient
(DPG) algorithm in [10] and its variants. The second is the decentralized Frank-Wolfe (DeFW)
algorithm introduced and studied in [39]. For both of them, the convergence rates are derived as well.

15.2.1 DECENTRALIZED PROJECTED GRADIENT (DPG)
The DPG algorithm emulates the centralized projected gradient descent (PG) [40]. In particular, let
t ∈ N be the iteration number, the projection can be described as:

θ t+1 = PC (θ t − γt∇F(θ t)), (15.8)

where γt ∈ (0, 1] is a step size and PC(·) is the projection operator onto C:

PC (x) := arg min
θ∈C

‖θ − x‖2
2. (15.9)

To mimic the centralized PG algorithm in the decentralized setting, the agents need to retrieve
information about the global gradient ∇F(θ t). The DPG algorithm achieves this using the following
recursions—let θ i

t be the local iterate held by agent i at iteration t,

(Consensus step) θ̄
i
t =

N∑
j=1

Aijθ
j
t, (15.10a)

(PG step) θ i
t+1 = PC

(
θ̄

i
t − γt∇fi(θ̄

i
t)
)

, (15.10b)

where θ̄
i
t is an auxiliary variable that holds a local approximate of the global average parameter

(1/N)
∑N

j=1 θ
j
t. The consensus step (15.10a) is similar to the average consensus protocol in [7] while the

PG step (15.10b) is analogous to the centralized PG algorithm (15.8), with the exception that the global

gradient ∇F(θ t) is replaced by the local gradient function ∇fi(θ̄
i
t), evaluated at the approximate global

iterate. Despite using the local gradient vector in lieu of the global one, the DPG algorithm achieves

convergence because the evaluation of ∇fi(θ̄
i
t) incorporates information about the local functions held

by the other agents that propagates through the mixing step. More specifically, the algorithm exhibits
sublinear convergence for convex problems with a diminishing step size γt.

As seen, the iteration steps of the DPG algorithm are conceptually simple to implement. However,
for high-dimensional problems, the projection operation (15.9) can be computationally prohibitive,
even when a closed form solution is available for its update. For example, when C is a trace norm ball
for matrices of dimension m1 × m2, i.e.,

C = {θ ∈ Rm1×m2 : ‖θ‖σ ,1 ≤ R}, (15.11)



404 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

the projection operator admits a closed form solution as:

PC (X) = U max{0, � − ��}V�, where X = U�V�, (15.12)

for some diagonal �� such that ‖PC(X)‖σ ,1 ≤ R. Clearly, the projection step amounts to computing
a full singular value decomposition (SVD) of the operand. The associated complexity of such a
step grows as O(max{m1m2

2, m2m2
1}) is a cost endured by all the N agents in all iterations. This is

highly undesirable for big data applications where m1, m2 � 0. The DPG has served as a prototype
algorithm for a number of sophisticated decentralized optimization algorithms, e.g., [12–15]. These
algorithms require fewer iterations to convergence, but are equally burdened by the high complexity of
the projection step.
Convergence analysis. The convergence properties of the DPG algorithm are known for a general
setting with a time-varying mixing matrix (i.e., the matrix A[t] may change at every iteration) [10].
Specifically, it has been established in [10] that the algorithm converges almost surely when the step
size is chosen such that

∑∞
t=1 γt = ∞ and

∑∞
t=1 γ 2

t < ∞ (and the time-varying network is connected
in an ergodic sense). However, the convergence rate of the DPG algorithm has not been studied in [10].
Here, we describe the convergence rate analysis conducted in [11] for convex problems, whose result
can be summarized as follows:

CONVERGENCE OF DPG (CONVEX)

Theorem 15.1 ([11]). Consider Problem (15.1) and suppose that each of fi is convex and L-
smooth. If we apply the DPG algorithm to solve Eq. (15.10) and choose the step size as γt ≤ 1/L,
then it holds for all T ≥ 1 that:

min
1≤t≤T

F(θ i
t) − (

min
θ∈C

F(θ )
) ≤ D1 + D2

∑T
t=1 γ 2

t∑T
t=1 γt

, (15.13)

where D1, D2 are some finite constants that depend on σ2(A). If we set γt = C/
√

t for some C < ∞,
then min1≤t≤T F(θ i

t) − (minθ∈C F(θ )) = O(log T/
√

T). Moreover, the algorithm attains consensus,

that is limt→∞ ‖θ i
t − (1/N)

∑N
j=1 θ

j
t‖ = 0 ∀ i.

Theorem 15.1 proves that, in terms of the difference between objective values at iteration T and at
an optimal solution (a.k.a. the primal optimality gap), the DPG algorithm converges sublinearly at a
rate of O(log T/

√
T). The proof of Theorem 15.1 proceeds first in showing that the algorithm attains

consensus asymptotically, and then in bounding the optimality gap by the descent lemma in [40] (as fi
is assumed to be a smooth function).

If we relax the assumption that the objective function of Problem (15.1) is convex, little is known
about the convergence (rate) of the DPG algorithm. Recent work [41] has shown that a decentralized
gradient descent method applied to the unconstrained version of Eq. (15.1) converges at a sublinear rate
for nonconvex problems, i.e., ‖θ i

t − θ̄‖ = O(1/
√

t), where θ̄ is a stationary point to Eq. (15.1), yet the
algorithm considered therein is different from the DPG algorithm in Eq. (15.10). The state of the art in
understanding the convergence of the DPG applied to a nonconvex problem can be found in [16] and is
quoted below:



15.2 DECENTRALIZED OPTIMIZATION ALGORITHMS 405

CONVERGENCE OF DPG (NONCONVEX)

Theorem 15.2 ([16]). Consider Problem (15.1) and the DPG algorithm (15.10). Suppose that
each of fi is L-smooth. If we choose the step size such that

∑∞
t=1 γt = ∞ and

∑∞
t=1 γ 2

t < ∞, then
the sequence {θ i

t}t≥1 satisfies:

1. (Consensus) limt→∞ ‖θ i
t − (1/N)

∑N
j=1 θ

j
t‖ = 0 for all i ∈ [N].

2. (Stationary point) limt→∞ ‖θ i
t − θ̄‖ = 0, where θ̄ is a stationary point of Eq. (15.1).

Finally, we remark that in a centralized setting, the PG algorithm is known to converge at a linear rate
for strongly convex objective functions. Such convergence rate is not observed for the DPG algorithm
because the latter requires a diminishing step size to guarantee convergence. An active research
area is to develop DPG-like algorithms that achieve linear convergence using a constant step size,
e.g., [13–15].

15.2.2 DECENTRALIZED FRANK-WOLFE (DEFW)
The decentralized Frank-Wolfe (DeFW) algorithm [39] is born out of the classical centralized FW
algorithm [6], which is briefly reviewed next. Denote by t ∈ N the iteration number. Assume that the
initial point θ1 ∈ C is feasible, which may be found using prior knowledge on the constraint set, e.g.,
for the trace-norm ball constraint in Eq. (15.11), an obvious solution is to pick the zero matrix 0 as θ1.
To solve problem (15.1) the centralized FW algorithm performs the following iteration:

at ∈ arg min
a∈C

〈∇F(θ t), a〉, (15.14a)

θ t+1 = θ t + γt(at − θ t), (15.14b)

where γt ∈ (0, 1] is a step size to be determined. Observe that θ t+1 is a convex combination of θ t and
at, which are both feasible, therefore θ t ∈ C as C is convex.

Algorithm 15.1 DECENTRALIZED FRANK-WOLFE (DEFW)
1: Input: Initial point θ i

1 ∈ C for i = 1, . . . , N, doubly stochastic weighted adjacency matrix of G, A ∈ Rn×n.

2: Initialize the slack variables with ∇ i
0F ← 0 and ∇fi(θ̄

i
0) ← 0 for all i ∈ [N].

3: for t = 1, 2, . . . do
4: Consensus: approximate the average iterate:

θ̄
i
t ← ∑N

j=1 Aijθ
j
t, ∀ i ∈ [N]. (15.15)

5: Aggregation: approximate the average gradient:

∇i
t F ← ∑N

j=1 Aij
(∇j

t−1F + ∇fj(θ̄
j
t) − ∇fj(θ̄

j
t−1)

)
, ∀ i ∈ [N]. (15.16)



406 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

6: Frank-Wolfe Step: update

θ i
t+1 ← (1 − γt)θ̄

i
t + γtai

t where ai
t ∈ arg min

a∈C
〈∇i

t F, a〉, ∀ i ∈ [N], (15.17)

where γt ∈ (0, 1] is a diminishing step size.

7: end for
8: Return: θ̄

i
t+1, ∀ i ∈ [N].

To this end, one would be tempted to develop a DeFW algorithm in a similar fashion as the
DPG algorithm, i.e., simply modifying the centralized FW algorithm by replacing Eq. (15.14b) with
an average consensus update while using the local gradient ∇fi(·) for the update direction (15.14a).
However, as we shall explain later, this procedure may not converge to a meaningful solution of
the problem (15.1). As a remedy, we approximate two pieces of the global information about the
problem (15.1) that appears in the FW updates (15.14)—the parameter θ t and the global gradient
∇F(θ t) = (1/N)

∑N
i=1 ∇fi(θ t), neither of which can be obtained locally from a single agent. In a similar

spirit to the development of the DPG algorithm, the DeFW algorithm, summarized in Algorithm 15.1,
combines the classical average consensus (AC) approach [7] with the FW algorithm iterations. In the
pseudocode, the local parameter kept by agent i at iteration t is denoted by θ i

t and the global average
parameter is denoted by

θ̄ t := 1

N

N∑
i=1

θ i
t. (15.18)

The DeFW algorithm produces two auxiliary sequences {θ̄ i
t}t≥1 and {∇ i

t F}t≥1 that correspond to the
local approximates of θ̄ t and ∇F(θ̄ t), respectively.

As seen, the DeFW algorithm uses two rounds of near-neighbor communication steps (Steps 4 and
5) to mimic the centralized FW algorithm. In particular, in the consensus step, each agent shares its
local variable θ i

t with its neighbor to approximate θ̄ t, while in the aggregation step, agent j computes

from θ̄
j
t the message:

∇j
t−1F + ∇fj(θ̄

j
t) − ∇fj(θ̄

j
t−1) (15.19)

and shares it with the neighbors, thereby computing an approximation of ∇F(θ̄ t). Finally, in the FW
step, each agent computes the FW update in a similar fashion as the centralized FW algorithm based

on θ̄
i
t and ∇ i

t F.
Note that during the aggregation step, the agents do not transmit plainly the current local gradient

∇fj(θ̄
j
t). Instead, they exchange a carefully crafted message that is a linear combination of the previous

estimate ∇ j
t−1F and the difference in the successive gradients ∇fj(θ̄

j
t) − ∇fj(θ̄

j
t−1). This step is the key

ingredient that allows the DeFW algorithm to achieve convergence while requiring a constant number
of communication rounds per iteration. In fact, this step is partly inspired by the SAGA method [42]
and has also been employed in a few recent works on decentralized optimization [14,15,26].

Compared to the DPG method (15.10), the DeFW algorithm requires an additional aggregation
step to compute the approximate global gradient while the global gradient is not required in the DPG



15.2 DECENTRALIZED OPTIMIZATION ALGORITHMS 407

method. The primary reason for this is the fact that the FW step computation (15.14a) is not smooth in
general with respect to the gradient ∇F(θ̄ t). Concretely, consider C = {θ ∈ R2 : ‖θ‖1 ≤ 1} and let
∇F(θ ) = (1, 1 − ε) and ∇F(θ ′) = (1, 1 + ε) be two gradient vectors for any ε > 0, we observe that

(−1, 0) = arg min
a∈C

〈∇F(θ), a〉, (0, −1) = arg min
a∈C

〈∇F(θ ′), a〉. (15.20)

Therefore, a small perturbation to the gradient direction may lead to a huge difference in the FW
direction at found. On the other hand, the projection operator in the DPG method is nonexpansive such
that it tolerates small changes in the gradient direction and retains the information in the gradient after

the projection. Now, if the DeFW algorithm proceeds by taking ai
t = arg mina∈C〈∇fi(θ̄

i
t), a〉 in a similar

fashion as in the DPG method, the computed direction ai
t can be greatly different from that of taking it

with respect to the global gradient ∇F(θ̄ t). Intuitively, this would prevent convergence to a stationary
point of Eq. (15.1) because the computed directions are likely to be completely unrelated to the global
gradient that the algorithm is supposed to follow. It is, therefore, necessary to adopt a two-step average
consensus procedure to implement the DeFW algorithm.

A main feature of the DeFW algorithm (as well as its centralized counterpart) is that the linear
optimization1 (LO) step (15.14a) can often be solved more efficiently than computing the projection,
which justifies the epithet of projection-free algorithm. Taking the trace-norm ball example with C
defined in Eq. (15.11) again, the corresponding LO amounts to the following computation:

at = arg min
a∈C

〈∇F(θ t), a〉 = −Ru1v�
1 , (15.21)

where u1, v1 are the top left/right singular vector of the matrix ∇F(θ t). The complexity of such
computation is O(max{m1, m2}), which is considerably less than the projection step discussed above.
As reviewed by Jaggi [35], a number of other constraint types also admit an efficient LO computation
when compared to their projection counterpart.
Convergence analysis. The DeFW algorithm can be seen as an inexact/perturbed version of the FW
algorithm operating on the global average parameter θ̄ t. The following lemmas, proven in [39], establish
this. For some α ∈ (0, 1], define t0(α) as the smallest integer such that

σ2(A) ≤
(

t0(α)
t0(α) + 1

)α

· 1

1 + (t0(α))−α
. (15.22)

Notice that t0(α) is upper bounded by:

t0(α) ≤
⌈

1

σ2(A)−1/(1+α) − 1

⌉
, (15.23)

which is finite as long as σ2(A) < 1. Now, the lemmas follows:

Lemma 15.1. Set the step size γt = 1/tα in the DeFW algorithm for some α ∈ (0, 1], then θ̄
i
t in

Eq. (15.15) satisfies:

max
i∈[N] ‖θ̄ i

t − θ̄ t‖2 ≤ Cp/tα , ∀ t ≥ 1, Cp := (t0(α))α
√

Nρ̄. (15.24)

�

1Notice that Eq. (15.14a) is a convex optimization problem with a linear objective.



408 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

Lemma 15.2. Set the step size γt = 1/tα in the DeFW algorithm for some α ∈ (0, 1]. Suppose that

each of fi is L-smooth, θ̄
i
t is updated according to Eq. (15.15), then ∇ i

t F in Eq. (15.16) satisfies

N−1 ∑N
i=1 ∇i

t F = N−1 ∑N
i=1 ∇fi(θ̄

i
t), ∀ t ≥ 1, (15.25)

and:

max
i∈[N] ‖∇i

t F − ∇tF‖2 ≤ Cg/tα , ∀ t ≥ 1, (15.26)

Cg := (t0(α))α · 2
√

N(2Cp + ρ̄)L. (15.27)

�
Notice that the conditions (15.24) and (15.26) show that both the local approximations θ̄

i
t and ∇ i

t F
approach the global averages asymptotically at a rate O(1/tα), as controlled by a step-size parameter.
Moreover, Eq. (15.24) implies that the iterates produced by DeFW attain consensus asymptotically.
Therefore, for each agent, each iteration of the DeFW algorithm updating θ̄ t is equivalent to running
an inexact version of the corresponding update in the FW algorithm. Using the observations above, the
following result holds [39]:

CONVERGENCE OF DEFW (CONVEX)

Theorem 15.3 ([39]). Consider Problem (15.1) and the DeFW algorithm. Set the step size as
γt = 2/(t + 1). Suppose that each of fi is convex and L-smooth, then:

F(θ̄ t) − F(θ�) ≤ 8ρ̄(Cg + LCp) + 2Lρ̄2

t + 1
, (15.28)

for all t ≥ 1, where θ� is an optimal solution to Eq. (15.1). Furthermore, if F is μ-strongly convex
and the optimal solution θ� lies in the interior of C, i.e., δ > 0 (cf. Eq. 15.7), we have

F(θ̄ t) − F(θ�) ≤ (4ρ̄(Cg + LCp) + Lρ̄2)2

2δ2μ
· 9

(t + 1)2
, (15.29)

for all t ≥ 1. In the above, the two constants Cp and Cg are defined in Eqs. (15.24) and (15.27),
respectively.

As the consensus error, maxi∈[N] ‖θ̄ i
t − θ̄ t‖2, decays to zero (cf. Eq. 15.24), the local iterates {θ̄ i

t}t≥1
share similar convergence guarantees as their centralized counterpart {θ̄ t}t≥1. We note that the first
O(1/t) convergence rate is analogous to the well-known result for the centralized FW algorithm (see
e.g., [35]). The second O(1/t2) convergence rate, achievable under the additional assumption of strong
convexity, can be proven thanks to a recent observation made in [38]. It is important to note that the
upper bound in Eq. (15.28) is smaller than the upper bound in Eq. (15.29) when t is small.



15.2 DECENTRALIZED OPTIMIZATION ALGORITHMS 409

Now, suppose one can relax the convexity assumption on fi. It is of interest to study the convergence
of the FW gap:

gt := max
θ∈C

〈∇F(θ̄ t), θ̄ t − θ〉, (15.30)

as a measure of the stationarity of the iterate θ̄ t. This is motivated by the observation that when gt = 0,
then the iterate θ̄ t is a stationary point to Eq. (15.1), because 〈∇F(θ̄ t), θ̄ t − θ〉 ≤ 0 for all θ ∈ C. Also,
define the set of stationary point to Eq. (15.1) as:

C� =
{
θ ∈ C : max

θ∈C
〈∇F(θ ), θ − θ〉 = 0

}
. (15.31)

To proceed, we use the following technical assumption
Assumption 15.1. The set C� is nonempty. Moreover, the function F(θ ) takes a finite number of

values over C�, i.e., the set F(C�) = {F(θ ) : θ ∈ C�} is finite. �
While verifying that Assumption 15.1 is valid for a given problem is not straightforward, a number

of studies (e.g., [36,41]) rely on this technical assumption to shed light on the performance of iterative
algorithms solving nonconvex problems. Moreover, it is not unreasonable to assume that Eq. (15.1) has
a finite number of stationary points because the set C is bounded; note that Assumption 15.1 is satisfied
for this case. Under these assumptions the following theorem holds:

CONVERGENCE OF DEFW (NONCONVEX)

Theorem 15.4 ([39]). Consider Problem (15.1) and the DeFW algorithm. Set the step size as
γt = 1/tα for some α ∈ (0, 1]. Suppose each of fi is L-smooth and G-Lipschitz (possibly nonconvex).
It holds that:

1. for all T ≥ 6 that are even, if α ∈ [0.5, 1),

min
t∈[T/2+1,T] gt ≤ 1

T1−α
· 1 − α

(1 − (2/3)1−α)

·
(

Gρ + (Lρ̄2/2 + 2ρ̄(Cg + LCp)) log 2
)

;

(15.32)

if α ∈ (0, 0.5),

min
t∈[T/2+1,T] gt ≤ 1

Tα
· 1 − α

(1 − (2/3)1−α)

·
(

Gρ + (Lρ̄2/2 + 2ρ̄(Cg + LCp))(1 − (1/2)1−2α)
1 − 2α

)
.

(15.33)

2. under Assumption 15.1 and α ∈ (0.5, 1], the sequence of objective values {F(θ̄ t)}t≥1 converges,
{θ̄ t}t≥1 has limit points, and each limit point is in C�.

In the above, the two constants Cp and Cg are defined in Eqs. (15.24) and (15.27), respectively.



410 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

Note that setting α = 0.5 gives the quickest convergence rate of O(1/
√

T). This rate is comparable
to the best-known rate for centralized projected gradient descent [43]. It is worth mentioning that
Theorem 15.4 is even stronger than previously established theorems regarding the convergence of the
centralized FW applied to nonconvex problems. For instance, Ref. [36] requires that the local minimizer
is unique; Ref. [37] gives the same convergence rate, but uses an adaptive step size.

Lastly, let us comment on the choice of step size for practical convergence. We remark that the
results in Theorem 15.4 are given in terms of the average parameter θ̄ t, which is the quickest when
α = 0.5. However, from Lemma 15.1, we notice that the local approximation error for consensus has
its slowest decay when α = 0.5. Because achieving consensus is also one of our main objectives, this
presents a potential tradeoff in the choice of α. Extensive numerical experiments support the rule of
thumb of setting α = 0.75, which generally yields a good compromise in the performance.

15.2.3 COMMENTS ON DPG AND DEFW ALGORITHMS
From the discussion above it is readily apparent that the DeFW algorithm brings about two significant
benefits. It enjoys a state of the art convergence rate for convex problems (O(log(t)/

√
t) for DPG

versus O(1/t) for DeFW) as well as a significant computational cost reduction in its implementation
when dealing with high-dimensional constrained problems, compared to the DPG. Furthermore, for
nonconvex problems, the DeFW algorithm convergence rate is comparable to that of a centralized
projected gradient method.

However, the DeFW algorithm entails a stronger requirement on the in-network communication
protocol relative to the DPG. In particular, each iteration of the DeFW algorithm requires two
communication rounds between the agents while the DPG algorithm only requires one. This is not a
matter only of accounting for the number of iterations fairly. When extending the DeFW algorithm
to work on time-varying networks (i.e., to work asynchronously), requiring that two consecutive
communication rounds are performed successfully adds some coordination complexity. By requiring
only one data exchange, the DPG algorithm is naturally extended to work with time varying networks
and each iteration can be performed asynchronously. In fact, the convergence results pertaining to the
DPG discussed before apply directly in the case of an asynchronous implementation.

15.3 APPLICATION: MATRIX COMPLETION
The goal of this section is to showcase practical applications of the DeFW algorithm to the scalable
implementation of big data analytics by applying the DeFW to the matrix completion problem.

The setting consists of a network of agents endowed with incomplete observations of a matrix θ true
of dimension m1 × m2 with m1, m2 � 0. The ith agent has corrupted observations from the training set
�i ⊂ [m1] × [m2] that are expressed as:

Yk,l = [θtrue]k,l + Zk,l, ∀ (k, l) ∈ �i. (15.34)

To recover a low-rank θ true (which is generally a high-dimensional search) one can cast the regression
problem into the following trace-norm constrained matrix completion (MC) problem:



15.3 APPLICATION: MATRIX COMPLETION 411

min
θ∈Rm1×m2

N∑
i=1

∑
(k,l)∈�i

f̃i([θ ]k,l, Yk,l) s.t. ‖θ‖σ ,1 ≤ R, (15.35)

where f̃i : R2 → R is a loss function picked by agent i according to the observations he/she received.
Notice that Eq. (15.35) is also related to the low-rank subspace system identification problem described
in [2], where Y with [Y]k,l = Yk,l, θ true are modeled as the measured system response and the ground-
truth, low-rank response (see also [44] and references therein).

Similar MC problems were considered in [45–48], where Ling et al. [45] studied a consensus-based
optimization method similar to the one described in this chapter while Mackey et al. [46], Yu et al.
[47], and Recht and Ré [48] studied the parallel computation setting where the agents are working
synchronously in a fully connected network. These works assume that the rank of θ true is known
in advance and solve the MC problem via matrix factorization. In addition, the algorithms in [45,
46] require that each local observation set �i only have entries taken from a disjoint subset of the
columns/rows only. The approach discussed next does not have any of the aforementioned restrictions.

We consider two different statistical models for Zk,l and propose the corresponding optimization
problem formulation. When Zk,l is the i.i.d. Gaussian noise of variance σ 2

i , we choose f̃i(·, ·) to be the
square loss function, i.e.,

f̃i([θ ]k,l, Yk,l) := (1/σ 2
i ) · (Yk,l − [θ ]k,l)2. (15.36)

This yields the classical MC problem in [3]. Even though the square loss function is strongly convex
when applied element-wise, the resulting problem (15.35) is not strongly convex as we only have partial
observations on the matrix. The next model considers the sparse+low rank matrix completion problem
posed in [49], where the observations are contaminated with sparse noise. More specifically, the noise
term Zk,l has only a few entries in �i where Zk,l is nonzero. We choose f̃i(·, ·) to be the negated Gaussian
loss, i.e.,

f̃i([θ ]k,l, Yk,l) :=
(

1 − exp

(
− ([θ ]k,l − Yk,l)2

σi

))
, (15.37)

where σi > 0 controls the robustness to outliers for the data obtained at the ith agent. Here, f̃i(·, ·) is
a smoothed �0 loss [50] with enhanced robustness to outliers in the data. The resulting MC problem
(15.35) is nonconvex.

Note that Eq. (15.35) is a special case of problem (15.1) with C being the trace-norm ball. Both
the DPG and DeFW algorithms introduced in the last section can be applied on Eq. (15.35) directly.
In particular, thanks to its projection-free nature, the DeFW algorithm leads to a low complexity
implementation of Eq. (15.35). To this end, we also observe a few properties on the communication
and storage cost of the DeFW algorithm:

• The gradient surrogate ∇ i
t F (15.16) is supported only on ∪N

i=1�i. In fact, for all i ∈ [N], the local
gradient

∇fi(θ̄
i
t) =

∑
(k,l)∈�i

f̃ ′
i ([θ̄ i

t]k,l, Yk,l) · ek(e′
l)

� (15.38)



412 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

is supported on �i, where θ̄
i
t is defined in Eq. (15.15). In the above, ek (e′

l) is the kth (lth) canonical
basis vector for Rm1 (Rm2 ) and f̃ ′

i (θ , y) is the derivative of f̃i(θ , y) taken with respect to θ .

Consequently, the average ∇ i
t F is supported only on ∪N

i=1�i. As | ∪N
i=1 �i| � m1m2, the size of the

message exchanged during the aggregating step (Line 5 in DeFW) is relatively small.

• The update direction ai
t is a rank-one matrix composed of the top singular vectors of ∇ i

t F
(cf. Eq. 15.21). Because every iteration in DeFW adds at most N distinct pair of singular vectors to

θ̄ t, the rank of θ̄
i
t is upper bounded by tN if we initialize by θ̄

i
0 = 0. We can reduce the

communication cost in Line 4 in DeFW by exchanging these singular vectors. Note that
(tN) · (m1 + m2) entries are stored/exchanged instead of m1 · m2.

• When the agents are only concerned with predicting the entries of θ true in the subset
� ⊂ [m1] × [m2], instead of propagating the singular vectors as described above, the consensus
step can be carried out by exchanging only the entries of θ i

t+1 in � ∪ (∪N
i=1�i

)
without affecting

the operations of the DeFW algorithm. In this case, the storage/communication cost is
|� ∪ (∪N

i=1�i
)|.

Faster matrix completion. In the recent work [51], the authors have proposed an extension to the DeFW
algorithm, tailoring it to the MC problem. The goal is to further speed up the algorithm by relying on
even simpler operations that are possible in this specific case. Recall that the DeFW algorithm for
the matrix completion problem (15.35) seeks to compute the principal components of ∇F(θ t) at each
iteration. Algebraically, such a task can be completed using the simple power method. Leveraging on
this observation, the “Fast DeFW” algorithm combines the consensus and aggregation steps in the
DeFW algorithm with a decentralized power method. In particular, the computation required at the
agents is now reduced to a series of matrix-vector multiplications. Interestingly, the algorithm also
hides the private information about the local gradients because what is communicated is the product of
a random matrix-vector multiplication.

Choosing the parameters of the decentralized power method appropriately, the Fast DeFW achieves
similar convergence rate as the DeFW algorithm while reducing significantly the size of the messages
that need to be exchanged. However, a drawback of Fast DeFW is that it does entail a higher number
of communication rounds per iteration, demanding tighter agent coordination compared to the DeFW.

15.4 NUMERICAL EXPERIMENTS
Having described the nuts and bolts of the algorithms and how they are expected to perform, this section
is dedicated to exposing their performance merits through numerical experiments, all focused on the
matrix completion application described in Section 15.3. To simulate the decentralized optimization
setting, we artificially construct a network of N = 50 agents, where the underlying communication
network G is an Erdos-Renyi graph with connectivity of 0.1. The doubly stochastic matrix A used in
the average consensus protocol is calculated according to the Metropolis-Hastings rule in [52].

As stated before, the MC goal is to estimate missing entries of an unknown matrix through corrupted
partial measurements. We use two datasets—the first dataset is synthetically generated and the unknown
matrix θ true is rank-K and has dimensions of m1 × m2, where m1, m2, K are varied in different
experiments; the matrix is generated as θ true = ∑K

i=1 yix
�
i /K where yi, xi have i.i.d. N (0, 1). The



15.4 NUMERICAL EXPERIMENTS 413

FIG. 15.2

Convergence rates of the decentralized algorithms. Applying decentralized algorithms on the matrix completion
problem (15.35) for a synthetically generated matrix with noiseless observations with m1 = 100, m2 = 250,
and K = 5. (Left) Optimality gap against the iteration number. (Right) Test MSE against the iteration number.

second dataset is the movielens100k dataset [53]. The unknown matrix θ true consists of the movie
ratings of m1 = 943 users on m2 = 1682 movies, and a total of 105 entries in θ true are available as
integers ranging from 1 to 5. The datasets are divided into training and testing sets and the mean square
error (MSE) on the testing set is evaluated as:

Test MSE = 1

|�test|
∑

(k,l)∈�test

∣∣[θtrue]k,l − [θ̂ ]k,l
∣∣2, (15.39)

where θ̂ denotes the estimated θ produced by the algorithm and �test contains the set of data points
that is missing. The decentralized algorithms are all implemented in MATLAB and tested on an Intel
Xeon server. Furthermore, for the DPG algorithm, we set γt = 1/

√
t as suggested by the convergence

analysis; for the DeFW algorithm with the square loss objective defined in Eq. (15.36), γt = 2/(t + 1);
for the DeFW with the Gaussian loss objective (15.37), γt = 1/t0.75. The MATLAB program for the
simulations is available at the online repository https://github.com/hoitowai/defw. The experimental
results are as follows.
Convergence rates. Our first example considers the synthetic data case with m1 = 100, m2 = 250,
and K = 5. The number of observations made is |�i| = 100. The observations are noiseless, thus the
optimal objective value for Eq. (15.35) is zero. The numerical results are presented in Fig. 15.2, where
we plot the optimality gap and test MSE against the iteration number. We observe that the theoretically
predicted convergence rates of the decentralized algorithms match the numerical trends. Moreover,



414 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

FIG. 15.3

Computation time of the decentralized algorithms. Results for the decentralized algorithms applied to the matrix
completion problem (15.35) for a synthetically generated matrix with noiseless observations with m1 = 200,
m2 = 1000, K = 5, and |�i | = 100. (Left) Objective value against the running times. (Right) Test MSE against
the running time.

the DeFW algorithm applied to different loss functions performs slightly better than the theoretically
predicted rate bounds. In the squared loss case, a possible conjecture explaining this phenomenon is
a hidden strong convexity property such that the optimal solution of Eq. (15.35) is unique when the
matrix θ true is sufficiently low rank.

Running time. The next example focuses on a high-dimensional synthetic data case with m1 = 200,
m2 = 1000, K = 5, and |�i| = 100. The observations are also noiseless, leading to F(θ�) = 0. Our
focus here is on the running time performance of the DPG and DeFW algorithms. As seen in Fig. 15.3,
the DeFW algorithm runs with a much smaller computation time to achieve the same level of optimality
compared to the DPG algorithm. This is consistent with our claims and is the result of the fact that the
DPG algorithm requires a costly projection step per iteration.

Application on real data. Our last example (Fig. 15.4) focuses on the real data case of the
movielens100k dataset. Here, we consider the case with noisy observation such that the added noise is
sparse, i.e., some of the observed entries can be viewed as outliers. We observe desired convergence for
the DeFW algorithm applied to the squared loss and the negated Gaussian loss functions. In particular,
the negated Gaussian loss case achieves better test MSE performance due to its robustness to outlier
noise. It is also observed that the iterates attain consensus as the iteration number grows.

15.5 CONCLUSIONS AND OTHER EXTENSIONS
This chapter described the classical decentralized projected gradient descent algorithm and the so-
called decentralized Frank-Wolf algorithm for projection-free decentralized optimization. We also
summarized the known results regarding their convergence rates when solving both convex and
nonconvex problems. The numerical analysis of the decentralized matrix completion problem exposes
their performance and validates the various claims reported in the chapter. Some open questions lie
ahead, particularly the study of the asynchronous version of the DeFW algorithm that is still missing.



REFERENCES 415

FIG. 15.4

Real data experiment with movielens100k. Decentralized matrix completion (15.35) using the DeFW algorithm.
Notice that the DPG algorithm is not considered in the example due to its excessive run-time. (Left) Test MSE
against iteration number. (Right) FW gap and consensus error against iteration number.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Jean Lafond for contributing to the development of the DeFW algorithm and
the support from NSF under the award number CCF-1553746 and CCF-1531050.

REFERENCES
[1] Sayed AH, Tu SY, Chen J, Zhao X, Towfic ZJ. Diffusion strategies for adaptation and learning over networks:

an examination of distributed strategies and network behavior. IEEE Signal Process Mag 2013;30(3):155–71.
https://doi.org/10.1109/MSP.2012.2231991.

[2] Liu Z, Vandenberghe L. Interior-point method for nuclear norm approximation with application to system
identification. SIAM J Matrix Anal Appl 2010;31(3):1235–56.

[3] Candès EJ, Recht B. Exact matrix completion via convex optimization. Found Comput Math 2009;9(6):
717–72.

[4] Ravazzi C, Fosson SM, Magli E. Randomized algorithms for distributed nonlinear optimization under sparsity
constraints. IEEE Trans Signal Process 2016;64(6):1420–34.

[5] Patterson S, Eldar YC, Keidar I. Distributed compressed sensing for static and time-varying networks. IEEE
Trans Signal Process 2014;62(19):4931–46.

[6] Frank M, Wolfe P. An algorithm for quadratic programming. Naval Res Logis Quart 1956;3(1–2):95–110.
[7] Tsitsiklis J. Problems in decentralized decision making and computation. Ph.D. thesis, Department of

Electrical Engineering and Computer Science, MIT, Boston, MA; 1984.

http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0040


416 CHAPTER 15 METHODS FOR DECENTRALIZED SIGNAL PROCESSING

[8] Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A. Gossip algorithms for distributed signal
processing. Proc IEEE 2010;98(11):1847–64. https://doi.org/10.1109/JPROC.2010.2052531.

[9] Nedich A, Ozdaglar AE. Distributed subgradient methods for multi-agent optimization. IEEE Trans Autom
Control 2009;54(1):48–61.

[10] Ram S, Nedić A, Veeravalli V. Distributed stochastic subgradient projection algorithms for convex optimiza-
tion. J Optim Theory Appl 2010;147(3):516–45.

[11] Chen IA. Fast distributed first-order methods. Master’s thesis, MIT; 2012.
[12] Jakovetic D, Xavier J, Moura JMF. Fast distributed gradient methods. IEEE Trans Autom Control 2014;59(5):

1131–46.
[13] Shi W, Ling Q, Wu G, Yin W. A proximal gradient algorithm for decentralized composite optimization. IEEE

Trans Signal Process 2015;63(22):6013–23. https://doi.org/10.1109/TSP.2015.2461520.
[14] Nedić A, Olshevsky A, Shi W. Achieving geometric convergence for distributed optimization over time-vary-

ing graphs. CoRR 2016;abs/1607.03218.
[15] Qu G, Li N. Harnessing smoothness to accelerate distributed optimization. CoRR 2016;abs/1605.07112.
[16] Bianchi P, Jakubowicz J. Convergence of a multi-agent projected stochastic gradient algorithm for non-convex

optimization. IEEE Trans Autom Control 2013;58(2):391–405.
[17] Johansson B, Keviczky T, Johansson M, Johansson KH. Subgradient methods and consensus algorithms for

solving convex optimization problems. In: Proceedings of CDC; 2008. p. 4185–90.
[18] Li X, Scaglione A. Convergence and applications of a gossip based gauss Newton algorithm. IEEE Trans

Signal Process 2013;61(21):5231–46.
[19] Varagnolo D, Zanella F, Cenedese A, Pillonetto G, Schenato L. Newton-Raphson consensus for distributed

convex optimization. IEEE Trans Autom Control 2016;61(4):994–1009. https://doi.org/10.1109/TAC.2015.
2449811.

[20] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found Trends Mach Learn 2011;3(1):1–122.

[21] Duchi J, Agarwal A, Wainwright MJ. Dual averaging for distributed optimization: convergence analysis and
network scaling. IEEE Trans Autom Control 2012;57(3):592–606.

[22] Wei E, Ozdaglar A. On the o(1/k) convergence of asynchronous distributed alternating direction method of
multipliers. CoRR 2013;abs/1307.8254.

[23] Chang TH, Nedic A, Scaglione A. Distributed constrained optimization by consensus-based primal-dual
perturbation method. IEEE Trans Autom Control 2014;59(6):1524–38.

[24] Simonetto A, Jamali-Rad H. Primal recovery from consensus-based dual decomposition for distributed
convex optimization. J Optim Theory Appl 2016;168(1):172–97. https://doi.org/10.1007/s10957-015-0758-0.

[25] Hong M. Decomposing linearly constrained nonconvex problems by a proximal primal dual approach:
algorithms, convergence, and applications. CoRR 2016;abs/1604.00543.

[26] Lorenzo PD, Scutari G. NEXT: in-network nonconvex optimization. IEEE Trans Signal Inf Process Netw
2016;2(2):120–136.

[27] Wai HT, Chang TH, Scaglione A. A consensus-based decentralized algorithm for non-convex optimization
with application to dictionary learning. In: Proc ICASSP; 2015. p. 3546–550.

[28] Yang Y, Scutari G, Palomar DP, Pesavento M. A parallel stochastic approximation method for nonconvex
multi-agent optimization problems. CoRR 2014;abs/1410.5076.

[29] Wai HT, Scaglione A. Consensus on state and time: decentralized regression with asynchronous sampling.
IEEE Trans Signal Process 2015;63(11):2972–85.

[30] Wu Z, Teo K. A conditional gradient method for an optimal control problem involving a class of nonlinear
second-order hyperbolic partial differential equations. J Math Anal Appl 1983;91(2):376–93.

[31] Jaggi M, Sulovsky M. A simple algorithm for nuclear norm regularized problems. In: ICML; 2010.
[32] Joulin A, Tang K, Fei-Fei L. Efficient image and video co-localization with Frank-Wolfe algorithm. In: ECCV;

2014.

http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0165


REFERENCES 417

[33] Zhang L, Kekatos V, Giannakis GB. Scalable electric vehicle charging protocols. CoRR 2016;abs/1510.
00403v2.

[34] Fukushima M. A modified Frank-Wolfe algorithm for solving the traffic assignment problem. Transp Res B
Methodol 1984;18(2):169–77.

[35] Jaggi M. Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: ICML; 2013.
[36] Ghosh S, Lam H. Computing worst-case input models in stochastic simulation. CoRR 2015;abs/1507.05609.
[37] Lacoste-Julien S. Convergence rate of Frank-Wolfe for non-convex objectives. CoRR 2016;abs/1607.00345.
[38] Lafond J, Wai HT, Moulines E. On the online Frank-Wolfe algorithms for convex and non-convex

optimizations. CoRR 2016;abs/1510.01171v2.
[39] Wai HT, Lafond J, Scaglione A, Moulines E. Decentralized Frank-Wolfe algorithm for convex and non-convex

problems. IEEE Trans Autom Control 2017;62(11):5522–5537.
[40] Bertsekas DP. Nonlinear programming. Athena Scientific; 1999.
[41] Tatarenko T, Touri B. Non-convex distributed optimization. IEEE Trans Autom Control 2017;62(8):3744–57.
[42] Defazio A, Bach F, Lacoste-Julien S. SAGA: a fast incremental gradient method with support for non-strongly

convex composite objectives. In: NIPS; 2014.
[43] Ghadimi S, Lan G. Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math

Program 2015;156(1):59–99.
[44] Scaglione A, Pagliari R, Krim H. The decentralized estimation of the sample covariance. In: Proc Asilomar;

2008. p. 1722–6.
[45] Ling Q, Xu Y, Yin W, Wen Z. Decentralized low-rank matrix completion. In: Proc ICASSP; 2012.
[46] Mackey L, Talwalkar A, Jordan MI. Distributed matrix completion and robust factorization. J Mach Learn

Res 2015;16:913–60.
[47] Yu HF, Hsieh CJ, Si S, Dhillon I. Scalable coordinate descent approaches to parallel matrix factorization for

recommender systems. In: ICDM. IEEE; 2012. p. 765–74.
[48] Recht B, Ré C. Parallel stochastic gradient algorithms for large-scale matrix completion. Math Program

Comput 2013;5(2):201–26.
[49] Chandrasekaran V, Sanghavi S, Parrilo PA, Willsky AS. Rank-sparsity incoherence for matrix decomposition.

SIAM J Optim 2011;21(2):572–96. https://doi.org/10.1137/090761793.
[50] Mohimani GH, Babaie-Zadeh M, Jutten C. Fast sparse representation based on smoothed L0 norm. In: ICA.

Lecture notes in computer science. Springer; 2007. p. 389–96.
[51] Wai HT, Scaglione A, Lafond J, Moulines E. Fast and privacy preserving distributed low-rank regression. In:

ICASSP; 2017.
[52] Xiao L, Boyd S. Fast linear iterations for distributed averaging. Syst Control Lett 2004;53(1):65–78.

https://doi.org/10.1016/j.sysconle.2004.02.022.
[53] Harper FM, Konstan JA. The MovieLens datasets: history and context. ACM Trans Interact Intell Syst

2016;5(4). https://doi.org/10.1145/2827872.

http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00015-8/rf0270


CHAPTER

16THE EDGE CLOUD: A HOLISTIC
VIEW OF COMMUNICATION,
COMPUTATION, AND CACHING

Sergio Barbarossa∗, Stefania Sardellitti∗, Elena Ceci∗, Mattia Merluzzi∗
Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome,

Rome, Italy∗

16.1 INTRODUCTION
The major goal of next generation (5G) communication networks is to build a communication
infrastructure that will enable new business opportunities in diverse sectors, or verticals, such as
automated driving, e-health, virtual/augmented reality, Internet of Things (IoT), smart grids, and so on
[1,2]. These services have very different specifications and requirements in terms of latency, reliability,
data rate, number of connected devices, and so on. Thinking of enabling such diverse services using a
common communication platform might seem like a crazy idea. But, in reality, if the system is properly
designed, reusing a common infrastructure for different purposes might induce a significant economic
advantage. The key idea for making this possible is to use virtualization [3] and implement network
slicing [4]. Through virtualization, many network functionalities are implemented in software through
virtual machines that can be instantiated and moved upon request [5]. Building on virtualization,
network slicing partitions a physical network into multiple virtual networks, each matched to its specific
requirements and constraints, thus enabling operators to provide networks on an as-a-service basis
while meeting a wide range of use cases in parallel.

This new reality, sometimes called the fourth Industrial Revolution, can be realized by a new
architecture able to meet advanced requirements, especially in terms of latency (below 5 ms), reliability
(around 0.99999), coverage (up to 100 devices/m2), and data rate (more than 10 Gbps). At the
physical layer, 5G builds on a significant increase of system capacity by incorporating massive MIMO
techniques, dense deployment of radio access points, and wider bandwidth. All these strategies are
facilitated by the introduction of millimeter wave (mmWave) communications [6–8]: mmWaves make
possible the reduction of the antenna size, thus enabling the use of an array with many elements, as
required in massive MIMO. Dense deployment is also facilitated because mmWaves give rise to a
stronger intercell attenuation. Finally, increasing the carrier frequency facilitates the usage of wider
bandwidths. However, the significant improvement achievable at the physical layer could still be
insufficient to meet the challenging and diverse requirements of very low latency and ultrareliability.
A further improvement comes from a paradigm shift that puts applications at the center of the system

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00016-X
Copyright © 2018 Elsevier Inc. All rights reserved.

419



420 CHAPTER 16 THE EDGE CLOUD

design. Network Function Virtualization (NFV) and Multiaccess Edge Computing (MEC) [9] are the
key tools of this application-centric networking. In particular, MEC plays the key role of bringing
cloud-computing resources at the edge of the network, within the Radio Access Network (RAN), in
proximity to mobile subscribers [9,10]. MEC is particularly effective to deliver context-aware services
or to enable computation offloading from resource-poor mobile devices to fixed servers or to perform
intelligent cache prefetching, based on local learning of the most popular contents across space and
time.

Given this perspective, the goal of this chapter is to show that graph-based methods can play
a significant role in optimizing resource allocation or deriving new learning mechanisms. The
organization of this chapter is the following. In Section 16.2 we present the edge cloud architecture
and we motivate the holistic approach that looks at 3C resources as a common pool of resources to be
handled jointly with the goal of achieving, on the user side, a satisfactory quality of experience and, on
the network side, a balanced and efficient use of resources. Then, in Section 16.3, we will focus on the
joint optimization of computation and communication resources, with specific attention to computation
offloading in the edge-cloud. In Section 16.4, we will concentrate on the joint optimization of caching
and communication. Differently from storage, which is fundamentally static, caching is inherently
dynamic so that cache memories are prefetched when and where needed, and then released. In both
cases of joint optimization, the goal is to bring resources, either computation (virtual machines) or
cache, as close as possible to the end user to enable truly low latency and low energy consumption
services. After presenting this holistic view, we will present in Section 16.5 some learning mechanisms
based on graph signal processing. In particular, we show how to reconstruct the radio environment
map (REM), which enables cognitive usage of the radio resources. Then, building again on graph
representations, in Section 16.6 we show how to achieve an optimal resource allocation across a
network while being robust to link failures. The proposed approach is based on a small perturbation
analysis of network topologies affected by sporadic edge failures. Finally, in Section 16.7 we draw
some conclusions and suggest some possible further developments.

16.2 HOLISTIC VIEW OF COMMUNICATION, COMPUTATION, AND CACHING
The new infrastructure provided by the next communication networks can be seen as a truly
distributed and pervasive computer that provides very different services to mobile users with sufficiently
good quality of experience. The physical resources composing this pervasive computer are cache
memories, computing machines, and communication channels. The system should serve the end user,
either a mobile subscriber or a car or the component of a production process with, ideally, zero
latency. This means an end-to-end latency smaller than the user perception capability or than the
maximum value ensuring proper control, such as breaking time in automated driving. To enable
this vision, at the physical layer, the network will support a much higher system (or area) capacity
(bits/sec/km2). In 5G systems, a 1000-fold increase of system capacity is planned, exploiting mmWave
communications, massive MIMO, and dense deployment of access points. However, in spite of this
enormous improvement in system capacity, the zero-latency ideal could still be far from obtainment
because it is very complicated, if not impossible, to control latency over a wide area network. For this
reason, the next step is to bring computation and cache resources as close as possible to the end user,
where proximity is actually measured in terms of service time. This creates a new ecosystem, called



16.2 HOLISTIC VIEW OF COMMUNICATION, COMPUTATION, AND CACHING 421

Macrocell radio access point 

mmW radio AP + MEC server 

Cloud-5G 
centralized 
control 

Mobile edge  
orchestrator 

: Data plane 

: Control plane 

: mmW backhaul 

: Wired backhaul 

Mobile edge  
orchestrator 

FIG. 16.1

Edge cloud architecture.

edge cloud, whose architecture is sketched in Fig. 16.1. In this system, within a macrocell served by
one base station, we have multiple millimeter-wave access points (AP) covering much smaller areas.
Each AP is endowed with computation and caching capabilities to enable mobile users to get proximity
access to cloud functionalities. This makes it possible to provide cloud services with very low latency
and a high data rate while at the same time keeping data traffic and computation as local as possible.
Of course, the computing and caching capabilities of local MEC servers are significantly lower than
a typical cloud, but they also serve a limited number of requests and, whenever their resources are
insufficient, they may interact with nearby MEC servers, under the supervision of a MEC orchestrator.
In this system, mobile applications are handled by virtual machines (or containers) instantiated at the
edge of the network, close to the end user. The edge is either the ensemble of network access points, as
in Multiaccess Edge Computing (MEC) [11], or it might even include the mobile terminals as well, as
in fog computing [12].

Similarly, content moves dynamically when and where it is more convenient to have them. Caching
can in fact be seen as a noncausal communication, where content moves before it is actually requested
to minimize the downloading time. In this framework, it makes sense to allocate 3C resources jointly,
with the objective of guaranteeing some ultimate user quality of experience.

Assuming such a holistic perspective, the first important question is why use a common platform,
call it 5G or the generations to follow, to accommodate services having such different requirements,
such as IoT, virtual reality, or automated driving. This is indeed one of the main challenges faced by 5G
systems. The approach proposed in the 5G roadmap is network slicing [5]. A network slice is a virtual



422 CHAPTER 16 THE EDGE CLOUD

network that is implemented on top of a physical network in a way that creates the illusion to the slice
tenant of operating its own dedicated physical network.

Optimizing network slicing is the first important application of graph-based representations at a
high level. In fact, a mathematical formulation of network slicing has been recently proposed in [13],
where the communication network is represented as a graph G = (V , E), where V is the set of nodes
and E is the set of directed links. There is a subset of function nodes, enabled with NFV functionalities,
that can provide a service function f . In general, there are K flows, each requesting a distinct service.
The requirement of each service k is represented as a service function chain F(k) consisting of a
set of functions that have to be performed in the predefined order throughout the network. Zhang
et al. [13] formulated the slicing problem as the optimal allocation of service functions across the
NFV-enabled nodes while minimizing the total flow in the network. The problem is a mixed binary
linear program, which is NP-hard. Nevertheless, the authors of [13] proved that the problem can be
relaxed with performance guarantees. This is indeed a very interesting application of a graph-theoretic
formulation of a very high-level problem.

In the following two sections, we will focus on the joint optimization of pairs of 3C
resources, namely communication and computation in Section 16.3 and communication and caching in
Section 16.4.

16.3 JOINT OPTIMIZATION OF COMMUNICATION AND COMPUTATION
Smartphones have really exploded in their usage and capabilities, placing significant demand upon
battery usage. Unfortunately, advancements in battery technology have not kept pace with the demands
of users and their smartphones. One approach to overcome the battery energy limitations is to offload
computations from mobile devices to fixed devices. Computation offloading may be convenient for the
following reasons [14,15]: (i) to save energy and then prolong the battery lifetime of hand-held devices;
(ii) to enable simple devices, such as inexpensive sensors, to run sophisticated applications; and (iii) to
reduce latency. From a user perspective, one of the parameters most affecting the quality of experience
is the end-to-end (E2E) latency, i.e., the time necessary to get the results from running an application.
In the case of offloading, this latency includes: (i) the time to send bits from the mobile device to the
fixed server to enable the program; (ii) the time to run the application remotely; and (iii) the time to get
the result back. It is precisely this E2E latency that couples communication and computation resources
and then motivates the joint allocation of these resources. We recall now the approach proposed in [16]
and later expanded in [14,17].

We first consider the case where multiple users are served by a single AP/MEC pair. Then, we will
move to the more challenging case where multiple users are served by multiple APs and MEC servers.
In the first case, the assignment of each UE to a pair of AP and MEC is supposed to be given; in the
second case, the assignment is part of the optimization problem. In both cases, for economical reasons
associated with promoting their capillary deployment, the computational capabilities of MEC servers
are enormously smaller than a typical cloud. This implies that the number of cores per server is very
limited or, in other words, that the available cores in an MEC server must operate in a multitasking
mode to accommodate the requests of multiple users. This means that a server running K applications
for as many mobile users will allocate a certain percentage βk of its CPU time to the users that are being



16.3 JOINT OPTIMIZATION OF COMMUNICATION AND COMPUTATION 423

served concurrently. If FS denotes the number of CPU cycles/sec that the server can run, the percentage
of CPU cycles/sec assigned to the kth user is then fk = βkFS.
Multiple users served by a single AP/MEC pair. We start by considering K user equipments (UE)
assigned to a single AP and a single MEC. The decision to offload a computation from the mobile device
to the MEC server depends on the characteristics of the application to be offloaded. Not all applications
are equally amenable to offloading. The decision should take into account all sources of energy
consumption in a smartphone, such as display, network, CPU, GPS, camera, and so on. Profiling energy
consumption of applications running on smartphones, rather than on a general purpose computer,
is not an easy task because of asynchronous power behavior, where the effect on a component’s
power state due to a program entity lasts beyond the end of that program entity [18]. The signal
processing community could provide a significant contribution to this research field by optimizing app
developments taking into account the associated energy profiling for a class of smartphone operating
systems, e.g., iOS, Android, and so on, and a class of applications. In this chapter, we do not dig into
these aspects. We rather concentrate on the joint optimization of radio and computational resources
associated with computation offloading, in a multiuser context. From this point of view, we simplify
the classification of applications by identifying a few most significant parameters as relevant for
computation offloading. For each user k, we consider: (i) the number bk of bits to be transmitted from
the mobile user to the server to transfer the program execution; and (ii) the number of CPU cycles wk

necessary to run the application to be offloaded. We denote by Lk the E2E latency requested from UE
k. The overall latency Tk experienced by the kth UE for offloading an application is the sum of three
terms: (i) the time Ttx

k necessary to transmit all bits to the server to enable the transfer of program
execution; (ii) the time Texe

k for the server to run the application; and (iii) the time Trx
k to get the result

back to the UE. In formulas,

Tk = Ttxk + Texek + Trxk . (16.1)

This equation, in its simplicity, shows that enforcing an E2E latency constraint induces a coupling
between communication and computation resources.

From a user-centric perspective, the goal might either be to minimize the E2E latency under
a maximum transmit power constraint or, by duality, to minimize the transmit power necessary to
guarantee a desired latency. We follow this latter approach, but clearly the two strategies can be
interchanged. Let us now express the single contributions in Eq. (16.1) in terms of the parameters
to be optimized.

The first contribution is the time Ttx
k to transmit bk bits from the UE to the AP:

Ttxk (pk) = ck

rk(pk)
, (16.2)

where ck = bk/B, B is the bandwidth and rk(pk) is the spectral efficiency over the channel between UE
and AP, which is equal to

rk(pk) = log2 (1 + αkpk) , (16.3)

where pk is the transmit power of UE k; αk = |hk|2/(dγ

k σ 2
n ) is a an equivalent channel coefficient that

incorporates the channel coefficient hk, the noise variance σ 2
n , the distance dk between UE and AP, and

the channel exponent factor γ . The second contribution in Eq. (16.1) is the execution time at the server,



424 CHAPTER 16 THE EDGE CLOUD

which is equal to Texe
k = wk/fk. From the user perspective, the third term in Eq. (16.1) does not imply

a transmit power, but only the energy to process the received data. This term is typically much smaller
than the first term and in the following derivations we will assume it to be a fixed term incorporated in
the overall latency.

We are now ready to formulate the computation offloading optimization problem in terms of the
transmit powers pk and the CPU percentages fk, k = 1, . . . , K:

min
p,f s

K∑
k=1

pk, [P.1]

s.t.
ck

log2 (1 + pkαk)
+ wk

fk
≤ Lk, k = 1, . . . , K

0 < pk ≤ PT , fk > 0, k = 1, . . . , K
K∑

k=1

fk ≤ FS,

(16.4)

where p = (p1, . . . , pK) and fs = (f1, . . . , fK).
This is a convex problem that can be easily solved. In particular, the optimal computational rates

can be expressed in closed form as [19]:

fk =
√

wk ηk∑K
k=1

√
wkηk

FS, (16.5)

where ηk are coefficients that depend on the channel coefficients. This simple formula shows how
the allocation of computational resources depends not only on computational aspects, but also on
the channel state. Note also that the above formula contrasts with the proportional allocation of
computational rates that would have been performed in a conventional system, i.e.,

fk = wk∑K
k=1 wk

FS. (16.6)

A further substantial improvement to computation offloading comes from the introduction of
mmWave links. Merging MEC with an underlying mmWave physical layer creates a unique opportunity
to bring IT services to the mobile user with very low latency and a very high data rate. This merge
is indeed one of the main objectives of the joint Europe/Japan H2020 Project called 5G-MiEdge
(Millimeter-wave Edge Cloud as an Enabler for 5G Ecosystem) [20]. The challenge coming from the
use of mmWave links is that they are more prone to blocking events [21], which may jeopardize the
benefits of computation offloading. A possible way to counteract blocking events in an MEC system
using mmWave links was proposed in [19,22].
Multiple users served by multiple APs and multiple MEC servers. Let us consider now a more complex
scenario where multiple users may get radio access through multiple APs and multiple MECs. Besides
resource allocation, our goal now is to find also the optimal association between UEs, APs, and MEC
servers. We consider a system composed of Nb small cell access points, Nc MEC servers, and K mobile
UE’s. Within the edge-cloud scenario depicted in Fig. 16.1, the association of a mobile user to an access
point does not necessarily follow the same principles of current systems, where a mobile user gets
access to the base station with the largest signal-to-noise ratio. In the edge-cloud scenario depicted in
Fig. 16.1, the association of a UE to a pair of AP and MEC servers depends not only on radio channel



16.3 JOINT OPTIMIZATION OF COMMUNICATION AND COMPUTATION 425

parameters, but also on the availability of computational resources at the MEC server. Furthermore,
a UE can get radio access from a certain AP, but its application can run elsewhere, not necessarily
on the nearest MEC, depending on the availability of computational resources. Actually, because the
applications run as virtual machines (VM), we can think of migrating these VMs in order to follow the
user. The orchestration of MEC servers in order to provide seamless service continuity to mobile users
is an item that has been recently included in the standardization activities of ETSI, within the MEC
study group [23]. Migrating VMs is not an easy task because the instantiation of a VM requires times
that are too large with respect to some of the latency requirements foreseen in 5G. This has motivated
significant research efforts in investigating light forms of virtual machines, named containers, that do
not need the instantiation of the whole operating system, but only of a restricted kernel [24].

Here, we do not consider the migration of VMs, but we do consider the possibility of letting a UE
get access under one AP while having its application run in an MEC located elsewhere. In this case, we
need to incorporate in the E2E latency the delay along the backhaul link connecting the AP and MEC.
In particular, we denote by TBnm the latency between access point n and MEC server m.

Following an approach similar to what we proposed in [25], we generalize now the resource
allocation problem by incorporating binary variables aknm ∈ {0, 1} that assume a value aknm = 1 if
user k gets radio access through AP n to have its application running on MEC server m, and aknm = 0
otherwise. For the sake of simplicity, we assume that each user is served by a single base station and
a single cloud. Our goal now is to find the optimal assignment rule, together with the optimal transmit
powers pk and the computational rates fmk assigned by MEC server m to UE k. As in the previous
section, our goal is to minimize the overall UE power consumption, under a latency constraint.

The resulting optimization problem is:

min
p,f,a

f (p, a) �
K∑

k=1

Nb∑
n=1

Nc∑
m=1

pkaknm (P)

s.t. (i) gknm(pk, fmk, aknm) ≤ Lk, ∀ k, n, m,

(ii) pk ≤ Pk, pk ≥ 0, ∀ k,

(iii) hm(f, a) �
K∑

k=1

Nb∑
n=1

aknmfmk ≤ Fm, ∀ m, f ≥ 0,

(iv)
Nb∑

n=1

Nc∑
m=1

aknm = 1, aknm ∈ {0, 1}, ∀ k, n, m,

(16.7)

where f := (fmk)∀m,k, a := (aknm)∀k,n,m, and

gknm(pk, fmk, aknm) � aknm

(
ck

rkn(pk)
+ wk

fmk
+ TBnm

)

with rkn(pk) = log2 (1 + αknpk) denoting the spectral efficiency of UE k accessing AP n and αkn the
equivalent channel coefficient between UE k and AP n.

The objective function is the total transmit power consumption from the mobile users. The
constraints have the following meaning: (i) the overall latency for each user k must be less than the
maximum value Lk; (ii) the total power spent by each user must be lower than a fixed total power
budget Pk; (iii) the sum of the computational rates fmk assigned by each server cannot exceed the server



426 CHAPTER 16 THE EDGE CLOUD

computational capability Fm; and (iv) each mobile user should be served by one AP/MEC pair; this is
enforced by imposing

∑Nb
n=1

∑Nc
m=1 aknm = 1, for each k, together with aknm ∈ {0, 1}.

Unfortunately, problem P is a mixed-binary problem and is, in general, NP-hard. To overcome
this difficulty, as we suggested in [26,27], we relax the binary variables aknm to be real variables in
the interval [0, 1] and adopt a suboptimal successive convex approximation strategy [25,28], able to
converge to local optimal solutions. Additionally, to drive the assignment variables aknm to contain only
one value equal to one and all others to zero, for each k, we incorporate a further constraint recently
suggested in [13]. The penalty method in [13] is based on the fact that the following problem

min
ak

‖ ak + ε1 ‖p
p�

Nb∑
n=1

Nc∑
m=1

(aknm + ε)p

s.t. ‖ ak ‖1= 1,
aknm ∈ [0, 1], ∀ n, m

(16.8)

with ak = (aknm)∀n,m and p ∈ (0, 1), ε > 0, admits an optimal solution that is binary, i.e., only one
element is one and all the others are zero. The optimal solution is cε,k = (1 + ε)p + (NbNc − 1)εp.
Therefore, by relaxing the binary variables aknm so that they belong to the following convex set

A =
{

(ak)k∈I : aknm ∈ [0, 1],
Nb∑

n=1

Nc∑
m=1

aknm = 1, ∀ k, n, m

}
,

where I denotes the set of K users, we formulate the following relaxed optimization problem [26]:

min
p,f,a

fPσ
(p, a) � f (p, a) + σPε (a) (Pσ )

s.t. (i) gknm(pk, fmk, aknm) ≤ Lk, ∀ k, n, m,

(ii) hm(f, a) �
K∑

k=1

Nb∑
n=1

aknmfmk ≤ Fm, ∀ m, f ≥ 0,

(iii) pk ≤ Pk, pk ≥ 0, ∀ k ∈ I, a ∈ A,

(16.9)

where σ > 0 is the penalty parameter, and

Pε (a) �
K∑

k=1

‖ ak + ε1 ‖p
p −cε,k. (16.10)

It is important to emphasize that this penalty is differentiable with respect to the unknown variables.
Even by relaxing the binary variables a, the problem in Eq. (16.9) is still nonconvex because the
objective function and the constraints (i), (ii) are nonconvex. In [26], we proposed a successive convex
approximation (SCA) technique, inspired by Scutari et al. [28], to devise an efficient iterative penalty
SCA approximation algorithm (PSCA) converging to a local optimal solution of Eq. (16.9). We omit
the details here, but we report some numerical results.

To test the effectiveness of the proposed offloading strategy, in Fig. 16.2 we report the optimal
total transmit power consumption versus the maximum latency Lk. We consider a network composed
of K = 4 users, a number of base stations equal to the number of clouds, i.e., Nb = Nc = 2. The
other parameters are set as follows: F1 = 2.7 · 109, F2 = 6 · 108, Pk = 2 · 10−1, p = 0.025.
From Fig. 16.2, we may observe that the PSCA algorithm provides results very close to the exhaustive



16.4 JOINT OPTIMIZATION OF CACHING AND COMMUNICATION 427

2.4 2.6 2.8 3 3.2 3.4
x 10−3

−15

−10

−5

0

5

10

15

20

25

T
ot

al
 tr

an
sm

it 
po

w
er

 (
dB

m
)

L (s)

PSCA
Exhaustive search
SNR−based association, joint 
SNR−based association, disjoint 

FIG. 16.2

Overall UE transmit power consumption versus L.

search algorithm whose complexity is exponential. Additionally, we consider as a comparison term
the SNR-based association method, in both cases where the radio and computational resources are
optimized jointly or disjointly. It can be noted that the PSCA algorithm yields considerable power
savings compared to methods based on SNR only because it takes advantage of the optimal assignment
of each user to a cloud through the most convenient base station.

16.4 JOINT OPTIMIZATION OF CACHING AND COMMUNICATION
Caching popular content in storage disks distributed across the network yields significant advantages
in terms of reduction of downloading times and limitation of data traffic. Caching can be seen as a
noncausal communication where popular content moves throughout the network in the off-peak hours
to anticipate the users’ requests. Clearly an effective caching strategy builds significantly on the ability
to learn and predict users’ behaviors. This capability lies at the foundation of proactive caching [29]
and it motivates the need to merge future networks with big data analytics [30]. An alternative approach
to proactive caching based on reinforcement learning to learn file popularity across time and space was
recently proposed in [31].



428 CHAPTER 16 THE EDGE CLOUD

Another important pillar of future networks is information-centric networking (ICN), a relatively
novel paradigm concerning the distribution of content throughout the network in a manner much more
efficient than the conventional Internet [32]. Different from what happens in the Internet, where content
is retrieved through an address, in ICN, information is retrieved by named contents [32]. In the ICN
framework, network entities are equipped with storage capabilities and content moves throughout
the network to serve the end user in the best possible way [33]. The content placement problem,
incorporating the number of content copies and their locations in order to minimize a cost function
capturing access costs (delay, bandwidth) and/or storage costs, has been formulated as a mixed integer
linear program (MILP), shown to be NP-hard [34]. In the case where global knowledge of user requests
and network resources is available, an integer linear programming (ILP) formulation was given in [33],
yielding the maximum efficiency gains. In this section we recall and extend the formulation of [33]
to incorporate the cost of inefficient storage of nonpopular content. Consider an information network
G = (V , E ,K), composed of a set of nodes V , a set of links E , and a set of information objects K,
as depicted in Fig. 16.3. A content file can be stored (permanently or temporarily) over the nodes of
this graph or travel through its edges. Some content resides permanently over some repository nodes
(e.g., the disks in Fig. 16.3). In all other nodes (e.g., the circles in Fig. 16.3), content may appear
and disappear, according to user requests and network resource allocation. We suppose, for simplicity,
that all content is subdivided into objects of equal size. Each object is then identified by an index
k ∈ K. Each node is characterized by a storage capability and every edge is characterized by a transport
capacity. Time is considered slotted and every slot has a fixed duration �τ . At time slot n, each node
u ∈ V hosts, as a repository, a set of information objects Ku[n] ∈ K and requests, as a consumer, a
set of information objects Qu[n] ∈ K. Let q[n] ∈ {0, 1}|V ||K| be the request arrival process such that
qu[k, n] = 1 if node u requests object k at time n, and qu[k, n] = 0 otherwise.

Given this graph, we define a vertex signal over its nodes and an edge signal over its edges. The
vertex signal su[k, n] is a binary signal defined as:

su[k, n] =
{

1, if content k, at time n, is stored on node u

0, otherwise
, u ∈ V .

u
v

p

uv

up

r

q

w

FIG. 16.3

Information network.



16.4 JOINT OPTIMIZATION OF CACHING AND COMMUNICATION 429

The amount of content stored on node u, at time n, is then Su[n] := ∑
k su[k, n]. Similarly, we can

define an edge signal as a binary signal, defined on each edge, as

tuv[k, n] =
{

1, if content k, at time n, is transported over link uv

0, otherwise
, uv ∈ E .

The amount of content transported over link uv at time n, is then Tuv[n] := ∑
k tuv[k, n]. Typically, each

content may be hosted on every node and moved whenever useful. The storage and capacity constraints
limit the variability of both Su[n] and Tuv[n] as

0 ≤ Su[n] ≤ Su, 0 ≤ Tuv[n] ≤ Tuv , (16.11)

where Su is the storage capability of node u, whereas Tuv is the transport capacity of link uv. The state
of the network, at time slot n, is represented by the vector x[n] := [s[n]; t[n]], with s[n] := (su[k, n])∀u,k
and t[n] := (tuv[k, n])∀k,uv∈E .

In principle, a content k ∈ K may be cached, at any time slot n, in more then one location. However,
there is a cost in keeping content in one place, if it is not utilized. The goal of dynamic caching is to
find the state vector x[n] that minimizes an overall cost function that includes the cost for caching and
the cost for transportation, under constraints dictated by the storage capability, the transport capacity,
and the users’ requirements in terms of latency to get access to their desired content.

The fundamental difference between caching and storage is that storage is intrinsically static
whereas caching is fundamentally dynamic. This means that cached content moves throughout the
network, appears in some nodes, and disappears from others. There are only some repository nodes
(e.g., nodes p, q, and r in Fig. 16.3) that keep a permanent record or have fast access to a content
delivery network. The assumption is that each content is hosted in at least one repository node.

The basic question about caching is then to decide, dynamically, depending on the users’ requests,
when and where to place all content, how to move it, and when to drop content to save memory. The
decision for caching an object k at node u at time slot n must result from a trade-off between the cost for
storing for a certain amount of time and the cost for transporting the content from its current location
to the network access point nearest to the user who requested it.

The cost associated with storing content k on node u during T consecutive time slots in the time
window [n′ − T + 1, n′], is

Est =
n′∑

n=n′−T+1

∑
k∈K

∑
u∈V

su[k, n]cu[k], (16.12)

where cu[k] is the energy cost for keeping content k on node u per unit of time. This unit time cost
depends on the popularity of content k in a neighborhood of node u. For instance, we can set

cu[k] = c0

1 + Pu[k]/P0
, (16.13)

where Pu[k] is the popularity of content k at node u and c0 is the (energy) cost for keeping a content
object with zero popularity and P0 is the popularity level that justifies halving the cost for caching per
unit of time, with respect to zero-popularity content. The introduction of the cost coefficients cu[k] is
what makes the formulation context-aware. In fact, the popularity Pu[k] may vary across the network.



430 CHAPTER 16 THE EDGE CLOUD

A fundamental issue in proactive caching is to select the repository nodes where to store the content
objects as a function of their popularity. To make this choice proactive we associate a probabilistic
measure of centrality to each node u, defined as

wu[k] =

∑
uv∈E

BuvPv[k]
∑

v∈V Pv[k]
where Buv is the length of the shortest path between nodes u and v and Pv[k] is the probability that
object k is requested by node v. We can store each content object k in the node u where wu[k] takes its
minimum value, i.e. in the node having the average minimum number of hops from the nodes requiring
content k. This selection defines the set of information objects Ku stored at each repository node u and
it remains unaltered as long as the content popularity remains approximately constant.

The cost associated with content transportation is

Etr =
n′∑

n=n′−T+1

∑
k∈K

∑
uv∈E

tuv[k, n]cuv[k], (16.14)

where cuv[k] is the energy cost for transporting object k over link uv. In general, when user u makes a
request of content k, we may associate to that request a maximum delivery time, which we call Du[k].
We also denote by Nu the neighborhood of node u, i.e., the set of nodes that are one hop away from
node u, and by xT := [x[n′ − T + 1]; . . . ; x[n′]] the state vector during T consecutive time slots.

The dynamic caching optimization problem can then be formulated as

x̂T = arg min
xT

(Est(xT ) + Etr(xT )) (16.15)

subject to the following constraints

(a) qu[k, n] ≤ su[k, n] +
∑

v∈Nu

Du[k]∑
j=0

tvu[k, n + j],

(b) su[k, n] ≤ su[k, n − 1] +
∑

v∈Nu

tvu[k, n − 1],

(c) tvu[k, n] ≤ sv[k, n − 1] +
∑

w∈Nv

twv[k, n − 1],

(d) su[k, n] = 1, ∀k ∈ Ku[n], su[k, 0] = 0, k /∈ Ku[n],
(e) Su[n] ≤ Su,

(f ) Tuv[n] ≤ Tuv ,

(g) su[k, n] ∈ {0, 1}, tuv[k, n] ∈ {0, 1}, (16.16)

∀u ∈ V , vu ∈ E , k ∈ K, n ∈ [n′ − T + 1, n′].
The above constraints reflect the storage and flow constraints [33]:

(a) ensures that if object k is requested by node u at time slot n, then k either is in the cache of node u
at time n or needs to be received by node u from a neighbor node v ∈ Nu within Du[k] time slots;

(b) assures that if k is being cached at node u at time n, then k either was in the cache of u at time
n − 1 or was received by node u from a neighbor node v ∈ Nu at time n − 1;



16.4 JOINT OPTIMIZATION OF CACHING AND COMMUNICATION 431

(c) assures that if object k is received by node u from a neighbor node v ∈ Nu at time n, then k either
was in the cache of v at time n − 1 or was received by node v from a neighbor node w ∈ Nv at
time n − 1;

(d) describes the initial condition constraints that assure that each node u always stores the objects
that it hosts as a repository, Ku[n], and at n = 0 nothing else;

(e) and (f) define the storage and transport capacity constraints;
(g) states the binary nature of the network configuration (storage and transport) variables.

To simplify the solution of the above problem, we let the entries of vector xT be real variables in
[0, 1]. A numerical example resulting from our relaxed formulation is shown in Fig. 16.4 where we
illustrate the optimal transport energy versus the arrival request rate. We consider a network composed
of |V| = 10 nodes and |K| = 4 information objects to be transported, by setting T = 25, � τ = 1s,
Tuv = 2Mb, and Su = 4. We considered, for simplicity, no knowledge of popularity and the same
transportation costs over all links. To better evaluate the effect of the transport energy, we neglected
the storage energy Est term in the integer linear program (ILP) (16.15), by assuming that only three
repository nodes store the information objects for all time. As a benchmark method, we consider the
shortest path algorithm, which at each request forwards the desired content along the shortest path. It
can be noted that the relaxed ILP method yields a considerable performance gain with respect to the
shortest path algorithm; moreover, the improvement grows as the maximum delivery time Du[k] (set
equal for each k) increases, due to the greater degrees of freedom of the algorithm.

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

100

200

300

400

500

600

700

 Request arrival rate

A
ve

ra
ge

 o
pt

im
al

 tr
an

sp
or

t e
ne

rg
y ILP, Du[k] = 6

ILP, Du[k] = 3
ILP, Du[k] = 0

Shortest path algorithm

FIG. 16.4

Average optimal transport energy versus the request arrival rate.



432 CHAPTER 16 THE EDGE CLOUD

16.5 GRAPH-BASED RESOURCE ALLOCATION
Enabling proactive resource allocation strategies is a key feature of 5G networks. Proactivity is rooted
in the ability to predict users’ behavior. Proactive caching is one example where the prediction is based
on learning the popularity matrix. But of course caching is not the only network aspect that can benefit
from learning. Radio coverage is one more case where learning maps of the radio environment may be
useful to ensure seamless connectivity to moving users, possibly keeping the smallest number of access
points active to save energy. This requires prediction of users’ mobility and the capability to build radio
environment maps (REM) [35]. Building a REM is also a key step to enable cognitive radio [35–37].
Balancing data traffic across the network is another problem that could take advantage of the capability
to predict data flows exploiting spatiotemporal correlation (low-rank) [38,39].

16.5.1 RADIO ENVIRONMENT MAP
In this section, we show how graph-based representations can be useful to build a REM from sporadic
measurements. Graph-based representations play a key role in many machine learning techniques as
a way to formally take into account all similarities among the entities of an interconnected system. In
the signal processing community, there is a growing interest in methods for processing signals defined
over a graph, or graph signal processing (GSP), for short [40]. We show now an application of GSP to
recovering the REM in an urban environment from sporadic measurements collected by mobile devices.
The goal is to reconstruct the field over an ideal grid, built according to the city map, starting from
observations taken over a subset of nodes. We use a graph-based approach to identify patterns useful
for the ensuing reconstruction from sparse observations. More specifically, given a set of N points in
space, whose coordinate vectors are ri and denoting with Ei the field measured at node i, we define the
coefficients of the adjacency matrix A as aii = 0 and

ai,j =
⎧⎨
⎩ e

− |Ei−Ej|2
2σ2 , if ||ri − rj||2 ≤ R0

0, otherwise
, i 
= j,

where σ and R0 are two parameters used to assess the similarity of two nodes: σ is a variable used
to establish the interval of values in the e.m. field within which two nodes are assumed to sense
a similar value; R0 is the distance within which two nodes are assumed to be neighbors. Building
matrix A requires some prior information on the field that can be either acquired through time from
measurements or it may be inferred from ray-tracing tools. From the adjacency matrix A, we build the
Laplacian matrix

L = D − A, (16.17)

where D is the diagonal matrix whose ith entry is the degree of node i: di = ∑N
j=1 aij. Taking the

eigendecomposition of L

L = U�UT (16.18)

we have a way to identify the principal components of the field. It is well known from spectral graph
theory [41], in fact, that the eigenvectors associated with the smallest eigenvalues of L identify clusters,
i.e., well-connected components. Hence, the eigenvectors associated with the smallest eigenvalues of



16.5 GRAPH-BASED RESOURCE ALLOCATION 433

the Laplacian matrix built according to the above method are useful to identify patterns in the e.m.
field. Denoting with uk the eigenvector associated with the kth eigenvalue, the useful signal x can then
be modeled as the superposition of the K principal eigenvectors:

x =
K∑

k=1

uk sk := UK s (16.19)

with K < N to be determined from measurements and UK := [u1, . . . , uK].
In the GSP literature, a signal as in Eq. (16.19), with K < N, is called a band-limited signal over

the graph. In general, a real signal is never perfectly band-limited, but it can be approximately band-
limited. Having a band-limited model is instrumental to establish the condition for the recovery of the
entire signal from a subset of samples [42].

In a real situation, it is typical to have several access points whose radio coverage areas overlap. For
each access point, we can build a dictionary using the method described above, using for the e.m. field
a ray-tracing algorithm. We denote by U(m)

K the dictionary built when only AP m is active. At any given
time frame, only a few APs are active. Therefore, the overall map can be written as

x =
M∑

m=1

K∑
k=1

uks(m)
k :=

M∑
m=1

U(m)
K s(m) := Us, (16.20)

where M is the number of APs covering the area of interest (not all of them necessarily active at the
same time), U := (U(1)

K , . . . , U(M)
K ) and s := (s(1); . . . ; s(M)) is sparse. The observed signal typically

consists in a limited number of measurements collected along the grid. We may write the observed
signal as:

y = �

M∑
m=1

U(m)
K s(m) = �Us, (16.21)

where � is a diagonal selection matrix whose ith entry is one if node i is observed and zero otherwise.
The recovery of the overall radio coverage map can then be formulated as a sparse recovery problem.
We used Basis Pursuit (BP), which implies solving the following convex problem:

ŝ = arg min
s

‖s‖1

s.t. y = �Us (16.22)

and then we used x̂ = U ŝ.
An example of reconstruction using BP is shown in Fig. 16.5. The grid is composed of N = 547

nodes and the number M of AP’s covering the city area illustrated in the figure is four. The APs are
located in the southeast, northeast, northwest, and southwest side of the examined area. The number of
measurements is 115. Measurement noise is considered negligible. We assumed a bandwidth K = 40,
equal for all APs. The background (continuous) color is the map ground-truth, obtained using the ray-
tracing tool Remcom Wireless InSite 2.6.3 [43]. The colors on each vertex of the grid represent the
reconstructed value. Comparing each node color with the background, we can testify to the goodness
of the method to reconstruct the overall map. The normalized mean square error (NMSE), measured
as the square norm of the error normalized by the square norm of the true signal, in this example is



434 CHAPTER 16 THE EDGE CLOUD

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
10−4

FIG. 16.5

Example of reconstructed e.m. field.

NMSE = 0.018. The quality of the reconstruction depends on the number of measurements and on the
assumption on the bandwidth. Clearly, the larger the bandwidth, the better the reconstruction, but the
larger is also the number of measurements to be taken to enable the reconstruction. This suggests that
the choice of the bandwidth must come from a trade-off between accuracy and complexity.

16.5.2 MATCHING USERS TO 3C RESOURCES
In Section 16.3 we motivated the use of a joint allocation of computation and communication resources
in computation offloading. We also incorporated the assignment rule between UE, AP, and MEC within
the overall optimization problem. The resulting formulation yields better performance than a disjoint
formulation; however, it is also computationally demanding because it involves the solution of a mixed-
integer programming problem.

A possible way to overcome this difficulty is to simplify the rule for associating UEs to AP
and MEC. One possibility is to resort to matching theory, a low-complexity tool used to solve the
combinatorial problem of matching players from different sets, based on their preferences. Matching
theory can be seen as the problem of finding a bipartite graph connecting two sets, depending



16.5 GRAPH-BASED RESOURCE ALLOCATION 435

on the preference lists. Matching theory has already been proposed in [44] for resource allocation
in multitiered wireless heterogeneous architectures, with applications to cognitive radio networks,
heterogeneous small-cell-based networks, and device-to-device communications (D2D). In [45], a
multistage matching game is used in the C-RAN context to assign radio remote heads (RRH), base
band units (BBU), and computing resources for computation offloading, aimed at minimizing the
refusal ratio, i.e., the proportion of offloading tasks that is not able to meet the deadlines. A well-known
matching problem is the college admission game presented in [46], where a deferred-acceptance (DA)
algorithm is proved to converge to a stable matching with extremely low complexity. The key initial
step of matching theory is to establish a preference rule. For instance, in [47] the users’ preferences are
defined as the R-factor, which captures both Packet Success Rate (PSR) and wireless delay. However,
as pointed out in [47], the complexity of this algorithm increases considerably when dealing with
interdependent preferences, i.e., when the preference of a user is affected by the acceptance of the
others. This is indeed the case of user association in wireless networks because, continuing in the
example defined above, the R factor of a user changes as other users get accepted by the same AP. To
overcome this problem, the authors of [47] divide the game into two interdependent subgames:

1. An admission matching game with R-factor guarantees, depending on the maximum delay
experienced at each access point;

2. A coalitional game to transfer users, where a coalition is the set of users associated to a certain AP.

In particular, a user assigned to a certain AP a through the first subgame could prefer to be matched to
another AP b because the utility functions change as users get admitted. Then, a user k requests to be
transferred from a to b if it improves its R-factor. The transfer is accepted if and only if:

1. The access point b does not exceed its quota (maximum number of admitted users);
2. The social welfare (sum of the R-factors of the two coalitions) is increased.

Starting from an initial partition (sets of coalitions) obtained with the deferred acceptance algorithm,
the algorithm in [47] converges to a final partition that is also Nash-stable. In the holistic view
of 3C resources, other utility functions can be used to take into account all three aspects of 3C:
communication, computation, and caching. For instance, additional parameters to be taken into account
are the computational load on MEC servers in case of computation offloading and the amount of storage
for caching.

One more example where graph theory can be used is load balancing. In fact, especially in view
of the dense deployment of access points, there is a high probability that the load, either data rate,
computational load, or storage, can be highly unbalanced throughout the network [48]. One possibility
to balance the situation is to split the networks in many nonoverlapping clusters. A cluster head is then
elected in each cluster and it enforces a balance within the cluster. Then, balancing across clusters is
achieved by repeated clustering and balancing steps. A possible way to do clustering is to use spectral
clustering, which starts from the creation of a similarity (adjacency) matrix. In this case, as suggested
in [49], it could be useful to include in the construction of the adjacency matrix a dissimilarity measure
that assesses how much two nodes are unbalanced. In this way, the ensuing clustering tends to put
together nodes that are close but unbalanced so that the resulting in-cluster balancing will be more
effective.



436 CHAPTER 16 THE EDGE CLOUD

16.6 NETWORK RELIABILITY
The edge-cloud architecture described in Section 16.2 clearly builds on the reliability of the network
connectivity. However, in practice, the presence of a link between a pair of nodes is subject to random
changes. In a wireless communication system, for instance, it is typical to have random link failures due
to fading. With mmWave communications, link failures are typically even more pronounced because
of blocking due to obstacles between transmitting and receiving devices. The goal of this section is
to build on graph-based representations to assess the effect of random failure on a limited number of
edge on macroscopic network parameters, such as, for example, connectivity. We build our study on a
small perturbation analysis of the eigendecomposition of the Laplacian matrix describing the graph, as
suggested in [50]. An outcome of our analysis is the identification of the most critical links, i.e., those
links whose failure has a major effect on some network macroscopic features such as connectivity.

A small perturbation analysis of the eigendecomposition of a matrix is a classical problem that has
been studied for a long time, see, e.g., [51,52]. In this section we focus on the small perturbation analysis
of the eigendecomposition of a perturbed Laplacian L + δL, incorporating an original graph Laplacian
L plus the addition or deletion of a small percentage of edges. We consider a graph composed of N
vertices, so that the dimension of L is N × N. We denote by λ̃i = λi + �λi the perturbed ith eigenvalue
and by ũi = ui + �ui the associated perturbed eigenvector. If only one link fails, let us say link m, the
perturbation matrix can be written as δL(m) = −amaT

m, where am = [am1 · · · amn ]T is a column vector
of size N that has all entries equal to zero, except the two elements am(im) = 1 and am(fm) = −1,
where im and fm are the initial and final vertices of the failing edge m. In case of the addition of a new
edge, the perturbation matrix is simply the opposite of the previous expression, i.e., δL(m) = amaT

m. It
is straightforward to see that the perturbation of the Laplacian matrix due to the simultaneous deletion
of a small set of edges is simply δL = −∑

m∈Ep
amaT

m where Ep denotes the set of perturbed edges.

The perturbed eigenvalues and eigenvectors λ̃i and ũi, in the case where all eigenvalues are distinct and
the perturbation affects a few percentage of links, are related to the unperturbed values λi and ui by the
following formulas [51]:

λ̃i � λi + uT
i δL ui, (16.23)

ũi � ui +
∑
j
=i

uT
j δL ui

λi − λj
uj. (16.24)

In particular, the perturbations due to the failure of a generic link m on the ith eigenvalue and associated
eigenvector are:

�λi(m) = uT
i δL(m)ui = −uT

i amaT
mui

= −||aT
mui||2 = −[ui(fm) − ui(im)]2 (16.25)

and

�ui(m) =
∑
j
=i

uT
j δL(m)ui

λi − λj
uj = −

∑
j
=i

uT
j amaT

mui

λi − λj
uj

=
∑
j
=i

[uj(im) − uj(fm)][ui(fm) − ui(im)]
λi − λj

uj. (16.26)



16.6 NETWORK RELIABILITY 437

Within the limits of validity of first order perturbation analysis, the overall perturbation resulting from
the deletion of multiple edges is the sum of all the perturbations occurring on single edges:

�λi =
∑

m∈Ep

�λi(m), (16.27)

where Ep denotes the set of perturbed edges. In their simplicity, the above formulas capture some
of the most relevant aspects of perturbation and their relation to graph topology. In fact, it is known
from spectral graph theory, see e.g., [41], that the entries of the Laplacian eigenvectors associated with
the smallest eigenvalues tend to be smooth and assume the same sign over vertices within a cluster
while they can vary arbitrarily across different clusters. Taking into account these properties, the above
perturbation formulas (16.23)–(16.26) give rise to the following interpretations:

1. the edges whose deletion causes the largest perturbation are intercluster edges;
2. given a connected graph, the eigenvector associated with the null eigenvalue does not induce any

perturbation on any other eigenvalue/eigenvector because it is constant;
3. the eigenvector perturbation is larger for quantities associated with eigenvalues very similar to

each other (recall that formulas (16.23) and (16.24) hold true only for distinct eigenvalues).

16.6.1 A NEW MEASURE OF EDGE CENTRALITY
Based on the above derivations, we propose a new measure of edge centrality, which we call
perturbation centrality. We assume a connected undirected graph. If we denote by K the number of
clusters in the graph and by �λi(m) the perturbation of the ith eigenvalue due to the deletion of edge
m, we define the topology perturbation centrality of edge m as follows [50]:

pK (m) :=
K∑

i=2

|�λi(m)|. (16.28)

The summation starts from i = 2 simply because, from Eq. (16.23), the perturbation induced by the
deletion of any edge on the smallest eigenvalue is null. The above parameter pK(m) assigns to each
edge the perturbation that its deletion causes to the overall network connectivity, measured as the sum
of the K smallest eigenvalues of the Laplacian matrix [41]. This parameter is particularly relevant in
case of modular graphs, i.e., graphs evidencing the presence of clusters. In such a case, it is well known
from spectral clustering theory [41] that the smallest eigenvalues of the Laplacian carry information
about the number of clusters in a graph.

In Fig. 16.6 we report an example of a modular graph, obtained by connecting two clusters through
a few edges. The perturbation centrality is encoded in the color intensity of each edge. It is interesting
to see that the edges with the darkest color are, as expected, the ones connecting the two clusters.



438 CHAPTER 16 THE EDGE CLOUD

FIG. 16.6

Example of perturbation centrality measure.

16.6.2 APPLICATION: ROBUST INFORMATION TRANSMISSION OVER WIRELESS
NETWORKS
Now we apply our statistical analysis to optimize the resource (power) allocation over a wireless
network in order to make the network robust against random link failures. We consider a wireless
communication network with M links, where each link is subject to a random failure because of fading
or blocking. Every edge is characterized by an outage probability Pout(m), m = 1, . . . , M. We suppose
the failure events over different links to be independent of each other. We consider first a single-input-
single-output (SISO) Rayleigh flat fading channel for each link. In such a case, the channel coefficient
h is a complex Gaussian random variable (r.v.) with zero mean and circularly symmetric. Hence, the r.v.
α = |h|2 has an exponential distribution. Denoting with Fn(x; λ) the cumulative distribution function
(CDF) of a gamma random variable x of order n, with parameter λ, the CDF of α can then be written as
F1(α; λ). We also denote with C = log2(1 + |h|2ρ) the link capacity (in bits/sec/Hz), where ρ = PT (m)

σ 2
n r2

m

is the signal-to-noise ratio (SNR), PT (m) is the transmitted power over the mth link, σ 2
n is the noise

variance, and rm the distance covered by link m. Denoting by R the data rate, the outage probability
Pout(m) is defined as:

Pout(m) = Pr{C < R} = Pr{log2(1 + |h|2ρ) < R} (16.29)

= Pr

{
|h|2 <

2R − 1

ρ

}

=
∫ 2R−1

ρ

0
λe−λαdα = F1

(
2R − 1

ρ
; λ

)
= 1 − e− λ

ρ
(2R−1).



16.6 NETWORK RELIABILITY 439

Because the CDF of α is invertible, it is useful to introduce its inverse. In particular, if y = Fn(x; λ),
we denote its inverse as x = F−1

n (y; λ). Expression (16.29) can then be inverted to derive the transmit
power PT (m) as a function of the outage probability:

PT (m) = − λσ 2
n r2

m(2R − 1)
log(1 − Pout(m))

= σ 2
n r2

m(2R − 1)
F−1

1 (Pout(m); λ)
. (16.30)

The small perturbation statistical analysis derived above can be used to formulate a robust network
optimization problem. We assess the network robustness, in terms of connectivity, as the ability of the
network to give rise to small changes of connectivity as a consequence of a small number of edge
failures. The network connectivity is measured by the second smallest eigenvalue of the Laplacian,
also known as the graph algebraic connectivity. This parameter is known to provide a bound for
the graph conductance [53]. Our goal now is to evaluate the transmit powers PT (m), or equivalently,
through Eq. (16.30), the outage probabilities, that minimize the average perturbation of the algebraic
connectivity, subject to a cost function on the total transmit power PTmax of the overall network. In
formulas, we wish to solve the following optimization problem:

min
Pout

∑
m∈E

E{|�λ2(m)|}

s.t.
∑

m∈E
PT (m) ≤ PTmax

Pout(m) ∈ [0, 1], ∀ m ∈ E .

Using Eqs. (16.25) and (16.30), we can rewrite the optimization problem explicitly in terms of the
outage probabilities Pout(m) as:

min
Pout

∑
m∈E

Pout(m)[u2(im) − u2(fm)]2

s.t.
∑

m∈E
r2
m

F−1
1 (Pout(m);λ)

≤ Cmax (Q)

Pout(m) ∈ [0, 1], ∀ m ∈ E ,

where Cmax := PTmax
σ 2

n (2R−1) .

Problem (Q) is nonconvex because the constraint set is not convex. However, if we perform the change
of variable tm := 1/F−1

1 (Pout(m); λ) = −λ/ log(1 − Pout(m)), m = 1, . . . , M, the first constraint
becomes linear. The objective function becomes nonconvex. However, if we limit the variability of
the unknown variables to the set tm ≥ λ/2, ∀ m, the objective function becomes convex so that the
original problem converts into the following convex problem:

min
t

∑
m∈E

F1

(
1
tm

; λ
)

|�λ2(m)| = ∑
m∈E

(
1 − e− λ

tm

)
|�λ2(m)|

s.t.
∑

m∈E
r2
mtm ≤ Cmax (Q1)

tm ≥ λ
2 , ∀m ∈ E .



440 CHAPTER 16 THE EDGE CLOUD

We can now generalize the previous formulation to the multi-input multi-output (MIMO) case,
assuming multiple independent Rayleigh fading channels. One fundamental property of MIMO systems
is the diversity gain, which makes them more robust against fading with respect to SISO systems [54]. In
fact, different performance, can be obtained depending on the number of antennas on the transmitting
sides nT and receiving sides nR exploiting the diversity gain. In a MIMO system with n = nT × nR

statistically independent channels, denoting by hij the coefficient between the ith transmit and the jth
receive antenna, the pdf of the random variable α := ∑nT

i=1

∑nR
j=1 |hij|2 is the Gamma distribution:

PA(α) = λn

(n − 1)! αn−1e−λα (16.31)

and we denote by Fn(α; λ) its cumulative distribution function (CDF), with parameters n and λ.
Proceeding similarly to the SISO case, the optimization problem can be formulated as

min
t

∑
m∈E

Fn( 1
tm

; λ)|�λ2(m)|
s.t.

∑
m∈E

r2
mtm ≤ Cmax (Q2)

tm ≥ λ/(n + 1), ∀m ∈ E ,

where the constraint on the variables tm has been introduced to make the problem convex. Indeed,
problem Q1 is a special case of problem Q2, when n = 1. An interesting result about the convexity of
problem Q2 is that the bounding region increases with the number of independent channels.
As a numerical example, we considered a connected network composed by two clusters, with a total
of |E | = 1612 edges and two bridge edges between the two clusters. For the sake of simplicity, we
assumed the same distances rm over all links. In Fig. 16.7, we compare the expected perturbations
of the algebraic connectivity, normalized to the nominal value λ2, obtained using our optimization

200

10−4

10−3

10−2

10−1

400 600 800
Total power

SISO

optimized SISO

MIMO

optimized MIMO

E
{|

2
2

|}
/

FIG. 16.7

Expected perturbation of algebraic connectivity versus total power.



REFERENCES 441

procedure or using the same power over all links, assuming the same overall power consumption. We
report the result for both SISO and MIMO cases. From Fig. 16.7, we can observe a significant gain in
terms of the total power necessary to achieve the same expected perturbation of the network algebraic
connectivity. We can also see the advantage of using MIMO communications, at least in the case of
statistically independent links.

16.7 CONCLUSIONS
In this chapter we have described some of the aspects of the edge-cloud architecture, a framework
proposed to bring cloud and communication resources as close as possible to mobile users to reduce
latency and achieve a more efficient usage of the available energy. From the edge-cloud perspective, we
have motivated a holistic view that aims at optimizing the allocation of communication, computation,
and caching resources jointly. Within this framework, graph-based representations play a key role.
In this chapter, we considered just a few cases where these representations can provide a valid and
innovative tool for an efficient deployment of the edge-cloud system. As happens in most engineering
problems, big potentials come with big challenges. One of these is complexity. To take full advantage of
graph representations, there is the need for devising efficient distributed computational tools to analyze
graph-based signals. Furthermore, we believe that graph representations are only the beginning of the
story, as they are built incorporating only pairwise relations. More sophisticated tools may be envisaged
by enlarging the horizon to include multiway relations, using, for example, simplicial complexes or
hypergraphs, as suggested in [55], or multilayer network representations [56,57]. Furthermore, in this
work, we have basically restricted our attention to time-invariant graph representations and to linear
models. Clearly, a significant improvement can be expected by enlarging the view to time-varying
graphs and nonlinear models [58,59].

ACKNOWLEDGMENTS
The research leading to these results has been jointly funded by the European Commission (EC) H2020 and the
Ministry of Internal affairs and Communications (MIC) in Japan under grant agreements Nr. 723171 5G MiEdge
in EC and 0159-0149, 0150, 0151 in MIC.

REFERENCES
[1] 5G empowering vertical industries. 5G PPP White Paper; 2016.
[2] Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong AC, et al. What will 5G be? IEEE J Sel Areas

Commun 2014;32(6):1065–82.
[3] Mijumbi R, Serrat J, Gorricho JL, Bouten N, De Turck F, Boutaba R. Network function virtualization:

state-of-the-art and research challenges. IEEE Commun Surv Tutor 2016;18(1):236–62.
[4] Rost P, Mannweiler C, Michalopoulos DS, Sartori C, Sciancalepore V, Sastry N, et al. Network slicing to

enable scalability and flexibility in 5G mobile networks. IEEE Commun Mag 2017;55(5):72–9.
[5] Vassilaras S, Gkatzikis L, Liakopoulos N, Stiakogiannakis IN, Qi M, Shi L, et al. The algorithmic aspects of

network slicing. IEEE Commun Mag 2017;55(8):112–9.

http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0030


442 CHAPTER 16 THE EDGE CLOUD

[6] Heath RW, Gonzalez-Prelcic N, Rangan S, Roh W, Sayeed AM. An overview of signal processing techniques
for millimeter wave MIMO systems. IEEE J Sel Topics Signal Process 2016;10(3):436–53.

[7] Xiao M, Mumtaz S, Huang Y, Dai L, Li Y, Matthaiou M, et al. Millimeter wave communications for future
mobile networks. IEEE J Sel Areas Commun 2017;35(9):1909–35.

[8] Sakaguchi K, Haustein T, Barbarossa S, Calvanese-Strinati E, Clemente A, Destino G, et al. Where, when,
and how mmWave is used in 5G and beyond. IEICE Trans Electron 2017;E100-C(10):790–808.

[9] Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D. On multi-access edge computing: a survey of
the emerging 5G network edge architecture & orchestration. IEEE Commun Surv Tutor 2017;19(3):1657–81.

[10] Hu YC, Patel M, Sabella D, Sprecher N, Young V. Mobile edge computing: a key technology towards 5G.
ETSI White Paper 11; 2015.

[11] Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W. A survey on mobile edge networks: convergence of
computing, caching and communications. IEEE Access 2017;5:6757–79.

[12] Bonomi F, Milito R, Natarajan P, Zhu J. Fog computing: a platform for Internet of things and analytics.
In: Big data and internet of things: a roadmap for smart environments. Springer; 2014. p. 169–86.

[13] Zhang N, Liu YF, Farmanbar H, Chang TH, Hong M, Luo ZQ. Network slicing for service-oriented networks
under resource constraints. IEEE J Sel Areas Commun 2017;35(11):2512–21.

[14] Barbarossa S, Sardellitti S, Di Lorenzo P. Communicating while computing: distributed mobile cloud
computing over 5G heterogeneous networks. IEEE Signal Process Mag 2014;31(6):45–55.

[15] Wang C, Liang C, Yu FR, Chen Q, Tang L. Computation offloading and resource allocation in wireless cellular
networks with mobile edge computing. IEEE Trans Wireless Commun 2017;16(8):4924–38.

[16] Barbarossa S, Sardellitti S, Di Lorenzo P. Joint allocation of computation and communication resources in
multiuser mobile cloud computing. In: IEEE workshop SPAWC; 2013. p. 26–30.

[17] Sardellitti S, Scutari G, Barbarossa S. Joint optimization of radio and computational resources for multicell
mobile-edge computing. IEEE Trans Signal Inf Process Netw 2015;1(2):89–103.

[18] Pathak A, Hu YC, Zhang M. Where is the energy spent inside my app?: fine grained energy accounting on
smartphones with Eprof. In: Proceedings of the 7th ACM European conference on computer systems. ACM;
2012. p. 29–42.

[19] Barbarossa S, Ceci E, Merluzzi M. Overbooking radio and computation resources in mmW-mobile edge
computing to reduce vulnerability to channel intermittency. In: 2017 European conference on networks and
communications (EuCNC); 2017. p. 1–5.

[20] 5G-MiEdge. Millimeter-wave edge cloud as an enabler for 5G ecosystem. Europe/Japan project co-funded by
the European Commission’s Horizon 2020 and Japanese Ministry of Internal Affairs and Communications.
http://5g-miedge.eu.

[21] Andrews JG, Bai T, Kulkarni MN, Alkhateeb A, Gupta AK, Heath RW. Modeling and analyzing millimeter
wave cellular systems. IEEE Trans Commun 2017;65(1):403–30.

[22] Barbarossa S, Ceci E, Merluzzi M, Calvanese-Strinati E. Enabling effective mobile edge computing
using millimeterwave links. In: 2017 IEEE international conference on communications workshops
(ICC workshops); 2017. p. 367–72.

[23] Mobile edge computing (MEC); end to end mobility aspects. ETSI GR MEC 018 V1.1.1; 2017.
[24] Li W, Kanso A. Comparing containers versus virtual machines for achieving high availability. In: 2015 IEEE

international conference on cloud engineering (IC2E); 2015. p. 353–8.
[25] Sardellitti S, Barbarossa S, Scutari G. Distributed mobile cloud computing: joint optimization of radio and

computational resources. In: 2014 IEEE Globecom workshops (GC Wkshps); 2014. p. 1505–10.
[26] Sardellitti S, Barbarossa S, Merluzzi M. Optimal association of mobile users to multi-access edge computing

resources. IEEE Trans Signal Inf Process Netw; 2017 (submitted).
[27] Sardellitti S, Merluzzi M, Barbarossa S. Optimal association of mobile users to multi-access edge computing

resources. In: Proceedings of IEEE international conference on communications (ICC), May 2018, Kansas
City, USA.

http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0100
http://5g-miedge.eu
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf9135


REFERENCES 443

[28] Scutari G, Facchinei F, Lampariello L. Parallel and distributed methods for constrained nonconvex optimiza-
tion—Part I: Theory. IEEE Trans Signal Process 2017;65(8):1929–44.

[29] Baştuğ E, Bennis M, Zeydan E, Kader MA, Karatepe IA, Er AS, et al. Big data meets telcos: a proactive
caching perspective. J Commun Netw 2015;17(6):549–57.

[30] Zeydan E, Bastug E, Bennis M, Kader MA, Karatepe IA, Er AS, et al. Big data caching for networking:
moving from cloud to edge. IEEE Commun Mag 2016;54(9):36–42.

[31] Sadeghi A, Sheikholeslami F, Giannakis GB. Optimal and scalable caching for 5G using reinforcement
learning of space-time popularities. Preprint arXiv:1708.06698; 2017.

[32] Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs NH, Braynard RL. Networking named content.
In: Proceedings of the 5th international conference on emerging networking experiments and technologies.
ACM; 2009. p. 1–12.

[33] Llorca J, Tulino AM, Guan K, Esteban J, Varvello M, Choi N, et al. Dynamic in-network caching for energy
efficient content delivery. In: 2013 Proceedings of IEEE INFOCOM; 2013. p. 245–9.

[34] Krishnan P, Raz D, Shavitt Y. The cache location problem. IEEE/ACM Trans Netw 2000;8(5):568–82.
[35] Bazerque JA, Mateos G, Giannakis GB. Group-Lasso on splines for spectrum cartography. IEEE Trans Signal

Process 2011;59(10):4648–63.
[36] Yilmaz HB, Tugcu T, Alagoz F, Bayhan S. Radio environment map as enabler for practical cognitive radio

networks. IEEE Commun Mag 2013;51(12):162–9.
[37] Romero D, Kim SJ, Giannakis GB, López-Valcarce R. Learning power spectrum maps from quantized power

measurements. IEEE Trans Signal Process 2017;65(10):2547–60.
[38] Mardani M, Giannakis GB. Robust network traffic estimation via sparsity and low rank. In: 2013 IEEE

international conference on acoustics, speech, signal process (ICASSP); 2013. p. 4529–33.
[39] Xu J, Deng D, Demiryurek U, Shahabi C, van der Schaar M. Mining the situation: spatiotemporal traffic

prediction with big data. IEEE J Sel Top Signal Process 2015;9(4):702–15.
[40] Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on

graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Proc
Mag 2013;30(3):83–98.

[41] Von Luxburg U. A tutorial on spectral clustering. Stat Comput 2007;17(4):395–416.
[42] Tsitsvero M, Barbarossa S, Di Lorenzo P. Signals on graphs: uncertainty principle and sampling. IEEE Trans

Signal Process 2016;64(18):4845–60.
[43] https://www.remcom.com/.
[44] Gu Y, Saad W, Bennis M, Debbah M, Han Z. Matching theory for future wireless networks: fundamentals

and applications. IEEE Commun Mag 2015;53(5):52–9.
[45] Li T, Magurawalage CS, Wang K, Xu K, Yang K, Wang H. On efficient offloading control in cloud radio

access network with mobile edge computing. In: 2017 IEEE 37th international conference on distributed
computing systems (ICDCS); 2017. p. 2258–63.

[46] Gale D, Shapley LS. College admissions and the stability of marriage. Am Math Mon 1962;69(1):9–15.
[47] Saad W, Han Z, Zheng R, Debbah M, Poor HV. A college admissions game for uplink user association

in wireless small cell networks. In: IEEE INFOCOM 2014—IEEE international conference on computer
communications; 2014. p. 1096–104.

[48] Vu TK, Bennis M, Samarakoon S, Debbah M, Latva-aho M. Joint load balancing and interference mitigation
in 5G heterogeneous networks. IEEE Trans Wirel Commun 2017;16(9):6032–46.

[49] Samarakoon S, Bennis M, Saad W, Latva-Aho M. Dynamic clustering and sleep mode strategies for small
cell networks. In: 2014 11th international symposium on wireless communication systems (ISWCS); 2014.
p. 934–8.

[50] Ceci E, Barbarossa S. Small Perturbation Analysis of Network Topologies. In: 2018 IEEE International
conference on acoustics, speech, signal process (ICASSP); 2018. p. 4194–98.

[51] Wilkinson JH. The algebraic eigenvalue problem. New York, NY: Oxford University Press, Inc.; 1988.

http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0210
https://www.remcom.com/
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0255


444 CHAPTER 16 THE EDGE CLOUD

[52] Stewart G. Introduction to matrix computations. Computer science and applied mathematics. Academic Press;
1973.

[53] Newman M. Networks: an introduction. New York, NY: Oxford University Press, Inc.; 2010.
[54] Barbarossa S. Multiantenna wireless communication systems. Mobile communications series. Artech House;

2003.
[55] Barbarossa S, Tsitsvero M. An introduction to hypergraph signal processing. In: 2016 IEEE international

conference on acoustics, speech, signal process (ICASSP); 2016. p. 6425–9.
[56] Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer networks. J Complex

Netw 2014;2(3):203–71.
[57] Boccaletti S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardenes J, Romance M, et al. The structure and

dynamics of multilayer networks. Phys Rep 2014;544(1):1–122.
[58] Shen Y, Baingana B, Giannakis GB. Kernel-based structural equation models for topology identification of

directed networks. IEEE Trans Signal Process 2017;65(10):2503–16.
[59] Romero D, Ioannidis VN, Giannakis GB. Kernel-based reconstruction of space-time functions on dynamic

graphs. IEEE J Sel Top Signal Process 2017;11(6):856–69.

http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00016-X/rf0295


CHAPTER

17APPLICATIONS OF GRAPH
CONNECTIVITY TO NETWORK
SECURITY

Ying Liu∗, Wade Trappe∗, Andrey Garnaev∗
Wireless Information Network Laboratory (WINLAB), Rutgers, The State University of New Jersey, North Brunswick,

NJ, United States∗

17.1 INTRODUCTION
Our communication infrastructure is a complex ecosystem of separate yet interconnected systems. It
consists of a variety of networks, including the broader Internet, cellular networks, optical backhaul
networks, and local area networks. It provides service to almost all aspects of our daily life and is likely
to become even more essential to us as we move toward a future involving the Internet of Things (IoT)
and vehicular systems. Unfortunately, as these networks become intermingled, ensuring their reliability
in the presence of network threats will become increasingly more challenging. While cybersecurity
technologies, i.e., technologies designed to prevent the proliferation of malicious code or to prevent
unwanted processes from accessing certain parts of a computer system or network, are essential to
protecting our use of the communication infrastructure, it is prudent to ensure that our networks are
deployed in configurations that allow them to have resilience in spite of cyberattacks being present.

Network resilience is the ability of the network to withstand harm or to return to an acceptable
operational condition after it has been harmed by external perturbations. From a network perspective,
adversarial resilience happens through two basic mechanisms: properly setting up the connections
between entities in a network to withstand threats and allow network protocols to have an avenue
for redirecting communications when connections are broken; and through feedback mechanisms
that call forth additional redundancy in the network’s design to repurpose components to meet new
challenges.

Communication networks are built with protocols that allow them to withstand a certain amount
of network faults: links can fail due to natural reasons, and network routing protocols are designed
to rediscover routes. Meanwhile, transport protocols, such as TCP and store-and-forward protocols
from disruption tolerant networking, are designed with buffering and redelivery mechanisms that
allow networks to ride out periods of disconnection. Although network protocols go a long way
in allowing a network to withstand failures, they generally do not involve changing the network
itself, and can fail in their purpose when there are no paths connecting a communication source and
destination. Consequently, network management and security functions need to have the ability to

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00017-1
Copyright © 2018 Elsevier Inc. All rights reserved.

445



446 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

summon additional resources in order to provide enough topological connections to allow network
protocols to restore functionality. In general, a network with better connectivity has a stronger ability
to recover from attacks.

This chapter will explore the notion of network resilience with a focus on how knowledge regarding
a network’s topological structure can be leveraged by adversaries to more effectively attack networks
and, conversely, how a network’s topological structure can be adapted to provide enhanced resilience to
attacks against a network. We will begin the chapter with a brief review of graph theory, including the
concepts of graph connectivity that will be the basis for most of the attack and defense mechanisms
explored in this chapter. We will also explore attacks that are directed at puncturing a network’s
connectivity, and the impact that such an attack can have. Then, we will explore how one can improve
the network connectivity and thereby provide the means for a network to withstand attacks.

17.2 ALGEBRAIC GRAPH THEORY OVERVIEW
Communication networks can be examined as a graph that evolves during the operation of the network,
and thus graph theory is an ideal mathematical tool for examining communication networks. Graph
theory deals with the structures, properties, and mathematical representation of a graph, and while the
theory is built with just two simple components (i.e., edges and vertices), it can describe numerous
real-world phenomena. In communication networks, nodes or vertices correspond to communicating
entities, such as network routers, and the edges correspond to the existence of a communication link
between these nodes.

Studying the relationships in a graph is important for revealing the network’s properties, and the
various interdependencies in the network determine the graph’s local and global connectivity properties:
the operation of nodes in one part of a network can depend on the function of nodes in other parts of
a network. Due to the interdependence, if a network attack happens in one part of a network, the
effects can propagate to other parts of a network. This could also disrupt a wider area than the locality
near the attack and may ultimately cause the abrupt collapse of a whole communication network. In
the remainder of the chapter, we will explore the mathematical notions associated with a network’s
resilience. The notation we use is provided in Table 17.1.

A starting point for studying the connectivity of the graph associated with a communication network
is the branch of graph theory known as flow theory. Graph theory provides algorithms that can find an
available path between a communication source and destination pair, such as Dijkstra, Bellman-Ford,
Depth First Search (DFS), Minimum Spanning Tree, and Max Flow Min Cut. While these network
algorithms are the graph theoretic basis for many network routing protocols, they do not examine
the actual topology of the network and can fail in their purpose if the network’s topology does not
have sufficient connectivity to support a path between a source and destination. Instead, in order to
declare that a network is robust to attacks or faults, one would like to answer the questions: (1) do all
pairs of sources and destinations have connections? (2) how many links are needed for each source
destination? and (3) which nodes are connected most and likely to be used for forming a path between
an arbitrary source and destination? The answers to these questions can be quite complex: for example,
it takes O(VE+V2lgV) time to find the All-Pairs Shortest Paths (APSP) using Dijkstra’s algorithm with
Fibonacci heaps, where V and E are corresponding number of nodes and edges in a graph. This value
becomes prohibitively large for a high-density network whose E ≈ �(V2), which under this condition
becomes O(V4).



17.2 ALGEBRAIC GRAPH THEORY OVERVIEW 447

Table 17.1 Mathematical Notation Used in This Chapter

Notation Description

G a graph or network topology

V vertex set

E edge set

L Laplacian matrix

λi the ith eigenvalue of Laplacian matrix, L

λ1 algebraic connectivity or Fiedler value

λ1
j node Fiedler value associated with removing node j

G\i the remaining graph of removing node i from a graph G

n total number of nodes in a network

P a vector of transmission power, Pi, at node i

ε receiving threshold

Tij throughput on a link from node i to receiver j

d distance between two nodes

σ 2 natural noise

h fading channel gain

w weight on a link in graph, G

P total network power

� an allocation of P

I an identity matrix

�γ stochastic game

γ discounted factor to replay a game, �

λ̄i instantaneous payoff of node Fiedler value

Ch a jammer’s hiding cost

α probability of being detected in the hiding mode

δ probability of continuing an attack

{·}T transpose of a vector, {·}
p a probability vector employed by a scanner, pT = (p1, p2, . . . , pn)
q a probability vector employed by a jammer, qT = (q1, q2, . . . , qn)
e a vertical vector of all ones

A game matrix

Vγ game value of �γ

E(·) expectation of (·)
τ jamming time (slots) spent before a jammer launches a successful attack

t an attack aims at damaging throughput

c an attack aims at damaging connectivity

D game matrix to compare jamming time

While traditional graph theory is quite useful for studying smaller networks, it is often desirable
to study networks and their characteristics using specialized branches of graph theory that allow one
to reduce the complexity of the problems being investigated. Algebraic graph theory is a branch of
graph theory involving the analysis of the spectrum distribution of the Laplacian matrix by eigenvalue



448 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

decomposition. Because a graph’s Laplacian matrix is built from the graph’s adjacency matrix, many
topological properties of the network can be explored using the eigenvalues of the Laplacian matrix.
This is advantageous because it takes O(V3) complexity to calculate the full eigenvalue decomposition
of the Laplacian (or less if one is interested in a restricted set of eigenvalues).

Algebraic graph theory is useful in understanding the resilience of a network as the second smallest
eigenvalue of the network’s Laplacian matrix, which is known as the Fiedler value or algebraic
connectivity, provides a measure of the network’s connectivity. The larger the Fiedler value, the more
connected the network, and thus the more opportunities for a network to bounce back or redirect its
communications when facing a network attack. The Fiedler value and general analysis of a network’s
spectrum distribution can yield insight into the network’s structure, and thereby serve as the basis for
introducing additional resilience in a network by judiciously introducing extra edges (or, conversely,
give an adversary a tool to identify weak points of a network where an attack can have maximal
impact).

17.2.1 FIEDLER VALUE AND GRAPH CONNECTIVITY
One characterization of network connectivity is the network’s Fiedler value, which is the second
smallest eigenvalue of the Laplacian matrix, L(V , E), of a network’s topological graph, G(V , E) where
V is the graph vertex set and E is the edge set for V . For the discussion, because algebraic connectivity
does not consider time we will ignore the notion of time, t, in the graph representation here, but later our
exploration will involve the notion of time and network characteristics evolving with time. The Fiedler
value is always nonnegative, and its value is zero if and only if the graph is disconnected, in which
case the number of zero eigenvalues of L equals the number of connected components in a graph (e.g.,
a disconnected network consisting of two subnetworks that are themselves topologically connected
would yield two eigenvalues equal to zero). Referring to [1], the Fiedler value, represented by λ1, of a
graph, G can be obtained by the following eigenvalue optimization problem.

λ1 = min yT L(V , E)y

s.t.yT y = 1 and yT 1 = 0,
(17.1)

where y is a vector that does not equal to 1.
The Laplacian matrix of a given graph is defined as follows: Given a graph G(V , E) without self

cycles and multiple links between two nodes, the Laplacian matrix L is calculated by

L(V , E) = D(V , E) − A(V , E), (17.2)

where D(V , E) is a diagonal matrix whose diagonal entry contains the degrees for each node. A(V , E)
is the adjacency matrix with each entry being a value of zero or one when nodes are connected to
each other. In addition, its diagonal is zero because, for a communication network we assume that
G(V , E) has no self cycles. According to Eq. (17.2), the Laplacian matrix has the following properties
[2,3]:

• Observation 1: L is a symmetric matrix. Its (i, j)th and (j, i)th entries are equal and its diagonal
entries contain each node’s total degree.

• Observation 2: All of its eigenvalues are real because L is symmetric.



17.2 ALGEBRAIC GRAPH THEORY OVERVIEW 449

• Observation 3: L is a positive semidefinite matrix. Thus, it has no negative eigenvalues. Its first
smallest eigenvalue is always 0 because the sum of each row or column is zeros. By sorting the
eigenvalues, we obtain: λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1

• Observation 4: The number of zero eigenvalues indicates the number of disconnected components
in the graph. If the graph is strongly connected, then the second smallest eigenvalue, λ1, which is
also the Fiedler value, is always larger than zero.

• Observation 5: Now consider an attacker aiming to disrupt the functionality of the network. If an
attacker kills the links in between nodes (or when a network’s links are broken because of natural
distances) and thereby produces a new edge set E1, then the new Fiedler value satisfies
λ1(V , E1) ≤ λ1(V , E) where E1 ⊆ E

• Observation 6: The Fiedler value’s upper bound is limited by the minimum degree of nodes and
the total number of nodes that exists in the network. The upper bound approaches the minimum
degree value of all the nodes as the size of the network becomes large. The exact relationship is
given by [2]

λ1(V , E) ≤ |V|
|V| − 1

min
v

dv . (17.3)

We note that one may examine Observation 5 a different way. In particular, it implies that the Fiedler
value can become larger when adding edges to a graph, and thus a network can become more robust by
increasing the Fiedler value.

Because we are interested in network vulnerability when a node is removed from a graph, we now
introduce a modified notion of the Fiedler value, which corresponds to the role of a particular node
in the network’s connectivity as measured by the impact associated with removing all of that node’s
links (i.e., connections to other nodes in the network). Specifically, we propose a new measure of
connectivity, which we term a node’s Fiedler value:

Definition. For a graph G(V , E), the node Fiedler value associated with node j corresponds to the
Fiedler value λ1

j (V , Ej), where Ej corresponds to a revised set of edges for G where all edges containing
node j have been removed from E. �

Nodal Fiedler values have properties that λ1
i , i = 1, 2, . . . , n, on the graphs that remain after

removing each node from the same original graph, G, and are comparable in terms of graph
connectivity. Because all the remaining graphs have the same number of nodes, the only differences
among them are the number of edges. Thus, according to Observation 5, comparison can be performed
by adding and removing edges when the number of nodes is equal. This observation provides the
foundation for comparing the connectivity impact that an adversary could have on a network by
removing a node from the network, such as results from a jamming attack or a sophisticated attack
in which an adversary broadcasts instructions to remove a node from the network routing tables.
Additionally, this notion will allow us to select the most connectivity-influential node in a network. For
example, for a five-node network, the Fiedler value indicates that the star topology is more connected
than a line topology with λ1 = 1 compared to λ1 = 0.3820. For a star topology, removing the central
node that connects to all other nodes has more influence on connectivity than removing a leaf node
because its Fiedler value becomes zero (in fact, we have a totally disconnected network). To not risk
confusion, we will not write superscript 1 in the following text.



450 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

17.2.2 MOST CONNECTIVITY-INFLUENTIAL NODE
Our objective is to identify the weakest point in the network in the sense that removal of this node would
weaken the network’s connectivity the most. To do this, we examine the connectivity of the topologies
that remain on a case-by-case basis after removing each node, and discover the nodes in the network
whose deletion would have the most harmful impact on the network’s algebraic connectivity.

Algorithm 17.1 SELECT A NODE THAT HAS THE MOST HARMFUL IMPACT ON
CONNECTIVITY

procedure SelectNode(G)
Step 1: Remove each node, i, in a graph G
Step 2: Calculate the Fiedler value λi, i = 1, . . . , n for the remaining graph G\i
Step 3: The node with most influence on the connectivity is

C = argi max λi
Step 4: K nodes with most influence on connectivity correspond to the first k largest λi

end procedure

17.3 USING CONNECTIVITY TO DIRECT AN INTERFERENCE ATTACK
Each edge in a network graph describes a relationship between entities, such as a communication link
in a wireless network, that may be quantified by throughput or in a binary manner. We now consider
an application of the Fiedler value for directing an attack against a wireless network. To describe the
physical layer connectivity, we will use a Shannon-style formulation to capture the throughput of a
physical layer link. Consider a wireless network consisting of n nodes in radio range of each other.
We denote a node by vi = (x1i, x2i), i ∈ [1, n], where (x1i, x2i) is the 2-d coordinate for node vi. Let
V = {vi, i ∈ [1, n]} be the set of all nodes. We assume that, when each node communicates, it emits
the same power in all directions. Due to fading gains, path loss, and mutual interference of the signals,
not every signal can reach each receiver. Let P = (P1, . . . , Pn) be the transmission power allocation,
where Pi is the signal power used by node i. Interference between signals could take place, and its
effect depends on the distance between the receiver and the sender. Using a Shannon formulation, the
throughput of the received signal by node j is

Tij,ε (P) =
{

0, SINRij(P) < ε,

ln(1 + SINRij(P)), SINRij(P) ≥ ε,

where ε ≥ 0 is a threshold value for SINR (below this threshold, the link is unsustainable and hence
no throughput), and SINRij(P) = (hiPi/d2

ij)/(σ 2 +∑
k �=i,k �=j hkPk/d2

kj) with σ 2 is the background noise,
hi is the fading channel gain, and

dij =
√

(x1i − x1j)2 + (x2i − x2j)2

is the distance between node vi and node vj. (Note, for simplicity of notation and derivations, we are
using ln instead of log2 in the capacity formula.)



17.3 USING CONNECTIVITY TO DIRECT AN INTERFERENCE ATTACK 451

To define a communication network’s topology, links (edges) between nodes have to be established.
In this example, we consider symmetric communication, i.e., two nodes (say, node i and node j) are
considered to be linked if and only if Tij,ε(P) > 0 and Tji,ε(P) > 0, and because communication is
symmetric, the link is considered an undirected edge. Denote the link between node vi and node vj by
eij. Let E(P) be the set of all links. The graph G(P) = (V , E(P)) is simple, i.e., there are no self loops,
and there are no multiple links connecting two nodes.

The graph G(P), associated with a network, can be represented by the Laplacian matrix as

Lij(G(P)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, i �= j, vi and vj are linked,

0, i �= j, vi and vj are not linked,

−
n∑

k=1,k �=i
Lik, i = j,

where Lii(G(P)) equals the number of nodes connected with node vi. We note that it is possible to
consider a weighted network by assigning throughput as the weight for each link, in which case the
weighted network can be represented by a weighted Laplacian matrix as

Lij(G(P)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−wij, i �= j, vi and vj are linked,

0, ij, vi and vj are not linked,

−
n∑

k=1,k �=i
Lik, i = j,

where wij = Tij,ε(P) + Tji,ε(P) is the total throughput of the symmetric communication between node
vi and node vj, and Lii(G(P)) is the total throughput of the symmetric communication between node vi

and others nodes.
Because L(G(P)) is positive semidefinite and symmetric, its eigenvalues are all nonnegative. By

ordering the eigenvalues in an increasing way, we have: 0 = λ0(G(P)) ≤ λ1(G(P)) ≤ · · · ≤
λn−1(G(P)). The eigenvector corresponding to the first eigenvalue is always eT = (1, . . . , 1). The
second eigenvalue λ1(G(P)) is the Fiedler value. To emphasize that we consider connectivity based on
the fact that there is bidirectional throughput (above a threshold value) for a link, we will use the term
throughput connectivity and throughput Fiedler value. For a fixed power assignment P, the throughput
Fiedler value can be found as the solution of the following optimization problem

λ1(G(P)) = min
yT y=1,eT y=0

yT L(G(P))y.

Let us illustrate the behavior of throughput connectivity by the following example. Let the network
consist of five nodes (0, 0), (1, 0), (0, 1), (1, 1), and (2, 0.5) (Fig. 17.1A), and h = 1, σ 2 = 2,
ε = 0.1, 0.25 and P = (10, 20, 15, 25, P5) where P5 varies from 0.2 to 40. Of course, increasing ε

yields a decrease in the total throughput (Fig. 17.1B). Throughput connectivity is piece-wise constant
versus power (in our case, P5, see, Fig. 17.1C), while weighted throughput connectivity is piece-
wise continuous on P5 (Fig. 17.1D). Thus, weighted throughput connectivity is more sensitive than
throughput connectivity to a variation of the power. In this example, we observe that there is a
continuum where throughput connectivity obtains its maximum, and the value of this maximum is
not too sensitive to the threshold ε (in the considered example they coincide for ε = 0.1 and
ε = 0.25, and are equal to 3). Also, we can observe that there is a reduction of the set where the



452 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

(A) (B)

(C) (D)

FIG. 17.1

(A) Nodes of the network, (B) Total throughput, (C) Throughput connectivity, and (D) Weighted throughput
connectivity as functions on P5.

throughput connectivity obtains its maximum when reducing the threshold ε, but there is no simple
monotonic dependence between throughput connectivity and the threshold ε. For weighted throughput
connectivity, such dependence could be observed as well as the fact that it obtains its maximum for a
unique P5.

17.3.1 IMPROVING CONNECTIVITY AGAINST SELF-INTERFERENCE
The Fiedler value has been used to optimize a network’s design, and we now survey a few such
works. A greedy heuristic algorithm was presented in [4], which adds edges (from a set of candidate
edges) to a graph to maximize its algebraic connectivity. A distributed algorithm for the estimation and
control of the connectivity of ad hoc networks for random topologies was suggested in [5], while a
steepest-descent algorithm was proposed for control of the algebraic connectivity in [6]. The problem
of improving network connectivity by adding a set of relays to increase the number of links between
network nodes was considered in [7]. In [8] a genetic algorithm and swarm algorithm were applied for



17.3 USING CONNECTIVITY TO DIRECT AN INTERFERENCE ATTACK 453

finding the best positions of adding nodes to a network to meet trade off between deployment cost and
network connectivity. A decentralized algorithm to increase the connectivity of a multiagent system
was suggested in [9]. In [10], a problem of finding the best vertex positioning to maximize the Fiedler
value of a weighted graph was studied. Finally other measures of connectivity (such as global message
connectivity, worst-case connectivity, network bisection connectivity, and k-connectivity, have been
used in network design [11]).

In all these papers, the possibility of establishing a new communication link in a network did not
depend on signal interference. Interference, however, has a significant impact because signals sent to
establish new communication links also serve as noise for all other links, thereby reducing the network’s
capacity for maintaining existing communication links. To deal with this problem, we introduced
two notions of connectivity: throughput connectivity, which reflects the possibility of establishing
communication between nodes for a given power level; and weighted throughput connectivity, which
associates with each link a weight corresponding to that link’s throughput.

We now use these notions in an adaptive transmission protocol that reallocates transmission power
between nodes to alleviate interference. Let � be the set of feasible transmission power vectors. For
example, this could be �(P) = {P ≥ 0 :

∑n
j=1 Pi = P}, where P is the total power allowed by the

network’s administrator. Then, the problem of optimal transmission power assignment is given as the
following max-min problem:

λ1(G(P)) = max
P∈�(P)

min
yT y=1,eT y=0

yT L(G(P))y. (17.4)

This maximization problem of the second smallest eigenvalue of the Laplacian matrix based on its inner
parameters is equivalent to the following optimization problem (see [12]):

max
P,z

z,

subject to

L(G(P)) − zI 	 0, P ∈ �(P) and z > 0,

(17.5)

where I is the n × n identity matrix, and “	” represents positive definiteness. Because L(G(P)) is
symmetric, L(G(P)) − zI is also symmetric. Therefore, Eq. (17.5) belongs to the class of semi-definite
programming (SDP) problems [13]. It can be solved by SDP optimization tools, such as SDPT3 [14,15],
SDPA-M [7,16], and CSDP [17].

Fig. 17.2A illustrates the dependence of throughput connectivity and weighted throughput con-
nectivity versus total power P with ε = 0.1. It is interesting that these two forms of connectivity
are nondecreasing due to the cooperative reallocation of transmission power between the nodes.
Meanwhile, as was shown in Fig. 17.1, selfishly increasing the transmission power of just one node can
lead to decreasing the network’s connectivity. The cooperative throughput case is larger than the case for
selfish throughput. This illustrates that throughput connectivity reflects the possibility of establishing
communication between nodes for a signal power level while the weighted throughput connectivity
associates the throughput as a weight in the associated network graph. Throughput connectivity is
less sensitive to a network’s parameters than one based on weighted throughput connectivity, which
makes the power allocation protocol for maintaining throughput connectivity potentially advantageous
because one would not have to exchange channel state information as frequently.



454 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

0 50 100 150
2

2.2

2.4

2.6

2.8

3

Total power(A)

(B)

T
hr

ou
gh

pu
t c

on
ne

ct
iv

ity

0 50 100 150
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Total power

W
ei

gh
te

d 
th

ro
ug

hp
ut

 c
on

ne
ct

iv
ity

FIG. 17.2

(A) Throughput connectivity and (B) weighted throughput connectivity as functions of P.

17.4 DYNAMIC GAME FOR IMPROVING CONNECTIVITY AGAINST JAMMING
We now move to applying the Fiedler value to model network interference attacks. A malicious jammer
can purposely break links and separate a node from the rest of a network, which can interrupt the normal
operation of the network, especially if the node is the hub of several routes. Therefore, investigating the
impact of the removal of critical nodes and analyzing the jammer’s strategy in choosing a node for an
attack is essential to maintain network connectivity in adversarial settings.

Most research about network connectivity traditionally focuses on designing secure routing
protocols by which packets can route around holes in networks [18–20]. Those routing protocols usually
aim to find the most efficient and free path in a topological graph after an attack happens. The impact
of a broken link or removal of a node in a path, and the resulting diffusion of attack damage across
the broader network context, has been studied much less, particularly when the connectivity issues
appear at the physical layer. Ensuring the robustness of the physical layer typically involves examining
links in isolation (e.g., robust error coding), and notably separate from the broader network context.



17.4 DYNAMIC GAME FOR IMPROVING CONNECTIVITY AGAINST JAMMING 455

The robustness of networks at the physical layer should examine the network’s performance after one
or more nodes or links are degraded or removed at the physical layer. For example, an attacker can
strategically delete nodes according to his purposes though targeted interference, aimed at greedily
removing nodes with a higher degree first or deleting nodes in high-density areas in order to exacerbate
the damage.

Game theory is a natural tool for rationalizing a jammer’s behavior. Game theory investigates the
interactions between players to arrive at equilibrium strategies for both sides [21]. In [22], a survey
of works that applied game theory to deal with network security is given. Game theory papers at
the physical layer often model the rational behaviors of a jammer or an eavesdropper or cooperative
behavior between them to solve the problem of allocating transmission power or increasing the
transmission rate. Typically, the utility function being employed is Shannon capacity, SINR (signal
to interference and noise ratio), information entropy, or bit error. There is a limited set of works dealing
with maintaining the connectivity of the network topology. In [23], the problem of minimizing the
probability that the spanning tree is disrupted by an adversary attack was studied. In [24], to identify
key players engaged in attacking a network, the Shapley value was applied. In [25], a problem with two
types (good and bad) of users was studied by a repeated game, where good users were willing to trade
energy for connectivity depending on neighbors’ behaviors, while bad users try to destroy connectivity
and lure the good users to waste energy.

Here we consider a game where users’ throughput and network connectivity are combined in
a unified framework. We examine the problem of interference attacks that are intended to harm
connectivity and throughput. We arrive at antijamming strategies aimed at coping with interference
attacks through a unified stochastic game. In such a framework, an entity trying to protect a network
faces a dilemma: (1) the underlying motivations for the adversary can be quite varied, which depends
largely on the network’s characteristics such as power and distance; (2) the metrics for such an attack
can be incomparable (e.g., network connectivity and total throughput). To deal with the problem of such
incomparable metrics, we use the attack’s expected duration as a unifying metric to compare distinct
attack metrics because a longer duration of and unsuccessful attack assumes a higher cost. Based on
this common metric, a mechanism of max-min selection for an attack prevention strategy is outlined.

17.4.1 A STOCHASTIC GAME: CONNECTIVITY INTRUSION PREVENTION
As a motivating application, we consider the problem of mitigating a connectivity attack directed
against a wireless ad hoc network. We propose strategies to prevent such attacks. We will apply methods
of stochastic games in combination with network connectivity, and refer the reader to surveys for
applying stochastic games to network security [26–28].

Attack model
Our adversarial model involves a jammer aiming to hurt the network by choosing a node to direct
interference against while the network itself aims to reduce the harm this attack has on the network
by scanning to detect the interference. The category of the jammer’s attack is fixed throughout the
entire intrusion, which might either be a jamming attack to minimize throughput or an attack aimed at
disrupting connectivity. The jammer uses its knowledge of the network to find a node that could harm
the network the most when its communication is blocked. If the victim node determined by a jammer
is also simultaneously being scanned by the scanner, the jammer will switch to a silent hiding mode



456 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

(incurring a cost/penalty), and if he is not caught, he can continue his attack. However, if the node
he chooses is not scanned, the jammer performs a jamming attack. We assume a jammer can observe
the presence of the scanning authority through some form of detection technique (e.g., side channel
information) and thus the jammer will not perform a jamming attack when being scanned because
there is a fear of being caught.

Game formulation
Let Ch be the hiding mode cost for the jammer corresponding to its type of attack. Let α be the
probability to be detected in the hiding mode, and 1 −α be the probability not to be detected. Thus, the
instantaneous cost to the jammer combines the expected hiding cost and the cost of network penetration
in the future if the jammer is not caught. Naturally we assume the instantaneous payoff for the scanning
authority equals the instantaneous cost for the jammer. This recursively played zero-sum game �γ can
be considered as a single-state stochastic game [29], which can be solved by stationary strategies, as
follows:

�γ =

⎡
⎢⎢⎣

1 2 ... n

1 Ch + γ�γ λ̄2 . . . λ̄n
2 λ̄1 Ch + γ�γ . . . λ̄n
... . . . . . . . . . . . .

n λ̄1 λ̄2 . . . Ch + γ�γ

⎤
⎥⎥⎦, (17.6)

where the rows correspond to the scanner’s strategies, i.e., chosen nodes to scan, and columns
correspond to the jammer’s strategies, i.e., chosen nodes to attack.

Let us describe in detail the components of this matrix. Assume the authority has chosen strategy
i and the jammer has chosen strategy j. If i �= j, node j is jammed successfully, the jammer suffers
the instantaneous cost λ̄j, and the game is over. If i = j then the jammer switches to the hiding mode
paying the instantaneous cost Ch. With probability α, the jammer will be detected, and the game is
over. However, if the jammer is not detected, with probability 1 − δ, he stops the attempts and exits the
game. The game is over. Whereas, with probability δ the jammer keeps playing the game recursively.
Therefore, the instantaneous reward for the scanner is αCh + (1 − α)

[
Ch + δ · val(�γ )

]
. Then, the

conditional probability to continue the jamming attack is γ = (1 − α)δ, and with this probability the
game � is played recursively with the expected instantaneous jammer costs accumulated as Ch + γ�γ .
Because γ < 1, it can be considered as a discount factor and guarantees the convergence of the solution.
Here, employing stochastic games is quite natural because the authority and the jammer have opposing
objectives, and it is uncertain how persistent the jammer can be in its malicious attack before it is
detected. The routine for the jamming attack is presented in Fig. 17.3.

Cost of connectivity attack
The game (17.6) can be used to model different types of attacks by appropriately assigning parameters.
The variable, λ̄i, can correspond to either the network’s connectivity in a connectivity disruption attack
or the network’s throughput in a throughput disruption attack.

The Nodal Fielder value, defined in Section 17.2.1, can be used as the cost of a connectivity attack
because the Fiedler value is related to the connectivity of a network. The smaller the Fiedler value,
the larger the negative impact. These Fiedler values, {λi(G\i)|i = 1, 2, . . . , n}, on the remaining graphs



17.4 DYNAMIC GAME FOR IMPROVING CONNECTIVITY AGAINST JAMMING 457

FIG. 17.3

The routine for a connectivity jamming attack in an ad hoc network, Ch is cost of hiding, λ̄i is connectivity
damage for removing a node, which is the cost for launching an attack, α is the probability of being caught,
and δ is the probability of continuing an attack.

obtained by removing a different node from the same graph, �, are comparable. Thus if the jammer
aims to reduce network connectivity, the Fiedler value {λi} can be considered as the cost of such an
adversary’s attack. Namely, the jammer’s cost of attack to disrupt connectivity is

λ̄i = λi(G\i). (17.7)

If the adversary targets the network’s throughput, then the total throughput for the unaffected
network can be considered as a cost of such attack. If the adversary has a selected node i for a jamming
attack, the total throughput for the rest of the network, or the cost of the throughput jamming attack, is
given as:

λ̄i =
n∑

l,j=1,j�=i,l�=i

ln

(
1 + hl,jPl,j

σ 2 + ∑n
k=1,k �=j hk,jPk,j

)
. (17.8)

Defensive strategy
Game �γ has a solution in (mixed) stationary strategies, i.e., strategies that are independent of
history and the current time slot. A (mixed) stationary strategy for the scanner is a probability vector
pT = (p1, p2, . . . , pn), where pi is the probability to scan node i and eTp = 1. A (mixed) stationary
strategy for the jammer is a probability vector qT = (q1, q2, . . . , qn), where qi is the probability to jam



458 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

node i, and eTq = 1. Solution of the game �γ is given as a solution to the Shapley (-Bellmann) equation
game [29]:

val(�γ ) = max
p≥0,eT p=1

min
q≥0,eT q=1

n∑
i=1

n∑
j=1

Aij(val(�γ ))piqj,

= min
q≥0,eT q=1

max
p≥0,eT p=1

n∑
i=1

n∑
j=1

Aij(val(�γ ))piqj,

(17.9)

Aij(x) =
{

Ch + γ x, i = j,

λ̄j, i �= j,
(17.10)

and Vγ := val(�γ ) is the value of the game, i.e., the optimal accumulated cost to the jammer.
Without loss of generality we can assume that all nodes have different jamming costs, i.e., λ̄i �= λ̄j

for i �= j and all nodes are indexed in ascending order by λ̄i, i.e.,

λ̄1 < λ̄2 < · · · < λ̄n. (17.11)

Despite the fact that the stochastic game considered has an n × n instantaneous payoff matrix, we
can obtain the solution explicitly from the following theorem:

Theorem 17.1. The stochastic game �γ has an equilibrium in stationary strategies (p, q) and the
value Vγ given as follows:

(a) Let

Ch/(1 − γ ) < λ̄1. (17.12)

Then Vγ = λ̄1 and

pi

⎧⎨
⎩

= 0, i = 1,

≥ λ̄i − λ̄1
λ̄i − Ch − γ λ̄1

, i ≥ 2,

qi =
{

1, i = 1,

0, i ≥ 2.

(17.13)

(b) Let

λ̄1 ≤ Ch/(1 − γ ) < λ2. (17.14)

Then Vγ = Ch/(1 − γ )

pi(x) =
{

1, i = 1,

0, i ≥ 2,

qi(x) =
{

1, i = 1,

0, i ≥ 2.

(17.15)



17.4 DYNAMIC GAME FOR IMPROVING CONNECTIVITY AGAINST JAMMING 459

(c) Let

λ̄k < Ch/(1 − γ ) ≤ λ̄k+1 (17.16)

with λn+1 = ∞, and m ∈ [1, k] be such that

ϕk+1
m ≤ 1 < ϕk+1

m+1, (17.17)

with

ϕk+1
s =

s∑
i=1

λ̄s − λ̄i

Ch + γ λ̄s − λ̄i
for s ≤ k (17.18)

and ϕk+1
k+1 = ∞. Note that, by Eq. (17.16), ϕk+1

s is increasing from zero for s = 1 to infinity for
s = k + 1. Thus, m is uniquely defined by Eq. (17.17).
Then,

pi =
⎧⎨
⎩

Vγ − λ̄i
Ch + γ Vγ − λ̄i

, i ≤ m,

0, i > m,

qi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/(Ch + γ Vγ − λ̄i)
m∑

j=1

1/(Ch + γ Vγ − λ̄j)
, i ≤ m,

0, i > m,

(17.19)

and Vγ is a unique root of the equation

Fm(Vγ ) :=
m∑

i=1

Vγ − λ̄i

Ch + γ Vγ − λ̄i
= 1. (17.20)

�
Proof. First note that Vγ , p, and q is a solution of the Shapley equation (17.9) if and only if

Vγ = ν and

max ν,
n∑

i=1

Aij(Vγ )pi ≥ ν, i ∈ {1, . . . , n}, (17.21)

min ν,
n∑

j=1

Aij(Vγ )qi ≤ ν, j ∈ {1, . . . , n}. (17.22)

Taking into account Eq. (17.10) and that p and q are probability vectors, the LP problems (17.21) and
(17.22) are equivalent to



460 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

max ν,

(Ch + γ Vγ − λ̄i)pi + λ̄i ≥ ν, i ∈ {1, . . . , n}, (17.23)

min ν,

(Ch + γ Vγ − λ̄i)qi +
n∑

j=1

λ̄jqj ≤ ν, j ∈ {1, . . . , n}. (17.24)

Then, Eqs. (17.23) and (17.24) imply that Vγ , p, and q is a solution of the Shapley equation (17.9) if
and only if:

(C + γ Vγ − λ̄i)qi +
n∑

j=1

λ̄jqj

{
= Vγ , pi > 0,

≤ Vγ , pi = 0,
(17.25)

(C + γ Vγ − λ̄i)pi + λ̄i

{
= Vγ , qi > 0,

≥ Vγ , qi = 0.
(17.26)

Let Eq. (17.12) hold. Then, by Eqs. (17.11), (17.25), and (17.26), there is no i such that pi > 0 and
qi > 0. Also, q1 = 1 and p1 = 0. Substituting them into Eqs. (17.25) and (17.26) implies (a). Suppose
Eq. (17.12) does not hold. Then, by Eqs. (17.11), (17.25), and (17.26), there is an m such that pi > 0
and qi > 0.

pi

{
> 0, i ≤ m,

= 0, i > m
and qi

{
> 0, i ≤ m,

= 0, i > m.
(17.27)

Let m = 1. Then, by Eq. (17.11), (17.25) and (17.26), the condition (17.14) has to hold, and (b)
follows. Now assume Eq. (17.16) holds, then note that

max
{

λ̄i − Ch

γ
, λ̄i

}
=

⎧⎪⎨
⎪⎩

λ̄i − Ch
γ , λ̄i ≥ Ch

1 − γ
,

λ̄i, λ̄i ≤ Ch
1 − γ

.
(17.28)

Because m > 1, by Eqs. (17.11), (17.25), (17.26), and (17.27) p and q have the form given by
Eq. (17.19). Then, V has to be given as a root of Eq. (17.20). It is only left to show that this equation has
a unique root. Let m < k. Then, by Eqs. (17.11) and (17.28), Fm is increasing in [λ̄m, λ̄m+1] such that,
by Eq. (17.17), Fm(λ̄m) = ϕk+1

m ≤ 1 < ϕk+1
m+1 = Fm(λ̄m+1). Thus, V is uniquely defined. Let m = k.

Then, by Eqs. (17.11) and (17.28), Fk is increasing in [λ̄k, (λ̄k − C)/γ ], and Fk((λ̄k − C)/γ ) > 1, and
(c) follows.

From this theorem, if the hiding cost Ch is too large, i.e., Ch ≥ λ̄n, then all the nodes will be under
attack and thus must be scanned, i.e., pi > 0 and qi > 0 for any i, and the value of the game is the
unique root of the equation Fn(Vγ ) = 1. Also, the value Vγ of the game is increasing with respect to
Ch and γ , including γ = 1. Because the game �0 is a single time-slot game, it is just a matrix game
whose solution is given in the following theorem.



17.4 DYNAMIC GAME FOR IMPROVING CONNECTIVITY AGAINST JAMMING 461

Theorem 17.2. The one time slot matrix game �0, which is the limit of the stochastic game �γ as
γ tends to zero, has value V0 = V(Ch) and equilibrium strategies p and q given as:

(a) Let

Ch < λ̄1. (17.29)

Then V(Ch) = λ̄1 and

pi

⎧⎨
⎩

= 0, i = 1,

≥ λ̄i − λ̄1
λ̄i − Ch

, i ≥ 2,

qi(x) =
{

1, i = 1,

0, i ≥ 2.

(17.30)

(b) Let

λ̄1 ≤ Ch < λ̄2. (17.31)

Then V(Ch) = Ch and

pi =
{

1, i = 1,

0, i ≥ 2,

qi =
{

1, i = 1,

0, i ≥ 2.

(17.32)

(c) Let

λ̄k < Ch ≤ λ̄k+1 (17.33)

and m be given by Eq. (17.17). Then,

V(Ch) =
1 +

m∑
j=1

λ̄j/(Ch − λ̄j)

m∑
j=1

1/(Ch − λ̄j)

,

pi =
⎧⎨
⎩

V(Ch) − λ̄i
Ch − λ̄i

, i ≤ m,

0, i > m,

qi =
{

1/(Ch − λ̄i)
m∑

j=1

1/(Ch − λ̄j)
, i ≤ m,

0, i > m.

(17.34)

�



462 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

Theorem 17.2 suggests two procedures to find the value of the stochastic game.
Theorem 17.3. The value of the stochastic game �γ is given as follows Vγ = x−Ch

γ
, where x ≥ Ch

is a unique root of the equation x−Ch
γ

= V(x). The unique root of V(x) can be found by

(a) an iterative procedure x0 = Ch, xi+1 = γ V(xi) + Ch, i = 0, 1, . . . until |xi+1 − xi| ≤ ε with ε is
tolerance.

(b) the bisection method because (x − Ch)/γ − V(x) = −Ch/γ − ν(0) < 0 for x = 0 and
(x − Ch)/γ − ν(x) > 0 for enough large x. �

17.4.2 COMPARISON OF DIFFERENT ATTACKS
The jammer can deteriorate network performance by reducing either its connectivity or throughput.
Motivated by these different categories of malicious activity, the jammer could vary the corresponding
optimal strategies. However, the scanner might have no knowledge of the jammer’s motivation for an
attack, and thus about the strategy employed. The scanner might only know the set of all possible
motivations and the corresponding optimal strategies used by the jammer.

Under this situation, the need for comparing these strategies arises because they have different
metrics. However, for the game considered, in spite of the difference between attack objectives, the
ultimate goal of a jammer is to speed up the process of completing the attack because a longer time
commitment involves more cost. Thus, the expected time for a successful attack can be considered as
a common metric for all the categories of malicious activity, where the scanner wants to maximize this
metric while the jammer aims to minimize it. If we assume the rival chooses a specific category and he
continues that type of attack until completing the attack, then the expected jamming time, T , before a
successful attack appears can be represented as the following (τ is jamming time slots spent before the
jammer launches a successful attack):

E (τ , p, q) =
∞∑

τ=1

τ

⎡
⎢⎣

⎛
⎝ n∑

i=1

γ piqi

⎞
⎠

τ−1 ⎛
⎝1 −

n∑
i=1

γ piqi

⎞
⎠

⎤
⎥⎦ = 1

1 − γ pT q
, (17.35)

where q is a probability vector that represents a category of strategies employed by the jammer. p is a
probability vector that represents a category of strategy applied by the scanner to scan the attack. Thus,
these strategies depend on the category of malicious activity chosen by the jammer.

Although our approach might be applied to any category of an attack, we focus only on attacks
against a network’s connectivity and a network’s throughput. We denote these metrics (connectivity,
throughput) by the symbols “c” and “t”. The optimal strategy pair, (pc, qc), for dealing with an attack
against connectivity was found in the previous section. The optimal strategies (pt, qt) for dealing with an
attack aiming to harm throughput can be found by substituting connectivity cost λ̄i with the remaining
throughput expressed in Eq. (17.8) into matrix (17.6).

The scanner wants to maximize the jammer’s attacking time in order to force the jammer to make
his attack more expensive whereas the jammer wants to minimize it. The scanner does not know what
type of attack the jammer intends to use. The jammer does not know what type of attack the scanner
intends to focus his defense against. Thus, the rivals face a dilemma of choosing the proper strategies,
which can be described by the following zero-sum 2 × 2 matrix game



17.4 DYNAMIC GAME FOR IMPROVING CONNECTIVITY AGAINST JAMMING 463

D =
[ c t

c E(pc, qc) E(pc, qt)
t E(pt, qc) E(pt, qt)

]
,

where the rows correspond to the scanner’s strategies, i.e., choosing the attack’s category to response,
and columns correspond to the jammer’s strategies, i.e., choosing the attack’s category.

This matrix game has an equilibrium (see [30]) either in pure strategies or in mixed strategies
when the rival randomizes his selection. Because the game is zero-sum, then the scanner’s equilibrium
strategy is also his max-min strategy, i.e., it is the best response strategy for the most dangerous
adversary’s attack. This result is given in the following two propositions.

Proposition 17.1. The game has an equilibrium in (pure) strategies if and only if the following
conditions hold:

1. If pT
t qc ≤ pT

c qc ≤ pT
c qt then (c, c) is an equilibrium,

2. If pT
c qc ≤ pT

t qc ≤ pT
t qt then (t, c) is an equilibrium,

3. If pT
t qt ≤ pT

c qt ≤ pT
c qc then (c, t) is an equilibrium,

4. If pT
c qt ≤ pT

t qt ≤ pT
t qc then (t, t) is an equilibrium.

�
Proposition 17.2. If there is no equilibrium in pure strategies, the rivals apply randomized

strategies. Namely, with probability, xc (xt), the scanner should defend against “c” (“t”) attack’s
category, and with probability, yc (yt), the jammer applies strategy corresponding to “c” (“t”) attack’s
category, where

xc = E(pt, qt) − E(pt, qc)
E(pc, qc) + E(pt, qt) − E(pc, qt) − E(pt, qc)

,

xt = 1 − xc,

yc = E(pt, qt) − E(pc, qt)
E(pc, qc) + E(pt, qt) − E(pc, qt) − E(pt, qc)

,

yt = 1 − yc.

(17.36)

�

17.4.3 NUMERICAL RESULTS
In this section, numerical results are given to illustrate the impact of network parameters, such as
transmission power and SINR’s threshold, on maintaining the communication links. In the simulation
setting, the network consists of six nodes, i.e., n = 6 with background noise σ 2 = 1. The scanner
scans the network to prevent malicious activity. The channel gain matrix, h, was randomly generated
and given as follows:

h =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.3128 1.1790 1.6488 1.6335 0.8458
0.3128 0 0.4524 1.9653 0.5215 0.1885
1.1790 0.4524 0 1.4605 1.1887 1.1970
1.6488 1.9653 1.4605 0 0.0450 0.9418
1.6355 0.5215 1.1887 0.0450 0 1.3919
0.8458 0.1885 1.1970 0.9418 1.3919 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.



464 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

For each node, as a power transmission protocol, we consider uniform power allocation, which involves
a node allocating the same power to all its neighbors, though each node can have different total power
levels. Here we consider that transmission powers (P1 and P2) of nodes 1 and 2 vary from 0 to 20,
P3 = 11, P4 = 10, P5 = 9, and P6 = 8. The protocol of uniformly allocating transmission power is
known to be optimal for independent and identically distributed Gaussian channels [31,32]. Given h,
P, σ 2, and receiving threshold, they imply a network’s topology.

Fig. 17.4 illustrates the authority’s and the jammer’s strategies for a connectivity jamming game as
a function of probability, γ , and that the game is continuous. It shows how the jammer tries to avoid
being detected by the authority in order to perform a successful attack. Fig. 17.4A indicates the jammer

0 0.1 0.2 0.3 0.4 0.5

(A)

(B)

0.6 0.7 0.8 0.9
0.13

0.14

0.15

0.16

0.17

0.18

0.19

g ( w = 5, P
1
 = 9, P

2
 = 12, C

h
c = 50 )

A
ut

ho
rit

y’
s 

st
ra

te
gy

 (
co

nn
ec

tiv
ity

)

node 1
node 2
node 3
node 4
node 5
node 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.162

0.164

0.166

0.168

0.17

0.172

0.174

0.176

g ( w = 5, P
1
 = 9, P

2
 = 12, C

h
c = 50)

Ja
m

m
er

’s
 s

tr
at

eg
y 

(c
on

ne
ct

iv
ity

)

node 1

node 2

node 3

node 4

node 5

node 6

FIG. 17.4

(A) Authority’s strategy for connectivity attack and (B) Jammer’s strategy for connectivity attack.



17.4 DYNAMIC GAME FOR IMPROVING CONNECTIVITY AGAINST JAMMING 465

0 2 4 6 8 10 12 14

(A)

(B)

16 18 20
0

0.2

0.4

0.6

0.8

1

P2  ( w = 5, P1 = 9, C
h
c = 50, C

h
t = 290 )

P
ro

ba
bi

lit
y 

of
 d

ef
en

di
ng

 a
ga

in
st

co
nn

ec
tiv

ity
 a

tta
ck

 

 

γ = 0
γ = 0.2
γ = 0.4
γ = 0.6
γ = 0.8

0 2 4 6 8 10 12 14 16 18 20
1.1992

1.1993

1.1994

1.1995

1.1996

1.1997

P2  ( w = 5, P1 = 9, C
h
c = 50, C

h
t  = 290)

A
tta

ck
 ti

m
e

γ = 0

γ = 0.2

γ = 0.4

γ = 0.6

γ = 0.8

FIG. 17.5

Max-min selection of scanning strategy: (A) the probability that the authority intends to deal with an attack
aiming to disrupt connectivity and (B) the expected durations of the game as a function on the transmission
power of node 2.

tends to reallocate resources for a new attack as γ becomes larger while Fig. 17.4B illustrates that the
best strategy for a jammer is in a reverse order to that of the scanner.

Fig. 17.5A illustrates the probability that the authority intends to deal with an attack aimed at
disrupting connectivity as a function of P2. Under the simulation setting, the figure shows: (1) a scanner
should defend against a connectivity attack if an attacker has low probability, γ , to continue its attack;
(2) As the transmission power of a legitimate node increases, the scanner switches to defending against
a throughput attack.



466 CHAPTER 17 APPLICATIONS OF GRAPH CONNECTIVITY

In general, Fig. 17.5A indicates that a larger probability γ assumes a smaller transmission power
in order to switch to a mixed strategy. Also, the authority’s strategy for maintaining connectivity is
nonincreasing with respect to the transmission power. Fig. 17.5B illustrates the expected duration of
the game as a function of P2. For the same reason as for the value of the game, namely the change
in the network’s topology due to adding new links, the expected duration of the game is piece-wise
continuous with respect to transmission power.

17.5 CONCLUSIONS
Graph theoretical analysis of a communication network allows one to study the network’s structural
vulnerability to attacks that puncture a network. In this chapter, we have explored the use of the
Fiedler value to quantify the robustness of a network to attack: the larger the Fiedler value, the more
connected the network. We extended the notion of a network’s Fiedler value to a nodal Fiedler value,
which quantifies the importance a node plays in the network’s overall connectivity. To understand the
impact of physical layer interference on network connectivity, we proposed two new concepts for a
communication network’s connectivity: throughput connectivity and weighted throughput connectivity.
By using these concepts, the influence of a single node can be studied and used as the basis for
determining where to launch an attack against a network, or how to best improve the network’s
resilience. We provided two examples that use these concepts to improve network reliability. In the
first example involving collaborative allocation of transmission powers in a wireless network, we show
that a node that selfishly increases transmission power might reduce network connectivity; meanwhile,
cooperative allocation improves the connectivity. In the second example, we consider a scenario where
a jammer repetitively jeopardizes connectivity, and a defensive game was presented that analyzes the
interaction between a jammer and a connectivity protection.

REFERENCES
[1] Fiedler M. Algebraic connectivity of graphs. Czechoslov Math J 1973;23(2):298–305.
[2] Pandana C, Liu KJR. Robust connectivity-aware energy-efficient routing for wireless sensor networks. IEEE

Trans Wirel Commun 2008;7(10):3904–16.
[3] Mohar B, Alavi Y. The Laplacian spectrum of graphs. In: Graph theory, combinatorics, and applications,

vol. 2; 1991. p. 871–98.
[4] Ghosh A, Boyd S. Growing well-connected graphs. In: Proceedings of the 45th IEEE conference on decision

and control (CDC); 2006. p. 6605–11.
[5] Di Lorenzo P, Barbarossa S. Distributed estimation and control of algebraic connectivity over random graphs.

IEEE Trans Signal Process 2014;62(21):5615–28.
[6] Morbidi F. On the control of the algebraic connectivity and clustering of a mobile robotic network.

In: Proceedings of the European control conference (ECC); 2013. p. 2801–6.
[7] Ibrahim AS, Seddik KG, Liu KJR. Improving connectivity via relays deployment in wireless sensor networks.

In: Proceedings of the IEEE global telecommunications conference (GLOBECOM); 2007. p. 1159–63.
[8] Romoozi M, Babaei H. Improvement of connectivity in mobile ad-hoc networks by adding static nodes based

on a realistic mobility model. Int J Comput Sci Issues 2011;8(4):76–83.

http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0045


REFERENCES 467

[9] De Gennaro M, Jadbabaie A. Decentralized control of connectivity for multi-agent systems. In: Proceedings
of the IEEE conference on decision and control (CDC); 2009. p. 3628–33.

[10] Kim Y, Mesbahi M. On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian.
In: Proceedings of the American control conference (ACC); 2005. p. 99–103.

[11] Han Z, Swindlehurst AL, Liu KJR. Optimization of MANET connectivity via smart deployment/movement
of unmanned air vehicles. IEEE Trans Veh Technol 2009;58(7):3533–46.

[12] Blanco AM, Bandoni JA. Eigenvalue and singular value optimization. In: Mecanica computational; 2003.
[13] Vandenberghe L, Boyd S. Semidefinite programming. SIAM Rev 1996;38(1):49–95.
[14] Tutuncu RH, Toh KC, Todd MJ. Solving semidefinite-quadratic-linear programs using SDPT3. Math Program

2003;95(2):189–217.
[15] Todd MJ, Toh KC, Tutuncu RH. A MATLAB software package for semidefinite programming. Technical

report, School of OR and IE, Cornell University Ithacat NY; 1996.
[16] Fujisawa K, Futakata Y, Kojima M, Matsuyama S, Nakamura S, Nakata K, et al. SDPA-M (semidefinite

programming algorithm in MATLAB) user’s manual-version 6.2, vol. 10. Research Reports on Mathematical
and Computing Sciences, Series B: Operation Res., Dep. Math. and Computing Sci., Tokyo Institute of
Technol., Japan; 2000.

[17] Borchers B. CSDP, AC library for semidefinite programming. Optim Methods Softw 1999;11(1–4):613–23.
[18] Walters JP, Liang Z, Shi W, Chaudhary V. Wireless sensor network security: a survey. In: Security in

distributed, grid, mobile, and pervasive computing, vol. 1; 2007. p. 367.
[19] Karlof C, Wagner D. Secure routing in wireless sensor networks: attacks and countermeasures. Ad Hoc Netw

2003;1(2):293–315.
[20] Yang H, Luo H, Ye F, Lu S, Zhang L. Security in mobile ad hoc networks: challenges and solutions. IEEE

Wirel Commun 2004;11(1):38–47.
[21] Roy S, Ellis C, Shiva S, Dasgupta D, Shandilya V, Wu Q. A survey of game theory as applied to network

security. In: Proceedings of the IEEE the 43rd Hawaii international conference on system sciences (HICSS);
2010. p. 1–10.

[22] Manshaei MH, Zhu Q, Alpcan T, Bacşar T, Hubaux JP. Game theory meets network security and privacy.
ACM Comput Surv (CSUR) 2013;45(3):25.

[23] Gueye A, Walrand J, Anantharam V. Design of network topology in an adversarial environment. In: Decision
and game theory for security. Springer; 2010. p. 1–20.

[24] Lindelauf R, Blankers I. Key player identification: a note on weighted connectivity games and the Shapley
value. In: Proceedings of the IEEE international conference on advances in social networks analysis and
mining (ASONAM); 2010. p. 356–9.

[25] Theodorakopoulos G, Baras JS. A game for ad hoc network connectivity in the presence of malicious users.
In: Proceedings of the IEEE global telecommunications conference (GLOBECOM ’06); 2006. p. 1–5.

[26] Alpcan KCNT, Başar T. Stochastic games for security in networks with interdependent nodes. In: Proceedings
of the IEEE international conference on game theory for networks (GameNets’ 09); 2009. p. 697–703.

[27] Wang B, Wu Y, Liu KJR, Clancy TC. An anti-jamming stochastic game for cognitive radio networks. IEEE J
Sel Areas Commun 2011;29:877–89.

[28] Garnaev A, Trappe W. Anti-jamming strategies: a stochastic game approach. In: Aguero R, et al, editors.
Mobile networks and management. LNICST, vol. 141. Springer; 2015. p. 230–43.

[29] Neyman A, Sorin S. Stochastic games and applications, vol. 570. Springer Science & Business Media; 2003.
[30] Nisan N, Roughgarden T, Tardos E, Vazirani VV. Algorithmic game theory, vol. 1. Cambridge: Cambridge

University Press; 2007.
[31] Telatar IE. Capacity of multi-antenna Gaussian channels. European Trans Telecommun 1999;10(6):585–95.
[32] Rhee W, Cioffi JM. Ergodic capacity of multi-antenna Gaussian multiple-access channels. In: Proceedings of

the IEEE conference record of the thirty-fifth Asilomar conference on signals, systems and computers, vol. 1;
2001. p. 507–12.

http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00017-1/rf0165


CHAPTER

18TEAM METHODS FOR DEVICE
COOPERATION IN WIRELESS
NETWORKS

David Gesbert∗, Paul de Kerret∗
Communication Systems Department, EURECOM, Biot, France∗

18.1 INTRODUCTION
18.1.1 DEVICE CENTRIC NETWORK OPTIMIZATION
Tens of billions of machines (sensors, robots, computers, tablets, cars, etc.) are expected to be
connected to the wireless Internet within the next five to ten years. In the face of such unprecedented
demand, future mobile networks must deliver on a large number of criteria such as improved spectral
efficiencies, reduced latencies, and better and more consistent throughput experience in the cell as
well as extended battery life. From a networking point of view, operators will require highly flexible
backhaul architectures that can adapt to large fluctuations in the traffic patterns while maintaining
OPEX (including energy) costs low (Table 18.1).

Infrastructure-centric designs have been—and to a large extent still are—the prevailing paradigm
in wireless cellular systems such as 4G and 5G. Under this framework, network control and resource
optimization tasks are deferred to the infrastructure or cloud. One should note the easier path to global
network management that stems from such a centralized nature of computation. Nevertheless, pure
network-centric designs relying on optical-supported mobile clouds currently envisioned for 5G are
powerful yet expensive solutions that come with their own technical and security limitations. Finally,
due to cost concerns and the possible lack of efficient preexisting infrastructures, such designs are
difficult to implement precisely in those developing markets where universal broadband access could
make the biggest difference. In such cases, the quicker, cheaper installation of heterogeneous wireless
networks with less stringent requirements on backhaul communications is appealing. In developed user
markets and elsewhere, the use of flying radio access networks with base stations carried by autonomous
drones [1,2] can provide for an ultraflexible deployment of network coverage where and when it
is needed the most (hotspots, concerts, sport events) or also help first responders with connectivity
needs in disaster recovery scenarios. In all these examples, there is interest in designing a network of
devices that can mutually cooperate or self-organize without the help of a centralized architecture and
backhaul. Instead, devices should leverage local computing, communication, and memory capabilities
to interact directly so as to help provide the best service possible. Such a device-centric paradigm

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00018-3
Copyright © 2018 Elsevier Inc. All rights reserved.

469



470 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

Table 18.1 Summary of Notation

Notation Description

TD team decision

DM decision maker

CSI channel state information

IS information structure

DHIS deterministic hierarchical information structure

SHIS stochastic hierarchical information structure

TX transmitter

RX receiver

n number of decision makers

U(•) joint utility function

h channel state

ĥ
(j)

estimate of the channel state at node j

w(j)(•) decision function at node j

K number of users

R(•) sum rate

Q(•) quantizer

�j CSI noise covariance matrix at TX j

ρ(j,j′) correlation factor between the CSI noise at TX j and TX j′

NC(0, 1) standard Gaussian distribution with zero mean and unit variance

renders necessary a system protocol architecture where direct communication between devices (D2D)
is made possible.

The notion of cooperation has been heavily studied in the context of wireless networks as a tool
to extend coverage, improve spectral efficiency and battery autonomy, or manage the interference
that stems from frequency reuse [3]. As an example, so-called coordinated multi-point transmission
methods have been proposed for inclusion in the 3GPP standards that feature cooperation algorithms
between neighboring base stations based on combinations of multiuser MIMO, power control,
and advanced resource allocation methods. Such methods are typically studied under a centralized
framework enabled by the so-called Cloud RANs where wireless devices at the edge (terminals,
base stations) push their observed data into an optical backhaul-supported cloud where servers run
optimization algorithms before optimum decisions are sent back to edge devices for application.
Interestingly, the application of such cooperation concepts in a device-centric setup has so far been
mostly open, due to the challenge posed by the lack of reliable centralized channel state information in
such settings.

18.1.2 COOPERATION WITH DECENTRALIZED INFORMATION
In device-centric architectures, wireless devices located at the edge of the network are recast as
autonomous agents. These agents run decentralized algorithms that are designed to maximize a
global network performance metric, e.g., the average sum throughput or the total user capacity under



18.1 INTRODUCTION 471

outage constraints, or minimizing latency toward accessing data content, to name a few examples.
Decentralized decision algorithms are needed to guide the devices in their choice of transmission
parameters such as power levels, beam design, time frequency resource utilization, routing path, etc.
In principle, the coordinated decisions across neighboring devices help overall system performance.
A salient feature of device-centric coordination, however, is the lack of reliable observed data (channel
measurements, signal-to-noise ratios, etc.) at each decision-making device and the need to build some
robustness with respect to this imperfect knowledge. In particular, an agent must make a transmission
parameter decision on the basis of mostly local information, which often takes the form of a noisy and
partial estimate of the global system state. Furthermore, devices have limited capability to communicate
to each other. This prevents the full sharing (centralization) of system state estimates between the
agents. Inevitably, a loss is to be expected in any decentralized setting when compared to the solution
that would be obtained in a fully centralized setting with ideal backhaul links. The purpose and
challenge behind robust device-centric coordination is exactly to minimize this loss.

Here, the device communication and decision-making capability is geared at enabling a collective
network-friendly intelligence. As such, these smart devices differ profoundly from previously studied
problems in cooperative wireless networks, such as those related to frequency agile cognitive radios or
(ad hoc) user mobile relaying. The emphasis on the network utility and the taking into account of finite
rate and latency constraints for interdevice communications also differs sharply from classical device
cooperation studies, using, e.g., iterative game theoretic approaches [4–6], although useful connections
can be made. More precisely, in our setting, the decision makers (DMs) are not conflicting with each
other as in a conventional game theoretic sense. In fact it is the decentralized (and noisy) nature of the
observed data, based upon which the decisions are made, that hampers the full coordination as opposed
to the egoistic nature of the device itself. The theoretical roots behind device-centric coordination are
found in the field of Bayesian Game with incomplete information [7] as well as the so-called team
decision theory [8]. We should, however, raise to the reader’s attention the fact that most of the line of
work dealing with the use of game theoretic approaches in decentralized wireless resource allocation
problems is related to trying to converge to a game equilibrium via an iterative algorithm. Each such
iteration entails new observations of some utility or price, allowing the players to ultimately converge
toward a coordinated decision state. In contrast, this work focuses on latency-constrained applications
that require robust single-shot (Bayesian) decision algorithms.

18.1.3 CHAPTER ORGANIZATION AND OBJECTIVES
This chapter is meant as a brief overview of the challenges and promises related to device-centric
coordination with application to future wireless networks, especially such networks that will feature
one or more decentralized components, i.e., not fully relying on the Cloud-RAN implementation. We
first formulate a large class of optimization problems, denoted as “Team Decision (TD) problems,”
that are well adapted to the context of device-centric coordination. Such problems are hard to
crack in their widest generality, as can be inferred from the classical literature on decentralized
control [8]. Nevertheless, we point out how the solution to a decentralized coordination problem (and
its complexity) critically depends on the associated information structure (IS). The latter describes
in quantifiable terms the nature and quality of the observations made locally at each DM and how
such local information relates to the true global system state (correlation or noise level). Wireless
networks have the advantage that their design is under human control, hence the IS can be shaped



472 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

in one of many possible ways, for instance by tuning quantization parameters and feedback rates. Key
examples of IS designs are highlighted with their advantages toward the construction of coordination
algorithms. In the second part of the chapter, we turn to the application of robust TD methods to the
problem of decentralized MIMO precoding in wireless networks. Through the prism of this example,
we show various strategies for deriving robust algorithms, several of which are rooted in the principle
of exploiting approximation models and/or discretization of the observation and decision spaces.
Numerical results highlight the benefits of robust coordination over naive coordination or lack of
coordination.

18.2 TEAM DECISIONS FRAMEWORK
18.2.1 GENERAL FORMULATION OF TEAM DECISION
We give here a general formulation for a TD problem for application in a large class of device-centric
wireless coordination scenarios. The decentralized network of devices as defined as follows. A network
of n DMs is considered. In some examples of interest here, the DMs are wireless TXs that seek to
optimize one (or possibly several) transmission parameters. We assume the n decisions couple into a
resulting network performance index, which is defined below. The decision space at the kth DM is
dk dimensional and can cover a variety of domains such as the selection of a power level, a beam in a
continuous or discrete grid of beams, usage of a time-frequency resource unit, a message destination
(for point to multipoint networks), and many more. The general TD problem can be formulated
as follows (

w�
1, . . . , w�

n
) = argmax

w1,...,wn

E
h,ĥ

(1)
,...,ĥ

(n)

[
U

(
h, w1(ĥ(1)), . . . , wn(ĥ(n))

)]
, (18.1)

where

• h ∈ Cm is the state of the system. For instance for a wireless network with n single antenna TXs, K
single antenna receivers (RXs) in a flat-fading propagation scenario, the instantaneous system
(channel) state is characterized by a random channel matrix of size K × n, or equivalently a vector
of m = K · n coefficients.

• ĥ
(j) ∈ Cm is the local estimate of the system state h, which is available at the jth DM.

• wj : Cm → Aj ⊂ Cdj is the strategy (or policy) adopted by the jth DM. Note that the decision is
made to be purely a function of what is locally observed by the jth DM. Hence for an instantaneous

observation ĥ
(j)

, the decision is wj(ĥ
(j)

).
• U : Cm × �n

j=1C
dj → R is the global network utility (e.g., throughput) resulting from the policy

adopted by the devices.
• p

h,ĥ
(1)

,...,ĥ
(n) is the joint probability distribution of the true system state and all local estimates.

Hence E
h,ĥ

(1)
,...,ĥ

(n) refers to the expectation operator under the joint probability rule p
h,ĥ

(1)
,...,ĥ

(n) .

Note that while Eq. (18.1) describes a decentralized policy search, the centralized design case is simply

a particular case where ĥ
(j) = ĥ

(1)
, ∀j = 2, . . . , n.

There are several reasons that intuitively explain the decentralized and noisy nature of state infor-
mation that underpins (18.1). First, devices typically have limited sensing and feedback capabilities.



18.2 TEAM DECISIONS FRAMEWORK 473

They can also be mobile with individual velocities, which tends to add varying levels of outdating to
the collected information. Finally, direct exchange of channel state information between devices does
not come free, or if it does the latency related to exchange may induce further outdating to the channel
state information (CSI), making the CSI degradation fundamentally device-dependent.

18.2.2 STATIC VERSUS SEQUENTIAL POLICY DESIGN
The TD formulation (18.1) refers to a static setting where each of the n DMs designs a policy in order to
optimally coordinate with other DMs in the Bayesian sense on the basis of a unique noisy observation
of the system state. As predicted by coordination theoretic analysis [9], coordination performance is

ultimately limited by the mutual correlation between observations ĥ
(1)

, . . . , ĥ
(n)

and the correlation
between these estimates and the true state h. The coordination setup in Eq. (18.1) precludes explicit
interaction between devices, i.e., no further exchange of information (local estimates or intermediate
decisions) is allowed between the devices, a hypothesis that is consistent with low latency application
scenarios. In some cases, the low latency condition can be relaxed and multiple rounds of information
exchanges are assumed between DMs. This opens the door to family of so-called sequential decision
algorithms whereby a device can optimize its policy as a function of messages received from other
DMs in the previous round. Eventually and under mild conditions, the algorithm will converge toward
a solution near to that obtained in the centralized case and rates of convergence can be analyzed. The
rest of this chapter is focused on static (single-shot) decision-making but the reader is referred to [10,11]
for an overview of distributed optimization problems in signal processing and communication and to
[4–6] for game theoretic approaches.

18.2.3 BEST RESPONSE FORMULATION
The above optimization is formulated in a Bayesian manner as a joint policy design problem. Note that
by virtue of decentralization, no physical entity in the network has access to the full set of instantaneous

informations ĥ
(1)

, ĥ
(2)

, . . . , ĥ
(n)

. However the full knowledge of underlying joint distributions is
assumed, so that is possible to compute (and maximize) the network utility in an expected sense.

Finding the n policies simultaneously is a daunting task and the complexity of problem (18.1) can
be relaxed by adopting the classical game-theoretic Best Response optimization approach [12]. The
Best Response optimal policy is denoted by wBR

j and is obtained by iteratively solving:

wBR
j = argmax

wj

E
h,ĥ

(1)
,...,ĥ

(n)

[
U

(
h, wBR

1 , . . . , wBR
j−1, wj, wBR

j+1, . . . , wBR
n

)]
, ∀j = 1, . . . , n, (18.2)

where for clarity we have omitted explicitly writing the dependency of the functions. This will be done
recurrently in the rest of the chapter but it should always be kept in mind that wj is only a function of

ĥ
(j)

and stands for wj(ĥ
(j)

).
Note, however, that in both the cases of Eqs. (18.2) and (18.1), the formulation calls for an

optimization within the space of n functions wj(•), j = 1, . . . , n. In fact, just like the original
formulation in Eq. (18.1), the problem in Eq. (18.2) is to be solved in a central computing location



474 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

on the basis of probability density information p
h,ĥ

(1)
,...,ĥ

(n) alone. Yet the application of the policies

wBR
j (ĥ

(j)
), j = 1, . . . , n, is carried out at each DM and remains fundamentally decentralized.

Although simpler than Eq. (18.1), the problem in Eq. (18.2) is generally quite difficult to solve
from an algorithm design and complexity point of view. Furthermore, the coordination performance
(i.e., the network utility) that can be attained under a decentralized information setting is bound to be
less than what can be achieved under a centralized information scenario. The loss of performance due
to imperfect sharing of the noisy CSI among the DMs is referred to as the price of distributedness.
In practice this loss depends on the quality of the channel state estimates made available to the
devices. How information about channel states is allocated among the DMs is captured by the notion
of information structure (IS), which is covered in more detail in Section 18.2.5.

18.2.4 NAIVE AND LOCALLY ROBUST COORDINATION
The original TD problem in Eq. (18.1) seeks robustness with respect to uncertainties along two ways.

First, DM j needs to be robust with respect to uncertainties related to its own local information ĥ
(j)

.
Secondly, as a multiagent problem, this device ought to take into account uncertainties at other DMs
with which it seeks to coordinate. Ignoring both local and global uncertainties leads to the following
naive policy denoted by wnv

j and obtained from:
(
v1, . . . , vj−1, wnv

j (ĥ(j)), vj+1, . . . , vn

)
= argmax

w1,...,wn

U
(

ĥ
(j)

, w1(ĥ(j)), . . . , wn(ĥ(j))
)

,

where decisions
(
v1, . . . , vj−1, vj+1, . . . , vn

)
are only auxiliary variables and will not be used in

the actual transmission. In the above optimization, DM j optimistically assumes that (i) his local

information ĥ
(j)

is perfect (equal to h) and (ii) that all other DMs have identical information.
Interestingly, it is possible to relax the robustness with respect to the distributed nature of information
while retaining robustness with respect to local uncertainties. Doing so, the following locally robust
(LR) policy wLR

j is obtained at DM j:
(
v′

1, . . . , v′
j−1, wLR

j , v′
j+1, . . . , v′

n

)
= argmax

w1,...,wn

E
h,ĥ

(j)

[
U

(
h, w1(ĥ(j)), . . . , wn(ĥ(j))

)]
,

where this time E
h,ĥ

(j) accounts for noise in the local information at the jth DM. Here, the DM accounts

for local estimation noise, yet erroneously assumes that the noise is the same everywhere else. This
approach corresponds, in fact, to a conventional robust design in a centralized setting. The performances
of naive and LR strategies vary strongly depending on the scenarios. Yet, they are often building blocks
of more advanced schemes, as will be seen later on.

18.2.5 INFORMATION STRUCTURES
The IS underpinning the TD problem in Eqs. (18.1) and (18.2) describes how the local information ĥ

(j)

available at the jth DM relates to local estimates at other DMs ĥ
(j′)

, j′ �= j as well as to the true global
state information vector h. Ultimately the IS is characterized by the joint distribution p

h,ĥ
(1)

,...,ĥ
(n) , which

in turns governs the price of distributedness.



18.2 TEAM DECISIONS FRAMEWORK 475

Additive white Gaussian noise model
An intuitive and mathematically tractable model for the decentralized information structures consists
in considering that the nodes receive global information that is corrupted by an arbitrarily shaped,
device-dependent Gaussian noise. In this case, the estimate at the jth DM is modeled as:

ĥ
(j) �

√
I − (�(j))h +

√
�(j)δ(j), (18.3)

where �(j) ∈ Rm×m is a diagonal matrix taking its values in [0,1] and whose kth element represents the
CSIT quality of the kth channel element at TX j. Furthermore, the CSIT noise error terms δ(j) ∈ Cm

have their elements i.i.d. NC(0, 1), are independent of the true channel, and are jointly distributed such
that

E

[
δ(j)(δ(j′))H

]
= (ρ(j,j′))2Im (18.4)

with the parameters ρ(j,j′) ∈ [0, 1] being the CSI noise correlation factor.
The main interest of this model is that it allows modeling partially centralized CSIT, thus bridging

the gap between fully distributed configuration with independent CSIT errors and centralized CSIT.
Indeed, the CSIT configuration where

�(j) = �(j′), ρ(j,j′) = 1, ∀j, j′ = 1, . . . , n (18.5)

corresponds to the conventional centralized CSIT configuration [13,14] while taking

ρ(j,j′) = 0, ∀j, j′ = 1, . . . , n, j′ �= j (18.6)

corresponds to the distributed CSIT configuration with independent CSIT noise [15].

Deterministic hierarchical information structure
In some network setups, some wireless nodes may be endowed with greater information gathering
capabilities (e.g., high-end devices) either due to practical connectivity constraint (e.g., better connec-
tivity to some devices) or due to a protocol design aiming at minimizing backhaul load by sharing the
information only to some devices.

A so-called Deterministically Hierarchical Information Structure (DHIS) is obtained when the DMs
can be ordered by increasing quality of CSI with DM j having access to the information at DM j − 1
in addition to some local information. This implies that DM 1 is the least informed one while DM n is
the most informed one and knows the information at all preceding DMs. Mathematically, it means that
there exists some functions fj,j′ such that

ĥ
(j′) = fj,j′ (ĥ

(j)), ∀j′ < j. (18.7)

The advantage of the DHIS is that akin to the information chain in Eq. (18.7), DMs can follow a chain
of policies where a better informed DM j can adapt its own policies by relying on its knowledge of
the decision at the lesser informed DM j′ for ′j′ < j. This allows increased coordination between the
DMs and simplifies strongly the optimization problem. A remaining difficulty resides in the fact the
DM j cannot safely predict the behavior of better-informed devices j′ with j′ > j. Suboptimal solutions



476 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

exist, however, where for instance DM j may conservatively assume that better-informed ones only

have access to the same information ĥ
(j)

that it has itself. This method is discussed in a practical case
in Section 18.3.4.

The two nodes case
An interesting subcase of the hierarchical structure above is the two DMs scenario where the first DM
has zero prior information (other than the common statistical knowledge). This case is referred to as
Master Slave information structure. Here, the first DM is the slave: Being deprived of any real time
information, its strategy consists of taking a fixed decision that maximized the network utility in an
average sense. In this setting, we will apply the previous heuristic, which consists in letting DM 1
solve the optimization by assuming that DM 2 has received the same channel information, i.e., no
information. DM 1 then solves:

(wstat
1 , v2) = argmax

w1,w2

Eh [U (h, w1, w2)] ,

where wstat
1 is no longer a policy but a fixed deterministic (yet statistically optimal, hence the subscript

“stat") decision. Note that v2 is an auxiliary variable and will not be used in practice: it corresponds to
the erroneous estimation at DM 1 of the policy used at DM 2.

Turning to the second DM, his best option is to adapt itself to the decision made by the first DM.
As such the second DM is a master as it attempts to control the situation. The policy is adapted at the
second DM as follows:

w�
2 = argmax

w2

E
h,ĥ

(2)

[
U

(
h, wstat

1 , w2(ĥ(2))
)]

.

Note that the above optimization is meaningful because the second DM has access to the same
underlying statistical information as the first DM such that it can also compute wstat

1 before solving
for its own transmission strategy w2. Hence, the master-slave information structure allows nicely
decoupling the multiagent coordination problem into a sequence of separated single-agent problems.

Stochastically hierarchical information structure
The deterministic notion of hierarchy above imposes strong constraints on feedback (or information
exchange) mechanisms between DMs, which not all practical network scenarios will be compatible
with. Interestingly, the restrictive inclusion relation shown in Eq. (18.7) may be relaxed by adopting a
stochastic notion of hierarchy. Referring back to the Gaussian information model shown in Eq. (18.3), a
Stochastically Hierarchical Information Structure (SHIS) is one whereby the following relation holds:

�(1) ≥ �(2) ≥ · · · ≥ �(n).

In other words, there exists a ranking between DMs in terms of the quality with which they
observe the channel state h. The SHIS model is also called physically degraded configuration in the
information theory community [16]. Because the stochastic hierarchy does not remove the fundamental
uncertainties related to local observations at the DM, this information structure does not directly lead
to a strong simplification of the optimization problem (18.1). Nevertheless, if exploited properly, it can
lead to an improved coordination between DMs. In [17,18], considering decentralized network MIMO



18.3 TEAM DECISION METHODS FOR DECENTRALIZED MIMO PRECODING 477

precoding with SHIS, a transmission scheme is developed to exploit the stochastic hierarchical structure
so as to improve the coordination between the TXs, and hence the performance.

18.3 TEAM DECISION METHODS FOR DECENTRALIZED MIMO PRECODING
In this section, we show how the TD formulation (18.1) unfolds in a particular practical scenario. In
this chapter, we illustrate these methods through the prism of the example of decentralized MIMO
precoding. We first define formally the setting considered and show how it fits in the TD framework
introduced earlier. We then present three different methods to tackle the TD problem formulated.

18.3.1 SYSTEM SETTING
We study a so-called network MIMO transmission from n TXs to K RXs where the jth TX is equipped
with Mj antennas while the ith RX is equipped with Ni antennas. The ith RX is sent di streams jointly
from all the TXs. The total number of RX antennas, the total number of TX antennas, and the total
number of streams are respectively given by

Ntot �
K∑

i=1

Ni, Mtot �
K∑

i=1

Mi, dtot �
K∑

i=1

di. (18.8)

We always consider that Mtot ≥ K such that in a perfect coordination setting (i.e., with ideal CSI) a
precoding solution exists that allows for all users to be served at the same time, e.g., via zero-forcing
precoding [19,20]. We further assume that the RXs have perfect CSI and that linear filtering is used
on both the TX and the RX side, and that the RXs treat interference as noise. The channel from the
n TXs to the K RXs is represented by the multiuser channel matrix H ∈ CNtot×Mtot where Hi,j ∈ CNi×Mj

denotes the channel matrix from TX j to RX i. For the sake of exposition, we consider in the numerical
evaluations that the channel elements are distributed following a standard Rayleigh fading with unit
variance.

The transmission is then described as⎡
⎢⎣

y1
...

yK

⎤
⎥⎦ = Hx + η =

⎡
⎢⎣

H1x
...

HKx

⎤
⎥⎦ +

⎡
⎢⎣

η1
...

ηK

⎤
⎥⎦ , (18.9)

where yi ∈ CNi is the signal received at the ith RX, Hi ∈ CNi×Mtot the channel from all TXs to the ith
RX, and η � [η1, . . . , ηn]T ∈ CNtot the normalized Gaussian noise with its elements i.i.d. as CN (0, 1).

INFORMATION STRUCTURE
TX j receives the channel estimate Ĥ

(j) ∈ CNtot×Mtot and designs its transmit coefficient xj ∈ CMj as a

function of Ĥ
(j)

, without any form of information exchange with the other TXs. To keep the notations
consistent with Section 18.2, we use the vectorized version

ĥ
(j) � vect

(
Ĥ

(j))
(18.10)



478 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

and accordingly h = vect(H) where vect(•) denotes the vectorization operation. For convenience, we

will use both ĥ
(j)

and Ĥ
(j)

with the implicit reference to Eq. (18.10).
We will consider in the following the noisy Gaussian CSI model introduced in Section 18.2.5. The

estimate at TX j is hence given by

ĥ
(j) �

√
1 − �(j)h +

√
�(j)δ(j), (18.11)

where �(j) ∈ RNtotMtot×NtotMtot is the covariance matrix of the CSIT noise at TX j, and is assumed to be
diagonal in this chapter.

DECENTRALIZED PRECODING
In this distributed CSIT setting, the DM is the TX and the precoding function of TX j is denoted by

wj : CNtotMtot → CMj×dtot (18.12)

such that the transmit signal xj at TX j, for a given received estimate ĥ
(j)

, is equal to

xj = wj(ĥ
(j))s (18.13)

with s � [sT
1 , . . . , sT

K]T ∈ Cdtot containing the dtot data symbols to be transmitted to the K users and
distributed as i.i.d. NC(0, 1). Upon concatenation of all TX’s precoding decisions, the multiuser joint
precoder T ∈ CMtot×dtot used for the transmission for a given channel realization is equal to

T �

⎡
⎢⎢⎢⎢⎢⎣

w1(ĥ(1))
w2(ĥ(2))

...

wn(ĥ(n))

⎤
⎥⎥⎥⎥⎥⎦ . (18.14)

We consider a per-TX power constraint such that ‖wj(ĥ
(j)

)‖2 ≤ Pj, ∀j, with Pj being the power
constraint at TX j. It is also useful to introduce the precoder to user k, denoted by Tk ∈ CMtot×dk ,
such that

x =
K∑

k=1

Tksk. (18.15)

The decentralized joint MIMO precoding with distributed CSIT setting is illustrated in Fig. 18.1.

NETWORK UTILITY
We are interested in the particular example where the network utility of Eq. (18.1) represents the sum
of all users’ rates.



18.3 TEAM DECISION METHODS FOR DECENTRALIZED MIMO PRECODING 479

Sharing/caching of 
user’s data symbols

Imperfect CSI sharing

x1= w1( )sĤ(1)

x3= w3( )sĤ(3)

x2= w2( )sĤ(2)

FIG. 18.1

Decentralized MIMO precoding with distributed CSIT. Due to imperfect and heterogeneous backhaul, the
transmitting devices receive imperfect and unequal channel. Each device computes then its transmit
parameters (e.g., beamforming) using only this locally available information.

As stated earlier, the received signal at RX k is assumed to be linearly filtered by GH
k ∈ Cdk×Nk .

Due to the assumption of Gaussian signaling, the rate of user k can be written as

Rk � log2

∣∣∣∣∣∣∣Idk + TH
k HH

k

⎛
⎝INk +

K∑
�=1,��=k

HkT�TH
� HH

k

⎞
⎠

−1

HkTk

∣∣∣∣∣∣∣ . (18.16)

Finally, we introduce the average sum rate E [R] as

E [R] �
K∑

k=1

E [Rk] . (18.17)

TEAM DECISION FORMULATION
With distributed CSIT, the TD problem of Eq. (18.1) applied to the case of rate maximizing
decentralized precoding can be written as:

(w�
1, . . . , w�

n) = argmax
(w1,...,wn)∈W

E[R(w1(ĥ(1)), . . . , wn(ĥ(n)))], (18.18)

where W is defined as

W �
{

(w1, . . . , wn) | wj : CNtotMtot → CMj×dtot , ∀x ∈ CNtotMtot , ‖wj(x)‖2 ≤ Pj, ∀j
}
. (18.19)



480 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

As discussed in Section 18.2.3, it is often interesting to consider the best-response optimization
problem (18.2), which in the case of Eq. (18.18) is written as

wBR
j = argmax

wj

E

[
R

(
h, wBR

1 , . . . , wBR
j−1, wj(ĥ

(j)), wBR
j+1, . . . , wBR

n

)]
. (18.20)

In the following, we present three different methods to deal either directly with Eq. (18.18), or with its
best-response formulation (18.20).

18.3.2 MODEL-BASED APPROACH
PRINCIPLE
Our first approach is called model-based and consists of restricting the space of the precoding functions
by introducing a model using some parameters θ ∈ Cp that should typically be optimized in order to
maximize the value of the joint utility achieved. How one reduces the infinite dimensional functional
space to a finite parametrized space is naturally crucial. Often, the performance of this approach heavily
depends on the existence of a good model that governs the devices’ optimal decision. Good heuristics
can hence emerge from the analysis of the problem in some limiting regimes (e.g., high/low SNR, large
antenna settings).

We consider here the model of regularized Zero-Forcing (ZF), which has been shown to be an
efficient and robust scheme in the centralized CSIT configuration. In this model, the precoding function
at TX j takes the form [19,20]:

wrZF
j (ĥ(j)) � EH

j

(
(Ĥ(j))HĤ

(j) + θjIMtot

)−1
(Ĥ(j))H

√
Pj√

�(j)
(18.21)

with parameter θj > 0 and where EH
j ∈ CMj×Mtot allows selecting the precoding coefficients effectively

used to transmit at TX j and is defined as

EH
j �

[
0

Mj×∑j−1
j′=1

Mj
IMj 0Mj×∑n

j′=j+1 Mj

]
. (18.22)

The scalar �(j) corresponds to the power normalization at TX j. Hence, it holds that

�(j) � ‖EH
j

(
(Ĥ(j))HĤ

(j) + θjIMtot

)−1
(Ĥ(j))H‖2

F. (18.23)

With this parametrization, the TD optimization problem (18.18) simplifies to

(θ�
1 , . . . , θ�

n ) = argmax
(θ1,...,θn)

E[R(wrZF
1 (ĥ(1)), . . . , wrZF

n (ĥ(n)))]. (18.24)

Through this model, the TD optimization reduces to the optimization with respect to a vector of
deterministic scalars θ1 . . . θn. The model can be further simplified by parameterizing using a single
common parameter θ . This forces all TXs to use the same regularization coefficient. The simplified
optimization then reads as

θ� = argmax
θ

E[R(wrZF
1 (ĥ(1)), . . . , wrZF

n (ĥ(n)))], subject to θj = θ , ∀j. (18.25)



18.3 TEAM DECISION METHODS FOR DECENTRALIZED MIMO PRECODING 481

With single-antenna users and in the regime of a large number of antennas where the number
of antennas at each TX grows at the same rate as the number of users, and when the TXs use the
precoding model (18.21), it is possible to accurately approximate the expectation inside Eq. (18.25)
by a deterministic equivalent R0 [21]. This deterministic equivalent depends only on the statistical
information and is obtained from a fixed-point equation [20]. The optimal parameters θ�

j can then
be obtained using any nonconvex optimizer. In particular, in the simplified problem with a single
parameter (18.25), θ� can be obtained via a simple linear search. We omit the deterministic equivalent
expressions that require heavy notations and we refer to [21] for more details.

Note that using the deterministic equivalent is a method to transform the stochastic optimization
problem (18.24) into a deterministic one. Yet it would also have been possible to apply any standard
method of stochastic optimization to tackle directly Eq. (18.24) (see [22] for an overview of stochastic
optimization).

PERFORMANCE EVALUATION AND SIMULATIONS
In Fig. 18.2, we show the performance obtained in a setting with n = 2 TXs having each M1 = M2 = 15
antennas and K = 30 single antenna RXs with ρ(1,2) = ρ(2,1) uniformly distributed between [0, 1]. At
TX 1, �(1) = 0INtotMtot , which indicates that the CSI is perfect at TX 1. At TX 2, �(2) = σ 2INtotMtot

with σ varyings from 0 to 1, meaning that the CSI at TX 2 varies from perfect to fully inaccurate.

(
)

FIG. 18.2

Average rate per user as a function of the CSIT accuracy σ . As the CSIT quality degrades at the second TX, the
consistency between the estimates at the TXs degrades and it becomes more important to use an adapted
robust precoding scheme.



482 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

When TX 2 has quasiperfect CSIT, the optimization of the regularization coefficient does not
significantly enhance the system performance when compared to the naive choice of the parameters
based on the locally available CSIT. In contrast, as the CSIT configuration becomes more asymmetric,
the gap between the proposed TD robust parameter choice and the locally robust parameter choice
becomes more important.

18.3.3 DISCRETIZATION-BASED APPROACH
PRINCIPLE
The discretization-based approach consists in quantizing the estimate (input) space, thus reducing the
dimension of the decision space from an infinite dimensional space to a finite dimensional one. Clearly,
good performance can only be obtained with sufficient quantization points, i.e., if the dimension of
the approximating space is large. Following the well-known curse of dimensionality, the number of
quantization points should then grow exponentially with the dimension of the estimate space, such that
this approach requires a lot of computing power and an efficient implementation if the dimension of the
estimate is large. Yet it has the advantage of being a generic method, independent of any heuristic and
adapted to any distribution of the channel and the CSIT noise.

Specifically, let us denote the codebook used at each TX by Qq, and assume that it contains
q instances of the multiuser channel state h, i.e.,

Qq � {h�|h� ∈ CNtotMtot
, � = 1, . . . , q}. (18.26)

We then denote by Q(•) a quantizer from CNtotMtot
to the codebook Qq. The optimization of both the

quantizer and the codebook is key to improved performance. Yet, this is a challenging research problem
outside the scope of this work. In the following, we use a random codebook distributed according to ph
and use a Grassmannian quantizer [23]:

Q(h) � argmax
ĥ∈Qq

∣∣∣∣∣ ĥ
H

‖ĥ‖ · h
‖h‖

∣∣∣∣∣ . (18.27)

Following this quantization step at each TX, the TD optimization problem (18.18) is approximated as

(w�
1, . . . , w�

n) = argmax
(w1,...,wn)∈Wq

E[R(w1(Q(ĥ(1))), . . . , wn(Q(ĥ(n))))], (18.28)

where we have defined Wq as the set of policies operating on the codebook Qq:

Wq � {(wq
1, . . . , wq

n)|wq
j : Qq → CMj×dtot

, ‖wq
j (ĥ)‖2 ≤ Pj, ∀ĥ ∈ Qq, ∀j}. (18.29)

This approach requires considering the best-response formulation (18.20) as the optimization remains
otherwise intractable. For each codebook element h� ∈ Qq and each TX j, we then solve

wBR
j (h�) =argmax

wj

E[R
(

h, wBR
1 ◦ Q, . . . , wBR

j−1 ◦ Q, wj, wBR
j+1 ◦ Q, . . . , wBR

n ◦ Q
)

|ĥ(j) = h�]. (18.30)



18.3 TEAM DECISION METHODS FOR DECENTRALIZED MIMO PRECODING 483

Optimization (18.30) is a conventional stochastic optimization problem for which many efficient
methods can be used. In what follows, sample average approximation (SAA) using Monte Carlo runs
is used [22]. The details of the algorithms are skipped and can be found in [24].

PERFORMANCE EVALUATION
In these simulations, we choose n = 2 TXs and K = 2 RXs with all the nodes having a single antenna.
We also choose

�1 = 0.5INtotMtot , �2 = 0.1INtotMtot , ρ1,2 = 0. (18.31)

To evaluate the efficiency of the proposed precoding scheme, we compare its performance with the
upper bound obtained in the case where both TXs have access to the perfect instantaneous CSI and use
the sum-rate maximization algorithm from [25]. We also compare the robust precoding scheme to the
conventional decentralized precoding approach where each TX designs its precoder using the robust
sum-rate maximization algorithm from [26], which is hence the locally robust (LR) precoding scheme.
The quantization codebook is designed with q = 10,000 elements.

In Fig. 18.3, the average sum rate is plotted as a function of the SNR. It can be seen that
the discretization approach outperforms the locally robust precoding at any SNR value. The robust
precoding performs well at low to medium SNR and, in contrast to the LR precoding, is able to achieve
a positive slope by serving only one user at high SNR. The proposed precoding suffers at high SNR
from a degradation of the performance due to the quantization noise. This loss is expected to be reduced
with more computational power and the optimization of the codebooks and quantizer.

18.3.4 HIERARCHICAL APPROACH
PRINCIPLES
We now consider the DHIS described in Section 18.2.5.2. Consequently, the TXs can be ordered such
that TX j also has access to the CSIT at TX j′ for j′ < j. In this case, the best-response optimization

problem (18.20) for a given channel realization ĥ
(j)

simplifies to

wBR
j (ĥ(j)) = argmax

wj

E
h,ĥ

(j+1)
,...,ĥ

(n) |ĥ(1)
,...,ĥ

(j)

[
R

(
wBR

1 , . . . , wBR
j−1, wj, wBR

j+1, . . . , wBR
n

)]
. (18.32)

The key element in Eq. (18.32) is the conditioning on ĥ
(1)

, . . . , ĥ
(j)

, which implies that the uncertainty
concerns only the estimates at the TXs having a more accurate estimate, i.e., TX j′ with j′ > j. This
deterministic hierarchical assumption strongly simplifies the problem as it allows starting from the
most informed TX that knows all the estimates before turning to the decision at the less informed TXs.
Yet the remaining difficulty resides in the fact that for j < n, TX j must still cope with its lack of
knowledge associated with the better informed devices. Fortunately this problem can be circumvented
by resorting to a simple heuristic strategy consisting of considering that TX j—when computing its

precoding coefficients—assumes that TX j′ for j′ > j, has also received the same channel estimate ĥ
(j)

.
Following this approximation, the policy wHC

j at TX j is obtained from



484 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

0 5 10 15 20 25 30 35 40

Average per-TX SNR (dB)

0

5

10

15

20

25

A
ve

ra
ge

 s
um

 r
at

e 
(b

ps
/H

z)

Perfect CSIT precoding
Team decision precoding
Locally robust precoding

FIG. 18.3

Average sum rate as a function of the per-TX power constraint. The robust precoding solution significantly
improve, the sum rate, in particular at high SNR. Higher gains are expected to be possible through the
optimization of the codebook at each TX.

(wHC
j , vj+1, . . . , vn) = argmax

wj,...,wn

E[R(wHC
1 , . . . , wHC

j−1, wj(ĥ
(j)), . . . , wn(ĥ(j)))]. (18.33)

The auxiliary variables vj+1, . . . , vn are not used for the actual transmission due to that fact that TX j′
with j′ > j will use whatever more accurate information is available locally to improve the precoding

decision, i.e., it will solve Eq. (18.33) with its own local CSIT ĥ
(j′)

.
The optimization problem now reduces to a conventional robust precoder optimization. Indeed, the

expression in Eq. (18.33) depends only on the channel estimate ĥ
(j)

such that it is no longer necessary
for TX j to estimate the information available at the other TXs. Hence, it is possible to adapt the locally
robust precoding scheme from the literature to that setting using standard linear algebra (see [27,28]
for more details on the computation of the precoder at each TX).

PERFORMANCE EVALUATION
To evaluate the performance of the proposed hierarchical precoding algorithm, the performance
is averaged over 1000 channel realizations via Monte Carlo simulations. We consider a simple
configuration with n = 4 single-antenna TXs and K = 4 single-antenna RXs. We furthermore assume



18.3 TEAM DECISION METHODS FOR DECENTRALIZED MIMO PRECODING 485

that each TX has the same power constraint P. The hierarchical precoding algorithm is compared with
the maximum sum rate algorithm from [25] using perfect CSIT at every TX and with a locally robust
algorithm from the literature [26,29], which is hence applied in a distributed manner at each TX using
the CSI locally available. We show in Fig. 18.4, the average sum rate as a function of the per-TX power
constraint in the following simple CSI configuration

�(1) = �(2) = 0.25INtotMtot ,

�(3) = �(4) = 0INtotMtot .
(18.34)

It can be seen that the TD robust scheme significantly outperforms the locally robust scheme. In
particular, a positive slope is achieved. This follows from the DHIS that allows the TXs having perfect
CSIT to adapt to the transmit coefficients of the TXs having less accurate CSIT, thus effectively
reducing interference. This simulation confirms hence the intuition that hierarchical CSIT can be
beneficial to enforce consistency and allows reaching good performance even when some TXS have
very inaccurate CSIT.

0 2 4 6 8 10 12 14 16 18 20

Per-TX power constraint (dB)

0

5

10

15

20

25

30

A
ve

ra
ge

 s
um

 r
at

e 
(b

its
/H

z/
s)

Centralized precoding with perfect CSIT
Hierarchical TD precoding
Locally robust precoding

FIG. 18.4

Average sum rate as a function of the available transmit power P. The hierarchical precoding algorithm
performs very well as the hierarchical structure allows the TXs with an accurate CSIT to reduce the interference
generated by the other TXs, i.e., to compensate for their precoding decisions.



486 CHAPTER 18 TEAM METHODS FOR DEVICE COOPERATION

18.4 CONCLUSION
This chapter introduces the challenges related to device-centric coordination where devices only have
their own local and noisy versions of the channel state information. We present a few avenues for further
research and some initial results for solving the decentralized policy design arising from device-centric
coordination. An illustration of the benefits of robust coordination design is given for the example of
decentralized MIMO precoding in wireless networks.

ACKNOWLEDGMENT
The authors gracefully acknowledge the support of the European H2020 ERC project PERFUME for this work.

REFERENCES
[1] Chen J, Gesbert D. Optimal positioning of flying relays for wireless networks: a LOS map approach.

In: Proceedings of the IEEE international conference on communications (ICC); 2017.
[2] Mozaffari M, Saad W, Bennis M, Debbah M. Drone small cells in the clouds: design, deployment and

performance analysis. In: Proceedings of the IEEE global communications conference (GLOBECOM); 2015.
[3] Gesbert D, Hanly S, Huang H, Shamai (Shitz) S, Simeone O, Yu W. Multi-cell MIMO cooperative networks:

a new look at interference. IEEE J Sel Areas Commun 2010;28(9):1380–408.
[4] Saad W, Han Z, Debbah M, Hjorungnes A, Basar T. Coalitional game theory for communication networks.

IEEE Signal Process Mag 2009;26(5):77–97.
[5] Han Z, Niyato D, Saad W, Baar T, Hjrungnes A. Game theory in wireless and communication networks: the-

ory, models, and applications. 1st ed. New York, NY: Cambridge University Press; 2012. ISBN 0521196965,
9780521196963.

[6] Bistritz I, Leshem A. Approximate best-response dynamics in random interference games. IEEE Trans Autom
Control 2018;63(6):1549–62.

[7] Harsanyi JC. A new theory of equilibrium selection for games with incomplete information. Games Econ
Behav 1995;10(2):318–32.

[8] Radner R. Team decision problems. Ann Math Statist 1962;33(3):857–81.
[9] Cuff PW, Permuter HH, Cover TM. Coordination capacity. IEEE Trans Inf Theo 2010;56(9):4181–206.

[10] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found Trends Mach Learn 2011;3(1):1–122.

[11] Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A. Gossip algorithms for distributed signal
processing. Proc IEEE 2010;98(11):1847–64.

[12] Nash J. Non-cooperative games. Ann Math 1951;54(2):286–95.
[13] Jindal N. MIMO broadcast channels with finite-rate feedback. IEEE Trans Inf Theory 2006;52(11):5045–60.
[14] Wagner S, Couillet R, Debbah M, Slock D. Large system analysis of linear precoding in correlated MISO

broadcast channels under limited feedback. IEEE Trans Inf Theory 2012;58(7):4509–37.
[15] de Kerret P, Gesbert D. Degrees of freedom of the network MIMO channel with distributed CSI. IEEE Trans

Inf Theory 2012;58(11):6806–24.
[16] Cover T, Thomas A. Elements of information theory. Wiley-Interscience; 2006.
[17] de Kerret P, Gesbert D. Network MIMO: transmitters with no CSI can still be very useful. In: Proceedings of

the IEEE international symposium on information theory (ISIT); 2016.

http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0090


REFERENCES 487

[18] Bazco A, de Kerret P, Gesbert D, Gresset N. Generalized degrees-of-freedom of the 2-user case MISO broad-
cast channel with distributed CSIT. In: Proceedings of the IEEE international symposium on information
theory (ISIT); 2017.

[19] Spencer QH, Swindlehurst AL, Haardt M. Zero-forcing methods for downlink spatial multiplexing in
multiuser MIMO Channels. IEEE Trans Signal Process 2004;52(2):461–71.

[20] Couillet R, Debbah M. Random matrix methods for wireless communications. Cambridge University Press;
2011.

[21] Li Q, de Kerret P, Gesbert D, Gresset N. Robust regularized ZF in cooperative broadcast channel under
distributed CSIT. IEEE Trans Inf Theory; submitted November 2016 (in review).

[22] Shapiro A, Dentcheva D, Ruszczynski A. Lectures on stochastic programming: modeling and theory.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics; 2014. ISBN 1611973422,
9781611973426.

[23] Dai W, Liu Y, Rider B. Quantization bounds on Grassmann manifolds and applications to MIMO communi-
cations. IEEE Trans Inf Theory 2008;54(3):1108–23.

[24] de Kerret P, Gesbert D. Quantized team precoding: a robust approach for network MIMO under general CSI
uncertainties. In: Proceedings of the IEEE international workshop on signal processing advances in wireless
communications (SPAWC); 2016.

[25] Christensen SS, Agarwal R, Carvalho E, Cioffi JM. Weighted sum-rate maximization using weighted MMSE
for MIMO-BC beamforming design. IEEE Trans Wirel Commun 2008;7(12):4792–9.

[26] Fritzsche R, Fettweis GP. Robust sum rate maximization in the multi-cell MU-MIMO downlink.
In: Proceedings of the IEEE wireless communications and networking conference (WCNC); 2013.

[27] Fritzsche R, Fettweis G. Distributed robust sum rate maximization in cooperative cellular networks.
In: Proceedings of the IEEE workshop on cooperative and cognitive mobile networks (CoCoNet); 2013.

[28] de Kerret P, Fritzsche R, Gesbert D, Salim U. Robust precoding for network MIMO with hierarchical CSIT.
In: Proceedings of the IEEE international symposium on wireless communication systems (ISWCS); 2014.

[29] Negro F, Ghauri I, Slock DTM. Sum rate maximization in the noisy MIMO interfering broadcast channel
with partial CSIT via the expected weighted MSE. In: Proceedings of the IEEE international symposium on
wireless communication systems (ISWCS); 2012.

http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00018-3/rf0150


CHAPTER

19COOPERATIVE DATA EXCHANGE
IN BROADCAST NETWORKS

Alex Sprintson∗
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States∗

19.1 INTRODUCTION
In the last decade, there has been a significant interest in network coding, a novel technique to improve
the reliability, robustness, and security of communication networks and distributed storage systems.
The network coding technique was originally proposed as a way to improve the throughput of data
transmission over a multicast network by allowing intermediate network nodes to combine packets
from different flows [1–3]. Over the last two decades, many novel network coding techniques have been
proposed for wireless, wireline, and distributed storage settings. It was shown that network coding can
benefit a large number of applications, including wireless networks, multimedia streaming, disruption
tolerant networks, distributed storage, and network security.

Wireless network coding employs innovative coding techniques that leverage the broadcast proper-
ties of the wireless medium to improve network performance. The chapter focuses on the cooperative
data exchange (CDE) problem, which is one of the central problems in this area [4–6]. An instance of
Problem CDE includes a set of messages X = {x1, . . . , xn} and a set of wireless clients C = {c1, . . . , ck},
such that each client ci ∈ C initially holds a subset Xi of the messages in the set X. The clients share a
lossless broadcast channel to transmit a linear combination of the messages. The goal is to enable all
clients to decode missing messages while minimizing the total number of transmissions (Table 19.1).

Fig. 19.1A presents an instance of Problem CDE. In this instance, there are three wireless clients
{c1, c2, c3} that need to obtain five messages {x1, . . . , x5}. Initially, the clients c1, c2, and c3 hold
messages {x1, x3, x5}, {x2, x3, x4} and {x1, x2, x4}, respectively. Note that each client is missing two
messages. The solution without network coding requires transmission of all five messages. Fig. 19.1B
shows a coding solution that includes only three transmissions, with every client making exactly one
transmission.

This problem arises naturally in many practical settings, including synchronization of the local
databases and file systems, gathering data from correlated sources in sensor networks, and distributed
data storage. In particular, the use of coding techniques is instrumental for improving the efficiency of
wireless device-to-device (D2D) communication [7,8]. With D2D communication, mobile users in a

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00019-5
Copyright © 2018 Elsevier Inc. All rights reserved.

489



490 CHAPTER 19 COOPERATIVE DATA EXCHANGE IN BROADCAST NETWORKS

Table 19.1 Summary of Notation

Notation Description

X = {x1, . . . , xn} set of messages

n total number of messages

C = {c1, . . . , ck} set of clients

k the number of clients

Fq the underlining Galois field of size q

Xi side information set of client ci

Xi set of required messages of client ci

pi packet transmitted at round i

cti the client transmitting at round i

[γ 1
i , γ 2

i , . . . , γ n
i ] encoding vector of packet pi

�i encoding matrix for packets p1, . . . , pi

OPT optimal number of transmissions

ui = [u1
i , u2

i , . . . , un
i ] the ith unit encoding vector

Ui a matrix whose rows include unit encoding vectors that correspond to messages in Xi

ri number of transmissions made by client ci

OPTi the minimum number of transmissions required when each client has access to
messages in Xi and all packets in {p1, . . . , pi}

p̂1, . . . , p̂OPTi OPTi transmission packets that are part of the optimal solution

�i−1 matrix whose rows correspond to coding coefficients of packets p̂1, . . . , p̂OPTi−1

γi a random linear combination of rows of Ui

g-robust schedule a schedule that can tolerate failure of g clients

η maximum number of transmission made by any client ci ∈ C

ci∗ the client that makes the largest number of transmissions

�1, �2, and �3 encoding matrices computed in different phases of the robust CDE algorithm

μ number of packets accessible to a wiretapper

E set of packets observed by a wiretapper

g-weakly secure schedule a schedule that can protect any subset of g packets from the wiretapper

physical vicinity of each other can form small ad hoc groups to exchange data, synchronize databases,
exchange secret keys, and collaboratively download large files.

This chapter focuses on the design of efficient data exchange algorithms for wireless environments.
We consider the setting with perfect channels and reliable clients as well as settings with malicious and
faulty clients. In addition, we address the design and analysis of light-weight, information-theoretical
secure schemes for protecting user information from eavesdroppers.

Handling faulty and unreliable clients. Wireless nodes are inherently unreliable. In particular,
some of the clients may stop transmission at any time due to loss of coverage or limited power supply.
Accordingly, we discuss coding schemes that can tolerate a limited number of client failures. Resilience
to failures is achieved by adding redundant transmissions that ensure that all valid clients are able to
receive all messages in any failure scenario.



19.1 INTRODUCTION 491

3

1

2 3

1

2 3

(A) (B)

2

x1, x3,
x5

x1, x2,
x4

x2, x3,
x4

x1, x2,
x4

x1, x3,
x5

x1+ x4x2+ x3

x5

x2, x3,
x4

FIG. 19.1

An instance of Problem CDE with three clients.

Information exchange in the presence of wiretappers. Due to their reliance on the wireless
spectrum, wireless networks are vulnerable to attack and misuse. In particular, a wiretapper located
in the vicinity of the nodes that exchange information might be able to intercept some of the
transmitted packets and obtain information about the information messages. We discuss a light-
weight, information-theoretic mechanism that prevents the eavesdropper from being able to obtain any
meaningful information about the transmitted messages.

RELATED WORK
Cooperative communication at the physical, network, and application layers has been the subject of
extensive research in the past few years. Physical layer user cooperation in the form of signal relaying
has been shown to result in higher data rates, extended coverage, and robustness to link outages [9–11].

The CDE problem was first formulated in [12] for one-hop broadcast networks. Lower and upper
bounds on the minimum required number of transmissions were established in [13]. Courtade and
Wesel [5] have considered a setting of the problem where information messages follow a random
distribution. The problem has been generalized for arbitrary networks in [5,14–17]. Several works have
presented randomized and deterministic solutions for the problem [4,6,18]. References [19–23] studied
variations and extensions of Problem CDE. In particular, references [24,25] addressed scenarios with
various transmission costs. Coding schemes that provide secrecy and weak security in the presence of
an eavesdropper have been considered in [19,20,22,26], respectively.

In information theory, the problem is closely related to the secure key agreement (SKA) problem [27]
and to the concept of a multivariate mutual information (MMI) measure [28].

A closely related coding problem with side information is the index coding problem [29–33]. This
problem was originally motivated by satellite broadcast applications with caching clients. However,
the index coding setup is centralized and noncooperative with a single transmitter server holding
all information messages and passive clients having different demands. A related problem of set
reconciliation between two or more similar sets was studied in [34].



492 CHAPTER 19 COOPERATIVE DATA EXCHANGE IN BROADCAST NETWORKS

19.2 PROBLEM DEFINITION
As mentioned in Section 19.1, Problem CDE includes a set of n messages X = {x1, . . . , xn} that need
be delivered to k clients C = {c1, . . . , ck}. We assume that each message is an element of a finite field
Fq of size q. Initially, each client holds a subset of information messages, denoted by Xi ⊆ X. We refer
to Xi as a side information set of ci. We denote the set of messages required by client ci by Xi = X \ Xi.
We assume each message in X belongs to the side information set of at least one of the clients, i.e.,
∪ci∈CXi = X. We also assume that each message is required by at least one client, i.e., ∪ci∈CXi = X.

The clients cooperate to exchange data packets over a lossless broadcast channel with the purpose
of making all messages in X available to all clients. Each packet includes a combination of messages in
X. The clients transmit packets according to a schedule that includes multiple rounds of transmissions.
We denote by pi ∈ Fq and cti the packet transmitted at round i and the client that transmits data at round
i, respectively. In this chapter, we restrict ourselves to the scalar linear coding schemes in which the
packet pi is a linear combination of the messages in Xti , i.e.,

pi =
∑

xj∈Xti

γ
j
i xj, (19.1)

where γ
j
i ∈ Fq are the encoding coefficients of pi. We refer to γi = [γ 1

i , γ 2
i , . . . , γ n

i ] as the encoding

vector of pi, where γ
j
i = 0 for xj /∈ Xti . We denote by �i the i × n matrix whose rows are composed of

vectors γ1, . . . , γi. We refer to �i as the encoding matrix for packets p1, . . . , pi.
Note that, in general, pi can be a combination of messages in Xti and the packets {p1, . . . , pi−1}

previously transmitted over the channel. However, this will not provide any benefit in our setting.
Our goal is to devise a scheme that enables each client ci ∈ C to obtain all messages in Xi while

minimizing the total number of transmissions. We refer to the minimum number of transmissions
required to satisfy all clients as OPT .

To formally define our algorithm, we need a few more notations. We denote by ui = [u1
i , u2

i , . . . , un
i ]

the ith unit encoding vector that corresponds to the original packet xi, where ui
i = 1 and uj

i = 0 for i �= j.
We also denote by Ui an |Xi| × n matrix whose rows include vectors ui that correspond to messages
in Xi.

LINEAR FORMULATION AND RELATED PROBLEMS
Courtade et al. [15] have observed that the CDE problem can be formulated as the following integer
linear program (ILP) that determines the number of transmissions ri that need to be made by any client
ci ∈ C.

min.
∑
ci∈C

ri

s.t.
∑

ci∈C\Ĉ

ri ≥
∣∣∣∣ ⋂
ci∈Ĉ

Xi

∣∣∣∣, ∀Ĉ ⊆ C.

ri ∈ {0, 1}, ∀ci ∈ C.



19.3 RANDOMIZED ALGORITHM FOR PROBLEM CDE 493

Note that the objective of the ILP is to minimize the sum-rate, i.e., the total number of transmissions
made by all clients. For each subset Ĉ of C we require that at least | ⋂ci∈Ĉ Xi| transmissions are made

by the clients outside of Ĉ. Note that this is a necessary condition because all clients in Ĉ are missing
all the messages in | ⋂ci∈Ĉ Xi|. It turns out that this condition is sufficient, i.e., for any feasible solution
{ri |ci ∈ C}, of the ILP there exists a feasible network coding scheme that meets the demands of every
client. Such a scheme can be obtained through random selection of the network coding coefficients. It
is possible to show the correctness of this approach using the general principles of network coding. The
interested reader is referred to [6,15] for more details.

Courtade and Wesel [5] have used this formulation to show that if the messages are randomly
distributed then the minimum number of transmissions is equal to⎡

⎢⎢⎢
1

k − 1

k∑
i=1

|Xi|
⎤
⎥⎥⎥ (19.2)

with probability approaching 1, as the number of messages approaches infinity.
Note that without the integrality constraints, the optimal solution might have fractional values. In

general, the cost of a fractional solution can be lower than the cost of an integral one. In practice,
the fractional solution can be implemented by dividing messages and packets into small parts. This
technique is referred to as subpacketization in the literature. In this chapter, we focus on the scalar
linear solutions in which packets and messages cannot be split.

The fractional version of the CDE problem is closely related to the global omniscience problem in
information theory [27,35]. In information-theoretic formulations, the messages are assumed to be
generated by discrete memoryless sources, and the side information is obtained by users privately
observing a component of the source. The users communicate over the broadcast channel with the
goal of all users being able to obtain the entire source, i.e., to become omniscient.

19.3 RANDOMIZED ALGORITHM FOR PROBLEM CDE
19.3.1 ALGORITHM DESCRIPTION
This section presents a randomized algorithm for Problem CDE. The algorithm requires that the size of
the underlying finite field is at least k ·n, i.e., q ≥ k ·n. The algorithm identifies an optimal solution with
the probability of at least 1 − n·k

q . We can amplify the probability by repeating the algorithm multiple
times.

The algorithm operates in rounds. At the first round, we choose the client with the maximum side
information set to make a transmission, i.e.,

ct1 = arg max
ci∈C

|Xi|.

At each of the following rounds, i = 2, 3, . . . , we choose the client cti that has the maximum number
of degrees of freedom, i.e.,

cti = arg max
cj∈C

{
rank

[
Uj
�i−1

]}
,



494 CHAPTER 19 COOPERATIVE DATA EXCHANGE IN BROADCAST NETWORKS

where
[

Uj
�i−1

]
refers to the matrix obtained by combining rows of Uj and �i−1.

The client cti broadcasts packet pi, which is a random combination of messages in its side
information set. That is, the packet pi is formed according to Eq. (19.1), where γ

j
i = 0 for xj ∈ X̄ti ;

other elements of γi are random elements of the field Fq.

19.3.2 ALGORITHM ANALYSIS
We proceed to show that the algorithm finds an optimal solution, i.e., the solution that satisfies the
demands of all clients with the minimum number of transmissions. The key idea of the proof is to
show that every step of the algorithm does not result in any loss of optimality. For each round of the
algorithm, let OPTi be the minimum number of transmissions required to satisfy all clients given that
each client ci ∈ C has access to packets already transmitted over the channel, p1, . . . , pi, in addition to
the packets in Xi already available to it. That is, OPTi is the minimum number of transmissions required
when each client has access to messages in Xi and all packets in {p1, . . . , pi}.

In Theorem 19.1 we show that with high probability, the value of OPTi decreases by one during
each iteration of the algorithm. If the desired event occurs at each iteration (i.e., the value of OPTi

decreases by one), then after OPT iterations, the algorithm will be able to identify an optimal solution
to the problem (also with high probability).

Theorem 19.1. With probability at least 1 − k
q , it holds that OPTi = OPTi−1 − 1, provided that the

size of the underlying field q ≥ k. �
We proceed to present the proof of Theorem 19.1. Let �i−1 be the encoding matrix for packets

transmitted in rounds 1, 2, . . . , i − 1. Because all clients can be satisfied with OPTi−1 additional
transmissions, there exist OPTi−1 vectors p̂1, . . . , p̂OPTi−1 that together with packets p1, . . . , pi−1
constitute a solution to Problem CDE. We denote by �i−1 the matrix whose rows correspond to coding
coefficients of packets p̂1, . . . , p̂OPTi−1 .

Note that matrix �i−1 satisfies the following conditions:

Condition I: Each row of �i−1 is a linear combination of rows in Uj, for some client cj ∈ C.

Condition II: For each client cj ∈ C, it holds that the matrix formed by combining rows of �i−1, �i−1,
and Uj is of rank n.

Let cti be the client that was chosen to transmit at round i and let γi be a random linear combination
of rows of Ui.

Lemma 19.1. OPTi−1 > n − rank

[
Uti
�i−1

]
.

Proof. Because cti is the client with the maximum degrees of freedom, it holds that

rank

[
Uti
�i−1

]
≥ rank

[
Uj
�i−1

]
(19.3)

for any other client cj ∈ C.



19.3 RANDOMIZED ALGORITHM FOR PROBLEM CDE 495

We consider two cases. In the first case, there exists a client cj for which Eq. (19.3) holds with strict
inequality. In this case, it holds that

OPTi−1 ≥ n − rank

[
Uj
�i−1

]
> n − rank

[
Uti
�i−1

]
.

In the second case, Eq. (19.3) holds with equality for all clients in C. We note that the optimal
solution contains a client cj that makes at least one transmission. For this client, it holds that

OPTi−1 > n − rank

[
Uj
�i−1

]
= n − rank

[
Uti
�i−1

]
.

�
The key observation of the proof is captured by the following lemma:
Lemma 19.2. With probability at least 1 − k

q , there exists a row in �i−1 that can be replaced by γi

such that both Conditions I and II are still satisfied.

Proof. By Claim 19.1, OPTi−1 > n − rank

[
Uti
�i−1

]
. This implies that there exists at least one row

ω̂ in �i−1 that is not required by cti to satisfy its requirements. Let �i be the matrix formed from �i−1
by removing row ω̂. Note that the matrix formed by combining rows of �i, �i−1, and Uti is of rank n.

Now, let �̄i−1 be a matrix formed from �i−1 by replacing row ω̂ by γi. Because γi is a random linear
combination of rows of Uti , Condition I is satisfied. We note that the matrix formed by combining rows
of �̄i−1, �i−1, and Uti has rank n.

We now prove that for any client cj ∈ C \ {cti}, the matrix formed by combining rows of �̄i−1, �i−1,
and Uj is also of rank n with high probability.

Let cj be an arbitrary client, such that j �= ti. First, note that the matrix formed by combining rows
of �i, �i−1, and Uj is of rank at least n − 1. Note that we only need to consider the case in which its
rank is n − 1.

Let ζj be a normal vector to the combined row space of matrices �i, �i−1, and Uj. We note that
there exists a row vector ul̂ in Uti such that the inner product 〈ul̂, ζj〉 �= 0. Indeed, if this is not the case,
then all vectors of Uti would belong to the row space of the matrix formed by combining rows of �i,
�i−1, and Uj, which will result in a contradiction. In particular, this will contradict the fact that the rank
of the matrix formed by combining rows of �i, �i−1 and Uti is n while the rank of the matrix formed
by combining rows of �i, �i−1, and Uj is n − 1.

Next, we use the fact that 〈ul̂, ζj〉 �= 0 to prove that 〈γi, ζj〉 �= 0 with probability at least 1 − 1
q .

Because γi is a linear combination of vectors in Uti , we can write it as

γi =
∑

ul∈Uti

γ l
i · ul.

Thus,

〈γi, ζj〉 =
∑

ul∈Uti

γ l
i · 〈ul, ζj〉 = γ l̂

i · 〈ul̂, ζj〉 + c,

where c is an element in Fq. Because 〈ul̂, ζj〉 �= 0 and because γ l̂
i is selected at random from Fq, the

probability that 〈γi, ζj〉 = 0 is bounded by 1/q.
We proved that the probability that Condition II is satisfied for an arbitrary client is at least 1 − 1

q .

Then, by the union bound, the probability that Condition II is satisfied for all clients is at least 1 − k
q . �



496 CHAPTER 19 COOPERATIVE DATA EXCHANGE IN BROADCAST NETWORKS

Lemma 19.2 shows that with probability at least 1 − k
q there exists a row ω̂ in �i−1 that can be

replaced with γi such that the resulting matrix still represents a broadcast scheme that allows all clients
to decode the messages they need with OPTi−1 transmissions. This implies, in turn, that matrix �i

formed from �i−1 by removing row ω̂ represents OPT − 1 encoding vectors required to complete the
information exchange after iteration i. This completes the proof of Theorem 19.1.

Theorem 19.2 implies that the algorithm identifies an optimal solution to Problem CDE with high
probability.

Theorem 19.2. The algorithm computes an optimal solution to Problem CDE with probability at
least 1 − k·n

q , provided that the size of the underlying field q ≥ k · n.

Proof. Theorem 19.1 implies that each iteration of the algorithm reduces the value of OPTi by one
with probability 1 − k

q . We can use the union bound argument to show that the probability that one of
the rounds fails to reduce the value of OPTi is bounded by

OPT · k

q
≤ n · k

q
.

We conclude that the probability of success is at least 1 − k·n
q . �

The probability of success can be amplified by selecting a sufficiently large q. For example, for q ≥
4kn the probability of success is at least 3/4. An additional way to increase the probability of success
is to execute the algorithm multiple times. This observation is captured in the following corollary.

Corollary 19.1. For any ε > 0 there exists an algorithm that finds an optimal solution to Problem
CDE with probability at least 1 − ε in time polynomial in the size of the input and log(ε).

19.4 DATA EXCHANGE WITH FAULTY CLIENTS
In the previous section we assumed that all clients are reliable and are able to complete the transmission
as specified by the schedule. However, in many practical settings, the clients might leave the system at
any time, e.g., due to poor channel conditions, a mobility event, loss of power supply, or an instruction
from the user. In this section, we address the problem of constructing a robust schedule, i.e., the
schedule that enables all remaining clients to decode the packets they need even if a limited number of
clients fail or leave the system.

The key idea of our approach is to add a sufficient number of redundant transmissions so no
additional transmissions are necessary in the event of a failure. We show that while the original problem
(in which all clients are reliable) can be solved in polynomial time, designing an efficient robust
schedule is an NP-hard problem even for a single failure scenario [36]. Accordingly, we present an
approximation algorithm with the required number of transmissions within a constant factor of the
optimum.

Fig. 19.2 presents an example of a reliable schedule. In this example, there are four clients
that initially have a subset of messages in the set {x1, x2, x3, x4}. A robust schedule includes four
transmissions, one from each client. The solution is robust to failure of any two clients. That is, even if
one of the clients fails, the remaining clients are still able to decode the messages they need from any
two remaining transmissions.

The problem of the design of an efficient robust schedule has a setting similar to that described in
Section 19.2, with the only difference being that up to g clients can fail. When a client fails, some of
its transmissions might not reach other clients. We are focusing on the worst-case scenario, i.e., any
g out of k clients can fail, and all faulty clients do not make any transmissions. We say that a coding



19.4 DATA EXCHANGE WITH FAULTY CLIENTS 497

x1, x2, x3

3 4

x2, x3, x4

x1, x3, x4 x1, x2, x4

x2+ x3+ x4

x1+ x2+ x4

x1+ x2+ x3

x1+ x3+ x4

21

21

3 4

FIG. 19.2

An example of a robust schedule.

scheme is g-robust if for any subset C′ ⊂ C of cardinality g, all clients in C \ C′ can decode all
messages in X even if all clients in C′ fail to transmit packets required by the coding scheme. Our goal
is to find, for the given instance of Problem CDE, a g-robust schedule that minimizes the number of
transmissions.

We observe that the necessary and sufficient condition for the existence of a g-robust schedule is
that any message xi ∈ X is initially held by at least g + 1 clients. Indeed, if a message is held by less
than g clients, it would not be possible to recover it upon the failure of these clients. Also, a simple
suboptimal achievability scheme would include transmitting each message g + 1 times.

19.4.1 APPROXIMATION ALGORITHM
Because it is intractable to construct an optimal robust schedule, we present a polynomial-time
approximation scheme that computes a coding scheme that is robust to any single failure. The number
of transmissions required by the coding scheme is at most two times of the number of transmissions
made by the optimal solution.

The key idea of the approximation scheme is to mimic the optimal solution. While we do not know
the structure of the optimal solution, we can identify two of its key parameters:

(i) maximum number of transmission η made by any client ci ∈ C;
(ii) the identity of the client ci∗ that makes the largest number of transmissions.

We can identify η and ci∗ by performing an exhaustive search among all possible values of η ∈
{1, . . . , n} and among all k clients in C. For each combination of η and ci∗ we perform the three-
phase procedure (described below) and select the values that yield the minimum possible number of
transmissions. This will result in at most k · n invocations of the procedure. We refer to ci∗ as a helper
client.



498 CHAPTER 19 COOPERATIVE DATA EXCHANGE IN BROADCAST NETWORKS

For a given helper client ci∗ and for a given value of η we construct three matrices �1, �2, and �3.
Then, we construct an encoding matrix � by combining rows of �1, �2, and �3. Finally, we select an
encoding matrix with a minimum number of rows among matrices that correspond to different values
of η and the selection of a helper client ci∗ .

Phase I
The goal of Phase I is to identify an encoding matrix �1 that captures transmissions that are sufficient
to handle a failure of client ci∗ . To that end, we identify an optimal solution to a modified version of
Problem CDE that satisfies the following requirements:

1. Each client makes at most η transmissions;
2. Client ci∗ is not allowed to make any transmissions;
3. All clients, including ci∗ , must receive all packets in X.

It can be shown that by a modification of Algorithm CDE, it is possible to identify a solution for
this variation of the problem with high probability [37].

For a client ci ∈ C, let �i
1 be the encoding matrix that includes coding vectors of packets transmitted

by ci in Phase 1. We also denote by λi the number of transmissions made by client ci in Phase 1 of the
algorithm. Note that λi is equal to the number of rows of �i

1.
Because the coding vectors represented by �1 are not sufficient for handling failures of any client

other than ci∗ , we add additional transmissions in Phases II and III of the algorithm.

Phase II
In Phase II of the algorithm, we form encoding matrix �2. Transmissions represented by �2
(in combination with transmissions represented by �1) ensure that the helper node ci∗ is able to obtain
all packets in the event of a failure of any client ci ∈ C \ {ci∗}.

Matrix �2 is constructed as follows. For each submatrix �i
1 of �1, we add a corresponding

submatrix �i
2 of �2, whose purpose is to compensate for the degrees of freedom lost by the helper

in the event of failure of client ci.
In particular, for each ci ∈ C \ {ci∗}, we construct matrix �i

2 as follows. Let �i be the vertical
concatenation of matrices Ui∗ and �1, excluding the rows that belong to �i

1. Note the rank of �i is
at least n − λi, because the vertical concatenation of Ui∗ and �1 is of rank n. As we show below, it
is possible to add λi or less unit vectors to �i to make it full rank. These vectors will correspond to
uncoded messages transmitted by clients in C \ {ci, ci∗}.

Indeed, let U be a n×n diagonal matrix that corresponds to the unit encoding vectors of all messages
in X. Then, it is possible to identify n − λi rows in U that can be added to �i to complete it to full rank.
Each of these rows corresponds to a message in X that is not held by the helper node ci∗ . Because each
message is held by at least two clients, it is possible to find a client cj ∈ C \ {ci, ci∗} that can transmit
this message.

Note that the total number of rows added to �2 in Phase II of the algorithm is bounded by the
number of rows in �1.

Phase III
In Phase III of the algorithm, we construct matrix �3 whose rows correspond to η linear combi-
nations of the messages in the helper’s side information set Ui∗ . Transmissions represented by �3
(in combination with transmissions represented by �1 and �2) ensure that any client ci ∈ C \ {ci∗} can
obtain all packets in the case of a failure of any other client cj ∈ C \ {ci∗}.



19.5 DATA EXCHANGE IN THE PRESENCE OF AN EAVESDROPPER 499

19.4.2 ALGORITHM ANALYSIS
First, we show that with high probability the algorithm yields a solution robust to a failure of one client.

Lemma 19.3. The coding scheme represented by the concatenation of matrices �1, �2, and �3 is
a feasible 1-robust solution to Problem CDE with high probability.

Proof. As discussed above, the transmissions represented by �1 are sufficient for the scenario
with no failure or the failure of the helper ci∗ . From the construction of the encoding matrix �2, the
transmissions added in Phase II of the algorithm enable the helper to decode all messages in X even if
one of the clients fails. It is left to show that transmissions made in Phases I–III are sufficient to satisfy
the demands of any client in ci ∈ C \ {ci∗}, in the event of a failure of a client cj ∈ C \ {ci, ci∗}.

Let � be a concatenation of matrices �1, �2, excluding the rows that correspond to �
j
1. Note that �

captures all packets received by all nodes, including ci and the helper ci∗ , in the event of failure of node
cj. This implies that the concatenation of � and Ui∗ has rank n. On the other hand, the concatenation
of � and Ui has rank at least n − ηj. It is easy to verify that the concatenation of � and Ui can be
completed to the full rank by adding at most n − ηj rows from Ui∗ . This implies that if we add n − ηj

linear combinations of rows in Ui∗ to the concatenation of � and Ui, then the resulting matrix has rank
n with high probability. �

We proceed to analyze the approximation ratio of the algorithm, i.e., the ratio between the number
of transmissions required by the algorithm and the number of transmissions required to identify the
optimal 1-robust solution.

Lemma 19.4. Let OPT ′ be the minimum number of transmissions required by the optimal algorithm
for the 1-robust solution. Then, the minimum number of transmissions required by the algorithm
presented in Section 19.4.1 is at most 2 · OPT ′.

Proof. We bound the number of transmissions required by all phases of the algorithm. We can
assume that the value η and the identity of the client ci∗ are correct because the algorithm performs an
exhaustive search among these two parameters.

In Phase I, the algorithm identifies the minimum number of transmissions required to complete
the information exchange if client ci∗ cannot transmit but must receive all packets, and each client
cannot transmit more than η packets. We note that because the optimal solution only requires OPT ′ −η

transmissions to solve this problem, the number of transmissions needed in Phase I is at most OPT ′ −η.
Because the number of transmissions in Phase II is less or equal to the number of transmissions

made in Phase I, and the number of transmissions made in Phase III is bounded by η, we conclude that
the total number of transmissions is at most

2(OPT ′ − η) + η ≤ 2 · OPT ′. �

19.5 DATA EXCHANGE IN THE PRESENCE OF AN EAVESDROPPER
In this section, we focus on the setting in which the information transfer is performed in the presence
of an eavesdropper that can obtain all packets transmitted over the channel. Specifically, suppose that a
CDE algorithm performs μ transmissions represented by the encoding matrix �μ, and the eavesdropper
has access to μ packets E = {p1, . . . , pμ}.



500 CHAPTER 19 COOPERATIVE DATA EXCHANGE IN BROADCAST NETWORKS

The goal of the eavesdropper is to obtain information about the messages in X or sparse linear
combinations of up to g messages of X, where g is the security parameter of our scheme. We use the
concept of weak information-theoretic security in which all messages in X are assumed to be uniform
independent random variables over Fq. The g-weak security requires that

I(Xg; E) = 0 (19.4)

for any subset Xg of X of size g. That is, the adversary will not be able to extract any information about
packets in Xg by observing the set of packets transmitted over the channel.

The goal a g-week secure coding scheme is to construct an encoding matrix � that satisfies the
following conditions:

1. Each client ci ∈ C is able to obtain all messages in Xi;
2. The scheme has the minimum possible number of transmissions;
3. (Xg; E) = 0 for any subset Xg of X of size g.

Fig. 19.3 presents an example of an instance of the problem. In this example the clients c1, c2, and c3
are exchanging messages in the set X = {x1, . . . , x5}. In the beginning of data exchange process, clients
c1, c2, and c3 have subsets of messages {x1, x2, x3}, {x2, x3, x4}, and {x3, x4, x5}, respectively. A possible
solution to this problem is for clients c1, c2, and c3 to broadcast linear combinations x1 + 2x2 + x3,
x2 + 2x3 + x4, and x3 + 2x4 + x5, respectively (all operations are over GF(5)). Note that by observing
the transmitted packets, the eavesdropper will not be able to decode any of the original messages. Note
also that the eavesdropper will not be able to obtain any linear combination of two messages, so even
if it has any single message as a prior side information, it will not be able to decode any additional
message in X.

3

21

3

1

x1, x2, x3 x2, x3, x4

x1+ 2x2+ x3

x3+ 2x4+ x5

x3, x4, x5

2 x2+ 2x3+ x4

FIG. 19.3

Example of a weakly secure solution against an eavesdropper.



19.5 DATA EXCHANGE IN THE PRESENCE OF AN EAVESDROPPER 501

For linear coding schemes, the condition of Eq. (19.4) is equivalent to the following algebraic
condition: the Hamming weight of any nonzero linear combination of rows of �μ is at least g + 1.
Clearly, if an adversary can obtain a linear combination of g or less messages in X, this will result in
a violation of Eq. (19.4). Conversely, if any linear combination contains at least g + 1 messages, then
Eq. (19.4) will be satisfied because every set of g messages will be protected by a message that does
not belong to this set and because this message is a random element of the field Fq.

Our goal is to design a solution to the CDE problem represented by encoding matrix �μ that
maximizes the minimum weight of a nonzero vector in the row span of �μ. While the weakly
secure scheme does not explicitly require reducing the number of transmissions, solutions with fewer
transmissions expose less information to the adversary. To construct a g-weekly secure solution with
the maximum possible value of g for a given instance of the problem, the number of transmissions
should be identical to that of the optimal solution of Problem CDE.

More specifically, the Singelton bound implies that the maximum weight of a nonzero vector in the
row span of a full-rank μ × n matrix is at most n − μ + 1. This implies, in turn, that the maximally
achievable value of g is n − OPT , where OPT is the minimum number of transmissions required to
solve the CDE problem. In this section, we show that this bound is tight by proving that the CDE
algorithm presented in Section 19.3.1 computes a g-weakly secure scheme for g = n − OPT with high
probability, provided that the size of the underlying field Fq is sufficiently large.

Let �μ be the μ × n encoding matrix computed by the CDE algorithm presented in Section 19.3.1.
We need to show that with high probability, this is a generator matrix of an MDS code, i.e., any μ × μ

submatrix �̂ of �μ is of full rank. Let �̂ be such an arbitrary submatrix of �μ. If there exists a client
ci ∈ C that initially has messages that correspond to the columns in �μ that do not belong to �̂, then
matrix �̂ must be full rank, because ci needs to decode messages that correspond to the columns of �̂.

If there does not exist such a client, we can add to C an imaginary client ĉ whose side information
set corresponds to the columns that do not belong to �̂. We denote by Û the matrix that includes
unit encoding vectors that correspond to the side information set of ĉ. Our goal is to show that the
same solution �μ (computed for the original set C of clients) is able to satisfy this client with high
probability.

It is sufficient to show that at each iteration i, client ĉ gains an additional degree of freedom, i.e.,

rank

(
�i+1

Û

)
= rank

(
�i
Û

)
+ 1.

Let cti+1 be the client that transmits at round i + 1. First, we note that the number of degrees of
freedom that ti+1 has is more than that of ĉ in the beginning of the cycle, i.e.,

rank

(
�i

Uti+1

)
> rank

(
�i
Û

)
.

This is because clients cti+1 and ĉ are missing at most OPT − i − 1 and OPT − i degrees of freedom,
respectively. Then, there exists at least one row in Uti+1 which is not in the row span of the concatenation
of �i and Û. Hence, when cti+1 transmits a random linear combination of messages in Uti+1 , client ĉ will
gain a degree of freedom with probability at least 1 − 1/q (this can be shown by an argument similar
to that used in the proof of Lemma 19.2).



502 CHAPTER 19 COOPERATIVE DATA EXCHANGE IN BROADCAST NETWORKS

We summarize this result by the following theorem:
Theorem 19.3. The CDE algorithm presented in Section 19.3.1 computes a g-weakly secure coding

scheme �μ with probability at least 1 − ( n
OPT

)OPT
q , for g = n − OPT and for a sufficiently large q.

Proof. As discussed above, for each set of n − μ columns of �μ, we associate an additional client
that has the messages corresponding to these columns (provided that such client does not already exist
in C). The number of such clients is bounded by

( n
OPT

)
. The probability that ĉ gains a degree of freedom

at each iteration is at least 1 − 1/q. By union bound, the probability that such a client can obtain all
messages is at least 1 − OPT/q. Again, by the union bound, the probability that all additional clients
can decode all messages is at least 1 − ( n

OPT

)OPT
q . �

19.6 CONCLUSION
Cooperative data exchange is a fascinating problem that has interesting connections to many other
areas of wireless communication and coding theory. Over the last five years, the problem has received
significant attention from the research community. Many interesting extensions and reformulations of
the problem have been proposed.

The problem of securing the data against eavesdroppers is closely related to the problem of
constructing minimum-distance separable (MDS) codes with generation matrix constraints [38]. This
problem gives rise to an intriguing conjecture that states that it is possible to linearly transform a
Vandermonde matrix to obtain the constrained generator matrix with high probability. This conjecture,
in turn, is closely related to interesting conjectures in algebraic geometry, abstract algebra, and number
theory.

REFERENCES
[1] Ahlswede R, Cai N, Li SY, Yeung RW. Network information flow. IEEE Trans Inf Theory

2000;46(4):1204–16.
[2] Li SY, Yeung RW, Cai N. Linear network coding. IEEE Trans Inf Theory 2003;49(2):371–81.
[3] Koetter R, Médard M. An algebraic approach to network coding. IEEE Trans Netw 2003;11(5):782–95.
[4] Sprintson A, Sadeghi P, Booker G, El Rouayheb S. A randomized algorithm and performance bounds for

coded cooperative data exchange. In: Proceedings of IEEE ISIT; 2010. p. 1888–92.
[5] Courtade TA, Wesel RD. Coded cooperative data exchange in multihop networks. IEEE Trans Inf Theory

2014;60(2):1136–58.
[6] Milosavljevic N, Pawar S, El Rouayheb S, Gastpar M, Ramhandran K. Deterministic algorithm for the

cooperative data exchange problem. In: Proceedings of IEEE ISIT; 2011. p. 410–4.
[7] Neely MJ. Wireless peer-to-peer scheduling in mobile networks. In: Proceedings of CISS; 2012.
[8] Keller L, Le A, Cici B, Seferoglu H, Fragouli C, Markopoulou A. Microcast: cooperative video stream-

ing on smartphones. In: Proceedings of the 10th international conference on mobile systems, applica-
tions, and services. MobiSys ’12. New York, NY: ACM; 2012. p. 57–70. ISBN 978-1-4503-1301-8.
https://doi.org/10.1145/2307636.2307643.

[9] Sendonaris A, Erkip E, Aazhang B. User cooperation diversity—Part I: System description. IEEE Trans
Commun 2003;51(11):1927–38.

http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0050


REFERENCES 503

[10] Laneman JN, Tse DNC, Wornell GW. Cooperative diversity in wireless networks: efficient protocols and
outage behavior. IEEE Trans Inf Theory 2004;50(12):3062–80.

[11] Hong YW, Huang WJ, Chiu FH, Kuo CCJ. Cooperative communications in resource-constrained wireless
networks. IEEE Signal Process Mag 2007;24(3):47–57.

[12] Rouayheb SE, Chaudhry MAR, Sprintson A. On the minimum number of transmissions in single-hop
wireless coding networks. In: Proceedings of information theory workshop (ITW ’07), Tahoe City, California,
USA; 2007.

[13] El Rouayheb S, Sprintson A, Sadeghi P. On coding for cooperative data exchange. In: Proceedings of IEEE
ITW; 2010.

[14] Gonen M, Langberg M. Coded cooperative data exchange problem for general topologies. In: Proceedings of
IEEE ISIT; 2012. p. 2606–10.

[15] Courtade TA, Xie B, Wesel RD. Optimal exchange of packets for universal recovery in broadcast networks.
In: Proceedings of military communications conference; 2010. p. 2250–5.

[16] Courtade TA, Wesel RD. Efficient universal recovery in broadcast networks. In: Proceedings of 48th annual
Allerton conference on communication, control, and computing; 2010. p. 1542–9.

[17] Courtade TA, Wesel RD. Coded cooperative data exchange in multihop networks. IEEE Trans Inf Theory
2014;60(2):1136–58.

[18] Sprintson A, Sadeghi P, Booker G, El Rouayheb S. Deterministic algorithm for coded cooperative data
exchange. In: ICST QShine; 2010.

[19] Courtade TA, Wesel RD. Weighted universal recovery, practical secrecy, and an efficient algorithm for solving
both. In: Proceedings of 49th annual Allerton conference on communication, control, and computing; 2011.
p. 1349–57.

[20] Yan M, Sprintson A, Zelenko I. Weakly secure data exchange with generalized Reed-Solomon codes.
In: Proceedings of IEEE ISIT; 2014. p. 1366–70.

[21] Yan M, Sprintson A. On error correcting algorithms for the cooperative data exchange problem.
In: Proceedings of 2014 IEEE international symposium on network coding (NetCod 2014), Aalborg,
Denmark; 2014.

[22] Courtade TA, Halford TR. Coded cooperative data exchange for a secret key. In: Proceedings of IEEE ISIT;
2014. p. 776–80.

[23] Heidarzadeh A, Sprintson A. Cooperative data exchange with unreliable clients. In: 2015 53rd annual Allerton
conference on communication, control, and computing (Allerton); 2015. p. 496–503.

[24] Ozgul D, Sprintson A. An algorithm for cooperative data exchange with cost criterion. In: Proceedings of ITA
workshop; 2011.

[25] Tajbakhsh SE, Sadeghi P, Shams R. A generalized model for cost and fairness analysis in coded cooperative
data exchange. In: Proceedings of NetCod; 2011.

[26] Yan M, Sprintson A. Algorithms for weakly secure data exchange. In: Proceedings of NetCod; 2013.
[27] Csiszar I, Narayan P. Secrecy capacities for multiple terminals. IEEE Trans Inf Theory 2004;50(12):3047–61.

https://doi.org/10.1109/TIT.2004.838380.
[28] Chan C, Al-Bashabsheh A, Ebrahimi JB, Kaced T, Liu T. Multivariate mutual information inspired by

secret-key agreement. Proc IEEE 2015;103(10):1883–913. https://doi.org/10.1109/JPROC.2015.2458316.
[29] Birk Y, Kol T. Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different

supplemental data to caching clients. IEEE Trans Inf Theory 2006;52(6):2825–30.
[30] Bar-Yossef Z, Birk Y, Jayram TS, Kol T. Index coding with side information. In: Proceedings of the 47th

annual IEEE symposium on foundations of computer science (FOCS); 2006. p. 197–206.
[31] El Rouayheb S, Sprintson A, Georghiades C. On the index coding problem and its relation to network coding

and matroid theory. IEEE Trans Inf Theory 2010;56(7):3187–95.
[32] Alon N, Hassidim A, Lubetzky E, Stav U, Weinstein A. Broadcasting with side information. In: Proceedings

of the 49th annual IEEE symposium on foundations of computer science (FOCS); 2008. p. 823–32.

http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0165


504 CHAPTER 19 COOPERATIVE DATA EXCHANGE IN BROADCAST NETWORKS

[33] Blasiak A, Kleinberg R, Lubetzky E. Index coding via linear programming; April 2010. Available at http://
arxiv.org/abs/1004.1379.

[34] Minsky Y, Trachtenberg A, Zippel R. Set reconciliation with nearly optimal communication complexity. IEEE
Trans Inf Theory 2003;49(9):2213–8.

[35] Chan C, Al-Bashabsheh A, Zhou Q, Ding N, Liu T, Sprintson A. Successive omniscience. IEEE Trans Inf
Theory 2016;62(6):3270–89. https://doi.org/10.1109/TIT.2016.2555923.

[36] Yan M, Sprintson A. Approximation algorithms for erasure correcting data exchange. In: 2015 IEEE
information theory workshop (ITW), Jerusalem, Israel; 2015.

[37] Ozgul D, Sprintson A. An algorithms for cooperative data exchange with cost criterion. In: Proceedings of
2011 information theory and application workshop (ITA); 2011.

[38] Yan M, Sprintson A, Zelenko I. Weakly secure data exchange with generalized Reed-Solomon codes.
In: 2014 IEEE international symposium on information theory; 2014. p. 1366–70.

http://arxiv.org/abs/1004.1379
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00019-5/rf0195


CHAPTER

20COLLABORATIVE SPECTRUM
SENSING IN THE PRESENCE OF
BYZANTINE ATTACKS

Bhavya Kailkhura∗, Aditya Vempaty†, Pramod K. Varshney‡

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, United States∗

IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States†

Department of EECS, Syracuse University, Syracuse, NY, United States‡

20.1 INTRODUCTION
20.1.1 COGNITIVE RADIO NETWORKS
Increasing demand for wireless communication in various areas of human life has brought about
an exponential increase in the number of wireless services. This exponential increase has resulted
in spectrum scarcity as the electromagnetic spectrum has become too crowded to accommodate the
growing number of wireless services. Recently, this problem has attracted a lot of attention in the
research community, and several potentially viable solutions have been proposed to mitigate the
problem of spectrum scarcity. A survey conducted by the FCC has shown the presence of highly
underutilized licensed spectrum bands [1]. These observations have motivated the research community
to review the conventional spectrum allocation policies and explore new spectrum allocation policies
to alleviate the issue of underutilized spectrum. Dynamic spectrum access (DSA) is an extremely
promising idea in the area of nonconventional spectrum allocation. In DSA, the same spectrum band is
accessed by several users as opposed to the conventional spectrum access where only the licensed user
is permitted to transmit in its spectrum band. The unlicensed (secondary) users access the frequency
band in such a way that the interference caused by them stays within the allowed limits. In CRNs [2], the
secondary users (CRs) sense the presence of a primary user without interfering with the primary user’s
communication, and only use the spectrum if the primary user is inferred to be absent. This process
is called spectrum sensing, which allows a secondary user to operate when the primary is not present.
Clearly, the efficacy of the scheme depends on the accuracy of this inference performance. To ensure
high accuracy, collaborative spectrum sensing has been proposed where multiple CRs collaborate with
each other by sharing their inferences to make a global inference. This has been shown to have various
advantages in terms of spectrum utilization and robustness.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00020-1
Copyright © 2018 Elsevier Inc. All rights reserved.

505



506 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

20.1.2 BYZANTINE ATTACKS
As is evident from the process described above, the data fusion scheme is a key component of
collaborative spectrum sensing. An adversary interested in using this spectrum would be motivated
to disrupt this inference process. While the presence of multiple CRs makes it difficult for a single
adversary, these schemes are still quite vulnerable to adversarial attacks. One typical attack on
distributed inference is the Byzantine attack, motivated by the Byzantine generals problem.

In 1982, Lamport et al. presented the so-called Byzantine generals problem [3] as follows: “a group
of generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messengers, the generals must agree upon a common battle plan. However, one or more of them may
be traitors who will try to mislead the others. The problem is to find an algorithm to ensure that the
loyal generals will reach agreement.” This problem is similar in principle to the problem considered
in this chapter. It was shown that if the fraction of Byzantine generals is less than 1/3, there is a way
for the loyal generals to reach a consensus agreement, regardless of what the Byzantine generals do.
If the fraction is above 1/3, consensus can no longer be guaranteed. There are many diverse behaviors
that a Byzantine entity may engage in with the intent to disrupt network inference, such as a node
may lie about connectivity, flood a network with false traffic, attempt to subjugate control information,
falsely describe opinions of another node (e.g., peer-to-peer), or capture a strategic subset of devices
and collude.

The Byzantine attack on distributed inference problems such as collaborative spectrum sensing are
similar in spirit to the Byzantine generals problem described above. While Byzantine attacks may,
in general, refer to many types of malicious behavior, our focus in this chapter is on data corruption
attacks. In this type of attack, an attacker, after sensing the spectrum, reports falsified (erroneous) data
to the network to degrade inference performance. In this chapter, we refer to such a data corruption
attacker as a Byzantine and the data thus generated is referred to as Byzantine data. In the distributed
spectrum-sensing context, Byzantine CRs can affect global decisions regarding the presence or absence
of the primary user (PU) by reporting false sensing data. This might result in a collision of secondary
users (SUs) with the PU (if a busy PU is wrongly detected as idle) or in spectrum wastage (if an idle PU
is detected as busy). Thus, robust collaborative spectrum sensing in the presence of spectrum sensing
data falsification (SSDF) attacks is of utmost importance.

The central goal of this chapter is to discuss the effect of corrupted (or falsified) data on the
spectrum-sensing performance of CRNs and robust strategies to ensure reliable overall performance
for several practical network architectures. Notations used in this chapter are provided in Table 20.1.

20.2 COLLABORATIVE SPECTRUM SENSING
Next, we give a brief introduction to spectrum sensing in cognitive radio networks (CRNs).

The collaborative spectrum-sensing (CSS) model comprises a group of N CRs that acquire
observations regarding a PU, then collaborate with other CRs by sharing their local observations (raw
or processed) via their network topology to decide either on hypothesis H1 (primary user present) or
H0 (primary user absent). These CRs can be honest or malicious.

Typically each CR (secondary user) uses an energy detection scheme for sensing the PU. When
the PU is absent (Hypothesis H0), we assume Pr = W where W is Gaussian distributed as N (μ0, σ 2

0 ).



20.2 COLLABORATIVE SPECTRUM SENSING 507

Table 20.1 Table of Notations

Notation Description

Pt PU transmission power

Pr CR receive power

d distance between PU and CR

d0 close in-reference distance

n path loss exponent

N number of CRs

μ mean values of distributions

σ standard deviation of distributions

i CR index

α fraction of Byzantines in CRN

vi local decision made by ith CR

ui decision sent by ith CR to FC

Pd local probability of detection

Pf local probability of false alarm

PH(B)
d local probability of detection of Honest (Byzantine) CR

PH(B)
f local probability of false alarm of Honest (Byzantine) CR

PH(B)
a,b probability that an Honest (Byzantine) CR sends a to FC when deciding b

αblind blinding fraction of Byzantines in CRN

κi reputation metric for ith CR

T time window of reputation calculation

u0[t] global decision at time instant t

�T
i test statistic between expected and observed behavior of ith CR

A = {aij} adjacency matrix of CRN graph

Ni neighborhood of ith CR

D = diag(d1, . . . , dN ) degree matrix with degrees di

zt
i ith CR’s sensed signal at time t in peer-to-peer CRNs

ζi deterministic gain of ith sensing channel

st deterministic signal at time t

Yi summary statistic of ith CR

M number of sensing samples

ηi local SNR at ith CR

xi(k) information shared by ith CR with neighbors at consensus iteration k

wi weight given to ith CR’s information during consensus

W Perron matrix

�i Byzantine attack strength for consensus disruption

Pi Byzantine attack probability for consensus disruption

w̃i tampered weight set by Byzantines

wH(B)
i optimal consensus weights for honest (Byzantine) CRs



508 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

When the PU is present (Hypothesis H1), observations are naturally a function of the distance between
the PU and the CR, which affects the power received at the CR. Given Pt, the transmission power of
the PU, the power received at a CR located at a distance d from the PU, Pr(d) under hypothesis H1
(primary present) can be represented as

Pr [dB] = Pt [dB] − PL(d) [dB]. (20.1)

The links between the PU and CRs are subject to independent and identically distributed (i.i.d.) log-
normal shadowing path loss, thus

PL(d) [dB] = P̂L(d) + Xσ = P̂L(d0) + 10n log
d

d0
+ Xσ , (20.2)

where PL(d) is the path loss as a function of d, the distance between primary and secondary users;
Xσ represents a zero-mean Gaussian distributed random variable with standard deviation σ ; d0 denotes
the close in-reference distance; and n is the path loss exponent that is equal to the rate at which the
path loss increases with distance between primary and secondary users. P̂L(d) is the mean of PL(d)
and can be found using the HATA model [4], which has been suggested by the IEEE 802.22 working
group as the path-loss model for a typical CRN environment. Here, it is worth mentioning that IEEE
802.22 is the first standard developed for CRNs coexisting in the TV channels’ bands. Assuming a rural
environment,

P̂L(d) = 27.77 + 46.05 log(fc) − 4.78(log(fc))2 − 13.82 log(ht)
− (1.1 log(fc) − 0.7)hr + (44.9 − 6.55 log(ht)) log(d),

where fc is the carrier frequency, ht and hr are the effective transmitter and receiver antenna heights
(in meters), respectively. The unit of d is kilometers (km).

20.3 SPECTRUM SENSING IN A PARALLEL CRN
20.3.1 SYSTEM MODEL
Network model
Consider a parallel network comprised of a central entity (known as the Fusion Center (FC)) and a set of
N CRs that faces the task of determining whether the PU is present. The ith CR makes an observation
and compresses it using some local processing. A Byzantine attack on such a system compromises
some of the CRs that may then intentionally send falsified local spectrum-sensing decisions to the
FC to make the final decision incorrect. We assume that a fraction α of the N CRs that observe the
PU have been compromised by an attacker. Let the local decisions made by CRs be vi ∈ {0, 1}, and
ui ∈ {0, 1}, i = 1, . . . , N, denote the decision sent by the CR to the FC. Here ui = vi, if i is an
uncompromised (honest) CR, but for a compromised (Byzantine) CR i, ui need not be equal to vi. The
FC yields a final decision after processing the local decisions. Observations at the CRs are assumed to
be conditionally independent and identically distributed given the hypothesis. Denote the probabilities
of detection and false alarm as PH

d = P(ui = 1|H1) and PH
f = P(ui = 1|H0) for honest CRs and

PB
d = P(ui = 1|H1) and PB

f = P(ui = 1|H0) for Byzantines.



20.3 SPECTRUM SENSING IN A PARALLEL CRN 509

Byzantine attack model
Assuming that the sensing and decision strategies are the same among all honest CRs and among all
Byzantine CRs, let us define the following strategies PH

j,1, PH
j,0 and PB

j,1, PB
j,0 (j ∈ {0, 1}) for the honest

and Byzantine CRs, respectively:
Honest CRs:

PH
1,1 = 1 − PH

0,1 = PH(x = 1|y = 1) = 1, (20.3)

PH
1,0 = 1 − PH

0,0 = PH(x = 1|y = 0) = 0. (20.4)

Byzantine CRs:

PB
1,1 = 1 − PB

0,1 = PB(x = 1|y = 1), (20.5)

PB
1,0 = 1 − PB

0,0 = PB(x = 1|y = 0). (20.6)

PH(x = a|y = b) (PB(x = a|y = b)) is the probability that an honest (Byzantine) CR sends a to the FC
when its actual local decision is b. From now onward, we will refer to Byzantine flipping probabilities
simply by (P1,0 := PB

1,0, P0,1 := PB
0,1). We also assume that the FC is not aware of the exact set of

Byzantine CRs and considers each CR i to be Byzantine with a certain probability α.

20.3.2 FUNDAMENTAL LIMIT
The objective of Byzantines is to degrade the detection performance of the network by choosing
(P1,0, P0,1) intelligently. Due to the difficulty in characterizing the exact performance of a general fusion
scheme, Kullback-Leibler divergence (KLD) is used to characterize the performance of the detection
scheme due to its strong relationship with the global detection performance. The KLD between the
distributions P(ui|H1) and P(ui|H0) is expressed as

D(P(ui|H1)||P(ui|H0)) =
∑

j∈{0,1}
P(ui|H1) log

P(ui|H1)
P(ui|H0)

. (20.7)

The critical power of the distributed detection network is the minimum fraction of Byzantine CRs
needed to make the data from CRs uninformative to the CR, i.e., make KLD at the FC equal to zero.
This would result in the FC making a decision based only on the prior information as the network is
blind to the data from local CRs. This critical power for a Byzantine is characterized as follows.

BOX 20.1 Critical Power
Lemma 20.1 ([5]). The minimum fraction of Byzantines needed to blind the FC is

αblind =
PH

d − PH
f

(PB
d − PB

f ) + (PH
d − PH

f )
.

The optimal attack strategy for the Byzantines is given by the following.



510 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

BOX 20.2 Optimal Attacking Strategies
Lemma 20.2 ([5]). Let us consider PB

d = PH
d and PB

f = PH
f . Optimal attacking strategies, (P∗

1,0, P∗
0,1), which minimize the

KLD are

(P∗
1,0, P∗

0,1) =
{

(p1,0, p0,1) if α ≥ 0.5,
(1, 1) if α < 0.5,

where (p1,0, p0,1) satisfy α(p1,0 + p0,1) = 1.

Consider the case where the PU is transmitting at the UHF frequency of 617 MHz with effective
transmitter antenna height ht = 100 m and the effective isotropic radiated power (EIRP) is assumed to
be 35 dBm. All CRs are assumed to be equipped with a simple energy detector and effective receiver
antenna height ht = 1 m. The minimum power for a signal to be detected is assumed to be −94 dBm.
Let the noise power equal to −106 dBm and in the log-normal shadowing path-loss model as well as
let noise standard deviation σ = σ0 = 11.6. Assume a large rural city environment where the distance
between the PU and SUs is assumed to be equal to 13 km. Also, set the threshold at the local CRs to
achieve a maximum probability of misdetection equal to 0.25.

Fig. 20.1 shows the detection performance in terms of the minimum KLD1 as a function of the
fraction of Byzantines for different attack strategies. There are two types of Byzantine attacks: inde-
pendent malicious Byzantine attacks (IMBA) and cooperative malicious Byzantine attacks (CMBA). In
an independent attack, each Byzantine CR attacks the spectrum sensing system independently, relying
on its own observation. Because the Byzantine CRs do not know the identity of the other Byzantines
in the network, PB

d = PH
d and PB

f = PH
f , which gives αblind = 0.5 from Lemma 20.1. This implies

that the number of Byzantines needs to be at least 50% to blind the FC when the Byzantines attack
the network independently. In a CMBA, Byzantine CRs collaborate to make a decision regarding the
true hypothesis and use this information to attack the network. Using collaboration, the Byzantines can
reduce the minimum critical power αblind by increasing (PB

d − PB
f ). Consider Byzantines are colluding

using the “L out of M” rule to make their decision, i.e., if more than L out of the M Byzantines make a
decision, of say “1”, then all the collaborating Byzantines in the network send a “0”. The value of L is
taken to be M/2, which corresponds to the majority rule. As Fig. 20.1 shows, αblind decreases with the
collaboration of the Byzantines.

20.3.3 MITIGATION TECHNIQUES
Section 20.3.2 discusses the issue of spectrum sensing from the attacker’s perspective. Now, we discuss
some counter measures used in practice to protect the network from these Byzantines. Byzantines can
be treated as outliers and, therefore, one may use signal processing techniques to mitigate their effects.

A simple and intuitive method to mitigate the effect of Byzantines is to identify them [5]. For
identification purposes, one needs to observe the behavior of CRs’ sequentially over time. We first
discuss some of the schemes proposed in the literature that treat the FC as a watchdog to mitigate the
effect of Byzantines.

1Minimization is performed over attack strategies pB
1 := 1 − P0,1 and qB

1 := P1,0.



20.3 SPECTRUM SENSING IN A PARALLEL CRN 511

FIG. 20.1

The KLD as a function of the fraction of Byzantines [5].

Reputation-based scheme
A simple and effective scheme to identify the Byzantines is by assigning a reputation to each CR based
on the quality of the data they provide [5]. Let us divide the CSS process into time windows consisting
of T sensing periods. Next, define a reputation metric κi for each CR as the number of mismatches in
a time interval T between ith CR’s local decision and the global decision made at the FC using the
majority rule. The reputation metric is given by

κi =
T∑

t=1

I(ui[t]�=u0[t]), (20.8)

where ui[t] is the ith CR’s local decision at time instant t, u0[t] is the global decision made at the FC at
time instant t, and I(S) is the indicator function over the set S. The CRs for which this reputation metric
κi is greater than a predetermined threshold κ are tagged as Byzantines and removed from the fusion
process.

Fig. 20.2 plots the isolation of CRs from information fusion at the FC as a function of the number
of time windows when N = 100, (Pd, Pf ) = (0.8, 0.2). Each time window consists of T = 4 sensing
periods. At α = 0.4, in a span of only four time windows, the proposed scheme isolates all the



512 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

FIG. 20.2

Number of CRs versus number of time windows [5].

Byzantine attackers without cutting off a significant number of honest CRs. However when, α = 0.5,
honest and Byzantine CRs are eliminated with equal probability. Therefore, this scheme works only
when the number of Byzantines in the network is less than 50% of the total number of CRs because the
FC uses the majority rule for fusion. If the Byzantines have a majority in number, the above reputation-
based scheme identifies the honest CRs as outliers and removes them from the network and thereby
worsens the inference performance of the network.

Adaptive learning
An interesting method to improve the performance of the network is to use the information of the
identified Byzantines to the network’s benefit [6]. More specifically, a three-tier adaptive learning
scheme can be used that learns the parameters of the identified Byzantines and uses these learnt
parameters in the Chair-Varshney rule [7] to make the final decision. The three-tier scheme can be
described as follows: (i) identification of Byzantines in the network, (ii) estimation of parameters of the
identified Byzantines at the FC, and (iii) adaptive fusion rule.

The basic idea of the learning-based identification scheme is to compare every CR’s observed
behavior over time with the expected behavior of an honest CR. The CRs whose observed behavior
is too far from the expected behavior are tagged as Byzantines. This scheme works even when the
Byzantines are in the majority (>50%) because it does not use the global decision for identification
purposes. The behavior of every CR is characterized by the probability of sending a “1” to the FC.



20.3 SPECTRUM SENSING IN A PARALLEL CRN 513

This value is a function of the operating point of the CR (Pf , Pd) and the prior probabilities of the
hypotheses, which are assumed to be known at the FC for honest CRs.

At the FC, the expected behavior is estimated for every CR over time by averaging the number of
times a particular decision (0 or 1) is made over a time interval of T instants. These probabilities can
be updated after every time instant. The test statistic �T

i for the ith CR after time T is the deviation
between the expected and observed behavior for every CR. The FC declares a CR as a Byzantine if
�T

i is greater than a particular threshold λ. This threshold λ is determined as the minimum value when
the Byzantine’s operating point is in the region below the Pd = Pf line on the receiver operating
characteristics (ROC).

After identifying the Byzantines, their parameters can be estimated by assuming that all the
Byzantines have the same operating point. This assumption is typically made in the literature because
it is assumed that a single adversary has attacked some of the CRs in the network and reprogrammed
them to behave as Byzantines. Therefore, it can be assumed that all these malicious CRs have the same
operating point on the ROC. These estimated parameters are used in the Chair-Varshney optimal fusion
rule [7] in an adaptive manner to find the global decision. It is important to note that this scheme works
for any fraction of Byzantines in the network but assumes the knowledge of honest CR behavior and
the primary user statistics.

As can be seen from Fig. 20.3, the Byzantines can be exactly detected without any mismatches
when T is between 100 and 150 for both the cases when α = 0.3 and α = 0.7.

0 50 100 150 200 250 300 350 400 450 500

Time

0

1

2

3

4

5

6

7

8

M
is

m
at

ch
es

Mismatches with time

a = 0.3
a = 0.7

FIG. 20.3

Mismatches versus time when N = 20, (PH
d , PH

f ) = (0.9, 0.1) [6].



514 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

20.4 SPECTRUM SENSING IN A PEER-TO-PEER CRN
In the previous sections, the problem of spectrum sensing with corrupted data in a parallel network with
a centralized FC was studied. However, in many scenarios, a centralized FC may not be available or
the FC may become an information bottleneck, potentially leading to CRN failure. In such scenarios, it
may be desirable to employ alternate peer-to-peer local information exchange in order to reach a global
decision. One such decentralized approach for peer-to-peer local information exchange and inference
is the use of a consensus algorithm. This section considers the problem of spectrum sensing in peer-
to-peer CRNs in the presence of data falsification (Byzantine) attacks. Spectrum-sensing approaches
considered in this section are based on fully distributed consensus algorithms where all the CRs
exchange information only with their neighbors in the absence of a FC.

20.4.1 SYSTEM MODEL
Network model
Consider a CRN topology modeled as an undirected graph G = (V , E), where V = {υ1, . . . , υN}
represents the set of CRs in the network with |V| = N. The set of communication links in the network
correspond to the set of edges E, where (υi, υj) ∈ E, if and only if there is a communication link
between υi and υj so that, υi and υj can directly communicate with each other. The adjacency matrix A
of the graph is defined as

aij =
{

1 if (υi, υj) ∈ E,
0 otherwise.

The neighborhood of a CR i is defined as

Ni = {υj ∈ V : (υi, υj) ∈ E}, ∀i ∈ {1, 2, . . . , N}.
The degree di of a CR υi is the number of edges in E which include υi as an endpoint, i.e., di = ∑N

j=1 aij.
The degree matrix D is defined as a diagonal matrix with diag(d1, . . . , dN) and the Laplacian matrix L
is defined as

lij =
{

di if j = i,
−aij otherwise.

In other words, L = D − A.

Decentralized spectrum sensing in peer-to-peer CRNs
The consensus-based spectrum-sensing scheme usually contains three phases: sensing, information
fusion, and decision-making. In the sensing phase, each CR acquires the summary statistic about the
PU. We adopt the energy detection method so that the local summary statistic is the received signal
energy. Next, in the information fusion phase, each CR communicates with its neighbors to update
their state values (summary statistic) and continues with the consensus iteration until the whole CRN
converges to a steady state, which is the global test statistic. Finally, in the decision-making phase, CRs
make their own decisions about the presence of the PU using this global test statistic. In the following,
each of these phases is described in more detail.



20.4 SPECTRUM SENSING IN A PEER-TO-PEER CRN 515

20.4.2 SENSING PHASE
Consider a CRN with N CRs using the energy detection scheme [8]. For the ith CR, the sensed signal
zt

i at time instant t is given by

zt
i =

{
nt

i, under H0,
ζist + nt

i, under H1,

where ζi is the deterministic gain corresponding to the sensing channel, st is the deterministic signal
at time instant t, nt

i is AWGN, i.e., nt
i ∼ N (0, σ 2

i ) (where N denotes the normal distribution) and
independent across time. Each CR i calculates a summary statistic Yi over a spectrum sensing interval
of M samples, as

Yi =
M∑

t=1

|zt
i|2,

where M is determined by the time-bandwidth product [8]. Because Yi is the sum of the squares of
M i.i.d. Gaussian random variables, it can be shown that Yi

σ 2
i

follows a central chi-square distribution

with M degrees of freedom (χ2
M) under H0, and, a noncentral chi-square distribution with M degrees of

freedom and parameter ηi under H1, i.e.,

Yi

σ 2
i

∼
{

χ2
M , under H0,

χ2
M(ηi), under H1,

where ηi = Es|ζi|2/σ 2
i is the local SNR at the ith CR and Es = ∑M

t=1 |st|2 represents the sensed signal
energy over M spectrum sensing instants. Note that the local SNR is M times the average SNR at the

output of the energy detector, which is Es|ζi|2
Mσ 2

i
.

20.4.3 INFORMATION FUSION PHASE
In this section, we give a brief introduction to conventional consensus algorithms [9] and explain how
consensus is reached using the following two steps.

Step 1: All CRs establish communication links with their neighbors and broadcast their
information state regarding the PU, xi(0) = Yi.
Step 2: Each CR updates its local state information by a local fusion rule (weighted combination of
its own value and those received from its neighbors) [9]. Let us denote ith CR’s updated
information at iteration k by xi(k). This CR continues to broadcast information xi(k) and update its
local information state until consensus is reached. This process of updating information state can
be written in a compact form as

xi(k + 1) = xi(k) + ε

wi

∑
j∈Ni

(xj(k) − xi(k)), (20.9)



516 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

where ε is the time step and wi is the weight given to CR i’s information. Using the notation
x(k) = [x1(k), . . . , xN(k)]T , network dynamics can be represented in the matrix form as,

x(k + 1) = Wx(k),

where W = I − ε diag(1/w1, . . . , 1/wN)L is referred to as a Perron matrix. The consensus
algorithm is nothing but a local fusion or update rule that fuses the CRs’ local information state
with information coming from neighbor CRs, and it is well known that every CR asymptotically
reaches the same information state for arbitrary initial values [9].

20.4.4 DECISION MAKING PHASE
The final information state x∗ after reaching consensus for the above consensus algorithm will be the
weighted average of the initial states of all the CRs [9] or x∗ = ∑N

i=1 wiYi/
∑N

i=1 wi, ∀i. Average
consensus can be seen as a special case of weighted average consensus with wi = w, ∀i. After the
whole network reaches a consensus, each CR makes its own decision about the presence (or absence)
of the PU using a predefined threshold λ,

Decision =
{

H1 if x∗ > λ,
H0 otherwise,

where weights are given by [10]

wi = ηi/σ
2
i∑N

i=1 ηi/σ
2
i

. (20.10)

Let us refer to � = ∑N
i=1 wiYi/

∑N
i=1 wi as the final test statistic.

Next, we look into Byzantine attacks on consensus-based spectrum-sensing schemes and discuss
the performance degradation of the weighted average consensus-based spectrum-sensing algorithms
due to these attacks.

Byzantine attack model
In data falsification attacks, attackers try to manipulate the final test statistic (i.e., � =∑N

i=1 wiYi/
∑N

i=1 wi) in a manner so as to degrade the spectrum-sensing performance. By falsifying
initial values Yi or weights wi, the attackers can manipulate the final test statistic. Spectrum-sensing
performance will be degraded because Byzantine CRs can always set a higher weight to their
manipulated information. Thus, the final statistic’s value across the whole network will be dominated
by the Byzantine CRs’ local statistic that will lead to degraded spectrum-sensing performance.

Byzantine CRs tamper with their initial values Yi and send Ỹi such that the spectrum-sensing
performance is degraded.

Under H0:

Ỹi =
{

Yi + �i with probability Pi
Yi with probability (1 − Pi)



20.4 SPECTRUM SENSING IN A PEER-TO-PEER CRN 517

Under H1:

Ỹi =
{

Yi − �i with probability Pi
Yi with probability (1 − Pi)

where Pi is the attack probability and �i ≥ 0 is a constant value that represents the attack strength,
which is zero for honest CRs. As we show later, Byzantine CRs will use a large value of �i so that
the final statistic’s value is dominated by the Byzantine CR’s local statistic, leading to a degraded
spectrum-sensing performance.

20.4.5 FUNDAMENTAL LIMIT
The objective of Byzantine CRs is to degrade the spectrum-sensing performance of the network by
falsifying their data (Yi, wi). To analyze the worst case spectrum-sensing performance, let us assume
that Byzantines have an advantage and know the true hypothesis. Consider the case when weights of
the Byzantines have been tampered by setting their value at w̃i and look at the effect of falsifying the
initial values Yi. One can use the deflection coefficient [11] to characterize the security performance
of the detection scheme due to its simplicity and its strong relationship with the global detection

performance. Deflection coefficient of the global test statistic is defined as: D(�) = (μ1 − μ0)2

σ 2
(0)

, where

μk = E[�|Hk], k = 0, 1, is the conditional mean and σ 2
(k) = E[(� − μk)2|Hk], k = 0, 1, is the

conditional variance. Let us define the critical point of the distributed detection network as the minimum
fraction of Byzantine CRs needed to make the deflection coefficient of the global test statistic equal to
zero. In this case, we say that the network becomes blind and denote it by αblind. We assume that
the communication between CRs is error-free and our network topology is fixed during the whole
consensus process and, therefore, consensus can be reached without disruption [9].

Without loss of generality, assume that the CRs corresponding to the first N1 indices i = 1, . . . , N1
are Byzantines and the remaining CRs corresponding to indices i = N1 + 1, . . . , N are honest CRs. Let
us define w = [w̃1, . . . , w̃N1 , wN1+1, . . . , wN]T and

∑
w = ∑N1

i=1 w̃i + ∑N
i=N1+1 wi.

BOX 20.3 Critical Power
Lemma 20.3 ([12]). For data fusion schemes in this consensus-based system, the condition to blind the CRN or
equivalently to make the deflection coefficient zero is given by

N1∑
i=1

w̃i(2Pi�i − ηiσ
2
i ) =

N∑
i=N1+1

wiηiσ
2
i .

Note that, when wi = w̃i = z, ηi = η, σi = σ , Pi = P, �i = �, ∀i, the blinding condition simplifies

to
N1

N
= 1

2

ησ 2

P�
(Fig. 20.4).

Consider a network with four honest CRs and two Byzantine CRs. Sensing channel gains of the
CRs are assumed to be h = [0.8, 0.7, 0.72, 0.61, 0.69, 0.9] and weights are given by Eq. (20.10). We



518 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

0
0.25

0.50
0.75

1 0
5

10
150

1

2

3

4

5

6

Attack strength ‘D ’Attack probability ‘P ’

D
ef

le
ct

io
n 

co
ef

fic
ie

nt

FIG. 20.4

Deflection coefficient as a function of attack parameters [12].

also assume that M = 12, Es = 5, and σ 2
i = 1, ∀i. Notice that the deflection coefficient is zero when

the condition in Lemma 20.3 is satisfied. Another observation to make is that the deflection coefficient
can be made zero even when only two out of six CRs are Byzantines. Thus, by appropriately choosing
attack parameters (P, �), less than 50% of data-falsifying Byzantines can blind the network.

One approach to mitigate the effect of sensing data falsification is to assign weights based on the
quality of the data. In other words, a lower weight can be given to the data of the CR identified as
a Byzantine. However, to implement this approach in peer-to-peer networks, one has to address the
following two issues.

First, in the conventional weighted average consensus algorithm, weight wi given to CR i’s data
is controlled or updated by the CR itself. Thus, a Byzantine CR can always set a higher weight to its
manipulated information and the final statistics will be dominated by the Byzantine CRs’ local statistic
that will lead to degraded detection performance. Therefore, conventional consensus algorithms cannot
be used in the presence of an attacker.

Second, as will be seen later, the optimal weights given to CRs’ sensing data depend on the
following unknown parameters: identity of the CRs, which indicates whether the CR is honest or
Byzantine, and the underlying statistical distribution of the CRs’ data.

In the next section, we discuss a learning-based robust weighted average consensus algorithm that
addresses these concerns [12].



20.4 SPECTRUM SENSING IN A PEER-TO-PEER CRN 519

20.4.6 MITIGATION TECHNIQUE
To address the first issue discussed in the previous section, which is the optimal weight design, one
can employ a consensus algorithm in which the weight for the ith CR’s information is controlled (or
updated) by the neighbors of the ith CR rather than by the ith CR itself. Note that networks deploying
such an algorithm are more robust to weight manipulation because if a Byzantine CR j wants to assign
an incorrect weight to the data of its neighbor i in the global test statistic, it has to ensure that all the
neighbors of CR i put the same incorrect weight as CR j.

BOX 20.4 Robust Consensus Algorithm

Consider a modified Perron matrix Ŵ = I − ε(T ⊗ L) where L is the original graph Laplacian, ⊗ is the element-wise
matrix multiplication operator, and T is a transformation given by [12]

[T]ij =

⎧⎪⎨
⎪⎩

∑
j∈Ni

wj

lii
if i = j,

wj otherwise.

Observe that the above transformation T satisfies the condition that weights are controlled (or updated) by neighbors Ni of
CR i rather than by CR i itself.
Based on the above transformation T , the robust distributed consensus algorithm can be written as the following:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

wj(xj(k) − xi(k)). (20.11)

Consider a network with six CRs where the CRs employ the robust algorithm as given in Eq. (20.11)
(with ε = 0.3) to reach a consensus. Fig. 20.5 shows the updated state values at each CR as a function
of consensus iterations. Assume that the initial data vector is x(0) = [5, 2, 7, 9, 8, 1]T and the weight
vector is w = [0.65, 0.55, 0.48, 0.95, 0.93, 0.90]T . Fig. 20.5 shows the convergence of the proposed
algorithm iterations. It is observed that within 20 iterations, consensus has been reached on the global
decision statistics, the weighted average of the initial values (states).

Next, to address the second issue discussed in the previous section, one can exploit the statistical
distribution of the sensing data and devise techniques to mitigate the influence of Byzantines on the
spectrum-sensing system. A three-tier mitigation scheme can be devised where the following three
steps are performed at each CR: (1) identification of Byzantine neighbors, (2) estimation of parameters
of identified Byzantine neighbors, and (3) adaptation of consensus algorithm (or update weights) using
estimated parameters.

The optimal weights for the honest/Byzantine CRs, assuming that the identities of the CRs are
known, are given in Lemma 20.4.



520 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

Iteration steps

S
ta

te
 v

al
ue

 

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

FIG. 20.5

Convergence of the network with six CRs (ε = 0.3) [12].

BOX 20.5 Optimal Weights
Lemma 20.4 ([12]). Optimal weights which maximize the deflection coefficient of the global test statistic,

� =
∑N1

i=1 wB
i Ỹi+

∑N
i=N1+1 wH

i Yi∑
w where

∑
w = ∑N1

i=1 wB
i + ∑N

i=N1+1 wH
i , are given by

wB
i = (ηiσ

2
i − 2Pi�i)

�2
i Pi(1 − Pi) + 2Mσ 4

i

, and wH
i = ηi

2Mσ 2
i

.

Assume that M = 12, ηi = 3, σ 2
i = 0.5 and the attack parameters are (Pi, �i) = (0.5, 9).

Fig. 20.6 compares the weighted average consensus-based spectrum-sensing scheme with the equal
gain combining scheme2 and the scheme where Byzantines are excluded from the fusion process. It
can be clearly seen from the figure that our weighted average consensus scheme performs better than
the rest of the schemes.

Notice that the optimal weights for the Byzantines are functions of the attack parameters (Pi, �i),
which may not be known to the neighboring CRs in practice. In addition, the parameters of the honest
CRs might also not be known. In such cases, techniques based on the expectation maximization (EM)
algorithm and maximum likelihood (ML) estimation can be employed to learn the operating parameters
(or weights) of the CRs in the network to enable an adaptive design of the local fusion or update rules
that are updated after each learning iteration [12].

2In equal gain combining scheme, all the CRs (including Byzantines) are given the same weight.



20.5 CONCLUSION AND OPEN ISSUES 521

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of false alarm

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

 

 

Proposed approach

Equal gain combining 

Cuttoff combining

FIG. 20.6

ROC for different protection approaches [12].

20.5 CONCLUSION AND OPEN ISSUES
This chapter discussed the problem of Byzantine attack and defense for CSS in CRNs. To begin, we
discussed the vulnerability of CSS to Byzantine attacks in a parallel topology, characterized the critical
power analytically, and obtained closed-form expression for an optimal attack. We next discussed
two mitigation schemes, (1) reputation-based mitigation, and (2) adaptive learning-based mitigation of
Byzantines. It was found that adaptive learning-based mitigation techniques are more robust to SSDF
attacks. Next, we considered a scenario where a centralized FC was not available and the CRN was
implemented in a peer-to-peer fashion. In such scenarios, when the Byzantine attackers in the network
are above a certain fraction, existing consensus-based spectrum-sensing algorithms are ineffective.
We discussed a robust distributed weighted average consensus algorithm and a learning technique to
estimate the operating parameters (or weights) of the CRs. This enables an adaptive design of the local
fusion or update rules to mitigate the effect of data falsification attacks. In a nutshell, the Byzantine
attack in CSS is one adversarial action that disrupts the proper functioning of CRNs. More efforts are
needed to tackle the unsolved research challenges on Byzantine attacks and defense in CRNs. There
are many interesting questions that remain to be explored in the future work such as more sophisticated
design across multiple layers of the networking protocol stack, advanced distributed inference at the
physical layer, sophisticated network coding schemes for large networks, a variety of cryptographic
techniques for different applications, and development of complex Byzantine misbehavior models and
methods to detect and mitigate such Byzantines. We envision that the topic of Byzantine attack and
defense will remain a fruitful research area in the coming years.



522 CHAPTER 20 SENSING IN THE PRESENCE OF BYZANTINE ATTACKS

ACKNOWLEDGMENT
This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. LLNL-MI-738647.

REFERENCES
[1] Kolodzy P, Avoidance I. Spectrum policy task force. Federal Commun Comm, Washington, DC, Report ET

Docket No. 02,135; Nov. 2002.
[2] Biglieri E. Principles of cognitive radio. Cambridge University Press; 2013.
[3] Lamport L, Shostak R, Pease M. The Byzantine generals problem. ACM Trans Program Lang Syst

1982;4(3):382–401. https://doi.org/10.1145/357172.357176.
[4] Rappaport T. Wireless communications: principles and practice. Prentice Hall; 1996. ISBN 0133755363.
[5] Rawat AS, Anand P, Chen H, Varshney PK. Collaborative spectrum sensing in the presence of Byzantine

attacks in cognitive radio networks. IEEE Trans Signal Process 2011;59(2):774–86. https://doi.org/10.1109/
TSP.2010.2091277.

[6] Vempaty A, Agrawal K, Varshney P, Chen H. Adaptive learning of Byzantines’ behavior in cooperative
spectrum sensing. In: 2011 IEEE wireless communications and networking conference; 2011. p. 1310–5.
https://doi.org/10.1109/WCNC.2011.5779320.

[7] Chair Z, Varshney P. Optimal data fusion in multiple sensor detection systems. IEEE Trans Aerosp Electron
Syst 1986(1):98–101.

[8] Digham FF, Alouini MS, Simon MK. On the energy detection of unknown signals over fading channels. IEEE
Trans Commun 2007;55(1):21–4.

[9] Olfati-Saber R, Fax JA, Murray RM. Consensus and cooperation in networked multi-agent systems. Proc
IEEE 2007;95(1):215–33.

[10] Zhang W, Wang Z, Guo Y, Liu H, Chen Y, Mitola III J. Distributed cooperative spectrum sensing based on
weighted average consensus. In: 2011 IEEE global telecommunications conference (GLOBECOM 2011).
IEEE; 2011. p. 1–6.

[11] Kay SM. Fundamentals of statistical signal processing. Prentice Hall PTR; 1993.
[12] Kailkhura B, Brahma S, Varshney PK. Data falsification attacks on consensus-based detection systems. IEEE

Trans Signal Inf Process Netw 2017;3(1):145–58.

http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00020-1/rf0065


CHAPTER

21DYNAMICS OF INFORMATION
DIFFUSION AND SOCIAL
SENSING

Vikram Krishnamurthy∗, William Hoiles†

School of Electrical and Computer Engineering, Cornell Tech, Cornell University, New York, NY, United States∗

Biosymetrics, New York, NY, United States†

21.1 INTRODUCTION AND MOTIVATION
Humans can be viewed as social sensors that interact over a social network to provide information
about their environment. Examples of information produced by such social sensors include Twitter
posts, Facebook status updates, and ratings on online reputation systems such as Yelp and Tripadvisor.
Social sensors go beyond physical sensors, for example, user opinions/ratings (such as the quality of
a restaurant) are available on Tripadvisor but are difficult to measure via physical sensors. Similarly,
future situations revealed by the Facebook status of a user are impossible to predict using physical
sensors [1].

Statistical inference using social sensors is an area that has witnessed remarkable progress in the
last decade. It is relevant in a variety of applications, including localizing special events for targeted
advertising [2,3], marketing [4,5], localization of natural disasters [6], and predicting the sentiment of
investors in financial markets [7,8]. For example, Asur and Huberman [9] report that models built from
the rate of tweets for particular products can outperform market-based predictors.

21.1.1 CONTEXT: WHY SOCIAL SENSORS?
Social sensors present unique challenges from a statistical estimation point of view. First, social
sensors interact with and influence other social sensors. For example, ratings posted on online
reputation systems strongly influence the behavior of individuals.1 Such interactive sensing can result in
nonstandard information patterns due to correlations introduced by the structure of the underlying social
network. Thus certain events “go viral” [5,12]. Second, due to privacy concerns and time constraints,
social sensors typically do not reveal raw observations of the underlying state of nature. Instead, they
reveal their decisions (ratings, recommendations, votes), which can be viewed as a low-resolution

1It is reported in [10] that 81% of hotel managers regularly check Tripadvisor reviews. Luca [11] reports that a one-star
increase in the Yelp rating maps to a 5%–9% revenue increase.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00021-3
Copyright © 2018 Elsevier Inc. All rights reserved.

525



526 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

(quantized) function of their raw measurements and interactions with other social sensors. This can
result in misinformation propagation, herding, and information cascades. Third, the response of a social
sensor may not be consistent with that of a utility maximizer; social sensors are typically risk-averse.

Social sensors are enabled by technological networks. Indeed, social media sites that support
interpersonal communication and collaboration using Internet-based social network platforms are
growing rapidly. McKinsey estimates that the economic impact of social media on business is
potentially greater than $1 trillion because social media facilitates efficient communication and
collaboration within and across organizations.

21.1.2 MAIN RESULTS AND ORGANIZATION
There is strong motivation to construct models that facilitate understanding the dynamics of information
flow in social networks. This chapter presents a tutorial description of four important aspects of sensing-
based information diffusion in social networks from a signal processing perspective.

Information diffusion in large-scale social networks
The first topic considered in this chapter (Section 21.2) is diffusion of information in social networks
comprised of a population of interacting social sensors. The states of sensors evolve over time as a
probabilistic function of the states of their neighbors and an underlying target process. Several recent
papers investigate such information diffusion in real-world social networks. Motivated by marketing
applications, Sun et al. [13] studies diffusion (contagion) behavior in Facebook. Using data from
260,000 Facebook pages (which advertise products, services, and celebrities), Sun et al. [13] analyzes
information diffusion. In [14], the spread of hashtags on Twitter is studied. There is a wide range
of social phenomena such as diffusion of technological innovations, sentiment, cultural fads, and
economic conventions [15,16] where individual decisions are influenced by the decisions of others.

We consider the so called susceptible-infected-susceptible (SIS) model [17] for information
diffusion in a social network. It is shown for social networks comprised of a large number of agents
how the dynamics of degree distribution can be approximated by the mean field dynamics. Mean field
dynamics have been studied in [18] and applied to social networks in [16] and lead to a tractable model
for the dynamic social sensors.

We demonstrate using influenza datasets from the U.S. Centers for Disease Control and Prevention
(CDC) how Twitter can be used as a real-time social sensor for tracking the spread of influenza. That
is, a health network (namely, the Influenza-like Illness Surveillance Network (ILInet)) is sensed by a
real-time microblogging social media network (namely, Twitter).

We also review two recent methods for sampling social networks, namely, social sampling and
respondent-driven sampling. Respondent-driven sampling is now used by the U.S. Centers for Disease
Control and Prevention (CDC) as part of the National HIV Behavioral Surveillance System in health
networks.

Bayesian social learning in online reputation systems
The second topic of this chapter (Section 21.3) considers online reputation systems where individuals
make recommendations based on their private observations and recommendations of friends. Such
interaction of individuals and their social influence is modeled as Bayesian social learning [15,19,20]
on a directed acyclic graph. We consider two important classes of such problems; risk-averse social



21.1 INTRODUCTION AND MOTIVATION 527

learning in financial systems and data incest in reputation systems. The risk-averse social learning
and associated quickest change detection is important in detecting market shocks in high-frequency
trading. Data incest (misinformation propagation) arises as a result of correlations in recommendations
due to the intersection of multiple paths in the information exchange graph. Necessary and sufficient
conditions are given on the structure of information exchange graphs to mitigate data incest.
Experimental results on human subjects are presented to illustrate the effect of social influence and
data incest on decision making.

The setup differs from classical signal processing where sensors use noisy observations to compute
estimates—in social learning, agents use noisy observations together with decisions made by previous
agents to estimate the underlying state of nature. Social learning has been used widely in economics,
marketing, political science, and sociology to model the behavior of financial markets, crowds, social
groups, and social networks; see [15,19–23] and numerous references therein. Related models have
been studied in the context of sequential decision-making in information theory [24,25] and statistical
signal processing [26,27] in the electrical engineering literature. Social learning can result in unusual
behavior such as herding [20], where agents eventually choose the same action irrespective of their
private observations. As a result, the actions contain no information about the private observations and
so the Bayesian estimate of the underlying random variable freezes. Such behavior can be undesirable,
particularly if individuals herd and make incorrect decisions.

Revealed preferences and detection of utility maximizers
The third topic considered in this chapter (Section 21.4) is the principle of revealed preferences arising
in microeconomics. It is used as a constructive test to determine: Are social sensors utility optimizers
in their response to external influence? The key question considered is as follows: Given a time-series
of data D = {(pt, xt), t ∈ {1, 2, . . . , T}} where pt ∈ Rm denotes the external influence and xt denotes the
response of an agent, is it possible to detect whether the agent is a utility maximizer?

These issues are fundamentally different to the model-centric theme used in the signal processing
literature, where one postulates an objective function (typically convex) and then proposes optimization
algorithms. In contrast the revealed preference approach is data centric—given a dataset, we wish to
determine if is consistent with utility maximization.

We present a remarkable result called Afriat’s theorem [28,29], which provides a necessary and
sufficient condition for a finite dataset D to have originated from a utility maximizer. Also a multiagent
version of Afriat’s theorem is presented to determine if the dataset generated by multiple agents is
consistent with playing from the equilibrium of a potential game.

Unlike model-centric applications of game theory in signal processing, the revealed preferences
approach is data-centric: (1) Given a time series dataset of probe and response signals, how can one
detect whether the response signals are consistent with a Nash equilibrium generated by players in a
concave potential game? (2) If consistent with a concave potential game, how can the utility function
of the players be estimated?

We present three datasets involving social sensors to illustrate Afriat’s theorem of revealed
preferences. These datasets are: (i) an auction conducted by undergraduate students at Princeton
University, (ii) aggregate power consumption in the electricity market of Ontario, and (iii) a Twitter
dataset for specific hashtags.

Varian has written several influential papers on Afriat’s theorem in the economics literature. These
include measuring the welfare effect of price discrimination [30], analyzing the relationship between



528 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

prices of broadband Internet access and time-of-use service [31], and ad auctions for advertisement
position placement on page search results from Google [31,32]. Despite widespread use in economics,
surprisingly, revealed preference theory is relatively unknown in the electrical engineering literature.

Social interaction of YouTube consumers
The fourth topic considered in this chapter (Section 21.5) is the engagement dynamics of social sensors
to online video content. Specifically, we consider how users interact with video content created on
the YouTube social network. YouTube is the largest user-driven video content provider in the world
and has become a major platform for disseminating multimedia information. YouTube contains more
than 1 billion users who collectively watch millions of hours of YouTube videos and generate billions
of views every day (e.g., 150 years of video are watched every day). Additionally, users upload
more than 300 hours of video content every minute. YouTube generates billions in revenue through
advertising and also shares the revenue with the popular users that upload videos through the Partner
program. YouTube is clearly a social media site; however, is YouTube also a social networking site? In
classical online social networks the interaction is directly between users—that is, user-user interactions.
However, YouTube is unique in that the interaction between users includes video content—that is,
the interaction follows users-content-users. In fact the interaction between users is incentivized using
the posted videos. In this way it is not merely the interest preferences between users that promote
user-user interaction, but also the content of the videos that governs the social interactions between
users.

Using real-world data consisting of more than 6 million videos spread over 25 thousand channels,
we empirically examine the sensitivity of YouTube metalevel features on the engagement dynamics of
users in YouTube. Insight into the dynamics of social sensors in YouTube can be used to predict how
users will interact with posted video content. These results are important for designing methods for
optimizing user engagement and for improving the efficiency of content distribution networks [33–35].
Estimating the popularity of YouTube videos based on metalevel features is a challenging problem
given the diversity of users and content providers. Time-series methods for modeling the YouTube
engagement dynamics of videos over time include ARMA time series models [36], multivariate linear
regression models [37], and Gompertz models [38,39]. These methods do not utilize any of the
metalevel features of the YouTube video to estimate the user engagement dynamics. In [40] a bag-of-
words Bernoulli Naive Bayes classifier is applied to perform a binary classification (popular/unpopular)
of YouTube videos based on the title alone. The classifier was able to achieve a classification accuracy
of 66%. In [33] visual perception and extreme learning machines were applied to the metalevel features
of videos and found to be able to accurately estimate the (popular/unpopular) videos with an accuracy
of 80%. It was determined that the main metalevel features that impact video engagement include first
day view count, number of subscribers, and contrast of the video thumbnail.

The above methods focus on how to estimate user engagement to specific videos; however, they do
not consider the social learning dynamics that are present between users and channel owners. The key
topics focused on in Section 21.5 are: (i) how user engagement is affected by changes in the metalevel
(title, thumbnail, tag) features of the videos, (ii) the causal relationship between channel subscribers
and user engagement, (iii) the engagement dynamics of videos over time with exogenous social media
events, and (iv) the engagement of users to videos in a channel’s video playlist. The insight provided



21.1 INTRODUCTION AND MOTIVATION 529

can be used by channel owners to design policies for maximizing user engagement by adjusting video
metalevel features, promoting on external social media venues, and periodically adjusting the uploading
schedule of videos.

21.1.3 PERSPECTIVE
The unifying theme that underpins the four topics in this chapter stems from statistical signal processing
and controlled sensing. These are used to predict global behavior given local behavior: individual social
sensors interact with other sensors and we are interested in understanding the behavior of the entire
network. Information diffusion, social learning, and revealed preferences are important issues for social
sensors. We treat these issues in a highly stylized manner so as to provide easy accessibility to a signal
processing audience. The underlying tools used in this chapter are widely used in signal processing,
economics, and network science.

Let us briefly discuss how the four themes of this chapter interact; these four themes are depicted
in Fig. 21.1.

The network diffusion models are non-Bayesian and describe the behavior of large numbers of
social sensors. The mean field dynamics model for the diffusion of information has the form of
an averaged stochastic approximation algorithm (which is widely used in adaptive filtering). Note,
however, that the stochastic approximation-type equation is a generative model, and not an algorithm.

The Bayesian social learning models in contrast describe highly stylized individual behavior of
social sensors. At this level, it is important to model risk-averse human decision-making and the
Bayesian social learning model serves as a useful generative model.

Underpinning both the network diffusion and Bayesian social learning model, are utility (cost)
functions that the social sensors optimize in order to make decisions. The natural question is: Given
real world data, is the behavior of agents consistent with optimizing a utility function? If yes, can the
utility function be estimated? Revealed preferences yield a useful set of algorithms that can answer
both these questions. More generally, it can be used to detect play from the Nash equilibrium of a
potential game. Put simply, revealed preferences provide the data-driven justification for the utility
function models.

Finally, detailed analysis of the YouTube data provides for an interesting real-world study of how
social sensors interact. It is important to note that while YouTube is clearly a social media site, it
is also a social networking site. Classical online social networks (OSNs) are dominated by user-user

Network dif-
fusion models

User interaction
in YouTube

Bayesian social
learning models

Revealed
preferences

FIG. 21.1

Four themes considered in this chapter.



530 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

interactions. However YouTube is unique in that the interaction between users includes video content,
that is, the interaction follows users-content-users. The interaction between users in the YouTube social
network is incentivized using the posted videos. In addition to the social incentives, YouTube also gives
monetary incentives to promote users increasing their popularity. As more users view and interact with
a user’s video or channel, YouTube will pay the user proportional to the advertisement exposure on the
users channel. Therefore, users not only maximize exposure to increase their social popularity, but also
for monetary gain, which introduces unique dynamics in the formation of edges in the YouTube social
network.

Books and tutorials
The literature in social learning, information diffusion, and revealed preferences is extensive. In each of
the following sections, we provide a brief review of relevant works. Seminal books on social networks,
social learning, and network science include [15,41–43]. There is a growing literature dealing with
the interplay of technological and social networks [44]. Social networks overlaid on technological
networks account for a significant fraction of Internet use. As discussed in [44], three key aspects
that cut across social and technological networks are the emergence of global coordination through
local actions, resource sharing models, and the wisdom of crowds. These themes are addressed in the
current chapter in the context of social learning, diffusion, and revealed preferences. Other tutorials
include [45,46].

21.2 INFORMATION DIFFUSION IN LARGE SCALE SOCIAL NETWORKS
This section addresses the first topic of the chapter, namely, information diffusion models and their
mean field dynamics in social networks. The setting is as follows: The states of individual nodes in
the social network evolve over time as a probabilistic function of the states of their neighbors and an
underlying target process (state of nature). The underlying target process can be viewed as the market
conditions or competing technologies that evolve with time and affect the information diffusion. The
nodes in the social network are sampled randomly to determine their state. As the adoption of the new
technology diffuses through the network, its effect is observed via sentiments (such as tweets) of these
selected members of the population. These selected nodes act as social sensors. In signal processing
terms, the underlying target process can be viewed as a signal, and the social network can be viewed
as a sensor. The key difference compared to classical sensing is that the sensor now is a social network
with diffusion dynamics and noisy measurements (due to sampling nodes).

As described in Section 21.1, a wide range of social phenomena such as diffusion of technological
innovations, cultural fads, ideas, behaviors, trends, and economic conventions [15,47–49] can be
modeled by diffusion in social networks. Another important application is sentiment analysis (opinion
mining) where the spread of opinions among people is monitored via social media.

Motivated by the above setting, this section proceeds as follows:

1. We describe the SIS model for diffusion of information in social networks, which has been
extensively studied in [16,17,41,42,50].

2. Next, it is shown how the dynamics of the infected degree distribution of the social network can be
approximated by the mean field dynamics. The mean field dynamics state that as the number of



21.2 INFORMATION DIFFUSION IN LARGE SCALE SOCIAL NETWORKS 531

agents in the social network goes to infinity, the dynamics of the infected degree distribution
converge to that of an ordinary differential (or difference) equation. Such averaging theory results
are widely used to analyze adaptive filters. For social networks, they yield a useful tractable model
for the diffusion dynamics.

3. We illustrate the diffusion model by using data sets from three related social networks to track the
spread of influenza during the period September 1 to December 31, 2009. The friendship network
of 744 undergraduate students at Harvard is used together with the outpatient Influenza-like Illness
Surveillance Network (ILInet) to monitor the spread of influenza. Then it is shown that Twitter
posts related to influenza during this period are correlated with the spread of influenza. Thus in this
example, influenza diffuses in a human health network (Harvard friendship network at a local level
and ILInet at a global level) and Twitter is used as a social sensor to monitor the spread of
influenza.

4. Finally, this section also describes how social networks can be sampled. We review two recent
methods for sampling social networks, namely, social sampling and respondent-driven sampling,
the latter being used in health networks.

The aim is to estimate the underlying target state that is being sensed by the social network and
also the state probabilities of the nodes by sampling measurements at nodes in the social network.
In a Bayesian estimation context, this is equivalent to a filtering problem involving estimation of the
state of a prohibitively large-scale Markov chain in noise. The mean field dynamics yield a tractable
approximation with provable bounds for the information diffusion. Such mean field dynamics have
been studied in [18] and applied to social networks in [16,41,50]. For an excellent recent exposition of
interacting particle systems comprising agents, each with a finite state space, see [51], where the more
apt term “Finite Markov Information Exchange (FMIE) process” is used (Fig. 21.2).

Regarding real datasets, in addition to the case study presented below, for other examples of
diffusion datasets and their analysis see [13,14]. A repository of social network datasets can be obtained
at [52].

21.2.1 SOCIAL NETWORK MODEL
A social network is modeled as a graph with N vertices:

G = (V , E), where V = {1, 2, . . . , N}, and E ⊆ V × V . (21.1)

Here, V denotes the finite set of vertices, and E denotes the set of edges. In social networks, it is
customary to use the terminology network, nodes, and links for graph, vertices, and edges, respectively.

We use the notation (m, n) to refer to a link between node m and n. The network may be undirected in
which case (m, n) ∈ E implies (n, m) ∈ E. In undirected graphs, to simplify notation, we use the notation
m, n to denote the undirected link between node n and m. If the graph is directed, then (m, n) ∈ E does
not imply that (n, m) ∈ E. We will assume that self loops (reflexive links) of the form i, i are excluded
from E.

An important parameter of a social network G = (V , E) is the connectivity of its nodes. Let N (m)

and D(m) denote the neighborhood set and degree (or connectivity) of a node m ∈ V , respectively. That
is, with | · | denoting cardinality,



532 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

Influenza health network

Twitter (social sensor)

# 
tw

ee
ts

 t
k

Days

Infected  nodes

Susceptible-infected-susceptible
diffusion model

Time-series model for tweets

Number of  infected nodes

(A) (B)

FIG. 21.2

The dynamics of a health network are modeled using the SIS model and linear and nonlinear autoregressive
with exogenous input time series models, refer to Section 21.2 for details. (A) Dynamics of health network
impact the # of tweets. (B) Model for the number of tweets resulting from the influenza health network.

N (m) = {n ∈ V : m, n ∈ E}, D(m) =
∣∣N (m)∣∣. (21.2)

For convenience, we assume that the maximum degree of the network is uniformly bounded by some
fixed integer D̄.

Let N(d) denote the number of nodes with degree d, and let the degree distribution P(d) specify the
fraction of nodes with degree d. That is, for d = 0, 1, . . . , D̄,

N(d) =
∑
m∈V

I
{

D(m) = d
}

, P(d) = N(d)
N

.

Here, I {·} denotes the indicator function. Note that
∑

d P(d) = 1. The degree distribution can be viewed
as the probability that a node selected randomly with uniform distribution on V has a connectivity d.

Random graphs generated to have a degree distribution P that is Poisson were formulated by
Erdös and Rényi [53]. Several recent works show that large-scale social networks are characterized by
connectivity distributions that are different to Poisson distributions. For example, the world wide web
has a power law connectivity distribution P(d) ∝ d−γ , where γ ranges between 2 and 3. Such scale-
free networks are studied in [54]. In the rest of this chapter, we assume that the degree distribution of
the social network is arbitrary but known—allowing arbitrary degree distribution facilities modeling
complex networks.



21.2 INFORMATION DIFFUSION IN LARGE SCALE SOCIAL NETWORKS 533

Let k = 0, 1, . . . denote discrete time. Assume the target process s is a finite state Markov chain
with transition probability

Ass′ = P
(
sk+1 = s′|sk = s

)
. (21.3)

In the example of technology diffusion, the target process can denote the availability of competition or
market forces that determine whether a node adopts the technology. In the model below, the target state
will affect the probability that an agent adopts the new technology.

21.2.2 SIS DIFFUSION MODEL FOR INFORMATION IN SOCIAL NETWORKS
The model we present below for the diffusion of information in the social network is called the SIS
model [17,41]. The diffusion of information is modeled by the time evolution of the state of individual
nodes in the network. Let x(m)

k ∈ {0, 1} denote the state at time k of each node m in the social network.

Here, x(m)
k = 0 if the agent at time k is susceptible and x(m)

k = 1 if the agent is infected. At time k, the
state vector of the N nodes is

xk =
[
x(1)

k , . . . , x(N)
k

]′ ∈ {0, 1}N . (21.4)

Assume that the process x evolves as a discrete time Markov process with transition law depending
on the target state s. If node m has degree D(m) = d, then the probability of node m switching from state
i to j is

P

(
x(m)

k+1 = j|x(m)
k = i, x(i−)

k , sk = s
)

= pij(d, A(m)
k , s), i, j ∈ {0, 1}. (21.5)

Here, A(m)
k denotes the number of infected neighbors of node m at time k. That is,

A(m)
k =

∑
n∈N(m)

I
{

n : x(m)
k = 1

}
. (21.6)

In other words, the transition probability of an agent depends on its degree distribution and the number
of active neighbors.

With the above probabilistic model, we are interested in modeling the evolution of infected agents
over time. Let ρk(d) denote the fraction of infected nodes at each time k with degree d. We call ρ the
infected node distribution. So with d = 0, 1, . . . , D̄,

ρk(d) = 1

N(d)

∑
m∈V

I
{

D(m) = d, x(m)
k = 1

}
. (21.7)

The SIS model assumes that the infection spreads according to the following dynamics:

1. At each time instant k, a single agent, denoted by m, among the N agents is chosen uniformly.
Therefore, the probability that the chosen agent m is infected and of degree d is ρk(d) P(d). The
probability that the chosen agent m is susceptible and of degree d is (1 − ρk(d)) P(d).

2. Depending on whether its state x(m)
k is infected or susceptible, the state of agent m evolves

according to the transition probabilities specified in Eq. (21.5).



534 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

With the Markov chain transition dynamics of individual agents specified above, it is clear that the

infected distribution ρk = (
ρk(1), . . . , ρk(D̄)

)
is an

∏D̄
d=1 N(d) state Markov chain. Indeed, given ρk(d),

due to the infection dynamics specified above

ρk+1(d) ∈
{
ρk(d) − 1

N(d)
, ρk(d) + 1

N(d)

}
. (21.8)

Our aim below is to specify the transition probabilities of the Markov chain ρ. Let us start with the
following statistic that forms a convenient parametrization of the transition probabilities. Given the
infected node distribution ρk at time k, define θ (ρk) as the probability that at time k a uniformly sampled
link in the network points to an infected node. We call θ (ρk) as the infected link probability. Clearly

θ (ρk) =
∑D̄

d=1(# of links from infected node of degree d)∑D̄
d=1(# of links of degree d)

=
∑D̄

d=1 d P(d) ρk(d)∑D̄
d d P(d)

. (21.9)

In terms of the infected link probabilities, the scaled transition probabilities2 of the process ρ are:

p̄01(d, θk, s) defn= 1

P(d)
P

(
ρk+1(d) = ρk(d) + 1

N(d)

∣∣∣∣ sk = s

)

= (1 − ρk(d))
d∑

a=0

p01(d, a, s)P(a out of l neighbors infected)

= (1 − ρk(d))
d∑

a=0

p01(d, a, s)
(

d

a

)
θa

k (1 − θk)d−a,

p̄10(d, θk, s) defn= 1

P(d)
P

(
ρk+1(d) = ρk(d) − 1

N(d)

∣∣∣∣ sk = s

)

= ρk(d)
d∑

a=0

p10(d, a, s)
(

d

a

)
θa

k (1 − θk)d−a. (21.10)

In the above, the notation θk is the short form for θ (ρk). The transition probabilities p̄01 and p̄10 defined
above model the diffusion of information about the target state s over the social network. We have the
following martingale representation theorem for the evolution of Markov process ρ.

Let Fk denote the sigma algebra generated by {ρ0, . . . , ρk, s0, . . . sk}.
Theorem 21.1. For d = 1, 2, . . . , D̄, the infected distributions evolve as

ρk+1(d) = ρk(d) + 1

N

[
p̄01(d, θ (ρk), sk) − p̄10(d, θ (ρk), sk) + wk+1

]
, (21.11)

2The transition probabilities are scaled by the degree distribution P(d) for notational convenience. Indeed, because
N(d) = NP(d), by using these scaled probabilities we can express the dynamics of the process ρ in terms of the same step size
1/N as described in Theorem 21.1. Throughout this chapter, we assume that the degree distribution P(d), d ∈ {1, 2, . . . , D̄},
is uniformly bounded away from zero. That is, mind P(d) > ε for some positive constant ε.



21.2 INFORMATION DIFFUSION IN LARGE SCALE SOCIAL NETWORKS 535

where w is a martingale increment process, that is E{wk+1|Fk} = 0. Recall s is the finite state Markov
chain that models the target process. �

The above theorem is a well-known martingale representation of a Markov chain [55]—it says that
a discrete time Markov process can be obtained by discrete time filtering of a martingale increment
process. The theorem implies that the infected distribution dynamics resemble what is commonly
called a stochastic approximation (adaptive filtering) algorithm in statistical signal processing: the
new estimate is the old estimate plus a noisy update (the “noise” being a martingale increment) that
is weighed by a small step size 1/N when N is large. Subsequently, we will exploit the structure in
Theorem 21.1 to devise a mean field dynamics model that has a state of dimension D̄. This is to be

compared with the intractable state dimension
∏D̄

d=1 N(d) of the Markov chain ρ.

21.2.3 MEAN FIELD DYNAMICS OF INFORMATION DIFFUSION
The mean field dynamics state that as the number of agents N grows to infinity, the dynamics of the
infected distribution ρ, described by Eq. (21.11), in the social network evolve according to the following
deterministic difference equation that is modulated by a Markov chain that depends on the target state
evolution s:

For d = 1, 2, . . . , D̄,

ρ̄k+1(d) = ρ̄k(d) + 1

N

[
p̄01(d, θ (ρ̄k), sk) − p̄10(d, θ (ρ̄k), sk)

]
,

p̄01(d, θ , sk) = (1 − ρ̄k(d))
d∑

a=0

p01(d, a, sk)
(

d

a

)
θa(1 − θ )d−a,

p̄10(d, θ , sk) = ρ̄k(d)
d∑

a=0

p10(d, a, sk)
(

d

a

)
θa(1 − θ )d−a,

θ (ρ̄k) =
∑D̄

d=1 d P(d) ρ̄k(d)∑D̄
d d P(d)

. (21.12)

That the above mean field dynamics follow from Eq. (21.11) is intuitive. Such averaging results are
well known in the adaptive filtering community where they are deployed to analyze the convergence
of adaptive filters. The difference here is that the limit mean field dynamics are not deterministic
but Markov modulated. Moreover, the mean field dynamics here constitute a model for information
diffusion rather than the asymptotic behavior of an adaptive filtering algorithm. As mentioned earlier,
from an engineering point of view, the mean field dynamics yield a tractable model for estimation.

We then have the following exponential bound result for the error of the mean field dynamics
approximation.

Theorem 21.2. For a discrete time horizon of T points, the deviation between the mean field
dynamics ρ̄k in Eq. (21.12) and actual infected distribution in ρk Eq. (21.11) satisfies

P

{
max

0≤k≤T
‖ρk − ρ̄k‖∞ ≥ ε

}
≤ C1 exp(−C2ε2N), (21.13)

where C1 and C2 are positive constants and T = O(N). �



536 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

The proof of the above theorem follows from [18, Lemma 1] and is presented in [56]. Actually
in [18] the mean field dynamics are presented in continuous time as a system of ordinary differential
equations. The exponential bound follows from an application of the Azuma-Hoeffding inequality. The
above theorem provides an exponential bound (in terms of the number of agents N) for the probability
of deviation of the sample path of the infected distribution from the mean field dynamics for any finite
time interval T .

The stochastic approximation and adaptive filtering literature [57,58] have several averaging anal-
ysis methods for recursions of the form (21.11). The well-studied mean square error analysis [57,58]
computes bounds on E‖ρ̄k − ρk‖2 instead of the maximum deviation in Theorem 21.2. A mean square
error analysis of estimating a Markov modulated empirical distribution is given in [59]. Such mean
square analysis assumes a finite but small step size 1/N in Eq. (21.11).

Related literature
Given the above SIS model, it is appropriate to pause briefly and review related literature. There are
several other models for studying the spread of infection and technology in complex networks including
susceptible-alert-infected-susceptible (SAIS), and susceptible-exposed-infected-vigilant (SEIV); see
[43,60]. SIS models have been extensively studied in [16,17,41,42,46] to model information/infection
diffusion, for example, the adoption of a new technology in a consumer market.

Degree-based mean field dynamics approximations for SIS models have been derived in [16,61].
Pair approximations (PA) and approximate master equations (AME) yield more general models for
the complex dynamics of large-scale networks [61]. However, the resulting differential/difference
equations that characterize the dynamics in PA and AME are no longer polynomial functions of the
state. In this more general case, however, a suboptimal filter such as a particle filter can be used to track
the infection diffusion.

It is also important to note that the right side of the mean field difference equation (21.12) is a
polynomial function of the infected degree distribution ρ̄. As a result, when the graph is sampled,
resulting in noisy observations of ρ̄, one can construct an exact finite dimensional Bayesian filter for
the conditional mean estimate of ρ̄ at each time k using the filtering algorithms in [62]. We refer the
reader to [63] for details and also posterior Cramer-Rao lower bounds for estimating the infected degree
distribution in the case of Erdos-Rényi and also power law (scale-free) networks such as Twitter. In
comparison, Hamdi et al. [64] provides a stochastic approximation algorithm and analysis on a Hilbert
space for tracking the degree distribution of evolving random networks with a duplication-deletion
model.

On networks having fixed degree distribution, López-Pintado [16] identified conditions under which
a network is susceptible to an epidemic using a mean-field approach and provided a closed form
solution for the infection diffusion threshold. The diffusion properties of networks were investigated
using stochastic dominance of their underlying degree distributions, as in [65]. We generalize these
stochastic dominance results for evolving networks by considering a simple preferential attachment
model as this can generate a scale-free network [66].

Finally, Pastor-Satorras and Vespignani [17] study the link between the power law exponent and
the diffusion threshold. For the preferential attachment model, Ghoshal et al. [66] study the connection
between the parameters that dictates the evolution (node and edge addition probability) and the degree



21.2 INFORMATION DIFFUSION IN LARGE SCALE SOCIAL NETWORKS 537

distribution. Krishnamurthy et al. [63] has similar results using stochastic dominance, but the key
emphasis is on providing a structured way to study such ordinal sensitivity relationships in large
networks.

Numerical example
We simulate the diffusion of information through a network comprising N = 100 nodes (with maximum
degree D̄ = 17). It is assumed that at time k = 0, 5% of nodes are infected. The mean field dynamics
model is investigated in terms of the infected link probability (21.9). The infected link probability θ (ρk)
is computed using Eq. (21.12).

Assume each agent is a myopic optimizer and, hence, chooses to adopt the technology only if
c(m) ≤ A(m)

k ; r = 1. At time k, the costs c(m), m = 1, 2, . . . , 100, are i.i.d. random variables simulated
from uniform distribution U[0, C(sk)]. Therefore, the transition probabilities in Eq. (21.5) are

p01(d, A(m)
k , sk) = P

(
c(m) ≤ A(m)

k

)
=
⎧⎨
⎩

A(m)
k )

C(sk) , A(m)
k ≤ C(sk),

1, A(m)
k > C(sk).

(21.14)

The probability that a product fails is pF = 0.3, i.e.,

p10(d, A(m)
k , sk) = 0.3.

The infected link probabilities obtained from network simulation (21.9) and from the discrete-time
mean field dynamics model (21.12) are illustrated in Fig. 21.3. To illustrate that the infected link
probability computed from Eq. (21.12) follows the true one (obtained by network simulation), we
assume that the value of C jumps from 1 to 10 at time k = 200, and from 10 to 1 at time k = 500.
As can be seen in Fig. 21.3, the mean field dynamics provide an excellent approximation to the true
infected distribution.

21.2.4 EXAMPLE: SOCIAL SENSING OF INFLUENZA USING TWITTER
In this section, we utilize datasets from three different social networks (namely, (i) Harvard social
network, (ii) influenza datasets from the U.S. Centers for Disease Control and Prevention (CDC), and
(iii) Twitter, to show how Twitter can be used as a real time social sensor for detecting outbreaks of
influenza.

Twitter as a social sensor
A key advantage of using social media for rapid sensing of disease outbreaks in health networks is that
it is low cost and provides rapid results compared with traditional techniques. For example, CDC must
contact thousands of hospitals to query the data, which causes a reporting lag of approximately one
to two weeks [67]. Using real-time microblogging platforms such as Twitter for disease detection has
several advantages: the tweets are publicly available, high tweet posting frequency users often provide
metadata (i.e., city, gender, age), and Twitter contains a diverse set of users [67].

Several papers have considered using Twitter data for estimating influenza infection rates. In [68,69]
support vector regression supervised learning algorithms is used to relate the volume of Twitter posts
that contain specific words (i.e., flu, swine, influenza) to the number of confirmed influenza cases in the



538 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time k

In
fe

ct
ed

 li
nk

 p
ro

ba
bi

lit
y

Differential equation
Network simulation

FIG. 21.3

The infected link probability obtained from network simulation compared to the one obtained from the mean
field dynamics model (21.12). The transition probabilities in Eq. (21.14) depend only on the number of
infected neighbors A(m)

k (the parameters are defined in Scenario 1).

United States as reported by the CDC. Multiple linear regression [70,71] and unsupervised Bayesian
algorithms [72] have been used to relate the number of tweets of specific words to the influenza rate
reported by the CDC. The detection algorithms [68,70,72] do not consider the dynamics of the disease
propagation and the dynamics of information diffusion in the Twitter network. To reduce the effect of
information diffusion in the network, Broniatowski et al. [73] proposes a support vector machine (SVM)
classifier to detect: (a) if the tweet indicates the user’s awareness of influenza or indicates the user is
infected, and (b) if the influenza reference is in reference to another person. The classified tweets are
then used to train a multiple linear regression model. To account for the diffusion dynamics of Twitter,
Achrekar et al. [74,75] utilize an Autoregressive with Exogenous input (ARX) model. The exogenous
input is the number of unique Twitter users with influenza-related tweets, and the output is the number
of infected users as reported by the CDC.

If the social network is known, then the influenza spread can be formulated in terms of the diffusion
model (21.11). Given the population of several hundred million, it is reasonable to adopt the mean field
dynamics (21.12). With the influenza infection rate modeled using Eq. (21.12), the results can be used
as an exogenous input to an ARX or nonlinear ARX (NARX) models to predict the volume of Twitter
messages related to influenza, as illustrated in Fig. 21.2. In this framework, the Twitter messages are
used to validate the underlying propagation model of influenza of use for predicting the infection rate
and outbreak detection.

Social network influenza dataset
We consider the dataset [76] obtained from a social network of 744 undergraduate students from
Harvard. The health of the 744 students was monitored from September 1, 2009 to December 31,



21.2 INFORMATION DIFFUSION IN LARGE SCALE SOCIAL NETWORKS 539

2009 and was reported by the university health services. To construct the social network, students were
presented with a background questionnaire. In the questionnaire, students are asked, “Please provide
the contact information for two to three Harvard students who you know and who you think would
like to participate in this study,” and “. . . provide us with the names and contact information of two to
three of your friends. . . .” This information was used to construct the degree distribution and links of
the social network. A movie containing the spread of the influenza in the 744 college students over
the 122-day sampling period can be viewed as the Youtube video titled, “Social Network Sensors
for Early Detection of Contagious Outbreaks” at http://www.youtube.com/watch?v=0TD06g2m8qM.
Fig. 21.4A–C displays three illustrative snapshots from this video; in the online version of this chapter,
red nodes denote infected students while yellow nodes depict their neighbors in the social network.

Models for influenza diffusion
From the data in the YouTube video for the Harvard students, we observed the following regarding the
transition probabilities pij(d, A, s) defined in Eq. (21.5). As expected, students with a larger number of
infected neighbors A contract influenza sooner. The data shows that the transition probabilities were
approximately independent of the degree of the node d. Because the data provided was during an actual
influenza outbreak, we set the target state of the network (i.e., s) constant. Therefore the transition
probabilities depend only on the number of infected neighbors and were estimated as

p01(a = 1) = 0.02, p01(a = 2) = 0.15.

That is, the dataset reveals that the probability of getting infected given a = 2 infected neighbors
is substantially higher than with a = 1 infected neighbor, as expected. The estimated infected link
probability θk in Eq. (21.9) versus time (days) k is displayed in Fig. 21.4D. Recall from Section 21.2.3
that the infected link probability θk is related to the mean field dynamics equation (21.12). This allows
the transition probabilities and θk to be used to predict the infection rate dynamics.

Other graph-theoretic measures also play a role in the analysis of the diffusion. Students with high
k-coreness3 are expected to contract influenza earlier. Additionally, students that have high betweenness
centrality (i.e., number of shortest paths from all students to all others that pass through that student)
contract influenza earlier then students with low betweenness centrality. These observations show that
the diffusion of influenza in the network depends strongly on the underlying health network structure.
The dynamic model (21.7) accounts for the effects of the degree of nodes; however to account for
the effects from betweenness centrality and k-coreness would require a more sophisticated formulation
then that presented in Section 21.2.1.

Time series model for influenza tweets
In Section 21.2.4.3 we illustrated how the mean field dynamics model (21.12) can be used to estimate
the influenza infection rate with the model parameters estimated from a sampled set of the entire
population. To validate the estimated parameters for the entire network requires that the infection rate
be related to an observable response, in this case the number of Twitter mentions of a specific keyword.
Two time-series models are considered for relating the infection rate to the number of Twitter mentions.
The models are validated using two real-world datasets of Twitter mentions and number of influenza
cases in the United States.

3k-coreness is the largest subnetwork comprising nodes of degree at least k.



540 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

0 10 20 30 40 50 60
0.26

(D)(C)

(B)(A)

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Days (k)

In
fe

ct
ed

lin
k

pr
o

b
a

b
ili

ty
 q

k

FIG. 21.4

Snapshots from YouTube video of Harvard undergraduate social network propagation of influenza and the
estimated infected link probability θk (21.9) for October 10 to December 23, 2009. (A) October 10, 2009; (B)
November 11, 2009; (C) December 23, 2009; (D) October 10 to December 23, 2009.

The number of influenza cases in the United States is obtained from the CDC,4 which publishes
weekly reports from the ILInet. The data reported by the CDC is comprised of reports from over
3000 health providers nationwide and was obtained for the dates between September 1, 2012 to
October 1, 2013. The associated Twitter data for the 122-day period was obtained using the software
PeopleBrowsr.5 The prespecified Twitter search terms used were: flu, swine, and influenza. Because
our focus is on monitoring influenza dynamics in the United States, we excluded all tweets tagged as
originating from outside the United States. The total number of mentions of a specific keyword on each
is obtained using PeopleBrowsr.

4http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html.
5http://gr.peoplebrowsr.com/.



21.2 INFORMATION DIFFUSION IN LARGE SCALE SOCIAL NETWORKS 541

We used two time-series models for the volume of tweets and compared their performance. The first
time series model considered is the ARX model defined by:

τk =
na∑

i=1

aiτk−i +
nb−1∑
i=0

biρk−�−i + d + vk. (21.15)

In Eq. (21.15), τk is the number of influenza-related tweets at k, ρk is the exogenous input of the infected
influenza patients, na, nb, ai, bi, � and d are model parameters with vk an i.i.d. noise process. � models
the delay between patient contraction and the respective individual tweeting their symptoms. d models
the mean number of tweets related to influenza that are not related to an actual infection.

The second time series model we used is the nonlinear autoregressive exogenous (NARX) model
given by:

τk = F(τk−1, . . . , τk−na , ρk−�, . . . , ρk−�−nb ) + vk. (21.16)

In Eq. (21.16) F denotes a nonlinear function that relates the exogenous input and previous tweets to
the current number of tweets. Here we consider F as a support vector machine that can be trained using
historical data. Note that if F was independent of previous tweets, previous exogenous inputs, and no
delay (i.e., nb = 0 and � = 0), then Eq. (21.16) would be identical to the SVM classifier used in
[68,69] to relate the number of tweets to the number of infected agents.

The number of reported influenza cases, associated Twitter data, and results of the model training
and prediction are displayed in Fig. 21.5 for the ARX (21.15) and NARX (21.16) models. As seen from
Fig. 21.5A, the dominant word for indicating a possible influenza outbreak is flu as compared with
swine and influenza. Notice that there is a lag between the maximum confirmed influenza cases and the
# of tweets; however, there is an increase in the number of tweets prior to the peak of infected patients.
These dynamics are a result of a combination of infection propagation dynamics and the diffusion
of information on Twitter. To account for these dynamics the ARX and NARX models presented in
Section 21.2.4.4 are utilized. The training and prediction accuracy of these models for na = 0, nb = 2
(i.e., model input parameters ρk−� and ρk−�−1) are displayed in Fig. 21.5B. As seen, the NARX
(21.16) model provides a superior estimate as compared with the ARX model (21.15). Interestingly
there is a � = 18 day delay between the maximum number of infected patients and the maximum
number of Twitter mentions containing the word flu. This is in contrast to the dynamics observed for the
2009 [68] and 2010–2011 [75] influenza outbreaks, which show that the increase in Twitter mentions
occurs earlier or at the same time as the number of infected patients increases. This also emphasizes
the importance of using the mean field dynamics model for influenza propagation as compared with
only using Twitter data for predicting the influenza infection rate. Here we have used the CDC data to
estimate the number of infected agents; however, the mean field dynamics model (21.12) could be used
to estimate the dynamics of disease propagation and relate this to the observable number of tweets in
real time.

To summarize, the above datasets illustrate how Twitter can be used as a sensor for monitoring the
spread of influenza in a heath network. The propagation of influenza was modeled according to the SIS
model and the dynamics of tweets according to an autoregressive model.



542 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

0

(A)

(B)

100 200 300 400
0

10

20

25

#
of

T
w

ee
ts

(k
)

0

0.5

1.0

1.5

#
In

fe
ct

ed
(k

)

Time (day)

Infected

Flu

Swine, Influenza

0 100 200 300 400
0

5

10

15

20

25

Time (day)

#
o

f
T

w
ee

ts
(k

)

Flu mentions
ARX
NARX

Training Prediction

FIG. 21.5

The experimental data is obtained for September 2012 to October 2013 as described in Section 21.2.4.2. The
ARX (21.15) and NARX (21.16) models are utilized to estimate the number of tweets with flu given the number
of infected influenza patients. (A) Experimental data of # of tweets and # of infected with influenza. (B) ARX
model (21.15) and NARX model (21.16) for the # of tweets given the # of infected influenza patients. The ARX
and NARX models are trained using the initial 200 days of data. The predictive accuracy of the models is
illustrated for the remaining 230 days.

21.2.5 SENTIMENT-BASED SENSING MECHANISM
In the above dataset, samples of influenza-affected individuals were obtained from a Harvard social
network. More generally, it is often necessary to sample individuals in a social network to estimate an
underlying state of nature such as the sentiment. An important question regarding sensing in a social
network is: How can one construct a small but representative sample of a social network with a large



21.2 INFORMATION DIFFUSION IN LARGE SCALE SOCIAL NETWORKS 543

number of nodes? In [77] several scale-down and back-in-time sampling procedures are studied. Below
we review three sampling schemes. The simplest possible sampling scheme is uniform sampling. We
also briefly describe social sampling and respondent-driven sampling, which are recent methods that
have become increasingly popular.

Uniform sampling
Consider the following sampling-based measurement strategy. At each period k, α(d) individuals are
sampled6 independently and uniformly from the population N(d) comprising agents with connectivity
degree d. That is, a uniform distributed i.i.d. sequence of nodes, denoted by{ml, l = 1 : α(d)}, is
generated from the population N(d). The messages y(ml)

k of these α(d) individuals are recorded. From
these independent samples, the empirical sentiment distribution zk(d) of degree d nodes at each time k
is obtained as

zk(d, y) = 1

α(d)

α(d)∑
l=1

I
{

y(ml)
k = y

}
, y = 1, . . . , Y . (21.17)

At each time k, the empirical sentiment distribution zk can be viewed as noisy observations of the
infected distribution ρk and target state process sk.

Social sampling
Social sampling is an extensive area of research; see [78] for recent results. In social sampling,
participants in a poll respond with a summary of their friend’s responses. This leads to a reduction in
the number of samples required. If the average degree of nodes in the network is d, then the savings in
the number of samples is by a factor of d because a randomly chosen node summarizes the results from
d of its friends. However, the variance and bias of the estimate depend strongly on the social network
structure.7 In [78], a social sampling method is introduced and analyzed where nodes of degree d are
sampled with probability proportional to 1/d. This is intuitive because weighing neighbors’ values by
the reciprocal of the degree undoes the bias introduced by large degree nodes. It then illustrates this
social sampling method and variants on the LiveJournal network (livejournal.com) comprising more
than 5 million nodes and 160 million directed edges.

MCMC based respondent-driven sampling (RDS)
Respondent-driven sampling (RDS) was introduced by Heckathorn [79,80] and Lee [81] as an approach
for sampling from hidden populations in social networks and has gained enormous popularity in recent
years. There are more than 120 RDS studies worldwide involving sex workers and injection drug
users [82]. As mentioned in [83], the U.S. Centers for Disease Control and Prevention (CDC) recently
selected RDS for a 25-city study of injection drug users that is part of the National HIV Behavioral
Surveillance System [84].

RDS is a variant of the well-known method of snowball sampling where current sample members
recruit future sample members. The RDS procedure is as follows: A small number of people in the

6For large population sizes N, sampling with and without replacement are equivalent.
7In [78], nice intuition is provided in terms of intent polling and expectation polling. In intent polling, individuals are sampled
and asked who they intend to vote for. In expectation polling, individuals are sampled and asked who they think would win
the election. For a given sample size, one would believe that expectation polling is more accurate than intent polling because
in expectation polling, an individual would typically consider its own intent together with the intents of its friends.



544 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

target population serve as seeds. After participating in the study, the seeds recruit other people they
know through the social network in the target population. The sampling continues according to this
procedure with current sample members recruiting the next wave of sample members until the desired
sampling size is reached. Typically, monetary compensation is provided for participating in the data
collection and recruitment.

RDS can be viewed as a form of Markov Chain Monte Carlo (MCMC) sampling (see [83] for an
excellent exposition). Let {ml, l = 1 : α(d)} be the realization of an aperiodic irreducible Markov
chain with state space N(d) comprising nodes of degree d. This Markov chain models the individuals
of degree d that are snowball sampled, namely, the first individual m1 is sampled and then recruits the
second individual m2 to be sampled, who then recruits m3 and so on. Instead of the independent sample
estimator (21.17), an asymptotically unbiased MCMC estimate is then generated as

∑α(d)
l=1

I(y(ml)
k =y)
π (ml)∑α(d)

l=1
1

π (ml)

, (21.18)

where π (m), m ∈ N(d), denotes the stationary distribution of the Markov chain. For example, a
reversible Markov chain with prescribed stationary distribution is straightforwardly generated by the
Metropolis Hastings algorithm.

In RDS, the transition matrix and, hence, the stationary distribution π in the estimator (21.18) is
specified as follows: Assume that edges between any two nodes m and n have symmetric weights
W(m, n) (i.e., W(m, n) = W(n, m), equivalently, the network is undirected). In RDS, node m recruits
node n with transition probability W(m, n)/

∑
n W(m, n). Then, it can be easily seen that the stationary

distribution is π (m) = ∑
n∈V W(m, n)/

∑
m∈V ,n∈V W(m, n). Using this stationary distribution, along

with the above transition probabilities for sampling agents in Eq. (21.18), yields the RDS algorithm.
It is well known that a Markov chain over a nonbipartite connected undirected network G is

aperiodic. Then, the initial seed for the RDS algorithm can be picked arbitrarily, and the above estimator
is an asymptotically unbiased estimator.

Note the difference between RDS and social sampling: RDS uses the network to recruit the
next respondent whereas social sampling seeks to reduce the number of samples by using people’s
knowledge of their friends’ (neighbors’) opinions.

Finally, the reader may be familiar with the DARPA network challenge in 2009 where the locations
of 10 red balloons in the continental United States were to be determined using social networking. In
this case, the winning MIT Red Balloon Challenge Team used a recruitment-based sampling method.
The strategy can also be viewed as a variant of the query incentive network model of [85].

21.2.6 SUMMARY AND EXTENSIONS
This section has discussed the diffusion of information in social networks. Mean field dynamics were
used to approximate the asymptotic infected degree distribution. An illustrative example of the spread of
influenza was provided. Finally, methods for sampling the population in social networks were reviewed.
Below we discuss some related concepts and extensions.



21.3 BAYESIAN SOCIAL LEARNING MODELS 545

Bayesian filtering problem
Given the sentiment observations described above, how can the infected degree distribution ρk and
target state sk be estimated at each time instant? The partially observed state space model with
dynamics (21.12) and discrete time observations from sampling the network can be used to obtain
Bayesian filtering estimates of the underlying state of nature. Computing the conditional mean estimate
sk, ρk given the sentiment observation sequence is a Bayesian filtering problem. In fact, filtering of such
jump Markov linear systems have been studied extensively in the signal processing literature [86,87]
and can be solved via the use of sequential Markov chain Monte Carlo methods. For example, Sakaki
et al. [6] report on how a particle filter is used to localize earthquake events using Twitter as a social
sensor.

Reactive information diffusion
A key difference between social sensors and conventional sensors in statistical signal processing is that
social sensors are reactive: A social sensor uses additional information gained to modify its behavior.
Consider the case where the sentiment-based observation process is made available in a public blog.
Then, these observations will affect the transition dynamics of the agents and, therefore, the mean field
dynamics.

How does connectivity affect mean field equilibrium?
The papers [16,50] examine the structure of fixed points of the mean field differential equation (21.12)
when the underlying target process s is not present (equivalently, s is a one-state process). They
consider the case where the agent transition probabilities are parametrized by p01(d, a) = μF(d, a)
and p10 = pF . Then, defining λ = μ/pF , they study how the following two thresholds behave with the
degree distribution and diffusion mechanism:

1. Critical threshold λc: This is defined as the minimum value of λ for which there exists a fixed
point of Eq. (21.12) with positive fraction of infected agents, i.e., ρ∞(d) > 0 for some d and, for
λ ≤ λc, such a fixed point does not exist.

2. Diffusion threshold λd: Suppose the initial condition ρ0 for the infected distribution is
infinitesimally small. Then, λd is the minimum value of λ for which ρ∞(d) > 0 for some d, and
such that, for λ ≤ λd, ρ∞(d) = 0 for all d.

Determining how these thresholds vary with degree distribution and diffusion mechanisms is very
useful for understanding the long-term behavior of agents in the social network.

21.3 BAYESIAN SOCIAL LEARNING MODELS FOR ONLINE REPUTATION
SYSTEMS
In this section we address the second topic of the chapter, namely, Bayesian social learning among
social sensors. The motivation can be understood in terms of the following social sensing example.
Consider the following interactions in a multiagent social network where agents seek to estimate an
underlying state of nature. Each agent visits a restaurant based on reviews on an online reputation
website. The agent then obtains a private measurement of the state (e.g., the quality of food in a
restaurant) in noise. After that, he reviews the restaurant on the same online reputation website. The



546 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

FIG. 21.6

Example of the information flow (communication graph) in a social network with two agents and over three
event epochs. The arrows represent exchange of information.

information exchange in the social network is modeled by a directed graph. Data incest [88] arises due
to loops in the information exchange graph. This is illustrated in the graph of Fig. 21.6. Agents 1 and 2
exchange beliefs (or actions) as depicted in Fig. 21.6. The fact that there are two distinct paths between
Agent 1 at time 1 and Agent 1 at time 3 (these paths are denoted by dashed lines) implies that the
information of Agent 1 at time 1 is double counted, leading to a data incest event.

How can data incest be removed so that agents obtain a fair (unbiased) estimate of the underlying
state? The methodology of this section can be interpreted in terms of the recent Time article [89] that
provides interesting rules for online reputation systems. These include: (i) review the reviewers, and
(ii) censor fake (malicious) reviewers. The data incest removal algorithm proposed in this chapter can
be viewed as “reviewing the reviews” of other agents to see if they are associated with data incest or
not.

The rest of this section is organized as follows:

1. Section 21.3.1 describes the social learning model that is used to mimic the behavior of agents in
online reputation systems. Section 21.3.2 describes how risk averse social learning models apply
to detecting market shocks in high frequency financial systems.

2. Sections 21.3.3–21.3.5 deal with modeling data incest and incest removal algorithms for online
reputation systems. The information exchange between agents in the social network is formulated
on a family of time-dependent directed acyclic graphs. A necessary and sufficient condition is
given on the graph structure of information exchange between agents so that a fair rating is
achievable.

3. Section 21.3.6 discusses conditions under which treating individual social sensors as Bayesian
optimizers is a useful idealization of their behavior. In particular, it is shown that the ordinal
behavior of humans can be mimicked by Bayesian optimizers under reasonable conditions.

4. Section 21.3.7 presents a dataset obtained from a psychology experiment to illustrate social
learning and data incest patterns.



21.3 BAYESIAN SOCIAL LEARNING MODELS 547

Related work
Collaborative recommendation systems are reviewed and studied in [90,91]. The books [15,43] study
information cascades in social learning. In [92], a model of Bayesian social learning is considered in
which agents receive private information about the state of nature and observe actions of their neighbors
in a tree-based network. Another type of misinformation caused by influential agents (agents who
heavily affect actions of other agents in social networks) is investigated in [21]. Misinformation in the
context of this chapter is motivated by sensor networks where the term “data incest” is used [88]. Data
incest also arises in belief propagation (BP) algorithms [93,94], which are used in computer vision and
error-correcting coding theory. BP algorithms require passing local messages over the graph (Bayesian
network) at each iteration. For graphical models with loops, BP algorithms are only approximate due
to the overcounting of local messages [95], which is similar to data incest in social learning. With
the algorithms presented in this section, data incest can be mitigated from Bayesian social learning
over nontree graphs that satisfy a topological constraint. The closest work to the current chapter is
[88]. However, in [88], data incest is considered in a network where agents exchange their private
belief states—that is, no social learning is considered. Simpler versions of this information exchange
process and estimation were investigated in [96–98]. We also refer the reader to [44] for a discussion
of recommender systems.

21.3.1 CLASSICAL SOCIAL LEARNING
We briefly review the classical social learning model for the interaction of individuals. Subsequently,
we will deal with more general models over a social network.

Consider a multiagent system that aims to estimate the state of an underlying finite state random
variable x ∈ X = {1, 2, . . . , X} with known prior distribution π0. Each agent acts once in a
predetermined sequential order indexed by k = 1, 2, . . . Assume at the beginning of iteration k, all
agents have access to the public belief πk−1 defined in Step (iv) below. The social learning protocol
proceeds as follows [15,20]:

(i) Private Observation: At time k, agent k records a private observation yk ∈ Y from the
observation distribution Biy = P(y|x = i), i ∈ X. Throughout this section we assume that
Y = {1, 2, . . . , Y} is finite.

(ii) Private Belief : Using the public belief πk−1 available at time k − 1 (Step (iv) below), agent k
updates its private posterior belief ηk(i) = P(xk = i|a1, . . . , ak−1, yk) using Bayes formula:

ηk = Bykπ

1′
XByπ

, Byk = diag(P(yk|x = i), i ∈ X). (21.19)

Here 1X denotes the X-dimensional vector of ones, ηk is an X-dimensional probability mass
function (pmf).

(iii) Myopic Action: Agent k takes action ak ∈ A = {1, 2, . . . , A} to minimize its expected cost

ak = arg min
a∈A

E{c(x, a)|a1, . . . , ak−1, yk} = arg min
a∈A

{c′
aηk}. (21.20)

Here ca = (c(i, a), i ∈ X) denotes an X dimensional cost vector, and c(i, a) denotes the cost
incurred when the underlying state is i and the agent chooses action a. Agent k then broadcasts
its action ak.



548 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

(iv) Social Learning Filter: Given the action ak of agent k, and the public belief πk−1, each
subsequent agent k′ > k performs social learning to update the public belief πk according to the
“social learning filter”:

πk = T(πk−1, ak), where T(π , a) = Rπ
a π

σ (π , a)
, (21.21)

where σ (π , a) = 1′
XRπ

a P′π is the normalization factor of the Bayesian update. In Eq. (21.21), the
public belief πk(i) = P(xk = i|a1, . . . ak) and Rπ

a = diag(P(a|x = i, π ), i ∈ X) has elements

P(ak = a|xk = i, πk−1 = π ) =
∑
y∈Y

P(a|y, π )P(y|xk = i),

P(ak = a|y, π ) =
{

1 if c′
aByP′π ≤ c′

ãByP′π , ã ∈ A,

0 otherwise.

The following result, which is well known in the economics literature [15,20], states that if
agents follow the above social learning protocol, then after some finite time k̄, an information
cascade occurs.8

Theorem 21.3 ([20]). The social learning protocol leads to an information cascade in finite time
with probability 1. That is, after some finite time k̄ social learning ceases and the public belief πk+1 =
πk, k ≥ k̄, and all agents choose the same action ak+1 = ak, k ≥ k̄. �

Instead of reproducing the proof, let us give some insight as to why Theorem 21.3 holds. It can be
shown using martingale methods that at some finite time k = k∗, the agent’s probability P(ak|yk, πk−1)
becomes independent of the private observation yk. Then clearly, P(ak = a|xk = i, πk−1) = P(ak =
a|π ). Substituting this into the social learning filter (21.21), we see that πk = πk−1. Thus after some
finite time k∗, the social learning filter hits a fixed point and social learning stops. As a result, all
subsequent agents k > k∗ completely disregard their private observations and take the same action ak∗ ,
thereby forming an information cascade (and therefore a herd).

21.3.2 RISK-AVERSE SOCIAL LEARNING AND DETECTING MARKET SHOCKS
Here we consider the statistical signal processing problem involving agent-based models of financial
markets, which, at a microlevel, are driven by socially aware and risk-averse trading agents. These
agents trade (buy or sell) stocks at each trading instant by using the decisions of all previous agents
(social learning) in addition to a private (noisy) signal they receive on the value of the stock. We
are interested in the following: (1) Modeling the dynamics of these risk-averse agents, (2) Sequential
detection of a market shock based on the behavior of these agents. Structural results that characterize
social learning under a risk measure, CVaR (Conditional Value-at-risk), are presented and formulation
of the Bayesian change point detection problem is provided. The structural results exhibit two

8A herd of agents takes place at time k̄, if the actions of all agents after time k̄ are identical, i.e., ak = ak̄ for all time k > k̄.
An information cascade implies that a herd of agents occurs. Trusov et al. [4] quotes the following anecdote of user influence
and herding in a social network: “. . . when a popular blogger left his blogging site for a two-week vacation, the site’s visitor
tally fell, and content produced by three invited substitute bloggers could not stem the decline.”



21.3 BAYESIAN SOCIAL LEARNING MODELS 549

interesting properties: (i) Risk-averse agents herd more often than risk-neutral agents. (ii) The stopping
set in the sequential detection problem is nonconvex.

It is well documented in behavioral economics [99] and psychology [100] that people prefer a
certain but possibly less desirable outcome over an uncertain but potentially larger outcome. To model
this risk averse behavior, commonly used risk measures9 are Value-at-Risk (VaR), Conditional Value-
at-Risk (CVaR), Entropic risk measure, and Tail value at risk; see [101]. We consider social learning
under CVaR risk measure. CVaR [102] is an extension of VaR that gives the total loss given a loss
event and is a coherent risk measure [103]. Below, we choose the CVaR risk measure as it exhibits the
following properties [102,103]: (i) It associates higher risk with higher cost; (ii) It ensures that risk is
not a function of the quantity purchased but arises from the stock; and (iii) It is convex. CVaR as a risk
measure has been used in solving portfolio optimization problems [104,105] and order execution. For
an overview of risk measures and their application in finance, see [101].

CVaR social learning model
The market microstructure is modeled as a discrete time dealer market motivated by algorithmic and
high-frequency tick-by-tick trading [106]. There is a single traded stock or asset, a market observer,
and a countable number of trading agents. The asset has an initial true underlying value x0 ∈ X =
{1, 2, . . . , X}. The market observer does not receive direct information about x ∈ X but only observes
the public buy/sell actions of agents, ak ∈ A = {1(buy), 2(sell)}. The agents themselves receive noisy
private observations of the underlying value x and consider this in addition to the trading decisions of
the other agents visible in the order book. At a random time, τ 0 determined by the transition matrix
P, the asset experiences a jump change in its value to a new value. The aim of the market observer
is to detect the change time (global decision) with minimal cost, having access to only the actions of
these socially aware agents. Let yk ∈ Y = {1, 2, . . . , Y} denote agent k’s private observation. The initial
distribution is π0 = (π0(i), i ∈ X ) where π0(i) = P(x0 = i).

The agent-based model has the following dynamics:

1. Shock in the asset value: At time τ 0 > 0, the asset experiences a jump change (shock) in its value
due to exogenous factors. The change point τ 0 is modeled by a phase type (PH) distribution. The
family of all PH distributions forms a dense subset for the set of all distributions [107], i.e., for any
given distribution function F such that F(0) = 0, one can find a sequence of PH distributions
{Fn, n ≥ 1} to approximate F uniformly over [0, ∞). The PH-distributed time τ 0 can be
constructed via a multistate Markov chain xk with state space X = {1, . . . , X} as follows: Assume
state “1” is an absorbing state and denotes the state after the jump change. The states 2, . . . , X
(corresponding to beliefs e2, . . . , eX) can be viewed as a single composite state that x resides in
before the jump. So τ 0 = inf{k : xk = 1} and the transition probability matrix P is of the form

P =
[

1 0
P(X−1)×1 P̄(X−1)×(X−1)

]
. (21.22)

9A risk measure  : L → R is a mapping from the space of measurable functions to the real line, which satisfies the
following properties: (i) (0) = 0. (ii) If S1, S2 ∈ L and S1 ≤ S2 a.s then (S1) ≤ (S2). (iii) if a ∈ R and S ∈ L, then
(S+a) = (S)+a. The risk measure is coherent if in addition  satisfies: (iv) If S1, S2 ∈ L, then (S1 +S2) ≤ (S1)+(S1).
(v) If a ≥ 0 and S ∈ L, then (aS) = a(S). The expectation operator is a special case where subadditivity is replaced by
additivity.



550 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

The distribution of the absorption time to state 1 is

ν0 = π0(1), νk = π̄ ′
0P̄k−1P, k ≥ 1, (21.23)

where π̄0 = [π0(2), . . . , π0(X)]′. The key idea is that by appropriately choosing the pair (π0, P) and
the associated state space dimension X, one can approximate any given discrete distribution on
[0, ∞) by the distribution {νk, k ≥ 0}; see [107, pp. 240–243]. The event {xk = 1} means the
change point has occurred before time k according to PH distribution (21.23). In the special case
when x is a 2-state Markov chain, the change time τ 0 is geometrically distributed.

2. Agent’s Private Observation: Agent k’s private (local) observation denoted by yk is a noisy
measurement of the true value of the asset. It is obtained from the observation likelihood
distribution as,

Bxy = P(yk = y|xk = x). (21.24)

3. Private Belief update: Agent k updates its private belief using the observation yk and the prior
public belief πk−1(i) = P(X = i|a1, . . . , ak−1) as the following Hidden Markov Model update

ηk = Byk P′πk−1

1′Byk P′πk−1
, (21.25)

where 1 denotes the X-dimensional vector of ones.
4. Agent’s trading decision: Agent k executes an action ak ∈ A = {1(buy), 2(sell)} to myopically

minimize its cost. Let c(i, a) denote the cost incurred if the agent takes action a when the
underlying state is i. Let the local cost vector be

ca = [c(1, a) c(2, a) . . . c(X, a)]. (21.26)

The costs for different actions are taken as

c(i, j) = pj − βij for i ∈ X , j ∈ A, (21.27)

where βij corresponds to the agent’s demand. Here demand is the agent’s desire and willingness to
trade at a price pj for the stock. Here p1 is the quoted price for purchase and p2 is the price
demanded in exchange for the stock. We assume that the price is the same during the period in
which the value changes. As a result, the willingness of each agent only depends on the degree of
uncertainty on the value of the stock.

Remark 21.1. The analysis provided in this paper straightforwardly extends to the case when
different agents are facing different prices, as in an order book. For notational simplicity we
assume the cost are time invariant.
The agent considers measures of risk in the presence of uncertainty in order to overcome the losses
incurred in trading. To illustrate this, let c(x, a) denote the loss incurred with action a while at
unknown and random state x ∈ X . When an agent solves an optimization problem involving c(x, a)
for selecting the best trading decision, it will take into account not just the expected loss, but also
the “riskiness” associated with the trading decision a. The agent therefore chooses an action ak to



21.3 BAYESIAN SOCIAL LEARNING MODELS 551

minimize the CVaR measure10 of trading as

ak = argmin
a∈A

{CVaRα(c(xk, a))} (21.28)

= argmin
a∈A

{
min
z∈R

{
z + 1

α
Eyk [max {(c(xk, a) − z), 0}]

}}
.

Here α ∈ (0, 1] reflects the degree of risk aversion for the agent (the smaller α is, the more
risk-averse the agent is). Define

Hk := σ -algebra generated by (a1, a2, . . . , ak−1, yk) (21.29)

Eyk denotes the expectation with respect to private belief, i.e., Eyk = E[.|Hk] when the private
belief is updated after observation yk.

5. Social Learning and Public belief update: Agent k’s action is recorded in the order book and hence
broadcast publicly. Subsequent agents and the market observer update the public belief on the
value of the stock according to the social learning Bayesian filter as follows

πk = Tπk−1 (πk−1, ak) = R
πk−1
ak P′πk−1

1′Rπk−1
ak P′πk−1

. (21.30)

Here, Rπk−1
ak = diag(P(ak|x = i, πk−1), i ∈ X ), where

P(ak|x = i, πk−1) = ∑
y∈Y

P(ak|y, πk−1)P(y|xk = i) and

P(ak|y, πk−1) =
{

1 if ak = argmin
a∈A

CVaRζ (c(xk, a));

0 otherwise.

Note that πk belongs to the unit simplex �(X)�={π ∈ RX : 1′
Xπ = 1, 0 ≤ π ≤ 1 for all i ∈ X }.

6. Market Observer’s Action: The market observer (securities dealer) seeks to achieve quickest
detection by balancing delay with false alarm. At each time k, the market observer chooses
action11 uk as

uk ∈ U = {1(stop), 2(continue)}. (21.31)

Here “Stop” indicates that the value has changed and the dealer incorporates this information
before selling new issues to investors. The formulation presented considers a general
parametrization of the costs associated with detection delay and false alarm costs. Define

Gk := σ -algebra generated by (a1, a2, . . . , ak−1, ak). (21.32)

10For the reader unfamiliar with risk measures, it should be noted that CVaR is one of the “big” developments in risk modeling
in finance in the last 15 years. In comparison, the value at risk (VaR) is the percentile loss namely, VaRα(x) = min{z : Fx(z) ≥
α} for cdf Fx. While CVaR is a coherent risk measure, VaR is not convex and so not coherent. CVaR has other remarkable
properties [102]: it is continuous in α and jointly convex in (x, α). For continuous cdf Fx, CVaRα(x) = E{X|X > VaRα(x)}.
Note that the variance is not a coherent risk measure.
11It is important to distinguish between the “local” decisions ak of the agents and “global” decisions uk of the market observer.
Clearly the decisions ak affect the choice of uk as will be made precise below.



552 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

(i) Cost of Stopping: The asset experiences a jump change(shock) in its value at time τ 0. If the
action uk = 1 is chosen before the change point, a false alarm penalty is incurred. This
corresponds to the event ∪

i≥2
{xk = i} ∩ {uk = 1}. Let I denote the indicator function. The cost

of false alarm in state i, i ∈ X with fi ≥ 0 is thus given by fiI(xk = i, uk = 1). The expected
false alarm penalty is

C(πk, uk = 1) =
∑
i∈X

fiE {I(xk = i, uk = 1)|Gk}

= f′πk, (21.33)

where f = (f1, . . . , fX) and it is chosen with increasing elements, so that states further from “1”
incur higher false alarm penalties. Clearly, f1 = 0.

(ii) Cost of delay: A delay cost is incurred when the event {xk = 1, uk = 2} occurs, i.e., even
though the state changed at k, the market observer fails to identify the change. The expected
delay cost is

C(πk, uk = 2) = d E {I(xk = i, uk = 1)|Gk}
= de′

1πk, (21.34)

where d > 0 is the delay cost and e1 denotes the unit vector with 1 in the first position.

Fig. 21.7 illustrates the above social learning model in which the information exchange between the
risk-averse social sensors is sequential.

Market observer’s quickest detection objective
The market observer chooses its action at each time k as

uk = μ(πk) ∈ {1(stop), 2(continue)} , (21.35)

where μ denotes a stationary policy. For each initial distribution π0 ∈ �(X) and policy μ, the following
cost is associated

Jμ(π0) = E
μ
π0

⎧⎨
⎩

τ−1∑
k=1

ρk−1C(πk, uk = 2) + ρτ−1C(πk, uk = 1)

⎫⎬
⎭ . (21.36)

Here ρ ∈ [0, 1] is the discount factor, which is a measure of the degree of impatience of the market
observer. (As long as f is nonzero, stopping is guaranteed in finite time and so ρ = 1 is allowed.)

Given the cost, the market observer’s objective is to determine τ 0 with minimum cost by computing
an optimal policy μ∗ such that

Jμ∗ (π0) = inf
μ∈μ

Jμ(π0). (21.37)

The sequential detection problem (21.37) can be viewed as a partially observed Markov decision
process (POMDP) where the belief update is given by the social learning filter.



21.3 BAYESIAN SOCIAL LEARNING MODELS 553

FIG. 21.7

Sequential detection with risk-averse social sensors. Each social sensor receives a noisy observation on the
state and chooses an action to minimize its CVaR measure of trading. The social sensors communicate their
actions to subsequent sensors. The market observer seeks to determine if there is a change in the value of the
underlying asset from the actions of the sensors.

Stochastic dynamic programming formulation
The optimal policy of the market observer μ∗ : �(X) → {1, 2} is the solution of Eq. (21.36) and is
given by Bellman’s dynamic programming equation as follows:

V(π ) = min

⎧⎨
⎩C(π , 1), C(π , 2) + ρ

∑
a∈A

V(Tπ (π , a))σ (π , a)

⎫⎬
⎭ , (21.38)

μ∗(π ) = argmin

⎧⎨
⎩C(π , 1), C(π , 2) + ρ

∑
a∈A

V(Tπ (π , a))σ (π , a)

⎫⎬
⎭ ,

where Tπ (π , a) = Rπ
a P′π

1′Rπ
a P′π is the CVaR-social learning filter and σ (π , a) = 1′Rπ

a P′π is the

normalization factor of the Bayesian update. C(π , 1) and C(π , 2) from Eqs. (21.33) and (21.34) are
the market observer’s costs. As C(π , 1) and C(π , 2) are nonnegative and bounded for π ∈ �(X), the
stopping time τ is finite for all ρ ∈ [0, 1].



554 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

The aim of the market observer is then to determine the stopping set S = {π ∈ �(X) : μ∗(π ) = 1}
given by:

S =
{

π : C(π , 1) < C(π , 2) + ρ
∑
a∈A

V(Tπ (π , a))σ (π , a)

}
.

The dynamic programming equation (21.38) is similar to that for stopping time POMDP except that
the belief update is given by a CVaR social learning filter. As will be shown below, because of the
social learning dynamics, quite remarkably, S is not necessarily a convex set. This is in stark contrast
to classical quickest detection where the stopping region is always convex irrespective of the change
time distribution [108].

Social learning behavior of risk-averse agents
The following discussion highlights the relation between risk-aversion factor α and the regions Pα

l .
For a given risk-aversion factor α, it can be shown that there are at most Y + 1 polytopes on the belief
space. It was shown in [109] that for the risk neutral case with X = 2, and P = I (the value is a random
variable) the intervals Pα

1 and Pα
3 correspond to the herding region and the interval Pα

2 corresponds to
the social learning region. In the herding region, the agents take the same action as the belief is frozen.
In the social learning region there is observational learning. However, when the agents are optimizing
a more general risk measure (CVaR), the social learning region is different for different risk-aversion
factors. The social learning region for the CVaR risk measure is shown in Fig. 21.8. It can be observed

0.1 0.2 0.3 0.4 0.5
a

0.6 0.7 0.8 0.9 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p 
(2

)

p*
p**

FIG. 21.8

The social learning region for the risk-aversion parameter α ∈ (0, 1]. It can be seen that the curves
corresponding to π∗∗ and π∗ do not intersect and their separation (social learning region) varies with α. Here
P = I, i.e., the value is a random variable.



21.3 BAYESIAN SOCIAL LEARNING MODELS 555

from Fig. 21.8 that Pα
1 becomes smaller, Pα

2 becomes smaller, and Pα
3 becomes larger as α decreases.

The following parameters were chosen:

B =
[

0.8 0.2
0.3 0.7

]
, P =

[
1 0
0 1

]
, c =

[
1 2
3 0.5

]
.

This can be interpreted as risk-averse agents showing a larger tendency to go with the crowd rather than
“risk” choosing the other action. With the same B and c parameters, but with transition matrix

P =
[

1 0
0.1 0.9

]

the social learning region is shown in Fig. 21.9. From Fig. 21.9, it is observed that when the state is
evolving and when the agents are sufficiently risk averse, the social learning region is very small. It can
be interpreted as: agents having a strong risk-averse attitude do not prefer to “learn” from the crowd,
but rather face the same consequences, when P �= I.

Nonconvex stopping set for market shock detection
We now illustrate the solution to the Bellman’s stochastic dynamic programming equation (21.38),
which determines the optimal policy for quickest market shock detection by considering an agent-
based model with two states. Clearly the agents (local decision makers) and market observer interact

0.1 0.2 0.3 0.4 0.5
a

0.6 0.7 0.8 0.9 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p 
(2

)

p*

p**

FIG. 21.9

The social learning region for the risk-aversion parameter α ∈ (0, 1]. It can be seen that the social learning
region is absent when agents are sufficiently risk averse and is larger when the stock value is known to change,
i.e., P �= I.



556 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

0.25 0.5 0.79 1.0

−4

−3

−2

−1

0

1

V
 (

p)

p (2)

p (2)

m*
 (

p)

0.25 0.5 0.75 1.0
0

0.5

1

1.5

2

2.5

3

FIG. 21.10

The value function V (π ) and the double threshold optimal policy μ∗(π ) are plotted over π (2). The significance
of the double threshold policy is that the stopping regions are nonconvex. The implication of a nonconvex
stopping set for the market observer is that if he believes that it is optimal to stop, it need not be optimal to stop
when his belief is larger.

the local decisions ak taken by the agents determines the public belief πk and hence determines decision
uk of the market observer via Eq. (21.35).

Fig. 21.10 displays the value function and optimal policy for a toy example having the following
parameters:

B =
[

0.8 0.2
0.3 0.7

]
, P =

[
1 0

0.06 0.94

]
, c =

[
1 2

2.5 0.5

]
.

The parameters for the market observer are chosen as: d = 1.25, f = [0 3], α = 0.8, and ρ = 0.9.
From Fig. 21.10 it is clear that the market observer has a double threshold policy and the value

function is discontinuous. The double threshold policy is unusual from a signal processing point of
view. Recall that π (2) depicts the posterior probability of no change. The market observer “changes
its mind” it switches from no change to change as the posterior probability of change decreases! Thus
the global decision (stop or continue) is a nonmonotone function of the posterior, probability obtained
from local decisions in the agent-based model. The example illustrates the unusual behavior of the
social learning filter.



21.3 BAYESIAN SOCIAL LEARNING MODELS 557

Summary
In this subsection we provided a Bayesian formulation of the problem of quickest detection of change
in the value of a stock using the decisions of socially aware risk averse agents. The quickest detection
problem was shown to be nontrivial—the stopping region is in general non-convex when the agents’ risk
attitude was accounted for by considering a coherent risk measure, CVaR. Results that characterize the
structural properties of social learning under the CVaR risk measure were provided and the importance
of these results in understanding the global behavior was discussed. It was observed that the behavior
of these risk-averse agents is, as expected, different from risk-neutral agents. Risk-averse agents herd
sooner and do not prefer to “learn” from the crowd, i.e., the social learning region is smaller the more
risk averse the agents. For further structural results on the risk-averse social learning filter, please
see [110].

21.3.3 DATA INCEST IN ONLINE REPUTATION SYSTEMS
In comparison to the previous subsections, where the social learning model was formulated on a line
graph, we now consider social learning on a family of time-dependent directed acyclic graphs; in such
cases, apart from herding, the phenomenon of data incest arises.

Consider an online reputation system comprised of agents {1, 2, . . . , S} that aim to estimate an
underlying state of nature (a random variable). Let x ∈ X = {1, 2, . . . , X} represent the state of
nature (such as the quality of a restaurant/hotel) with known prior distribution π0. Let k = 1, 2, 3, . . .
depict epochs at which events occur. These events involve taking observations, evaluating beliefs, and
choosing actions as described below. The index k marks the historical order of events. For simplicity,
we refer to k as “time.”

It is convenient also to reduce the coordinates of time k and agent s to a single integer index n:

n � s + S(k − 1), s ∈ {1, . . . , S}, k = 1, 2, 3, . . . (21.39)

We refer to n as a “node” of a time-dependent information flow graph Gn which we now define. Let

Gn = (Vn, En), n = 1, 2, . . . (21.40)

denote a sequence of time-dependent directed acyclic graphs (DAGs)12 of information flow in the social
network until and including time k where n = s + S(k − 1). Each vertex in Vn represents an agent s′ in
the social network at time k′ and each edge (n′, n′′) in En ⊆ Vn ×Vn shows that the information (action)
of node n′ (agent s′ at time k′) reaches node n′′ (agent s′′ at time k′′). It is clear that Gn is a subgraph of
Gn+1.

The adjacency matrix An of Gn is an n × n matrix with elements An(i, j) given by

An(i, j) =
{

1 if (vj, vi) ∈ E,

0 otherwise
, An(i, i) = 0. (21.41)

The transitive closure matrix Tn is the n × n matrix

Tn = sgn((In − An)−1), (21.42)

12A DAG is a directed graph with no directed cycles.



558 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

where for matrix M, the matrix sgn(M) has elements

sgn(M)(i, j) =
{

0 if M(i, j) = 0,

1 if M(i, j) �= 0.

Note that An(i, j) = 1 if there is a single hop path between nodes i and j, In comparison, Tn(i, j) = 1 if
there exists a path (possible multihop) between i and j.

The information reaching node n depends on the information flow graph Gn. The following two sets
will be used to specify the incest removal algorithms below:

Hn = {m : An(m, n) = 1}, (21.43)

Fn = {m : Tn(m, n) = 1}. (21.44)

Thus Hn denotes the set of previous nodes m that communicate with node n in a single-hop. In
comparison, Fn denotes the set of previous nodes m whose information eventually arrives at node
n. Thus Fn contains all possible multihop connections by which information from a node m eventually
reaches node n.

Example
Consider S = 2 two agents with information flow graph for three time points k = 1, 2, 3 depicted in
Fig. 21.11 characterized by the family of DAGs {G1, . . . , G7}. The adjacency matrices A1, . . . , A7 are
constructed as follows: An is the upper left n × n submatrix of An+1 and

A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Let us explain these matrices. Because nodes 1 and 2 do not communicate, clearly A1 and A2 are
zero matrices. Nodes 1 and 3 communicate, hence A3 has a single one, etc. Note that if nodes 1, 3, 4,
and 7 are assumed to be the same individual, then at node 7, the individual remembers what happened

1

2

3

4

5

6

7

8

FIG. 21.11

Example of information flow network with S = 2 two agents, namely s ∈ {1, 2} and time points k = 1, 2, 3, 4.
Circles represent the nodes indexed by n = s + S(k − 1) in the social network and each edge depicts a
communication link between two nodes.



21.3 BAYESIAN SOCIAL LEARNING MODELS 559

at node 5 and node 1, but not node 3. This models the case where the individual has selective memory
and remembers certain highlights. From Eqs. (21.43) and (21.44),

H7 = {1, 5, 6}, F7 = {1, 2, 3, 4, 5, 6},
where H7 denotes all one-hop links to node 7 while F7 denotes all multihop links to node 7.

21.3.4 DATA INCEST MODEL AND SOCIAL INFLUENCE CONSTRAINT
Each node n receives recommendations from its immediate friends (one hop neighbors) according to
the information flow graph defined above. That is, it receives actions {am, m ∈ Hn} from nodes m ∈ Hn

and then seeks to compute the associated public beliefs πm, m ∈ Hn. If node n naively (incorrectly)
assumes that the public beliefs πm, m ∈ Hn are independent, then it would fuse these as

πn− =
∏

m∈Hn
πm

1′
X
∏

m∈Hn
πm

. (WRONG!) (21.45)

This naive data fusion would result in data incest.

Aim
The aim is to provide each node n the true posterior distribution

π0
n−(i) = P(x = i|{am, m ∈ Fn}) (21.46)

subject to the following social influence constraint: There exists a fusion algorithm A such that

π0
n− = A(πm, m ∈ Hn). (21.47)

Discussion. Fair rating and social influence
We briefly pause to discuss Eqs. (21.46) and (21.47). (i) We call π0

n− in Eq. (21.46) the true or fair
online rating available to node n because Fn defined in Eq. (21.44) denotes all information (multihop
links) available to node n. By definition π0

n− is incest free and is the desired conditional probability that
agent n needs.

Indeed, if node n combines π0
n− together with its own private observation via social learning, then

clearly

ηn(i) = P(x = i|{am, m ∈ Fn}, yn), i ∈ X,

πn(i) = P(x = i|{am, m ∈ Fn}, an), i ∈ X,

are, respectively, the correct (incest free) private belief for node n and the correct after-action public
belief. If agent n does not use π0

n−, then incest can propagate; for example, if agent n naively uses
Eq. (21.45).

Why should an individual n agree to use π0
n− to combine with its private message? It is here that

the social influence constraint (21.47) is important. Hn can be viewed as the “social message,” i.e.,
personal friends of node n because they directly communicate to node n while the associated beliefs
can be viewed as the “informational message.” As described in the remarkable recent paper [111], the



560 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

social message from personal friends exerts a large social influence13—it provides significant incentive
(peer pressure) for individual n to comply with the protocol of combining its estimate with π0

n− and
thereby prevent incest. Ref. [111] shows that receiving messages from known friends has significantly
more influence on an individual than the information in the messages. This study includes a comparison
of information messages and social messages on Facebook and their direct effect on voting behavior. To
quote [111], “The effect of social transmission on real-world voting was greater than the direct effect of
the messages themselves. . . ” In Section 21.3.7, we provide results of an experiment on human subjects
that also illustrates social influence in social learning. Ref. [112] is an influential paper in the area of
social influence.

21.3.5 INCEST REMOVAL IN ONLINE REPUTATION SYSTEMS
It is convenient to work with the logarithm of the unnormalized belief14; accordingly define

ln(i) ∝ log πn(i), ln−(i) ∝ log πn−(i), i ∈ X.

The following theorem shows that the logarithm of the fair rating π0
n− defined in Eq. (21.46) can be

obtained as a weighted linear combination of the logarithms of previous public beliefs.
Theorem 21.4 (Fair Rating Algorithm). Suppose the network administrator runs the following

algorithm for an online reputation system:

ln−(i) = w′
n l1:n−1(i)

where wn = T−1
n−1tn. (21.48)

Then ln−(i) ∝ log π0
n−(i). That is, the fair rating log π0

n−(i) defined in Eq. (21.46) is obtained. In
Eq. (21.48), wn is an n − 1 dimensional weight vector. Recall that tn denotes the first n − 1 elements of
the nth column of the transitive closure matrix Tn. �

Theorem 21.4 says that the fair rating π0
n− can be expressed as a linear function of the action log-

likelihoods in terms of the transitive closure matrix Tn of graph Gn. This is intuitive because π0
n− can

be viewed as the sum of information collected by the nodes such that there are paths between all these
nodes and n.

Theorem 21.5 (Achievability of Fair Rating). Consider the fair rating algorithm specified by
Eq. (21.48). With available information (πm, m ∈ Hn) to achieve the estimates ln− of algorithm (21.48),
a necessary and sufficient condition on the information flow graph Gn is

An(j, n) = 0 �⇒ wn(j) = 0. (21.49)

(Recall wn is specified in Eq. (21.48).) �

13In a study conducted by social networking site myYearbook, 81% of respondents said they had received advice from friends
and followers relating to a product purchase through a social site; 74 percent of those who received such advice found it to
be influential in their decision. (Click Z, January 2010).
14The unnormalized belief proportional to πn(i) is the numerator of the social learning filter (21.21).The corresponding
unnormalized fair rating corresponding to π0

n−(i) is the joint distribution P(x = i, {am, m ∈ Fn}). By taking the logarithm of
the unnormalized belief, Bayes formula merely becomes the sum of the log likelihood and log prior. This allows us to devise
a data incest removal algorithm based on linear combinations of the log beliefs.



21.3 BAYESIAN SOCIAL LEARNING MODELS 561

Note that the constraint (21.49) is purely in terms of the adjacency matrix An, because the transitive
closure matrix (21.42) is a function of the adjacency matrix.

21.3.6 ORDINAL DECISIONS AND BAYESIAN SOCIAL SENSORS
The social learning protocol assumes that each agent is a Bayesian utility optimizer. The following
discussion puts together ideas from the economics literature to show that under reasonable conditions,
such a Bayesian model is a useful idealization of agents’ behaviors. This means that the Bayesian
social learning follows simple intuitive rules and is, therefore, a useful idealization. (In Section 21.4,
we discuss the theory of revealed preferences that yields a nonparametric test on data to determine if
an agent is a utility maximizer.)

Humans typically make monotone decisions—the more favorable the private observation, the higher
the recommendation. Humans make ordinal decisions15 because humans tend to think in symbolic
ordinal terms. Under what conditions is the recommendation an made by node n monotone increasing
in its observation yn and ordinal? Recall from the social learning protocol (21.20) that the actions of
agents are

ak = arg min
a∈A

{c′
aBykπk}.

So an equivalent question is: Under what conditions is the argmin increasing in observation yn? Note
that an increasing argmin is an ordinal property—that is, argmina c′

aBynπ
0
n− increasing in y implies

argmina φ(c′
aBynπ

0
n−) is also increasing in y for any monotone function φ(·).

The following result gives sufficient conditions for each agent to give a recommendation that is
monotone and ordinal in its private observation:

Theorem 21.6. Suppose the observation probabilities and costs satisfy the following conditions:

(A1) Biy are TP2 (totally positive of order 2); that is, Bi+1,yBi,y+1 ≤ Bi,yBi+1,y+1.
(A2) c(x, a) is submodular. That is, c(x, a + 1) − c(x, a) ≤ c(x + 1, a + 1) − c(x + 1, a).

Then

1. Under (A1) and (A2), the recommendation an(π0
n−, yn) made by agent n is increasing and hence

ordinal in observation yn, for any π0
n−.

2. Under (A2), an(π0
n−, yn) is increasing in belief π0

n− with respect to the monotone likelihood ratio
(MLR) stochastic order16 for any observation yn. �
The proof is in [109]. We can interpret the above theorem as follows. If agents makes recommenda-

tions that are monotone and ordinal in the observations and monotone in the prior, then they mimic the
Bayesian social learning model. Even if the agent does not exactly follow a Bayesian social learning
model, its monotone ordinal behavior implies that such a Bayesian model is a useful idealization.

15Humans typically convert numerical attributes to ordinal scales before making decisions. For example, it does not matter if
the cost of a meal at a restaurant is $200 or $205; an individual would classify this cost as “high.” Also credit rating agencies
use ordinal symbols such as AAA, AA, A.
16 Given probability mass functions {pi} and {qi}, i = 1, . . . , X then p MLR dominates q if log pi−log pi+1 ≤ log qi−log qi+1.



562 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

Condition (A1) is widely studied in monotone decision-making; see the classical book by Karlin
[113] and Karlin and Rinott [114]; numerous examples of noise distributions are TP2. Indeed in the
highly cited paper [115] in the economics literature, observation y + 1 is said to be more “favorable
news” than observation y if Condition (A1) holds.

Condition (A2) is the well known submodularity condition [116–118]. (A2) makes sense in a
reputation system for the costs to be well posed. Suppose the recommendations in action set A are
arranged in increasing order and also the states in X for the underlying state are arranged in ascending
order. Then (A2) says: if recommendation a + 1 is more accurate than recommendation a for state x;
then recommendation a + 1 is also more accurate than recommendation a for state x + 1 (which is a
higher quality state than x).

In the experiment results reported in Section 21.3.7, we found that (A1) and (A2) of Theorem 21.6
are justified.

21.3.7 PSYCHOLOGY EXPERIMENT DATASET
To illustrate social learning, data incest, and social influence, this section presents an actual psychology
experiment that was conducted by our colleagues at the department of psychology of the University of
British Columbia in September and October, 2013. A total of 36 undergraduate students participated in
the experiment for course credit.

Experiment setup
The experimental study involved 1658 individual trials. Each trial comprised two participants who
were asked to perform a perceptual task interactively. The perceptual task was as follows: Two arrays
of circles denoting left and right were given to each pair of participants. Each participant was asked to
judge which array (left or right) had the larger average diameter. The participants answer (left of right)
constituted their action. So the action space is A = {0 (left), 1 (right)}.

The circles were prepared for each trial as follows: two 4 × 4 grids of circles were generated by
uniformly sampling from the radii: {20, 24, 29, 35, 42} (in pixels). The average diameter of each grid
was computed, and if the means differed by more than 8% or less than 4%, new grids were made.
Thus in each trial, the left array and right array of circles differed in the average diameter by 4%–8%
(Fig. 21.12).

For each trial, one of the two participants was chosen randomly to start the experiment by choosing
an action according to his/her observation. Thereafter, each participant was given access to their
partner’s previous response (action) and the participant’s own previous action prior to making his/her
judgment. This mimics the social learning protocol. The participants continued choosing actions
according to this procedure until the experiment terminated. The trial terminated when the response
of each of the two participants did not change for three successive iterations (the two participants did
not necessarily have to agree for the trial to terminate).

In each trial, the actions of participants were recorded along with the time interval taken to choose
their action. As an example, Fig. 21.13 illustrates the sample path of decisions made by the two
participants in one of the 1658 trials. In this specific trial, the average diameter of the left array of
circles was 32.1875 and the right array was 30.5625 (in pixels); so the ground truth was 0 (left).



21.3 BAYESIAN SOCIAL LEARNING MODELS 563

FIG. 21.12

Two arrays of circles were given to each pair of participants on a screen. Their task is to interactively determine
which side (left or right) had the larger average diameter. The partner’s previous decision was displayed on
screen prior to the stimulus.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Trial

A
ct

io
n 

(0
 fo

r 
le

ft,
 1

 fo
r 

rig
ht

)

Participant 1
Participant 2

FIG. 21.13

Example of sample path of actions chosen by two participants in a single trial of the experiment. In this trial,
both participants eventually chose the correct answer 0 (left).



564 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

Experimental results
The results of our experimental study are as follows:

Social learning model
As mentioned above, the experiment for each pair of participants was continued until both participants’
responses stabilized. In what percentage of these experiments did an agreement occur between the two
participants? The answer to this question reveals whether “herding” occurred in the experiments and
whether the participants performed social learning (influenced by their partners). The experiments show
that in 66% of trials (1102 among 1658), participants reached an agreement; that is, herding occurred.
Further, in 32% of the trials, both participants converged to the correct decision after a few interactions.

To construct a social learning model for the experimental data, we consider the experiments where
both participants reached an agreement. Define the social learning success rate as

#expts where both participants chose correct answer

#expts where both participants reached an agreement
·

In the experimental study, the state space is X = {0, 1} where x = 0, when the left array of circles has
the larger diameter and x = 1, when the right array has the larger diameter. The initial belief for both
participants is considered to be π0 = [0.5, 0.5]. The observation space is assumed to be Y = {0, 1}.

To estimate the social learning model parameters (observation probabilities Biy and costs c(i, a)),
we determined the parameters that best fit the learning success rate of the experimental data. The best
fit parameters obtained were17

Biy =
[

0.61 0.39
0.41 0.59

]
, c(i, a) =

[
0 2
2 0

]
.

Note that Biy and c(i, a) satisfy both conditions of Theorem 21.6, namely TP2 observation probabilities
and single-crossing cost. This implies that the subjects of this experiment made monotone and ordinal
decisions.

Data incest
Here, we study the effect of information patterns in the experimental study that can result in data
incest. Because private observations are highly subjective and participants did not document these,
we cannot claim with certainty whether data incest changed the action of an individual. However,
from the experimental data, we can localize specific information patterns that can result in incest. In
particular, we focus on the two information flow graphs depicted in Fig. 21.14. In the two graphs of
Fig. 21.14, the action of the first participant at time k influenced the action of the second participant at
time k + 1, and thus, could have been double counted by the first participant at time k + 2. We found
that in 79% of experiments, one of the information patterns shown in Fig. 21.14 occurred (1303 out
of 1658 experiments). Further, in 21% of experiments, the information patterns shown in Fig. 21.14
occurred and at least one participant changed his/her decision, i.e., the judgment of participant at

17Parameter estimation in social learning is a challenging problem not addressed in this chapter. Due to the formation
of cascades in finite time, construction of an asymptotically consistent estimator is impossible because actions after the
formation of a cascade contain no information.



21.3 BAYESIAN SOCIAL LEARNING MODELS 565

FIG. 21.14

Two information patterns from our experimental studies that can result in data incest.

time k + 1 differed from his/her judgments at time k + 2 and k. These results show that even for
experiments involving two participants, data incest information patterns occur frequently (79%) and
cause individuals to modify their actions (21%). It shows that social learning protocols require careful
design to handle and mitigate data incest.

21.3.8 SUMMARY AND EXTENSIONS
In this section, we have outlined a controlled sensing problem over a social network in which the
administrator controls (removes) data incest and thereby maintains an unbiased (fair) online reputation
system. The state of nature could be geographical coordinates of an event (in a target localization
problem) or quality of a social unit (in an online reputation system). As discussed above, data incest



566 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

arises due to the recursive nature of Bayesian estimation and nondeterminism in the timing of the
sensing by individuals. Details of proofs, extensions, and further numerical studies are presented in [88,
119].

We summarize some extensions of the social learning framework that are relevant to interactive
sensing.

Wisdom of crowds
Surowiecki’s book [120] is an excellent popular piece that explains the wisdom-of-crowds hypothesis.
The wisdom-of-crowds hypothesis predicts that the independent judgments of a crowd of individuals
(as measured by any form of central tendency) will be relatively accurate, even when most of the
individuals in the crowd are ignorant and error-prone. The book also studies situations (such as rational
bubbles) in which crowds are not wiser than individuals. Collect enough people on a street corner
staring at the sky, and everyone who walks past will look up. Such herding behavior is typical in social
learning.

In which order should agents act?
In the social learning protocol, we assumed that the agents act sequentially in a predefined order.
However, in many social networking applications, it is important to optimize the order in which agents
act. For example, consider an online review site where individual reviewers with different reputations
make their reviews publicly available. If a reviewer with a high reputation publishes her review first, this
review will unduly affect the decision of a reviewer with a lower reputation. In other words, if the most
senior agent “speaks” first it would unduly affect the decisions of more junior agents. This could lead
to an increase in bias of the underlying state estimate.18 On the other hand, if the most junior agent is
polled first, then because its variance is large, several agents would need to be polled in order to reduce
the variance. We refer the reader to [122] for an interesting description of who should speak first in a
public debate.19 It turns out that for two agents, the seniority rule is always optimal for any prior—that
is, the senior agent speaks first followed by the junior agent; see [122] for the proof. However, for more
than two agents, the optimal order depends on the prior, and the observations in general.

21.4 REVEALED PREFERENCES: ARE SOCIAL SENSORS UTILITY
MAXIMIZERS?
We now move on to the third main topic of the chapter, namely, the principle of revealed preferences.
The main question addressed is: Given a dataset of decisions made by a social sensor, is it possible
to determine if the social sensor is a utility maximizer? More generally, is a dataset from a multiagent

18To quote [121]: “In 94% of cases, groups (of people) used the first answer provided as their final answer. . . Groups tended
to commit to the first answer provided by any group member.” People with dominant personalities tend to speak first and
most forcefully “even when they actually lack competence.”
19As described in [122], seniority is considered in the rules of debate and voting in the Supreme Court. “In the past, a vote
was taken after the newest justice to the Court spoke, with the justices voting in order of ascending seniority largely, it was
said, to avoid the pressure from long-term members of the Court on their junior colleagues.”



21.4 REVEALED PREFERENCES: ARE SOCIAL SENSORS UTILITY MAXIMIZERS? 567

system consistent with play from a Nash equilibrium? If yes, can the behavior of the social sensors be
learned using data from the social network?

These questions are fundamentally different to the model-based theme that is widely used in the
signal processing literature in which an objective function (typically convex) is proposed and then
algorithms are constructed to compute the minimum. In contrast, the revealed preference approach is
data-centric—we wish to determine whether the dataset is obtained from a utility maximizer. In simple
terms, revealed preference theory seeks to determine if an agent is a utility maximizer subject to budget
constraints based on observing its choices over time. In signal processing terminology, such problems
can be viewed as set-valued system identification of an argmax nonlinear system. The principle of
revealed preferences is widely studied in the microeconomics literature. As mentioned in Section 21.1,
Varian has written several influential papers in this area. In this section we will use the principle of
revealed preferences on datasets to determine how social sensors behave as a function of external
influence. The setup is depicted in the schematic diagram Fig. 21.15.

21.4.1 AFRIAT’S THEOREM FOR A SINGLE AGENT
The theory of revealed preferences was pioneered by Samuelson [123]. Afriat published a highly
influential paper [28] on revealed preferences (see also [124]). Given a time-series of data D =
{(pt, xt), t ∈ {1, 2, . . . , T}} where pt ∈ Rm denotes the external influence, xt denotes the response of
agent, and t denotes the time index, is it possible to detect if the agent is a utility maximizer? An agent
is a utility maximizer if for every external influence pt, the chosen response xt satisfies

xt(pt) ∈ arg max
{p′

tx≤It}
u(x) (21.50)

with u(x) a nonsatiated utility function. Nonsatiated means that an increase in any element of response
x results in the utility function increasing.20 As shown by Diewert [125], without local nonsatiation the
maximization problem (21.50) may have no solution.

In Eq. (21.50) the budget constraint p′
tx ≤ It denotes the total amount of resources available to

the social sensor for selecting the response x to the external influence pt. For example, if pt is the
electricity price and xt the associated electricity consumption, then the budget of the social sensor is the
available monetary funds for purchasing electricity. In the real-world social sensor datasets provided in
this chapter, further insights are provided for the budget constraint.

The celebrated “Afriat’s theorem” provides a necessary and sufficient condition for a finite dataset
D to have originated from a utility maximizer. Afriat’s theorem has subsequently been expanded and
refined, most notably by Diewert [125], Varian [29], and Blundell [126].

Theorem 21.7 (Afriat’s Theorem). Given a dataset D = {(pt, xt) : t ∈ {1, 2, . . . , T}}, the following
statements are equivalent:

1. The agent is a utility maximizer and there exists a nonsatiated and concave utility function that
satisfies Eq. (21.50).

20The nonsatiated assumption rules out trivial cases such as a constant utility function that can be optimized by any response.



568 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

2. For scalars ut and λt > 0 the following set of inequalities has a feasible solution:

uτ − ut − λtp
′
t(xτ − xt) ≤ 0 for t, τ ∈ {1, 2, . . . , T}. (21.51)

3. A nonsatiated and concave utility function that satisfies Eq. (21.50) is given by:

u(x) = min
t∈T

{ut + λtp
′
t(x − xt)}. (21.52)

4. The dataset D satisfies the Generalized Axiom of Revealed Preference (GARP), namely for any
k ≤ T, p′

txt ≥ p′
txt+1 ∀t ≤ k − 1 �⇒ p′

kxk ≤ p′
kx1. �

As pointed out in [29], a remarkable feature of Afriat’s theorem is that if the dataset can be
rationalized by a nontrivial utility function, then it can be rationalized by a continuous, concave,
monotonic utility function. “Put another way, violations of continuity, concavity, or monotonicity
cannot be detected with only a finite number of demand observations.”

Verifying GARP (statement 4 of Theorem 21.7) on a dataset D comprising T points can be done
using Warshall’s algorithm with O(T3) [29,127] computations. Alternatively, determining if Afriat’s
inequalities (21.51) are feasible can be done via an LP feasibility test (using, for example, interior point
methods [128]). Note that the utility (21.52) is not unique and is ordinal by construction. Ordinal means
that any monotone increasing transformation of the utility function will also satisfy Afriat’s theorem.
Therefore the utility mimics the ordinal behavior of humans, see also Section 21.3.6. Geometrically the
estimated utility (21.52) is the lower envelop of a finite number of hyperplanes that is consistent with
the dataset D.

Note that GARP is equivalent to the notion of “cyclical consistency” [129]—they state that the
responses are consistent with utility maximization if no negative cycles are present. As an example,
consider a dataset D with T = 2 observations resulting from a utility maximization agent. Then GARP
states that p′

1x1 ≥ p′
1x2 �⇒ p′

2x2 ≤ p′
2x1. From Eq. (21.50), the underlying utility function must

satisfy u(x1) ≥ u(x2) �⇒ u(x2) ≤ u(x1) where the equality results if x1 = x2.
Another remarkable feature of Afriat’s Theorem is that no parametric assumptions of the utility

function of the agent are necessary. To gain insight into the construction of the inequalities (21.51), let
us assume the utility function u(x) in Eq. (21.50) is increasing for positive x, concave, and differentiable.
If xt solves the maximization problem (21.50), then from the Karush-Kuhn-Tucker (KKT) conditions
there must exist Lagrange multipliers λt such that

∇u(xt) = λt∇(p′
txt − It) = λtpt

is satisfied for all t ∈ {1, 2, . . . , T}. Note that because u(x) is increasing, ∇u(xt) = λtpt > 0, and because
pt is strictly positive, λt > 0. Given that u(x) is a concave differentiable function, it follows that

u(x) ≤ u(xt) + ∇u(xt)′(x − xt) ∀t ∈ {1, 2, . . . , T}.
Denoting ut = u(xt) and uτ = u(xτ ), and using the KKT conditions and concave differential property,
the inequalities (21.51) result. To prove that if the solution of Eq. (21.51) is feasible then GARP is
satisfied can be performed using the duality theorem of linear programming as illustrated in [127].



21.4 REVEALED PREFERENCES: ARE SOCIAL SENSORS UTILITY MAXIMIZERS? 569

21.4.2 REVEALED PREFERENCES FOR MULTIAGENT SOCIAL SENSORS
We now consider a multiagent version of Afriat’s theorem for deciding if a dataset is generated by
playing from the equilibrium of a potential game.21 An example is the control of power consumption
in the electrical grid. Consider a corporate network of financial management operators that selects the
electricity prices in a set of zones in the power grid. By selecting the prices of electricity the operators
are expected to be able to control the power consumption in each zone. The operators wish to supply
their consumers with sufficient power; however, given the finite amount of resources the operators in
the corporate network must interact. This behavior can be modeled as a game. Recent analysis of energy
use scheduling and demand-side management schemes in the energy market have been performed using
potential games [131–133]. Another example of potential games are congestion games [134–137] in
which the utility of each player depends on the amount of resource it and other players use.

Consider the social network presented in Fig. 21.15, given a time series of data from N agents
D = {(pt, x1

t , . . . , xn
t ) : t ∈ {1, 2, . . . , T}} with pt ∈ Rm the external influence, xi

t the response of agent
i, and t the time index, is it possible to detect if the dataset originated from agents that play a potential
game?

The characterization of how agents behave as a function of external influence, for example, the price
of using a resource, and the responses of other agents in a social network, is key for analysis. Consider
the social network illustrated in Fig. 21.15. There are a total of n interacting agents in the network and
each can produce a response xi

t in response to the other agents and an external influence pt. Without
any a priori assumptions about the agents, how can the behavior of the agents in the social network be
learned? In the engineering literature the behavior of agents is typically defined a priori using a utility
function however our focus here is on learning the behavior of agents. The utility function captures

External influence

pt xt
1,···,xt

n

1 2

3

4n−1

n

Social network

FIG. 21.15

Schematic of a social network containing n agents where pt ∈ Rm denotes the external influence, and xi
t ∈ Rm

the response of agent i in response to the external influence and other agents at time t . Note that dotted line
denotes consumers 4, . . . , n − 1. The aim is to determine if the dataset D defined in Eq. (21.53), is consistent
with play from a Nash equilibrium.

21As in [130], we consider potential games because they are sufficiently specialized so that there exist datasets that fail
Afriat’s test.



570 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

the satisfaction or payoff an agent receives from a set of possible responses, denoted by X. Formally,
a utility function u : X → R represents a preference relation between responses x1 and x2 if and
only if for every x1, x2 ∈ X, u(x1) ≤ u(x2) implies x2 is preferred to x1. Given a time series of data
D = {(pt, x1

t , . . . , xn
t ) : t ∈ {1, 2, . . . , T}} with pt ∈ Rm the external influence, xi

t the response of agent
i, and t the time index, is it possible to detect if the series originated from an agent that is a utility
maximizer?

In a network of social sensors (Fig. 21.15), the responses of agents may be dependent on both the
external influence pt and the responses of the other agents in the network, denoted by x−i

t . The utility
function of the agent must now include the responses of other agents—formally if there are n agents,
each has a utility function ui(xi, x−i

t ) with xi denoting the response of agent i, x−i
t the responses of the

other n − 1 agents, and ui(·) the utility of agent i. Given a dataset D, is it possible to detect if the
data is consistent with agents playing a game and maximizing their individual utilities? Deb, following
Varian’s and Afriat’s work, shows that refutable restrictions exist for the dataset D, given by Eq. (21.53),
to satisfy Nash equilibrium (21.54) [28,130,138]. These refutable restrictions are, however, satisfied by
most D [130]. The detection of agents engaged in a concave potential game, and generating responses
that satisfy Nash equilibrium, provide stronger restrictions on the dataset D [130,139]. We denote this
behavior as Nash rationality, defined as follows:

Definition 21.1 ([139–141]). Given a dataset

D = {(pt, x1
t , x2

t , . . . , xn
t ) : t ∈ {1, 2, . . . , T}}, (21.53)

D is consistent with Nash equilibrium play if there exist utility functions ui(xi, x−i) such that

xi
t = xi∗

t (pt) ∈ arg max
{p′

txi≤Ii
t }

ui(xi, x−i). (21.54)

In Eq. (21.54), ui(x, x−i) is a nonsatiated utility function in x, x−i = {xj}j�=i for i, j ∈ {1, 2, . . . , n}, and
the elements of pt are strictly positive. Nonsatiated means that for any ε > 0, there exists a xi with
‖xi − xi

t‖2 < ε such that ui(xi, x−i) > ui(xi
t, x−i

t ). If for all xi, xj ∈ Xi, there exists a concave potential
function V that satisfies

ui(xi, x−i) − ui(xj, x−i) > 0 iff V(xi, x−i) − V(xj, x−i) > 0 (21.55)

for all the utility functions ui(·) with i ∈ {1, 2, . . . , n}, then the dataset D satisfies Nash rationality. �
Just as with the utility maximization budget constraint in Eq. (21.50), the budget constraint p′

tx
i ≤ Ii

t
in Eq. (21.54) models the total amount of resources available to the social sensor for selecting the
response xi

t to the external influence pt.
The detection test for Nash rationality (Definition 21.1) has been used in [142] to detect if oil-

producing countries are collusive, and in [130] for the analysis of household consumption behavior.
In the following sections, decision tests for utility maximization and a nonparametric learning

algorithm for predicting agent responses are presented. Three real-world datasets are analyzed using the
nonparametric decision tests and learning algorithm. The datasets are comprised of bidders’ auctioning
behavior, electrical consumption in the power grid, and on the tweeting dynamics of agents in the social
network Twitter, illustrated in Fig. 21.15.



21.4 REVEALED PREFERENCES: ARE SOCIAL SENSORS UTILITY MAXIMIZERS? 571

21.4.3 DECISION TEST FOR NASH RATIONALITY
This section presents a nonparametric test for Nash rationality given the dataset D defined in
Eq. (21.53). If the dataset D passes the test, then it is consistent with play according to a Nash
equilibrium of a concave potential game. In Section 21.4.4, a learning algorithm is provided that can
be used to predict the response of agents in the social network provided in Fig. 21.15.

The following theorem provides necessary and sufficient conditions for a dataset D to be consistent
with Nash rationality (Definition 21.1). The proof is analogous to Afriat’s Theorem when the concave
potential function of the game is differentiable [130,139,143].

Theorem 21.8 (Multiagent Afriat’s Theorem). Given a dataset D (21.53), the following state-
ments are equivalent:

1. D is consistent with Nash rationality (Definition 21.1) for an n-player concave potential game.
2. Given scalars vt and λi

t > 0 the following set of inequalities have a feasible solution for
t, τ ∈ {1, . . . , T},

vτ − vt −
n∑

i=1

λi
tp

′
t(x

i
τ − xi

t) ≤ 0. (21.56)

3. A concave potential function that satisfies Eq. (21.54) is given by:

V̂(x1, x2, . . . , xn) = min
t∈T

⎧⎨
⎩vt +

n∑
i=1

λi
tp

′
t(x

i − xi
t)

⎫⎬
⎭ . (21.57)

4. The dataset D satisfies the Potential Generalized Axiom of Revealed Preference (PGARP) if the
following two conditions are satisfied.
a. For every dataset Di

τ = {(pt, xi
t) : t ∈ {1, 2, . . . , τ }} for all i ∈ {1, . . . , n} and all τ ∈ {1, . . . , T},

Di
τ satisfies GARP.

b. The responses xi
t originated from players in a concave potential game. �

Note that if only a single agent (i.e., n = 1) is considered, then Theorem 21.8 is identical to Afriat’s
Theorem. Similar to Afriat’s Theorem, the constructed concave potential function (21.57) is ordinal—
that is, unique up to positive monotone transformations. Therefore several possible options for V̂(·)
exist that would produce identical preference relations to the actual potential function V(·). In (4) of
Theorem 21.8, the first condition only provides necessary and sufficient conditions for the dataset D to
be consistent with a Nash equilibrium of a game, therefore the second condition is required to ensure
consistency with the other statements in the Multiagent Afriat’s Theorem. The intuition that connects
statements 1 and 3 in Theorem 21.8 is provided by the following result from [141]; for any smooth
potential game that admits a concave potential function V , a sequence of responses {xi}i∈{1,2,...,n} is
generated by a pure-strategy Nash equilibrium if and only if it is a maximizer of the potential function,

xt = {x1
t , x2

t , . . . , xn
t } ∈ arg max V({xi}i∈{1,2,...,n})

s.t. p′
tx

i ≤ Ii
t ∀i ∈ {1, 2, . . . , n} (21.58)

for each probe vector pt ∈ Rm+.



572 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

The nonparametric test for Nash rationality involves determining if Eq. (21.56) has a feasible
solution. Computing parameters vt and λi

t > 0 in Eq. (21.56) involves solving a linear program with
T2 linear constraints in (n + 1)T variables, which has polynomial time complexity [128]. In the special
case of one agent, the constraint set in Eq. (21.56) is the dual of the shortest path problem in network
flows. Using the graph theoretic algorithm presented in [144], the solution of the parameters ut and λt

in Eq. (21.51) can be computed with time complexity O(T3).

21.4.4 LEARNING ALGORITHM FOR RESPONSE PREDICTION
In the previous section a nonparametric test to detect if a dataset D is consistent with Nash rationality
was provided. If the D satisfies Nash rationality, then the Multiagent Afriat’s Theorem can be used
to construct the concave potential function of the game for agents in the social network illustrated in
Fig. 21.15. In this section we provide a nonparametric learning algorithm that can be used to predict
the responses of agents using the constructed concave potential function (21.57).

To predict the response of agent i, denoted by x̂i
τ , for probe pτ and budget Ii

τ , the optimization
problem (21.58) is solved using the estimated potential function V̂ (21.57), pτ , and Ii

τ . Computing
x̂i
τ requires solving an optimization problem with linear constraints and concave piece-wise linear

objective. This can be solved using the interior point algorithm [128]. The algorithm used to predict the
response x̂τ = (x̂1

τ , x̂2
τ , . . . , x̂n

τ ) is given below:

Step 1: Select a probe vector pτ ∈ Rm+, and response budget Ii
τ for the estimation of optimal response

x̂τ ∈ Rm×n+ .
Step 2: For dataset D, compute the parameters vt and λi

t using Eq. (21.56).
Step 3: The response x̂τ is computed by solving the following linear program given {D, pτ , Ii

τ }, and
{vt, λi

t} from Step 2:

max z

s.t. z ≤ vt +
n∑

i=1
λi

tp
′
t(x̂i

τ − xi
t) for t = 1, . . . , T

p′
τ x̂i

τ ≤ Ii
τ ∀i ∈ {1, 2, . . . , n}.

(21.59)

21.4.5 DATASET 1: ONLINE MULTIWINNER AUCTION
This section illustrates how Afriat’s Theorem from Section 21.4.1 can be used to determine if bidders
in an online multiwinner auction are utility optimizers. Online auctions are rapidly gaining popularity
because bidders do not have to gather at the same geographical location. Several researchers have
focused on the timing of bids and multiple bidding behavior in Amazon and eBay auctions [145–148].
The analysis of the bidding behavior can be exploited by auctioneers to target suitable bidders and
thereby increase profits.

The multiwinner auction dataset was obtained from an experimental study conducted among
undergraduate students in electrical engineering at Princeton University on March 25, 2011.22 The

22The experimental data is provided by Leberknight et al. [149].



21.4 REVEALED PREFERENCES: ARE SOCIAL SENSORS UTILITY MAXIMIZERS? 573

multiwinner auction consists of bidders competing for questions that will aid them for an upcoming
midterm exam. The social network is composed of n = 12 bidders where the bidders do not interact
with other bidders, they only interact with the external influence, refer to Fig. 21.15. Each bidder is
endowed with 500 tokens prior to starting the multiwinner auction. The number of questions being
auctioned is not known to the bidders; this prevents the bidders from immediately submitting their
entire budget in the final auction. Each auction consists of auctioning a single question at an initial price
of 10 tokens and has a duration of 30 min. At the beginning of each auction the bidders are provided
with the number of winners, denoted k, that auction will have, and the budget of each bidder. The bids
are private information with each bidder only informed when their bid has been outbid. The bidders
do not communicate with each other during the auction. At the end of each auction, the first k highest
bidders are selected, denoted by ζ1, ζ2, . . . , ζk. The bidders ζ1, ζ2, . . . , ζk are awarded with the question,
and pay the second largest bid amount (i.e., bidder ζk pays ζk−1’s bid amount). In the multiwinner
auction it is in the self interest of bidders to force other bidders to spend too much, eliminating them
from competing in successive auctions.

If the bidding behavior of agents satisfies Afriat’s test (21.51) for utility maximization, the next goal
is to classify the behavior of bidders into two categories: strategic and frantic. If a bidder fails Afriat’s
test then they are classified as irrational. Strategic bidders will typically submit a large number of
bids and a smaller bid amount when compared to frantic bidders. With this bidding behavior, strategic
bidders force the other bidders to spend too much, eliminating them from competing in future auctions.
Frantic bidders are, however, only interested in winning the current auction.

To apply Afriat’s test (21.51), the external influence pt, and bidder responses xt must be defined.
The external influence for each bidder is defined by pi

t = [pi
t(1), pi

t(2)] with pi
t(1) = initial bid amount

representing the bidders interest level for winning, and pi
t(2) = # of winners representing the perception

of winning where i is the bidder and t the auction. Two datasets are considered for analysis denoted
by D1 and D2. An identical external influence is used to construct both D1 and D2. The responses
in D1 are given by xi

t = [xi
t(1), xi

t(2)] where xi
t(1) = # of bids and xi

t(2) = mean bid amount; and
for D2 the inputs of xi

t are given by xi
t(1) = # of bids and xi

t(2) = mean change in bid amount. The
response xi

t(2) in D1 provides the expected bid amount, and xi
t(2) in D2 a measure of the statistical

dispersion of the bids. The budget Ii
t of each bidder has units of tokens multiplied by # of bids, and

is constrained as the number of tokens and auction duration are finite. The datasets D1 and D2 are
constructed from T = 6 auctions. The nonparametric test (21.51) is applied to each dataset D1 and
D2 to detect irrational bidders. For dataset D1 bidder 4 is irrational, and for D2 bidder 11 is irrational.
Note that the classification of irrational behavior is dependent on the choice of response signals used
for analysis by the experimentalist.

For utility maximization bidders, an estimate of the utility function of each bidder is required to
classify them as strategic or frantic. To estimate the utility function of the bidders, a subset of data
from D1, denoted as D̄1, is selected such that the preferences of all agents i in D̄1 are identical. It
was determined that D̄1 = {(pi

t, xi
t) : i ∈ {1, 3, 5, 7, 12}}. Because the preferences of these bidders

are identical, we can consider all the data in D̄1 as originating from a single representative bidder.
This allows an improved estimate of the utility function of these bidders as compared to learning the
utility function for each bidder separately. An analogous explanation is used for the construction of
D̄2 = {(pi

t, xi
t) : i ∈ {1, 2, 3, 4, 7, 8, 9}} from the dataset D2. The estimated utility function for D̄1 is given

in Fig. 21.16A and for D̄2 in Fig. 21.16B. As seen from Fig. 21.16A and B, bidders have a preference to
increase the number of bids compared with increasing the mean bid amount or the difference in mean



574 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

FIG. 21.16

Estimated utility function of bidders is constructed using Eq. (21.52) using the datasets D̄1 and D̄2 defined in
Section 21.4.5. The black dots represent the utility associated with experimentally measured responses, and
the color in the online version of the chapter (blue to red) indicates the utility level. The black dots indicate the
observed demands, and the shape (i.e., circle, diamond, etc.) denotes the respective bidder. (A) Estimated
utility function u(xt ) using dataset D̄1 defined in Section 21.4.5. (B) Estimated utility function u(xt ) using
dataset D̄2 defined in Section 21.4.5.

bid amount. This follows logically as xi
t(2) increases, the bidder will have to pay more tokens to win

the question, limiting their ability to bid in future auctions. Interestingly, the bidders show strategic and
frantic behavior in both datasets D̄1 and D̄2, as seen in Fig. 21.16A and B. This is consistent with the
results in [147] that show that bidders change their bidding behavior between successive auctions.

The analysis shows that auctioneers should target bidders that show frantic bidding behavior as
they are likely to overspend on items, increasing the revenue of the auctioneer. Such behavior can be
detected using the utility maximization test and constructed utility function from Afriat’s Theorem.

21.4.6 DATASET 2: ONTARIO ELECTRICAL ENERGY MARKET DATASET
In this section we consider the aggregate power consumption of different zones in the Ontario power
grid. A sampling period of T = 79 days starting from January 2013 is used to generate the dataset D
for the analysis. All price and power consumption data are available from the Independent Electricity
System Operator23 (IESO) website. Each zone is considered as an agent in the corporate network
illustrated in Fig. 21.15. The study of corporate social networks was pioneered by Granovetter [150,
151], which shows that the social structure of the network can have important economic outcomes.

23http://ieso-public.sharepoint.com/.



21.4 REVEALED PREFERENCES: ARE SOCIAL SENSORS UTILITY MAXIMIZERS? 575

Examples include agent’s choice of alliance partners, assumption of rational behavior, self-interest
behavior, and the learning of other agent’s behavior. Here we test for rational behavior (i.e., utility
maximization and Nash rationality), and if true then learn the associated behavior of the zones. This
analysis provides useful information for constructing demand-side management (DSM) strategies for
controlling power consumption in the electricity market. For example, if a utility function exists it can
be used in the DSM strategy presented in [152,153].

The zone’s power consumption is regulated by the associated price of electricity set by the senior
management officer in each respective zone. Because there is a finite amount of power in the grid, each
officer must communicate with other officers in the network to set the price of electricity. Here we
utilize the aggregate power consumption from each of the n = 10 zones in the Ontario power grid and
apply the nonparametric tests for utility maximization (21.51) and Nash rationality (21.56) to detect if
the zones are demand responsive. If the utility maximization or Nash rationality tests are satisfied, then
the power consumption behavior is modeled by constructing the associated utility function (21.52) or
concave potential function of the game (21.57).

To perform the analysis, the external influence pt and response of agents xt must be defined. In
the Ontario power grid the wholesale price of electricity is dependent on several factors such as
consumer behavior, weather, and economic conditions. Therefore the external influence is defined as
pt = [pt(1), pt(2)] with pt(1) the average electricity price between midnight and noon, and pt(2) as the
average between noon and midnight with t denoting day. The response of each zone corresponds to the
total aggregate power consumption in each respective tie associated with pt(1) and pt(2) and is given
by xi

t = [xi
t(1), xi

t(2)] with i ∈ {1, 2, . . . , n}. The budget Ii
t of each zone has units of dollars as pt has

units of $/kWh and xi
t units of kWh.

We found that the aggregate consumption data of each zone does not satisfy Afriat’s utility
maximization test (21.51). This points to the possibility that the zones are engaged in a concave
potential game—this would not be a surprising result as network congestion games have been shown
to reduce peak power demand in distributed demand management schemes [132]. To test if the dataset
D is consistent with Nash rationality, the detection test (21.56) is applied. The dataset for the power
consumption in the Ontario power gird is consistent with Nash rationality. Using Eq. (21.59), a concave
potential function for the game is constructed. Using the constructed potential function, when do agents
prefer to consume power? The marginal rate of substitution24 (MRS) can be used to determine the
preferred time for power usage. Formally, the MRS of xi(1) for xi(2) is given by

MRS12 = ∂V̂/∂xi(1)
∂V̂/∂xi(2)

.

From the constructed potential function we find that MRS12 > 1, suggesting that the agents prefer to
use power in the time period associated with xt(1)—that is, the agents are willing to give up MRS12 kWh
of power in the time period associated with xi(2) for 1 additional kWh of power in the time period
associated with xi(1).

The analysis in this section suggests that the power consumption behavior of agents is consistent
with players engaged in a concave potential game. Using the Multiagent Afriat’s Theorem, the agents

24The amount of one good that an agent is willing to give up in exchange for another good while maintaining the same level
of utility.



576 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

preference for using power was estimated. This information can be used to improve the DSM strategies
presented in [152,153] to control power consumption in the electricity market.

21.4.7 DATASET 3: TWITTER DATA
Does the tweeting behavior of Twitter agents satisfy a utility maximization process? The goal is to
investigate how tweets and trend indices25 impact the tweets of agents in the Twitter social network.
The information provided by this analysis can be used in social media marketing strategies to improve
a brand and for brand awareness. As discussed in [154], Twitter may rely on a huge amount of agent-
generated data, which can be analyzed to provide novel personal advertising to agents.

To apply Afriat’s utility maximization test (21.51), we choose the external influence and response as
follows. External influence pt = [#Sony, 1/#Playstation] for each day t. The associated response taken
by the agents in the network is given by xt = [#Microsoft, #Xbox]. Notice that the probe pt(2) can be
interpreted as the frequency of tweets with the word Playstation (i.e., the trending index). The dataset
D of external influence and responses is constructed from T = 80 days of Twitter data starting from
January 1, 2013. The dataset D satisfies the utility maximization test (21.51). This establishes that utility
function exists for agents that is dependent on the number of tweets containing the words Microsoft and
Xbox. The data shows that tweets containing the word Microsoft and Xbox are dependent on the number
of tweets containing Sony and trending index of Playstation. This dependency is expected as Microsoft
produces the game console Xbox, and Sony produces the game console Playstation, both of which have
a large number of brand followers (e.g., Xbox has more than 3 million, and Playstation more than 4
million). To gain further insight into the behavior of the agents, Eq. (21.52) from Afriat’s Theorem is
used to construct a utility function for the agents. Fig. 21.17 shows the constructed utility function of

FIG. 21.17

Estimated utility function u(xt ) using dataset D defined in Section 21.4.7 and constructed using the
nonparametric learning algorithm (21.52) from Afriat’s theorem.

25Here we define the trend index as the frequency of tweets containing a particular word [154].



21.4 REVEALED PREFERENCES: ARE SOCIAL SENSORS UTILITY MAXIMIZERS? 577

the agents. As seen, agents have a higher utility for using the word Microsoft as compared to Xbox—that
is, agents prefer to use the word Microsoft to that of Xbox. Interestingly, if we define the response to be
xt = [#Microsoft, 1/#Xbox], then the dataset satisfies utility maximization. From the constructed utility
function, not shown, the agents prefer to increase the tweets containing the word Microsoft compared to
increasing the trend index of Xbox. If instead xt = [1/#Microsoft, 1/#Xbox], then the dataset satisfies
utility maximization and agents prefer to increase the trend index of Microsoft compared to that of
Xbox.

To summarize, the above analysis suggests the following interesting fact: Xbox has a lower utility
than Microsoft in terms of Twitter sentiment. Therefore, online marketing strategies should target the
brandname Microsoft instead of Xbox.

21.4.8 SUMMARY AND EXTENSIONS
The principle of revealed preferences is an active research area with numerous recent papers. We have
already mentioned the papers [29,125,126]. Below we summarize some related literature that extends
the basic framework of Afriat’s theorem.

Afriat’s theorem holds for finite datasets and gives an explicit construction of a class of concave
utility functions that rationalizes the dataset. Mas-Colell [155] has given sufficient conditions under
which, as the data set size T grows to infinity, the underlying utility function of the consumer can be
fully identified.

Though the classical Afriat’s theorem holds for linear budget constraints p′
tx ≤ It in Eq. (21.50), an

identical formulation holds for certain nonlinear budget constraints as illustrated in [156]. The budget
constraints considered in [156] are of the form {x ∈ Rm+|g(x) ≤ 0} where g : Rm+ → R is an increasing
continuous function and Rm+ denotes the positive orthant. Also Ref. [156] shows how the results in [155]
on recoverability of the utility function can be extended to such nonlinear budget constraints. However,
learning the utility function from a finite dataset in the case of a nonlinear budget constraint requires
sophisticated machine learning algorithms [157]. The machine learning algorithms can only guarantee
that the estimated utility function is approximately consistent with the dataset D—that is, the estimated
utility is not guaranteed to contain all the preference relations consistent with the dataset D.

In [144], results in statistical learning theory are applied to the principle of revealed preferences
to address the question: Is the class of demand functions derived from monotone concave utilities
efficiently probably approximately correct (PAC) learnable? It is shown that Lipschitz utility functions
are efficiently PAC learnable. In [143], the authors extend the results of [144] and show that for agents
engaged in a concave potential game that satisfy Nash rationality, if the underlying potential function
satisfies the Lipschitz condition then the potential function of the game is PAC learnable.

In many cases, the responses of agents are observed in noise. Then determining if an agent is a
utility maximizer (or a multiagent system’s response is consistent with play from a Nash) becomes a
statistical decision test. In [158] it is shown how stochastic optimization algorithms can be devised to
optimize the probe signals to minimize the type II errors of the decision test subject to a fixed type I
error.



578 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

Change point detection in utility functions
Ref. [159] extends the classical revealed preference framework to agents with a “dynamic utility
function.” The utility function jump changes at an unknown time instant by a linear perturbation. Given
the dataset of probe and responses of an agent, the objective in [159] is to develop a nonparametric test
to detect the change point and utility functions before and after the change, which is henceforth referred
to as the change point detection problem.

Such change point detection problems arise in online searches in social media. Online search is
currently the most popular method for information retrieval [160] and can be viewed as an agent
maximizing the information utility, i.e., the amount of information consumed by an online agent given
the limited resource on time and attention. There has been a gamut of research that links Internet
search behavior to ground truths such as symptoms of illness, political elections, or major sporting
events [161]. Detection of utility change in online searches, therefore, is helpful to identify changes in
ground truth. Also, the intrinsic nature of the online search utility function motivates such a study under
a revealed preference setting.

The problem of detecting a sudden linear perturbation change in the utility function is motivated
by several reasons. First, the linear perturbation assumption provides sufficient selectivity such that the
nonparametric test is not trivially satisfied by all datasets but still provides enough degrees of freedom.
Second, the linear perturbation can be interpreted as the change in the marginal rate of utility relative to
a “base” utility function. In online social media, the linear perturbation coefficients measure the impact
of marketing or the measure of severity of the change in ground truth on the utility of the agent. This
is similar to the linear perturbation models used to model taste changes [162–164] in microeconomics.
Finally, in social networks, linear change in the utility is often used to model the change in utility of an
agent based on the interaction with the agent’s neighbors [165]. Compared to the taste change model,
our model is unique in that we allow the linear perturbation to be introduced at an unknown time.

A related important practical issue that we also consider in this paper is the application of revealed
preference framework to high dimensional data (“big-data”). As an example of high dimensional data
arising in online social media, we investigate the detection of the utility maximization process inherent
in video sharing via YouTube. Detecting utility maximization behavior with such high-dimensional data
is computationally demanding. Ref. [159] uses dimensionality reduction to overcome the computational
cost associated with high-dimensional data. The high-dimensional data is projected into a lower-
dimensional subspace using the Johnson-Lindenstrauss (JL) transform.

21.5 SOCIAL INTERACTION OF CHANNEL OWNERS AND YOUTUBE
CONSUMERS
In this section, time-series analysis methods are applied to real-world YouTube data to determine how
social sensors interact with YouTube channel owners. Several key results are presented that elucidate
the dynamics of social sensors in the YouTube social network. This section contains five main results.

1. Section 21.5.2 illustrates the sensitivity of social sensor engagement to changes in metalevel (title,
thumbnail, tags) features of YouTube videos. It is found that metalevel feature optimization causes
an increase in user engagement for approximately 50% of videos. Optimization of the title of the
video causes a significant improvement of users finding the video from YouTube search results.



21.5 SOCIAL INTERACTION IN YOUTUBE 579

Additionally, optimization of the thumbnail causes an increase in users accessing the video from
the related video list.26

2. In Section 21.5.3 Granger causality is used to show that a causal relationship exists between a
channel’s subscriber count and the social sensor engagement of videos on the channel. However,
this causal relationship is dependent on the category. For example, 80% of the “entertainment”
channels satisfy the Granger causality test while only 40% of the “food” channels satisfy the test.

3. In Section 21.5.4 it is determined that for popular gaming YouTube channels with a dominant
(constant) upload schedule, deviating from the schedule increases the views and the comment
counts of the channel (e.g., increases user engagement). Specifically, when the channel goes off
schedule the channel gains views 97% of the time and the channel gains comments 68% of the
time.

4. In Section 21.5.5 we illustrate that the social sensor engagement dynamics with YouTube videos
can be modeled using a generalized Gompertz model. The generalized Gompertz model accounts
for the initial viral increase in views from subscribers, the subsequent linear growth that results
from nonsubscribers, and views from exogenous events such as promotion on other popular social
media platforms. It is important to account for exogenous events when estimating the efficiency of
metalevel optimization procedures.

5. In Section 21.5.6 the generalized Gombertz model is used to study the dynamics of social sensors
to video playthroughs (sequence of videos on the same topic). It is illustrated that the early view
count dynamics are highly correlated with the view count dynamics of future videos. Both the
short-term view count and long-term migration of users to future videos in the playthrough
decrease after the initial video in the playthrough is posted. This results even when the channel’s
subscriber count increases. A possible reason for this decrease is that subsequent videos in the
playthrough become repetitive and hence decrease user engagement.

The results in this section are based on the extensive BroadBandTV27 (BBTV) dataset. Extrapo-
lating these results to other YouTube datasets is an important problem worth addressing by the reader.
For example, an extension of this work could involve studying the effect of video characteristics on
different traffic sources, for example, the effect of tweets or posts of videos on Twitter or Facebook.

21.5.1 YOUTUBE DATASET
All the results in this section are constructed using the extensive YouTube dataset provided by BBTV.28

The dataset contains daily samples of metalevel features of YouTube videos and channels on the BBTV
platform from April 2007 to May 2015, and has a size of several terabytes. The metalevel features
include views, comments, likes, dislikes, shares, and subscribers, which are recorded each day because

26In YouTube, the suggested videos refers to the overall list to the right of the video player on the watch page, which is
populated with suggestions for what to watch next. A subset of these suggested videos, known as related videos, can also be
displayed at the end of a YouTube video.
27BroadBandTV is one of the largest YouTube video partners in the world. http://bbtv.com/press/
broadbandtv-now-the-largest-multi-platform-network-worldwide.
28http://bbtv.com/.



580 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

Table 21.1 Dataset Summary

Videos 6 million

Channels 26,000

Average number of videos (per channel) 250

Average age of videos 275 days

Average number of views (per video) 10,000

Table 21.2 YouTube Dataset Categories
(Out of 6 Million Videos)

Category Fraction
Gaming 0.69

Entertainment 0.07

Food 0.07

Music 0.035

Sports 0.017

the video was published. The dataset contains information for more than 6 million videos spread over
25 thousand channels. Table 21.1 shows the statistics summary of the videos present in the dataset.

Table 21.2 shows the summary of the various categories of the videos present in the dataset. The
dataset contains a large percentage of gaming videos. Fig. 21.18 shows the fraction of videos as a
function of the age of the videos. There is a large fraction of videos uploaded within a year. Also, the
dataset captures the exponential growth in the number of videos uploaded to YouTube. Similar to [38],
we define three categories of videos based on their popularity: highly popular, popular, and unpopular.
Table 21.3 gives a summary of the fraction of videos in the dataset belonging to each category. As can
be seen from Table 21.3, the majority of the videos in the dataset belong to the popular category.

A unique feature of the dataset is that it contains information about the “metalevel optimization”
for videos. The metalevel optimization is a change in the title, tags, or thumbnail of an existing video
in order to increase the popularity. BBTV markets a product that intelligently automates the metalevel
optimization. Table 21.4 gives a summary of the statistics of the various metalevel optimization present
in the dataset.

21.5.2 SOCIAL SENSOR ENGAGEMENT SENSITIVITY TO METALEVEL OPTIMIZATION
Here we analyze how changing metalevel features after a video is posted impacts the user engagement
of the video. Metalevel data plays a significant role in the discovery of content through YouTube
searches and in video recommendations through the YouTube related videos.29 Hence, optimizing
the metalevel data to enhance the discoverability and user engagement of videos is of significant

29Related and suggested videos appear surrounding the current video being viewed by the user.



21.5 SOCIAL INTERACTION IN YOUTUBE 581

Age of videos
050010001500200025003000

D
en

si
ty

 

10–6

10–5

10–4

10–3

10–2

FIG. 21.18

The fraction of videos in the dataset as a function of the age of the videos. There is a significant percentage of
newer videos (videos with less age) compared to older videos. Hence, the dataset capture the exponential
growth of the number of videos uploaded to YouTube.

Table 21.3 Popularity Distribution
of Videos in the Dataset

Criteria Fraction

Highly popular (total views > 104) 0.12

Popular (150 < total views < 104) 0.67

Unpopular (total views < 150) 0.21

importance to content providers. Therefore, in this section, we study how optimizing the title,
thumbnail, or keywords affects the view count of YouTube videos.

To perform the sensitivity analysis, we utilize the dataset presented in Section 21.5.1, and remove
any time-sensitive videos. Time-sensitive videos are those videos that are relevant for a short period of
time and the popularity of such videos cannot be improved by optimization. We removed the following
two time-sensitive categories of videos: “politics” and “movies and trailers.” In addition, we removed
videos (from other categories) that contained the following keywords in their video metadata: “holiday,”
“movie,” or “trailers.” For example, holiday videos are not watched frequently during off-holiday times.



582 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

Table 21.4 Optimization Summary
Statistics

Optimization # Videos

Title change 21,000

Thumbnail change 13,000

Keyword change 21,000

Let τ̂i be the time at which the metalevel optimization was performed on video i and let si denote
the corresponding sensitivity. We characterize the sensitivity to metalevel optimization as follows:

si =
(∑τ̂i+6

t=τ̂i
vi(t)

)
/7(∑τ̂i

t=τ̂i−6 vi(t)
)

/7
. (21.60)

The numerator of Eq. (21.60) is the mean value of the view count seven days after optimization.
Similarly, the denominator of Eq. (21.60) is the mean value of the view count seven days before
optimization. The results are provided in Table 21.5 for optimization of the title, thumbnail, and
keywords.

As shown in Table 21.5, at least half the optimizations resulted in an increase in the popularity
of the video. In addition, compared to videos with no optimization, the metalevel optimization
improves the probability of increased popularity by 45%. This is consistent with YouTube and BBTV
recommendations to optimize metalevel features to increase user engagement. However, some classes
of videos benefit from optimizing metadata much more than others. The effect may be due to small user
channels, which have a limited number of videos and subscribers, gaining by optimizing the metalevel

Table 21.5 Sensitivity to Metalevel
Optimization

Optimization Fraction of Videos
With Increased
Popularity

Title change 0.52

Thumbnail change 0.533

Keyword change 0.50

No changea 0.35

The table shows that in more than 50% the videos,
metalevel optimization resulted in an increase in
the popularity of the video.
a“No change” was obtained by randomly selecting
104 videos that performed no optimization and
evaluating si three months from the date of posting
the video.



21.5 SOCIAL INTERACTION IN YOUTUBE 583

Table 21.6 Sensitivity of Various Traffic
Sources to Metalevel Optimization for Videos
With Increased Popularity

Optimization Related Promoted Search

Title change 1.13 NAa 1.24

Thumbnail change 1.20 NAa 1.125

Keyword change 1.10 1.16 1

The title optimization resulted in significant improvement
(approximately 25%) from the YouTube search. Similarly,
thumbnail optimization improved traffic from the related
videos and keyword optimization resulted in increased traffic
from related and promoted videos.
aNot enough data available: A binomial test to check for the
true hypothesis with 95% confidence interval requires that the

sample size, n, should be at least
(

1.96
0.04

)2
p(1 − p). With

p = 0.5, n > 600.

data of the video compared to hugely popular channels such as Sony or CNN. The highly popular
channels (e.g., Sony or CNN) upload videos frequently (even multiple times daily), so video content
becomes irrelevant quickly. The question of which class of users gains by optimizing the meta level
features of the video is part of our ongoing research.

Table 21.6 summarizes the impact of various metalevel changes on the three major sources of
YouTube traffic, i.e., YouTube search,30 YouTube promoted,31 and traffic from related videos.32 For
those videos where metalevel optimization increased the popularity (the ratio of the mean value of the
views after and before optimization is higher than one), we computed the sensitivity for various traffic
sources as in Eq. (21.60). Table 21.6 summarizes the median statistics of the ratio of the traffic sources
before and after optimization. The title optimization resulted in significant improvement (approximately
25%) from the YouTube search. Similarly, thumbnail optimization improved traffic from the related
videos and keyword optimization resulted in increased traffic from related and promoted videos.

Summary: This section studied the sensitivity of view count with respect to metalevel optimization.
The main finding is that metalevel optimization increased the popularity of video in the majority
of cases. In addition, we found that optimizing the title improved traffic from the YouTube search.
Similarly, thumbnail optimization improved traffic from the related videos and keyword optimization
resulted in increased traffic from related and promoted videos.

30Video views that resulted users selecting the video from the YouTube search results.
31Video views that result from channels paying YouTube to increase their probability of being included at the top of search
result lists.
32Video views that resulted from users clicking on a thumbnail that was listed on the page of another video they were viewing.



584 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

21.5.3 CAUSAL RELATIONSHIP BETWEEN CHANNEL SUBSCRIBERS AND SOCIAL
SENSOR ENGAGEMENT
In this section the goal is to detect whether a causal relationship exists between subscriber and viewer
counts and how it can be used to estimate the next day subscriber count of a channel. The results are
of interest for measuring the popularity of a YouTube channel. Fig. 21.19 displays the subscriber and
view count dynamics of a popular movie trailer channel on YouTube. It is clear from Fig. 21.19 that
the subscribers spike with a corresponding spike in the view count. In this section we model this causal
relationship of the subscribers and view count using the Granger causality test from the econometric
literature [166].

The main idea of Granger causality is that if the value(s) of a lagged time-series can be used to
predict another time series, then the lagged time-series is said to “Granger cause” the predicted time
series. To formalize the Granger causality model, let sj(t) denote the number of subscribers to a channel
j on day t, and v

j
i(t) the corresponding view count for a video i on channel j on day t. The total number

of videos in a channel on day t is denoted by I(t). Define,

v̂j(t) =
I(t)∑
i=1

v
j
i(t), (21.61)

as the total view count of channel j at time t. The Granger causality test involves testing if the
coefficients bi are nonzero in the following equation, which models the relationship between subscribers
and view counts:

sj(t) =
ns∑

k=1

aj
ksj(t − k) +

nv∑
i=k

bj
kv̂

j(t − k) + εj(t), (21.62)

where εj(t) represents normal white noise for channel j at time t. The parameters {aj
i}{i=1,...,ns} and

{bj
i}{i=1,...,nv} are the coefficients of the AR model in Eq. (21.62) for channel j, with ns and nv

denoting the lags for the subscriber and view counts time series respectively. If the time-series
Dj = {sj(t), v̂j(t)}t∈{1,...,T} of a channel j fits the model (21.62), then we can test for a causal relationship
between subscribers and view count. In Eq. (21.62), it is assumed that |ai| < 1, |bi| < 1 for stationarity.
The causal relationship can be formulated as a hypothesis testing problem as follows:

H0 : b1 = · · · = bnv = 0 vs. H1 : At least one bi �= 0. (21.63)

The rejection of the null hypothesis, H0, implies that there is a causal relationship between subscriber
and view counts.

First, we use the Box-Ljung test [167] is to evaluate the quality of the model (21.62) for the
given dataset Dj. If satisfied, then the Granger causality hypothesis (21.63) is evaluated using the
Wald test [168]. If both hypothesis tests pass then we can conclude that the time series Dj satisfies
Granger causality—that is, the previous day subscriber and view count have a causal relationship with
the current subscriber count.

A key question prior to performing the Granger causality test is what percentage of videos in the
YouTube dataset (Appendix) satisfy the AR model in Eq. (21.62). To perform this analysis we apply
the Box-Ljung test with a confidence of 0.95 (P-value = 0.05). First, we need to select ns and nv , the



21.5 SOCIAL INTERACTION IN YOUTUBE 585

number of lags for the subscribers and view count time series. For ns = nv = 1, we found that only 20%
of the channels satisfy the model (21.62). When ns and nv are increased to 2, the number of channels
satisfying the model increases to 63%. For ns = nv = 3, we found that 91% of the channels satisfy
the model (21.62), with a confidence of 0.95 (P-value = 0.05). Hence, in the below analysis we select
ns = nv = 3. It is interesting to note that the mean value of coefficients bi decrease as i increases,
indicating that older view counts have less influence on the subscriber count. Similar results also hold
for the coefficients ai. Hence, as expected, the previous day subscriber count and the previous day view
count most influence the current subscriber count.

The next key question is does a causal relationship exist between the subscriber dynamics and the
view count dynamics. This is modeled using the hypothesis in Eq. (21.63). To test Eq. (21.63) we use the
Wald test with a confidence of 0.95 (P-value = 0.05) and found that approximately 55% of the channels
satisfy the hypothesis. For approximately 55% of the channels that satisfy the AR model (21.62), the
view count Granger causes the current subscriber count. Interestingly, if different channel categories are
accounted for, then the percentage of channels that satisfy Granger causality vary widely as illustrated
in Table 21.7. For example, 80% of the entertainment channels satisfy Granger causality while only
40% of the food channels satisfy Granger causality. These results illustrate the importance of channel
owners to not only maximize their subscriber count, but to also upload new videos or increase the
views of old videos to increase their channel’s popularity (i.e., via increasing their subscriber count).
Additionally, increasing the number of subscribers will also increase the view count of videos that are
uploaded by the channel owners.

21.5.4 VIDEO UPLOAD SCHEDULING AND SOCIAL SENSOR ENGAGEMENT
Here we investigate how the video upload scheduling dynamics of YouTube channels impact social
sensor engagement. We find the interesting property that for popular gaming YouTube channels with a
dominant (constant) upload schedule, deviating from the schedule increases the views and the comment
counts of the channel (e.g., increases user engagement).

Table 21.7 Fraction of Channels
Satisfying the Hypothesis: View Count
“Granger Causes” Subscriber Count,
Split According to Category

Categorya Fraction

Gaming 0.60

Entertainment 0.80

Food 0.40

Sports 0.67
aYouTube assigns a category to videos, rather than
channels. The category of the channel was obtained
as the majority of the category of all the videos
uploaded by the channel.



586 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2
•106

Time (days)

V
ie

w
co

un
t

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

Time (days)

Su
bs

cr
ib

er
s

FIG. 21.19

Viewcount and subscribers for the popular movie trailer channel VISOTrailers. The Granger causality test for
view counts “Granger causes” subscriber count is true with a P-value of 5 × 10−8.

Creator Academy,33 in their best practice section, recommends uploading videos on a regular
schedule to get repeat views. The reason for a regular upload schedule is to increase user engagement
and to rank higher in the YouTube recommendation list. However, we show in this section that going
“off the schedule” can be beneficial for a gaming YouTube channel with a regular upload schedule, in
terms of the number of views and the number of comments.

From the dataset, we “filtered out” video channels with a dominant upload schedules, as follows:
The dominant upload schedule was identified by taking the periodogram of the upload times of the
channel and then comparing the highest value to the next highest value. If the ratio defined above is
greater than two, we say that the channel has a dominant upload schedule. From the dataset containing
25,000 channels, only 6500 channels contain a dominant upload schedule. Some channels, particularly
those that contain high amounts of copied videos such as trailers and movie/TV snippets, upload videos
on a daily basis. These have been removed from the above analysis. The expectation is that by doing so
we concentrate on those channels that contain only user-generated content.

We found that channels with gaming content account for 75% of the 6500 channels with a dominant
upload schedule34 and the main tags associated with the videos were: “game,” “gameplay,” and

33YouTube website for helping with channels.
34This could also be due to the fact that gaming videos account for 70% of the videos in the dataset.



21.5 SOCIAL INTERACTION IN YOUTUBE 587

“videogame.”35 We computed the average views when the channel goes off the schedule and found
that on an average when the channel goes off schedule the channel gains views 97% of the time and the
channel gains comments 68% of the time. This suggests that channels with “gameplay” content have a
periodic upload schedule and benefit from going off the schedule.

21.5.5 SOCIAL SENSOR ENGAGEMENT DYNAMICS WITH YOUTUBE VIDEOS
Several time-series analysis methods have been employed in the literature to model the view count
dynamics of YouTube videos. These include ARMA time series models [36], multivariate linear
regression models [37], hidden Markov models [169], normal distribution fitting [170], and parametric
model fitting [38,39]. Though all these models provide an estimate of the view count dynamics of
videos, we are interested in segmenting view count dynamics of a video resulting from subscribers,
nonsubscribers, and exogenous events. Exogenous events are due to video promotion on other social
networking platforms such as Facebook or the video being referenced by a popular news organization
or celebrity on Twitter. Detecting and accounting for exogenous events are motivated by the need
for extracting accurate view counts resulting from exogenous events that provide an estimate of the
efficiency of video promotion methods and metalevel feature optimizations.

The view count dynamics of popular videos in YouTube typically show an initial viral behavior due
to subscribers watching the content, and then a linear growth resulting from nonsubscribers. The linear
growth is due to new users migrating from other channels or to interested users discovering the content
either through search or recommendations (we call this phenomenon migration similar to [38]). Hence,
without exogenous events, the view count dynamics of a video due to subscribers and nonsubscribers
can be estimated using piece-wise linear and nonlinear segments. In [38], it is shown that a Gompertz
time series model can be modeled on the view count dynamics from subscribers and nonsubscribers, if
no exogenous events are present. In this chapter, we generalize the model in [38] to account for views
from exogenous events. It should be noted that classical change-point detection methods [171] cannot
be used here as the underlying distribution generating the view count is unknown.

To account for the view count dynamics introduced from exogenous events we use the generalized
Gompertz model given by:

v̄i(t) =
Kmax∑
k=0

wk
i (t)u(t − tk),

wk
i (t) = Mk

(
1 − e

−ηk

(
ebk(t−tk)−1

))
+ ck(t − tk),

(21.64)

where v̄i(t) is the total view count for video i at time t, u(·) is the unit step function, t0 is the time the
video was uploaded, tk with k ∈ {1, . . . , Kmax} are the times associated with the Kmax exogenous events,
and wk

i (t) are Gompertz models that account for the view count dynamics from uploading the video and
from the exogenous events. In total there are Kmax + 1 Gompertz models with each having parameters
tk, Mk, ηk, bk. Mk is the maximum number of requests not including migration for an exogenous event
at tk, ηk and bk model the initial growth dynamics from event tk, and ck accounts for the migration of

35We used a topic model to obtain the main tags.



588 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

other users to the video. In Eq. (21.64) the parameters {Mk, ηk, bk}k=0 are associated with the subscriber
views when the video is initially posted, the parameters {tk, Mk, ηk, bk}Kmax

k=1 are associated with views

introduced from exogenous events, and the views introduced from migration are given by {ck}Kmax
k=0 .

Each Gompertz model (21.64) captures the initial viral growth when the video is initially available to
users, followed by a linearly increasing growth resulting from user migration to the video.

The parameters θi = {ak, tk, Mk, ηk, bk, ck}Kmax
k=0 in Eq. (21.64) can be estimated by solving the

following mixed-integer nonlinear program:

θi ∈ arg min
{ Ti∑

t=0

(
v̄i(t) − vi(t)

)2 + λK
}

K =
Kmax∑
k=0

ak, ak ∈ {0, 1} k ∈ {0, . . . , Kmax}, (21.65)

with Ti the time index of the last recorded views of video vi, and ak a binary variable equal to 1 if
an exogenous event is present at tk. Note that Eq. (21.65) is a difficult optimization problem as the
objective is nonconvex as a result of the binary variables ak [172]. In the YouTube social network when
an exogenous event occurs this causes a large and sudden increase in the number of views. However, as
seen in Fig. 21.20, a few days after the exogenous event occurs, the views only result from migration
(i.e., linear increase in total views). Assuming that each exogenous event is followed by a linear increase
in views, we can estimate the total number of exogenous events Kmax present in a given time series
by first using a segmented linear regression method, and then counting the number of segments of
connected linear segments with a slope less then cmax. The parameter cmax is the maximum slope for
the views to be considered to result from viewer migration. Plugging Kmax into Eq. (21.65) results
in the optimization of a nonlinear program for the unknowns {tk, Mk, ηk, bk, ck}Kmax

k=0 . This optimization
problem can be solved using sequential quadratic programming techniques [173].

To illustrate how the Gompertz model (21.64) can be used to detect exogenous events, we apply
Eq. (21.64) to the view count dynamics of a video that only contains a single exogenous event.
Fig. 21.20 displays the total view count of a video where an exogenous event occurs at time t = 41
(i.e., t1 = 41 in Eq. 21.64) days after the video is posted.36 The initial increase in views for the video
for t ≤ 7 days results from the 2910 subscribers of the channel viewing the video. For 7 ≤ t ≤ 41, other
users that are not subscribed to the channel migrate to view the video at an approximately constant rate
of 13 views/day. At t = 41, an exogenous event occurs causing an increase in the views per day. The
difference in viewers resulting from the exogenous event is 7174. For t ≥ 43, the views result primarily
from the migration of users to approximately two views/day. Hence, using the generalized Gompertz
model (21.64) we can differentiate between subscriber views, views caused by exogenous events, and
views caused by migration.

36Due to privacy reasons, we cannot detail the specific event. Some of the reasons for the sudden increase in the popularity of
the video include: Another user on YouTube mentioning the video, which will encourage viewers from that channel to view
the video, resulting in a sudden increase in the number of views. Another possibility is that the channel owner or a YouTube
partner such as BBTV did significant promotional initiatives on other social media sites such as Twitter, Facebook, etc., to
promote the channel or video.



21.5 SOCIAL INTERACTION IN YOUTUBE 589

Day
0 50 100 150 200

T
ot

al
 V

ie
w

s

0

2

4

6

8

Measured
Gompertz

FIG. 21.20

Due to an exogenous event on day 41, there is a sudden increase in the number of views. The total view count
fitted by the Gompertz model v̄i (t) in Eq. (21.64) is shown in black (solid line) with the virality (exponential) and
migration (linear) illustrated by the dashed line.

21.5.6 SOCIAL SENSOR ENGAGEMENT FOR CHANNEL PLAYTHROUGHS
One of the most popular sequences of YouTube videos is the video game “playthrough.” A video
game playthrough is a set of videos for which each video has a relaxed and casual focus on the
game that is being played and typically contains commentary from the user presenting the playthrough.
Unlike YouTube channels such as CNN, BBC, and CBC in which each new video can be considered
independent from the others, in a video playthrough the future view count of videos is influenced by the
previously posted videos in the playthrough. To illustrate this effect we consider a video playthrough
for the game “BioShock Infinite”—a popular video game released in 2013. The channel, popular for
hosting such video playthroughs, contains close to 4500 videos and 180 video playthroughs. The
channel is highly popular and has garnered a combined view count close to 100 million views with
150 thousand subscribers over a period of three years. Fig. 21.21 illustrates that the early view count
dynamics are highly correlated with the view count dynamics of future videos. Both the short-term
view count and long-term migration of future videos in the playthrough decrease after the initial video
in the playthrough is posted. This results for two reasons: either the viewers purchase the game or
the viewers leave as the subsequent playthroughs become repetitive as a result of game quality or video
commentary quality. A unique effect with video playthroughs is that although the number of subscribers
to the channel hosting the videos in Fig. 21.21 increases over the 600-day period, the linear migration
is still maintained after the initial 50 days after the playthrough is published. Additionally, the slope of
the migration is related to the early total view count as illustrated in Fig. 21.21B.

21.5.7 SUMMARY AND EXTENSIONS
The application of time-series analysis and machine learning methods to gain insight into the social
sensor dynamics on YouTube is an active area of research with several promising outcomes. First,
they can be used to reduce the operating cost of content distribution networks. In [35] a two time-
scale game-theoretic learning algorithm is constructed to optimally cache videos in the future 5G
mobile network based on the dynamics of the social sensors. In [34] the optimal caching decision



0 100

(A)

(B)

200 300 400 500 600

103

104

Time (Days)

V
ie

w
co

un
t

1
5
10
15
20
25

5 10 15 20 25
103

104

Video part number

V
ie

w
co

un
t

Migration rate
Virality rate

Vid Idx   Exp  Pred

FIG. 21.21

Actual and predicted view count of a playthrough containing 25 YouTube videos for the game “BioShock
Infinite.” The predictions are computed by fitting a modified Gompertz model (21.64) to the measured
view count for each video in the playthrough. (A) Actual and predicted view count of playthrough. We plot the
1st, 5th, 10th, 15th, 20th, and 25th video from the playlist containing 25 videos. In the legend, Exp and Pred
correspond to the actual and predicted value using Eq. (21.64), respectively. Figure shows that the view counts
decrease for subsequent videos in the playlist. (B) The virality rate specifies the early views due to subscribers,
and the migration rate (in units of views/1000 days) specifies the subsequent linear growth due to
nonsubscribers.



21.6 CLOSING REMARKS 591

is formulated as a mixed-integer linear program that accounts for the dynamics of the social sensors.
Second, knowledge of the user dynamics can be used to optimize the metalevel features of videos to
maximize user engagement as illustrated in this section.

Significant work remains on the analysis of user dynamics in the YouTube social network. Recall
that in the YouTube social network interaction between users and channel owners includes:

1. Commenting on users videos. Commenting is YouTube’s version of engagement, and it has some
of the most involved, engaged, and dedicated users. Additionally, users can comment on other
users’ comments, which is very similar to user interaction on blog posting sites except related to
the uploaded videos.

2. Subscribing to YouTube channels provides a method of forming relationships between users.
3. Users can directly comment on a YouTube channel without the need to only interact when a video

is posted.
4. Users can also interact by embedding videos from another user’s channel directly into their own

channel to promote exposure or form communities of users.

In addition to the social incentives, YouTube provides monetary incentives to promote users increasing
their popularity and engagement. As more users view and interact with a user’s video or channel,
YouTube will pay the user proportional to the advertisement exposure on the user’s channel. Therefore,
users not only maximize exposure to increase their social popularity, but also for monetary gain, which
introduces unique dynamics in the formation of edges in the YouTube social network. Using the dataset
discussed in Section 21.5.1, Fig. 21.22 plots the communication network where an edge indicates
comments and responses between users that have interacted at least 1000 times. From Fig. 21.22A,
initially there appear to be two clusters of users that have strong interactions, indicating that user
preferences play a significant role in forming the edges in these clusters. After a period of three months,
Fig. 21.22B illustrates that more users have entered the network; however, there still appear to be two
primary clusters of interacting users. At six months, Fig. 21.22C shows a dense interaction between
several users in the social network. The dynamics of these interaction links are governed by both
the user preferences and the video content that is uploaded by the users. Prior to edge formation,
these clustered communities can be detected by applying the homophilic community detection tests
introduced in [174]. These tests are designed to cluster users based on their content preferences.

The dynamics of edge formation/destruction and user popularity in the social network (illustrated
in Fig. 21.22) are governed by the user-user interaction and the user-content-user interaction. Two key
questions to address in the YouTube social network are: How do the social dynamics (subscribing,
commenting, video content quality, video category, etc.) impact the popularity of videos and the
dynamics of the communication network between users? Answers to this question provide valuable
insight into the evolving dynamics of the social network illustrated in Fig. 21.22.

21.6 CLOSING REMARKS
This chapter has discussed four important and interrelated themes regarding the dynamics of social
sensors, namely, diffusion models for information in social networks, Bayesian social learning, revealed
preferences, and how social sensors interact over YouTube channels. In each case, examples involving
real datasets were given to illustrate the various concepts. The unifying theme behind these three topics



592 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

FIG. 21.22

Snapshots of the YouTube social network at 0 months, 3 months, and 6 months constructed using the dataset
discussed in Section 21.5.1. Node sizes and color indicate their degree (in online version of chapter, red is
higher, blue is lower). The complete social network is composed of more than 1.13 million users, and contains
more than 2.98 million edges. Only users with at least 1000 edges are displayed. (A) Initial: 239 users, 3112
edges. (B) After three months: 503 users, 8558 edges. (C) After six months: 1391 users, 31,701 edges.

stems from predicting global behavior given local behavior: individual social sensors make decisions
and learn from other social sensors and we are interested in understanding the behavior of the entire
network. In Section 21.2 we showed that the global degree of infected nodes can be determined by
mean field dynamics. In Section 21.3, it was shown that despite the apparent simplicity in information
flows between social sensors, the global system can exhibit unusual behavior such as herding and data
incest. Finally, in Section 21.4 a nonparametric method was used to determine the utility functions of a
multiagent system—this can be used to predict the response of the system.

This chapter has dealt with social sensing issues of relevance to a signal processing audience. There
are several topics of relevance to social sensors that are omitted due to space constraints, including:



REFERENCES 593

• Coordination of decisions via game-theoretic learning [175–177] or Bayesian game models such
as global games [178].

• Consensus formation over social networks and cooperative models of network formation
[179,180].

• Small world models [181,182].
• Peer to peer media sharing [183,184].
• Privacy and security modeling [185,186].

REFERENCES
[1] Rosi A, Mamei M, Zambonelli F, Dobson S, Stevenson G, Ye J. Social sensors and pervasive services:

approaches and perspectives. In: Proceedings of the 2011 IEEE international conference on pervasive
computing and communications workshops (PERCOM workshops). IEEE; 2011. p. 525–30.

[2] Lee R, Sumiya K. Measuring geographical regularities of crowd behaviors for Twitter-based geo-social
event detection. In: Proceedings of the 2nd ACM SIGSPATIAL international workshop on location based
social networks. ACM; 2010. p. 1–10.

[3] Cheng Z, Caverlee J, Lee K. You are where you tweet: a content-based approach to geo-locating
Twitter users. In: Proceedings of the 19th ACM international conference on information and knowledge
management. ACM; 2010. p. 759–68.

[4] Trusov M, Bodapati AV, Bucklin RE. Determining influential users in internet social networks. J Market Res
2010;XLVII:643–58.

[5] Leskovec J, Adamic LA, Huberman BA. The dynamics of viral marketing. ACM Trans Web (TWEB)
2007;1(1):5.

[6] Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: real-time event detection by social
sensors. In: Proceedings of the 19th international conference on world wide web. New York, NY: ACM;
2010. p. 851–60.

[7] Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. J Comput Sci 2011;2(1):1–8.
[8] Pang B, Lee L. Opinion mining and sentiment analysis. Found Trends Inf Retr 2008;2(1–2):1–135.
[9] Asur S, Huberman BA. Predicting the future with social media. In: 2010 IEEE/WIC/ACM international

conference on web intelligence and intelligent agent technology (WI-IAT), vol. 1. IEEE; 2010. p. 492–9.
[10] Ifrach B, Maglaras C, Scarsini M. Monopoly pricing in the presence of social learning. NET Institute

Working Paper No 12-01; 2011.
[11] Luca M. Reviews, reputation, and revenue: the case of Yelp.com. Technical Report 12-016, Harvard Business

School; 2011.
[12] Goel S, Watts D, Goldstein D. The structure of online diffusion networks. In: Proceedings of the 13th ACM

conference on electronic commerce. ACM; 2012. p. 623–38.
[13] Sun E, Rosenn I, Marlow C, Lento TM. Gesundheit! modeling contagion through Facebook news feed. In:

Proceedings of the 3rd international AAAI conference on weblogs and social media, San Jose, CA; 2009.
p. 146–53.

[14] Romero DM, Meeder B, Kleinberg J. Differences in the mechanics of information diffusion across topics:
idioms, political hashtags, and complex contagion on Twitter. In: Proceedings of the 20th international
conference on world wide web, Hyderabad, India; 2011. p. 695–704.

[15] Chamley C. Rational herds: economic models of social learning. Cambridge University Press; 2004.
[16] López-Pintado D. Diffusion in complex social networks. Games Econ Behav 2008;62(2):573–90.

http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0085


594 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

[17] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Phys Rev Lett
2001;86(14):3200.

[18] Benaïm M, Weibull J. Deterministic approximation of stochastic evolution in games. Econometrica
2003;71(3):873–903.

[19] Banerjee A. A simple model of herd behavior. Q J Econ 1992;107(3):797–817.
[20] Bikchandani S, Hirshleifer D, Welch I. A theory of fads, fashion, custom, and cultural change as information

cascades. J Polit Econ 1992;100(5):992–1026.
[21] Acemoglu D, Ozdaglar A. Opinion dynamics and learning in social networks. Dyn Games Appl

2011;1(1):3–49.
[22] Lobel I, Acemoglu D, Dahleh M, Ozdaglar A. Preliminary results on social learning with partial

observations. In: Proceedings of the 2nd international conference on performance evaluation methodologies
and tools. Nantes, France: ACM; 2007. p. 69.

[23] Acemoglu D, Dahleh M, Lobel I, Ozdaglar A. Bayesian learning in social networks. Working Paper 14040,
National Bureau of Economic Research; 2008.

[24] Cover T, Hellman M. The two-armed-bandit problem with time-invariant finite memory. IEEE Trans Inf
Theory 1970;16(2):185–95.

[25] Hellman ME, Cover TM. Learning with finite memory. Ann Math Stat 1970;41(3):765–82.
[26] Chamley C, Scaglione A, Li L. Models for the diffusion of beliefs in social networks: an overview. IEEE

Signal Process Mag 2013;30(3):16–29.
[27] Krishnamurthy V, Poor HV. Social learning and Bayesian games in multiagent signal processing: how do

local and global decision makers interact? IEEE Signal Process Mag 2013;30(3):43–57.
[28] Afriat S. The construction of utility functions from expenditure data. Int Econ Rev 1967;8(1):67–77.
[29] Varian H. The nonparametric approach to demand analysis. Econometrica 1982;50(1):945–73.
[30] Varian H. Price discrimination and social welfare. Am Econ Rev 1985:870–5.
[31] Varian H. Revealed preference and its applications. Econ J 2012;122(560):332–8.
[32] Varian H. Online ad auctions. Am Econ Rev 2009:430–4.
[33] Hoiles W, Aprem A, Krishnamurthy V. Engagement and popularity dynamics of YouTube videos and

sensitivity to meta-data. IEEE Trans Knowl Data Eng 2017;7:1426–37.
[34] Shahrear T, Hoiles W, Krishnamurthy V. Adaptive scheme for caching YouTube content in a cellular

network: machine learning approach. IEEE Access 2017;5:5870–81.
[35] Hoiles W, Gharehshiran ON, Krishnamurthy V, Ðào ND, Zhang H. Adaptive caching in the YouTube content

distribution network: a revealed preference game-theoretic learning approach. IEEE Trans Cogn Commun
Netw 2015;1(1):71–85.

[36] Gürsun G, Crovella M, Matta I. Describing and forecasting video access patterns. In: 2011 Proceedings of
INFOCOM. IEEE; 2011. p. 16–20.

[37] Pinto H, Almeida J, Gonçalves M. Using early view patterns to predict the popularity of YouTube videos.
In: Proceedings of the sixth ACM international conference on web search and data mining. ACM; 2013.
p. 365–74.

[38] Richier C, Altman E, Elazouzi R, Jimenez T, Linares G, Portilla Y. Bio-inspired models for characterizing
YouTube viewcout. In: 2014 IEEE/ACM international conference on advances in social networks analysis
and mining. IEEE; 2014. p. 297–305.

[39] Richier C, Elazouzi R, Jimenez T, Altman E, Linares G. Forecasting online contents’ popularity; 2015. arXiv
preprint arXiv:150600178.

[40] Zhang A. Judging YouTube by its Covers. Tech. rep.. Department of Computer Science and Engi-
neering, University of California, San Diego; 2015. http://cseweb.ucsd.edu/jmcauley/cse255/reports/wi15/
AngelZhang.pdf.

[41] Vega-Redondo F. Complex social networks, vol. 44. Cambridge University Press; 2007.
[42] Jackson MO. Social and economic networks. Princeton University Press; 2010.

http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0200
http://cseweb.ucsd.edu/ jmcauley/cse255/reports/wi15/AngelZhang.pdf
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0215


REFERENCES 595

[43] Easley D, Kleinberg J. Networks, crowds, and markets: reasoning about a highly connected world.
Cambridge University Press; 2010.

[44] Chen KC, Chuang M, Poor HV. From technological networks to social networks. IEEE J Sel Areas Commun
2013;31(9):548–72.

[45] Krishnamurthy V, Poor HV. A tutorial on interactive sensing in social networks. IEEE Trans Comput Soc
Syst 2014;1(1):3–21.

[46] Krishnamurthy V, Gharehshiran ON, Hamdi M. Interactive sensing and decision making in social networks.
Found Trends Signal Process 2014;7(1–2):1–196.

[47] Granovetter M. Threshold models of collective behavior. Am J Sociol 1978;83(6):1420–43.
[48] Mossel E, Roch S. On the submodularity of influence in social networks. In: Proceedings of 39th annual

ACM symposium on theory of computing. ACM; 2007. p. 128–34.
[49] Chen N. On the approximability of influence in social networks. SIAM J Discret Math 2009;23(3):1400–15.
[50] López-Pintado D. Contagion and coordination in random networks. Int J Game Theory 2006;34(3):371–81.
[51] Aldous D. Interacting particle systems as stochastic social dynamics. Bernoulli 2013;19(4):1122–49.
[52] Leskovec J. SNAP library. http://snap.stanford.edu/data/index.html.
[53] Erdös P, Rényi A. On random graphs, I. Publ Math Debr 1959;6:290–7.
[54] Barabasi A, Reka A. Emergence of scaling in random networks. Science 1999;286(5439):509.
[55] Elliott RJ, Aggoun L, Moore JB. Hidden Markov models—estimation and control. New York: Springer-Ver-

lag; 1995.
[56] Krishnamurthy V. Partially observed Markov decision processes. Cambridge University Press; 2016.
[57] Benveniste A, Metivier M, Priouret P. Adaptive algorithms and stochastic approximations; Applications of

mathematics, vol. 22. Springer-Verlag; 1990.
[58] Kushner HJ, Yin G. Stochastic approximation algorithms and recursive algorithms and applications. 2nd ed.

Springer-Verlag; 2003.
[59] Yin G, Krishnamurthy V, Ion C. Regime switching stochastic approximation algorithms with application to

adaptive discrete stochastic optimization. SIAM J Optim 2004;14(4):1187–215.
[60] Hethcote HW. The mathematics of infectious diseases. SIAM Rev 2000;42(4):599–653.
[61] Porter MA, Gleeson JP. Dynamical systems on networks: a tutorial, vol. 4. Springer; 2016.
[62] Hernández-González M, Basin MV. Discrete-time filtering for nonlinear polynomial systems over linear

observations. Int J Syst Sci 2014;45(7):1461–72.
[63] Krishnamurthy V, Bhatt S, Pedersen T. Tracking infection diffusion in social networks: filtering algorithms

and threshold bounds. IEEE Trans Signal Inf Process Netw 2017;3(2):298–315.
[64] Hamdi M, Krishnamurthy V, Yin G. Tracking a Markov-modulated stationary degree distribution of a

dynamic random graph. IEEE Trans Inf Theory 2014;60(10):6609–25.
[65] Jackson MO, Rogers BW. Relating network structure to diffusion properties through stochastic dominance.

BE J Theor Econ 2007;7(1).
[66] Ghoshal G, Chi L, Barabási AL. Uncovering the role of elementary processes in network evolution. Sci Rep

2013;3:2920.
[67] Culotta A. Lightweight methods to estimate influenza rates and alcohol sales volume from twitter messages.

Lang Resour Eval 2013;47(1):217–38.
[68] Signorini A, Segre A, Polgreen P. The use of twitter to track levels of disease activity and public concern in

the us during the influenza a H1N1 pandemic. PLOS One 2011;6(5):e19467.
[69] Zhang F, Luo J, Li C, Wang X, Zhao Z. Detecting and analyzing influenza epidemics with social media in

China. In: Advances in knowledge discovery and data mining. Springer; 2014. p. 90–101.
[70] Culotta A. Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the first

workshop on social media analytics. ACM; 2010. p. 115–22.
[71] Culotta A. Lightweight methods to estimate influenza rates and alcohol sales volume from twitter messages.

Lang Res Eval 2013;47(1):217–38.

http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0260
http://snap.stanford.edu/data/index.html
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0315
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0320
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0325
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0330
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0335
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0340
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0345
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0350
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0355
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0360


596 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

[72] Li J, Cardie C. Early stage influenza detection from twitter; 2013. arXiv preprint arXiv:13097340.
[73] Broniatowski D, Paul M, Dredze M. National and local influenza surveillance through twitter: an analysis

of the 2012–2013 influenza epidemic. PLOS One 2013;8(12):e83672.
[74] Achrekar H, Gandhe A, Lazarus R, Yu S, Liu B. Twitter improves seasonal influenza prediction.

In: HEALTHINF 2012 international conference on health informatics; 2012. p. 61–70.
[75] Achrekar H, Gandhe A, Lazarus R, Yu S, Liu B. Predicting flu trends using twitter data. In: 2011 IEEE

conference on computer communications workshops. IEEE; 2011. p. 702–7.
[76] Christakis N, Fowler J. Social network sensors for early detection of contagious outbreaks. PLOS One

2010;5(9):e12948.
[77] Leskovec J, Faloutsos C. Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD

international conference on knowledge discovery and data mining. Philadelphia: ACM press; 2006. p. 631–6.
[78] Dasgupta A, Kumar R, Sivakumar D. Social sampling. In: Proceedings of the 18th ACM SIGKDD

international conference on knowledge discovery and data mining. Beijing: ACM; 2012. p. 235–43.
[79] Heckathorn DD. Respondent-driven sampling: a new approach to the study of hidden populations. Soc Probl

1997;44:174–99.
[80] Heckathorn DD. Respondent-driven sampling II: deriving valid population estimates from chain-referral

samples of hidden populations. Soc Probl 2002;49:11–34.
[81] Lee S. Understanding respondent driven sampling from a total survey error perspective. Surv Pract

2009;2(6).
[82] Malekinejad M, Johnston L, Kendall C, Kerr L, Rifkin M, Rutherford G. Using respondent-driven sampling

methodology for HIV biological and behavioral surveillance in international settings: a systematic review.
AIDS Behav 2008;12(S1):105–30.

[83] Goel S, Salganik MJ. Respondent-driven sampling as Markov chain Monte Carlo. Stat Med
2009;28:2209–29.

[84] Lansky A, Abdul-Quader A, Cribbin M, Hall T, Finlayson T, Garffin R, et al. Developing an HIV behavioral
surveillance system for injecting drug users: the National HIV Behavioral Surveillance System. Public
Health Rep 2007;122(S1):48–55.

[85] Kleinberg J, Raghavan P. Query incentive networks. In: 46th annual IEEE symposium on foundations of
computer science, 2005. FOCS 2005. IEEE; 2005. p. 132–41.

[86] Doucet A, Gordon N, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems.
IEEE Trans Signal Process 2001;49:613–24.

[87] Logothetis A, Krishnamurthy V. Expectation maximization algorithms for MAP estimation of jump Markov
linear systems. IEEE Trans Signal Process 1999;47(8):2139–56.

[88] Krishnamurthy V, Hamdi M. Mis-information removal in social networks: dynamic constrained estimation
on directed acyclic graphs. IEEE J Sel Top Signal Process 2013;7(2):333–46.

[89] Tuttle B. Fact-checking the crowds: how to get the most out of hotel-review sites. Time Mag July 29, 2013.
[90] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the

state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 2005;17(6):734–49.
[91] Konstas I, Stathopoulos V, Jose JM. On social networks and collaborative recommendation. In: Proceedings

of the 32nd international ACM SIGIR conference on research and development in information retrieval.
ACM; 2009. p. 195–202.

[92] Kanoria Y, Tamuz O. Tractable Bayesian social learning on trees. In: Proceedings of the IEEE international
symposium on information theory (ISIT); 2012. p. 2721–5.

[93] Pearl J. Fusion, propagation, and structuring in belief networks. Artif Intell 1986;29(3):241–88.
[94] Murphy K, Weiss Y, Jordan M. Loopy belief propagation for approximate inference: an empirical study.

In: Proceedings of the fifteenth conference uncertainty in artificial intelligence; 1999. p. 467–75.
[95] Yedidia J, Freeman W, Weiss Y. Constructing free-energy approximations and generalized belief propagation

algorithms. IEEE Trans Inf Theory 2005;51(7):2282–312.

http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0365
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0370
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0375
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0380
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0385
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0390
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0395
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0400
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0405
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0410
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0415
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0420
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0425
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0430
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0435
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0440
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0445
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0450
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0455
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0460
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0465
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0470
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0475
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0480


REFERENCES 597

[96] Aumann RJ. Agreeing to disagree. Ann Stat 1976;4(6):1236–9.
[97] Geanakoplos J, Polemarchakis H. We can’t disagree forever. J Econ Theory 1982;28(1):192–200.
[98] Borkar V, Varaiya P. Asymptotic agreement in distributed estimation. IEEE Trans Autom Control

1982;27(3):650–5.
[99] Cohn RA, Lewellen WG, Lease RC, Schlarbaum GG. Individual investor risk aversion and investment

portfolio composition. J Financ 1975;30(2):605–20.
[100] Donkers B, Soest AV. Subjective measures of household preferences and financial decisions. J Econ Psychol

1999;20(6):613–42.
[101] Mitra S, Ji T. Risk measures in quantitative finance. Int J Bus Contin Risk Manag 2010;1(2):125–35.
[102] Rockafellar RT, Uryasev S. Optimization of conditional value-at-risk. J Risk 2000;2:21–41.
[103] Artzner P, Delbaen F, Eber JM, Heath D. Coherent measures of risk. In: Risk management: value at risk and

beyond; 2002. p. 145.
[104] Palmquist J, Uryasev S, Krokhmal P. Portfolio optimization with conditional value-at-risk objective and

constraints. Department of Industrial & Systems Engineering, University of Florida; 1999.
[105] Lim C, Sherali HD, Uryasev S. Portfolio optimization by minimizing conditional value-at-risk via

nondifferentiable optimization. Comput Optim Appl 2010;46(3):391–415.
[106] Cartea A, Jaimungal S. Modelling asset prices for algorithmic and high-frequency trading. Appl Math

Finance 2013;20(6):512–47.
[107] Neuts MF. Structured stochastic matrices of MG-1 type and their applications. Dekker; 1989.
[108] Krishnamurthy V. Bayesian sequential detection with phase-distributed change time and nonlinear penal-

ty—a POMDP lattice programming approach. IEEE Trans Inf Theory 2011;57(10):7096–124.
[109] Krishnamurthy V. Quickest detection POMDPs with social learning: interaction of local and global decision

makers. IEEE Trans Inf Theory 2012;58(8):5563–87.
[110] Krishnamurthy V, Bhatt S. Sequential detection of market shocks with risk-averse CVAR social sensors.

IEEE J Sel Top Signal Process 2016;10(6):1061–72.
[111] Bond R, Fariss C, Jones J, Kramer A, Marlow C, Settle J, et al. A 61-million-person experiment in social

influence and political mobilization. Nature 2012;489:295–8.
[112] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network.

In: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining,
Washington, DC; 2003. p. 137–46.

[113] Karlin S. Total positivity, vol. 1. Stanford Univ.; 1968.
[114] Karlin S, Rinott Y. Classes of orderings of measures and related correlation inequalities. I. Multivariate

totally positive distributions. J Multivar Anal 1980;10(4):467–98.
[115] Milgrom P. Good news and bad news: representation theorems and applications. Bell J Econ

1981;12(2):380–91.
[116] Topkis DM. Supermodularity and complementarity. Princeton University Press; 1998.
[117] Milgrom P, Shannon C. Monotone comparative statistics. Econometrica 1992;62(1):157–80.
[118] Amir R. Supermodularity and complementarity in economics: an elementary survey. South Econ J

2005;71(3):636–60.
[119] Hamdi M, Krishnamurthy V. Removal of data incest in multi-agent social learning in social networks; 2013.

ArXiv e-prints .
[120] Surowiecki J. The wisdom of crowds. New York: Anchor; 2005.
[121] Anderson C, Kilduff GJ. Why do dominant personalities attain influence in face-to-face groups? The

competence-signaling effects of trait dominance. J Pers Soc Psychol 2009;96(2):491–503.
[122] Ottaviani M, Sørensen P. Information aggregation in debate: who should speak first? J Public Econ

2001;81(3):393–421.
[123] Samuelson P. A note on the pure theory of consumer’s behaviour. Economica 1938:61–71.
[124] Afriat S. Logic of choice and economic theory. Clarendon Press Oxford; 1987.

http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0485
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0490
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0495
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0500
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0505
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0510
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0515
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0520
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0525
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0530
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0535
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0540
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0545
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0550
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0555
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0560
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0565
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0570
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0575
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0580
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0585
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0590
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0595
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0600
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0605
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0610
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0615
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0620
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0625


598 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

[125] Diewert W. Afriat and revealed preference theory. Rev Econ Stud 1973:419–25.
[126] Blundell R. How revealing is revealed preference? J Eur Econ Assoc 2005;3(2–3):211–35.
[127] Fostel A, Scarf H, Todd M. Two new proofs of Afriat’s theorem. Econ Theory 2004;24(1):211–9.
[128] Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press; 2004.
[129] Varian H. Non-parametric tests of consumer behaviour. Rev Econ Stud 1983;50(1):99–110.
[130] Deb R. Interdependent preferences, potential games and household consumption. MPRA Paper 6818,

University Library of Munich, Germany; 2008.
[131] Chapman A, Verbic G, Hill D. A healthy dose of reality for game-theoretic approaches to residential demand

response. In: 2013 IREP symposium bulk power system dynamics and control-IX optimization, security and
control of the emerging power grid (IREP). IEEE; 2013. p. 1–13.

[132] Ibars C, Navarro M, Giupponi L. Distributed demand management in smart grid with a congestion game.
In: 2010 first IEEE international conference on smart grid communications. IEEE; 2010. p. 495–500.

[133] Wu C, Mohsenian-Rad H, Huang J, Wang A. Demand side management for wind power integration
in microgrid using dynamic potential game theory. In: 2011 IEEE GLOBECOM workshops; 2011.
p. 1199–204.

[134] Rosenthal R. A class of games possessing pure-strategy Nash equilibria. Int J Game Theory 1973;2(1):65–7.
[135] Hayrapetyan A, Tardos E, Wexler T. The effect of collusion in congestion games. In: Proceedings of the

thirty-eighth annual ACM symposium on theory of computing. STOC’06. ACM; 2006. p. 89–98. ISBN
1-59593-134-1.

[136] Babaioff M, Kleinberg R, Papadimitriou C. Congestion games with malicious players. In: Proceedings of
the 8th ACM conference on electronic commerce. EC’07. New York, NY: ACM; 2007. p. 103–12. ISBN
978-1-59593-653-0.

[137] McGill P, Schumaker MF. Boundary conditions for single-ion diffusion. Biophys J 1996;71:1723–42.
[138] Varian H. Revealed preference. In: Samuelsonian economics and the twenty-first century; 2006. p. 99–115.
[139] Deb R. A testable model of consumption with externalities. J Econ Theory 2009;144(4):1804–16.
[140] Ui T. Correlated equilibrium and concave games. Int J Game Theory 2008;37:1–13.
[141] Neyman A. Correlated equilibrium and potential games. Int J Game Theory 1997;26(2):223–7.
[142] Carvajal A, Deb R, Fenske J, Quah J. Revealed preference tests of the Cournot model. Econometrica

2013;81(6):2351–79.
[143] Hoiles W, Krishnamurthy V. Nonparametric demand forecasting and detection of demand-responsive

consumers. IEEE Trans Smart Grid 2015;6(2):695–704.
[144] Beigman E, Vohra R. Learning from revealed preference. In: Proceedings of the 7th ACM conference on

electronic commerce. EC’06. New York, NY, USA: ACM; 2006. p. 36–42.
[145] Borle S, Boatwright P, Kadane J. The timing of bid placement and extent of multiple bidding: an empirical

investigation using eBay online auctions. Stat Sci 2006:194–205.
[146] Ockenfels A, Roth A. The timing of bids in internet auctions: market design, bidder behavior, and artificial

agents. AI Mag 2002;23(3):79.
[147] Pownall R, Wolk L. Bidding behavior and experience in internet auctions. Eur Econ Rev 2013;61:14–27.
[148] DellaVigna S. Psychology and economics: evidence from the field. J Econ Lit 2009;47(2):315–72.
[149] Leberknight C, Inaltekin H, Chiang M, Poor H. The evolution of online social networks: a tutorial survey.

IEEE Signal Process Mag 2012;29(2):41–52.
[150] Granovetter M. Economic action and social structure: the problem of embeddedness. Am J Sociol

1985:481–510.
[151] Granovetter M. The impact of social structure on economic outcomes. J Econ Perspect 2005:33–50.
[152] Dave S, Sooriyabandara M, Zhang L. Application of a game-theoretic energy management algorithm in

a hybrid predictive-adaptive scenario. In: 2011 2nd IEEE PES international conference and exhibition on
innovative smart grid technologies (ISGT Europe); 2011. p. 1–6.

http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0630
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0635
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0640
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0645
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0650
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0655
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0660
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0665
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0670
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0675
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0680
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0685
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0690
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0695
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0700
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0705
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0710
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0715
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0720
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0725
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0730
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0735
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0740
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0745
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0750
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0755
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0760
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0765


REFERENCES 599

[153] Nguyen H, Song J, Han Z. Demand side management to reduce peak-to-average ratio using game theory
in smart grid. In: 2012 IEEE conference on computer communications workshops (INFOCOM WKSHPS);
2012. p. 91–6.

[154] Giummolè F, Orlando S, Tolomei G. A study on microblog and search engine user behaviors: how Twitter
trending topics help predict Google hot queries. HUMAN 2013;2(3):195.

[155] Mas-Colell A. On revealed preference analysis. Rev Econ Stud 1978:121–31.
[156] Forges F, Minelli E. Afriat’s theorem for general budget sets. J Econ Theory 2009;144(1):135–45.
[157] Lahaie S. Kernel methods for revealed preference analysis. In: ECAI 2010: 19th European conference on

artificial intelligence; 2010. p. 439–44.
[158] Krishnamurthy V, Hoiles W. Afriat’s test for detecting malicious agents. IEEE Signal Process Lett

2012;19(12):801–4.
[159] Aprem A, Krishnamurthy V. Utility change point detection in online social media: a revealed preference

framework. IEEE Trans Signal Process 2017;65(7):1869–80.
[160] Strebel J, Erdem T, Swait J. Consumer search in high technology markets: exploring the use of traditional

information channels. J Consum Psychol 2004;14(1-2):96–104.
[161] Zhou X, Ye J, Feng Y. Tuberculosis surveillance by analyzing Google trends. IEEE Trans Biomed Eng

2011;58(8):2247–54.
[162] Adams A, Blundell R, Browning M, Crawford I. Prices versus preferences: taste change and revealed

preference. Tech. rep.. IFS Working Papers; 2015.
[163] McFadden DL, Fosgerau M. A theory of the perturbed consumer with general budgets. Tech. rep.. National

Bureau of Economic Research; 2012.
[164] Fudenberg D, Iijima R, Strzalecki T. Stochastic choice and revealed perturbed utility. Econometrica

2015;83(6):2371–409.
[165] Chasparis GC, Shamma JS. Control of preferences in social networks. In: 2010 49th IEEE conference on

decision and control (CDC). IEEE; 2010. p. 6651–6.
[166] Granger CW. Investigating causal relations by econometric models and cross-spectral methods. Economet-

rica: J Econ Soc 1969:424–38.
[167] G M Ljung GEPB. On a measure of lack of fit in time series models. Biometrika 1978;65(2):297–303.
[168] Wald A. Sequential analysis. Dover; 1973.
[169] Jiang L, Miao Y, Yang Y, Lan Z, Hauptmann A. Viral video style: a closer look at viral videos on YouTube.

In: Proceedings of international conference on multimedia retrieval. ACM; 2014. p. 193.
[170] Figueiredo F, Benevenuto F, Almeida J. The tube over time: characterizing popularity growth of YouTube

videos. In: Proceedings of the fourth ACM international conference on web search and data mining. ACM;
2011. p. 745–54.

[171] Tartakovsky A, Nikiforov I, Basseville M. Sequential analysis: hypothesis testing and changepoint detection.
CRC Press; 2014.

[172] Burer S, Letchford A. Non-convex mixed-integer nonlinear programming: a survey. Surv Oper Res Manag
Sci 2012;17(2):97–106.

[173] Bertsekas DP. Nonlinear programming. Athena Scientific; 1999.
[174] Gharehshiran O, Hoiles W, Krishnamurthy V. Detection of homophilic communities and coordination of in-

teracting meta-agents: a game-theoretic viewpoint. IEEE Trans Signal Inf Process Netw 2016;2(1):84–101.
[175] Hart S, Mas-Colell A. A simple adaptive procedure leading to correlated equilibrium. Econometrica

2000;68(5):1127–50.
[176] Hart S, Mas-Colell A, Babichenko Y. Simple adaptive strategies: from regret-matching to uncoupled

dynamics; World Scientific Series in Economic Theory, vol. 4. World Scientific Publishing; 2013.
[177] Namvar O, Krishnamurthy V, Yin G. Distributed tracking of correlated equilibria in regime switching

noncooperative games. IEEE Trans Autom Control 2013;58(10):2435–50.

http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0770
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0775
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0780
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0785
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0790
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0795
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0800
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0805
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0810
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0815
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0820
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0825
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0830
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0835
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0840
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0845
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0850
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0855
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0860
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0865
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0870
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0875
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0880
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0885
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0890


600 CHAPTER 21 DYNAMICS OF INFORMATION DIFFUSION

[178] Angeletos G, Hellwig C, Pavan A. Dynamic global games of regime change: learning, multiplicity, and the
timing of attacks. Econometrica 2007;75(3):711–56.

[179] Kozma B, Barrat A. Consensus formation on adaptive networks. Phys Rev E 2008;77(1):016102.
[180] Tahbaz-Salehi A, Jadbabaie A. Consensus over ergodic stationary graph processes. IEEE Trans Autom

Control 2010;55(1):225–30.
[181] Watts DJ. Networks, dynamics, and the small-world phenomenon. Am J Sociol 1999;105(2):493–527.
[182] Kleinberg J. Navigation in a small world. Nature 2000;406(6798):845.
[183] Halvey MJ, Keane MT. Exploring social dynamics in online media sharing. In: Proceedings of 16th

international conference on world wide web, Banff, AB, Canada; 2007. p. 1273–4.
[184] Zhao HV, Lin WS, Liu KJR. Behavior dynamics in media-sharing social networks. Cambridge University

Press; 2011.
[185] Lange PG. Publicly private and privately public: social networking on YouTube. J Comput-Mediat Commun

2007;13(1):361–80.
[186] Liu L, Yu E, Mylopoulos J. Security and privacy requirements analysis within a social setting.

In: Proceedings of 11th IEEE international requirements engineering conference, Monterey Bay, CA; 2003.
p. 151–61.

http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0895
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0900
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0905
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0910
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0915
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0920
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0925
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0930
http://refhub.elsevier.com/B978-0-12-813677-5.00021-3/rf0935


CHAPTER

22ACTIVE SENSING OF SOCIAL
NETWORKS: NETWORK
IDENTIFICATION FROM
LOW-RANK DATA

Hoi-To Wai∗, Anna Scaglione∗, Amir Leshem†

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, United States∗ Faculty of

Engineering, Bar-Ilan University, Ramat Gan, Israel†

22.1 INTRODUCTION
Suppose you are trying to win an argument with a group of friends, advertising a product to a group
of individuals, or lobbying with a number of decision-makers. As demonstrated by a number of
works [1,2], the “optimal” strategy to maximize the chance of success depends on the social network
structure and the parameters of the underlying opinion dynamics. The desire to fully exploit this
network information in decision-making has motivated many studies on modeling and learning the
social network, as we review in Section 22.1.1.

With the advent of online social networks such as Facebook, Twitter, and LinkedIn, the opportunities
for human beings to share information are unprecedented, and the social network of interest now
consists of a large number of potential agents. To our rescue, a huge amount of social interaction data
has become available simultaneously, enabling researchers to apply sophisticated computation tools to
explore social network data. A common approach in this field is first developing a simple statistical
model that embeds the latent network structure, then applying statistical inference techniques to learn
the social network.

In this chapter we analyze the social interaction data given as steady-state opinions of different
agents on different topics. For example, the voting records in the US Senate can be seen as a
manifestation of steady-state opinions because they represent the results of several prior interactions
among the members of the senate and other stakeholders. In this realm, a simple model fails to capture
many salient features exhibited by the real data. A prominent feature missing in previous work is
that the steady-state opinions have naturally a low-rank structure. The voting records in the senate
are a particularly acute example of this phenomenon because senators often choose to side with their
own party. Note that learning the social network from low-rank data is difficult, as the social network
contains a large number of agents and is a high-dimensional object. Having low-rank data prevents one
from learning the social network effectively if one does not choose the appropriate framework.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00022-5
Copyright © 2018 Elsevier Inc. All rights reserved.

601



602 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

We address this challenge in this chapter by putting to use a suite of tailored system identification
tools and system modeling. In particular, the first part of this chapter is concerned with the modeling
of social networks, as described in Section 22.2. Our approach captures the low-rank feature of
opinion data by modeling them as the result of the so-called DeGroot opinion dynamics model with
stubborn agents. As suggested by their designation, the stubborn agents are zealots who do not change
their opinions even when they enter into contact with others. This modified opinion dynamics model
naturally gives rise to the low-rank structure with polarization phenomena described above.

Leveraging these model steady-state equations, the second part of this chapter addresses the the
social network identification problem by describing the computational techniques and then provides
theoretical identifiability guarantees. We call network identification the problem of learning both the
topology and the relative strength of interactions between agents. In Section 22.3, we compare two
network identification techniques. One is the popular graphical LASSO method, which exploits a model
that ties the latent network to the opinion data correlation. The second one is the model-based learning
method that performs a regression on the data using the DeGroot model with stubborn agents. The latter
is cast into a blind compressive sensing problem and this allows Characterizing rigorously network
recoverability guarantees. The identifiability condition is shown to depend implicitly on parameters
of the network structure one wishes to recover and on the number of zealots that excite the social
system. We show that if the number of stubborn agents in the network is proportional to the in-
degree of the network, then it is possible to identify the network perfectly. Furthermore, we observe
an interesting interplay between the network structure and its identifiability, in which the network can
be identified most easily when the network topology is close to a regular graph. Finally, we remark
that the model-based learning method can be seen as a general network RADAR methodology that
is applicable to inferring more general data structures shaped by network interactions, such as gene
regulatory networks.

22.1.1 MODELS FOR THE ANALYSIS OF OPINIONS
While it is possible to use nonparametric machine learning approaches to make an inference about
group behavior on certain issues and decisions, there are two key reasons to prefer parametric
approaches: (1) the parameter estimates provide insights that can be used to interpret the results; (2) the
specific use of opinion dynamics models explains a recurrent feature found in real data: certain types
of actions or ratings from a possibly vast group of agents tend to exhibit a low rank. This indicates
that their decision-making process can be traced back to a belief system that is similar across different
groups of agents.

The social system identification problem we pose in this chapter draws inspiration from opinion
dynamics models that have been developed to interpret the trends observed in society for many
years. These models are of interest in the emerging field of graph signal processing, as it pertains
to solving social network inference problems. This section reviews briefly the key ones, with emphasis
on those that are most relevant to our quest. Of course, unlike classical system identification problems,
where laws of physics support the mathematical framework, all these models are not the ground truth.
However, the working hypothesis is that whatever can mirror the behavior observed and can be used
to make predictions or provide an approximation of the relationships observed, can be viewed as the
mathematical law that generates the data structure, just as many other models in statistics that are used
to fit empirically the data without a formal derivation that the phenomenon producing the data obeys
those laws.



22.1 INTRODUCTION 603

Social network modeling
The interest in modeling mathematically how individuals choose their actions under pressure from
society is centuries old. The choice of a social agent is clearly not only a function of what the agent
observes (i.e., its private information), but also the result of how the individual internalizes what other
peers choose. The research published on social network modeling dates back to the beginning of the
20th century with the focus on explaining the phenomenon of crowd wisdom [3]. The opinions in the
demonstration Galton made in [3] were the estimates of the weight of an ox that Galton averaged
over several guesses reaching a remarkably close answer to the true weight. This phenomenon can be
mathematically justified if one considers the estimate xi as a noisy observation xi = x∗+wi of the actual
weight of the ox x∗, with unbiased error, and applies the law of large numbers to justify the convergence
of the average to the true weight. This mathematical finding supported the idea that voting is a good
mechanism to make decisions because it reduces the noise embedded in individual assessments.

The first opinion dynamics model that includes the social network structure explicitly was developed
by DeGroot in the early 1970s [4]. The DeGroot model relies on the intuition that agents are influenced
by their immediate neighbors and therefore change their opinions by taking a a convex combination of
the neighbors’ opinions. The DeGroot model considers continuous valued opinions and its analysis has
a strong similarity to that of Markov Chains, particularly when the opinions 0 ≤ xi ≤ 1 represent the
probability of a binary action, i.e., xi = P(ai = 1), such as voting for a bill, or choosing a restaurant.
Denoting by x(t) the vector of the agents opinions after the tth interaction, and by A the weighted
adjacency matrix, containing in each row the coefficients of the aforementioned convex combination.
From a graph signal processing perspective, the matrix A can be interpreted as a graph shift operator
(GSO) and the DeGroot model is essentially a first order autoregressive graph filter:

x(t) = Ax(t − 1). (22.1)

If the network is connected, the DeGroot model leads to agreement in the opinion. Of course, social
learning is affected often by pathological behavior. In some cases the agents may agree on an action that
is completely wrong. This is the so-called phenomenon of group think, which was well documented by
the cognitive studies of Asch [5]. To capture the inability of a group to exercise critical thinking and
resist social pressure, in spite of the evidence for a preferable contrary option, Bikhchandani et al. [6]
explained the phenomenon by showing how rational herds can form, even if the agents are optimally
integrating information as Bayesian agents. Other related models include the voter model [7] and the
SIS/SIR model [8] pertaining to discrete opinion dynamics.

There are two prevalent ways to model the pathological divisions that are observed in the beliefs or
actions of social agents. One is by considering in the models the presence of zealots or stubborn agents,
i.e., sociopaths who only trust their own opinion [9–11]. The second approach is embodied by the so-
called models of bounded confidence that capture the fundamental lack of trust for those who are too
different [12]. In particular, Acemoglu et al. [11,13], Yildiz and Scaglione [14] analyzed the behavior
of the DeGroot model under the influences of the stubborn agents; Mobilia [9], Mobilia et al. [10],
Yildiz et al. [15,16], and Waagen et al. [17] considered the voter model (or discrete opinion dynamics
in general) in the presence of the stubborn agents. It is also worthwhile to mention the empirical studies
in [18,19] that provide analysis on actual data to verify the opinion dynamics models.

We wish to add that herding phenomena and agreement or disagreement in beliefs are two steady-
state distinct regimes. Discrete actions opinion models lead to herding, which means that at the steady
state all agents subject to the dynamics end up taking an action with probability one, which, depending



604 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

on the interaction model, can be exactly the same action or they can split in groups that take the same
action. Disagreement in beliefs means, instead, that the agents have different probabilities of taking an
action; this is what we are considering in this chapter as the basis for our network identification theory.
This is not to say that discrete interaction models are not of interest in general, only that they go beyond
the scope of this chapter.

Social network identification
The social network identification problem is a relatively new topic. The research to date can roughly be
categorized into statistical inference and dynamics-based learning, as we shall survey below.

Statistical inference methods are widely adopted due to their simplicity and the rich theoretical
guarantees. Their working hypothesis is that two agents are not connected directly in a social network
if their opinions are statistically independent, when conditioned on the opinions of some other agent.
An important consequence of this model is that the inverse covariance matrix has the same support
as the adjacency matrix of the social network. This forms the basis for the popular graphical LASSO
method [20]. Recently, methods have been proposed to analyzing graph signals in a similar vein. For
example, Segarra et al. [21] has proposed to collect the spectral templates of the network topology
from the output of a graph filter. In the class of graphical model methods, Tang et al. [22] proposed a
transfer factor graph model to infer links on heterogenous social networks, Tang et al. [23] proposed a
trusts evolution model for product review data, Bresler [24] considered the Ising’s model and proposed
a greedy algorithm that is guaranteed to find the n-nodes graph with �(log n) samples, Etesami et al.
[25] and He et al. [26] studied the Hawkes model and modeled the actions of social agents as an arrival
process, and Pouget-Abadie and Horel [27] considered the network inference problem from observing
a cascading process. Most of the methods above demand big and high-rank data, e.g., the data are
observations of a random process excited by full-rank, independent random sources.

Model-based (or dynamics-based) learning interprets the interaction data as states of a dynamical
system, where the latter is specified by a set of difference/differential equations. This fits into the
hypothesis that the states of the agents/nodes in the networked system evolve with a fixed and known
rule [28] and allows us to assign physical meaning to the network inference results. Like the statistical
learning method described above, the general approach is to apply a linear regression to find the best fit
network to the dynamical system. In the case of a sparse network, a sparsity enhancing regularizer, i.e.,
the popular �1 norm, may be adopted. These methods have been particularly successful in identifying
network structures, e.g., oscillator networks [29], epidemic networks [30], social networks [31,32], and
other networks [33,34]. Most of the above works focus on the network identification problem using
transient data, with the exception of [29,33,35]. In most cases, a rigorous mathematical analysis on the
performance of the proposed methods is lacking.

22.1.2 NOTATION
For any natural number n ∈ N, we denote [n] as the set {1, 2, . . . , n}. Vectors (resp. matrices) are denoted
by boldfaced letters (resp. capital letters). We denote xi as the ith element of the vector x, [E]S ,: (resp.
[E]:,S ) denotes the submatrix of E ∈ Rm×n with only the rows (resp. columns) selected from S ⊆ [m]
(resp. S ⊆ [n]). Vector ek ∈ Rn is a unit vector with zeros everywhere except for the kth coordinate.
The superscript (·)� denotes matrix/vector transpose. ‖ · ‖2 denotes the Euclidean norm and ‖ · ‖1 is the



22.2 DEGROOT OPINION DYNAMICS 605

�1-norm. The vectorization of a matrix X ∈ Rm1×m2 is denoted by vec(X) = [x1; x2; . . . ; xm2 ] ∈ Rm1m2

such that xi is the ith column of X.

22.2 DEGROOT OPINION DYNAMICS
This section reviews the classical DeGroot opinion dynamics that are central to our modeling of the
opinion data. To establish our model, let us begin by considering a social network as being represented
by a simple directed graph G = (V , E), where V = [n] is the set of agents and E ⊆ V × V is the edge
set. We denote (i, j) ∈ E if there exists an edge from agent i to j. The graph is also associated with a
trust matrix between agents, denoted as A ∈ Rn×n such that Aij ≥ η if and only if (j, i) ∈ E, for some
η > 0. The matrix is normalized such that it is stochastic with row sums of ones, i.e., A1 = 1.

There are K different topics discussed by the agents. Each discussion is indexed by k ∈ [K]. The
opinion of the ith agent at discrete time t is denoted by a scalar xi(t; k)1 at time t ∈ N during the
kth discussion. As the individuals’ opinions are constantly influenced by the opinions of others, the
DeGroot model postulates that the agents’ opinions are updated according to the random process:

xi(t; k) =
∑
j∈Ni

Aijxj(t − 1; k). (22.2)

In matrix form, the above can be written as

x(t; k) = Ax(t − 1; k), (22.3)

where we stack the vectors as x(t; k) = (x1(t; k), . . . , xn(t; k))�, [A]ij = Aij and A is nonnegative and
stochastic, i.e., A1 = 1 for all t, s. See [4] and [36, Chapter 1] for a detailed description.

We remark that it is possible to consider a setting with a time-varying trust matrix of random
connectivity. In fact, our analysis can be extended as one replaces A in the previous equation with
a random matrix A(t; k), which satisfies the following:

Assumption 22.1. The matrix A(t; k) is an independently and identically distributed (i.i.d.) random
matrix drawn from a distribution satisfying E[A(t; k)] = A for all t ∈ N, k ∈ [K], where the expectation
is taken w.r.t. the realization of A(t; k).
All the results that follow can be generalized to the stochastic interaction model just described but, for
simplicity, we focus on the static case from now on. The random interaction model will be revisited
later.

A well-known fact in the distributed control literature [37] is that the agents’ opinions in Eq. (22.2)
attain consensus as t → ∞, i.e.,

lim
t→∞ x(t; k) = 1c�x(0; k) (22.4)

1For example, the ith agent’s opinion xi(t; k) parameterizes a probability mass function of his/her stance on the kth discussion.
While this chapter focuses on the case when xi(t; k) is a scalar, it should be noted that the techniques developed can be easily
extended to the vector case.



606 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

for some c ∈ Rn. We have xi(∞; k) = xj(∞; k) for all i, j for the steady state opinions. However,
attaining consensus is clearly not the case in the real-world data, as the agents usually disagree with the
others and the opinions exhibit clustering behavior.

22.2.1 EFFECTS OF STUBBORN AGENTS
We consider extending the social network G by appending S stubborn agents into the social network.
Formally, stubborn agents (a.k.a. zealots) are members of a social network whose opinions cannot be
swayed by others. If agent i is stubborn, then xi(t; k) = xi(0; k) for all t. Adapting to the DeGroot
opinion dynamics, these agents can be characterized by the structure of their respective rows in the
trust matrix:

Definition 22.1. An agent i is stubborn if and only if its corresponding row in the trust matrix A is
the canonical basis vector; i.e., for all j,

Aij =
{

1, if j = i,

0, otherwise.
(22.5)

The extended social network G′ consists of n + S agents, denoted by V ′ = [n + S] and the edge set is
denoted by E′ ⊆ V ′ × V ′. Without loss of generality, we let Vs := [S] be the set of stubborn agents and
Vr := V \Vs = {1+S, . . . , n+S} be the set of regular agents. The trust matrix A can thus be partitioned
as follows:

A =
(

I 0
B D

)
, (22.6)

where B and D are the submatrices of A. The matrix B is the network between stubborn and regular
agents, and D is the network among the regular agents themselves. See Fig. 22.1 for an illustration of
the notations involved. We further impose the following assumptions:

Assumption 22.2. Each agent in Vr has nonzero trust in at least one agent in Vs.
Assumption 22.3. The induced subgraph G′[Vr] = (Vr, E′(Vr)) is strongly connected.
It can be shown that the two assumptions above imply that the principal submatrix D satisfies

‖D‖2 < 1. We are interested in the steady state opinion resulting from Eq. (22.2) at t → ∞, which can
be characterized using the observation below.

Observation 22.1 ([14,38]). Under Assumptions 22.2 and 22.3. Consider Eq. (22.2) and setting
t → ∞, we have:

lim
t→∞ x(t; k) = A∞x(0; k) where A∞ :=

(
I 0

(I − D)−1B 0

)
. (22.7)

We have the following observations from Eq. (22.7):

• The steady-state opinions depend solely on the stubborn agents and the structure of the network.
Unlike the case without stubborn agents (cf. Eq. 22.4), information about the network structure
D, B is retained in Eq. (22.8).

• The range space of A∞ has a dimension of at most S only. Because the number of stubborn agents
S is usually much less than the number of regular agents, this implies that the steady-state opinion



22.2 DEGROOT OPINION DYNAMICS 607

Stubborn agentsRegular agents

Stub.-regular net. BRegular-regular net. D

FIG. 22.1

Illustration of the social network structure. The extended social network with stubborn agents and the
corresponding notations regarding the weighted adjacency matrix.

also lies in a low dimensional space. Importantly, we see that in the presence of zealots the
DeGroot opinion dynamics naturally give rise to a low-rank structure in the steady-state opinion
data.

We now describe an input-output relationship in the steady-state opinions generated from the
DeGroot model with stubborn agents. Denote xk := limt→∞ x(t; k) as the steady-state opinions at
the kth discussion and define the partition xk := (zk, yk)� ∈ Rn+S such that zk ∈ RS and yk ∈ Rn

are are the opinions of stubborn agents and regular agents, respectively. The input-output relationship
holds:

yk = (I − D)−1Bzk, (22.8)

where we can take zk as an “input” to a linear system, yk is the corresponding “output” and the matrix
(I − D)−1B is the linear system.

Before concluding the section, we discuss a subtle yet relevant property of the steady-state output
model (22.8).
Ambiguity. The input-output pair relationship (22.8) depends on the matrix product (I−D)−1B, which
naturally admits a scaling ambiguity. Precisely, we observe:

Observation 22.2. Let � ∈ Rn be bounded such that 0 ≤ � < 1 and define the pair of matrix
(B�, D�) such that:

D� = Diag(�) + Diag

(
1 − �

1 − diag(D)

)
off(D), B� = Diag

(
1 − �

1 − diag(D)

)
B, (22.9)

where off(D) = D − Diag(D) and the fraction inside the bracket is an element-wise division. We have
(I − D)−1B = (I − D�)−1B�.

The observation relies on simple linear algebra and can be found in [39]. In fact, the form of model
ambiguity stated above can be understood as losing the information on the rate of convergence in the
opinion dynamics, which is natural as the data yk, zk recorded are the steady-state opinions.



608 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

Observation 22.2 implies that the equality Ỹ = (I − D�)−1B� can be satisfied by infinitely many
pairs of (B�, D�), each with different diagonal entries � in the square matrix D�. As a remedy, we choose
to emphasize the degree of “openness” of the agents. We consider the normalized network (B�, D�) with
� = 0, written as:

D0 := Diag

(
1

1 − diag(D)

)
off(D), B0 := Diag

(
1

1 − diag(D)

)
B. (22.10)

Notice that both the network topology and relative strengths of interaction between agents are
preserved, regardless of the chosen �. From now on, we shall use (B, D) to denote the normalized
network (B0, D0) to keep the presentation simple to follow.

22.3 NETWORK IDENTIFICATION
The last section described an opinion dynamics model that gives rise to a low rank data structure for
the collection of its steady state opinions.

Our next endeavor is to introduce network identification methods to recover the structure and
parameters in the social network. Specifically, given the DeGroot model, we focus on estimating
D, B from the observed opinions. We describe a state-of-the-art approach and a model-based learning
approach that was introduced in [39], which was designed specifically for the opinion data originated
from the DeGroot model. For the latter method, we demonstrate a sufficient condition such that the
social network can be perfectly identified, even when the observed data has a significantly lower rank
than the number of agents.

22.3.1 GRAPHICAL LASSO
The graphical LASSO (gLASSO) is a popular method introduced in [20] for inferring the latent struc-
ture of the random variables (r.v.s) generated from a Gaussian Markov random field (a.k.a. undirected
graphical model) [40]. The method relies on the following observation—consider a random vector
X ∈ Rn generated from a graphical model with G = (V , E) as the underlying graph and Xi is an
r.v. associated with node i ∈ V . Assume that the covariance matrix CX of X is full rank. If (i, j) /∈ E
and S ⊆ V is a graph cut between them, then Xi, Xj are independent when conditioned on (Xs)s∈S.
Furthermore, the conditional independence property can be captured by the support of the inverse of
the covariance matrix such that [C−1

X ]ij = 0. In light of this, Friedman et al. [20] proposed the following
gLASSO optimization:

min
A∈Rn×n

− log det A + Tr(ĈXA) + ρ‖vec(A)‖1 s.t. A = A�, (22.11)

where ρ > 0 is a regularization parameter, ĈX is the empirical covariance matrix of X, to approximate
the inverse of CX and therefore the connectivity of the graph G. The gLASSO problem (22.11) is
essentially a penalized maximum likelihood method for the graphical model. In particular, if we set the
regularization parameter as ρ = �(1/

√
k) where k is the number of samples obtained for estimating

CX , then the latent graph structure can be recovered in high probability [41].



22.3 NETWORK IDENTIFICATION 609

We note that the covariance matrix computed from steady-state opinions of the DeGroot model does
not fit naturally into the graphical model above. In particular, as discussed before, the obtained steady
state opinions span only an S-dimensional space and the corresponding covariance matrix has rank at
most S. Nevertheless, the gLASSO can still be applied as a heuristic to estimate the latent network
structure of the social network. To obtain insights on its performance, let us assume that the initial
opinions of the stubborn agents are white, i.e., E[zk(zk)�] = I. The covariance matrix of the regular
agents’ opinions can be expressed as:

Cy = E[yk(yk)�] = (I − D)−1BB�(I − D)−�. (22.12)

Note that Cy is rank-deficient, and its pseudoinverse (denoted by (·)†) is given as:

C†
y = (I − D)(BB�)†(I − D)�. (22.13)

Effectively, solving the gLASSO problem (22.11) by setting Ĉx = (1/K)
∑K

k=1 yk(yk)� as the empirical
covariance matrix of the regular agents’ opinions finds the sparsest positive semidefinite matrix that
approximates Eq. (22.13). As I − D is sparse, it is anticipated that the gLASSO method may be able
to recover the support of D partially. However, there is no theoretical guarantee to its identifiability
condition, even when the covariance Cy is estimated perfectly.

22.3.2 MODEL-BASED LEARNING
Unlike the gLASSO method, the authors considered a model-based learning method in [39] that exploits
the structure in the observed opinions directly. In particular, we find that such an approach achieves
perfect identification of the social network given a small number of stubborn agents, i.e., when the
observed opinion data is low rank.

The method is motivated by the popular technique of sparse recovery using �1 minimization. Let
(B̂, D̂) be an estimate of the tuple (B, D) and b̂i, d̂i be the respective ith row vector. We consider the
following �2 loss function [cf. Eq. 22.8]:

Ji(b̂i, d̂i) :=
K∑

k=1

∣∣b̂�
i zk + d̂

�
i yk − yk

i

∣∣2. (22.14)

We propose to identify the social network via solving the following problem:

NETWORK IDENTIFICATION PROBLEM

For all i ∈ [n], we solve

min
b̂i,d̂i

Ji(b̂i, d̂i) + ρ · g(b̂i, d̂i)

s.t. b̂i ≥ 0, d̂i ≥ 0, b̂
�
i 1 + d̂

�
i 1 = 1, [d̂i]i = 0,

(P1)

where ρ > 0 is a regularization parameter, the last equality constraint forces the optimization to
find the normalized network, and the regularizer g(b̂i, d̂i) is chosen based on prior knowledge of the
network.



610 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

We consider the following choices of the regularization functions g(b̂i, d̂i):

g1(b̂i, d̂i) := ‖d̂i‖1 + I�bi
(b̂i), gb(b̂i, d̂i) := ‖b̂i‖1, (22.15)

where �bi = {j ∈ [S] : [bi]j = 0} is the index set such that bi has its zeros on and I�bi
(b̂i) is an

indicator function such that

I�bi
(b̂i) =

{
0, if [b̂i]j = 0, ∀ j ∈ �bi ,

∞, otherwise.
(22.16)

We refer to the setting when solving Eq. (P1) with g1(·) as the “Active Sensing” case because the latter
requires knowledge of the support set �bi . Such knowledge may be gained when the social network
is actively probed, i.e., the stubborn agents are introduced intentionally in a social experiment setting.
Nevertheless, even when such knowledge is unavailable, one can still infer the network by solving
Eq. (P1) with gb(·) as the regularizer, whose efficacy is confirmed in Section 22.4. Lastly, the network
identification problem can be solved efficiently when done on a parallel computer, as the subproblems
(P1) are decoupled from each other.

We remark that problem (P1), which is a natural formulation in light of Eq. (22.8), is similar in spirit
to the reconstruction formulations considered in [29–34]. In particular, Bazerque et al. [33] studied a
similar model to Eq. (22.8) and provided an identifiability condition in terms of the Kruskal rank,
which can be difficult to verify. The following discussion establishes a sufficient condition for network
identifiability in terms of the number of stubborn agents, S, present.
Network Identifiability Condition. Our next task is to study the network identifiability conditions.
Specifically, we wish to derive the smallest possible number of stubborn agents and the corresponding
configuration that guarantees perfect identifiability, which, in turn, represents also the lowest possible
opinion data rank required. We assume:

Assumption 22.4. The matrix D ∈ Rn×n is sparse and each row of it, di, satisfies ‖di‖0 ≤ dmax
for all i ∈ [n].

Assumption 22.5. The observation model (22.8) is exact such that opinions are observed without
noise and we observe opinions from K ≥ S topics.

Assumption 22.6. The support of the matrix B, �B := {(i, j) : [B]ij = 0}, is known.
In light of Assumptions 22.5 and 22.6, we shall study the the following network identification problem:
for all i ∈ [n],

min
b̂i,d̂i

‖d̂i‖0 s.t. b̂i ≥ 0, d̂i ≥ 0, b̂
�
i 1 + d̂

�
i 1 = 1, [d̂i]i = 0,

b̂
�
i zk + d̂

�
i yk = yk

i , ∀ k, [b̂i]j = 0, ∀ j ∈ �bi ,

(22.17)

the above problem is similar to problem (P1) with the regularizer g1(·). Analyzing the set of feasible
solutions to Eq. (22.17) leads us to study the linear system:

b̂
�
i zk + d̂

�
i yk = yk

i , ∀ k �⇒ Z�b̂i + Y�d̂i = yi, (22.18)



22.3 NETWORK IDENTIFICATION 611

where Z := (z1, . . . , zK) ∈ RS×K , Y := (y1, . . . , yK) ∈ Rn×K and yi = (y1
i , . . . , yK

i ) is the ith row of Y.
From Eq. (22.8), it holds that

YZ† = (I − D)−1B, (22.19)

where Z† denotes the pseudoinverse of Z. Traditionally, analyzing the identifiability of Eq. (22.18)
requires characterizing the spark of the resulting “sensing matrix” (see [42]). However, determining
the spark of a matrix is nontrivial.

In fact, the system (22.18) is closely related to the problem of compressed sensing, as we consider
the following alternative representation:

Z�b̂i + Y�d̂i = yi ⇐⇒ Z�b̂i + Y�(d̂i − ei) = 0

⇐⇒ b̂i + (YZ†)�(d̂i − ei) = 0

⇐⇒ b̂i + B�(I − D)−�(d̂i − ei) = 0

⇐⇒ B�(
(I − D)−�(d̂i − ei) + ei

) = bi − b̂i

⇐⇒ B�(I − D)−�(d̂i − di) = bi − b̂i.

(22.20)

On the left side of Eq. (22.20), we note that due to the self-trust constraint [d̂i]i = 0, the number of
unknowns in di is n − 1. On the right side of Eq. (22.20), the difference bi − b̂i is zero on indices j
whenever [bi]j = 0, as the support of bi is known to Eq. (22.17); otherwise, the terms on the right side
are, in general, unknown.

In light of the above, a sufficient condition for network identification can be obtained by ignoring
the rows in the linear system whenever [bi]j �= 0. In particular, we require that the matrix obtained by
deleting such rows from B�(I − D)−� ∈ RS×n to have a null space that consists only of dense vector.
It follows that one could study the so-called restricted isometry property of such matrix. Before giving
our identifiability condition, we provide two further remarks:

• Observe that B�(I − D)−� = B�(I + D + D2 + . . .)�; i.e., the sensing matrix (before row
deletion) is a perturbed version of B�. When the perturbation induced by D is small, we could
study B alone as the sensing matrix.

• There exists a trade-off between |�bi | and the identifiability performance. Notice that a sensing
matrix’s performance (e.g., as measured by the so-called restricted isometry property constant) is
typically better if the matrix is dense. However, as indicated in Eq. (22.20), we need to ensure that
there is a sufficient number of known observations (or zeros) in the right hand side of the
underdetermined system (22.20), which is determined by |�bi |.
The second remark prompts us to consider an optimized placement of stubborn agents when the

matrix B� is required to be sparse while maintaining a good sensing performance. As suggested in
[43], a good choice is to construct B such that each row in B has a constant number d of nonzero
elements. Our construction is stated in the following assumption:

Assumption 22.7. The support of B ∈ Rn×S, i.e., �B, is constructed such that each row of it has
exactly � nonzero elements, selected randomly and independently.

The theorem below provides the condition on dmax and S such that the social network can be
identified through Eq. (22.17):



612 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

A SUFFICIENT CONDITION FOR NETWORK IDENTIFICATION

Define H(x) as the binary entropy function. We have:
Theorem 22.1. Define α := 2dmax/n, bmin := minij∈�B Bij, bmax := maxij∈�B Bij, β := S/n and

β ′ := β − �/n. Under Assumptions 22.4 and 22.7 and the conditions

� > max
{

4, 1 + H(α) + β ′H(α/β ′)
α log(β ′/α)

}
, bmin(2d − 3) − 1 − 2bmax > 0. (22.21)

Then, as n → ∞, there is a unique optimal solution to Eq. (22.17) that (b̂i, d̂i) = (bi, di) with
probability one. Moreover, the failure probability is bounded as:

Pr
(

(b̂i, d̂i) �= (bi, di), ∀ i ∈ [n]
)

≤
(

�

β

)4 � − 1

n2
+ O(n2−(�−1)(�−3)). (22.22)

The proof of Theorem 22.1 can be found in [39]. The claim is proven by treating the unknown entries
of B� as erasure bits, and showing that the sensing matrix with erasure corresponds to a high-quality
expander graph.

The first condition in Eq. (22.21) provides a guideline for determining the number of stubborn
agents S needed and the role played by the sparsity parameter � for B. To gain some intuition, consider
the situation where n → ∞, β ′, α → 0 while the ratio β ′/α is constant; then, the second condition in
Eq. (22.21) can be approximated by

� > max
{

4, 1 + β ′
α

H(α/β ′)
log(β ′/α)

}
, (22.23)

where the right hand side is minimized by β ′/α ≈ 1.27 and requiring � > 4.362. Hence, setting � = 5
so this condition holds, the stubborn agents needed are:

S ≥ βn = 5 + β ′n ≥ 5 + 1.27αn ≥ 5 + 2.54dmax = �(dmax). (22.24)

On the other hand, the second condition in Eq. (22.21) indicates that the amount of relative trust on the
stubborn agents in the paper cannot be too small. This is reasonable because the network identification
performance should depend on the degree of influence of the stubborn agents relative to everyone else.
Table 22.1 gives a list of the values required for β ′ and subsequently the required number of stubborn
agents can be derived. Note that the number of stubborn agents required is still large. However, as this
number only corresponds to a sufficient condition for perfect network identification, in practice the
model-based method also provides good performance when this condition is significantly relaxed.

We remark that the probability bound in Eq. (22.22) is associated with the random construction of
�B in Assumption 22.7. In particular, when n is finite, this failure probability grows with the size of �B,
i.e., O(�5). This indicates a possible tradeoff between the size of �B and the identification accuracy.
We conclude this section by showing how the learning method we described can be adapted to establish
the identifiability of random graph models and how to deal with randomized interactions.
Random Graph Models. In the previous section we provided a sufficient condition for identifiability
based on specific parameters of a given network. Next, we show that for Erdos-Renyi (ER) random



22.3 NETWORK IDENTIFICATION 613

Table 22.1 Evaluating the Minimum β ′ Required by
Eq. (22.21) for the Sufficient Condition of Perfect Network
Identification With Different Combinations of �, α

α = 0.08 α = 0.16 α = 0.24 α = 0.32 α = 0.40

� = 5 0.3420 0.5280 0.6730 0.7940 0.8950

� = 6 0.2340 0.3850 0.5100 0.6190 0.7160

� = 7 0.1870 0.3190 0.4330 0.5360 0.6290

Note that β ′ > α and the number of stubborn agents required can be evaluated
as S ≈ β ′n + � and the maximum in-degree required is αn/2.

networks, given a certain edge probability, any sufficiently large set of stubborn agents will suffice to
identify the network with high probability. Furthermore, we show that the fraction of the number of
stubborn agents vanishes compared to the network size, as the network size increases.

For notational simplicity, we shall set m = n + S in the following. Because social networks are
inherently directed, we consider the directed ER random graph Dm,p where each of the m(m − 1) pairs
has probability p of being a directed edge. In addition, our interest is in weighted graphs where the
weight described the level of influence: therefore, we assume that Aij is a random variable that is 0 if
(i, j) �∈ Dm,p and otherwise has an arbitrary marginal distribution, compatible with the fact that their row
sums lie on the simplex. Assume that we have a weighted directional network G = (Vm, Em, A), where
the probability of a link is p(m) depends on m. We would like to randomly select a subset Vs ⊂ Vm

of size s. Vs will be the set of stubborn agents used to identify the network actively. To ensure that the
network is connected with high probability, it suffices that [44]

p(m) ≥ (1 + ε)
log m

m
(22.25)

for any ε > 0. Note that p(m) → 0 as m → 0. We would like to ensure that the identifiability
conditions in Theorem 22.1 also hold with high probability. In particular, let us fix � = 5 such that
each nonstubborn node is influenced by exactly � = 5 stubborn nodes. The ER model is consistent with
having the stubborn nodes choose independently and at random the nodes they influence, but we need
to make sure that there are at least � = 5 connection in the random ER graph between each stubborn
node and randomly selected neighbors that are nonstubborn that can be activated. Hence, in addition to
Eq. (22.25), an ER graph meets the assumptions in Theorem 22.1 if, with high probability:

1. The number of stubborn nodes satisfies Eq. (22.24), i.e., it is at least greater than a constant factor
multiplied to the maximal in-degree of a nonstubborn node with s ≥ 5 + 2.54dmax.

2. In the bipartite graph GB = (Vs, Vn, E ∩ (Vs × Vn)) the in-degree of each nonstubborn node is at
least 5.

Because the in-degree of a node is a binomial random variable, di ∼ Bin(m, p(m)), we know that it will
concentrate around m · p(m). The expected number of links between each nonstubborn node and the
stubborn nodes is S · p(m), where S = |Vs|. The maximal in-degree of a nonstubborn node is distributed
like the maximum of n independent random variables each having expected value of m ·p(m). To bound



614 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

the tail of dmax and of the probability that a nonstubborn node has less than � = 5 stubborn nodes in
the group, we use the union bound and the following theorem [45]:

Theorem 22.2. Let Y be Bin(n, p) and let α > 0. Then:

P (Y > (1 + α)pn) < e(α−1)pn(α)−αpn,

P (Y < (1 − α)pn) < e− α2pn
2 .

(22.26)

To facilitate our analysis, we assume that the number of stubborn agents satisfies:

s(m) ≥ 5 + 2.54 · (1 + ξ (m)) · p(m) · n(m) (22.27)

for some ξ (m) > 0 that will be determined later. Note that m = n(m) + s(m) and our choice for the
number of stubborn nodes is dependent on m. Moreover, we shall set ε = 1 in Eq. (22.25).

Our first task is to upper bound the error probability that s(m) < 5+2.54dmax. To this end, applying
the union bound to all nonstubborn nodes we get:

P (s(m) < 5 + 2.54dmax) ≤ n · P

(
1

2.54
(s(m) − 5) < d1

)
≤ n(m) · P ((1 + ξ (m)) · p(m) · n(m) < d1)

≤ n(m) · e(ξ (m)−1)p(m)n(m)−log(ξ (m))ξ (m)p(m)n(m),

(22.28)

where we have applied the first inequality in Theorem 22.2 and the fact that d1 is a binary random
variable with Bin(n(m), p(m)). Setting ξ (m) > e gives:

P (s(m) < 5 + 2.54dmax) ≤ n(m) · e−p(m)n(m) ≤ n(m)
m(n(m)/m)(1+ε) . (22.29)

To verify the last identifiability condition we will need a larger number of stubborn agents. Notice
that the we require each nonstubborn node in the bipartite graph GB to have at least � = 5 stubborn
neighbors. To this end, we need to upper bound the probability that a nonstubborn node does not have
� = 5 stubborn neighbors. In fact, the expected number of stubborn neighbors of any nonstubborn node
in GB is s(m) · p(m). Now, let NB,i be the neighborhood set of the nonstubborn node i in GB, applying
Theorem 22.2 and setting α = (1 − 5/(s(m) · p(m))) gives:

P
(|NB,i| < 5

) = P
(|NB,i| < (1 − α)p(m)s(m)

) ≤ e−(α)2p(m)s(m)/2, (22.30)

where we have used the fact that |NB,i| is a random variable with Bin(s, p(m)).
We want to select s such that the right side of Eqs. (22.29) and (22.30) decays to zero as m → ∞

while satisfying Eq. (22.27). We observe that a possible choice for s(m) is given by

s(m) = m log log m

2 log m
. (22.31)

To verify the above choice of s(m), first it can be checked that as m → ∞, the above choice of s
will always satisfy Eq. (22.27). Second, as s/m → 0, we have n/m → 1 and thus the right side of
Eq. (22.29) decays to zero. Lastly, it is easy to check that

lim
m→∞ s(m) · p(m) = ∞, (22.32)



22.3 NETWORK IDENTIFICATION 615

and thus α = (1 − 5/(s(m) · p(m))) → 1. As a result, the right side of Eq. (22.30) also decays to zero.
We summarize the above discussion with the following theorem:

Theorem 22.3. Assume that G = (Vm, Em, A) is a directed weighted ER graph where
p(m) > 2 log m

m , and we randomly pick a set of s = m log log m
2logm agents as stubborn agents. Then with

probability approaching one, the network is connected and there is a set of stubborn agents that can
identify the network.

The theorem is actually pessimistic regarding the number of stubborn agents required. If, for
example, the sparsity is fixed and the number of neighbors is a fraction of the network size, then we
can use a logarithmic number of stubborn agents. Another important observation is that when we use
stubborn agents we make an effort to cause them to influence a large number of nonstubborn agents.
In this case they will not follow the general population Erdos-Renyi statistics and our assumptions
regarding the size of the set of stubborn agents can be significantly relaxed.

Finally, we emphasize that at the current point the theorem does not prove that with high probability
any set of stubborn agents of the given size will be able to identify the network. This will require
significant strengthening of the current arguments, because the number of subsets of a given size is
quite large. An interesting problem will be to identify such a set of stubborn agents for a given network.
Random Opinion Dynamics. So far, our network identification method requires collecting the
steady-state opinions (zk, yk) resulting from a static opinion dynamics model. A more realistic setting is
to consider a randomized opinion dynamics. Importantly, we recall Assumption 22.1 and the following
randomized dynamics:

x(t + 1; k) = A(t; k)x(t; k), where A(t; k) =
(

I 0
B(t; k) D(t; k)

)
. (22.33)

In the same spirit, we also define E[B(t; k)] = B and E[D(t; k)] = D. Now, let us reexamine the
requirements on the opinion data. From Eq. (22.8), as one wishes that the collected data (yk, zk) from
the kth discussion to satisfy yk = (I − D)−1Bzk. Naturally, this can be obtained by taking the following
expectations:

yk = E[y(∞; k)|zk] and zk = E[z(t; k)]. (22.34)

However, in practice, this may be difficult to realize as computing the expectation requires taking an
average over the ensemble of the sample paths of {A(t; k)}∀t,∀k.

Instead of proceeding with Eq. (22.34), we prove that the randomized opinion dynamics are an
ergodic process and replace Eq. (22.34) with a time average. To fix the idea, let us consider a noisy
observation model on the opinions:

x̂(t; k) = x(t; k) + n(t; k). (22.35)

Now, suppose that we accrue a time series of the opinions {x̂(t; k)}t∈Tk , where Tk ⊆ N is an arbitrary
sampling set. We define:

x̂(Tk; k) � 1

|Tk|
∑
t∈Tk

x̂(t; k) ≈ E[x(∞; k)|x(0; k)]. (22.36)

Specifically, the temporal opinions samples are collected through random (and possibly noisy) sampling
at time instances on the opinions. The following theorem characterizes the performance of Eq. (22.36):



616 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

Proposition 22.1. Consider the estimator in Eq. (22.36) and we denote x(∞; k) � limt→∞ E{x(t; k)|
x(0; k)} = A∞x(0; k). Assume that E{‖D(t; k)‖2} < 1. If To → ∞,

1. then the estimator (22.36) is unbiased:

E[x̂(Tk; k)|z(0; k)] = x(∞; k). (22.37)

2. then the estimator (22.36) is asymptotically consistent:

lim
|Tk|→∞

E[‖x̂(Tk; k) − x(∞; k)‖2
2|x(0; k)] = 0. (22.38)

For the latter case, we have

E

[
‖x̂(Tk; k) − x(∞; k)‖2

2 | x(0; k)
]

≤ C′
|Tk|

⎛
⎝|Tk|−1∑

i=0

λmin� |t�+i−t�|
⎞
⎠ , (22.39)

where C′ < ∞ is a constant and λ = λmax(D) < 1, i.e., the latter term is a geometric series with
bounded sum.

22.4 NUMERICAL EXPERIMENTS
This section includes numerical experiments of the network identification methods we discussed in
detail, corroborating the theoretical claims made previously. To set up the experiments, we assume that
the DeGroot model is exact and generate the synthetic opinions according to Eq. (22.8). We assume
that the identity of the stubborn agents is known a priori and their initial opinions are generated as
uniform random variables in [0, 1], except for one of the weights, which is set such that they add up to
one. For the network identification problem (P1), we set ρ = 10−1 and examine with different choices
of regularization g(·).

Throughout this section, we consider the following metrics for performance comparison. First,
to compare the network identification performance we evaluate the normalized mean squared error
(NMSE), defined as:

NMSE := ‖D − D̂‖2
F/‖D‖2

F . (22.40)

For the network topology recovery performance, we evaluate the area under ROC (AUROC) and the
area under precision-recall curve (AUPR). Notice that if AUROC and AUPR approach 1, then the
topology recovery performance is perfect.
Model-based learning versus gLASSO. The first numerical example compares the model-based
learning approach to the conventional gLASSO method for learning a sparse graphical model, in terms
of the network topology recovery performance. We perform 100 Monte Carlo trials to evaluate the
average network topology recovery performance. For each of these trials, the regular agents’ network
has n = 100 agents and is generated as an ER graph with connectivity p = 0.08; for the stubborn-
regular network (corresponding to the matrix B ∈ Rn×S), for each regular agent, we randomly select



22.4 NUMERICAL EXPERIMENTS 617

� = 5 stubborn agents to connect the regular agent to; note that this construction corresponds to that in
Assumption 22.7. Finally, uniformly distributed edge weights are assigned to the edges and the resultant
weighted adjacency matrix A is normalized to have its rows sum to one.

The result, presented in Fig. 22.2, compares the average network topology recovery performances
against the number of stubborn agents S. We observe that the topology recovery performance improves
with the number of stubborn agents, i.e., when the rank of the observed data improves. In particular, a
good performance (AUPR/AUROC ≈ 0.99) is observed with S ≈ 40 using the model-based learning
approach (cf. Eq. P1). We also observe that the gLASSO method yields a worse performance than the
model-based learning method as the former does not account for the low rankness in the observed data.
Identifiability condition. Our second numerical example examines the impact of the identifiability
condition given in Theorem 22.1. We consider a similar setting as in the previous example. In addition,
we also compare a random ER graph-like construction for the stubborn-normal agent network, as
detailed in the figure’s caption.

Fig. 22.3 shows the performance comparison, where we present the NMSE of D and AUROC
against the number of stubborn agents S. As the regular-regular network is an ER graph with
connectivity p = 0.08 and n = 100, this setting can be approximated by the case with � = 5, dmax = 8
in Table 22.1. Theorem 22.1 predicts that with S ≈ 57 stubborn agents and if Assumption 22.7
holds, then the social network can be perfectly identified by solving Eq. (22.17), where the latter
is approximated by Eq. (P1) with g1(·). The NMSE comparison corroborates with the theorem. In
particular, with S ≈ 53 stubborn agents, the averaged NMSE approaches 10−15, i.e., the machine

10 20 30 40 50 60
0.6

0.7

0.8

0.9

1

Number of stubborn agents (S)(A) (B)

A
U

R
O

C

Graph LASSO

Prob. (P1) with gb (·)

Prob. (P1) with g1 (·)

10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

Number of stubborn agents (S)

A
U

P
R

Graph LASSO

Prob. (P1) with gb (·)

Prob. (P1) with g1(·)

FIG. 22.2

Topology recovery performance. Comparing the topology recovery performance against the number of stubborn
agents S. The regular-regular network is a 100-nodes ER graph with connectivity p = 0.08. The shaded area
shows the 5%/95% percentile interval for the AUROC/AUPR performances. The model-based learning (P1) is
benchmarked with two choices of regularizers—g1(·) and gb(·) from Eq. (22.15).



618 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

Prob. (P1) w/ gb (·) + Regular B

Prob. (P1) w/ gb (·) + ER B Prob. (P1) w/ g1(·) + ER B

Prob. (P1) w/ g1(·) + Regular B

30 40 50 60

10−2

10−6

10−10

10−14

10−18

(A) (B)Number of stubborn agents (S)

N
M

S
E

30 40 50 60

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of stubborn agents (S)

A
U

R
O

C

FIG. 22.3

Verifying the identifiability condition. Comparing the network identification performance using different
regularizers for Eq. (P1) and constructions for the stubborn-normal network (corr. to B). In the above, Regular
B refers to the setting when B is constructed according to Assumption 22.7 with � = 5; ER B corresponds to
the construction with random edge selection with connectivity p = 0.08.

precision. We also observe that the identification performance is sensitive to the construction model of
B. In particular, the NMSE is higher when using the ER-like construction of B.

Lastly, note that using g1(·) requires knowing the support of B a priori. When the support
knowledge is not available, using gb(·) can still achieve a reasonable performance, as seen in the
figures above (we cannot claim that the theoretical guarantees extend to this case). Furthermore, we
observe that the network topology recovery performances are all good (in terms of AUROC) even
when Assumption 22.7 is violated and/or problem (P1) is solved with either g1(·) or gb(·).
Application to Real Social Graphs. Our last numerical example examines a realistic setting
for network identification when the observed opinions are imperfect and the opinion dynamics are
randomized. In addition, we consider the network topology, which is taken from that of a real
network.

We focus on solving problem (P1) with the regularizer g1(·) and ρ = 10−10. The social network
considered is the ReedCollege network taken from the Facebook100 dataset [46], which consists of
n + S = 846 agents, in which we pick S = 180 agents as stubborn agents whose degrees are closest
to the median degree of the graph. The social network has |E| = 13, 269 edges and a mean degree
of 19.92. The stubborn-normal network has a mean degree of 25.07. We simulate the randomized
opinion dynamics on the above graph using a randomized broadcast gossiping protocol [47]. As the
opinions converge to a random variable, we consider the estimator described in Eq. (22.36) where we set
|Tk| = 5 × 105 and the sampling instances are taken uniformly from [105, 5 × 107]. Fig. 22.4 compares



FIG. 22.4

Identifying social networks based on a real network. Examining the model-based learning approach on a more
realistic setting. We simulate the randomized opinion dynamics on a real network from the Facebook [46]. The
networks are illustrated using Gephi with the Force Atlas 2 layout with the edge weights taken into account.
(Left) Ground Truth. (Right) Identified network via solving Eq. (P1) with g1(·).



620 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

the identified network to the ground truth. As observed, the identified network retains a similar structure
as the ground truth. The recovered network has an NMSE of 0.1035, AUPR of 0.6996, and AUROC
of 0.8571. We also expect the performance to improve when the number of samples gathered for the
opinions increases. Note that the graphical LASSO has failed to return a solution for this instance as
the sampled covariance matrix is of low rank.

22.5 CONCLUSIONS
This chapter gives an overview of the network identification problem for social network. In particular,
we describe the DeGroot opinion dynamics model with stubborn agents and show that this model
captures the “low-rank” behavior observed in many opinion data obtained. Then, we discuss and
compare two network identification strategies in depth, which are the popular graphical LASSO method
and a model-based learning method proposed by the authors. The identifiability of the social network is
shown to be related to the rank of the observed data. In the case of the DeGroot model, this is related to
the number of stubborn agents needed. Importantly, using the model-based learning method, we show
that a sparse social network is identifiable when the number of stubborn agents is proportional to the
maximum in-degree of the social network.

ACKNOWLEDGMENTS
The authors would like to thank for the support from the NSF under grant number CF-1011811 and the BSF under
grant number ISF 903/13.

REFERENCES
[1] Candogan O, Bimpikis K, Ozdaglar A. Optimal pricing in networks with externalities. Oper Res

2012;60(4):883–905.
[2] Jackson MO, Zenou Y. Games on networks. In: Handbook of game theory with economic applications, vol. 4,

Elsevier; 2015. pp. 95–163.
[3] Galton F. Vox populi (the wisdom of crowds). Nature 1907;75(7):450–1.
[4] DeGroot M. Reaching a consensus. J Am Stat Assoc 1974;69:118–21.
[5] Asch SE. Opinions and social pressure. In: Readings about the social animal; 1955. p. 17–26.
[6] Bikhchandani S, Hirshleifer D, Welch I. A theory of fads, fashion, custom, and cultural change as

informational cascades. J Polit Econ 1992;100(5):992–1026.
[7] Holley RA, Liggett TM. Ergodic theorems for weakly interacting infinite systems and the voter model. Ann

Probab 1975:643–63.
[8] Hethcote HW. The mathematics of infectious diseases. SIAM Rev 2000;42(4):599–653.
[9] Mobilia M. Does a single zealot affect an infinite group of voters? Phys Rev Lett 2003;91(2):028701.

[10] Mobilia M, Petersen A, Redner S. On the role of zealotry in the voter model. J Stat Mech: Theory Exp
2007;2007(08):P08029.

[11] Acemoglu D, Como G, Fagnani F, Ozdaglar A. Opinion fluctuations and disagreement in social networks.
Math Oper Res 2013;38(1):1–27. https://doi.org/10.1287/moor.1120.0570.

[12] Hegselmann R, Krause U. Opinion dynamics and bounded confidence models, analysis, and simulation.
J Artif Soc Soc Simul 2002;5(3).

http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0065


REFERENCES 621

[13] Acemoglu D, Ozdaglar A, ParandehGheibi A. Spread of (mis) information in social networks. Games Econ
Behav 2010;70(2):194–227.

[14] Yildiz ME, Scaglione A. Computing along routes via gossiping. IEEE Trans Signal Process
2010;58(6):3313–27.

[15] Yildiz E, Acemoglu D, Ozdaglar AE, Saberi A, Scaglione A. Discrete Opinion Dynamics with Stubborn
Agents. Available at SSRN: https://ssrn.com/abstract=1744113, 2011.

[16] Yildiz ME, Ozdaglar A, Acemoglu D, Saberi A, Scaglione A. Binary opinion dynamics with stubborn agents.
ACM Trans Econ Comput 2013;1(4):19.

[17] Waagen A, Verma G, Chan K, Swami A, D’Souza R. Effect of zealotry in high-dimensional opinion dynamics
models. Phys Rev E 2015;91(2):022811.

[18] Das A, Gollapudi S, Munagala K. Modeling opinion dynamics in social networks. In: Proceedings of WSDM;
2014. p. 403–12.

[19] Moussaïd M, Kämmer JE, Analytis PP, Neth H. Social influence and the collective dynamics of opinion
formation. PLOS One 2013;8(11):e78433.

[20] Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics
2008;9(3):432–41.

[21] Segarra S, Marques AG, Mateos G, Ribeiro A. Network topology inference from spectral templates. IEEE
Trans Signal Inf Process Netw 2017;3(3):467–83.

[22] Tang J, Lou T, Kleinberg J. Inferring social ties across heterogeneous networks. In: WSDM’12; 2012.
p. 743–52.

[23] Tang J, Gao H, Liu H, Das Sarma A. etrust: understanding trust evolution in an online world. In: Proceedings
of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. KDD’12. New
York, NY: ACM; 2012. p. 253–61. ISBN 978-1-4503-1462-6. https://doi.org/10.1145/2339530.2339574.

[24] Bresler G. Efficiently learning Ising models on arbitrary graphs. In: Proceedings of the forty-seventh annual
ACM on symposium on theory of computing. STOC’15. New York, NY: ACM; 2015. p. 771–82. ISBN
978-1-4503-3536-2. https://doi.org/10.1145/2746539.2746631.

[25] Etesami J, Kiyavash N, Zhang K, Singhal K. Learning network of multivariate Hawkes processes: a time
series approach; 2016. arXiv preprint arXiv:160304319.

[26] He X, Rekatsinas T, Foulds J, Getoor L, Liu Y. Hawkestopic: a joint model for network inference and topic
modeling from text-based cascades. In: International conference on machine learning; 2015.

[27] Pouget-Abadie J, Horel T. Inferring graphs from cascades: a sparse recovery framework. In: Proceedings of
the 32nd international conference on machine learning (ICML 2015); 2015. http://econcs.seas.harvard.edu/
files/econcs/files/pouget_icml15.pdf.

[28] Ronen M, Rosenberg R, Shraiman BI, Alon U. Assigning numbers to the arrows: parameterizing a gene
regulation network by using accurate expression kinetics. Proc Natl Acad Sci U S A 2002;99(16):10555–60.

[29] Timme M. Revealing network connectivity from response dynamics. Phys Rev Lett 2007;98(22):1–4.
https://doi.org/10.1103/PhysRevLett.98.224101.

[30] Shen Z, Wang WX, Fan Y, Di Z, Lai YC. Reconstructing propagation networks with natural diversity and
identifying hidden sources. Nat Commun 2014;5.

[31] Wang WX, Lai YC, Grebogi C, Ye J. Network reconstruction based on evolutionary-game data via
compressive sensing. Phys Rev X 2011;1(2):1–7. https://doi.org/10.1103/PhysRevX.1.021021.

[32] Han X, Shen Z, Wang WX, Di Z. Robust reconstruction of complex networks from sparse data. Phys Rev
Lett 2015;114:028701. https://doi.org/10.1103/PhysRevLett.114.028701.

[33] Bazerque JA, Baingana B, Giannakis GB. Identifiability of sparse structural equation models for directed and
cyclic networks. In: 2013 IEEE global conference on signal and information processing (GlobalSIP). IEEE;
2013. p. 839–42.

[34] Ching ES, Lai PY, Leung C. Reconstructing weighted networks from dynamics. Phys Rev E
2015;91(3):030801.

http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0135
http://econcs.seas.harvard.edu/files/econcs/files/pouget_icml15.pdf
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0175


622 CHAPTER 22 ACTIVE SENSING OF SOCIAL NETWORKS

[35] Sontag ED. Network reconstruction based on steady-state data. Essays Biochem 2008;45:161–76.
[36] Friedkin NE, Johnsen EC. Social influence network theory: a sociological examination of small group

dynamics. Cambridge University Press; 2011.
[37] Blondel VD, Hendrickx JM, Olshevsky A, Tsitsiklis JN. Convergence in multiagent coordination, consensus,

and flocking. In: Proceedings of CDC-ECC’05, vol. 2005; 2005. p. 2996–3000. ISBN 0780395689.
https://doi.org/10.1109/CDC.2005.1582620.

[38] Khan UA, Kar S, Moura JMF. Distributed sensor localization in random environments using minimal number
of anchor nodes. IEEE Trans Signal Process 2009;57(5):2000–16.

[39] Wai HT, Scaglione A, Leshem A. Active sensing of social networks. IEEE Trans Signal Inf Process Netw
2016;2(3):406–19.

[40] Wainwright MJ, Jordan MI, et al. Graphical models, exponential families, and variational inference. Found
Trends Mach Learn 2008;1(1–2):1–305.

[41] Banerjee O, Ghaoui LE, d’Aspremont A. Model selection through sparse maximum likelihood estimation for
multivariate Gaussian or binary data. J Mach Learn Res 2008;9(March):485–516.

[42] Eldar YC. Sampling theory: beyond bandlimited systems. New York, NY: Cambridge University Press; 2014.
ISBN 0511762321, 9780511762321.

[43] Khajehnejad MA, Dimakis AG, Xu W, Hassibi B. Sparse recovery of nonnegative signals with minimal
expansion. IEEE Trans Signal Process 2011;59(1):196–208. https://doi.org/10.1109/TSP.2010.2082536.

[44] Frieze A, Karoński M. Introduction to random graphs. Cambridge University Press; 2015.
[45] Alon N, Spencer JH. The probabilistic method. John Wiley & Sons; 2004.
[46] Traud AL, Mucha PJ, Porter MA. Social structure of Facebook networks. Phys A: Stat Mech Appl

2012;391(16):4165–80. https://doi.org/10.1016/j.physa.2011.12.021, 1102.2166.
[47] Aysal TC, Yildiz ME, Sarwate AD, Scaglione A. Broadcast gossip algorithms for consensus. IEEE Trans

Signal Process 2009;57(7):2748–61.

http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00022-5/rf0240


CHAPTER

23DYNAMIC SOCIAL NETWORKS:
SEARCH AND DATA ROUTING

Hazer Inaltekina∗, H. Vincent Poor†

Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia∗

Department of Electrical Engineering, Princeton University, Princeton, NJ, United States†

23.1 INTRODUCTION
Social networks exhibit complex and often enigmatic dynamical properties both in structure and process
dimensions [1–8]. From the structure point of view, two common models for describing the connections
among individuals are scale-free [9,10] and small-world [11–13] networks. The origin of scale-free
networks lies in the interplay between dynamic growth and preferential attachment mechanisms, whose
discovery in the specific context of citation statistics can be traced back to the 1960s [14]. It is
known as the Barabási-Albert model today in the more general context of network science [9].1 For
a given network G = (V , E) with vertex set V and edge set E, the growth and preferential attachment
mechanisms can be described as in Algorithm 23.1. It is a well-known result that the fraction of vertices
ξm with degree m in a network G = (V , E) with large numbers of vertices generated according to the
growth and preferential attachment dynamics scales according to

ξm ∝ m−γ (23.1)

with degree exponent γ = 3 [16,17].2 Many real-world networks such as citation, science collabora-
tion, and movie actor networks exhibit a scale-free property with a degree exponent ranging from 2 to
4 [10] (Table 23.1).

aThis work was prepared under the support of the U.S. Army Research Office under Grant W911NF-16-1-0448.
1Generation of the classical random graph models, on the other hand, does not obey these mechanisms, and hence they do
not exhibit large variations around a typical connectivity degree [15].
2Any γ value greater than 2 can be obtained by changing the functional form generating the preferential attachment
probability in Algorithm 23.1 [17].

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00023-7
Copyright © 2018 Elsevier Inc. All rights reserved.

623



624 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

Table 23.1 Notation and Symbols Used in the Chapter

Symbol Definition/Explanation

G = (V , E) graph with vertex set V and edge set E

Vu set of vertices to which vertex u ∈ V is connected

Eu set of edges belonging to vertex u ∈ V

euv an edge in E connecting the vertices u, v ∈ V

le(x) latency function of edge e ∈ E

S social space in which the locations of vertices in V lie

ρ (u, v) social distance between vertices u, v ∈ V measured with respect to the geometry of S
r radius of local friendship circle

α clustering parameter in Kleinberg’s model and the Watts-Dodds-Newman Model

T delay of social search

N random number of long-range contacts per vertex in the Inaltekin-Chiang-Poor Models

Q probability distribution of N

ϕ(x) probability generating function of Q

g1(n) ∝ g2(n) limn→∞ g1(n)
g2(n) = c > 0

g1(n) = � (g2(n)) lim infn→∞ g1(n)
g2(n) ≥ c > 0

g1(n) = O (g2(n)) lim supn→∞
g1(n)
g2(n) ≤ c > 0

P set of paths available in a given graph G = (V , E)
M number of source-target pairs in the process of altruistic routing

A = [
ai,j

]M
i,j=1 social relationship matrix with ai,j ∈ [0, 1] and ai,i = 1 for all i, j = 1, . . . , M

fi routing policy of player i ∈ {1, . . . , M}
�i data rate of player i ∈ {1, . . . , M}
f routing policy profile

f total network flow

|A| cardinality of a set A

Pr {A} probability of an event A

E [X] expectation of a random variable X

1{·} indicator function

Algorithm 23.1 GROWTH AND PREFERENTIAL ATTACHMENT
Input: G = (V , E) and a new vertex u with mu edges to be added.

Output: Updated network G = (
V

⋃ {u} , E
⋃

Eu
)

with Eu being the added mu edges for u.

Preferential Attachment Part: Eu = P-ATTACH (G, mu)
Initialization: Vu = ∅ and Eu = ∅, where Vu is the set of vertices to which u is connected.
for k = 1 to mu do

choose a v ∈ V \ Vu randomly from distribution {pv}v∈V\Vu with pv = mv∑
w∈V\Vu mw

update Eu and Vu as Eu ← Eu
⋃ {euv} and Vu ← Vu

⋃ {v}



23.1 INTRODUCTION 625

end for
return Eu

Growth Part: G = GROWTH (G, u, Eu)
update G as G ← (

V
⋃ {u} , E

⋃
Eu

)
return G

Small-world networks, on the other hand, describe networks whose properties are intermediate to
order and disorder [11–13,18]. The forces in favor of order result in clustering and local structure
in a small-world network. On the other hand, the forces in favor of randomness exhibit themselves
as random long-range connections in such networks. The most striking characteristic of small-world
networks is their small graphical diameter even though they are highly clustered [11,19]. This property
is a consequence of the phenomenon that random admixtures of long-range connections to a regular
substrate graph (e.g., ring lattice, rectangular lattice, etc.) result in highly nonlinear changes in global
dynamical properties of a network with, at most, a linear effect on the local clustering behavior.
Algorithm 23.2 describes one possible way of constructing a small-world network. The process of
generating a small-world network starting from an example regular ring lattice is illustrated in Fig. 23.1.

Algorithm 23.2 SMALL-WORLD NETWORK GENERATION
Input: A network G = (V , E) to which long-range connections will be attached.

Output: Updated network G = (V , Enew) with Enew being the new edge set containing long-range connec-
tions.

Initialization: Select a rewiring probability P > 0. Enew = E.
for Each u ∈ V do

for Each e ∈ Eu do
determine whether or not to rewire e with probability P
if decide to re-wire, choose a vertex v ∈ V \ {u} with probability 1

|V|−1 . Update Enew as Enew ← Enew \
{e} ⋃ {euv}

end for
end for
update G as G ← (V , Enew)
return G

There are two important disjunctures between scale-free and small-world networks. To start with,
small-world networks exhibit a confluence of homophily and small geodesic paths connecting any
two network vertices even for very large networks, whereas the clustering coefficient measuring the

cliquishness of a scale-free network approaches zero according to (log|V|)2

|V| as the network size |V|,
measured in terms of the number of vertices in a network G = (V , E), grows large [20]. On this point,
we want to preserve a nonvanishing clustering property for social networks. Second, the probability
distribution for the degree of a vertex in a small-world network decays to zero exponentially whereas
the probability of finding a vertex with degree m scales according to a power law in scale-free networks
as given by Eq. (23.1). On this point, we want to have a network model that can mimic the scale-free
property and the existence of hubs in a social network. Hence, for the purpose of consolidating the
important features of scale-free and small-world networks, we will focus on a more recent network
model, which will be called the Inaltekin-Chiang-Poor Models in this chapter and were introduced by



626 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

(A) Original ring lattice (B) Small-world network after
rewiring according to Algorithm 23.2

FIG. 23.1

Generation of a small-world network according to Algorithm 23.2. In this figure, we start with a regular ring
lattice containing 8 vertices with each vertex connected to its immediate right and left neighbors, as depicted in
(A). The small-world network constructed according to Algorithm 23.2 is illustrated in (B). The small-world
networks constructed starting with larger regular lattices having different local connectivity structure are
qualitatively the same. P = 0.25.

Inaltekin et al. [21,22] for the process of targeted social search. We do not assume any specific network
topology for the process of altruistic data routing in the current chapter. The details of the Inaltekin-
Chiang-Poor Models are provided in Section 23.3.

Process dimension of social networks is multifaceted and critically depends on the underlying
substrate social network topology. Examples include the search for resources [2,23,24], mobilization
and organization of communities for common goals [2,23], spread of epidemics [25–27], global
cascades and complex contagions [1,4,6,28,29], adoption of innovations [30], emergence of social
norms [31], and spread of rumors [32]. Further, the network topology can be considered to play active
and passive roles in determining the dynamical behavior of these processes [12], meaning that the
network can be manipulated by individuals to maximize their utilities (i.e., see [23,33] for finding a
job and growing social capital) in the active sense, and that the existing network connections critically
determine the dynamics of processes unfolding over time based on these connections but without room
for modifying them over the time span of interest (i.e., see [1,4,27] for the spread of epidemics and
global cascades) in the passive sense. Considering such a wide spectrum of processes and the role of
network structure in specifying their dynamical behavior, it usually requires a substantive amount of
research to interpret model parameters for each particular process of interest and to understand related
dynamics in each field. For example, search agents may not exist in all applications, and diffusion
processes become more appropriate to model process dynamics in cases such as the spread of viruses
and diseases. Therefore, our focus in this chapter will be limited to the targeted search and altruistic
data routing processes in the passive sense.

The rest of the chapter is organized as follows. In Section 23.2, we will introduce the algorithmic
perspectives for the targeted social search processes in social networks and review the selected results in
the literature. In Section 23.3, we explain the details of the Inaltekin-Chiang-Poor Models and present
the analytical solutions for the average value of the delay of social search as well as its probability
distribution. This section will also provide a discussion on the implications of the derived delay
equations as well as a comparison between analytical solutions and empirical results. In Section 23.4,
we will introduce the problem of altruistic data routing for general topologies of social and physical
connections. Finally, Section 23.5 concludes the chapter.



23.2 TARGETED SOCIAL SEARCH PROCESS 627

23.2 TARGETED SOCIAL SEARCH PROCESS
The targeted social search process of interest to us in this chapter is motivated by the well-known
letter-referral experiments, which are also known as small-world experiments, conducted by the social
psychologist Stanley Milgram and his colleagues [34–36]. The purpose of these studies was to estimate
the average number of intermediaries needed to connect two individuals in the United States. They
found this number to be around six, which forms the first empirical evidence for the common notion
that any two individuals are separated by six degrees of separation, or for the so-called small-world
phenomenon. A striking aspect of this result is that individuals are able to navigate over the set of
social connections to find these short paths by only using their local information to decide about the
next-hop message holders.

After its first appearance, the letter-referral technique and its modifications attracted substantial
attention and were repeated in various social contexts to discover the social network structure
[37–40]. At the global scale, it was also repeated by Dodds et al. through email messages, confirming
the small-world phenomenon [41]. In spite of some objections such as sample selection bias and low
chain completion rates raised against these findings as well as some recent results indicating that the
average length of referral chains is higher if the missing data is accounted for correctly [42,43], it is
commonly agreed that people around the world are connected to each other through a small number of
acquaintances [44], for which we seek an analytical confirmation in this chapter.

23.2.1 MILGRAM SOCIAL SEARCH EXPERIMENT
A typical realization of the Milgram letter-referral experiment is as follows. Two individuals are
selected randomly according to a sample selection process such as mail lists, newspaper advertisements
[34–36], and emails [41], which involves stochastic dynamics during recruitment. One of them is
assigned as the message originator (i.e., source individual), and the other is assigned as the message
recipient (i.e., target individual). Depending on the social context, source and target individuals are
located in the same country but in different states [34,35], in different countries [41], in the same
institution but have different professional ranks [45,46], or are intentionally chosen to belong to
different racial, religious, or cultural groups [36,40].

The source individual is provided with some basic information about the target such as address and
occupation, and she is allowed to send the message only to others whom she knows on a first-name
basis. Therefore, the source is not allowed to send the message to the target directly unless she knows
the target on a first-name basis. Intermediate message holders repeat the same step until the message
reaches the target. Once the message reaches the target, the targeted social search process terminates.
In the process of searching for the target, individuals traced by the message form a referral chain, and
the number of links connecting the source and target individuals through such a referral chain is called
the delay of social search.

As is clear from this discussion, this search process is inherently algorithmic, and can be
described as in Algorithm 23.3. There are three important stylized assumptions we make while writing
Algorithm 23.3 in order to formalize Milgram’s social search experiments. The first one is on the use
of a social distance metric ρ (·, ·) in order to measure the similarity between target and intermediate
message holders. The second one is on the ability of individuals to select their best contacts closest to
the target individual with respect to ρ. Finally, the third one is on the condition that if the selected next-



628 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

hop message holder is one of the previous ones, then the targeted social search process is terminated
to signal that the current message holder does not have any neighbors offering a better choice than the
previously chosen ones in order to move the message forward closer to the target individual. When we
use the term “targeted social search process,” it will be the description provided by Algorithm 23.3 to
which we refer in the rest of this chapter.

Algorithm 23.3 TARGETED SOCIAL SEARCH
Input: A network G = (V , E), referral chain R containing current message holders v ∈ V as well as their social locations
Xv , source individual s ∈ V with social location Xs, target individual t ∈ V with social location Xt and a social similarity
measure ρ (·, ·).
Output: Delay of social search T and the updated referral chain R.

Initialization: T = ∞ and R = {s}.
Search Process: (T ,R) = SEARCH (s, Xs, t, Xt , ρ,R,G)

if t ∈ Vs then
R ← R

⋃ {t}
T ← |R| − 1
return (T ,R)

else
find v = arg minv∈Vs ρ (Xv , Xt)
if v ∈ R \ {s} then

T ← ∞ and R ← ∅
return (T ,R)

else
R ← R

⋃ {v}
(T ,R) = SEARCH (v, Xv , t, Xt , ρ,R,G)
return (T ,R)

end if
end if

23.2.2 KLEINBERG’S SMALL-WORLD SEARCH MODEL
Kleinberg used a rectangular grid with random long-range connections as a proxy for the social space
while seeking a mathematical explanation for the small-world phenomenon from an algorithmic point
of view [47,48]. This model is illustrated in Fig. 23.2 for an 8 × 8 square lattice. In general, the social
space S consisting of the locations of vertices in an R × R square lattice can be represented by the
collection of points

S = {(i, j) : i ∈ {1, . . . , R} , j ∈ {1, . . . , R}} (23.2)

and the social similarity between two vertices u, v ∈ V with locations Xu = (i, j) ∈ S and Xv = (k, l) ∈
S is given by

ρ (u, v) = |i − k| + |j − l| . (23.3)



23.2 TARGETED SOCIAL SEARCH PROCESS 629

u

w
n

Pr {u- n connection} µ
r (u,n)a

1

FIG. 23.2

Kleinberg’s model for the targeted social search. An illustration for Kleinberg’s model to obtain an analytical
confirmation for the small-world phenomenon over the rectangular grid with random long-range connections.
Each vertex is connected to its immediate one-hop neighbors for this particular example and long-range
connections are added with probabilities proportional to an inverse power law of social similarity, i.e.,
Pr{u − v connection} ∝ 1

ρ(u,v)α .

The local friendship circle Vu,short-range of a vertex u is then defined as the set of all vertices with
social similarity less than a threshold value r, i.e.,

Vu, short-range = {v ∈ V : ρ (u, v) ≤ r} . (23.4)

Unlike the original small-world network model [11], the probability of a long-range connection
between two individuals in Kleinberg’s model decreases with the social distance between them as
measured on the rectangular grid according to

Pr {u − v connection} ∝ 1

ρ (u, v)α
(23.5)

for v /∈ Vu,short-range, where α ≥ 0 determines the dynamic range spanned by the long-range
connections. For small values of α, long-range connections span longer distances and the individuals
in this hypothetical social space have a stronger tendency to connect with others having dissimilar
characteristics. On the other hand, most of the connections are short-range if α is large. In a sense, the
value of α determines the level of clustering in this model. Adding n such long-range connections, we
obtain the set of long-range contacts Vu,long-range for each u ∈ V . The resulting social network is then
equal to G = (V , E) with E = ⋃

u∈V {euv : v ∈ Vu} and Vu = Vu,short-range
⋃

Vu,long-range. The main
result in [47,48] is summarized below.

Theorem 23.1. The targeted social search process, when it runs over the small-world network
G = (V , E) constructed as above, produces the following bounds on the average value of the delay of
social search T.

1. α < 2 : E [T] = �
(

R
2−α

3

)
2. α = 2 : E [T] = O

(
(log R)2

)
3. α > 2 : E [T] = �

(
R

α−2
α−1

)
Proof. See [48]. �



630 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

There are three important remarks about the results in Theorem 23.1. First, the scaling behavior
of E [T] as a function of the size R of the social space S as described in Theorem 23.1 is correct for
any given values of network parameters α, and r. Second, we observe a phase transition in the scaling
behavior of E [T] at the point α = 2, where an optimum tradeoff is achieved between the navigational
cues embedded over the grid and the distance-cutting power of long-range connections. To put it another
way, defining a social network as algorithmically small if the delay of the social search grows no faster
than poly-logarithmically with the size of the network, searchable social networks exist when the decay
rate of the probabilities associated with long-range connections exactly match the dimension of the grid.
On this point, it should be noted that this requirement of “exact match” seems quite brittle, and previous
empirical studies only found that chain lengths connecting two individuals are small [35,36,41]. There
is no empirical evidence showing that lengths of small-world search chains grow logarithmically
with the network size, even though such evidence exists for the lengths of shortest paths [11,44,49].
Last but not least, these bounds, although helpful to reason about when a social network becomes
searchable, do not reveal any detailed information about the functional form of E [T] as a function
of social separation between source and target individuals participating in the targeted social search
process.

23.2.3 WATTS-DODDS-NEWMAN SMALL-WORLD SEARCH MODEL
Starting from a sociologically more realistic premise than the low-dimensional network model proposed
in [47,48], Watts et al. [50] showed that the space of searchable networks is, in fact, larger than what is
predicted by Kleinberg’s model. For their analysis, they use an ultrametric that measures the similarity
between individuals along multiple social dimensions such as geography, race, profession, religion,
and education. They claim that it is this multidimensioned nature of social identity that makes social
networks searchable [50,51]. Their model has four important characteristics.

1. Grouping: Individuals are identified through their participation in social groups with some
well-defined characteristics such as academic departments in universities.

2. Social Similarity Through Hierarchy: The set of individuals V is divided into hierarchical
layers, with the top layer being the entire collection of individuals and the successively deeper
layers in the hierarchy containing more but increasingly specific groups. The social distance
ρ (u, v) between u, v ∈ V is defined to be 1 if they belong to the same social group, and to be the
height of their lowest common ancestor in the resulting hierarchy otherwise. An example
illustration for this hierarchical view of the social space is given in Fig. 23.3.

3. Connection Probability: The probability of any two individuals u, v ∈ V being connected in this
hierarchical world is chosen to be inversely proportional with their social similarity according to

Pr {u − v connection} ∝ exp (−αρ (u, v)) , (23.6)

where α > 0 is a tunable parameter determining the level of clustering of the resulting social
network. The social links Eu for vertex u ∈ V are added according to the connection probability in
Eq. (23.6) until u has a predetermined connection degree. We note that a similar clustering
parameter also exists in Kleinberg’s model but determines the power law decay exponent for



23.2 TARGETED SOCIAL SEARCH PROCESS 631

u n w
r (n,w) = 3

Up three levels in
the hierarchy

r (u,w) = 4
Up four levels in

the hierarchy

Top level in the hierarchy
represents the entire population

Lowest common
ancestor for n and w

FIG. 23.3

The Watts-Dodds-Newman Model for the targeted social search. An illustration for the Watts-Dodds-Newman
Model to explain the small-world phenomenon through a hierarchical model of society. The entire population is
successively refined into subpopulations with a branching factor of 2 in this particular example. Social similarity
between individuals u and w , represented through their group memberships, is equal to 4 because the lowest
common ancestor is the top-level node with height of 4 from their respective groups. On the other hand,
ρ (v, w ) = 3 because the lowest common ancestor is up three levels from their respective groups.

long-range connection probabilities rather than specifying the exponential decay rate for the
probability of existence of any social link as in the current model.

4. Multidimensioned Nature and Ultrametric: The described hierarchical structure appears in
multiple social dimensions such as geography, race, profession, religion, and education. Hence, the
perceived social similarity between any two individuals u, v ∈ V is measured by the ultrametric as
the minimum of the social distance over multiple social dimensions.

Some of the important results from [50], obtained through numerical simulations, are as follows.
First, it is shown that the space of searchable social networks, as parametrized by α and the number
of social dimensions, is quite larger than the one predicted by Kleinberg’s model that only contains
a single network type in which the dimension of the social space is matched to the power law decay
rate of the long-range connection probability. Second, it is observed that the optimum number of social
dimensions to use for the targeted social search process ranges from two to three, which is in line with
the empirical observation reported in [52]. The reason behind this observation is that an increase in the
number of social dimensions to use in targeted social search processes thins the existing social ties in
each dimension, which leads to a decrease in the navigational power of the social ties of individuals
because they are formed independently over each social dimension. Finally, the histogram representing
the probability distribution for the delay of the social search obtained over 106 random chains initiated
over the social network G = (V , E) resulting from the described hierarchical social space exhibits
statistical similarity with the empirical data in [35]. In particular, after cleaning the data in [35] to
include only the referral chains initiated in Nebraska, the Watts-Dodds-Newman Model produces an
average delay value around 6.7 (i.e., compare this with 6.5 reported in [35]) and the standard chi-
square test results in a P-value of 0.49, which supports the hypothesis that the empirical distribution
from [35] and the one obtained through the Watts-Dodds-Newman Model are statistically similar.



632 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

23.3 INALTEKIN-CHIANG-POOR SMALL-WORLD SEARCH MODELS
In this section, we will describe two different but closely related network models, both of which lead
to statistically convincing results when compared with those obtained in empirical studies, to explain
why we observe short chains of social search in a typical small-world experiment [21,22]. They will be
generically referred to as Inaltekin-Chiang-Poor Models, and can be considered to be a generalization
of random geometric graphs [53] to social network modeling by means of random long-range
connections.

These models provide an alternative explanation for the small-world phenomenon without the
“exact match” requirement in Kleinberg’s model. In particular, both models produce analytically
tractable expressions for the average delay of social search. These delay expressions show that, even
with long-range connections formed over the social space uniformly at random as in the original
small-world model [11], average delay of social search saturates to a constant as the social distance
between source and target individuals increases. This constant depends on the model parameters and
can be made small enough, as observed in empirical studies, for reasonable choices of the number
of long-range contacts per individual. One of these models, named the Inaltekin-Chiang-Poor Model
2, focuses on the targeted search processes progressing on a nested sequence of small worlds with
long-range connections generated uniformly at random. This model exhibits logarithmically growing
average social search delays. These results imply that the original small-world model, in which long-
range connections are formed uniformly at random without depending on any particular notion of social
distance, is in fact adequate to explain the existence of searchable social networks from an algorithmic
point of view.

23.3.1 THE INALTEKIN-CHIANG-POOR MODEL 1
In this model, a measure-metric space is considered as a proxy for the social space S in order to measure
the similarity between individuals. We note that this space was a rectangular grid in Kleinberg’s model
and the multidimensional hierarchical social grouping structure in the Watts-Dodds-Newman Model.3

For the sake of simplicity of exposition, we will provide the results for three different social spaces
in the remainder of this section: (i) rectangular, (ii) circular, and (iii) spherical. The results for general
measure-metric spaces can be found in [21]. The circular social space is similar to the original small-
world network model above. Different meanings can be attributed to these network models in other
areas of science in which small-world networks emerge. For example, the spherical network space
can find direct applications when modeling connections among nerve cells in the human brain due to
geometrical similarities [54,55].

The side lengths of the rectangular social space and the radius of spherical and circular ones are
R distance units. The common radius of local friendship circles of vertices is r distance units. It should
be noted that we use the term “distance” here to mean social similarity rather than physical distance.
The location of a vertex u ∈ V in this model is represented by Xu ∈ S, and Xu’s for u ∈ V are
independent and identically distributed from a uniform distribution over the social space of interest, as

3All metric properties do not hold in the Watts-Dodds-Newman Model, and hence, to be more precise, the measure of social
similarity must be considered as a pseudometric in this model.



23.3 INALTEKIN-CHIANG-POOR SMALL-WORLD SEARCH MODELS 633

Source

Long-range
contact of u

Local friendship
circle of  u

Target

r r

u

Origin

R

FIG. 23.4

The Inaltekin-Chiang-Poor Model 1 for the targeted social search. An illustration for the Inaltekin-Chaing-Poor
Model 1 to obtain an analytical confirmation for the small-world phenomenon over a circular social space with
radius R. Vertices are distributed over the social space uniformly at random. Each vertex is connected to its
immediate neighbors within its local friendship circle with radius r . The random long-range contacts for vertex
u ∈ V are added uniformly over vertices that do not lie in its local friendship circle.

illustrated in Fig. 23.4 for the circular space. The local friendship circle Vu,short-range of a vertex u is
defined as the set of all vertices with social similarity less than a threshold value r, i.e.,

Vu,short-range = {v ∈ V : ρ (u, v) ≤ r} , (23.7)

where ρ (u, v) measures the social distance between vertices u, v ∈ V having locations Xu ∈ S and
Xv ∈ S with respect to the particular geometry of the social space. For example, ρ (u, v) is the regular
Euclidean distance between Xu and Xv for the rectangular social space whereas it is equal to the length
of the smaller arc connecting them for circular and spherical social spaces.

Each vertex u ∈ V has a random number, N, of long-range contacts, who are selected uniformly
at random over others that do not lie in the local friendship circle of u. For example, the number
of long-range contacts of u is equal to 4 in Fig. 23.4. In general, N can be drawn from any
given discrete probability distribution Q(n), such as power law, Poisson, geometric, or uniform. We
are able to determine the average delay of targeted social search for any given distribution of N.
Adding N such long-range connections, we obtain the set of long-range contacts Vu,long-range for each
u ∈ V . The resulting social network is then equal to G = (V , E) with E = ⋃

u∈V {euv : v ∈ Vu}
and Vu = Vu,short-range

⋃
Vu,long-range.

The Inaltekin-Chiang-Poor Model 1 captures the order-disorder properties of the small-world
network model proposed by Watts and Strogatz [11] due to the threshold rule for forming local contacts.



634 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

The substrate network in the Inaltekin-Chiang-Poor Model 1 is formed on continuum social spaces
whereas it consisted of discrete lattices in Kleinberg’s model [47,48]. This model also parametrizes
the generation of social networks in terms of the distribution of N. The number of long-range contacts
is fixed, and all vertices have the same number of friends in the original small-world network model
[11] as well as in Kleinberg’s model [47,48]. The power of such a parametrization is that we can now
generate a wide variety of social networks by changing the distribution of the number of long-range
contacts. For example, this model can mimic the scale-free features of the Barabási-Albert model [9]
when N is drawn from a power-law distribution. The following lemma provides important structural
properties for the average delay of targeted social search when the decentralized search process in
Algorithm 23.3 runs over the social network G = (V , E) constructed according to the Inaltekin-Chiang-
Poor Model 1.

Lemma 23.1. The average delay E [T] of the targeted social search process running over the
social network G = (V , E) constructed according to the Inaltekin-Chiang-Poor Model 1 converges
to a spherically symmetric step function of the social separation between source and target vertices as
the number of vertices |V| grows large.

Proof. See [21]. �
Lemma 23.1 greatly simplifies the analysis of E [T] by focusing on the continuum social network

limit obtained by sending |V| to infinity. In particular, for fixed but arbitrary locations of source s and
target t vertices over the social space, we can define

T0 = 0 for ρ (s, t) = 0,

T1 = 1 for 0 < ρ (s, t) < r,

Tk = E [T] for (k − 1)r ≤ ρ (s, t) < kr and k ≥ 2

in the continuum limit, where the condition T0 = 0 indicates that there is no need to initiate the search
process because source and target vertices are the same, and the condition T1 = 1 indicates that the
source can reach the target in one hop because they are local friends of each other. The following
theorem establishes the functional form for Tk’s.

Theorem 23.2. The average delay of the targeted social search process, when it runs over the social
network G = (V , E) constructed according to the Inaltekin-Chiang-Poor Model 1, converges to

Tk = 1 +
k−1∑
j=1

j∏
i=1

ϕ (βi) (23.8)

when (k − 1)r ≤ ρ (s, t) < kr for k ≥ 2 in the continuum limit, where ϕ (x), x > 0, is the probability
generating function of the distribution Q defined as ϕ (x) = E

[
xN

]
and βi, i ≥ 1, for rectangular,

spherical, and circular social spaces is given according to

1. Rectangular: βi = 1 − πr2(i−1)2

R2−πr2 ,

2. Spherical: βi = cos( r
R )+cos((i−1) r

R )
1+cos( r

R ) , and

3. Circular: βi = π−i r
R

π− r
R

.

Proof. See [21]. �



23.3 INALTEKIN-CHIANG-POOR SMALL-WORLD SEARCH MODELS 635

A comparison of the analytical results in Theorem 23.2 with the simulation results for a
250r-by-250r rectangular social space is given in Fig. 23.5. The convergence behavior of social search
as observed in simulations to analytical results looks essentially the same for all cases considered in
[21]. For a given source-target separation, many different realizations of the social search process are
considered, and the delay is averaged over all realizations for various numbers of vertices contained in
the social space and all source-target separations.

The results are promising. As the number of vertices increases, the deviations between analytical
and simulation results become negligible, as expected. In particular, what is more surprising regarding
these simulation results is that when the average number of short-range contacts per vertex is between
Dunbar’s number 150 [56] and Killworth’s estimate 290 [57] for the average size of personal networks,
the average delay of the targeted social search estimated by the analytical formula deviates only 2.7%
from simulation results, i.e., see the curve corresponding to 160 short-range contacts in Fig. 23.5.
Furthermore, the gains obtained by increasing the number of vertices become quite marginal when the
number of short-range contacts per vertex is larger than 80, i.e., compare the curves corresponding
to 80, 160, and 320 short-range contacts per vertex in Fig. 23.5. In summary, the analytical formula
derived in the continuum limit of the Inaltekin-Chiang-Poor Model 1 approximates the expected social
delay curve well when the average number of short-range contacts per vertex is around the commonly
accepted average sizes for personal networks.

FIG. 23.5

Average delay of the targeted social search process for the Inaltekin-Chiang-Poor Model 1. Comparison of the
analytical formula in Theorem 23.2 with simulation results for a 250r -by-250r rectangular social space with
various numbers of short-range contacts. The number of long-range contacts per vertex is set to 1. The target
vertex is placed at the center of the rectangular social space to avoid edge effects.



636 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

Beyond the average delay of social search [34,35,41,47,48], the Inaltekin-Chaing-Poor Model 1
can also generate the entire probability distribution of the delay of social search. To this end, pk(j) is
defined to be the probability that the delay of social search is equal to j in the continuum limit when
ρ (s, t) ∈ [(k − 1)r, kr) for k ≥ 2. p1(j) is defined similarly for 0 < ρ (s, t) < r. The next theorem
provides the desired recursive expressions for pk(j).

Theorem 23.3. The probability distribution of the delay of the targeted social search process,
when it runs over the social network G = (V , E) constructed according to the Inaltekin-Chiang-Poor
Model 1, converges to

p1(j) = 1{j=1}, and

pk(j) = pk−1(j − 1)ϕ
(
βk−1

) +
k−2∑
i=1

pi(j − 1)
(
ϕ (βi) − ϕ

(
βi+1

))
for k ≥ 2

in the continuum limit, where 1{·} is the indicator function, ϕ (x), x > 0, is the probability generating
function of the distribution Q defined as ϕ (x) = E

[
xN

]
and βi, i ≥ 1, for rectangular, spherical, and

circular social spaces is given according to

1. Rectangular: βi = 1 − πr2(i−1)2

R2−πr2 ,

2. Spherical: βi = cos( r
R )+cos((i−1) r

R )
1+cos( r

R ) , and

3. Circular: βi = π−i r
R

π− r
R

.

Proof. See [22]. �
As a test for the statistical fitness of the delay distribution results in Theorem 23.3 to small-world

experiments, Fig. 23.6 compares the analytical delay distribution predicted by the Inaltekin-Chiang-
Poor Model 1 with the empirical data obtained by Travers and Milgram in [35]. For a rectangular social
space with R = 32r, d = 15r and N = 5, the Inaltekin-Chiang-Poor Model 1 yields an average delay
around 6.14 whereas it is around 6.55 in Milgram’s experiment [35]. Moreover, the delay distributions
statistically resemble each other: the standard chi-square test (with six bins) for discrete distributions
produces a P value around 0.53, which compares well with the results reported in [50].

Dodds et al. [41] reports that geographical distance is one of the frequently used social dimensions
along which individuals measure social distance in a typical small-world experiment. Therefore, if
we assume that individuals primarily use geographical information to forward messages, which is a
reasonable assumption for a typical small-world experiment in light of the results reported in [41], the
above choice of the network domain to compare with empirical data means that we approximate the
United States as a rectangular network domain, and the choice of source-target separation, by ignoring
the possible edge effects, means that source and target vertices are located at the center and at the edge
of the social space, respectively.

23.3.2 THE INALTEKIN-CHIANG-POOR MODEL 2
Mainly motivated by Kleinberg’s results [47,48], an algorithmically small social network is considered
in the computer science community to be a network in which the delay of social search grows no
faster than poly-logarithmically with the size of the social network. The Inaltekin-Chiang-Poor Model 2



23.3 INALTEKIN-CHIANG-POOR SMALL-WORLD SEARCH MODELS 637

FIG. 23.6

Delay distribution of the targeted social search process for the Inaltekin-Chiang-Poor Model 1. Comparison
of the analytical formula in Theorem 23.3 with empirical data in [35] for the 42 referral chains that originated
in Nebraska. The 24 completed referral chains originating in Boston were excluded to keep the source-target
separation in the model constant. Parameters R = 32r , d = 15r , and N = 5 for a rectangular social
space.

provides an alternative explanation for the small-world phenomenon from an algorithmic point of view.
In this model, the social space is viewed as a nested sequence of small worlds SW1 ⊃ SW2 ⊃ · · · ⊃
SWK in which the aim of each message holder, by using her long-range and short-range contacts,
is to advance a message from a greater small world spanning longer social distances to a smaller
one spanning shorter social distances to deliver the message to a target located in SWK . Long-range
connections in each small world are formed uniformly at random within this world as in the original
small-world model [11]. Therefore, unlike Kleinberg’s model, formation of long-range connections
within a small world does not depend on an individual’s particular perception of distance, yet we can
still find long-range contacts at all scales of social distance as the social search progresses from one
small world to another one.

To make these arguments mathematically precise, we only require a vertex with the message to
have N, a random number with distribution Q(n), long-range contacts formed uniformly at random
over all vertices lying in the disk centered around the target vertex with radius kr if the social distance
between the message holder and the target vertex is in between (k − 1)r and kr. A message holder uses
these N long-range contacts while searching for the target lying in the small world spanning the social
space between them. Other than this new long-range contact formation rule, all the interpretations and
assumptions given for the Inaltekin-Chiang-Poor Model 1 hold for this new model. Defining Tk’s as
above, the next theorem provides a recursive expression for E [T] in the continuum limit.



638 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

Theorem 23.4. The average delay of the targeted social search process, when it runs over the social
network G = (V , E) constructed according to the Inaltekin-Chiang-Poor Model 2, converges to

Tk = 1 + Tk−1ϕ
(
βk−1,k

) +
k−2∑
i=1

Ti
(
ϕ

(
βi,k

) − ϕ
(
βi+1,k

))
(23.9)

when (k − 1)r ≤ ρ (s, t) < kr for k ≥ 2 in the continuum limit, where ϕ (x), x > 0, is the probability
generating function of the distribution Q defined as ϕ (x) = E

[
xN

]
and βi,k, i, k ≥ 1, for rectangular,

spherical, and circular social spaces is given according to

1. Rectangular: βi,k = 1 −
(

i−1
k

)2
,

2. Spherical: βi,k = cos
(

(i−1)r
R

)
−cos

(
kr
R

)
1−cos

(
kr
R

) , and

3. Circular: βi,k = 1 − i−1
k .

Proof. See [22]. �
The analytical result in Theorem 23.4 for the average delay of the targeted social search in the

Inaltekin-Chiang-Poor Model 2 is depicted in Fig. 23.7. The growth behavior for the average social
search delay for different sizes of the social space should be intuition confirming for researchers familiar
with logarithmically growing social search delays. The side length of the rectangular social space is
increased 10 times from 100r to 1000r, but the maximum average delay of social search grows only
1.5 times from 9.17 steps to 13.82 steps. Note also that the average delay of social search under the
Inaltekin-Chiang-Poor Model 2 seems to exhibit self-similarity: the two graphs look similar to each
other except for a change of scale in the social distance and delay dimensions.

The next theorem provides the probability distribution for the delay of social search in the Inaltekin-
Chiang-Poor Model 2.

Theorem 23.5. The probability distribution of the delay of the targeted social search process,
when it runs over the social network G = (V , E) constructed according to the Inaltekin-Chiang-Poor
Model 2, converges to

p1(j) = 1{j=1}, and

pk(j) = pk−1(j − 1)ϕ
(
βk−1,k

) +
k−2∑
i=1

pi(j − 1)
(
ϕ

(
βi,k

) − ϕ
(
βi+1,k

))
for k ≥ 2

in the continuum limit, where ϕ (x), x > 0, is the probability generating function of the distribution Q
defined as ϕ (x) = E

[
xN

]
and βi,k, i, k ≥ 1, for rectangular, spherical, and circular social spaces is

given according to

1. Rectangular: βi,k = 1 −
(

i−1
k

)2
,

2. Spherical: βi,k = cos
(

(i−1)r
R

)
−cos

(
kr
R

)
1−cos

(
kr
R

) , and

3. Circular: βi,k = 1 − i−1
k .

Proof. See [22]. �



23.3 INALTEKIN-CHIANG-POOR SMALL-WORLD SEARCH MODELS 639

FIG. 23.7

Average delay of the targeted social search process for the Inaltekin-Chiang-Poor Model 2. Demonstration of
the growth of the average delay of the targeted social search process for the Inaltekin-Chiang-Poor Model 2 in
Theorem 23.4. Side lengths of a rectangular social space are increased 10 times, but the maximum delay
increases only 1.5 times. N = 1.



640 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

FIG. 23.8

Delay distribution of the targeted social search process for the Inaltekin-Chiang-Poor Model 2. Comparison of
the analytical formula in Theorem 23.5 with empirical data in [35] for the 42 referral chains that originated in
Nebraska. The 24 completed referral chains originating in Boston were excluded to keep the source-target
separation in the model constant. Parameters R = 28r , d = 13r , and N = 1 for a rectangular social space.

As a test for the statistical fitness of the delay distribution results in Theorem 23.5 to small-world
experiments, Fig. 23.8 compares the analytical delay distribution predicted by the Inaltekin-Chiang-
Poor Model 2 with the empirical data obtained by Travers and Milgram in [35]. For a rectangular social
space with R = 28r, d = 13r, and N = 1, the Inaltekin-Chiang-Poor Model 2 yields an average delay
around 6.36 whereas it is around 6.55 in Milgram’s experiment [35]. Moreover, the delay distributions
statistically resemble each other: the standard chi-square test (with six bins) for discrete distributions
produces a P value around 0.63, which is a better fit than the ones provided by the Inaltekin-Chiang-
Poor Model 1 and the Watts-Dodds-Newman Model [50].

23.4 ALTRUISTIC DATA ROUTING
In this section, we will switch the focus from the targeted social search process to the altruistic data
routing process for general topologies of social and physical connections. One important distinction
between the two cases is that the process of altruistic data routing requires global knowledge of
social and physical connections whereas individuals operate based on their local knowledge of social
connections in the targeted social search process in order to reach a target individual. Our network
model to investigate the properties of the altruistic data routing will be similar to the classical selfish
routing setup [58,59]. Below, we will first present the details of the model and then characterize the
global system behavior through a Nash equilibrium analysis.



23.4 ALTRUISTIC DATA ROUTING 641

23.4.1 MODEL FOR ALTRUISTIC DATA ROUTING
Network details
We consider a physical communication graph G = (V , E), where V is the set of vertices representing
communication devices and E is the set of edges representing the communication links connecting these
devices. There are socially connected M different source-target pairs, which will be called players,
using G to communicate at rate �i (measured in terms of bits per second) for i = 1, . . . , M. Let Pi be
the set of available paths connecting the ith source-target pair over G.4 Further, let P be the set of all
paths connecting all M source-target pairs. That is,

P =
M⋃

i=1

Pi.

The ith player can distribute her incoming data traffic rate over the paths in P , which leads to the
following definition of routing policy.

Definition 23.1. A routing policy of player i, i ∈ {1, . . . , M}, is a rate distribution function fi : P �→
[0, ∞) over the set of paths available in G = (V , E). We call it a feasible routing policy if it satisfies

fi (P) ≥ 0 for all P ∈ Pi,
∑
P∈P

fi (P) = �i and fi (P) = 0 for all P ∈ P \ Pi.

Further, a routing policy profile f = (f1, . . . , fM) is the vector of individual routing policies. �
We will focus on feasible routing policies in the remainder of this section, even though the identifier

“feasible” is not always made explicit in the text. Consider a routing policy profile f = (f1, . . . , fM). f
induces a total network flow function on the set of paths in G, which is given by

f (P) =
M∑

i=1

fi (P) , for all P ∈ P .

We note that f , in turn, determines how much traffic is routed through each edge. To see this, let fe
be the total traffic on edge e ∈ E. Then,

fe =
∑
P∈P

f (P) 1{e∈P}, for all e ∈ E.

By its definition, fe is composed of individual traffic originated from each player and using edge e ∈ E.
One useful decomposition for fe is

fe = fe,i + fe,−i,

where fe,i = ∑
P∈P fi (P) 1{e∈P} and fe,−i = ∑

j=i fe,j. fe determines the amount of data that flows
through edge e ∈ E per second, which is the main measure of congestion level for e. To formalize this
idea further, we assign a congestion related latency function le(x), x ≥ 0, to each e ∈ E. We assume that

4A path P ∈ Pi is a collection of edges connecting the ith source-target pair. We allow the possibility that different source-
target pairs can share the same paths due to virtualization of network services.



642 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

le(x) is a nonnegative, nondecreasing, and continuous function of its parameter. Then, for an induced
network flow f , the latency experienced by data traffic over the edge e ∈ E is le (fe).

It is important to remember that fe is determined by the routing policy profile f = (f1, . . . , fM), and
hence delay over an edge can also be viewed as a function of f . Latency of a path P ∈ P is equal to the
additive latencies of edges on P, which leads to5

lP (f ) =
∑
e∈E

le (fe) 1{e∈P}.

Optimum routing problem
The goal of each player is to minimize total latency of her data traffic by respecting the delay of other
players in an altruistic way.6 More formally, we first write the total latency of the traffic from player i
as

Li (f ) =
∑
P∈P

lP (f ) fi (P) .

We next consider some altruistic behavior characterized by the social relationship matrix A = [ai,j]M
i,j=1.

The entries of A satisfy ai,j ∈ [0, 1] and ai,i = 1 for all i, j = 1, . . . , M. Finally, the cost of a routing
policy profile f = (f1, . . . , fM) for player i ∈ {1, . . . , M} is written as

Ci (f ) =
M∑

j=1

αi,jLj (f ) .

As is standard, we will write f−i to refer to routing policies chosen by all players except the routing
policy chosen by the ith one. Then, the local optimization problem solved by each player i ∈ {1, . . . , M}
is given by

minimize Ci
(
fi, f−i

)
subject to

∑
P∈P fi (P) = �i

fi (P) ≥ 0 for all P ∈ P
fi (P) = 0 for all P ∈ P \ Pi.

(23.10)

We note that the set of paths P is always finite for the physical communication graphs considered in
this section, and hence the decision variables for player i to minimize her cost are the finite collection
of nonnegative real variables given by {fi (P)}P∈P subject to the above constraints. As a result, the
standard techniques from the theory of convex optimization [60] under appropriate assumptions on the
link latency functions can be utilized to solve primal optimization problems faced by individual players.
To this end, two quantities will frequently appear in our calculations below, which deserve standalone
definitions.

5When considering individual latency over an edge e ∈ E, it will be more convenient to represent it as a function of total flow
over e, i.e., as le (fe). On the other hand, when considering latency of a path P ∈ P , it will be more insightful to represent it
as a function of routing policy profile, i.e., as lP (f ).
6The reason behind considering the total latency as the performance metric is the assumption that each received bit contributes
to the communication and signal processing quality.



23.4 ALTRUISTIC DATA ROUTING 643

Definition 23.2. A pseudoflow �i (P) seen by player i ∈ {1, . . . , M} over a path P ∈ P is equal to

�i (P) =
M∑

j=1

αi,jfj (P) .

Similarly, a pseudoflow λe,i seen by player i ∈ {1, . . . , M} over an edge e ∈ E is equal to

λe,i =
M∑

j=1

αi,jfe,j.

�

Using �i (P), an alternative way to express Ci (f ) is Ci (f ) = ∑
P∈P �i (P) lP (f ). We note that �i (P)

or λe,i is not an actual flow realized over a path or an edge. Rather, these are the flow rates conceived
to occur by player i due to her altruistic behavior. As a result, they will not change the actual latencies
over paths or edges, but they will rather behave as quantities capturing the importance ranking of player
i for others’ traffic. As is done for fe, one useful decomposition for λe,i is

λe,i = fe,i + λe,−i,

where λe,−i = ∑
j=i αi,jfe,j. λe,i is always smaller than or equal to fe, and hence λe,−i ≤ fe,−i.

Solution concept: Group Nash equilibrium
We will use the solution concept introduced in [61] to obtain the equilibrium points for the problem of
altruistic data routing defined above. The formal definition that we will follow throughout this section
is given below.

Definition 23.3. A routing policy profile f  = (
f 
1 , . . . , f 

M

)
is called a group Nash equilibrium

solution for the problem of altruistic data routing over G = (V , E) if f 
i is a solution for Eq. (23.10) for

all i ∈ {1, . . . , M} given the routing policies f −i of all other players. �
Note that the totally selfish case corresponds to the case αi,j = 0 for all nondiagonal entries of A. In

this case,

Ci (f ) = Li (f ) for all i ∈ {1, . . . , M} ,

and hence all players care only about their own latency, without any regard to the latencies experienced
by others. On the other hand, the case αi,j = 1 for all i, j ∈ {1, . . . , M} corresponds to the case of
complete altruism. In this case,

Ci (f ) =
M∑

j=1

Lj (f ) for all i ∈ {1, . . . , M} ,

and hence all players care about latencies of other players as much as they care about their own, which
leads to the minimization of total network latency through local adjustment of their individual routing
policies. For other selections of the social relationship matrix A = [αi,j]M

i,j=1, the concept of group
Nash equilibrium traces a continuum range of solutions in the spectrum from totally selfish behavior to
complete altruism.



644 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

23.4.2 GROUP NASH EQUILIBRIA FOR THE PROCESS OF ALTRUISTIC DATA ROUTING
In this part, we establish necessary and sufficient conditions for a routing policy profile f to be a
group Nash equilibrium. At a group Nash equilibrium point, all players are required to solve the primal
optimization problems given by Eq. (23.10) simultaneously. Hence, as a first step for characterizing an
equilibrium solution, we require that Eq. (23.10) can be solved efficiently. To this end, one condition
that will enable us to obtain a solution for Eq. (23.10) is the semiconvexity of the edge latency functions,
a notion that we define formally as below.

Definition 23.4. A function l(x) is said to be semiconvex if l(x) (x + d) is convex for all d ∈ R. �
For example, all linear latency functions, i.e., le(x) = ax + b with positive constants a and b, are

semiconvex. Linear latency functions are used extensively in the papers on selfish routing [58,59] to
obtain the price-of-anarchy (PoA) as the efficiency metric for equilibrium solutions. The next lemma
establishes the convexity of the optimization problem in Eq. (23.10).

Lemma 23.2. If all edge latency functions are semiconvex, then the primal optimization problem
faced by player i in Eq. (23.10) is a convex optimization problem for all i ∈ {1, . . . , M}.

Proof. We fix i ∈ {1, . . . , M}. Then, the cost of a routing policy profile f = (f1, . . . , fM) for player i
can be written as

Ci (f ) =
∑
P∈P

�i (P) lP (f )

=
M∑

j=1

∑
P∈P

∑
e∈E

αi,jfj (P) le (fe) 1{e∈P}

=
∑
e∈E

le (fe)
M∑

j=1

αi,jfe,j

=
∑
e∈E

le (fe) λe,i.

Hence, using the decompositions fe = fe,i + fe,−i and λe,i = fe,i + λe,−i for fe and λe,i, respectively,
we have

Ci (f ) =
∑
e∈E

le
(
fe,i + fe,−i

) (
fe,i + λe,−i

)
.

Let ge(x) = le
(
x + fe,−i

) (
x + λe,−i

)
and he

({fi (P)}P∈P
) = ∑

P∈P fi (P) 1{e∈P}. ge(x) is a convex
nondecreasing function of x due to semiconvexity of le(x) and he

({fi (P)}P∈P
)

is a linear function of
{fi (P)}P∈P , which shows that

le
(
fe,i + fe,−i

) (
fe,i + λe,−i

) = ge ◦ he
({fi (P)}P∈P

)
is convex for all e ∈ E, as a function of decision variables {fi (P)}P∈P . This proves that
Ci

({fi (P)}P∈P , f−i

)
is a convex function of decision variables {fi (P)}P∈P if le(x) is a semiconvex

function. Hence, the primal optimization problem faced by player i is a convex optimization
problem. �



23.4 ALTRUISTIC DATA ROUTING 645

The next lemma provides necessary and sufficient conditions for a collection of decision
variables {fi (P)}P∈P to be a solution for the ith player’s individual optimization problem, which
is the key result to characterize the group Nash equilibria for the problem of altruistic data
routing.

Lemma 23.3. Assume all edge latency functions are semiconvex. Then, a feasible routing policy
fi : P �→ [0, ∞) is a solution for the primal optimization problem (23.10) faced by player i if and
only if

lH (f ) +
∑
P∈P

�i (P) cP∩H (f ) ≤ lG (f ) +
∑
P∈P

�i (P) cP∩G (f ) (23.11)

for all H, G ∈ Pi with fi (H) > 0, where cS (f ) is defined as cS (f ) = ∑
e∈S l′e (fe) for all S ⊆ E and

l′e (fe) = dle(x)
dx

∣∣
x=fe

.
Proof. The proof follows from an application of the standard Karush-Kuhn-Tucker (KKT) condi-

tions to Eq. (23.10) [60]. �
The next theorem is the main result of this section. It puts forward necessary and sufficient

conditions for a routing policy profile f  = (
f 
1 , . . . , f 

M

)
to be a group Nash equilibrium point for

the process of altruistic data routing. It is a direct consequence of the lemmas provided above.
Theorem 23.6. Assume all edge latency functions are semiconvex. Then, a feasible routing policy

profile f  = (
f 
1 , . . . , f 

M

)
is a group Nash equilibrium for the altruistic data routing problem in the

sense of Definition 23.3 if and only if it satisfies the following conditions

lH
(
f

) +
∑
P∈P

�i (P) cP∩H
(
f

) ≤ lG
(
f

) +
∑
P∈P

�i (P) cP∩G
(
f

)
(23.12)

for all i ∈ {1, . . . , M} and H, G ∈ Pi with fi (H) > 0.
Proof. f  = (

f 
1 , . . . , f 

M

)
is a group Nash equilibrium for the altruistic data routing problem if

and only if f 
i is a solution for the primal optimization problem in Eq. (23.10) for each player i ∈

{1, . . . , M}, given the routing policies f −i of the rest. Fix player i ∈ {1, . . . , M}. By Lemma 23.2,
the primal optimization problem faced by player i is convex because the edge latency functions are
semiconvex. By Lemma 23.3, f 

i is a solution for Eq. (23.10) if and only if the condition in Eq. (23.11)
is satisfied for all H, G ∈ Pi with fi (H) > 0. Repeating the same arguments for all players, we conclude
that f  = (

f 
1 , . . . , f 

M

)
is a group Nash equilibrium if and only if the condition in Eq. (23.12) is satisfied

for all i ∈ {1, . . . , M} and H, G ∈ Pi with fi (H) > 0. �
An existence result of at least one such group Nash equilibrium point is provided in the next

theorem.
Theorem 23.7. Assume all edge latency functions are semiconvex. Then, there exists a feasible

routing policy profile f  = (
f 
1 , . . . , f 

M

)
satisfying Eq. (23.12) for all i ∈ {1, . . . , M} simultaneously.

Proof. The optimization problems faced by players i ∈ {1, . . . , M} are all convex optimization
problems due to the semiconvexity of edge latency functions. Hence, the existence of a Nash
equilibrium point in pure strategies follows from the standard result in [62]. �



646 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

23.5 CONCLUSIONS
In this chapter, we have first reviewed the commonly used graph theoretical models for social network
analysis. Then, we have focused on the decentralized targeted social search process, which evolves
based on the existing social connections and local network information, by studying three models:
(i) Kleinberg’s model [47,48], (ii) the Watts-Dodds-Newman Model [50], and (iii) the Inaltekin-
Chiang-Poor Models [21,22]. Kleinberg’s model provides an analytical justification for the small-world
phenomenon when the social network is constructed on a rectangular grid through the addition of
distance-dependent random long-range connections. In particular, the average delay of social search
under this model grows poly-logarithmically when the decay rate of probability of finding a long-range
contact at a certain social distance matches the dimension of the substrate grid topology.

The Watts-Dodds-Newman Model, on the other hand, provides a numerical justification for the
small-world phenomenon when the social network is constructed based on multiple social dimensions.
Through this model, it has been illustrated that the multidimensioned nature of social identity leads to
a class of searchable social networks much larger than what is predicted by Kleinberg’s model. The
Watts-Dodds-Newman Model also exhibits statistical similarity with the empirical data collected in
small-world experiments [35] after adjusting model parameters appropriately. Lastly, the Inaltekin-
Chiang-Poor Models provide alternative explanations for why we observe short referral chains of
social search in small-world experiments without the “exact match” requirement in Kleinberg’s model.
These models (i) capture the order-disorder properties of the small-world network model [11] due to
a threshold rule for forming short-range contacts, (ii) are constructed on continuum measure-metric
spaces as a proxy for the social space, and (iii) can mimic the scale-free features of the Barabási-Albert
model [9] through a parametrization of the generation of social networks in terms of the distribution
of the number of long-range contacts. An important feature of the Inaltekin-Chiang-Poor Models is
that they lead to analytical expressions for the average delay of social search as well as its probability
distribution. The derived analytical results provide good statistical matches with the empirical data [35],
having a better chi-square fit than the one in [50].

In the final part of this chapter, we have studied the process of centralized altruistic data
routing, which evolves based on the physical connections among devices as well as the social
connections among individuals using these devices. In this case, the social ties determine the extent
to which individuals care about the latency performance of others simultaneously accessing the same
communication resources described through physical device connections. Using a game theoretic
approach and defining the strategy set of a player as a rate distribution function over the set of paths
connecting it to the target vertex, we have provided necessary and sufficient conditions for a strategy
profile to be a Nash equilibrium point. We have also established the existence of a Nash equilibrium
point in pure strategies satisfying these necessary and sufficient conditions.

REFERENCES
[1] Granovetter M. Threshold models of collective behavior. Am J Sociol 1978;83(6):1420–43. https://doi.org/10.

1086/226707.
[2] Granovetter M. The strength of weak ties: a network theory revisited. Sociol Theory 1983;1:201–33.

https://doi.org/10.2307/202051.
[3] Feld SL. Why your friends have more friends than you do. Am J Sociol 1991;96(6):1464–77.

https://doi.org/10.1086/229693.

http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0020


REFERENCES 647

[4] Watts DJ. A simple model of global cascades on random networks. Proc Natl Acad Sci U S A
2002;99(9):5766–71. https://doi.org/10.1073/pnas.082090499.

[5] Kossinets G, Watts DJ. Empirical analysis of an evolving social network. Science 2006;311(5757):88–90.
https://doi.org/10.1126/science.1116869.

[6] Centola D, Macy M. Complex contagions and the weakness of long ties. Am J Sociol 2007;113(3):702–34.
https://doi.org/10.1086/521848.

[7] Schnettler S. A small world on feet of clay? A comparison of empirical small-world studies against
best-practice criteria. Soc Netw 2009;31(3):179–89. https://doi.org/10.1016/j.socnet.2008.12.005.

[8] Barabási AL. Luck or reason. Nature 2012;489(7417):507–8. https://doi.org/10.1038/nature11486.
[9] Barabási AL, Albert R. Emergence of scaling in random networks. Science 1999;286(5439):509–12.

https://doi.org/10.1126/science.286.5439.509.
[10] Barabási AL. Network science. Cambridge, United Kingdom: Cambridge University Press; 2016.
[11] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998;393(6684):440–2.

https://doi.org/10.1038/30918.
[12] Watts DJ. Networks, dynamics, and the small-world phenomenon. Am J Sociol 1999;105(2):493–527.

https://doi.org/10.1086/210318.
[13] Strogatz SH. Exploring complex networks. Nature 2001;410(6825):268–76. https://doi.org/10.1038/

35065725.
[14] Price DJS. Networks of scientific papers. Science 1965;149(3683):510–5. https://doi.org/10.1126/

science.149.3683.510.
[15] Bollobás B. Random graphs. 2nd ed. Cambridge Studies in Advanced Mathematics. Cambridge, United

Kingdom: Cambridge University Press; 2001.
[16] Barabási AL, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A 1999;

271(1–2):173–87. https://doi.org/10.1016/S0378-4371(99)00291-5.
[17] Krapivsky PL, Redner S, Leyvraz F. Connectivity of growing random networks. Phys Rev Lett 2000;

85(21):4629–32. https://doi.org/10.1103/PhysRevLett.85.4629.
[18] Watts DJ. The “new” science of networks. Ann Rev Sociol 2004;30(1):243–70. https://doi.org/10.1146/

annurev.soc.30.020404.104342.
[19] Newman MEJ, Moore C, Watts DJ. Mean-field solution of the small-world network model. Phys Rev Lett

2000;84(14):3201–4. https://doi.org/10.1103/PhysRevLett.84.3201.
[20] Klemm K, Eguiluz VM. Growing scale-free networks with small-world behavior. Phys Rev E 2010;

65(5):057102. https://doi.org/10.1103/physreve.65.057102.
[21] Inaltekin H, Chiang M, Poor HV. Average message delivery time for small-world networks in the continuum

limit. IEEE Trans Inf Theory 2010;56(9):4447–70. https://doi.org/10.1109/TIT.2010.2054490.
[22] Inaltekin H, Chiang M, Poor HV. Delay of social search on small-world graphs. J Math Sociol

2014;38(1):1–46. https://doi.org/10.1080/0022250X.2011.629062.
[23] Granovetter M. The strength of weak ties. Am J Sociol 1973;78(6):1360–80. https://doi.org/10.1086/225469.
[24] Lee NH. The search for an abortionist. 1st ed. Chicago, IL, USA: University of Chicago Press; 1969.
[25] Klovdahl AS. Social networks and the spread of infectious diseases: the AIDS example. Soc Sci Med

1985;21(11):1203–16. https://doi.org/10.1016/0277-9536(85)90269-2.
[26] Bearman PS, Moody J, Stovel K. Chains of affection: the structure of adolescent romantic and social

networks. Am J Sociol 2004;110(1):44–91. https://doi.org/10.2307/3568252.
[27] Ganesh A, Massoulie L, Towsley D. The effect of network topology on the spread of epidemics. In: Proceed-

ings of the 24th annual joint conference of the IEEE computer and communications societies, Miami, FL,
March 13–17. IEEE; 2005. p. 1455–66. https://doi.org/INFCOM.2005.1498374.

[28] Centola D, Eguiluz VM, Macy MW. Cascade dynamics of complex propagation. Phys A: Stat Mech Appl
2007;374(1):449–56. https://doi.org/10.1016/j.physa.2006.06.018.

[29] Centola D. Failure in complex social networks. J Math Sociol 2009;33(1):64–8. https://doi.org/10.1080/
00222500802536988.

http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0150


648 CHAPTER 23 DYNAMIC SOCIAL NETWORKS: SEARCH AND DATA ROUTING

[30] Coleman J, Katz E, Menzel H. The diffusion of an innovation among physicians. Sociometry
1957;110(4):253–70. https://doi.org/10.2307/2785979.

[31] Centola D, Willer R, Macy M. The emperor’s dilemma: a computational model of self-enforcing norms. Am
J Sociol 2005;110(4):1009–40. https://doi.org/10.1086/427321.

[32] Donovan P. How idle is idle talk? One hundred years of rumor research. Diogenes 2007;54(1):59–82.
https://doi.org/10.1177/0392192107073434.

[33] Burt RS. Structural holes: the social structure of competition. Cambridge, MA, USA: Harvard University
Press; 1992.

[34] Milgram S. The small world problem. Psychol Today 1967;1:61–7.
[35] Travers J, Milgram S. An experimental study of the small world problem. Sociometry 1969;32(4):425–43.

https://doi.org/10.2307/2786545.
[36] Korte C, Milgram S. Acquaintance networks between racial groups: application of the small world method. J

Pers Soc Psychol 1970;15(2):101–8. https://doi.org/10.1037/h0029198.
[37] Erickson BH, Kringas PR. Small world of politics, or seeking elites from bottom up. Can Rev Sociol

1975;12(4):585–93. https://doi.org/10.1111/j.1755-618X.1975.tb00562.x.
[38] Guiot JM. A modification of Milgram’s small world method. Eur J Soc Psychol 1976;6(4):503–7.

https://doi.org/10.1002/ejsp.2420060409.
[39] Lin N, Dayton PW, Greenwald P. The urban communication network and social stratification: a “small world"

experiment. In: Ruben BD, editor. Communication yearbook, New Brunswick, NJ, USA; 1977. p. 107–19.
[40] Weimann G. The not-so-small world—ethnicity and acquaintance networks in Israel. Soc Netw

1983;5(3):289–302. https://doi.org/10.1016/0378-8733(83)90029-1.
[41] Dodds PS, Muhamad R, Watts DJ. An experimental study of search in global social networks. Science

2003;301(5634):827–9. https://doi.org/10.1126/science.1081058.
[42] Kleinfeld J. The small world problem. Society 2002;39(2):61–6. https://doi.org/10.1007/bf02717530.
[43] Goel S, Muhamad R, Watss DJ. Social search in “small-world” experiments. In: Proceedings of the

18th international conference on world wide web. WWW’09. New York, NY: ACM; 2009. p. 701–10.
https://doi.org/10.1145/1526709.1526804.

[44] Schnettler S. A structured overview of 50 years of small-world research. Soc Netw 2009;31(3):165–78.
https://doi.org/10.1016/j.socnet.2008.12.004.

[45] Shotland RL. University communication networks: the small world method. New York, NY: John Wiley &
Sons; 1976.

[46] Stevenson WB, Davidson B, Manev I, Walsh K. The small world of the university: a classroom exercise in
the study of networks. Connections 1997;20(2):23–33.

[47] Kleinberg JM. Navigation in a small world. Nature 2000;406(6798):845. https://doi.org/10.1038/35022643.
[48] Kleinberg JM. The small-world phenomenon: an algorithmic perspective. In: Proceedings of the 32nd

annual ACM symposium on theory of computing. STOC’00. New York, NY: ACM; 2000. p. 163–70.
https://doi.org/10.1145/335305.335325.

[49] Newman MEJ. The structure and function of complex networks. SIAM Rev 2003;45(2):167–256.
https://doi.org/10.1137/S003614450342480.

[50] Watts DJ, Dodds PS, Newman MEJ. Identity and search in social networks. Science 2002;296(5571):1302–5.
https://doi.org/10.1126/science.1070120.

[51] Watts DJ. Six degrees: the science of a connected age. New York, NY: Norton & Company; 2003.
[52] Bernard HR, Killworth PD, Evans MJ, McCarty C, Shelley GA. Studying social relations cross-culturally.

Ethnology 1988;27(2):155–79. https://doi.org/10.2307/3773626.
[53] Penrose M. Random geometric graphs. New York, NY: Oxford University Press; 2003.
[54] Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;12(6):512–23.

https://doi.org/10.1177/1073858406293182.

http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0275


REFERENCES 649

[55] Bassett DS, Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn Sci
2011;15(5):200–9. https://doi.org/10.1016/j.tics.2011.03.006.

[56] Hill RA, Dunbar RIM. Social network size in humans. Hum Nat 2003;14(1):53–72. https://doi.org/10.1007/
s12110-003-1016-y.

[57] McCarty C, Killworth PD, Bernard HR, Johnsen E, Shelley GA. Comparing two methods for estimating
network size. Hum Organ 2001;60(1):28–39. https://doi.org/10.17730/humo.60.1.efx5t9gjtgmga73y.

[58] Roughgarden T, Tardos E. How bad is selfish routing? J ACM 2002;49(2):236–59. https://doi.org/10.1145/
506147.506153.

[59] Roughgarden T, Tardos E. Bounding the inefficiency of equilibria in nonatomic congestion games. Games
Econ Behav 2004;47(2):389–403. https://doi.org/10.1016/j.geb.2003.06.004.

[60] Boyd S, Vandenberghe L. Convex optimization. New York, NY: Cambridge University Press; 2004.
[61] Chen X, Gong X, Yang L, Zhang J. Exploiting social tie structure for cooperative wireless

networking: a social group utility maximization framework. IEEE/ACM Trans Netw 2016;24(6):3593–606.
https://doi.org/10.1109/TNET.2016.2530070.

[62] Rosen JB. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica
1965;33(3):520–34. https://doi.org/10.2307/1911749.

http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00023-7/rf0315


CHAPTER

24INFORMATION DIFFUSION AND
RUMOR SPREADING

Argyris Kalogeratos∗, Kevin Scaman∗,†, Luca Corinzia∗,‡, Nicolas Vayatis∗
CMLA, ENS Cachan, CNRS, University of Paris-Saclay, Cachan, France∗

MSR, Inria Joint Center, Palaiseau, France†

ETH Zurich, Zurich, Switzerland‡

24.1 INTRODUCTION
Modern societies understand the world, manifest different viewpoints, and test their objectiveness by
exchanging information through direct communication or, in more recent years, through online social
networks. On a larger scale, this process may also create consensus and mitigate social friction through
public debate, two essential aspects of a healthy democracy. Information diffusion is often represented
by pieces of information (e.g., news, scientific, or historical facts) that spread through a network. As
for the network, that consists of interacting entities such as individuals, institutions (e.g., governments,
authorities, or other organizations), and private entities (e.g., media, marketing agencies).

The Internet era has offered new means to produce and share information through large-scale
online social networks. The disposition of large amounts of data coming from diffusion traces
has helped scientific research improve our understanding of diffusion processes arising in various
disciplines, including sociology, epidemiology, marketing, and computer system security. However,
the democratization of content creation and sharing has not been adequately coupled with effective
(self-, collective, or automatic) moderation, correction, and filtering mechanisms. Consequently, the
explosive volume of the available content brings forward huge challenges regarding the human capacity
to process that fast-paced and gigantic information stream as well as regarding the technical aspects of
data management.

Our daily information diet tends to promote the variety in the content we consume to the expense of
its precision and detail. During moments of crisis, the scarcity of trustworthy information and lack of
time to analyze it lead to the proliferation of false rumors. There are also various psychological factors
that impact the way we participate in this exchange. For instance, people get influenced by others, but
also tend to search and recall information and facts that align with their already formed belief system
(confirmation bias).

Furthermore, users interact preferably with people of similar profiles and opinions (homophily),
a tendency that greatly reduces the heterogeneity of the user’s perceived public debate. In addition,
members of any online group receive social pressure to conform to a group’s beliefs; that tends to

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00024-9
Copyright © 2018 Elsevier Inc. All rights reserved.

651



652 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

radicalize opinions and allow questionable ideas to gain momentum (echo chambers). Then, the relative
isolation of small online communities may lead them to believe in false rumors, even create a false
consensus against what is considered as verifiable by the majority of society. The situation may get
considerably aggravated in periods of political tension where polarization and partisanship grow in
well-segregated groups that reduce significantly their exposure to counterarguments.
Rumor spreading and control. There are many types of misinformation: bad or “yellow” journalism,
fake news, rumors and unverified information, hoaxes, and others (for a discussion on the taxonomy
see [1]). Despite the fact that many studies hardly distinguish these types, there are still notable
differences with regards to the actors propagating unverified or untrue information (e.g., individuals,
media, politicians, or authorities), their motives (e.g., ignorance, desire to be part of a movement,
gaining visibility and revenues, or as part of a speculative communication campaign), and the
way people interact with a new piece of information in each of those cases, especially during its
verification process. As has been pointed out, terms such as “fake news” are just new names for
very old problems. The particular recent concern of public opinion on fake news is, however, due
to the fact that the cascading effects of misinformation gain magnitude and speed in online social
networks, and thus their short-term negative impact is boosted. These effects have been recorded in
numerous major events, such as terrorist attacks, social demonstrations, elections, natural disasters,
and wars.

In this chapter we mainly refer to untrue rumors1 that represent false information and may have
malicious motives. Such rumors are usually proven false shortly after their appearance. However, the
debunking may not propagate fast enough in the social network to prevent a rumor from pursuing its
diffusion (this is also the case, for example, of long-lasting rumors such as conspiracy theories) and
that is exactly the point where computational tools can be beneficial.

There have been many developments in recent decades concerning both information dissemination
and viral epidemics on networks. Despite the particular properties of rumor spreading, it is still a type of
information diffusion for which many generic models and results are therefore relevant. Early models
originated from the Susceptible-Infected-Removed (SIR) epidemic model [2,3] and a detailed related
work is provided in the next section. Worth mentioning though, is the modern family of Information
Cascade Models (ICMs) [4], which considers heterogeneous node-to-node transmission probabilities.
ICM fits well to problems related to information diffusion on social networks and, among others, finds
straightforward applications in digital marketing [5]. Indeed, ICMs were used to fit real information
cascade data and observed node “infection” times in the MemeTracker dataset [6]. In another work, the
aim was to infer the edges of a diffusion network and estimate the transmission rates of each edge that
best fit the observed data [7].

Theoretical studies have given valuable insights on diffusion processes by defining quantities tightly
related with the systemic behavior (e.g., epidemic threshold, extinction time) and describing how a
diffusion unfolds from an initial set of contagious nodes. Most notably, a number of studies highlighted
the crucial role that the network structure plays in how the diffusion process unfolds, which is also the

1According to the Oxford English Dictionary, a rumor is “a currently circulating story or report of uncertain or doubtful
truth.” Thus, a rumor is by definition uncertain and may eventually be true or false. However, what will always be problematic
is the fact that rumors gain disproportional circulation speeds to their level of certainty.



24.1 INTRODUCTION 653

subject on which this chapter is largely devoted. The relation between the network structure and the
behavior of SIR epidemics has been shown in [8]. Follow-up works verified this relation and broadened
the discussion to other types of diffusion models [9,10]. Similar theoretical results have then been given
for ICM as well [11,12].

The quantification of systemic properties can help on the direction of risk assessment (e.g.,
economic, health, social risks) and, furthermore, enable diffusion process engineering whose aim
could be either to suppress or enhance a spreading. Under ICM, this engineering task is also named
in literature as influence optimization or activity shaping, whereas the maximization has received a
lot of attention for its direct marketing applications. In recent years, the suppression of information
diffusion processes has also become a hot topic because it is related to various security hazards, e.g.,
due to cascades of misinformation such as harmful rumors and fake news. Suppressive scenarios
of the latter type are also possible in the ICM modeling context; the optimization problem would
be the minimization of the spread of a piece of information in the network, e.g., by decreasing the
probability for certain users to share the false content to their contacts. To the best of our knowledge
there is no prior work on this direction and part of the contribution of this chapter is exactly on
covering this gap by developing computational approaches that are able to reduce an undesired spread
under the ICM.
Contribution and summary. The rest of the chapter keeps its focus on information diffusion and is
structured as follows. We commence with the detailed related work (Section 24.2), the technical
background regarding diffusion models (Section 24.3), and their dynamics as stochastic processes
(Section 24.4). The reader may find helpful the Table 24.1 which lists the main notations we use in this
chapter. Then, we discuss one of the interesting tasks arising in diffusion networks: the offline influence
optimization through local intervention actions that affect the information spread (Section 24.5). The
purpose can be either to minimize or maximize the influence by means of suppressive or enhancive
actions, respectively. An efficient strategy should decide where on the network to perform a number
of available actions (limited by a budget of resources) in order to better serve one of those two
opposing aims.

To this end we extend the discussion with the novel approach that first appeared in [13], which
frames this task as a generalized optimization problem under the ICM and enjoys a convex continuous
relaxation. In particular, we present a class of algorithms based on the optimization of the spectral radius
of the Hazard matrix using a projected subgradient method (Section 24.6). For these algorithms, which
can address both the maximization and the minimization problem, we provide theoretical analysis. The
suppressive case is, however, more interesting in the context of this chapter as it is straightforwardly
related to the control of undesired diffusion processes such as the spread of rumors. Hence, we
investigate two standard case-studies of the minimization problem (Section 24.7): the quarantine (e.g.,
see [10,14]) and the node immunization problem (see [15]).

Notably, among the major strengths of this framework is the fact that it can describe complex
strategies that are able to use several immunization options by deploying simultaneously resources
of different types (partial or total immunization of edges and nodes, etc.). We also discuss how such
strategies could find practical application to rumor control scenarios. In a section with experimental
results (Section 24.8), the main presented control algorithm, called NetShape, is compared to standard
baselines and state-of-the-art competitors in synthetic and benchmark network datasets. In the last
section (Section 24.9), we give our conclusions and directions of future research.



654 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

24.2 RELATED WORK
Modeling information and rumor spreading. Phenomena such as rumors are part of an old story that
is adapted to the current technological context. Scientists started studying rumors and stories related
to the two World Wars. Knapp [2], and soon after Allport and Postman [3,16], were among the first to
analyze rumors and pose the question of their control. In the work of the latter two, it was pointed out
that, loosely speaking, the spread of rumors is somewhat proportional to the general interest of the story
and the ambiguity of the related evidence. The similarities between rumor and disease spreading were
also noted in later literature, though Daley and Kendal were the first to connect epidemics and rumors
in mathematical terms [17,18]. However, they noted that their dynamics may be strikingly different due
to the particularly complex rumor-spreading mechanism. Specifically, they introduced a variant of the
Susceptible-Infected-Removed (SIR) epidemic model, where stochastic recoveries are triggered either
when (a) an infected node interacts with an already recovered one, or (b) two infected nodes interact
and both may then recover. A slight modification was proposed in [19] concerning case (b) where only
the infected node that initiates the interaction may recover.

These alterations to the basic epidemic model try to incorporate mechanisms where a person is
probable to lose motivation in continuing to spread a rumor when he realizes that it is no longer novel
and interesting, or has already been debunked. Interesting to note, though, there is no assumed self-
recovery process and the recovery is rather brought about by crowdsourcing. This is in accordance
to follow-up and recent data-driven studies on rumor spreading on twitter, which from one side
observed self-correction to be very weak and slow to take effect while from the other side they observed
an almost 1:1 ratio of users promoting important false rumors and users trying to debunk them [20,21].

Over the course of years, more refined SIR-like epidemic models were proposed for information
diffusion, including rumors, that still have a permanent recovered state (for a survey on compartmental
models see [22,23]). One example is the SEIR model that introduces the (E)xposed state in which the
individual is infected but incubating before getting to (I) and become infectious to others. Another
example is SEI[R]Z [24,25] that introduces competition among adopters at state (I) and those at state
(Z) who, after infection, have become skeptics. Both adopters and skeptics recruit from the susceptible
population; nodes can “exit” the system and change the population size over time. However, the state (S)
also recruits from a general population that is out of the system, and one could assume that previously
departed individuals may later become susceptible again.

Evidently, the most popular epidemic modeling choice for information cascades, including rumors,
are the monotonically increasing stochastic models such as SIR that allow node transitions only toward
more critical states and eventually lead to permanent recovery or removal (i.e., as if the node dies
out). Indeed, such modeling fits to what is observed in high-frequency information circulation with a
short life, a setting that covers the majority of the content reaching users from social networks, news
broadcasts, the entertainment industry, and advertising. Nevertheless, for an information spread that
spans longer time periods and may come and go in current affairs (e.g., political issues, ideas, competing
products, long-lasting rumors), models that allow reinfection are definitely more relevant. In this sense,
the Susceptible-Infected-Susceptible (SIS), or the more information-oriented SEI[R]Z [24,25], could
be fit better and also enable dynamic approaches for suppressing a diffusion, e.g., the priority-planning
[26] or the greedy approach of [27].

More recently, Information Cascade Models (ICMs) were introduced that have higher detail and
can take advantage of the wealth of available social interaction data to fine-tune their parameters.



24.2 RELATED WORK 655

First, independent cascades have emerged as a relevant model for viral diffusion of ideas and opinions
[7,28–30]. Similarly to SIR, independent cascades are also increasing stochastic processes. However,
contrary to epidemic models, they capture the precise temporal dependencies between infection events
of neighboring nodes but require larger training datasets to infer them properly. Second, multivariate
Hawkes processes are self-exciting point processes that are considered the gold standard to deal with
sequences of correlated events in many scientific fields, e.g., for earthquake prediction [31] as well
as in biological [32], financial [33,34], and social interactions studies [35]. They were thus naturally
adapted to information diffusion in social networks with the main advantage of allowing multiple events
on a single node (e.g., posts, likes, or shares in the case of a social network) [36,37]. Finally, Linear
Threshold Models were developed to account for more complex diffusion dynamics in which users may
require more than one concordant piece of information to accept it [28].
Influence optimization. The first attempts to put forward computational approaches for assessing the
influence of users in social networks were those in [38,39]. The influence maximization problem under
the ICM was first formulated in [5]. It was proved that it is an NP-hard problem and remains NP-
hard to approximate it within a factor 1 − 1/e. It was also proven that the influence is a submodular
function of the set of initially contagious nodes (referred to as influencers) and the authors proposed
a greedy Monte Carlo-based algorithm as an approximation. A number of subsequent studies were
focused on improving that technique [40,41]. Notably, today’s state-of-the-art techniques on influence
control under the ICM are still based on Monte Carlo simulations and a greedy mechanism to select the
actions sequentially.

Besides the popularity of influence maximization, various questions regarding how one could
apply suppressive interventions have also become a hot topic in recent years. However, to the best
of our knowledge, there is no existing work under the ICM and, as mentioned in the introduction, the
methodological contribution of this chapter is on the development of computational approaches under
the ICM that are able to efficiently reduce an undesired spread (see Section 24.5).
Network structure, information spread, and control approaches. Recent theoretical studies have
highlighted how crucial the structure of the underlying network is for the behavior of a diffusion
process. Specifically, they have studied the way structural characteristics of the network do appear
in quantities that are tightly related with the process behavior, such as the epidemic threshold and the
extinction time.

An early work that drew a line between epidemic spreading and the structural properties of the
underlying network is that in [8]. Under a mean field approximation of an SIR epidemic model on a
graph, they found that the epidemic threshold is proportional to the spectral radius of the adjacency
matrix. Follow-up works verified this relation and broadened the discussion to more types of diffusion
and related models. In [9] the S∗I2V∗ model was presented as a generalization of numerous virus
propagation models of the literature. It was also made possible to generalize the result of [8] to that
of generic virus models. Based on these works, several research studies have been presented on the
epidemic control on networks, mainly focusing on developing immunization strategies (elimination of
nodes) and quarantine strategies (elimination of edges). The eigenvalue perturbation theory was among
the main analytical tools used; see for example [10,14,15].

Similar theoretical results to those discussed above have been given for ICM as well. Under discrete-
or continuous-time ICM, it has been shown that the epidemic threshold depends on the spectral radius
of a matrix built upon the edge transmission probabilities, termed as the Hazard matrix [11,12].



656 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

Table 24.1 Index of Main Notations

Symbol Description

1{<condition>} indicator function

1 vector with all values equal to one

‖X‖� �-norm for a given vector X: e.g., ‖X‖1 = ∑
ij Xij, or generally ‖X‖� = (

∑
ij X�

ij)
1/�

M � M′ the Hadamard product between matrices (i.e., coordinate-wise multiplication)

μπ (1) ≥μπ (2) . . . ordered values of vector μ using the order-to-index bijective mapping π

G,V , n, E , E network G = {V , E} of n = |V| nodes and E = |E| edges

(i, j) edge (i, j) ∈ E of the graph between nodes i and j

A network’s adjacency matrix A ∈ {0, 1}n×n

S state space. Example states: (S)usceptible, (I)nfeted, (R)ecovered

S0, n0 subset S0 ⊂ V of n0 = |S0| influencer nodes from which the IC initiates

F n × n Hazard matrix [Fij]ij of nonnegative integrable Hazard functions over time

F set of feasible Hazard matrices F ⊂ R+ → Rn×n+ , where F is one of its elements

� matrix of the integrated difference of two Hazard matrices: � = ∫ +∞
0 (F̂(t) −F(t))dt

τi time τi ∈ R+ ∪ {+∞} at which the information reached node i during the process

σ (S0) influence: the final number of contagious nodes when diffusion starts from the set S

ρH (F) the largest eigenvalue of the symmetrized and integrated Hazard matrix F
p̂(s) Laplace transform of the function p(t)
X control actions matrix X ∈ [0, 1]n×n with the amount of action taken on each edge

x control actions vector x ∈ [0, 1]n with the amount of action taken on each node

k budget of control actions k ∈ (0, E) for actions on edges, or k ∈ (0, n) for nodes

Related applications. Dealing with information diffusion and rumors gives rise to a series of
computational and inference problems, including: credibility assessment of posts and users [42];
sentimental analysis on how individuals receive a piece of information; stance/role identification of
users toward it; detection of rumors and their spreaders in content streams [43–45]; identification
of influential users that could maximize the reach of a campaign by examining structural properties
of the network alone or in combination with historical data (interaction traces) [5,46,47]; and finally,
the development of countermeasures to suppress a rumor or information cascade [13,48], which is
discussed in the technical part of the chapter.

24.3 MODELS OF INFORMATION CASCADES
Information cascades describe the dynamics of communication between individuals of a social network
by capturing the way messages are shared and propagated among users. In all generality, an information
cascade on a graph G = (V , E) is a multivariate stochastic process {Xi(t) : i ∈ V , t ≥ 0} where
Xi(t) ∈ S denotes the state of user i at time t, and S is a state space that may be finite, countable, or
uncountable. Depending on the specific model, the state of a user may refer to a binary quantity (e.g.,
S = {Unaware, Informed}), to the number of messages received during [0, t] (in which case S = N), or
something more detailed regarding the message spread (e.g., S = Rd a low-dimensional representation



24.3 MODELS OF INFORMATION CASCADES 657

of the content of the message). In all the models, we consider that users that did not participate at all
in the cascade are in a default state 0 ∈ S. As a rumor propagates through the network, the number of
individuals participating in the cascade, called influence, will grow and eventually reach a saturation
point. We use this quantity as our main quality metric:

Definition 24.1 (Influence σ (S0, t)). Let S0 = {i ∈ V : Xi(0) �= 0} ⊂ V be the set of influencers,
i.e., users that are initially contagious. The influence of the set S0 at time t is defined as the total number
of messages received by users of the social network before time t:

σ (S0, t) = E

[∑
i∈V

1{Xi(t) �= 0}
]

. (24.1)

�
In the following, we denote as n = |V| the size of the social network, E = |E | the number of

connections, n0 = |S0| the number of initial influencers and the adjacency matrix of G as A ∈ {0, 1}n×n

s.t. Aij = 1 ⇔ (i, j) ∈ E . Moreover, we denote as long-term influence the total number of received
messages after the diffusion σ (S0) = limt→+∞ σ (S0, t).

24.3.1 EARLY MODELS: VIRUSES SPREADING THROUGH SOCIAL NETWORKS
Epidemics are usually modeled using Markov processes [49], i.e., memoryless stochastic processes
entirely defined by their transition matrix. This transition matrix defines the probability for each node
to change state during an infinitesimal time window [t, t + dt] (the simultaneous change of more than
one node’s state is considered improbable). In the following, we thus use the notation:

Xi(t) : Y → Z at rate Ci(t) (24.2)

to denote the stochastic transition rate Ci(t) ≥ 0 of node i ∈ {1, . . . , n} at time t ≥ 0 from state Y to
state Z, with Y, Z ∈ S.

Due to similarities between spreading phenomena, virus models have also been used to describe
information cascades on social networks. We focus on two standard such models: the SI and SIR
models, and we refer the reader to the recent review in [50] for more information on the vast
epidemiology literature.

Susceptible-Infected model
The Susceptible-Infected (SI) model is the simplest epidemic model, in which nodes can be either
(S)usceptible or (I)nfected. An infected node transmits the disease to one of its susceptible neighbor at
a rate β, and once infected a node remains infected and thus contagious.

Model 24.1 (SI model). Let G be a (possibly weighted) graph of n nodes and adjacency matrix A.
The SI model is a continuous-time Markov process X(t) ∈ {S, I}n with the following transition rate:

Xi(t) : S → I at rate β
∑

j

AjiXj(t), (24.3)

where β is the transmission rate of the epidemic. �
Because the nodes remain infected, a connected network will be totally infected at the end of the

diffusion, and hence any set S0 has influence σ (S0) = n.



658 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

Susceptible-Infected-Removed model
The Susceptible-Infected-Removed (SIR) model [51] is a widely used epidemic model designed
for scenarios in which patients present immunity to the disease after their infection and recovery.
A recovered person will not transmit the disease further nor will it be subject to reinfections. An
additional state is thus added to the SI model and each node of the network is either (S)usceptible,
(I)infected, or (R)emoved. At t = 0, a subset S0 of n0 nodes is infected. Then, each infected node will
transmit the disease to its neighbors at rate β, and recover at rate δ.

Model 24.2 (SIR model). Let G be a (possibly weighted) graph of n nodes and adjacency matrix
A. The SIR model is a continuous-time Markov process X(t) ∈ {S, I, R}n with the following transition
rates:

Xi(t) : S → I at rate β
∑

j AjiXj(t)
Xi(t) : I → R at rate δ,

(24.4)

where β is the transmission rate of the epidemic and δ is the recovery rate of nodes. �
Usually, the graph is undirected and all edges have the same rate. More complex scenarios can be

modeled using the inhomogeneous SIR model, in which each edge has its own transmission rate βij and
each node its own recovery rate δi.

An alternative definition for this model is possible using infection times. One may see that each
node gets infected at most once and recovers at most once as well. We can thus define, for each node i,
the time τ I

i at which it gets infected and the time τR
i at which it recovers, with τ I

i , τR
i ∈ R+ ∪ {+∞}.

Then, τ I
i = 0 would indicate that user i is an influencer while τ I

i = +∞ would indicate that node i
never got infected throughout the whole epidemic.

Proposition 24.1. For an SIR epidemic, the infection times τ I
i of not initially infected nodes verify

the following equality:

∀i /∈ S0, τ I
i = min{j∈{1,...,n} : Tji<Dj}

(τ I
j + Tji), (24.5)

where Tji and Dj are independent exponential random variables of expected value 1/β and 1/δ,
respectively, and τ I

i = +∞ if the set {j ∈ {1, . . . , n} : Tji < Dj} is empty. Furthermore, the recovery
time of each node i is:

τR
i = τ I

i + Di. (24.6)

Proof. This result relies on the fact that a node is infected as soon as at least one of its
infected neighbors transmits the infection to him. Because these events are independent, the times
Tij required for infection along the edges of the network are also independent. For more precisions,
see e.g., [11]. �

24.3.2 INDEPENDENT CASCADES
Independent cascades were initially introduced as discrete-time diffusion processes [28], and later
refined to more flexible continuous-time processes [7].

Model 24.3 (Discrete-time independent cascades DTIC(P)). At time t = 0, only a set S0 of
influencers is infected. Given a matrix P = (pij)ij ∈ [0, 1]n×n, each node i that receives the contagion at



24.3 MODELS OF INFORMATION CASCADES 659

time t may transmit it at time t + 1 along its outgoing edge (i, j) ∈ E with probability pij. Node i cannot
infect its neighbors in subsequent rounds t′ > t + 1. The process terminates when no more infections
are possible. �

The continuous version of independent cascades requires the definition of Hazard functions to
describe the varying transmission rates along each edge of the network.

Definition 24.2 (Hazard function Fij(t)). For every edge (i, j) ∈ E of the graph, Fij is a nonnegative
integrable function that describes the time-dependent stochastic transmission rate from node i to node
j, after i’s infection. �

Model 24.4 (Continuous-time independent cascades CTIC(F )). The CTIC(F ) model is a
stochastic diffusion process defined as follows: at time s = 0, only the influencer nodes in S0 are
infected. Then, each node i that receives the contagion at time τi may transmit it at time s ≥ τi along
an outgoing edge (i, j) ∈ E with stochastic rate of occurrence Fij(s − τi). �

The rest of this chapter will mainly focus on the analysis and control of such information cascades.
For notational purposes, we denote as F = [Fij]ij the n × n Hazard matrix containing as elements
the individual Hazard functions and, respectively, as F(t) = [Fij(t)]ij the evaluation of all functions at
a relative time-point t after each infection time τi. Essentially, network edges imply nonzero Hazard
functions:

(i, j) ∈ E ⇔ ∃t ≥ 0 s.t. Fij(t) �= 0. (24.7)

Note that each Hazard function Fij is always evaluated at a relative time-point initialized at the infection
time τi of the source node i.

Similarly to SIR, independent cascades are monotonically increasing stochastic processes, and
each node can only be infected once. We can thus define, for each node i, the time τi of its first
infection, which may be infinite if the node never gets infected during the contagion. Unlike SIR,
no epidemic states are explicitly mentioned in the notations of CTIC (the reader may compare
Eqs. (24.5) and (24.8).

Proposition 24.2. For a Continuous-Time Independent Cascade CTIC(F , T), the infection times τi

of noninfluencer nodes verify the following equality:

∀i /∈ S0, τi = min
j∈{1,...,n}(τj + Tji), (24.8)

where Tij ∈ R+ ∪ {+∞} are independent random variables of subprobability density

pij(t) = Fij(t) exp
(

−
∫ t

0
Fij(s)ds

)
. (24.9)

Proof. This result is similar to Proposition 24.1 and relies on the same observation: a node is active
as soon as at least one of its active neighbors activated him. Because these events are independent
(hence the name of the model), the times Tij required for activation along the edges of the network are
also independent. For more precisions, see for example [52]. �

In general, pij(t) is not a probability density over R+ as it does not integrate to one, and P(Tij =
+∞) = 1 − ∫ +∞

0 pij(t)dt = exp(− ∫ +∞
0 Fij(t)dt). Proposition 24.2 provides a simple mechanism for

simulating CTIC, as one can first draw one independent random variable Tij per edge, and then use a
shortest-path algorithm to compute the infection times τi for each node of the network.



660 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

In what follows, we focus on this model due to its expressiveness and broad use in modern social
network studies. However, the large-scale dynamics of all diffusion models are relatively similar and
exhibit the same threshold behavior.

24.4 LARGE-SCALE DYNAMICS OF INDEPENDENT CASCADES
At the scale of the network, the emergent behavior of information cascades displays several typical
characteristics that are common in most diffusion processes, including epidemics and computer viruses.
For instance, Fig. 24.1 shows the number of identified cases of Ebola during a recent crisis, the number
of queries for “Pokemon go” when the game became viral, and the simulation of an independent cascade
(see Model 24.4 in Section 24.3). All these diffusion processes exhibit similar behavior:

1. Explosive start: The cascade starts with an exponential increase and quickly reaches a
nonnegligible amount.

2. Saturation point: After a sharp increase during the early phase of the diffusion, the process
reaches a saturation point and comes to a halt. Note that, for information cascades, a residual
activity may produce a linear slope after the end of the diffusion. However, we ignore this aspect in
our study.

As a consequence, we focus on four main characteristics of interest to describe the large-scale
dynamics of information cascades:

1. Existence: Is the cascade powerful enough to enter the explosive phase?
2. Saturation point: What is the final reach of the cascade?
3. Time for action: When is the explosion taking place?
4. Explosive rate: How fast is the initial exponential increase of the cascade?

These four characteristics are summarized in a simulated toy example on Fig. 24.1C. In the following
sections, we provide estimates of these quantities depending on the diffusive properties of the process
as well as the structure of the social network.

24.4.1 EXISTENCE OF A SUPERCRITICAL CASCADE
Intuitively, an information cascade may only sustain itself if, on average, people that receive the
message share it to more than one of their neighbors. When the network connectivity is too low, the
cascade cannot reach a large audience before dying out. This is highlighted by the following upper
bound relating a measure of network connectivity introduced in [12], the Hazard radius, to the long-
term influence.

Definition 24.3 (Hazard radius ρH(F )). For a diffusion process CT IC(F ), ρH(F ) is the largest
eigenvalue of the symmetrized and integrated Hazard matrix:

ρH (F ) = ρ

(∫ +∞
0

F (t) + F (t)T

2
dt

)
, (24.10)

where ρ(·) = maxi |λi| and λi are the eigenvalues of the input matrix. �



6000

8000

10,000

12,000

14,000

16,000

0

(A)

(B)

(C)

2000

4000
C

u
m

u
la

te
d

 n
u

m
b

er
 o

f 
re

p
o

rt
ed

 c
as

es
 o

f 
E

b
o

la

Time

Total cases, Guinea
Total cases, Liberia

Total cases, Sierra Leone

0.4

0.6

0.8

1

G
o

o
g

le
 q

u
er

ie
s 

fo
r 

"P
o

ke
m

o
n

 g
o

" 
(n

o
rm

al
iz

ed
)

0

0.2

Time

Pokemon go queries, France
Pokemon go queries, United States

0.3

0.4

0.5

0.6

0.7

P
er

ce
n

ta
g

e 
o

f 
in

fe
ct

ed
 n

o
d

es

0

0.1

0.2

Time

Information cascade simulationWhen?

How fast?

How much?

FIG. 24.1

Main large-scale characteristics of diffusion processes appearing in real and simulated cascades. (A) Number
of Ebola cases in Ginea, Liberia, and Sierra Leone (source: World Health Organization). (B) Number of
searches for the query “Pokemon go” on the Google search engine (source: Google Trend). (C) Simulation of a
Continuous-Time Independent Cascade (see Model 24.4). The main large-scale characteristics highlighted in
our analysis are also summarized: existence of outbreak, time before the explosion, explosive rate, and
saturation point.



662 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

When all edges of the social network have an identical Hazard function Fij(t), the Hazard radius is
proportional to the spectral radius of the adjacency matrix, which has been shown to drive the spread
of epidemics [9]. The following proposition extends this result to independent cascades.

Proposition 24.3. Let S0 ⊂ V be a set of n0 influencer nodes, and ρH (F ) the Hazard radius of a
CT IC(F ). Then, if ρH (F ) < 1, the influence of S0 in CTIC(F ) is upper bounded by:

σ (S0) ≤ n0 +
√

ρH (F )
1 − ρH (F )

√
n0(n − n0). (24.11)

�
Proof. This result relies on a nontrivial vector inequality between the activation probabilities Zi at

the end of the epidemic, defined as:

Zi = P(τi < +∞). (24.12)

Note that

‖Z‖1 =
∑

i

E[1{τi < +∞}] = σ (S0), (24.13)

and any result on the vector Z will easily translate into a result on the influence. Proposition 24.2 leads
to a relationship between the Zi, as for any vector c, minj∈{1,...,n} cj < +∞ ⇔ ∃j ∈ {1, . . . , n} s.t. cj <

+∞, and thus

1{τi < +∞} = 1{minj∈{1,...,n}(τj + Tji) < +∞}
= 1 − ∏

j
(
1 − 1{τj < +∞}1{Tji < +∞}) .

(24.14)

Taking the expectation and using the Fortuin-Kasteleyn-Ginibre (FKG) inequality [53], a well-known
result of mathematical physics, to prove the positive correlation between the variables 1{τi < +∞},
the following inequality arises after a short calculation:

∀i /∈ S0, Zi ≤ 1 − exp

⎛
⎝−

∑
j

HjiZj

⎞
⎠ . (24.15)

This inequality upper bounds the expected activation of a node with the expected activation of its
neighbors, and can be turned into a bound on the norm of Z using the spectral radius of the matrix H.
The final step of the proof is rather calculatory and relies on Jensen’s inequality and the definition of
the spectral radius for symmetric matrices. The complete derivation is available in [12]. �

Hence, the independent cascade is subcritical when ρH (F ) < 1, and the number of active users
remains negligible compared to the size of the network: σ (S0) = O(

√
n) � n. Note that we assume

that the number of influencer nodes n0 is bounded and does not depend on n.

24.4.2 LONG-TERM BEHAVIOR OF INDEPENDENT CASCADES
When the cascade is efficient enough to propagate to a large proportion of the network, it displays a
sharp increase before saturating to a limit value. Although the precise value of this limit influence is
hard to evaluate, several upper bounds have been provided and proven in the literature [12,54]. We now
provide such a result relating the long-term influence to the Hazard radius of the cascade.



24.4 LARGE-SCALE DYNAMICS OF INDEPENDENT CASCADES 663

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

r

g 
(r

)

FIG. 24.2

Upper bound on the saturation point. Function γ defined in Eq. 24.17. When ρH (F ) < 1, the function is equal
to 0, then increases and saturates to γ = 1 as ρH (F ) tends to infinity.

Proposition 24.4. Let S0 ⊂ V be a set of n0 influencer nodes, and ρH (F ) the Hazard radius of a
CTIC(F ). Then, if ρH (F ) > 1, the long-term influence of S0 in CTIC(F ) is upper bounded by:

σ (S0) ≤ n0 + γ (n − n0) + cn
√

n0(n − n0), (24.16)

where cn =
√

η
1−η

, η = (1 − γ )ρH (F ) and γ ∈ [0, 1] is the unique positive solution of the equation:

γ = 1 − exp
(−ρH (F )γ

)
. (24.17)

Proof. This result is also a consequence of Eq. (24.15) relating the expected activations Zi. See [12].
�

In essence, the proportion of active nodes after the cascade is negligible when ρH (F ) < 1, and
at most γ when ρH (F ) > 1, where γ is defined by the implicit equation γ = 1 − exp

(−ρH (F )γ
)
.

Fig. 24.2 shows the proportion γ of Proposition 24.4 with respect to the Hazard radius ρH (F ).

24.4.3 EXPLOSIVE DYNAMICS IN THE SUPERCRITICAL REGIME
Finally, the intermediate regime when the cascade grows exponentially can be analyzed using a
modified version of the Hazard radius, known as the Laplace Hazard radius.

Definition 24.4 (Laplace Hazard matrix L(s)). Let pij be the edge transmission probabilities
defined in Eq. (24.9). For s ≥ 0, let L(s) be the n × n matrix, called Laplace Hazard matrix, whose
coefficients are:

Lij(s) =
{

−p̂ij(s)
(∫ +∞

0 pij(t)dt
)−1

ln
(

1 − ∫ +∞
0 pij(t)dt

)
if (i, j) ∈ E ,

0 otherwise,
(24.18)

where p̂ij(s) denotes the Laplace transform of pij defined for every s ≥ 0 by p̂ij(s) = ∫ +∞
0 pij(t)e−stdt.

�



664 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

Definition 24.5 (Laplace Hazard radius ρL (s)). For a diffusion process CTIC(F ) and s ≥ 0,
ρL (s) is the largest eigenvalue of the symmetrized Laplace Hazard matrix:

ρL (s) = ρ

(
L(s) + L(s)T

2

)
, (24.19)

where ρ(·) = maxi |λi| and λi are the eigenvalues of the input matrix. �
This concept is slightly more complicated than the Hazard radius. When s = 0, the Laplace Hazard

radius coincides with the Hazard radius: ρL (0) = ρH (F ). However, when s is large, the Laplace Hazard
radius captures the short-term behavior of the hazard function by reducing the impact of long times
through the Laplace transform. Quite surprisingly, the explosive rate of the cascade is upper bounded
by the inverse value ρ−1

L (1). This is discussed by the following proposition.
Proposition 24.5. Let t ≥ 0, S0 ⊂ V be a set of n0 influencer nodes, and ρL the Laplace Hazard

radius. Then, the short-term influence of S0 in CTIC(F ) at time t is upper bounded by:

σ (S0, t) ≤ n0 + (2n0)1/3(n − n0)2/3 exp
(
ρ−1
L (1)t

)
. (24.20)

Proof. This result relies on a similar equation to Eq. (24.15) describing the dynamics of the cascade
instead of its long-term stable regime. More specifically, Proposition 24.2 shows that, for any t ≥ 0, the
variables 1{τi < t} are related according to:

1{τi < t} = 1 −
∏

j

(
1 − 1{τj + Tji < t}) . (24.21)

Now, denoting as Zi(t) = P(τi < t) the probability that node i is active at time t, one may show the
following vectorial inequality relating the variables Zi(t):

Zi(t) ≤ 1 − exp

⎛
⎝−

∑
j

(Fji ∗ Zj)(t)

⎞
⎠ , (24.22)

where (f ∗ g)(t) = ∫
R

f (s)g(t − s)ds is the convolution product. From this inequality, one may prove an

upper bound on the Laplace transform of the influence σ̂ (s) = ∫ +∞
0 σ (S0, t)e−stdt, directly translating

into an upper bound on the exponential increase of the influence. Again, the complete derivation is
available in [11]. �

This result has two implications (for more precise results see [11]):

• First, the influence is at most increasing at an exponential rate of ρ−1
L (1).

• Second, this also provides a characteristic time under which the cascade is still in its early phase.
More precisely, before the critical time

t ≤ ln n

3ρ−1
L (1)

, (24.23)

the cascade is subcritical and the influence is negligible: σ (S0, t) = O(n2/3).



24.5 MONITORING INFORMATION CASCADES 665

24.5 MONITORING INFORMATION CASCADES
Having presented the fundamental theoretical properties of diffusion processes related to information
propagation over networks, we now discuss an efficient approach to the generic problem of optimizing
influence (maximizing or minimizing) using actions that can shape, i.e., modify, the activity of single
users. For instance, a marketing campaign may have a certain advertisement budget that can be used
on targeted users of a social network. While these targeted resources are usually represented as new
influencer nodes that will spread the piece of information, we rather consider the more refined and
general case in which each resource will essentially alter the Hazard functions Fij associated to a target
node i, thus increasing, or decreasing, the probability for i to propagate by sharing the information with
its neighbors.

Our generic framework assumes that a set of feasible Hazard matrices F ⊂ R+ → Rn×n+ is available
to the administrator. This set virtually contains all admissible policies that one could apply to the
network. Then, the concern is to find the Hazard matrix F ∈ F that minimizes, or maximizes depending
on the task of interest, the influence. In Section 24.7 we show that two problems that have been a
major focus of the literature so far, namely the edge-deletion problem [14] and the node-immunization
problem [15] are particular instances of this framework. Note that this framework is generic enough to
describe complex strategies that may use several immunization options by deploying simultaneously
resources of different types (removal of edges, nodes, partial immunization, etc.).

Problem 24.1 (Determining the optimal feasible policy). Given a graph G, a number of
influencers n0, and a set of admissible policies F, find the optimal policy:

F∗ = argmin
F∈F

σ∗
n0

(F ), (24.24)

where σ ∗
n0

(F ) = max{σ (S0) : S0 ⊂ V and |S0| = n0} is the optimal influence (according to Eq. (24.24)
this is the minimum) over any possible set of n0 influencer nodes. �

Problem 24.1 cannot be solved exactly in polynomial time. The exact computation of the maximum
influence σ ∗

n0
(F ) is already a hard problem on its own, and minimizing this quantity adds an additional

layer of complexity due to the nonconvexity of the maximum influence w.r.t. the Hazard matrix (note:
F �→ σ ∗

n0
(F ) is positive, upper bounded by n and not constant).

Proposition 24.6. For any size of the set of influencers n0, the computation of σ ∗
n0

(F ) is #P-hard.
Proof. We prove the theorem by reduction from a known #P-hard function: the computation of the

influence σ (S0) given a set of influencers S0 of size n0 (see Theorem 1 of [55]). Indeed, let CTIC(F ) be
an independent cascade defined on G = (V , E). We can construct a new graph G′ = (V ′, E ′) as follows:
for each influencer node i ∈ S0, add a directed chain of n nodes {vi,1, . . . , vi,n} ⊂ V ′ and connect vi,n
to i by letting the transmission probabilities along the edges be all equal to one. Then, the maximum
influence σ ∗

n0
is achieved with the nodes S′

0 = {vi,1 : i ∈ S0} as influencer, and σ ∗
n0

= n n0 + σ (S0).
The result follows from the #P-hardness of computing σ (S0) given S0. �

The standard way to approximate the maximum influence is to employ incremental methods where
the quality of each potential influencer is assessed using a Monte Carlo approach. In the following, we
assume that the feasible set F is convex and included in a ball of radius R. Also, the requirement of
Eq. (24.7), that network edges correspond to nonzero Hazard functions, holds for every feasible policy
F ∈ F. Therefore, the number of edges E upper bounds the number of nonzero Hazard functions for
any F ∈ F.



666 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

Remark 24.1. Although Problem 24.1 focuses on the minimization of the maximum influence, the
algorithm presented in this paper is also applicable to the opposite task of influence maximization.
Having a common ground for solving these opposite problems can be useful for applications where
both opposing aims can interest different actors, e.g., in market competition. For the maximization,
our algorithm would use a gradient ascent instead of a gradient descent optimization scheme. While the
performance of the algorithm in that case may be competitive to state-of-the-art influence maximization
algorithms, the nonconvexity of this problem prevents us from providing any theoretical guarantees
regarding the quality of the final solution.

24.6 AN ALGORITHM FOR REDUCING INFORMATION CASCADES
As has been mentioned, solving exactly the influence optimization problem is computational in-
tractable. Here, we propose to exploit the upper bound given in Proposition 24.4 as a heuristic for
approximating the maximum influence. This approach can be seen as a convex relaxation of the original
NP-Hard problem, and allows the use of convex optimization algorithms for this particular problem.
The relaxed optimization problem thus becomes:

F∗ = argmin
F∈F

ρH (F ). (24.25)

When the feasible set F is convex, this optimization problem is also convex and our proposed
method called NetShape uses a simple projected subgradient descent (see e.g. [56]) in order to find its
minimum and make sure that the solution lays in F. However, special care should be taken to perform
the gradient step because although the objective function ρH (F ) admits a derivative w.r.t. the norm

‖F‖ =
√√√√∑

i,j

(∫ +∞
0

∣∣Fij(t)
∣∣ dt

)2

, (24.26)

the space of matrix functions equipped with this norm is only a Banach space in the sense that the
norm ‖F‖ cannot be derived from a well-chosen scalar product. Because gradients only exist in Hilbert
spaces, gradient-based optimization methods are not directly applicable.

In the NetShape algorithm, the gradient and projection steps are performed on the integral of the
Hazard functions

∫ +∞
0 Fij(t)dt by solving the optimization problem bellow:

F∗ = argmin
F̂∈F

∥∥∥∥
∫ +∞

0

(
F̂ (t) − F (t)

)
dt + η uFuT

F

∥∥∥∥
2

, (24.27)

where η > 0 is a positive gradient step, uF is the eigenvector associated to the largest eigenvalue of

the matrix
∫ +∞

0
F (t)+F (t)T

2 dt, and uFuT
F is a subgradient of the objective function, as provided by the

following proposition.



24.6 AN ALGORITHM FOR REDUCING INFORMATION CASCADES 667

Proposition 24.7. A subgradient of the objective function f (M) = ρ
( M+MT

2

)
in the space of

integrated Hazard functions, where M is a matrix, is given by the matrix:

∇f (M) = uMuT
M , (24.28)

where uM is the eigenvector associated to the largest eigenvalue of the matrix M+MT

2 .

Proof. For any matrix M, let f (M) = ρ
( M+MT

2

) = maxx : ‖x‖2=1 xTMx, and uM be such an optimal
vector. Then, we have f (M + ε) = uT

M + ε(M + ε)uM+ε ≥ uT
M(M+ε)uM = f (M)+uT

MεuM , and, because
uT

M ε uM = 〈
uMuT

M , ε
〉
, uMuT

M is indeed a subgradient for f (M). �

Algorithm 24.1 NETSHAPE METAALGORITHM
Input: feasible set F ⊂ R+ → Rn×n+ , radius R > 0 of F, initial Hazard matrix F ∈ F, approx. parameter ε > 0
Output: Hazard matrix F∗ ∈ F

1: F∗ ← F
2: T ← � R2

ε2 �
3: for i = 1 to T − 1 do
4: uF ← compute the eigenvector associated to the spectral radius ρH (F )
5: η ← R√

i

6: F ← argmin
F̂∈F

∥∥∥∫ +∞
0

(
F̂ (t) − F (t)

)
dt + η uF uT

F
∥∥∥

2

7: F∗ ← F∗ + F
8: end for
9: return 1

T F∗

The projection step of line 6 in Algorithm 24.1 is an optimization problem on its own, and the
NetShape algorithm is practical if and only if this optimization problem is simple enough to be solved.
In the next sections we will see that, in many cases, this optimization problem can be solved in near
linear time w.r.t. the number of edges of the network (i.e., O(E ln E)), and is equivalent to a projection
on a simplex.

24.6.1 CONVERGENCE AND SCALABILITY
Due to the convexity of the optimization problem in Eq. (24.25), NetShape finds the global minimum of
the objective function and, as such, may be a good candidate to solve Problem 24.1. The complexity of
the NetShape algorithm depends on the complexity of the projection step in Eq. (24.27). Each step
of the gradient descent requires the computation of the first eigenvector of an n × n matrix, which
can be computed in O(E ln E), where E is the number of edges of the underlying graph. In most real
applications, the underlying graph on which the information is diffusing is sparse, in the sense that its
number of edges E is small compared to n2.

Proposition 24.8. Assume that F is a convex set of Hazard matrices included in a ball of radius
R > 0 w.r.t. the norm in Eq. (24.26), and that the projection step in Eq. (24.27) has complexity at most
O(E ln E). Then, the NetShape algorithm described in Algorithm 24.1 converges to the minimum of

Eq. (24.25). Moreover, the complexity of the algorithm is O( R2

ε2 E ln E).



668 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

Proof. This is a direct application of the projected subgradient descent to the problem:

H∗ = argmin
H∈H

ρ

(
H + HT

2

)
, (24.29)

where H =
{∫ +∞

0 F(t)dt ∈ Rn×n : F ∈ F

}
is the set of feasible Hazard matrices. The convergence

rate of such an algorithm can be found in [56]. �
Remark 24.2. The corresponding maximization problem is not convex anymore and only conver-

gence to a local maximum can be expected. However, when the changes in the Hazard functions are
relatively small (e.g., inefficient control actions, or only a limited number of treatments available to
distribute), then NetShape achieves fairly good performance.

24.7 CASE STUDIES
In this section, we illustrate the generality of our framework by reframing well-known diffusion
suppression problems that can find application in rumor control that has been discussed extensively
in this chapter. Using Problem 24.1 we derive the corresponding variants of the NetShape algorithm.

For simplicity, we denote as M � M′ the Hadamard product between the two matrices (i.e.,

coordinate-wise multiplication), as � = ∫ +∞
0

(
F̂(t) − F(t)

)
dt the matrix with the integrated

coordinate-wise difference of two Hazard matrices in time, and as 1 ∈ Rn the all-one vector (see
notations in Table 24.1).

24.7.1 PARTIAL QUARANTINE
The quarantine approach aims to remove a small number of edges in order to minimize the spread of
the contagion. This strategy is highly interventional in the sense that it totally removes edges, but in
order to be practical it has to remain at low scale and affect a small amount of edges. This is the reason
why it is mostly appropriate for dealing with the initial very few infections. The partial quarantine
setting is a relaxation where one is interested in decreasing the transmission probability along a set of
targeted edges by using local and expensive actions.

Definition 24.6 (Partial quarantine). Consider that a marketing campaign has k control actions
to distribute in a network G = (V , E). For each edge (i, j) ∈ E , let Fij and F̂ij be the Hazard matrices
before and after applying control actions, respectively. If X ∈ [0, 1]n×n is the control actions matrix and
Xij represents the amount of suppressive action taken on edge (i, j), then the set of feasible policies can
be expressed as:

F =
{

(1 − X) �F + X � F̂ : X ∈ [0, 1]n×n, ‖X‖1≤k
}

. (24.30)

�



24.7 CASE STUDIES 669

Example. For a nonnegative scalar ε ≥ 0, we may consider F̂ = (1 − ε)F in order to model the
suppression of selected transmission rates; formally:

F = {
(1 − εX) � F : X ∈ [0, 1]n×n, ‖X‖1 ≤ k

}
. (24.31)

Importantly, for the special case where ε = 1, this problem becomes equivalent to the setting discussed
in [10,14].

A straightforward adaptation of Algorithm 24.1 to this setting leads to the NetShape algorithm for
partial quarantine described in Algorithm 24.2. The projection step is performed by Algorithm 24.3 on
the flattened versions x′, δ, y ∈ RE of the matrices X′, �, and Y , and the parameter R is chosen to upper
bound maxF ′∈F ‖F ′ − F‖2 = maxX∈[0,1]n×n,‖X‖1≤k ‖X � �‖2. �

Lemma 24.1. The projection step of Algorithm 24.1 for the partial quarantine setting of Defini-
tion 24.6 is:

X∗ = arg minx′∈[0,1]E , ‖x′‖1≤k
∥∥x′ � δ − y

∥∥
2 , (24.32)

where δ and y are flattened version of, respectively, � and Y = X��−ηuFuT
F . Moreover, this problem

can be solved in time O(E ln E) with Algorithm 24.3, where E is the number of edges of the network.
Proof. Eq. (24.32) directly follows from Eq. (24.27) and the definition of F. Algorithm 24.3 is an

extended version of the L1-ball projection algorithm of [57]. Karush-Kuhn-Tucker (KKT) conditions
for the optimization problem of Eq. (24.32) imply that ∃z > 0 s.t. ∀i, x′

i = max{0, min{ 2δiyi−z
2δ2

i
, 1}}.

The algorithm is a simple linear search for this value. Finally, the sorting step (Algorithm 24.3, line 5)
has the highest complexity O(E ln E), and the loops perform at most 2E iterations, hence an overall
complexity O(E ln E). �

Algorithm 24.2 NETSHAPE PARTIAL QUARANTINE PROBLEM
Input: graph G = (V ,E), matrices of Hazard functions before and after treatment F , F̂ ∈ F, approximation parameter

ε > 0, number of treatments k
Output: matrix of Hazard functions F∗ ∈ F

1: X ← 0, X∗ ← 0
2: F ← ∫ +∞

0 F (t)dt

3: � ← ∫ +∞
0 (F̂ (t)dt − F (t))dt

4: R ← √
k maxij �ij

5: T ← � R2

ε2 �
6: for i = 1 to T − 1 do
7: M ← F + X � �

8: u ← the largest eigenvector of 1
2 (M + MT)

9: Y ← X � � − R√
i
uuT

10: X ← argminX′∈[0,1]n×n,‖X′‖1≤k
∥∥X′ � � − Y

∥∥
2 // projection step (Algorithm 24.3)

11: X∗ ← X∗ + X
12: end for
13: return F∗ = (1 − 1

T X∗) � F + 1
T X∗ � F̂



670 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

Algorithm 24.3 PROJECTION STEP FOR THE PARTIAL QUARANTINE PROBLEM
Input: δ, y ∈ RE , budget k ∈ (0, E)
Output: control actions vector x′

1: for i = 1 to E do
2: μi ← 2δiyi
3: μE+i ← 2δi(yi − δi)
4: end for
5: sort μ into μπ (1) ≥ μπ (2) ≥ · · · ≥ μπ (2E)
6: d ← 0
7: s ← 0
8: i ← 1
9: while s < k and μπ (i) ≥ 0 do

10: d ← d + 1{π (i) ≤ E} 1
2δ2

π (i)
− 1{π (i) > E} 1

2δ2
σ (i)−E

11: s ← s + d(μπ (i) − μπ (i+1))
12: i ← i + 1
13: end while
14: z ← max{0, μσ (i) + s−k

d }
15: return x′ s.t. x′

i = max{0, min{ 2δiyi−z
2δ2

i
, 1}}

24.7.2 PARTIAL NODE IMMUNIZATION
More often, control actions can only be performed on the nodes rather than the network edges that was
the case of the previous section. For example, imagine advertising campaigns that aim to enhance the
diffusion of a product or, more relevant to the suppressive scenario, decision-makers that debunk false
information targeting specific influencer nodes. In that case, the effect of the control actions must be
aggregated over nodes in the following way.

Definition 24.7 (Partial node immunization). Consider that a control campaign has k control
actions to distribute in a network G = (V , E). For each edge (i, j) ∈ E , let Fij and F̂ij be the Hazard
matrices before and after applying control actions, respectively. If x ∈ [0, 1]n is the control actions
vector and xi represents the amount of suppressive action taken on node i, then we express the set of
feasible policies as:

F =
{

(1 − x1T) �F + x1T � F̂ : x ∈ [0, 1]n, ‖x‖1 ≤k
}

. (24.33)
�

This setting corresponds to partial quarantine in which all outgoing edges of a node are impacted
by a single control action. When F̂ = 0, this problem corresponds to the node removal problem (or
vaccination), that consists in removing k nodes from the graph in advance in order to minimize a future
contagion (see [15]).

Given a vector x, the projection problem to solve is:

x∗ = argmin
x′∈[0,1]n,‖x′‖1≤k

∥∥∥(x′1T) � � − Y
∥∥∥

2

= argmin
x′∈[0,1]n,‖x′‖1≤k

∑
i

x2
i

(∑
j

�2
ij

)
− 2xi

(∑
j

�ijYij

)

= argmin
x′∈[0,1]n,‖x′‖1≤k

∥∥x′ � δ′ − y′∥∥
2 , (24.34)



24.8 EXPERIMENTS 671

where δ′
i =

√∑
j �

2
ij and y′

i =
∑

j �ijYij√∑
j �

2
ij

. Hence we can apply the projection step of Algorithm 24.3 for

the partial node immunization problem using δ′ and y′, and its complexity is O(n ln n).
Remark 24.3. Because the upper bound of Proposition 24.4 holds as well for SIR epidemics [51]

(see also [11]), this setting may also be used to reduce the spread of a disease using, for example,
medical treatments or vaccines. More specifically, the Hazard matrix for an SIR epidemic is the
following:

H = ln
(

1 + β

δ

)
A, (24.35)

where δ is the recovery (or removal) rate and β is the transmission rate along edges of the network, and
A the adjacency matrix. Then, a medical treatment may increase the recovery rate δ for targeted nodes,
thus decreasing all Hazard functions on its outgoing edges, and the partial node immunization setting
is applicable.

24.8 EXPERIMENTS
24.8.1 EXPERIMENTAL SETUP AND EVALUATION
In this section, we provide empirical evidence for the discussion of this chapter on controlling
independent cascades under the ICM. We set the focus of this empirical evaluation in the offline partial
node immunization problem under the ICM, as described in Section 24.7.2, and we are interested to
see in practice the performance gains of the NetShape algorithm when compared to other baseline and
state-of-the-art alternative policies.

Compared policies. We provide comparative experimental results against several strategies, namely:

(i) Rand: random selection of nodes;
(ii) Degree: selection of k nodes with highest out-degree;

(iii) WeightedDegree: selection of k nodes with highest sum of outgoing edge weight
wij = ∫ +∞

0 Fij(t)dt. This strategy can also be seen as the optimization of the first influence lower
bound LB1 of [54].

(iv) NetShield algorithm [15]. Given the adjacency matrix of a graph, this outputs the best k-nodes to
totally immunize so as to decrease the vulnerability of the graph. This is done by assigning to
each node a shield value that is high for nodes with high eigenscore and no edges connecting
them. Note that, despite the fact that NetShield is tailored for immunization on unweighted
graphs, it is not general enough to account for weighted edges and partial immunization as in our
experimental setting.

Network datasets. The evaluation is performed on three benchmark real datasets (see Table 24.2) and
the results are presented in subfigures of Fig. 24.4:

(a) a network of “friends lists” from Facebook [58];
(b) the Gnutella peer-to-peer file sharing network [58],
(c) the who-trust-whom online review site Epinions.com;



672 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

Table 24.2 Datasets: Details of the Benchmark Real Networks

Network Nodes Edges Nodes in Largest SCC

SBD10ER 500 2704 500 :: 100.0%

Facebook 4039 88,234 4039 :: 100.0%

Gnutella 62,586 147,892 14,149 :: 22.6%

Epinions 75,879 508,837 32,223 :: 42.5%

The last column is the size of the strongly connected component.

(d) a synthetic random network of n = 500 nodes forming group structure (stochastic block-diagonal)
that has been generated as follows. First, 10 equally-sized Erdös-Rényi clusters were
independently formed with intracluster edge creation probability pinter = 0.1. Then, their
adjacency matrices were used to compose a block-diagonal structure with uniform intercluster
rewiring probability pintra = 0.001. Fig. 24.3A shows the structure of the final adjacency matrix
(as having binary edge weights).

Note that the above networks only provide an unweighted adjacency matrix, thus only the existence,
or not, of an edge between a pair of nodes is known. NetShape and the analysis of Section 24.5
is generally covering time-variable propagation functions between nodes. However, without loss of
generality and for the sake of simplifying the experimental setup, we decided to use a simple class of
propagation functions. For the generation of the matrix of edge-transmission probability rates {pij} we
use a trivalency model, according to which, the pij values are drawn chosen uniformly at random from
a small set of constants. In our case that is set to {plow, pmed, phigh} and the specific used values are
mentioned explicitly for each dataset at the figures’ captions.

Each treatment unit of the budget can be assigned to a single node and, here, we assume that it can
cause a fixed decrease to the node’s transmission probability rates along all its outgoing edges (70% for
the SBD10ER and 50% for the real networks).

In the experiments we evaluate the efficiency of the immunization policies on the basis of two
measures, for both of which lower values are better:

• Spectral radius decrease. We examine the extend of the decrease of the spectral radius of the
Hazard matrix F and, hence, the decrease of the bound of the max influence as described in
Proposition 24.4.

• Expected influence decrease. We compare the performance of policies in terms of Problem 24.1.
To this end, for each Hazard matrix F , the influence is computed as the average number of infected
nodes at the end of more than 1000 runs of the independent cascade CT IC while applying that
specific Hazard matrix F . Each time a single initial influencer is selected by the influence
maximization algorithm Pruned Monte Carlo [40] by generating 1000 vertex-weighted directed
acyclic graphs (DAGs).

In the empirical study, we focus on the scenario where the spectral radius of the original network
is approximately one, which is the setting in which decreasing the spectral radius has the most impact



24.8 EXPERIMENTS 673

0 100 200 300 400 500

#nonzero: 2701, density: 1.08%

0

100

200

300

400

500

(A)

(B)
20 40 60 80 100

1.6

1.8

2.0

2.2

2.4

2.6

5

(C)
20 40 60 80 100

0

0.05

0.10

0.15

0.20

0.25

0.30

5

Rand Degree WeightedDegree NetShield NetShape

FIG. 24.3

Comparison of policies on a synthetic network. Comparison of NetShape’s performance against competitors on
the synthetic network SBD10ER, which is a composition of 10 Erdös-Rényi clusters (see details in
Section 24.8.1). The values used for the trivalency model to generate edge weights are p ∈ {0.1, 0.2, 0.5}. The
tested budget values are k ∈ {5, 10, 20, 50, 100}. (A) The structure of the generated nonsymmetric,
block-diagonal adjacency matrix (here plotted as a binary matrix); (B) Spectral radius ρH (F ) versus budget k;
(C) Influence: the expected proportion of infected nodes σ

n versus k. Lower values are better.

on the upper bounds in Proposition 24.4 and [12]. We believe that this intermediate regime is the most
meaningful and interesting in order to test the different algorithms.

24.8.2 RESULTS
The results on the synthetic network are shown in Fig. 24.3 and those on the three real network datasets
in subfigures of Fig. 24.4. The subfigures correspond to the two evaluation measures that we use for a
wide range of budget size k in proportion to the number of nodes of that network.



674 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

20 40 60 80 100
1.2

1.4

1.6

1.8

2.0

(A) (B) (C)

0.02

0.03

0.04

0.05

0.06

1 500 1000 1500
2.4

2.6

2.8

3.0

3.2

3.4

0

0.02

0.04

0.06

0.08

1 500 1000 1500 2000
1.0

1.5

2.0

2.5

0

0.005

0.010

0.015

0.02

1

20 40 60 80 100
0.01

1 500 1000 15001 500 1000 1500 20001

Rand Degree WeightedDegree NetShield NetShape

FIG. 24.4

Comparison of policies on real networks. The evaluation is conducted on benchmark real networks in terms of
two evaluation measures, namely the spectral radius and the expected influence reduction. For each network,
at the top row is plotted the ρH (F ) versus budget k, and at the bottom row the expected proportion of infected
nodes σ

n versus k. (A) Facebook network, by generating infection rates p ∈ {0.0001, 0.001, 0.01}; (B) Gnutella
network with p ∈ {0.1, 0.3, 0.6}; (C) Epinions network with p ∈ {0.005, 0.005, 0.05}. Lower values are better. (A)
Facebook; (B) Gnutella; (C) Epinions.

First, we should note that the influence and spectral radius measures correlate generally well across
all reported experiments; they present similar decrease w.r.t. budget increase and hence “agree” in the
order of effectiveness of each policy when examined individually. As expected, all policies perform
more comparably when very few or too many resources are available. In the former case, the very
“central” nodes are highly prioritized by all methods while in the latter the significance of node selection
diminishes. Even simple approaches perform well in all but Gnutella network where we get the
most interesting results. NetShape achieves a sharp drop of the spectral radius early (i.e., for small
budget k) in Gnutella and Epinions networks, which drives a large influence reduction. With regards
to influence minimization, the difference to competitors is bigger, though, in Gnutella which is the
most sparse and has the smallest strongly connected component (see Table 24.2). In Facebook, the
reduction of the spectral radius is slower and seems less closely related with the influence, in the sense
that the upper bound that we optimize is probably less tight to the behavior of the process.

Overall, the performance of the proposed NetShape algorithm is mostly as good or superior to that of
the competitors, achieving up to a 50% decrease of the influence on the Gnutella network compared
to its best competitor. Similar findings can be claimed for the experiments on the synthetic network
SBD10ER.



REFERENCES 675

24.9 CONCLUSION
The future of the diffusion networks field is full of interesting problems and potential applications. It
will continue to enrich our understanding of diffusive phenomena and, at a second level, is expected to
also change how information is circulated in online social networks.

The subject of this chapter was first to analyze the way information diffusion takes place in modern
large-scale online social networks and the challenges regarding the control of certain types of undesired
diffusion such as rumors, fake news, and others. We have presented an overview of the complex context
in which these information-related diffusive phenomena appear and how individuals participate in the
process acting as users of online social platforms.

To present the background of related problems, we went through various approaches for modeling
information cascades, including the early used virus models and the more recent independent cascades
model. Specifically for the latter model, we spoke about its large-scale dynamics and how that relates
to the network properties, the existence of a threshold value that defines the point of transition between
subcritical and supercritical behavior, and the connection of that threshold value to the spectral radius
of the Hazard matrix of the network.

Subsequently, we discussed a framework that we proposed recently for spectral activity shaping
under the Continuous-Time Independent Cascades Model [13] that allows the administrator for local
control actions by allocating targeted resources, which can alter locally the spread of the process. The
activity shaping is achieved via the optimization of the spectral radius of the Hazard matrix, which
enjoys a simple convex relaxation when used to minimize the influence of the cascade. In addition, by
reframing a number of use cases, we explained that the proposed framework is general and includes
tasks such as partial quarantine that acts on edges and partial node immunization that acts on nodes.
Notably, this generic framework can describe complex strategies that may use several immunization
options by deploying simultaneously resources of different types (removal of edges, nodes, partial
immunization, etc.). Specifically for the influence minimization that is the one directly related to rumor
spreading control, we presented the NetShape method, which was compared favorably to baseline and
a state-of-the-art method on real benchmark network datasets.

Among the interesting and challenging future work directions, on the same line to the presented
framework, there can be the introduction of an “aging” feature to each piece of information that would
model its loss of relevance and attraction through time, and the theoretical study and experimental
validation of the maximization counterpart of Netshape method.

REFERENCES
[1] Zubiaga A, Aker A, Bontcheva K, Liakata M, Procter R. Detection and resolution of rumours in social media:

a survey. ACM Comput Surv 2017;51(2):32:1–32:36.
[2] Knapp RH. A psychology of rumor. Public Opin Q 1944;8(1):22–37.
[3] Allport GW, Postman L. An analysis of rumor. Public Opin Q 1946;10(4):501–17.
[4] Chen W, Lakshmanan LVS, Castillo C. Information and influence propagation in social networks. Synth Lect

Data Manag 2013;5(4):1–177.
[5] Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. In: Pro-

ceedings of the ACM SIGKDD international conference on knowledge discovery and data mining; 2003.
p. 137–46.

http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf9020
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf9025
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0030


676 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

[6] Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the dynamics of the news cycle. In: Proceedings
of the ACM SIGKDD international conference on knowledge discovery and data mining; 2009. p. 497–506.

[7] Gomez-Rodriguez M, Balduzzi D, Schölkopf B. Uncovering the temporal dynamics of diffusion networks.
In: Proceedings of the international conference on machine learning; 2011. p. 561–8.

[8] Wang Y, Chakrabarti D, Wang C, Faloutsos C. Epidemic spreading in real networks: an eigenvalue viewpoint.
In: Proceedings of the IEEE international symposium on reliable distributed systems; 2003. p. 25–34.

[9] Prakash BA, Chakrabarti D, Valler NC, Faloutsos M, Faloutsos C. Threshold conditions for arbitrary cascade
models on arbitrary networks. Knowl Inf Syst 2012;33(3):549–75.

[10] Tong H, Prakash BA, Eliassi-Rad T, Faloutsos M, Faloutsos C. Gelling, and melting, large graphs by
edge manipulation. In: Proceedings of the ACM international conference on information and knowledge
management; 2012. p. 245–54.

[11] Scaman K, Lemonnier R, Vayatis N. Anytime influence bounds and the explosive behavior of continuous-time
diffusion networks. In: Advances in neural information processing systems; 2015. p. 2017–25.

[12] Lemonnier R, Scaman K, Vayatis N. Tight bounds for influence in diffusion networks and application
to bond percolation and epidemiology. In: Advances in neural information processing systems; 2014.
p. 846–54.

[13] Scaman K, Kalogeratos A, Corinzia L, Vayatis N. A spectral method for activity shaping in continuous-time
information cascades; 2017. ArXiv e-prints, abs/1709.05231.

[14] Van Mieghem P, Stevanović D, Kuipers F, Li C, Van De Bovenkamp R, Liu D, et al. Decreasing the spectral
radius of a graph by link removals. Phys Rev E 2011;84(1):016101.

[15] Tong H, Prakash BA, Tsourakakis C, Eliassi-Rad T, Faloutsos C, Chau DH. On the vulnerability of large
graphs. In: Proceedings of the IEEE international conference on data mining; 2010. p. 1091–6.

[16] Allport GW, Postman L. The psychology of rumor. J Clin Psychol 1947;3(4):402.
[17] Daley DJ, Kendall DG. Epidemics and rumours. Nature 1964;204(8):1118.
[18] Daley DJ, Kendall DG. Stochastic rumours. IMA J Appl Math 1965;1(1):42–55.
[19] Maki DP, Thompson M. Mathematical models and applications: with emphasis on the social, life, and

management sciences. Englewood Cliffs, NJ: Prentice-Hall; 1973.
[20] Castillo C, Mendoza M, Poblete B. Predicting information credibility in time-sensitive social media. Internet

Res 2013;23(5):560–88.
[21] Procter R, Vis F, Voss A. Reading the riots on twitter: methodological innovation for the analysis of big data.

Int J Soc Res Methodol 2013;16(3):197–214.
[22] Hethcote HW. The mathematics of infectious diseases. SIAM Rev 2000;42(4):599–653.
[23] Newman M. Networks: an introduction. New York, NY: Oxford University Press; 2010.
[24] Bettencourt LMA, Cintrórn-Arias A, Kaiser DI, Castillo-Chávez C. The power of a good idea: quantitative

modeling of the spread of ideas from epidemiological models. Phys A: Stat Mech Appl 2006;364(Supplement
C):513–36.

[25] Jin F, Dougherty E, Saraf P, Cao Y, Ramakrishnan N. Epidemiological modeling of news and rumors on
twitter. In: Proceedings of the workshop on social network mining and analysis. New York, NY: ACM; 2013.
p. 1–9.

[26] Scaman K, Kalogeratos A, Vayatis N. Suppressing epidemics in networks using priority planning. IEEE Trans
Netw Sci Eng 2016;3(4):271–85.

[27] Scaman K, Kalogeratos A, Vayatis N. A greedy approach for dynamic control of diffusion processes in
networks. In: IEEE international conference on tools with artificial intelligence; 2015. p. 652–9.

[28] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network. In: Pro-
ceedings of the ACM SIGKDD international conference on knowledge discovery and data mining; 2003.
p. 137–46.

[29] Chen W, Wang Y, Yang S. Efficient influence maximization in social networks. In: Proceedings of the ACM
SIGKDD international conference on knowledge discovery and data mining; 2009. p. 199–208.

http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf9030
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0150


REFERENCES 677

[30] Gomez-Rodriguez M, Schölkopf B. Influence maximization in continuous time diffusion networks. In:
Proceedings of the international conference on machine learning; 2012, p. 313–20.

[31] Vere-Jones D. Earthquake prediction—a statistician’s view. J Phys Earth 1978;26(2):129–46.
[32] Reynaud-Bouret P, Rivoirard V, Grammont F, Tuleau-Malot C. Goodness-of-fit tests and nonparametric

adaptive estimation for spike train analysis. J Math Neurosci 2014;4(1):1–41.
[33] Bauwens L, Hautsch N. Modelling financial high frequency data using point processes. Springer; 2009.
[34] Alfonsi A, Blanc P. Dynamic optimal execution in a mixed-market-impact Hawkes price model. Finance and

Stochast 2015;20(1):183–218.
[35] Crane R, Sornette D. Robust dynamic classes revealed by measuring the response function of a social system.

Proc Natl Acad Sci U S A 2008;105(41):15649–53.
[36] Farajtabar M, Du N, Gomez-Rodriguez M, Valera I, Zha H, Song L. Shaping social activity by incentivizing

users. In: Advances in neural information processing systems; 2014. p. 2474–82.
[37] Lemonnier R, Scaman K, Kalogeratos A. Multivariate Hawkes processes for large-scale inference. In:

Proceedings of the AAAI conference on artificial intelligence; 2017. p. 2168–74.
[38] Domingos P, Richardson M. Mining the network value of customers. In: Proceedings of the ACM SIGKDD

international conference on knowledge discovery and data mining. San Francisco, CA: ACM; 2001. p. 57–66.
[39] Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing. In: Proceedings of the ACM

SIGKDD international conference on knowledge discovery and data mining. New York, NY, USA: ACM;
2002. p. 61–70.

[40] Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K. Fast and accurate influence maximization on large
networks with pruned Monte-Carlo simulations. In: Proceedings of the AAAI conference on artificial
intelligence; 2014. p. 138–44.

[41] Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N. Cost-effective outbreak detection in
networks. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data
mining; 2007. p. 420–9.

[42] Gupta A, Kumaraguru P, Castillo C, Meier P. Tweetcred: Real-time credibility assessment of content on
twitter. In: Proceedings international conference of social informatics. Cham: Springer; 2014. p. 228–43.

[43] Shah D, Zaman T. Rumors in a network: who’s the culprit? IEEE Trans Inf Theory 2011;57(8):5163–81.
[44] Seo E, Mohapatra P, Abdelzaher T. Identifying rumors and their sources in social networks. In: Proceedings

of the ground/air multisensor interoperability, integration, and networking for persistent ISR III, vol. 8389;
2012. p. 83891I.

[45] Ma J, Gao W, Wei Z, Lu Y, Wong KF. Detect rumors using time series of social context information on
microblogging websites. In: Proceedings of the ACM international conference on information and knowledge
management. New York, NY: ACM; 2015. p. 1751–4.

[46] Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA. Identification of influential
spreaders in complex networks. Nature 2010;6(11):888–93.

[47] Goyal A, Bonchi F, Lakshmanan LVS. A data-based approach to social influence maximization. Proc VLDB
Endowment 2011;5(1):73–84.

[48] He Z, Cai Z, Wang X. Modeling propagation dynamics and developing optimized countermeasures for rumor
spreading in online social networks. In: Proceedings of the IEEE international conference on distributed
computing systems; 2015. p. 205–14.

[49] Van Mieghem P, Omic J, Kooij R. Virus spread in networks. IEEE/ACM Trans Netw 2009;17(1):1–14.
[50] Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A. Epidemic processes in complex networks.

Rev Mod Phys 2015;87:925–79.
[51] Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics. II. The problem of

endemicity. Proc R Soc Lond Ser A 1932;138(834):55–83.
[52] Du N, Song L, Gomez-Rodriguez M, Zha H. Scalable influence estimation in continuous-time diffusion

networks. In: Advances in neural information processing systems; 2013. p. 3147–55.

http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0270


678 CHAPTER 24 INFORMATION DIFFUSION AND RUMOR SPREADING

[53] Fortuin CM, Kasteleyn PW, Ginibre J. Correlation inequalities on some partially ordered sets. Commun Math
Phys 1971;22(2):89–103.

[54] Khim JT, Jog V, Loh PL. Computing and maximizing influence in linear threshold and triggering models.
In: Advances in neural information processing systems 29; 2016. p. 4538–46.

[55] Wang C, Chen W, Wang Y. Scalable influence maximization for independent cascade model in large-scale
social networks. Data Min Knowl Disc 2012;25(3):545–76.

[56] Bubeck S. Convex optimization: algorithms and complexity. Found Trends Mach Learn 2015;8(3-4):231–357.
[57] Duchi J, Shalev-Shwartz S, Singer Y, Chandra T. Efficient projections onto the L1-ball for learning in high

dimensions. In: Proceedings of the international conference on machine learning. ACM; 2008. p. 272–9.
[58] Leskovec J, Krevl A. SNAP datasets: Stanford large network dataset collection; 2014.

http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00024-9/rf9035


CHAPTER

25MULTILAYER SOCIAL
NETWORKS

Brandon Oselio∗, Sijia Liu∗, Alfred Hero∗
EECS Department, University of Michigan, Ann Arbor, MI, United States∗

25.1 INTRODUCTION
Social media’s prevalence in daily life has led to a massive increase in data for modeling human
behaviors. Often, this data is structured in a way that can be thought of as a connection of links between
agents, i.e., a network of social media users. This precipitates a necessity for specialized algorithms that
can handle multilayer structured network data for inference, evaluation, and prediction.

We often find heterogeneous structure in social media data—there may exist more than one type of
relationship between agents, and these relationships may impose different topological characteristics.
For instance, people may be connected by more than one social platform. Alternatively, we may observe
explicit links between agents but also infer implicit affinities based on agent features.

Another example of this heterogeneous structure arises when relationships between agents appear
and disappear over time; agents begin talking to each other at one time and end at another time, possibly
signifying a change in relation. Both of the above examples can be explained by a multilayer network
framework.

A multilayer network is a network where a set of elementary units is connected by intralayer and
interlayer relationships (“edges”). This structure is a generalization of single-layer networks where
there are only intralayer relationships. These layers represent heterogeneity in the structure or labeling
of the data; a layer might correspond to a type of connection or a discrete timestep. The interlayer
structure represents ties among nodes in the different layers; this structure may be observed, assumed, or
estimated depending on the application. The interlayer structure in a social network often corresponds
to the labels of each node, so that each node in a single layer is connected to its counterparts in the
other layers. If the layers represent timesteps, each entity might be connected to its counterpart in
layers before and after the present layer, which represents the localization of that layer’s characteristics
in time.

As the multilayer structure is more complicated than its single-layer counterpart, methods for
single-layer analysis must be modified to accommodate accordingly, and new methods are developed
specifically for the multilayer case. This chapter will review some of the approaches for modeling
multilayer networks and some of the methods that are specific to this structure.

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00025-0
Copyright © 2018 Elsevier Inc. All rights reserved.

679



680 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

Table 25.1 List of Notations

Symbol Description

G = (V , E) a graph with vertex set V and edge set E
M, GM , M a multilayer network M with supragraph GM and tensor form M
AM , LM supra-adjacency matrix AM and supra-Laplacian matrix LM

A(α), L(α) adjacency matrix and Laplacian matrix for network at layer α

[L] an integer set {1, 2, . . . , L}
◦, ⊗ outer/tensor product, and Kronecker product

X(t), Y(t) features from time 1, . . . , t

The rest of this chapter will proceed as follows: Section 25.2 will discuss the mathematical formu-
lation of multilayer networks. Section 25.3 will cover some examples of multilayer node centralities.
Section 25.4 will review some types of multilayer community detection methods. Section 25.5 will
pivot and discuss the estimation of multilayer interaction networks for social media data. Section 25.6
will utilize some of the techniques discussed in the chapter on two application datasets. Finally,
Section 25.7 will provide some concluding remarks. We list our notations used in this chapter in
Table 25.1.

25.2 MATHEMATICAL FORMULATION OF MULTILAYER NETWORKS
In this section, we focus on the mathematical formulation of multilayer networks. Different from single-
layer networks, they allow multiple types of interactions between each pair of nodes. In what follows,
we introduce two network representations: supra-adjacency representation and tensor representation,
each of which generalizes the notation of a single-layer network. We next show some real-life examples
that involve the multilayer network structure.

25.2.1 MODELING AND REPRESENTATION
A single-layer network (also called a monoplex network) can be represented by a graph [1]. A graph is
a tuple G = (V , E), where V is the set of nodes and E ⊆ V × V is the set of edges that connects pairs
of nodes. A multilayer network generalizes the notion of a single-layer network by incorporating the
interlayer connections; see Fig. 25.1A for an illustrative example. More formally, a multilayer network
is a pair M = (T , C) [2], where T = {Gα , α ∈ [L]} is a family of graphs Gα = (Vα , Eα) with Vα ⊆ V ,
[L] := {1, 2, . . . , L}, and C = {Eαβ ⊆ Vα × Vβ , α, β ∈ [L]} denotes the set of interlayer connections
(α �= β). Here α is the layer index, and by convention, Eαα = Eα . When L = 1, the multilayer network
M simplifies to a single-layer network. In the rest of the chapter, unless specified otherwise, we assume
that each layer contains the same set of nodes with |Vα| = |V| = N for α ∈ [L], where |V| denotes the
cardinality of the node set V .



25.2 MATHEMATICAL FORMULATION OF MULTILAYER NETWORKS 681

FIG. 25.1

Schematic illustration of multilayer network. Example with five nodes and three layers labeled α, β, and γ . (A)
Multilayer network where solid line represents intralayer connection, and dashed line represents interlayer
connection. (B) Supragraph representation. (C) Aggregated network.

Supragraph representation
Let VM ⊆ V × [L] denote a set of node-layer combinations corresponding to M, where (v, α) ∈ VM

signifies that the node v ∈ V is present in layer α ∈ [L]. Let EM ⊆ VM ×VM be the set of edges between
node-layer tuples. The multilayer network M can then be described by a graph GM = (VM , EM), known
as a supragraph, leading to a supra-adjacency matrix AM and/or a supra-Laplacian matrix LM [3].
Fig. 25.1B shows the supragraph representation of the multilayer network in Fig. 25.1A. Based on such
a representation, many methods for single-layer networks, e.g., centrality-based network diagnostics
and community detection methods, can be extended to multilayer networks [4,5].

In contrast to the supragraph, network aggregation provides the simplest representation for a
multilayer network, where connections between nodes are aggregated in all layers to a single layer.
The resulting graph is given by Ga = (Va, Ea), where Va = ∪L

α=1Vα and Ea = ∪L
α=1Eα . Often the

aggregated network can be cast as a convex combination (e.g., linear combination) of graph adjacency
matrices across all layers [6,7]. Although such an aggregation may cause loss of information about
the interlayer network structure [3], it becomes useful when modeling across networks that have
very similar interlayer connectivity. Fig. 25.1C shows the aggregated representation of the multilayer
network in Fig. 25.1A.

Tensor representation
A multilayer network can be represented in a tensor form [2,8,9]. Let M ∈ RN×L×N×L denote the
fourth-order adjacency tensor of the L-layer network M. Each element of M is defined by



682 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

Miαjβ =
{

wiαjβ if (v(α)
i , v(β)

j ) ∈ Eαβ

0 otherwise,
(25.1)

for i, j ∈ [N] and α, β ∈ [L], where v
(α)
i ∈ Vα denotes node i at layer α, and wiαjβ is the weight

corresponding to the edge (v(α)
i , v(β)

j ). We refer readers to [9] for a detailed background on tensors.
We can express the multilayer adjacency tensor (25.1) as a linear combination of tensors in the

canonical basis

M =
N∑

i=1

L∑
α=1

N∑
j=1

L∑
β=1

wiαjβ (ei ◦ eα ◦ ej ◦ eβ ), (25.2)

where ◦ represents the vector outer product (tensor product),1 ei is a basis vector in RN with 1 at the
ith coordinate and 0s elsewhere, and eα is a basis vector in RL. The tensor representation (25.2) can
be viewed as a generalization of the graph adjacency matrix A ∈ RN×N for the single-layer network
G = (V , E),

A =
N∑

i=1

N∑
j=1

wijeie
T
j =

N∑
i=1

N∑
j=1

wij(ei ◦ ej), (25.3)

where wij is the weight associated with edge (vi, vj) ∈ E .
In addition to the fourth-order tensor representation (25.2), a multilayer network is also modeled by

a third-order tensor in [10], where each slice corresponds to the network at one layer, e.g., a dynamic
network at one snapshot. In contrast with the third-order tensor, the fourth-order tensor encodes detailed
information on the interlayer connection between any two nodes at different layers, namely, Eq. (25.1).
Also, the fourth-order tensor M can be flattened out to the supra-adjacency matrix AM of dimension
NL × NL. Therefore, the fourth-order tensor is a natural representation of multilayer networks, and
many techniques on tensor algebra [8] can be used for network analysis.

25.2.2 EXAMPLES OF MULTILAYER NETWORKS
We next introduce three important classes of multilayer networks: node-colored networks, edge-colored
networks, and temporal networks [3].

Node-colored networks are graphs in which each node is labeled by one color. Considering each
color as designating a layer, node-colored graphs can be represented as multilayer networks. They are
often used to model heterogeneous networks that contain nodes of different types.

Example 1. Bibliographic information networks contain information about researchers (authors)
and publications they produce (documents). Links exist between papers and/or authors by the
authorship, colleagueship, published venues, or topics [11].

1If X = a1 ◦ a2 ◦ · · · ◦ an, then each element of the tensor X is given by Xi1i2...in = [a1]i1 [a2]i2 · · · [an]in , where [x]i denotes
the ith entry of x.



25.3 DIAGNOSTICS FOR MULTILAYER NETWORKS: CENTRALITY ANALYSIS 683

Example 2. Internet of Things (IoT) denotes the internetworking of smart phones, computers,
vehicles, buildings, and other devices embedded with electronics, sensors, and actuators [12]. IoT
allows autonomous exchange of useful information between “heterogeneous nodes.”
Edge-colored networks are graphs with multiple types of edges, where similar to node-colored
networks, color distinguishes between layers. Edge-colored graphs can be represented by
multilayer networks, where nodes in each layer are fixed and linked by edges with a unique color.
They can be used to model multirelational networks where nodes have relations of
different types [13].
Example 3. Public social networks link social entities by several types of relationships, including
friendship, vicinity, kinship, and membership in the same cultural society [14].
Example 4. Urban transportation networks describe the urban ecosystem, where nodes
represent spatial locations (e.g., restaurants, shopping malls, schools, parks, and other places of
interest), and edges represent vehicles of different types, e.g., taxis, buses, and subways, that are
used to travel between two locations [15].

A temporal network is given by an ordered sequence of graphs. It can be interpreted as a special
case of an edge-colored multigraph, where the set of time instants provides the set of edge colors,
and the interlayer edges are between nodes and their counterparts across all time steps. The chromatin
contact map over a time course of cell growth/development is an example of a temporal network in
biology [16].

25.3 DIAGNOSTICS FOR MULTILAYER NETWORKS:
CENTRALITY ANALYSIS
The study of centrality, i.e., evaluating the degree of nodal importance to the network structure, is often
used to identify and rank essential nodes in complex networks. A number of centrality measures are
commonly used, such as degree, eigenvector, clustering coefficient, closeness, betweenness, hubness,
and authority, differing in what type of influence is to be emphasized [17]. For example, degree
centrality measures the total number of connections a node has while eigenvector centrality measures
the importance of a node by the importance of its neighbors [18]. Most centrality methods are only
directly applicable to single-layer networks. Here we generalize some important single-layer centrality
methods to multilayer networks.

25.3.1 OVERLAPPING DEGREE AND MULTIPLEX PARTICIPATION COEFFICIENT
Nodal degree is the simplest feature in network diagnostics. There exist several ways to define
multilayered degree centrality. The simplest way is to use network aggregation, where two nodes are
considered to be adjacent if and only if the number of edges that connect them in a multilayer network
is larger than a threshold [19,20]. However, this measure does not fully consider the interlayer effect.

In a multilayer network, it is essential to study how the nodal degree is distributed across different
layers. We recall from Section 25.2 that M denotes a multilayer network with N nodes and L layers,
the degree of node i on layer α becomes



684 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

k(α)
i =

N∑
j=1

A(α)
ij , (25.4)

where A(α)
ij is the (i, j)th entry of the adjacency matrix associated with graph Gα on layer α. The degree

of node i in a multilayer network is a vector quantity

ki =
[
k(1)

i , k(2)
i , . . . , k(L)

i

]
, i ∈ [N]. (25.5)

The overlapping degree of node i across all layers is defined as [6]

oi =
L∑

α=1

k(α)
i = 1T ki, i ∈ [N], (25.6)

where 1 is the L × 1 vector of all ones. The overlapping degree (25.6) can be used to identify hubs,
nodes with high degree in the network. However, a node that is a hub in one layer may only have
a few connections in another layer. Thus a more suitable multilayer hub definition is the multiplex
participation coefficient [6,21],

Pi = L

L − 1

⎡
⎣1 −

L∑
α=1

(
k(α)

i
oi

)2⎤
⎦ . (25.7)

Here Pi takes values in [0, 1] and measures the degree to which the degree of node i is uniformly
distributed among the L layers. If Pi = 1, then node i has exactly the same number of edges on each
layer, namely, k(α)

i = oi/L. If Pi = 0, all the edges of node i are concentrated in just one layer. The
multiplex participation coefficient thus captures the heterogeneity of nodal degrees across layers in
multilayer networks.

25.3.2 EIGENVECTOR CENTRALITY IN SUPRAGRAPH
Eigenvector centrality describes the impact of a node on the network’s global structure, and is defined
by the dominant eigenvector of the graph adjacency matrix. Eigenvector centrality is widely used in
many applications. For example, it is closely related to hubness and authority centrality used in the
hyperlink-induced topic search (HITS) algorithm [22]. Because computing the dominant eigenvalue
and eigenvector can be computed in a distributed setting, eigenvector centrality is often preferable to
other types of global centralities such as betweenness [23,24].

The simplest way to generalize the concept of eigenvector centrality for multilayer networks is to
use network aggregation and apply single-layer based methods [25]. However, as shown in Fig. 25.1,
network aggregation oversimplifies the multilayer network. Therefore, we consider the supragraph
representation GM of a multilayer network with L layers and N nodes. The supra-adjacency matrix



25.3 DIAGNOSTICS FOR MULTILAYER NETWORKS: CENTRALITY ANALYSIS 685

AM ∈ RNL×NL of GM can be separated into two parts: the intralayer component AL
M and the interlayer

component AI
M . That is,

AM = AL
M + AI

M , AL
M = diag({A(α)}L

α=1), (25.8)

where diag({A(α)}L
α=1) denotes a block-diagonal matrix with diagonal elements A(α) for α ∈ [L], and

recall that A(α) is the graph adjacency matrix on layer α. The interlayer supra-adjacency matrix AI
M

defines the interlayer connectivity between every two layers. If the interlayer connectivity is identical
for all nodes [5], then AI

M = AI ⊗ IN , where AI ∈ RL×L is an interlayer adjacency matrix whose
elements represent the strength of the connection between every pair of layers. For example, in a
temporal network, if layers are connected at consecutive time steps, then the interlayer supra-adjacency
matrix becomes

AI
M = AI ⊗ IN , AI =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · ·
1 0 1

. . .

0 1 0
. . .

...
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (25.9)

Here AI models an undirected chain network in which each node is adjacent to its nearest neighbors.
It is worth mentioning that the decomposition of the supra-adjacency matrix in Eq. (25.8) facilitates
exploring the spectral properties of multilayer networks [5].

The eigenvector centrality vM ∈ RNL of the supra-adjacency matrix AM can then be defined as the
solution to the following eigenvalue problem

AMvM = λmaxvM , (25.10)

where λmax denotes the largest positive eigenvalue of AM . The entries of vM give the centralities of
each node-layer pair. It is convenient to map the eigenvector centralities vM to an N × L matrix

Viα = vN(α−1)+i, i ∈ [N], α ∈ [L], (25.11)

where Viα corresponds to the joint centrality of the node-layer pair (i, α). Based on Eq. (25.11), we
introduce the marginal node centrality v̂i and the marginal layer centrality ṽα [24]

v̂i =
L∑

α=1

Viα , i ∈ [N], ṽα =
N∑

i=1

Viα , α ∈ [L]. (25.12)

Similar to the supra-adjacency matrix in Eq. (25.8), we can define the decomposition of the supra-
Laplacian matrix, LM = LL

M + LI
M , where LL

M = diag(AL
M1) − AL

M , and LI
M = diag(AI

M1) − AI
M .

The decomposition of the supra-Laplacian matrix corresponds to a diffusion process over nodes of the
network. Specifically, the nodal dynamics follows the differential equation [5]

ẋiα =
N∑

j=1

w(α)
ij (xjα − xiα) +

L∑
β=1

uαβ (xiβ − xiα) (25.13)



686 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

for any i ∈ [N] and α ∈ [L], where xiα denotes the state of node i at layer α, w(α)
ij is the (i, j)th entry

of the graph adjacency matrix A(α) at layer α, and uαβ is the interlayer coupling constant, namely,
the (α, β)th entry of the interlayer adjacency matrix AI . The discretized matrix form of the diffusion
equation (25.13) yields

ẋ = −(LL
M + LI

M)x = −LMx. (25.14)

Here the second smallest eigenvalue of LM (also known as algebraic connectivity [1]) governs the
convergence properties of the diffusion process.

25.3.3 NODAL CENTRALITY VIA TENSOR DECOMPOSITION
A fourth-order tensor was introduced in Section 25.2 to represent a multilayer network. Tensor
decomposition is an effective tool for multiarray data analysis, and mono-layer centrality measures
can be extended in order to identify key nodes in multilayer networks. It has been shown in [2] that the
principal singular vectors obtained from the CANDECOMP/PARAFAC tensor decomposition [9] can
provide hub and authority scores of all nodes in a multilayer network.

The fourth-order adjacency tensor M ∈ RN×L×N×L of a multilayer network can be decomposed
into a sum of rank-one tensors [9],

M =
R∑

i=1

σiai ◦ bi ◦ ci ◦ di, (25.15)

where {σi}R
i=1 are singular values of M sorted in a descending order, ai ∈ RN , bi ∈ RL, ci ∈ RN ,

and di ∈ RL are singular vectors corresponding to the singular value σi, and R is the rank of M.
Considering the principal quadruplet {a1, b1, c1, d1} in Eq. (25.15), the entries of a1 and c1 correspond
to hub and authority scores of all nodes while the entries of b1 and d1 give hub and authority scores
of all layers. Note that if L = 1, then the four-order adjacency tensor reduces to the second-order
adjacency matrix, and the entries of a1 and c1 give the conventional hub and authority scores of nodes
in a single-layer network. Given the hub and authority scores [2], one can further generalize HITS of
multilayer networks [26].

Based on Eq. (25.15), the importance of a node-layer pair (i, α) can be evaluated as

Hi,α = |a1,ib2,α | + |c1,id1,α |, (25.16)

where a1,i denotes the ith entry of the vector a1. The nodal importance measure defined in Eq. (25.16)
is called EDCPTD (Essential nodes Determining based on CP Tensor Decomposition) centrality [2].
Given the joint centrality of the node-layer pair in Eq. (25.16), we can then define the marginal node
centrality and the marginal layer centrality following Eq. (25.12).

In addition to the hubness and authority centrality, other generalized centrality measures such as
clustering coefficient, modularity, and random walk centrality can also be defined using the tensor
representation; see [8] for details.



25.4 CLUSTERING AND COMMUNITY DETECTION IN MULTILAYER NETWORKS 687

25.4 CLUSTERING AND COMMUNITY DETECTION IN
MULTILAYER NETWORKS
Discovering mesoscale structures such as communities in complex networks is a wide field of study
[27]. These communities are generally described as a subset of nodes in the graph that are more densely
connected than other nodes in the network. This is sometimes referred to in sociology as homophily
[28]. Detecting these communities in a single-layer network has and continues to be an active research
field. Furthermore, research in community detection for the more general multilayer case has become
increasingly prevalent in the past decade.

Community detection in social networks facilitates the interpretation of the overall structure of the
network. Generally, we expect to see communities in social networks that strongly relate different
agents to one another, such as common activities, interests, or memberships to organizations. For
instance, students that attend the same university, play the same sport, or like the same music are more
likely to be connected in a particular link type. The concept of communities becomes more complex
when multiple layers are introduced (see Fig. 25.2); communities that develop in one type of interaction
may not be present in another or may be subsumed by a larger, more prevalent supercommunity. It is
also possible that the community structure in each layer exhibits different homophilic clusters that

FIG. 25.2

Illustration of community detection. Examples of community detection with 20 nodes. (A) Single-layer
community detection, where the community structure captures homophily among the nodes. (B) Community
detection in a multilayer setting, where more complex situations can occur. The middle layer has a
subcommunity in one of the larger communities displayed in the front layer while the back layer has a different
latent structure altogether.



688 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

do not correlate across layers. Depending on the application, the main goal of analysis might be to
utilize multiple layers to find communities that may not have been obvious in a single-layer slice of
the network. In other applications, we may be interested in the similarities and dissimilarities of the
community structure for each layer, which necessitates different approaches. Community detection in
temporal networks deserves its own special treatment, as we often make temporal locality assumptions
that allow for a more focused analysis.

We will briefly cover three types of methods for multilayer community detection: score-based
methods, model-based methods, and aggregation methods. This list is by no means exhaustive nor
are the types of methods meant to be canonical. Rather, we find them to be useful descriptors that
tend to have reasonably well understood advantages and disadvantages in the multilayer setting. The
main goal of aggregation methods is to find shared community structure by combining each slice of the
multilayer graph into a single-layer network. Score-based methods rely on maximizing fitness functions
based on an appropriate null model in order to detect communities. Finally, model-based methods rely
on statistical models and formal inference to discover latent structure. These three types of methods
are not necessarily disjointed from one another; for instance, many in the statistics community study
models that are very similar to the null models that are used in score-based methods.

25.4.1 SCORE-BASED METHODS
In the single-layer setting, score-based methods operate by optimizing a fitness function. Perhaps
the most popular method in this category is modularity maximization. Modularity for a single-layer
network is defined as follows:

Q = 1

2m

∑
i,j∈E

(
Aij − kikj

2m

)
δ(ci, cj), (25.17)

where m is the number of edges in the network, A is the adjacency matrix, ki is the degree of node i,
and ci is the community label of node i. Modularity is qualitatively a comparison with the structure of
the network to a random null model in which every edge between every node is equally likely [29].
Extensions of modularity, such as multiresolution variants [30], have been proposed in the literature.

In order to find community structure, we perform a maximization of Q over the community
assignments ci. Modularity maximization is typically performed using the Louvain algorithm or
its appropriate variants. Modifying these fitness functions for a multilayer setting can be done by
appropriately defining a null model [31], which takes into account intralayer connections and interlayer
connections accordingly, in which case we have the following multilayer modularity:

1

2μ

∑
i,j∈EM ,α,β∈[L]

⎡
⎣

⎛
⎝A(α)

ij − γα

k(α)
i k(α)

j

2mα

⎞
⎠ δ(α, β) + δ(i, j)Cjαβ

⎤
⎦ δ(ciα , cjβ ). (25.18)

This model only takes into account interlayer connections between the same nodes, and their
strengths are represented by Cjαβ . Further, each node in each layer has a different community label
ciα , and μ is an appropriate normalization term; see [31] for details.



25.4 CLUSTERING AND COMMUNITY DETECTION IN MULTILAYER NETWORKS 689

Another score-based method that allows for extensions to any single-layer fitness function involves
Pareto optimality [32]. In this case, we assume that each node has one community label for every layer,
so that ci = ciα = ciβ . In this method, we define a fitness function for each layer, f1(c), f2(c), . . . , fL(c),
that we wish to jointly minimize. We could, for instance, choose (negative) modularity on each layer
for our cost function. Alternatively, we could choose a similar cost function that arises when attempting
to reduce the intercommunity connections—this is called spectral clustering [33]. Once we define these
functions, we attempt to solve the multiobjective optimization problem:

ĉ = arg min
c

[f1(c), f2(c), . . . , fL(c)]. (25.19)

The objective is to find the Pareto optimal solution or solutions. A non-Pareto optimal solution c is
a solution such that there exists at least one other solution d such that, for all α ∈ [L], fα(d) ≤ fα(c),
and fβ (d) < fβ (c) for at least one layer β ∈ [L]. The set of Pareto points is the set of solutions for which
the above is not true. The special case of using the spectral clustering score function has been explored
in [32]. Other methods for finding approximate Pareto optimal points include evolutionary algorithms,
and Pareto methods have been used in anomaly detection [34] and image retrieval [35].

25.4.2 MODEL-BASED METHODS
Model-based methods assume a specified statistical model for the network, and then use statistical
methods for inference in order to discover the latent community structure. These models are often
variants of a ubiquitous single-layer model called the stochastic block model (SBM) [36]. This model
assumes that given the community structure, each edge is drawn independently as a Bernoulli random
variable according to a parameter pij, where i and j are the communities of the nodes for the edge that
is being drawn. Reference [37] generalize the SBM to have discrete types of layers and communities in
each type. References [38–40] explore different extensions of the single-layer SBM. The inference for
these models can be quite difficult from both a computational and statistical perspective. Work to find
provably computationally and statistically efficient algorithms in various model cases continues to be
an active field of research in the multilayer setting.

25.4.3 AGGREGATION-BASED METHODS
Aggregation-based methods attempt to find a single-layer network that holds information about the
communities in the multilayer network, and then utilize single-layer community detection methods.
Examples include [41–43]. A recent paper [7] utilizes spectral clustering and convex layer aggregation
to perform community detection. Specifically, given a layer weight vector w ∈ WL, where WL =
{w : wα ≥ 0,

∑L
α=1 wα = 1}, and a supra-adjacency matrix as defined in Section 25.2, we define the

weighted adjacency layer matrix and associated Laplacian as:

Aw =
L∑

α=1

wαA(α), Lw =
L∑

α=1

wαL(α). (25.20)

The authors in [7] discuss theoretical guarantees and limits of this method under different models,
and also provide a framework for model selection.



690 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

25.5 ESTIMATION OF DYNAMIC SOCIAL INTERACTION NETWORKS
With social media data, we are often faced with the situation where given some features over time,
we would like to infer an interaction graph among the agents. The network structure we consider is
a dynamic graph, which as discussed above can be thought of as a multilayer graph, with each layer
corresponding to a discrete time point or a series of discrete time points.

In the stationary case, under Gaussian assumptions, this problem is related to structural estimation
in Gaussian graphical models (GGM) [44–46]. The extension of GGM models to the time-varying
setting is an active research area [47,48]. It can be especially valuable for understanding the interaction
of multiple agents over time.

In order to capture these time-varying interactions on the network, we turn to using information
theoretic measures. Specifically, directed information (DI) will be used as a measure of influence among
these nodes and edges. DI was originally introduced as an extension of mutual information for a channel
that exhibits feedback. Consider X(T) = [X1, X2, . . . , XT ] and Y(T) = [Y1, Y2, . . . , YT ] to be features at
two respective nodes at time periods 1, . . . , T . Then, the DI between X(T) and Y(T) is defined as:

I(X(T) → Y(T)) =
T∑

i=1

I(X(i); Yi|Y(i−1)) (25.21)

= H(Y(T)) − H(Y(T)||X(T)), (25.22)

where H(Y(T)||X(T)) is defined as the causally conditioned entropy:

H(Y(T)||X(T)) =
T∑

i=1

= H(Yi|X(i), Y(i−1)). (25.23)

This measure has been utilized extensively in information theory [49] as well as fMRI and EEG
interaction studies [50–52], financial time-series analysis [53], and video indexing and retrieval [54]. It
has proven robust in detecting nonlinear relationships among objects of interest over time.

The disadvantage of DI, as with most information theoretic measures, is the lack of ability
to track changes over time. Most of these estimators assume stationary processes, and estimate
(either parametrically or nonparametrically) the distributions and subsequently the functionals of the
distributions. With this in mind, we introduce adaptive measures for directed information that allow for
changes in the distributions of interactions over time. The adaptivity is a two-stage process; we first
must allow for the parameters to be adaptable, and then also allow for the functional to adapt over time.
In [55], we use an exponentially weighted filter applied to the DI:

(ADIXt→Yt ) =
t∑

i=1

g(t, i)I(X(i); Yi|Y(i−1)), (25.24)

where g(t, i) = e(t−i)λct. Under (time-varying) Gaussian assumptions, we can simplify ADI in terms of
the varying covariance matrices:

(ADIXt→Yt ) = 1

2

t∑
i=1

g(t, i) log

∣∣�Yi|Yi−1

∣∣∣∣∣�Yi|Y(i−1),X(i−1)

∣∣∣ . (25.25)



25.6 APPLICATIONS 691

In this case, we must estimate these covariances, for instance using a dynamic covariance model
[56]. In other cases, such as the discrete case, other methods can be used to parametrically estimate the
appropriate distributions. After the estimation of ADI, we can define our dynamic interaction graph at
each time step with a directed weighted edge between each two nodes with nonzero ADI; functional
p-value transformations for thresholding can also be used [55,57].

25.6 APPLICATIONS
In the following sections, we will demonstrate the utility of multilayer network methods on real data.
First, we will examine a biological multilayer network to uncover topological roles in gene contact
networks. We will also describe a Twitter dataset, and use the dynamic interaction graph estimation
technique discussed in Section 25.5 to uncover novel interactions between US senators.

25.6.1 IDENTIFYING GENES ENCODING ALLELIC DIFFERENCES IN
GENE CONTACT NETWORKS
Allelic differences between two homologous chromosomes (corresponding to paternal and maternal
alleles) can affect the propensity of inheritance in humans [58]. Therefore, it is important to discriminate
the contribution of the paternal (Pat) and maternal (Mat) genomes to the functional diploid human
nucleome. In what follows, we perform multilayer network analysis to understand allelic differences at
the gene level.

Genome technologies such as genome-wide chromosome conformation capture (Hi-C) can be used
to measure the genomic structure [59–61]. Here, Hi-C evaluates long-range interactions between pairs
of segments delimited by specific cutting sites using spatially constrained ligation [59]. As a result,
we obtain a fragment read table, each row of which indicates a ligated pair of fragments from the
genome with the coordinates of both fragments. Based on that, we can construct two-dimensional Hi-C
contact maps at gene resolution [16,62]. We refer the reader to [62] for more details on data generation
and preprocessing. From the network point of view, this leads to a sequence of intergene interaction
networks over time (namely, cell cycle phases G1, S, and G2/M) under both Pat and Mat alleles. That
is, we obtain an allele-specific multilayer network where each cell cycle stage corresponds to a layer.
Our goal is to identify genes that yield significant contact differences between the Pat and Mat alleles.

We adopt the overlapping degree centrality and the multiplex participation coefficient to distinguish
Pat allele from Mat allele. We recall from Section 25.3.1 that the overlapping degree centrality
allows us to identify hubs from a network, and the multiplex participation coefficient can quantify
the participation of a gene to different cell cycle phases. In Fig. 25.3B, we present z-scores of genes’
overlapping degrees versus genes’ participation coefficients. As we can see, due to allelic differences,
there exist genes that play different topological roles on Pat and Mat alleles. Let zi denote the z-score of
the overlapping degree for gene i, and Pi denote its multiplex participation coefficient. We distinguish
hubs (interacting with many genes) from regular nodes if zi ≥ 2. Motivated by [6], we call genes
focused if contacts associated with them were concentrated on a single cell cycle phase, corresponding
to P1 < 1/3, and multiplex if their connected edges were homogeneously distributed across different
cell cycle phases, corresponding to P1 > 2/3. In the considered experiment, genes LEPREL1 and
CTSS are hubs at Pat allele while they become regular nodes at Mat allele. And gene KBTBD2 is a



692 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

Paternal Maternal

G1

S

G2/M

G1

S

G2/M

G1 S G2/M

P
at

er
na

l
M

at
er

na
l

Maternal

Z
-s

co
re

 o
f

ov
er

la
pp

in
g 

de
gr

ee

Paternal

Multiplex participation coeff.

Cluster 1
Cluster 2
Cluster 3
Cluster 4

(A)

(B)

(C)

FIG. 25.3

Allele-specific intergene contact networks over different cell cycle phases. (A) Temporal network with implicit
interlayer connections between genes at one cell cycle phase and their counterparts at other cell cycle phases.
(B) Overlapping degree versus multiplex participation coefficient: genes are divided into 4 clusters via
K-means. (C) Representative gene LEPREL1 with allelic differences in the topological structure.



25.6 APPLICATIONS 693

multiplex node at Pat allele, but it becomes a focused node at Mat allele. We show the allelic differences
in terms of contact differences of genes, e.g., LEPREL1 in Fig. 25.3C.

25.6.2 INTERACTION NETWORKS IN PRESIDENTIAL AND SENATORIAL DATASETS
In what follows, we demonstrate the method of interaction graph estimation on Twitter datasets, using
the measures described in Section 25.5. The dataset is of the members of the US Senate, from October
1, 2015 to January 13, 2016. In total, the dataset consists of 96,090 tweets. In [55], adaptive directed
information (ADI) was used to show time-varying interaction structure between the Twitter accounts.
This is an extension of that work. Fig. 25.4 displays updated versions of ADI graphs at consecutive
timesteps. Some senators are not displayed as they have no significant edges. We notice that there are
nodes of high activity such as RB (Rob Bishop) and MK (Marcy Kaptur). Further, we see significant
evolution in the network, with nodes adapting their behavior; this shows the method’s ability to estimate
changes in influence.

In Fig. 25.5 we plot the total degrees over time of ADI for a subset of senators. Total degree
for a particular node is defined as the out-degree (sum of outgoing ADI) minus the in-degree
(sum of incoming ADI). These senators were chosen to show examples of nodes that have high
average influence (large positive total degree), senators that receive influence approximately equal to
the amount they influence (small total degree), and senators that are recipients of influence on average

CMCM

JJJIJIJIJI

DDF

HHHH

LM

MM

TC
KA

TC

PMPM

RB
MK

JJDDJDJ

BM

TBTBTBTB

DS

SW

SC

BSB

JM

RB

CM

KGKG

RDRD

CMCM

JJIJIJIJIJI

PLL

DF

HHHH

MM

TC
KA

PMPM

MK

JJJDJDJD

TBTBTBTB

DS

SWW

SC

BSS

JM

RB

JCC

CM

KGKG

PR

RDRD

FIG. 25.4

ADI network of US Senators over two consecutive time periods from left to right. The width of the directed edge
as well as the shade is related to the magnitude of the DI, and the size of each node represents the volume of
tweets. We see a large connected component exhibiting mutual interaction, and significant evolution in the
network, with nodes adapting their behavior.



694 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

30

20

10

SenThomTillis
SenJackReed
TedCruz
CoryBooker
SenatorCardin
MartinHeinrich

To
ta

l d
eg

re
e 

of
 A

D
I

Total degree of  ADI for senators

0

−10

−20

−30

Date

2015-07

2015-08

2015-09

2015-10

2015-11

2015-12

FIG. 25.5

Total degree of ADI network of a subset of US Senators. These senators were chosen as representative of
senators that are high influencers (SenThomTillis, SenJackReed), average senators (SenatorCardin,
MartinHeinrich), and senators that are high receivers (TedCruz, CoryBooker). We note that there is large
variation over time of the total degree for each of these senators.

(large negative total degree). We note that in all cases ADI captures variation in degree over time. This
is compared to total degree computed using DI, which is not sensitive to these temporal effects.

25.7 CONCLUSIONS
Social network datasets are ubiquitous in today’s data landscape. We have discussed in this chapter
some methods for dealing with multilayer social networks, and some of the difference when analyzing
a single-layer network. After defining some formulations and representations of multilayer networks
and some common examples that one might encounter, we covered some measures of multilayer
network centrality. We also discussed a few types of methods for multilayer community detection,
including briefly discussing some benefits and drawbacks of each type. We finally covered the problem
of multilayer interaction graph estimation, with special focus on dynamic graphs. We then applied a
few of the techniques to two datasets, a biological dataset and finally a social network dataset.



REFERENCES 695

As the field of multilayer networks continue to grow, we expect that the methods that we have
summarized here will continue to evolve and improve, and that the framework of multilayer graphs
will become even more useful to the field of social network analysis in the years to come.

ACKNOWLEDGMENTS
This work was partially supported by the following grants: USAF FA8650-15-D-1845 and by ARO W911NF-
15-1-0479. We also would like to thank Prof. Indika Rajapakse at Department of Computational Medicine and
Bioinformatics, University of Michigan, who provided data on allele-specific Hi-C contact maps.

REFERENCES
[1] Chung FRK. Spectral graph theory, No. 92. American Mathematical Society; 1997.
[2] Wang D, Wang H, Zou X. Identifying key nodes in multilayer networks based on tensor decomposition.

Chaos: Interdisciplinary J Nonlinear Sci 2017;27(6):063108.
[3] Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer networks. J Complex

Netw 2014;2(3):203–71.
[4] Cozzo E, Kivelä M, De Domenico M, Solé-Ribalta A, Arenas A, Gómez S, et al. Structure of triadic relations

in multiplex networks. New J Phys 2015;17(7):073029.
[5] Sole-Ribalta A, De Domenico M, Kouvaris NE, Díaz-Guilera A, Gómez S, Arenas A. Spectral properties of

the Laplacian of multiplex networks. Phys Rev E 2013;88(3):032807.
[6] Battiston F, Nicosia V, Latora V. Structural measures for multiplex networks. Phys Rev E 2014;89(3):032804.
[7] Chen PY, Hero AO. Multilayer spectral graph clustering via convex layer aggregation: theory and algorithms.

IEEE Trans Signal Inf Process Netw 2017;3(3):553–67.
[8] De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, et al. Mathematical formulation

of multilayer networks. Phys Rev X 2013;3(4):041022.
[9] Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev 2009;51(3):455–500.

[10] Gauvin L, Panisson A, Cattuto C. Detecting the community structure and activity patterns of temporal
networks: a non-negative tensor factorization approach. PLOS One 2014;9(1):e86028.

[11] Sun Y, Yu Y, Han J. Ranking-based clustering of heterogeneous information networks with star network
schema. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and
data mining. ACM; 2009. p. 797–806.

[12] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things (IoT): a vision, architectural elements, and
future directions. Futur Gener Comput Syst 2013;29(7):1645–60.

[13] Cai D, Shao Z, He X, Yan X, Han J. Community mining from multi-relational networks. In: European
conference on principles of data mining and knowledge discovery. Springer; 2005. p. 445–452.

[14] Yuan Z, Zhao C, Wang WX, Di Z, Lai YC. Exact controllability of multiplex networks. New J Phys
2014;16(10):103036.

[15] Aleta A, Meloni S, Moreno Y. A multilayer perspective for the analysis of urban transportation systems.
Sci Rep 2017;7:44359.

[16] Liu S, Chen H, Ronquist S, Seaman L, Ceglia N, Meixner W, et al. Genome architecture leads a bifurcation
in cell identity. bioRxiv; 2017. p. 151555.

[17] Newman M. Networks: an introduction. Oxford University Press; 2010.
[18] Bertrand A, Moonen M. Seeing the bigger picture: how nodes can learn their place within a complex ad hoc

network topology. IEEE Signal Process Mag 2013;30(3):71–82.

http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0095


696 CHAPTER 25 MULTILAYER SOCIAL NETWORKS

[19] Bródka P, Kazienko P, Musiał K, Skibicki K. Analysis of neighbourhoods in multi-layered dynamic social
networks. Int J Comput Intell Syst 2012;5(3):582–96.

[20] Bródka P, Skibicki K, Kazienko P, Musiał K. A degree centrality in multi-layered social network.
In: International conference on computational aspects of social networks (CASoN). IEEE; 2011. p. 237–42.

[21] Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature 2005;433(7028):
895.

[22] Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM (JACM) 1999;46(5):604–32.
[23] Gleich DF. Pagerank beyond the web. SIAM Rev 2015;57(3):321–63.
[24] Taylor D, Myers SA, Clauset A, Porter MA, Mucha PJ. Eigenvector-based centrality measures for temporal

networks. Multiscale Model Simul 2017;15(1):537–74.
[25] Solá L, Romance M, Criado R, Flores J, García del Amo A, Boccaletti S. Eigenvector centrality of nodes in

multiplex networks. Chaos: Interdisciplinary J Nonlinear Sci 2013;23(3):033131.
[26] Kolda TG, Bader BW, Kenny JP. Higher-order web link analysis using multilinear algebra. In: Fifth IEEE

international conference on data mining; 2005. p. 8.
[27] Fortunato S, Hric D. Community detection in networks: a user guide. Phys Rep 2016;659:1–44.

https://doi.org/10.1016/j.physrep.2016.09.002.
[28] Mcpherson M, Smith-Lovin L, Cook J. Birds of a feather: homophily in social networks. Ann Rev Sociol

2001;27:415–44.
[29] Newman MEJ. Modularity and community structure in networks Proc Natl Acad Sci U S A 2006;103(23):

8577–82. https://doi.org/10.1073/pnas.0601602103.
[30] Xiang J, Hu XG, Zhang XY, Fan JF, Zeng XL, Fu GY, et al. Multi-resolution modularity methods and their

limitations in community detection. Eur Phys J B 2012;85(10). https://doi.org/10.1140/epjb/e2012-30301-2.
[31] Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP. Community structure in time-dependent, multi-

scale, and multiplex networks. Science 2010;328(5980):876–8. https://doi.org/10.1126/science.1184819.
[32] Oselio B, Kulesza A, Hero AO. Multi-layer graph analysis for dynamic social networks. IEEE J Sel Top

Signal Process 2014;8(4):514–23.
[33] Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 2000;22(8):

888–905. https://doi.org/10.1109/34.868688.
[34] Hsiao KJ, Xu KS, Calder J, Hero AO. Multicriteria similarity-based anomaly detection using Pareto depth

analysis. IEEE Trans Neural Netw Learn Syst 2016;27(6):1307–21. https://doi.org/10.1109/TNNLS.2015.
2466686.

[35] Hsiao KJ, Calder J, Hero AO. Pareto-depth for multiple-query image retrieval. IEEE Trans Image Process
2015;24(2):583–94. https://doi.org/10.1109/TIP.2014.2378057.

[36] Holland P, Laskey K, Leinhardt S. Stochastic blockmodels: first steps. Soc Networks 1983;5:109–37.
[37] Stanley N, Shai S, Taylor D, Mucha PJ. Clustering network layers with the strata multilayer stochastic block

model. IEEE Trans Network Sci Eng 2016;3(2):95–105. https://doi.org/10.1109/TNSE.2016.2537545.
[38] Peixoto TP. Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Phys Rev

E 2015;92:042807. https://doi.org/10.1103/PhysRevE.92.042807.
[39] De Bacco C, Power EA, Larremore DB, Moore C. Community detection, link prediction, and layer

interdependence in multilayer networks. Phys Rev E 2017;95:042317. https://doi.org/10.1103/PhysRevE.95.
042317.

[40] Han Q, Xu KS, Airoldi EM. Consistent estimation of dynamic and multi-layer block models. In: Proceedings
of the 32Nd international conference on international conference on machine learning. ICML’15, vol. 37.
JMLR.org; 2015. p. 1511–20. http://dl.acm.org/citation.cfm?id=3045118.3045279.

[41] De Domenico M, Nicosia V, Arenas A, Latora V. Structural reducibility of multilayer networks Nat Commun
2015;6:6864.

[42] Taylor D, Shai S, Stanley N, Mucha PJ. Enhanced detectability of community structure in multilayer
networks through layer aggregation. Phys Rev Lett 2016; 116:228301. https://doi.org/10.1103/PhysRevLett.
116.228301.

http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0200
http://dl.acm.org/citation.cfm?id=3045118.3045279
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0215


REFERENCES 697

[43] Berlingerio M, Coscia M, Giannotti F. Finding redundant and complementary communities in multidimen-
sional networks. In: Proceedings of the 20th ACM international conference on information and knowledge
management. CIKM ’11. New York, NY: ACM; 2011. p. 2181–4. https://doi.org/10.1145/2063576.2063921.

[44] Hero A, Rajaratnam B. Hub discovery in partial correlation graphs. IEEE Trans Inf Theory
2012;58(9):6064–78. https://doi.org/10.1109/TIT.2012.2200825.

[45] Meng Z, Eriksson B, Hero A. Learning latent variable Gaussian graphical models. In: Proceedings of the 31st
international conference on machine learning (ICML-14); 2014. p. 1269–77.

[46] Zhou S, Rütimann P, Xu M, Bühlmann P. High-dimensional covariance estimation based on Gaussian graph-
ical models. J Mach Learn Res 2011;12:2975–3026. http://dl.acm.org/citation.cfm?id=1953048.2078201.

[47] Kolar M, Song L, Ahmed A, Xing EP. Estimating time-varying networks. Ann Appl Stat 2010:94–123.
[48] Ahmed A, Xing EP. Recovering time-varying networks of dependencies in social and biological studies. Proc

Natl Acad Sci U S A 2009;106(29):11878–83.
[49] Jiao J, Permuter HH, Zhao L, Kim YH, Weissman T. Universal estimation of directed information. IEEE

Trans Inf Theory 2013;59(10):6220–42. https://doi.org/10.1109/TIT.2013.2267934.
[50] Mehta K, Kliewer J. Directed information measures for assessing perceived audio quality using EEG.

In: Conference record—Asilomar conference on signals, systems and computers; 2016. p. 123–7.
https://doi.org/10.1109/ACSSC.2015.7421096.

[51] Chen X, Syed Z, Hero A. EEG spatial decoding with shrinkage optimized directed information assessment.
In: ICASSP 2012 proceedings; 2012. p. 577–80. https://doi.org/10.1109/ICASSP.2012.6287945.

[52] Quinn C, Coleman TP, Kiyavash N, Hatsopoulos NG. Estimating the directed information to infer causal
relationships in ensemble neural spike train recordings. J Comput Neurosci 2011;30(1):17–44. https://doi.org/
10.1007/s10827-010-0247-2.

[53] Permuter HH, Kim YH, Weissman T. Interpretations of directed information in portfolio theory, data
compression, and hypothesis testing. IEEE Trans Inf Theory 2011;57(6):3248–59.

[54] Chen X, Hero AO, Savarese S. Multimodal video indexing and retrieval using directed information. IEEE
Trans Multimedia 2012;14(1):3–16. https://doi.org/10.1109/Tmm.2011.2167223.

[55] Oselio B, Hero A. Dynamic reconstruction of influence graphs with adaptive directed information.
In: Proceedings of IEEE international conference on acoustics, speech and signal processing. ICASSP; 2017.
p. 5935–9.

[56] Chen Z, Leng C. Dynamic covariance models. J Am Stat Assoc 2016;111(515):1196–207. https://doi.org/
10.1080/01621459.2015.1077712.

[57] Rao A, Hero AO, States DJ, Engel JD. Using directed information to build biologically relevant influence
networks. J Bioinform Comput Biol 2008;06(03):493–519. https://doi.org/10.1142/S0219720008003515.

[58] Leung D, Jung I, Rajagopal N, Schmitt A, Selvaraj S, Lee AY, et al. Integrative analysis of haplotype-resolved
epigenomes across human tissues. Nature 2015;518(7539):350.

[59] Lieberman-Aiden E, et al. Comprehensive mapping of long-range interactions reveals folding principles of
the human genome. Science 2009;326(5950):289–93. https://doi.org/10.1126/science.1181369.

[60] Chen H, Chen J, Muir LA, Ronquist S, Meixner W, Ljungman M, et al. Functional organization of the human
4D Nucleome. Proc Natl Acad Sci U S A 2015;112(26):8002–7.

[61] Boulos RE, Tremblay N, Arneodo A, Borgnat P, Audit B. Multi-scale structural community organisation of
the human genome. BMC Bioinformatics 2017;18(1):209.

[62] Chen H, Liu S, Seaman L, Najarian C, Wu W, Ljungman M, et al. Parental allele-specific genome architecture
and transcription during the cell cycle. bioRxiv; 2017. p. 201715.

http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0230
http://dl.acm.org/citation.cfm?id=1953048.2078201
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0280
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0285
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0290
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0295
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0300
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0305
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0310
http://refhub.elsevier.com/B978-0-12-813677-5.00025-0/rf0315


CHAPTER

26MULTIAGENT SYSTEMS:
LEARNING, STRATEGIC
BEHAVIOR, COOPERATION,
AND NETWORK FORMATION

Cem Tekin∗, Simpson Zhang†, Jie Xu‡, Mihaela van der Schaar§

Electrical and Electronics Engineering Department, Bilkent University, Ankara, Turkey∗ Economics Department,

University of California, Los Angeles, Los Angeles, CA, United States† Electrical and Computer Engineering

Department, University of Miami, Coral Gables, FL, United States‡ Electrical Engineering Department, University of

California, Los Angeles, Los Angeles, CA, United States§

26.1 LEARNING IN MULTIAGENT SYSTEMS: EXAMPLES AND CHALLENGES
26.1.1 CONTENT AGGREGATION
Proliferation of web-based multimedia content sources and servers led to a tremendous growth in the
volume and diversity of multimedia content that is consumed by a diverse set of users. This diversity
results in users exhibiting a vast range of preferences over the content, which often depends on the
context in which they consume the content. Such demand led to the emergence of multimedia content
aggregators (MCAs) [1,2] that gather and fuse content from numerous multimedia sources to provide
a ubiquitous content delivery experience for their users. It is thus essential for these systems to learn
the context-specific content preferences of their users using past feedback of their users on the content
that they provide. The context of a user includes information that is related to its content preferences,
including but not limited to the location information, search query, gender, age, and the type of the
device that the user is using (e.g., mobile phone, tablet, PC) to access the content [3]. Thus, the goal of
the MCA is to match its users with the most appropriate content by learning how users with different
contexts react to different contents. Such learning is necessary for continuous satisfaction of a user’s
request for content, which dynamically evolves over time depending on how the user’s context evolves.
This problem can be formulated as an online learning problem where the MCA learns the best content
for its users through exploring how its users react to different content.

In order to maximize the user satisfaction, an MCA needs to connect with other MCAs that have
access to other multimedia sources to find the right content for its users. This requires cooperation
between the MCAs: In addition to serving its own users, an MCA should also serve content to the users
of other MCAs when a request is made. Thus, each MCA has two types of users: direct users, who
visit the website of the MCA to search for content, and indirect users, who are users of another MCA

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00026-2
Copyright © 2018 Elsevier Inc. All rights reserved.

699



700 CHAPTER 26 MULTIAGENT SYSTEMS

that requests content from the MCA. The objective of an MCA is to maximize the number of positive
feedbacks (e.g., likes) given by its users (both direct and indirect). This objective can be achieved
simultaneously by all MCAs through a distributed learning method, where all MCAs learn online how
to match their current users with the right content (either by serving content from a directly connected
multimedia source or by requesting content from another MCA) [4]. Learning the right matching using
the past information collected from the users is not a trivial task because both the user and content
characteristics are dynamically changing over time, and the most suitable content for the user might be
located in the network of another MCA.

26.1.2 DISCOVERING EXPERTISE
An important multiagent learning problem is to assign arriving tasks to experts in a way that maximizes
the performance (e.g., quality, accuracy, timeliness) of task execution. In this problem, each agent
experiences inflows of tasks that needs to be completed. To achieve this, an agent needs to assign its
tasks to appropriate experts. However, the most suitable expert for a task might be located out of the
agent’s own expert network. In such a case, the agent needs to request help from the other agents to
match its task with the most suitable expert. In addition, the performance of an expert for a particular
task depends on the context of the task, and how well an expert executes a particular task is not known
in advance. Hence, the expertise of each expert in the system needs to be learned in a context-driven
and decentralized way.

An interesting example of the multiagent learning problem mentioned above is the medical expertise
discovery problem for diagnosis of patients with complex diseases. Developing new learning methods
turns out to be essential for this problem due to the fact that the standard clinical methods often fail
to provide an accurate diagnosis for these complex cases [5]. Fortunately, the widespread adoption of
electronic health records (EHRs) allows for the aggregation of patients’ records for use by an automated
clinical decision support system (CDSS) that supports matching patients with the right medical expert.
The decision-making process to match the patient with an expert of appropriate expertise should be
guided by the available information about the patient, which may include the patient’s past health
condition, past hospital visits, drug administrations, and genetic and social data. This vast amount
of information, also called the context, can greatly affect the diagnosis accuracy of the experts. For
instance, it is possible that the experts residing in the same institution have experience confined to a
specific population of patients that is admitted to the institution. In such a case, these experts will be
unable to form an accurate diagnosis for a patient that has a context that is very different than the
contexts observed from the other patients treated within the same institution. Therefore, it is essential
to discover the level of expertise (diagnosis accuracy) of the experts for each patient context in order to
match the patient with the right expert. Moreover, in order to further improve the diagnosis accuracy, the
patient’s institution may seek help from other institutions that might be better at handling this particular
patient context. For instance, a small clinic may only have a primary care physician and may not have
any specialists that are able to identify a particularly complex disease. Such a clinic may be able to
request information from an established hospital that has numerous specialists and CDSSs that can be
helpful in diagnosing the patient. In such a case, the control of the small clinic over the established
hospital is limited. While the clinic can request information, it cannot select the expert that the hospital
will assign to the case. Therefore, a learning mechanism that enables these institutions to cooperate by
preserving their autonomy and privacy is necessary.



26.1 LEARNING IN MULTIAGENT SYSTEMS: EXAMPLES AND CHALLENGES 701

Numerous challenges need to be addressed in designing such a learning mechanism: Each agent
should learn (i) whether it should rely on its own experts or request another agent to execute the task,
and (ii) if it relies on its own experts, which expert it should assign to maximize the performance of
the task execution. For instance, for the medical expertise discovery problem, the performance can
be defined as a function of the diagnosis accuracy and the cost of diagnosis (time, money, etc.). In
addition, learning should be continuous, i.e., the expert selection strategy needs to be updated every
time after the performance of the task execution is observed to get the most benefit from the newly
acquired information. Moreover, the contextual specializations of the agents and experts should be
learned from past data. Because the number of different contexts is vast, intelligent mechanisms that
aggregate information from similar past contexts should be developed.

26.1.3 POPULARITY FORECASTING
Social media has recently been used to provide situational awareness and inform predictions and deci-
sions in a variety of application domains, ranging from live or on-demand event broadcasting to security
and surveillance [6], health communication [7], disaster management [8], and economic forecasting
[9]. In all these applications, forecasting the popularity of the content shared in a social network
is vital due to a variety of reasons. For network and cloud service providers, accurate forecasting
facilitates prompt and adequate reservation of computation, storage, and bandwidth resources [10],
thereby ensuring smooth and robust content delivery at low cost. For advertisers, accurate and timely
popularity predictions provide a good revenue indicator, thereby enabling targeted ads to be composed
for specific videos and viewer demographics. For content producers and contributors, attracting a high
number of views is paramount for attracting potential revenue through micropayment mechanisms.

While popularity prediction is a long-lasting research topic [11–14], understanding how social
networks affect the popularity of the media content, then using this understanding to make better
forecasts poses significant new challenges. Conventional prediction tools have mostly relied on the
history of the past view counts, which worked well when the popularity solely depended on the
inherent attractiveness of the content and the recipients were generally passive. In contrast, social
media users are proactive in terms of the content they watch and are heavily influenced by their
social media interactions; for instance, the recipient of a certain media content may further forward
it or not, depending on not only its attractiveness but also the situational and contextual conditions in
which this content was generated and propagated through social media [15]. For example, the latest
measurement on Twitter’s Vine, a highly popular short mobile video sharing service, has suggested that
the popularity of a short video indeed depends less on the content itself, but more on the contributor’s
position in the social network [16]. Hence, being situation-aware, e.g., considering the content
initiator’s information and the friendship network of the sharers, can clearly improve the accuracy
of the popularity forecasts. However, critical new questions need to be answered: which situational
information extracted from social media should be used, how to deal with dynamically changing and
evolving situational information, and how to use this information efficiently to improve the forecasts?

As social media becomes increasingly more ubiquitous and influential, the video propagation
patterns and users’ sharing behavior dynamically change and evolve as well. Offline prediction tools
[11,17–19] depend on specific training datasets, which may be biased or outdated, and hence may not
accurately capture the real-world propagation patterns promoted by social media. Moreover, popularity
forecasting is a multistage rather than a single-stage task because each video may be propagated through



702 CHAPTER 26 MULTIAGENT SYSTEMS

a cascaded social network for a relatively long time and thus, the forecast can be made at any time while
the video is being propagated. A fast prediction has important economic and technological benefits;
however, too early a prediction may lead to a low accuracy that is less useful or even damaging (e.g.,
investment in videos that will not actually become popular). The timeliness of the prediction has yet
to be considered in existing works that solely focus on maximizing the accuracy. Hence, developing a
systematic methodology for accurate and timely popularity forecasting is essential.

26.1.4 OVERVIEW OF THE CHAPTER
A multiagent learning method that promotes cooperation and enables formation of cooperation
networks between the agents is described in Section 26.2. How decentralized agents learn in a system
that provides global or group feedback about the set of actions taken by the agents is discussed in
Section 26.3. Learning and strategic network formation in networks with incomplete information is
reviewed in Section 26.4. Concluding remarks are given in Section 26.5.

26.1.5 NOTATION
Unless otherwise stated, sets are denoted using calligraphic letters and vectors are denoted using
boldface letters. N denotes the set of agents, Ni denotes the set of agents excluding agent i, Fi

denotes the set of actions of agent i, F denotes the set of all actions, and X denotes the d-dimensional
context set.

26.2 COOPERATIVE CONTEXTUAL BANDITS
In this section, we consider a multiagent decision-making and learning problem in which a set of
cooperative and decentralized agents N = {1, 2, . . . , N} help each other by selecting actions on behalf
of each other to maximize their long-term rewards. In this model, each agent sequentially observes
over time side information (context) about the environment that determines the expected rewards of the
actions. Then, the agent decides to take an action or asks another agent to take an action on its behalf.
If the agent chooses the latter option, then it is called the requesting agent and the agent that it asks
to is called the serving agent. After this interaction both the requesting agent and the serving agent
observe the random reward of the selected action, but the requesting agent may not observe the action
selected by the serving agent. Such a situation happens in many real-world applications including real-
time stream mining, where the agents may not be willing to reveal the type of classifiers they use to
make predictions; network security, where agents may not be willing to reveal the number and type
of the security protocols they use; and multimedia content aggregation, where an MCA does not have
direct access to the content that is outside its content network. Both the requesting and serving agents
benefit from this cooperation in the following way: the requesting agent makes use of the actions of
the serving agent to obtain a high reward while the serving agent gets to know more about the rewards
of its actions by taking an action for the requesting agent. For instance, in medical expertise discovery,
the requesting institution benefits from the expertise of the expert of the serving institution by getting a
more accurate diagnosis for its patient while the serving institution benefits from the experience gained
through serving the other institution’s patient, which may help it to match its patients with better experts
in the future.



26.2 COOPERATIVE CONTEXTUAL BANDITS 703

26.2.1 MODELING MULTIAGENT LEARNING USING COOPERATIVE
CONTEXTUAL BANDITS
The set of serving agents of agent i is Ni := N −{i}, the set of actions of agent i is Fi, and the set of all
actions is F := ∪i∈NFi. The set of choices of agent i is given as Ki := Ni ∪ Fi, which includes both
its actions and its serving agents. Cardinalities of the sets Ni, Fi, and Ki are denoted by Ni, Fi, and Ki,
respectively. An agent’s action set is its private information. All agents know an upper bound on the
number of actions that each agent has, which is denoted by Fmax. The system operates in discrete time
where the following sequence of events take place at time t for all agents i ∈ N :

• A d-dimensional context xi(t) arrives to agent i.
• Agent i selects a choice ai(t) ∈ Ki.
• If ai(t) ∈ Fi agent i takes action ai(t).
• Else if ai(t) ∈ Ni, it sends xi(t) to agent ai(t), agent ai(t) takes an action in Fai(t) for agent i, and

observes its reward.
• Agent i observes and collects the reward of the taken action.

The context set, denoted by X , is assumed to be a bounded d-dimensional subset of the
d-dimensional Euclidean space, which without loss of generality can be taken as [0, 1]d. The expected
reward of action f for context x is πf (x). Neither πf (x) nor its distribution is known by any of the agents.
We impose a natural assumption that relates the expected rewards of an action under different contexts,
which is called the similarity assumption.

Similarity Assumption: ∃L > 0, α > 0 such that ∀f ∈ F , ∀x, x′ ∈ X
|πf (x) − πf (x′)| ≤ L||x − x′||α , (26.1)

where L and α determine the strength of similarity between the expected rewards of an action under two
different contexts. It is assumed that this similarity information is known by the agents. For instance,
in real-time stream mining the classification accuracy of a classifier may be similar for data streams
with similar metadata, or in the medical expert assignment problem, the accuracy of the diagnosis of
an expert may be similar for patients with similar features. While variants of the similarity measure
defined in Eq. (26.1) are commonly used in the online learning literature [20–22], there are many other
similarity measures that can be used, including similarity measures defined for categorical or mixed
contexts [23,24].

In this setup, the goal of each agent is to maximize its total expected reward. Thus, each agent needs
to learn the best choices for its contexts. However, the agents will not be able to achieve the maximum
possible total expected reward due to the fact that they do not know the reward distributions of the
actions beforehand. This loss due to learning is captured using the notion of regret, which measures
how bad an agent performs with respect to an oracle that knows the set of all actions and their expected
rewards. The set of the best actions of agent i for context x is f ∗

i (x) := arg maxf ∈Fi
πf (x). Hence, the

maximum expected reward of agent i for context x is πi(x) = πf ∗
i (x)(x).1,2 Based on this, the set of the

1With an abuse of notation, for a set g for which πh(x) = πl(x) for all h and l in g, we use πg(x) to denote the expected reward
of an element of g.
2We also use k∗

i (x), f ∗
i (x), and f ∗(x) to refer to an element of the corresponding set when the corresponding set contains more

than one element.



704 CHAPTER 26 MULTIAGENT SYSTEMS

best choices of agent i for context x is given as k∗
i (x) := arg maxk∈Ki

πk(x). On the other hand, the set
of the best actions for context x is f ∗(x) := arg maxf ∈Fπf (x). Note that the expected reward of the best
choice of agent i and the best action can be different when k∗

i (x) ∈ Ni. This is due to the fact that the
expected reward of k∗

i (x) depends on the action chosen by agent k∗
i (x). However, the maximum expected

reward of agent k∗
i (x) is equal to the expected reward of f ∗(x) in this case. Based on the definitions given

above, the regret of agent i by time T is given as

Ri(T) :=
T∑

t=1

πk∗
i (xi(t))(xi(t)) − E

⎡
⎣ T∑

t=1

ri
ai(t)(xi(t), t)

⎤
⎦ , (26.2)

where ri
ai(t)(xi(t), t) denotes the random reward of choice ai(t) of agent i at time t. Note that ri

ai(t)(xi(t), t)
is a sample obtained from the reward distribution of action ai(t) when ai(t) ∈ Fi, and a sample obtained
from the reward distribution of the action selected by agent ai(t) when ai(t) ∈ Ni.

The regret has two important properties: (i) it is nondecreasing in T , (ii) Ri(T)/T gives the difference
between the average rewards collected by the oracle and agent i. Therefore, when Ri(T) = O(Tγ ) for
γ < 1 (i.e., the regret is sublinear), agent i is average reward optimal.

26.2.2 A DISTRIBUTED LEARNING ALGORITHM FOR COOPERATIVE
CONTEXTUAL BANDITS
The online learning method used in cooperative contextual bandits consists of three essential com-
ponents: a component that enables learning the expected rewards of the choices together for similar
contexts, a component that enables agent i to learn the expected rewards of its actions and the maximum
expected rewards of the set of serving agents accurately, and a component that enables agent i to
maximize its total reward using what it had learned about its choices.

Because there are many contexts, estimating the expected reward of a choice for each context is
in general infeasible. As a simple example, consider the case when agent i observes xi(t) for the first
time, but has observed contexts that lie within the ε neighborhood of xi(t) many times. Without using
the observations from the ε neighborhood of xi(t), the agent cannot do better than random guessing. On
the other hand, the agent can get sufficiently accurate estimates of the expected rewards of its choices
for context xi(t) by using the sample mean rewards of the choices calculated using the contexts within
the ε neighborhood of xi(t). Thus, it is essential to form a partition of the context set X that is formed
by sets that include similar contexts, and estimate the expected rewards of the choices for each context
using the past observations of actions and rewards from the set to which the context belongs.

Two types of error must be taken into account when forming such a partition. The first type, called
dissimilarity error, is due to the variation of the expected rewards of the contexts that lie in each set of
the partition. For each set, this variation can be bounded using the diameter, i.e., the maximum distance
between two contexts, of the set and the similarity assumption. The second type, called sample size
error, is due to the limited number of random reward observations that are used to estimate the expected
choice rewards. These two errors conflict with each other. For instance, decreasing the diameter of a
set to reduce its dissimilarity error generally increases its sample size error because it corresponds to
decreasing the number of past observations within the set. On the other hand, increasing the diameter of
a set to reduce its sample size error generally increases the dissimilarity error. Thus, a balance between
these two types of errors must be achieved in order to minimize the regret.



26.2 COOPERATIVE CONTEXTUAL BANDITS 705

Time t

X X X

FIG. 26.1

An illustration of the contextual zooming method.

A natural way to achieve this balance is to use a technique called contextual zooming [21]. The idea
is to adaptively form the partition of the context set based on the contexts that have arrived so far in
a way that balances the dissimilarity error and the sample size error in each set of the partition. This
implies that the partition will include many small sets concentrated around the region of the context
set with high number context arrivals. An illustration of the contextual zooming method is shown in
Fig. 26.1. Contextual zooming can be achieved by the following mechanism: Initially, agent i starts with
partition Pi(1) = {X }, which only contains a single set. Let Pi(t) denote agent i’s partition at time t,
which consists of d-dimensional hypercubes with edge lengths coming from the set {20, 2−1, 2−2, . . .}.
A hypercube with edge length 2−l is called a level-l hypercube, and for p ∈ Pi(t), l(p) denotes its
level. Also let Ti

p(t) denote the number of contexts arrivals to p ∈ Pi(t) by time t, and pi(t) denote the
hypercube in Pi(t) that contains context xi(t). Pi(t + 1) is formed as follows:

• If Ti
pi(t)(t) ≥ 2ρl(pi(t)), where ρ > 0 is a scale parameter, divide pi(t) into 2d level l(pi(t)) + 1

hypercubes. Pi(t + 1) will contain all the sets in Pi(t) except pi(t) and will also contain the newly
created level l(pi(t)) + 1 hypercubes.

• Else Pi(t + 1) will be the same as Pi(t).

The above procedure allows the lifetime of a hypercube to be an exponential function of its level. This
bounds the number of hypercubes crated by time T as a sublinear function of T , and allows the agent
to incur a small amount of regret in each hypercube such that when summed up over all hypercubes it
still remains sublinear in T .

Next, we discuss how an agent learns the expected rewards of its choices accurately and uses them
to maximize its total reward. We would like to emphasize that the agents cooperate with each other
and obey the rules of the learning algorithm to choose actions on behalf of the other agents. Hence,
cooperative contextual bandits do not consider strategic interactions between selfish agents. The agent
maximizes its total reward by a three-phased mechanism that consists of training, exploration, and
exploitation phases. For each context that arrives to agent i at time t, it can only be in one of these
phases. Each phase is described below:

• Training phase: In this phase agent i trains its serving agents in Ni. Training is done by choosing
an undertrained agent in Ni as the serving agent. This agent j will receive xi(t), select an action
bj,i(t) ∈ Fj, and observe its reward. As a result, it will update the estimated expected reward for its
action bj,i(t). However, agent i is not going to update the estimated maximum reward for agent j



706 CHAPTER 26 MULTIAGENT SYSTEMS

because the action selected by agent j is probably not its best action due to the fact that agent j is
undertrained. The set of undertrained agents for agent i is given as

N ut
i (t) :=

{
j ∈ Ni : Ntr,i

j,pi(t)(t) ≤ Dut(pi(t), t)
}

,

where Ntr,i
j,pi(t)(t) denotes the number of times agent i trained agent j for contexts in pi(t), and

Dut(pi(t), t) is a control function that denotes the sufficient amount of trainings by time t that will
enable agent j to form accurate estimates of the expected rewards of its own actions for pi(t).

• Exploration phase: In this phase agent i selects an underexplored choice in Ki, and uses the
reward it obtains from its selection to update the estimated expected reward of its choice. Contrary
to the training phase, in the exploration phase the action chosen by the serving agent is its best
action with a high probability. The set of underexplored choices of agent i is given as

N ue
i (t) :=

{
j ∈ Ki : Nue,i

j,pi(t)(t) ≤ Due(pi(t), t)
}

,

where Nue,i
j,pi(t)(t) denotes the number of times choice j is selected by agent i except selections in the

training phases of agent i for contexts in pi(t), by time t, and Due(pi(t), t) is a control function that
denotes the sufficient amount of explorations by time t that will enable agent i to form accurate
estimates of the expected rewards of its choices for pi(t).

• Exploitation phase: In this phase agent i selects the choice with the highest estimated expected
reward in order to maximize its long-term reward.

When agent i is selecting a choice for its own context at time t, it can be in three of the above phases.
If there are any underexplored actions of agent i, it will be in the exploration phase. Else if there are
any undertrained agents of agent i, it will be in the training phase. Else if there are any underexplored
agents of agent i, it will be in the exploration phase. Else, it will be in the exploitation phase. On the
other hand, as a serving agent, agent i can either be in the exploration or the exploitation phase because
it selects an action from Fi. Due to the heterogeneity of the context arrivals, usually an agent cannot
learn the expected rewards of its actions well for all possible contexts. However, cooperation enables
the agents to learn the expected rewards of their actions for contexts that are observed frequently by the
other agents. An agent can benefit from this learning in the future if the future contexts are not among
contexts that are frequently observed by the agent thus far. On the other hand, the requesting agent gets
an immediate benefit in terms of the reward through using the actions of the serving agents.

Next, we provide a result on the performance of the distributed learning algorithm discussed in this
section [20].

Theorem 26.1. Consider the distributed learning algorithm for the cooperative contextual bandit
problem. Assuming that the rewards of the actions lie in [0, 1], there exists a set of parameters ρ,
Dut(p, t) and Due(p, t) for any p such that

Ri(T) = Õ(T
2α+d
3α+d )

for any sequence of context arrivals xi(1), xi(2), . . . , xi(T) and for all i ∈ N . �
This theorem shows that the regret of agent i is sublinear in time. The actions selected in training and

exploration phases can be suboptimal. Therefore, the number of training and exploration phases must
be sublinear in order to achieve sublinear regret. This implies that the agent exploits for the majority



26.2 COOPERATIVE CONTEXTUAL BANDITS 707

of the time when T is large. The choices selected by the agent when it exploits form its cooperation
network.

The ideal cooperation network of agent i can be computed if πk(x) is perfectly known ∀x ∈ X and
∀k ∈ Ki. The region of optimality of a choice k ∈ Ki can be defined as X ∗

i,k := {x ∈ X : k ∈ k∗
i (x)}.

X ∗
i,k = ∅, implies that choice k is never optimal for agent i. The ideal cooperation network of agent

i consists of other agents that are optimal choices for agent i for at least one context in X . Hence,
the ideal cooperation network of agent i is given as N ∗

i := {k ∈ Ni : X ∗
i,k �= ∅}. Although an agent

might be in the ideal cooperation network of agent i, it may not be optimal for a particular realization
xi := {xi(1), . . . , xi(T)} of agent i’s contexts. We can define the realization-specific ideal cooperation
network of agent i as the set of other agents who are optimal choices for agent i for at least one context
in xi(1), . . . , xi(T), i.e., R∗

i (xi) := {k ∈ Ni : k ∈ k∗
i (x) for some x ∈ {xi(1), . . . , xi(T)}}. Obviously, we

have R∗
i (xi) ⊆ N ∗

i .
On the other hand, the real cooperation network of agent i at time t consists of other agents that it

is willing to cooperate with based on their estimated expected rewards. Let π̂ i
k,p(t) denote the estimated

expected reward of choice k for contexts in p ∈ Pi(t) formed by agent i at time t. This can be taken as
the sample mean of the rewards observed for choice k from contexts in p excluding the observations
from the training phases of agent i. Based on this, the set of estimated optimal choices of agent i at
time t for p ∈ Pi(t) is given as k̂∗

i,p(t) := arg maxk∈Ki
π̂ i

k,p(t). Note that ai(t) ∈ k̂∗
i,p(t) when agent i

exploits at time t. Hence, the real cooperation network of agent i at time t is given as N̂ ∗
i (t) := {k ∈

Ni : k ∈ k̂∗
i,p(t) for some p ∈ Pi(t)}. The real cooperation network is expected to converge to the ideal

cooperation network as the estimated expected rewards of the choices for all the contexts converge to
the true expected rewards. Moreover, the realized ideal cooperation network is expected to converge to
the ideal cooperation network when for all k ∈ N ∗

i , there exists at least one xi(t) in {xi(1), . . . , xi(T)}
such that xi(t) ∈ X ∗

i,k.

26.2.3 LEARNING TO COOPERATE WHEN COOPERATION IS COSTLY
Thus far we assumed that agents can cooperate with each other freely without incurring any costs. An
interesting extension is to force the requesting agent i to incur a penalty, denoted by di

k > 0 every time
it chooses a serving agent k. For instance, in a network security application the agents will correspond
to autonomous systems (ASs) that collaborate with each other to detect cyberattacks. This requires
exchanging network traffic information between the ASs, which can incur both communication cost
and cost related to using the resources of the serving AS to detect the cyberattack. Another interesting
example is expert selection for medical diagnosis described in Section 26.1.2. In this example, actions
correspond to medical experts that will diagnose a patient and agents correspond to clinics. It is possible
that a clinic refers the patient to another clinic, and the serving clinic charges the requesting clinic for the
service. A similar situation may also arise in the multimedia content aggregation application described
in Section 26.1.1.

There are numerous ways to tackle cooperation costs. A straightforward way is to define the
expected payoff of each choice k ∈ Ni for context x as πk(x) − γ di

k, where γ > 0 is a weight that
defines the tradeoff between the reward and the cost. Then, agent i can run the distributed learning
algorithm described in Section 26.2.2 by using estimated expected payoffs for the choices k ∈ Ni, i.e.,
μ̂i

k,p(t) := π̂ i
k,p(t) − γ di

k. Because this modification also changes the oracle, the definition of the regret



708 CHAPTER 26 MULTIAGENT SYSTEMS

in Eq. (26.2) and the regret bound in Theorem 26.1 remains unchanged. However, the ideal and real
cooperation networks of the agents will be affected by the introduction of cooperation costs. When
the cooperation costs are high, agents will learn to cooperate with the other agents only if the expected
payoff from the cooperation exceeds the expected reward that the agent can obtain from its own actions.
This implies that the region of optimality for a choice k ∈ Ni is expected to shrink from X ∗

i,k to ∅ as the

cooperation cost di
k increases from 0 to ∞.

The cooperation networks that are formed by the agents can vary based on how the tradeoff between
the reward and cooperation cost is captured. Another way to capture this tradeoff is to consider
cooperative contextual bandits as a multiobjective online learning problem. Then, the reward can be
taken as one objective and the cost can be taken as the other objective.

In the multiobjective online learning problem, the distributed learning algorithm can be modified to
learn the Pareto front. In this case, it is natural to define the regret as the sum of the distances of the
actions chosen by the agents to the Pareto front [25]. In addition, since the Pareto front depends on the
context, the contextual zooming method should be adapted to learn the choices that are in the Pareto
front [26].

Another alternative is to consider specific subsets of the Pareto front. One interesting case is when
one objective dominates the other objective. For instance, the agents may want to select choices that
maximize their reward, and if there are multiple such choices, they may also want to select choices
that minimize the cost among all choices that maximize the reward. In this case, the reward dominates
the cost, and hence, the cooperative contextual bandit problem can be modeled as a multiobjective
contextual bandit problem with a dominant objective [27].

26.3 DISTRIBUTED LEARNING WITH GLOBAL OR GROUP FEEDBACK
In this section, we consider a multiagent decision-making and learning problem in which
a set of distributed agents N = {1, 2, . . . , N} select actions from their own action sets
An, with the cardinality of the action set denoted by Kn = |An|, ∀n ∈ N in order to maximize the
overall system reward r(a). The system reward depends on the joint action a = (a1, . . . , aN) of all
agents but agents do not know a priori how their actions influence the overall system reward, or how
their influence may change dynamically over time. Each time, agents can only observe/measure the
overall system performance and hence, they only obtain global feedback that depends on the joint
actions of all agents, yet the observations of the global feedback may be subject to individual errors.
That is, each agent n privately observes rn

t = rt + εn
t , equal to the global reward rt plus a random

noise term εn
t . The fact that individualized feedback is missing, communication is not possible, and

the global feedback is noisy makes the development of efficient learning algorithms that maximize the
joint reward very challenging. Fig. 26.2 portrays distributed cooperative learning with individualized
feedback and global feedback with individual noises.

The considered problem has many application scenarios. For instance, in a stream-mining system
that uses multiple classifiers for event detection in video streams, individual classifiers select operating
points to classify specific objects or actions of interest, the results of which are synthesized to derive
an event classification result (see Fig. 26.3). If the global feedback is only about whether the event
classification is correct, individualized feedback about individual contribution is not available. For
another instance, in a cooperative communication system, a set of wireless nodes forwards signals of



26.3 DISTRIBUTED LEARNING WITH GLOBAL OR GROUP FEEDBACK 709

Select action 
from A1 

Select action 
from AN

+ +

++

Noise

Aggregate

. . .

Overall reward

Individual 
reward

Noise
Learner 1 Learner N

Select action 
from  A1

Select action
from  AN

Noise

Aggregate

. . .

Overall reward

Individual 
reward

Noise
Learner 1 Learner N

(A)

(B)

FIG. 26.2

(A) Individualized feedback; (B) Global feedback.

FIG. 26.3

Classifier chain for real-time stream mining.



710 CHAPTER 26 MULTIAGENT SYSTEMS

the same message copy to a destination node through noisy wireless channels. Each forwarding node
selects its transmission scheme (e.g., power level) and the destination combines the forwarded signals
to decode the original message using, e.g., a maximal ratio combination scheme. Because the message
is only decoded using the combined signal but not individual signals, only a global reward depending
on the joint effort of the forwarding nodes is available but not the nodes’ individual contributions.

The rewards in the considered problem are highly correlated among agents and hence, it is important
to design algorithms that take this into account. An interesting literature along this line is combinatorial
bandit [28], in which the goal is to exploit the correlations between the rewards. In this problem,
the agent chooses an action vector and receives a reward that depends on some linear or nonlinear
combination of the individual rewards of the actions. In a combinatorial bandit problem the set of
arms grows exponentially with the dimension of the action vector; thus standard bandit policies such
as the one in [29] will have a large regret. The idea in these problems is to exploit the correlations
between the rewards of different arms to improve the learning rate and thereby reduce the regret [30,31].
Most of the works on combinatorial bandits assume that the expected reward of an arm is a linear
function of the chosen actions for that arm. For example, [32] assumes that after an action vector is
selected, the individual rewards for each nonzero element of the action vector are revealed. Another
work [33] considers combinatorial bandit problems with more general reward functions, defines the
approximation regret, and shows that it grows logarithmically in time. The approximation regret
compares the performance of the learning algorithm with an oracle that acts approximately optimally
while we compare our algorithm with the optimal policy. This work also assumes that individual
observations are available. However, in this paper we assume that only global feedback is available
and individuals cannot observe each other’s actions. Agents have to learn their optimal actions based
only on the feedback about the overall reward. Other bandit problems that use linear reward models
are studied in [34–36]. These consider the case where only the overall reward of the action profile is
revealed but not the individual rewards of each action. However, our analysis is not restricted to linear
reward models, but instead are much more general.

Another line of work considers online optimization problems where the goal is to minimize the
loss due to learning the optimal vector of actions that maximizes the expected reward function. These
works show sublinear (but greater than logarithmic) regret bounds for linear or submodular expected
reward functions when the rewards are generated by an adversary to minimize the gain of the agent.
The difference of our work is that we consider a more general reward function and prove logarithmic
regret bounds. Recently, distributed bandit algorithms were developed in [37] in network settings. In
that work, agents have the same set of arms with the same unknown distributions and are allowed to
communicate with neighbors to share their observed rewards. In contrast, agents in our problem have
distinct sets of arms, the reward depends on the joint action of agents, and agents do not communicate
at run-time.

26.3.1 ACHIEVING COOPERATION THROUGH GLOBAL FEEDBACK
We propose multiagent learning algorithms that enable the various agents to learn how to make
decisions to maximize the overall system reward without exchanging information with other agents. In
order to quantify the loss due to learning and operating in an unknown environment, we define the regret
of an online learning algorithm for the set of agents as the difference between the expected reward of
the best joint action of all agents and the expected reward of the algorithm used by the agents. We prove
that, if the global feedback is received without errors by the agents, then all deterministic algorithms can



26.3 DISTRIBUTED LEARNING WITH GLOBAL OR GROUP FEEDBACK 711

be implemented in a distributed manner without message exchanges. This implies that the distributed
nature of the system does not introduce any performance loss compared with a centralized system
because there exist deterministic algorithms that are optimal. Subsequently, we show that if agents
receive the global feedback with different (individual) errors, existing deterministic algorithms may
break down and hence, there is a need for novel distributed cooperative algorithms that are robust to
such errors. For this, we develop a class of algorithms that achieves a logarithmic upper bound on the
regret, implying that the average reward converges to the optimal average reward. The upper bound on
regret also gives a lower bound on the convergence rate to the optimal average reward.

We start with a basic distributed cooperative learning (DisCo) algorithm without making any
additional assumptions on the reward structure. The DisCo algorithm is divided into phases: exploration
and exploitation. Each agent using DisCo will alternate between these two phases in a way that at any
time t, either all agents are exploring or all are exploiting. In the exploration phase, each agent selects an
arm only to learn about the effects on the expected reward, without considering reward maximization,
and updates the reward estimates of the arm it selected. In the exploitation phase, each agent exploits the
best (estimated) arm to maximize the overall reward. There is a deterministic control function ζ (t) of
the form ζ (t) = A ln t commonly known by all agents. This function will be designed and determined
before run-time, and thus is an input of the algorithm. Each exploration phase has a fixed length of
L1 = ∏N

n=1 Kn slots, equal to the total number of joint arms. Each agent maintains two counters.
The first counter γ (t) records the number of exploration phases that they have experienced by time
slot t. The second counter E(t) ∈ {0, 1, . . . , L1} represents whether the current slot is an exploration
slot and, if yes, which relative position it is at. Specifically, E(t) = 0 means that the current slot is an
exploitation slot; E(t) > 0 means that the current slot is the E(t)th slot in the current exploration phase.
Both counters are initialized to zero: γ (0) = 0, E(0) = 0. Each agent n maintains L1 sample mean
reward estimates r̄n(l) ∀l ∈ {1, . . . , L1}, one for each relative slot position in an exploration phase. Let
bn

l denote the arm selected by agent n in the lth position in an exploration phase. These reward estimates
are initialized to be r̄n(l) = 0 and will be updated over time using the realized rewards. Whether a new
slot t is an exploration slot or an exploitation slot will be determined by the values of ζ (t), γ (t) and E(t).
At the beginning of each slot t, the agents first check the counter E(t) to see whether they are still in
the exploration phase: if E(t) > 0, then the slot is an exploration slot; if E(t) = 0, whether the slot is
an exploration slot or an exploitation slot will then be determined by γ (t) and ζ (t). If γ (t) ≤ ζ (t), then
the agents start a new exploration phase, and at this point E(t) is set to be E(t) = 1. If γ (t) > ζ (t), then
the slot is an exploitation slot. At the end of each exploration slot, counter E(t + 1) for the next slot is
updated to be E(t+1) ← mod(E(t)+1, L1 +1). When E(t+1) = 0, the current exploration phase ends,
and hence the counter γ (t +1) for the next slot is updated to be γ (t +1) ← γ (t)+1. Fig. 26.4 provides
the flowchart of the phase transition for the algorithm. The algorithm prescribes different actions for
agents in different slots and in different phases.

(i) Exploration phase: As is clear from above, an exploration phase consists of L1 slots. In each
phase, the agents select their own arms in such a way that every joint arm is selected exactly once.
This is possible without communication if agents agree on a selection order for the joint arms before
run-time. At the end of each exploration slot (the lth slot), r̄n(l) is updated to

r̄n(l) ← (γ (t) − 1)r̄n(l) + rn
t

γ (t)
. (26.3)

Note that the observed reward realization rn
t at time t may be different for different agents due to

errors.



712 CHAPTER 26 MULTIAGENT SYSTEMS

Exploration

Update 

Update 

Exploitation

Yes

No

No Yes

Yes

No

FIG. 26.4

Flowchart of the phase transition.

(ii) Exploitation phase: Each exploitation phase has a variable length that depends on the
control function ζ (t) and counter γ (t). At each exploitation slot t, each agent n selects an = {bn

l∗ :
l∗ = arg max

l
r̄n(l)}. That is, each agent n selects the arm with the best reward estimate among r̄n(l),

∀l ∈ {1, . . . , L1}. Note that in the exploitation slots, an agent n does not need to know other agents’
selected arms. Because agents have individual observation noises, it is also possible that l∗ is different
for different agents.

Regret of the DisCo algorithm is bounded in the following theorem [38].

Theorem 26.2. If ζ (t) = A ln t with A > 2
(

D
�min

)2
, then the expected regret of the DisCo algorithm

after any number T periods is bounded by

R(T) ≤ AL1�max ln T + B1, (26.4)

where B1 = L1�
max + ∑∞

t=1 2NL1�
maxt

− A
2

(
�min

D

)2

is a constant. Here �max represents the difference
between the expected rewards of the best joint arm and the second-best joint arm, and �min represents
the maximum expected loss due to selecting any suboptimal joint arm. �

26.3.2 ACCELERATING LEARNING THROUGH REWARD INFORMATIVENESS
Although the time order of the regret of the DisCo algorithm is logarithmic, due to its linear dependence
on the cardinality of the joint action space, which increases exponentially with the number of agents, the
regret is large and the convergence rate is very slow with many agents. In many application scenarios,
even if we do not know exactly how the actions of agents determine the expected overall rewards, some



26.3 DISTRIBUTED LEARNING WITH GLOBAL OR GROUP FEEDBACK 713

structural properties of the overall reward function may be known. For example, in the classification
problem that uses multiple classifiers [39], the overall classification accuracy is increasing in each
individual classifier’s accuracy, even though each individual’s optimal action is unknown a priori. Thus,
some overall reward functions may provide higher levels of informativeness about the optimality of
individual actions. Therefore, we also develop learning algorithms that achieve faster learning speed by
exploiting such information.

Definition 26.1. An expected overall reward function μ(a) is said to be informative with respect
to agent n if there exists a unique arm a∗

n ∈ An such that ∀a−n, a∗
n = arg max

an
μ(an, a−n), where μ(a)

represents the expected reward of a joint arm a. An expected overall reward function μ(a) is said to be
fully informative if it is informative with respect to all agents. �

If the overall reward function is fully informative, then the agents only need to record the relative
overall reward estimates instead of the exact overall reward estimates. Therefore, the key design
problem of the learning algorithm is, for each agent n, to ensure that the fraction of time selecting
a−n (called weight θa−n) is the same for the relative reward estimates for any given arm an so that it is
sufficient for agent n to learn the optimal arm using only these relative reward estimates. We emphasize
the importance of the weights θa−n , ∀a−n being the same for all an ∈ An of each agent n even though
agent n does not need to know these weights exactly. If the weights are different for different an, then it
is possible that r̄n(a′

n) > r̄n(a∗
n) merely because other agents are using their good arms when agent n is

selecting a suboptimal arm an while other agents are using their bad arms when agent n is selecting the
optimal arm a∗

n. Hence, simply relying on the relative reward estimates does not guarantee obtaining
the correct information needed to find the optimal arm.

Next, we describe an improved learning algorithm. We call this new algorithm the DisCo-FI
algorithm where “FI” stands for “Fully Informative.” The key difference from the basic DisCo
algorithm is that, in DisCo-FI, the agents will maintain relative reward estimates instead of the exact
reward estimates. Agents know a common deterministic function ζ (t) and maintain two counters
γ (t) and E(t). Now each exploration phase has a fixed length of L2 = ∑N

n=1 Kn slots and hence,
E(t) ∈ {0, 1, . . . , L2} with E(t) = 0 representing that the slot is an exploitation slot and E(t) > 0
representing that it is the E(t)th relative slot in the current exploration phase. As before, both counters
are initialized to be γ (0) = 0, E(0) = 0. Each agent n maintains Kn sample mean (relative) reward
estimates r̄n(an), ∀an ∈ An, one for each one of its own arms. These (relative) reward estimates are
initialized to be r̄n(an) = 0 and will be updated over time using the realized rewards. The transition
between exploration phases and exploitation phases is almost identical to that in the DisCo algorithm.
The only difference is that at the end of each exploration slot, the counter E(t + 1) for the next slot is
updated to be E(t +1) ← mod(E(t)+1, L2 +1). Hence, we ensure that each exploration phase has only
L2 slots. The algorithm prescribes different actions for agents in different slots and in different phases.

(i) Exploration phase: As is clear from the phase transition, an exploration phase consists of L2 slots.
These slots are further divided into N subphases and the length of the nth subphase is Kn. In the
nth subphase, agents take actions as follows:
1. Agent n selects each of its arms an ∈ An in turn, each arm for one slot. At the end of each slot

in this subphase, it updates its reward estimate using the realized reward in this slot as follows,

r̄n(an) ← γ (t)r̄n(an) + rn
t

γ (t) + 1
. (26.5)

2. Agent i �= n selects the arm with the highest reward estimate for every slot in this subphase,
i.e., ai(t) = arg max

ai∈Ai

r̄i(ai).



714 CHAPTER 26 MULTIAGENT SYSTEMS

(ii) Exploitation phase: Each exploitation phase has a variable length that depends on the control
function ζ (t) and counter γ (t). In each exploitation slot t, each agent n selects
an(t) = arg max

a∈An

r̄n(a).

Theorem 26.3 ([38]). Suppose μ(a) is fully informative. If ζ (t) = A ln T with A ≥ 2

(
D

�min
FI

)2

, then

the expected regret of the DisCo-FI algorithm after any number T slots is bounded by

R(T) < AL2�max ln T + B2, (26.6)

where B2 = L2�
max + 2L2�

max ∑∞
t=1 t

− A
2

(
�min

FI
D

)2

is a constant number. Here �min
FI = minn �min

n
where �min

n is the expected reward difference between agent n’s best arm and its second-best arm. �
DisCo-FI can be extended to the more general case where the full informativeness constraint is

relaxed.
Definition 26.2. An expected overall reward function μ(a) is said to be informative with respect

to a group of agents gm if there exists a unique group-joint arm a∗
m ∈ ×n∈gmAn such that ∀a−m, a∗

m =
arg max

am∈×i∈gmAi

μ(am, a−m). An expected overall reward function μ(a) is said to be partially informative

with respect to a group partition G = {g1, . . . , gM} if it is informative with respect to all groups in G. �
The new algorithm is called the DisCo-PI algorithm where “PI” stands for “Partially Informative.”

It is a combination of the basic DisCo and DisCo-FI. In particular, each agent group is treated as a
single agent in the DisCo-FI algorithm and hence, each agent group learns the relative rewards of its
group-joint arms. Within each group, agents follow the idea of the basic DisCo algorithm to learn their
optimal arms.

Theorem 26.4. [38] Suppose μ(a) is partially informative with respect to a group partition G. If

ζ (t) = A ln T with A ≥ 2

(
D

�min
PI

)2

, then the expected regret of the DisCo-PI algorithm after any number

T slots is bounded by

R(T) < AL3�max ln T + B3, (26.7)

where L3 = ∑M
m=1

∏
n∈gm

Kn and

B3 = L3�max + 2
M∑

m=1

Nm
∏

n∈gm

Kn�max
∞∑

t=1

t
− A

2

(
�min

PI
D

)2

(26.8)

is a constant number. Here �min
PI = minm �min

m where �min
m is the expected reward difference between

the best group-joint arm of gm and the second-best group-joint arm of gm. �
We illustrate the performance of the proposed learning algorithms via simulation results for the

real-time stream-mining problem using multiple classifiers in Fig. 26.5. The proposed algorithms are
compared against several benchmarks: random, safe experimentation, UCB1 [29], and optimal. Safe
experimentation (SE) is a method used in [40] when there is no uncertainty about the accuracy of the
classifiers. In each period t, each classifier selects its baseline action with probability 1 − εt or selects
a new random action with probability εt. When the realized reward is higher than the baseline reward,
the classifiers update their baseline actions to the new action. As can been seen, SE works almost as
poorly as the random benchmark in terms of event detection accuracy. Due to the uncertainty in the



26.4 LEARNING IN NETWORKS WITH INCOMPLETE INFORMATION 715

FIG. 26.5

Performance comparison [38].

detection results, updating the baseline action to a new action with a higher realized reward does not
necessarily lead to selecting a better baseline action. Hence, SE is not able to learn the optimal operating
points of the classifiers. UCB1 achieves a much higher accuracy than random and SE algorithms and is
able to learn the optimal joint operating points over time. However, the learning speed is slow because
the joint arm space is large. The proposed DisCo algorithm can also learn the optimal joint action.
However, because the joint arm space is large, the classifiers have to stay in the exploration phases
for a relatively long time in the initial periods to gain sufficiently high confidence in reward estimates
while the exploitation phases are rare and short. Thus, the classification accuracy is low initially. After
the initial exploration phases, the classifiers begin to exploit and hence the average accuracy increases
rapidly. Because the reward structure satisfies the fully informative condition, DisCo-FI rapidly learns
the optimal joint action and performs the best among all schemes.

26.4 LEARNING IN NETWORKS WITH INCOMPLETE INFORMATION
Learning plays a major role in the analysis of networks and network formation. Many significant real-
world interactions take place over a variety of networks, such as social networks, financial networks,
and trade networks. Learning and incomplete information can strongly affect the development and
dynamics of such networks, and so it is important to properly model and study these forces in
performing network analysis.



716 CHAPTER 26 MULTIAGENT SYSTEMS

The existing literature has broken down learning in networks into two different types. The first type
of learning is learning about an exogenous state of the world. Topics of study include how information
among agents is aggregated and whether an accurate consensus in the network can eventually form.
The second type of learning is learning about the qualities of other agents within the network. Papers
in this literature analyze how agents choose their links under incomplete information, how learning
about other agents affects the network development, and how efficient the networks that form from this
process are. Both types of learning are of great importance, and both have been the subject of active
research. This chapter will provide an overview of these two types of learning, describe the recent work
that has been performed, and discuss the conclusions that such work has reached.

26.4.1 LEARNING AND OPINION DYNAMICS
In the real world, people frequently learn and exchange information with those they are closely
connected to, such as friends, family, or coworkers. This information may regard a range of decisions
both major and minor, such as which clothes to buy, which shows to watch, or where to live. Agents
can learn information directly by communicating with their neighbors or indirectly by observing their
neighbors’ actions and choices. As time passes, agents may converge on a common belief through this
process of mutual influence, and a consensus could emerge within the network.

Such situations have been analyzed within a group of recent papers in the network literature. In these
papers, agents receive information directly from their neighbors or learn by observing the decisions
their neighbors make. They then use this to update their own beliefs and make their own decisions.
A key question that is raised is the issue of learning efficiency and the convergence of beliefs to the truth.
If information is initially diffused across a network, is it possible for the information to be aggregated
through a learning process such that the network arrives at the truth? Can this property be guaranteed
if the network is sufficiently large or the agents sufficiently numerous? This question is important for
understanding how learning occurs within very large networks, such as societies.

The existing literature has shown that the configuration of the network has a strong impact on the
information that agents learn and the rate at which they can reach a consensus. Golub and Jackson [41]
consider such a problem when agents utilize a form of learning known as DeGroot learning. This type
of learning assumes that each period, agents update their belief based on the average beliefs of their
neighbors, and can be interpreted, for instance, as agents communicating with and influencing each
other during each period. The paper shows that the network converges to the correct belief if and only
if no agent has too large an influence. If there is a prominent group of agents that receive too much
attention, then learning will not converge to the truth.

Acemoglu et al. [42] consider a different type of opinion dynamics where the agents do not directly
communicate their beliefs with others but merely observe other agents’ actions. For instance, an agent
may observe the car that another agent bought, and thus update its own belief more favorably for that car
manufacturer. This is known in the general economic theory literature as social learning, which has its
own extensive literature but was only recently applied to network theory. The paper shows that learning
will be correct asymptotically as long as the observation network is large enough. This is satisfied in
settings where agents are able to draw from enough observations.

While these other papers consider observations that occur in exogenously given networks, some
other papers have allowed for endogenous network formation. Acemoglu et al. [43] consider a model
in which agents form communication links with each other by paying a cost. Through these links



26.4 LEARNING IN NETWORKS WITH INCOMPLETE INFORMATION 717

agents can transmit information to each other. The authors show that learning converges to the truth
if the formed network feature “information hubs” that can distribute information to the agents. Thus
learning must be aggregated within a few agents. Furthermore, they show that if the network has too
many social cliques that contain the spread of information, then learning may not converge to the truth.

Song [44] also allows for endogenous observations. In this model, agents make observations
sequentially as in Acemoglu et al. [42], but they are able to choose which other agents to observe.
Agents have a fixed capacity of observations to make, and thus they must be strategic in choosing
which other agents to observe. Whether the eventual consensus in the network is accurate will depend
on the specific links that agents choose to form. This model introduces important aspects of network
formation, discussed further in the following section, into the social learning problem. The paper shows
that under certain situations, there will indeed be equilibrium in which agents are able to correctly learn.
In such equilibrium, agents observe a large enough group of other agents so that the agent signals can
be aggregated correctly.

26.4.2 LEARNING AND STRATEGIC NETWORK FORMATION
The other major type of learning that has been analyzed within the network literature is learning about
other agents through the process of strategic network formation. Whereas opinion dynamics models
analyze situations in which agents do not directly derive benefits from their neighbors but instead learn
information about an exogenous state of the world, strategic network formation models assume that
agents directly derive benefits from their links with others. In forming a link, an agent weighs the
benefits provided through that link versus the costs of maintaining the link. The beliefs an agent has
about the benefits each neighbor can provide will strongly influence which neighbors the agent chooses
to link with, and learning in turn will strongly affect the network structure and dynamics. In this section,
we provide an overview of such models and summarize the main conclusions that have been reached.

Strategic network formation itself has developed over the past several decades into a large literature.
However, many papers in this field have not considered the presence of incomplete information in their
models. Seminal strategic network formation papers, such as Jackson and Wolinsky [45], Bala and
Goyal [46], and Jackson and Watts [47], all assume that agents have complete information about others,
and thus agents know exactly how much benefit they will receive from each link. Because information
is perfect, agent beliefs are always accurate and never update over time.

Incorporating incomplete information into strategic network formation models represents an
important step toward more accurately modeling real-world interactions. In many real-world networks,
incomplete information often has a profound effect. For instance, in a social network agents who are
meeting and making friends will begin with only limited information about each other. It takes mutual
experiences to learn about others, and as such learning occurs the network structure will evolve.

A recent strand of network papers has developed to analyze the impact of incomplete information on
the network formation process and the resulting network structures. These models operate by assuming
agents have different types. Agents of different types may provide different payoffs to others, receive
different payoffs from others, or both. Importantly, each agent’s type is unknown to others at the
beginning of the model. Instead, agents have prior beliefs about other agent types. As links are formed,
information is learned about a neighbor’s type through the benefits that are received, and this allows an
agent to update its prior beliefs using the Bayes rule. The prior beliefs can have a strong impact on the



718 CHAPTER 26 MULTIAGENT SYSTEMS

eventual stable network, however, as they will affect the initial links that are formed, which influences
subsequent learning. Thus, the initial beliefs can have lasting consequences for the network.

These models demonstrate that incomplete information can have a strong impact on the network
formation process. First, incomplete information will affect the initial links that are formed among the
agents. Even if an agent has a high true quality, if others believe that the agent’s quality is low, then they
will never form a link with that agent. Thus, it is possible for some high-quality agents to be excluded
immediately from the network. This presents a source of inefficiency from the incomplete information.

Incomplete information may provide social benefits as well. If links have externalities, then it may
be socially beneficial for agents to form links to bad agents. For instance, a common payoff model
within the network literature is the connections model, in which agents receive benefits from direct
neighbors as well as indirect benefits from neighbors of direct neighbors. Even if a direct neighbor’s
quality is low, if that direct neighbor has many indirect neighbors it may be beneficial to form a link
to it. There can be multiple stable networks with varying levels of indirect benefits provided, and the
socially optimal network may not be reachable along certain formation paths. Incomplete information
can increase the amount of formation paths, and give a chance for the optimal network to develop. The
paper by Song and van der Schaar [48] highlights theses effects via a discrete-time network formation
model. They show that a large increase in potential networks arises under incomplete information, and
they give examples where incomplete information increases social welfare.

Song and van der Schaar [49] extend previous work by considering the impact of foresight on
network formation. Most network models assume that agents make myopic decisions. As a result,
agents link with other agents if the payoff, or their beliefs about the payoff under incomplete
information, of forming each link is positive. However, this paper extends the previous models by
allowing agents to be foresighted and consider future payoffs in making links. The model is a discrete-
time model like that in Song and van der Schaar [48]. It considers the limit as agents become very
patient. They derive a “folk theorem” like result that shows that many networks are now possible. The
idea is that when agents are very patient, it is possible to enforce a wide range of equilibrium strategies
through imposing sufficiently long punishments when agents deviate from equilibrium play. Given that
agents are very patient, they value the future greatly and thus will not wish to be punished. This paper
shows that the range of possible networks can thus be even larger when foresight is introduced.

Zhang and van der Schaar [50] consider learning that occurs gradually, in contrast to Song and van
der Schaar [48] and Song and van der Schaar [49] in which the learning is instant. Learning happens
in continuous time, and the rate at which learning occurs will impact the resulting social welfare. In
their model, agents who provide high benefits develop high reputations and remain in the network
while agents who provide low benefits drop in reputation and become ostracized. The information to
which agents have access and the speed at which they learn and act both have a tremendous impact
on the resulting network dynamics. Importantly, the authors show that learning can have a negative
impact on social welfare because it causes agents to become ostracized from the network more quickly.
When an agent is ostracized from the network due to the learning process, although the ostracized
agent may be of marginal quality it is still receiving a large benefit from the rest of the network. Thus,
having the ostracized agent leave the network reduces social welfare on average. Faster learning may
be undesirable as it leads to faster ostracization times. Due to the potential negative consequences of
ostracism, it may be necessary to place agents with lower initial reputations at less central positions
within the network. For instance, core-periphery networks with high-reputation agents in the core and
low-reputation agents in the periphery can be optimal.



REFERENCES 719

Zhang and van der Schaar [51] consider an alternative learning model in which agents exhibit
homophilic preferences. Homophily is the preference to link with others who are similar to themselves.
Agents have a limited capacity for links and thus maintain links with others learned to be similar to
themselves and cut links to those learned to be dissimilar to themselves. Due to noise in the learning
process, the agents may not find out which other agents are the closest in type, and thus the incomplete
information network can exhibit vast differences from the complete information network.

The paper shows that higher levels of homophily decrease the (average) number of links that
agents form. Mutually beneficial links may be dropped before learning is completed, thereby resulting
in sparser networks and less clustering than under complete information. Homophily also exhibits
an interesting interaction with the presence of incomplete information: initially, greater levels of
homophily increase the difference between the complete and incomplete information networks, but
sufficiently high levels of homophily eventually decrease the difference. Complete and incomplete
information networks differ most when the degree of homophily is intermediate. The paper also extends
the analysis to multiple stages of life/technology. Under such circumstances, the paper shows that the
effects of incomplete information are large initially but fade somewhat over time.

26.5 CONCLUSION
In the modern world, applications that require multiple decentralized agents to act in harmony are
ubiquitous. It is thus essential to understand what types of interactions enable them to cooperate
and exchange information in order to reach their goals. This chapter presents learning strategies and
algorithms for multiagent systems. It investigates how cooperative and strategic learning will lead to
different types of networks between the agents, and how efficient these networks are in making the
agents achieve their goals.

When the agents are cooperative, they are able to acquire knowledge about their environment by
helping the other agents receive higher rewards, which also allows them to select better actions in the
future. In addition, they are able to receive higher rewards by using the actions of the other agents.
However, the willingness to cooperate depends on the cost of cooperation. If this cost is too high,
agents will prefer to rely only on their own actions. It is also possible that agents’ actions and rewards
are correlated with each other. In such a case, the agents are required to follow distributed coordination
strategies that will let them learn joint actions that maximize a global reward. With proper coordination,
it is possible for agents to settle down to a joint action that maximizes the global reward by only
observing noisy versions of it even without knowing the actions taken by the other agents.

On the other hand, strategic learning leads to many different kinds of networks between the agents,
some of which can be efficient while the others can be highly inefficient. All the methods covered in
this chapter shed light into how real-world networks are formed and how agents can reach their goals
in these networks.

REFERENCES
[1] Schranz M, Dustdar S, Platzer C. Building an integrated pan-European news distribution network.

In: Collaborative networks and their breeding environments, vol. 186; 2005. p. 587–96.

http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0010


720 CHAPTER 26 MULTIAGENT SYSTEMS

[2] Boutet A, Kloudas K, Kermarrec AM. FStream: a decentralized and social music streamer. In: Networked
systems. Springer; 2013. p. 253–7.

[3] Mohan R, Smith JR, Li CS. Adapting multimedia internet content for universal access. IEEE Trans
Multimedia 1999;1(1):104–14.

[4] Tekin C, van der Schaar M. Contextual online learning for multimedia content aggregation. IEEE Trans
Multimedia 2015;17(4):549–61.

[5] Elmore JG, Miglioretti DL, Reisch LM, Barton MB, Kreuter W, Christiansen CL, et al. Screening mammo-
grams by community radiologists: variability in false-positive rates. J Natl Cancer Inst 2002;94(18):1373–80.

[6] Trottier D. Social media as surveillance. Farnham: Ashgate; 2012.
[7] Chou WYS, Hunt YM, Beckjord EB, Moser RP, Hesse BW. Social media use in the United States:

implications for health communication. J Med Internet Res 2009;11(4).
[8] Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: real-time event detection by social sensors.

In: Proceedings of the 19th international conference on world wide web. ACM; 2010. p. 851–60.
[9] Choi H, Varian H. Predicting the present with Google Trends. Econ Rec 2012;88(s1):2–9.

[10] Liu HH, Wang Y, Yang YR, Wang H, Tian C. Optimizing cost and performance for content multihoming.
In: Proceeding of the ACM SIGCOMM 2012 conference on applications, technologies, architectures, and
protocols for computer communication. ACM; 2012. p. 371–82.

[11] Szabo G, Huberman BA. Predicting the popularity of online content. Commun ACM 2010;53(8):80–8.
[12] Cha M, Kwak H, Rodriguez P, Ahn YY, Moon S. I tube, you tube, everybody tubes: analyzing the world’s

largest user generated content video system. In: Proceedings of the 7th ACM SIGCOMM conference on
internet measurement. ACM; 2007. p. 1–14.

[13] Wu T, Timmers M, De Vleeschauwer D, Van Leekwijck W. On the use of reservoir computing in popularity
prediction. In: Proceedings of the 2nd international conference on evolving internet. IEEE; 2010. p. 19–24.

[14] Pinto H, Almeida JM, Gonçalves MA. Using early view patterns to predict the popularity of YouTube videos.
In: Proceedings of the 6th ACM international conference on web search and data mining. ACM; 2013.
p. 365–74.

[15] Li H, Ma X, Wang F, Liu J, Xu K. On popularity prediction of videos shared in online social networks.
In: Proceedings of the 22nd ACM international conference on information & knowledge management. ACM;
2013. p. 169–78.

[16] Zhang L, Wang F, Liu J. Understand instant video clip sharing on mobile platforms: Twitter’s Vine as a case
study. In: Proceedings of the network and operating system support on digital audio and video workshop.
ACM; 2014. p. 85.

[17] Galuba W, Aberer K, Chakraborty D, Despotovic Z, Kellerer W. Outtweeting the Twitterers-predicting
information cascades in microblogs. WOSN 2010;10:3–11.

[18] Hong L, Dan O, Davison BD. Predicting popular messages in Twitter. In: Proceedings of the 20th international
conference on companion on world wide web. ACM; 2011. p. 57–8.

[19] Lerman K, Hogg T. Using a model of social dynamics to predict popularity of news. In: Proceedings of the
19th international conference on world wide web. ACM; 2010. p. 621–30.

[20] Tekin C, van der Schaar M. Distributed online learning via cooperative contextual bandits. IEEE Trans Signal
Process 2015;63(14):3700–14.

[21] Slivkins A. Contextual bandits with similarity information. J Mach Learn Res 2014;15(1):2533–68.
[22] Lu T, Pál D, Pál M. Contextual multi-armed bandits. In: Proceedings of the AISTATS; 2010. p. 485–92.
[23] Choi SS, Cha SH, Tappert CC. A survey of binary similarity and distance measures. J Syst Cybern Inf

2010;8(1):43–8.
[24] Cha SH. Comprehensive survey on distance/similarity measures between probability density functions. City

2007;1(2):1.
[25] Drugan MM, Nowe A. Designing multi-objective multi-armed bandits algorithms: a study. In: Proceedings

of the international joint conference on neural networks (IJCNN); 2013. p. 1–8.

http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0130


REFERENCES 721

[26] Turgay E, Oner D, Tekin C. Multi-objective contextual bandit problem with similarity information. In:
Proceedings of the AISTATS; 2018. p. 1673–81.

[27] Tekin C, Turgay E. Multi-objective contextual bandits with a dominant objective. In: Proceedings of the 27th
IEEE international workshop on machine learning for signal processing; 2017.

[28] Cesa-Bianchi N, Lugosi G. Combinatorial bandits. J Comput Syst Sci 2012;78(5):1404–22.
[29] Auer P, Cesa-Bianchi N, Fischer P. Finite-time analysis of the multiarmed bandit problem. Mach Learn

2002;47(2-3):235–56.
[30] Anantharam V, Varaiya P, Walrand J. Asymptotically efficient allocation rules for the multiarmed bandit

problem with multiple plays—Part I: IID rewards. IEEE Trans Autom Control 1987;32(11):968–76.
[31] Anandkumar A, Michael N, Tang AK, Swami A. Distributed algorithms for learning and cognitive medium

access with logarithmic regret. IEEE J Sel Areas Commun 2011;29(4):731–45.
[32] Gai Y, Krishnamachari B, Jain R. Combinatorial network optimization with unknown variables: multi-armed

bandits with linear rewards and individual observations. IEEE/ACM Trans Netw 2012;20(5):1466–78.
[33] Chen W, Wang Y, Yuan Y. Combinatorial multi-armed bandit: general framework and applications.

In: Proceedings of the international conference on machine learning (ICML); 2013. p. 151–9.
[34] Rusmevichientong P, Tsitsiklis JN. Linearly parameterized bandits. Math Oper Res 2010;35(2):395–411.
[35] Auer P. Using confidence bounds for exploitation-exploration trade-offs. J Mach Learn Res 2002;3:397–422.
[36] Dani V, Hayes TP, Kakade SM. Stochastic linear optimization under bandit feedback. In: COLT; 2008.

p. 355–66.
[37] Szorenyi B, Busa-Fekete R, Hegedus I, Ormándi R, Jelasity M, Kégl B. Gossip-based distributed stochastic

bandit algorithms. In: Proceedings of the international conference on machine learning (ICML); 2013.
p. 19–27.

[38] Xu J, Tekin C, Zhang S, van der Schaar M. Distributed multi-agent online learning based on global feedback.
IEEE Trans Signal Process 2015;63(9):2225–38.

[39] Foo B, van der Schaar M. A distributed approach for optimizing cascaded classifier topologies in real-time
stream mining systems. IEEE Trans Image Process 2010;19(11):3035–48.

[40] Foo B, van der Schaar M. A rules-based approach for configuring chains of classifiers in real-time stream
mining systems. EURASIP J Adv Signal Process 2009;2009:40.

[41] Golub B, Jackson MO. Naive learning in social networks and the wisdom of crowds. Am Econ J: Microecon
2010;2(1):112–49.

[42] Acemoglu D, Dahleh MA, Lobel I, Ozdaglar A. Bayesian learning in social networks. Rev Econ Stud
2011;78(4):1201–36.

[43] Acemoglu D, Bimpikis K, Ozdaglar A. Dynamics of information exchange in endogenous social networks.
Theor Econ 2014;9(1):41–97.

[44] Song Y. Social learning with endogenous network formation; 2015. arXiv preprint arXiv:150405222.
[45] Jackson MO, Wolinsky A. A strategic model of social and economic networks. J Econ Theory

1996;71(1):44–74.
[46] Bala V, Goyal S. A noncooperative model of network formation. Econometrica 2000;68(5):1181–229.
[47] Jackson MO, Watts A. The evolution of social and economic networks. J Econ Theory 2002;106(2):265–95.
[48] Song Y, van der Schaar M. Dynamic network formation with incomplete information. Econ Theory

2015;59(2):301–31.
[49] Song Y, van der Schaar M. Dynamic network formation with foresighted agents; 2015. arXiv preprint

arXiv:150900126.
[50] Zhang S, van der Schaar M. Reputational dynamics in financial networks during a crisis. Office of Financial

Research, US Department of the Treasury, Working Paper: No. 18-03; 2018.
[51] Zhang S, van der Schaar M. From acquaintances to friends: homophily and learning in networks. IEEE J Sel

Areas Commun 2017;35(3):680–90.

http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf9130
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00026-2/rf0255


CHAPTER

27GENOMICS AND SYSTEMS
BIOLOGY

Daifeng Wang∗, Chao Cheng†

Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, United States∗

Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States†

27.1 INTRODUCTION
The Biological systems, though very complex, have evolved and been organized based on certain
design and engineering principles. A variety of genomic elements and molecules work together as
a coordinated system to maintain the basic and normal functions while also achieving biological
diversity at the same time. If the coordination gets disrupted, a biological system highly likely leads
the abnormal functions such as in diseases. To understand complex biological systems, advanced
technologies have been developed in recent decades to generate a great number of high-throughput
datasets, measuring the biological activities at the system level. These datasets provide novel resources
to systematically study the biological functions, especially on a genomic scale. For example, the next-
generation sequencing technologies such as RNA-seq and ChIP-seq can simultaneously measure gene
transcription factor genomic occupation or other genome-wide events under a variety of biological
conditions.

In addition, network modeling has become a common formalism for understanding complex
systems, including gene regulatory networks. Modeling and analyzing the gene regulatory networks
play a crucial role in understanding the interactions among various genes and genomic elements in
biological systems [1]. To better understand biological networks, the signal processing and graph
models have been widely applied to process, model, and analyze large-scale, high-throughput biological
data. In this chapter, we will review the recent signal processing applications to the high-throughput
data, especially the genomic data from the next generation sequencing analyses. We will then introduce
how to use these data to construct, model, and analyze the gene regulatory networks—a key type of
molecular network controlling the biological systems. In particular, we will focus on introducing the
gene regulatory network structures that play key roles in controlling the genomic activities, such as
gene expression at the transcriptional level and driving the phenotypes. The approaches and models for

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00027-4
Copyright © 2018 Elsevier Inc. All rights reserved.

725



726 CHAPTER 27 GENOMICS AND SYSTEMS BIOLOGY

gene regulatory networks we introduce here are general purpose and thus can be used to study other
types of biological networks, including protein-protein interaction networks, metabolic networks, and
signaling networks.

27.2 GENE REGULATION
Gene expression is an important process to develop various biological functions and drive the
phenotypes [2]. Following the molecular central dogma, a gene—a piece of DNA on the chromosome—
is first transcribed to RNA (transcription). It is then translated to protein (translation), which is normally
the functional product of the gene. The process from a gene to its functional product is called gene
expression. The gene expression is actually used and evolutionarily conserved for all organisms from
viruses and bacteria to mammals. Therefore, it is strictly controlled to make correct biological functions.
In general, the mechanism controlling gene expression is called gene regulation.

Gene regulation is very complex, involving a variety of different genomic elements. It varies at
different conditions such as in healthy versus cancerous cells. Gene regulation occurs at all stages of
gene expression from pretranscription to posttranslation. In particular, at the transcriptional stage when
genes are primarily regulated, gene regulation reveals how a piece of DNA (a gene) converts to RNA,
and involves the following major proteins and genomic elements [3]:

Transcriptional factors—a group of proteins to activate or repress the gene’s transcription. They
bind to the regulatory regions to affect gene expression.
Promoter—a short DNA region before the transcriptional start site of a gene. The transcription
factor(s) bind to the promoter region to initiate the gene transcription.
Enhancer—a DNA region distant to the gene to positively affect the gene transcription. The
enhancers can be found by a group of transcriptional factors.
Silencer—a DNA region distant to the gene to negatively affect the gene transcription. The silencer
can be found by a group of transcriptional factors.
Coactivators—a group of proteins that does not directly bind to the regulatory regions (e.g.,
promoters, enhancers) but still affects the gene transcription via the coordination with transcription
factors.
Regulatory variants—the DNA variants associated with gene expression changes. They can break
the transcription factor binding sites to affect gene expression [4].
microRNAs—the small noncoding RNA molecules that silence or repress gene expression [5].

The transcription factors (TFs) and coactivators are transcribed and translated from the genes
as well, and thus their expressions are also regulated by each other. Moreover, after transcriptional
regulation, the gene expression can be still regulated by other mechanisms such as alternative splicing
[6]. Even proteins can be regulated at posttranslation stages such as phosphorylation [7]. Based on
the brief introduction above, the genes are not independent. Instead, they interact with other each,
such as controlling gene expression by gene regulation, and thus form a gene regulatory network to
achieve biological functions. Any activities disrupting the gene regulatory network potentially drive
abnormal behaviors, such as those that lead to human diseases. However, understanding the gene
regulatory networks, especially their changes across various conditions including diseases, is still very



27.4 GENE REGULATORY NETWORK PREDICTION 727

challenging. Therefore, next-generation sequencing technologies have been developed in recent years
and widely applied to detect the genome-wide expression and regulatory activities.

27.3 NEXT-GENERATION SEQUENCING TECHNIQUES
Next-generation sequencing (NGS) techniques have been developed and widely applied to systemati-
cally measure the gene expression and regulatory activities in recent years [8] They can sequence in
parallel millions or billions of short reads from DNA or RNA molecules, providing deep and accurate
measurements genome-wide. We highlight the key NGS techniques on gene expression and regulation
as follows:

DNA-seq—an NGS method to identify the DNA bases and individual variants by comparing to a
reference genome [9]. The DNA variants can affect gene expression, and mainly consist of four types:
single nucleotide polymorphisms (SNPs), insertions, deletions, and structural variants.

RNA-seq—an NGS method to sequence both protein-coding and noncoding RNAs and measure
their transcriptional activities, including gene expression [8].

ChIP-seq—an NGS method, Chromatin Immunoprecipitation Sequencing is used to detect the
interactions between proteins, and DNA regions and identify the genomic binding sites of DNA-binding
proteins such as transcription factors [8].

A large number of computational approaches and software has also been developed to process these
NGS data. For example, using these approaches, we can first align the raw data of RNA-seq—e.g.,
millions of short reads to the reference genome—and then quantify the gene expression levels [10].
Moreover, the advanced signal processing methods have been used to help uniformly process the NGS
data, such as optimal filtering [11], and calculate the gene expression and regulatory activities, such as
multiscale modeling [12].

27.4 GENE REGULATORY NETWORK PREDICTION
Increasing next-generation sequencing datasets provides great resources to understand the gene
expression and regulatory activities, particularly genome-wide. However, integrating these large-scale
datasets is still very computationally challenging [13]. Thus, a variety of computational approaches and
bioinformatics tools have been recently developed to predict the gene regulatory relationships and the
gene regulatory networks that control gene expression. We highlight some recent and representative
work as follows, especially using next-generation sequencing data.

The gene coexpression analysis has long been widely used to predict the association networks
among genes [14]. The coexpressed genes in the network share similar expression patterns, and thus are
likely coregulated by similar mechanisms, which also suggests that they may be involved in the same
functions. Recent work has integrated the RNA-seq data and predicted the gene coexpression networks,
including noncoding RNAs that have strong functional associations in disease [15]. In addition, gene
expression is generally activated by the transcription factors that bind to the regulatory regions. Thus,
the transcription factors that have enriched binding sites among coexpressed genes are potentially
regulating the genes [16–18].



728 CHAPTER 27 GENOMICS AND SYSTEMS BIOLOGY

The activities of regulatory regions such as enhancers and promoters affect gene expression. Recent
work has revealed the regulatory linkages between enhancers and genes for primary human cells
and tissues using ChIP-seq data [19]. Moreover, the regulatory regions are also impacted by histone
modifications [55]. Thus, several previous works applied the statistical models to reveal the predictive
relationships between the RNA-seq gene expression levels and the ChIP-seq signals for transcription
factors and histone modifications [20–22]. In addition, a probabilistic model-based method, TIP,
was developed to integrate the ChIP-seq data on TF binding, histone modifications, and the RNA-
seq data on gene expression to establish regulatory relationships [23]. In addition, several machine-
learning approaches were developed to identify and construct the gene regulatory networks linking
microRNAs and their target genes for humans and model organisms [20,22,24]. Also, the sparse
Gaussian graphical model has been used to integrate the eQTLs and gene expression data to learn
the regulatory networks [25].

27.5 GENE REGULATORY NETWORK ANALYSIS
Like engineering systems, gene regulatory networks, though very complex and large scale, have been
found to be organized based on certain structures (e.g., modules, pathways, circuits), rather than
randomly organized to maintain the basic conserved functions and to achieve tremendous biological
diversity (e.g., across species). These network structures have also been reported to associate with
various functions. For example, a network motif consisting of three genes was found to be a popular
structure in gene regulatory network [26]. The different types of this motif structure can represent
different regulatory circuits. Therefore, using the approaches from graph theory and network science,
especially recent machine learning methods, we are able to systematically analyze the gene regulatory
networks structures, compare them across multiple conditions, and find out how the structures are
associated with various functions and phenotypes. In particular, the following topological features of
gene regulatory networks have been extensively investigated. We also summarize the approaches to
discover the structures.

Centrality—the nodes in gene regulatory networks are typically genes and gene regulatory factors
controlling gene expression. For regulatory factors, they typically control specific target genes instead
of random genes. One of the key properties of gene regulatory networks is that there exists a group
of “hub” genes, playing central roles in the network. Network statistics such as “eccentricity” and
“betweenness” are very useful to identify such hub genes and explain their network connectivity and
behaviors [27,28]. For example, the genes with high degree centrality in gene coexpression networks
have a variety of neighbors, suggesting that they are highly likely to be coregulated by similar
mechanisms. The genes with high betweenness centrality mean that many regulatory pathways pass
through them, implying that they play bridge roles in gene regulation such as indirect binding TFs
[22]. These hub genes also make gene regulatory networks have scale free topologies; i.e., their nodes’
degree of distribution follows powerlaw [29,30].

Module—the gene regulatory networks can also be subdivided into modules, which are a sub-
network with enriched interactions. The genes in the same module have significantly more intra
connections than interconnections between modules. The regulatory modules suggest that the modular
genes share similar regulatory mechanisms (e.g., coregulation) [31]. A number of approaches have been
developed to detect the gene modules in the regulatory networks; i.e., clustering [32]. For example, the



27.6 GENE REGULATORY NETWORK MODELING 729

widely used gene coexpression network clustering method, WGCNA, clusters the gene coexpression
networks based on a nodes’ topological similarity using hierarchical clustering [14]. In addition, we
further developed a novel framework consisting of a cross-species multilayer network (OrthoClust) to
analyze gene coexpression networks in an integrated fashion using orthologous genes across species,
and found the cross-species conserved and species-specific modules [33].

Pathway—multiple genes can be regulated in a cascade fashion forming gene regulatory pathways.
The pathway structures in gene regulatory networks have also been found to highly associate with
biological functions. For example, recent studies reveal the distinct gene regulatory pathways for
different cell types in human immunological systems [34]. Thus, advanced computational methods
have been developed to identify such functional regulatory pathways, such as using gradient descent
optimization [35].

Hierarchy—The directed networks have hierarchical structures representing the overall direction of
the underlying information flow. Particularly, the gene regulatory networks are by nature directed and
organized in a hierarchical manner to carry out biological functions. In particular, it was found that
the hierarchy better reflects the importance of gene regulatory factors rather than node connectivity
[20,22]. Also, comparing the degree of collaboration among the gene regulatory factors across
different hierarchical levels, it has been found that in E. coli, yeast, and humans the highest degree
of collaboration is between gene regulatory factors at the middle level, which is analogous to the
important roles middle level managers play in managing a company [36]. Thus, we recently developed
a computational approach based on simulated annealing to find the maximum hierarchy of gene
regulatory networks [37].

27.6 GENE REGULATORY NETWORK MODELING
Gene regulatory networks have provided the wiring relationships among various molecules and
genomic elements. For example, the specific network structures such as motifs and modules have
been found to associate with the phenotypes. However, the network “wires” may activate or not at
different conditions, just like switching on or off the lights. To further understand the gene regulatory
mechanisms underlying the “wires,” we need the sophisticated models for gene regulatory networks to
reveal how they control the gene expression changes, i.e., model parameters [38]. In this section, we
summarize a few typical models for gene regulatory networks as follows.

Logical modeling—Gene expression at a high level has two states: on for a high expression level
and off for a low expression level. Thus, the gene regulatory networks controlling gene expression can
be analogous to an electronic circuit because they both have inputs and outputs related by certain
logic rules. For example, a variety of transcription factors (TFs) were found to follow logic gate
operations to regulate target genes during embryonic development [39,40]. A logic gate is a discrete,
high-level model that describes the relationship between Boolean input and output elements of the
model. Mangan et al. [41] applied logic functions to study TF interactions in E. coli and S. cerevisiae,
and found that the logic gate, though straightforward, is a very useful modeling for understanding gene
regulatory cooperation. Compared to the continuous models, this model may not be able to capture
the complex regulatory activities, but it is computationally efficient, especially when applied to large-
scale gene regulatory networks. Therefore, using the regulatory combinatorics, a key design principle
in electronics, we developed a computational method, Loregic, to characterize the gene regulatory



730 CHAPTER 27 GENOMICS AND SYSTEMS BIOLOGY

cooperative logic, using logic gate models [42]. In particular, we validated this method with known
yeast transcription factor knockout experiments, and applied it to discover how the gene regulatory
cooperative logic behaves differently in human cancer.

Dynamic modeling—Gene expression is fundamentally a continuous dynamic process. Thus, the
dynamic models such as differential equations have been used to understand the higher order of gene
regulatory activities, in additional to binary states. For example, the ordinary differential equations
were used to model the time-series gene expression dynamics to reveal the gene regulatory network
[43]. The state-space model has been used to analyze gene expression dynamics [44,45]. It models
the gene expression output of the gene regulatory network as a function of both the current internal
system state and the external control signal. We also developed a novel computational method, DRIESS
(Decomposition of gene Regulatory network into External and Internal components based on State
Space models), which integrates a state space model and dimensionality reduction analysis for a
given subsystem to identify the effects of other regulatory subsystems on its gene expression [46].
In particular, we applied this method to the developmental time-series gene expression datasets to show
the capabilities of DREISS for studying the effects of different evolutionary gene regulatory subsystems
on gene expression during the embryogenesis across distant species.

Machine learning modeling—Increasing the amount of gene expression and regulation datasets
enables the machine learning modeling for gene regulatory networks [47]. In recent years, the advanced
machine learning approaches have been developed to analyze large-scale genomic data and to predict
the gene regulatory mechanisms for various phenotypes. For example, the deep learning approach was
used to predict large-scale gene expression profiles in cancer [48]. The convolutional neural networks
(CNNs) have been used to model the regulatory mechanism of genomic variants to reveal how they
affect gene expression [49].

27.7 CONCLUSIONS AND FUTURE DIRECTIONS
In this chapter, we introduced the basic concepts of gene regulation and reviewed the signal processing
and network science approaches applied to model, predict, and analyze the gene regulatory networks
in this chapter. The specific structures of gene regulatory networks have been found to associate with
various phenotypes, especially human diseases. In addition, the gene regulatory networks can change
across both temporal and spatial dimensions. For example, during embryonic development, the different
components of the gene regulatory network control developing various tissues, and only take effect at
the specific time points and the locations where tissues need to develop. However, due to the costs,
the experimental datasets remain very incomplete and noisy to systematically capture gene expression
and regulation activities, especially at the spatial dimension (e.g., gene expression patterns leading to
develop various tissues). Therefore, single cell technologies have been recently developed to detect the
transcriptomic events at the individual cell level [50], attempting to find the spatial changes of gene
regulation networks. The gene regulatory networks inferred using the single cell gene expression reveal
the heterogeneity of gene regulation across different cell types, even from the same tissue [51,52]. In
addition, the advanced technologies such as optogenetics also can capture in situ spatial transcriptomic
activities, which provides the location information on gene expression [53]. Thus, one future direction
for systems biology is how to integrate these novel data types and develop computational approaches



REFERENCES 731

to infer the accurate and complete gene regulatory networks that control the gene expression dynamic
changes across both temporal and spatial domains.

In this chapter, we have also reviewed several typical methods to model the gene regulatory
networks to reveal the regulatory mechanisms, such as logical circuit models. These models can be
also used to impute the missing data, simulate the outcome of permutations to gene regulation, and
eventually guide the engineering and design of gene regulatory circuits. For example, the synthetic
biology approaches apply the engineering principles into gene regulatory networks and engineer the
networks to change the biological functions. However, synthetic biology currently only focuses on the
small-scale regulatory circuits [54]. Thus, another possible future direction is how to efficiently model
and predict the controllable components in gene regulatory networks for synthetic biologists, aiming to
change abnormal regulatory circuits such as in diseases.

REFERENCES
[1] Ideker T, Nussinov R. Network approaches and applications in biology. PLoS Comput Biol 2017;13:

e1005771.
[2] Perdew GH, Vanden Heuvel JP, Peters JM. Regulation of gene expression: molecular mechanisms. Totowa,

NJ: Humana Press; 2006.
[3] Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev

Genomics Hum Genet 2006;7:29–59.
[4] Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et al. A method to predict the impact of

regulatory variants from DNA sequence. Nat Genet 2015;47:955–61.
[5] Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans

2008;36:1224–31.
[6] Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al. A global view of gene activity

and alternative splicing by deep sequencing of the human transcriptome. Science 2008;321:956–60.
[7] Johnson LN. The regulation of protein phosphorylation. Biochem Soc Trans 2009;37:627–41.
[8] Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing

technologies. Nat Rev Genet 2016;17:333–51.
[9] Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics 2016;107:1–8.

[10] Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best
practices for RNA-seq data analysis. Genome Biol 2016;17:13.

[11] Kumar V, Muratani M, Rayan NA, Kraus P, Lufkin T, Ng HH, et al. Uniform, optimal signal processing of
mapped deep-sequencing data. Nat Biotechnol 2013;31:615–22.

[12] Knijnenburg TA, Ramsey SA, Berman BP, Kennedy KA, Smit AF, Wessels LF, et al. Multiscale representation
of genomic signals. Nat Methods 2014;11:689–94.

[13] Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, et al. The real cost of sequencing: scaling
computation to keep pace with data generation. Genome Biol 2016;17:53.

[14] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC
Bioinformatics 2008;9:559.

[15] van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene co-expression analysis for functional
classification and gene-disease predictions. Brief Bioinform 2017. https://doi.org/10.1093/bib/bbw139.

[16] Marco A, Konikoff C, Karr TL, Kumar S. Relationship between gene co-expression and sharing of
transcription factor binding sites in Drosophila melanogaster. Bioinformatics 2009;25:2473–7.

http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0085


732 CHAPTER 27 GENOMICS AND SYSTEMS BIOLOGY

[17] Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, et al. Computational discovery of gene
modules and regulatory networks. Nat Biotechnol 2003;21:1337–42.

[18] McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional
interpretation of cis-regulatory regions. Nat Biotechnol 2010;28:495–501.

[19] Cao Q, Anyansi C, Hu X, Xu L, Xiong L, Tang W, et al. Reconstruction of enhancer-target networks in 935
samples of human primary cells, tissues and cell lines. Nat Genet 2017;49:1428–36.

[20] Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, et al. Integrative analysis of the
Caenorhabditis elegans genome by the modENCODE project. Science 2010;330:1775–87.

[21] Cheng C, Alexander R, Min R, Leng J, Yip KY, Rozowsky J, et al. Understanding transcriptional regulation
by integrative analysis of transcription factor binding data. Genome Res 2012;22:1658–67.

[22] Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, Mu XJ, et al. Architecture of the
human regulatory network derived from ENCODE data. Nature 2012;489:91–100.

[23] Cheng C, Min R, Gerstein M. TIP: a probabilistic method for identifying transcription factor target genes
from chip-seq binding profiles. Bioinformatics 2011;27:3221–7.

[24] Negre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, et al. A cis-regulatory map of the Drosophila
genome. Nature 2011;471:527–31.

[25] Zhang L, Kim S. Learning gene networks under SNP perturbations using eQTL datasets. PLoS Comput Biol
2014;10:e1003420.

[26] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks
of complex networks. Science 2002;298:824–7.

[27] Yu H, Jansen R, Stolovitzky G, Gerstein M. Total ancestry measure: quantifying the similarity in tree-like
classification, with genomic applications. Bioinformatics 2007;23:2163–73.

[28] Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks:
correlation with gene essentiality and expression dynamics. PLoS Comput Biol 2007;3:e59.

[29] Nicolau M, Schoenauer M. On the evolution of scale-free topologies with a gene regulatory network model.
Biosystems 2009;98:137–48.

[30] Albert R. Scale-free networks in cell biology. J Cell Sci 2005;118:4947–57.
[31] Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, et al. Module networks: identifying regulatory

modules and their condition-specific regulators from gene expression data. Nat Genet 2003;34:166–76.
[32] Wiwie C, Baumbach J, Rottger R. Comparing the performance of biomedical clustering methods. Nat

Methods 2015;12:1033–8.
[33] Yan KK, Wang D, Rozowsky J, Zheng H, Cheng C, Gerstein M. OrthoClust: an orthology-based network

framework for clustering data across multiple species. Genome Biol 2014;15:R100.
[34] Koues OI, Collins PL, Cella M, Robinette ML, Porter SI, Pyfrom SC, et al. Distinct gene regulatory pathways

for human innate versus adaptive lymphoid cells. Cell 2016;165:1134–46.
[35] Das M, Mukhopadhyay S, De RK. Gradient descent optimization in gene regulatory pathways. PLoS One

2010;5:e12475.
[36] Yan KK, Fang G, Bhardwaj N, Alexander RP, Gerstein M. Comparing genomes to computer operating

systems in terms of the topology and evolution of their regulatory control networks. Proc Natl Acad Sci U S A
2010;107:9186–91.

[37] Cheng C, Andrews E, Yan KK, Ung M, Wang D, Gerstein M. An approach for determining and measuring
network hierarchy applied to comparing the phosphorylome and the regulome. Genome Biol 2015;16:63.

[38] Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol
2008;9:770–80.

[39] Peter IS, Faure E, Davidson EH. Predictive computation of genomic logic processing functions in embryonic
development. Proc Natl Acad Sci U S A 2012;109:16434–42.

[40] Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell
2011;144:970–85.

http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0205


REFERENCES 733

[41] Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A
2003; 100:11980–5.

[42] Wang D, Yan KK, Sisu C, Cheng C, Rozowsky J, Meyerson W, et al. Loregic: a method to characterize the
cooperative logic of regulatory factors. PLoS Comput Biol 2015;11:e1004132.

[43] Du P, Gong H, Wurtele ES, Dickerson JA. Modeling gene expression networks using fuzzy logic. IEEE Trans
Syst Man Cybern B: Cybern 2005;35:1351–9.

[44] Bansal M, Della Gatta G, di Bernardo D. Inference of gene regulatory networks and compound mode of
action from time course gene expression profiles. Bioinformatics 2006;22:815–22.

[45] Huang S, Ingber DE. A non-genetic basis for cancer progression and metastasis: self-organizing attractors in
cell regulatory networks. Breast Dis 2006;26:27–54.

[46] Wang D, He F, Maslov S, Gerstein M. DREISS: using state-space models to infer the dynamics of gene
expression driven by external and internal regulatory networks. PLoS Comput Biol 2016;12:e1005146.

[47] Angermueller C, Parnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst Biol
2016;12:878.

[48] Chen Y, Li Y, Narayan R, Subramanian A, Xie X. Gene expression inference with deep learning.
Bioinformatics 2016; 32:1832–9.

[49] Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep
convolutional neural networks. Genome Res 2016;26:990–9.

[50] Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics.
Nat Rev Genet 2015;16:133–45.

[51] Chan TE, Stumpf MPH, Babtie AC. Gene regulatory network inference from single-cell data using
multivariate information measures. Cell Syst 2017;5:251–67, e253.

[52] Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC:
single-cell regulatory network inference and clustering. Nat Methods 2017;14:1083–6.

[53] Marx V. Neurobiology: gene expression captured on-site. Nat Methods 2017;14:1037–40.
[54] Andrianantoandro E, Basu S, Karig DK, Weiss R. Synthetic biology: new engineering rules for an emerging

discipline. Mol Syst Biol 2006;2:2006.0028.
[55] Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21(3):381–95.

http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0270
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf0275
http://refhub.elsevier.com/B978-0-12-813677-5.00027-4/rf9275


CHAPTER

28DIFFUSION AUGMENTED
COMPLEX EXTENDED KALMAN
FILTERING FOR ADAPTIVE
FREQUENCY ESTIMATION
IN DISTRIBUTED POWER
NETWORKS

Yili Xia∗, Sithan Kanna†, Danilo P. Mandic†

School of Information Science and Engineering, Southeast University, Nanjing, PR China∗ Department of Electrical

and Electronic Engineering, Imperial College London, London, United Kingdom†

28.1 INTRODUCTION
Modern electricity grids are undergoing unprecedented changes to meet several ambitious goals
which include the need to reduce our reliance on fossil fuels and better management of the current
aging infrastructure while creating economic benefits for society [1]. It is widely expected that these
challenges are to be met by the next generation power network, commonly known as the “smart grid.”
The smart grid aims to make a paradigm shift from the top-down mode of operation of the current grid
by incorporating distributed generation, typically from renewable sources (wind, solar), distributed
storage from plug-in-vehicles, and demand-response technologies [1]. The backbone of this future grid
is an intelligent, real-time, wide-area monitoring system capable of estimating key indicators of the
stability of the grid [2].

One of the most closely monitored indicators is the system frequency as its deviation from the
nominal frequency of 50 Hz or 60 Hz indicates a mismatch between the supply and demand in electricity
or a fault. Because electricity is a nonstorable commodity, its generation and demand have to be
balanced in real time. If demand is greater than generation, the frequency drops, whereas if generation
is greater than demand, the frequency rises. Therefore, accurate tracking of the system frequency is a
prerequisite for the task of balancing the demand and generation of electricity [3].

In three-phase power systems, none of the single phases can faithfully characterize the whole
system and its properties. Therefore, a robust frequency estimator should take into account the
information of all three phases, to enable a unified estimation of system frequency as a whole and
provide enhanced robustness. To this end, Clarke’s αβ transformation has been introduced to construct
a complex-valued signal with the information provided by all the three-phase voltages in a simultaneous

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00028-6
Copyright © 2018 Elsevier Inc. All rights reserved.

735



736 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

way. This has equipped the classical single-phase methods with more robustness in characterizing
system frequency [4]. Currently, used frequency estimation techniques along this direction include:
(i) Fourier transform approaches [5,6], (ii) gradient descent and least mean square adaptive estimation
[7,8], and (iii) state space methods and Kalman filters [9]. These explicitly or implicitly assume
balanced conditions (equal voltage amplitudes and equally spaced phases), and would be adequate
for the smart grid if the dynamics of the grid remain within the status quo [3].

However, the key challenge for frequency estimation in the future grid is the large penetration of
intermittent renewable resources (wind, solar), which is expected to shorten the frequency regulation
time scales [10] and degrade the quality of the voltage signals used by conventional control and
estimation algorithms [11]. First, the frequency regulation time scales are expected to be shortened
in future grids because replacing a large fraction of conventional generators by renewable energy
sources is expected to reduce the overall inertia available in the grid [12], thus resulting in more
extreme frequency excursions, necessitating a rapid response from transmission system operators [12].
The second challenge is concerned with the degradation of the signal quality (voltage and current
measurements) used in estimation algorithms. This is attributed to the diverse profile of users who
are plugging into and out of the grid at a more rapid pace [13]. In addition, the increased use of
electronic inverter-based equipment, e.g., consumer electronics, introduces switching noise and uneven
distribution of single-phase loads [11], adverse effects which are not well represented by algorithms
derived in standard linear estimation theory [14,15].

Our earlier work showed that the complex-valued αβ voltage admits a widely linear autoregressive
(WLAR) model [16–19] under both balanced and unbalanced system conditions. It has been justified
that standard, strictly linear, complex-valued estimators applied to this αβ voltage introduce biased
and oscillatory frequency estimates for unbalanced system conditions. Indeed, widely linear estimators
(also known as “augmented” estimators) are able to provide optimal and consistent estimates of
the system frequency over a range of operating conditions [15,20,21]. Therefore, the aim of this
work is to extend the single-node, widely linear, state space frequency estimators in [21–24] to the
distributed scenario to suit the requirements of the smart grid. Distributed estimation has already found
various applications in both military and civilian scenarios [25–28], as cooperation between the nodes
(sensors) provides more accurate and robust estimation over independent nodes while approaching
the performance of centralized systems at much reduced communication overhead. Recent distributed
approaches include diffusion least-mean-square estimation [29,30] and Kalman filtering [26,28,31];
however, these consider noisy measurements without cross-nodal correlations, which is not realistic in
real-world power systems.

To this end, we propose the diffusion augmented complex extended Kalman filter (D-ACEKF)
by adapting the diffusion scheme in [32] and the Kalman filtering models in [21,33] to suit a class
of real-world problems where the system frequency is identical over a certain geographical area at
the distribution level while the voltage imbalances and cross-nodal correlation can be different. In
particular, extending the widely linear frequency estimators to the distributed case is nontrivial as the
states that are to be estimated are not identical in the power network, as required by the classical
diffusion scheme [32].

Notation: Lowercase letters are used to denote scalars, a, boldface letters for column vectors,
a, and boldface uppercase letters for matrices, A. The symbols (·)T , (·)∗ and (·)H are respectively
the transpose, complex conjugate, and Hermitian transpose operators. The symbol E {·} denotes the
statistical expectation operator while Re {·} and Im {·} are, respectively, the real and imaginary parts of
a complex variable, and j = √−1.



28.2 PROBLEM FORMULATION 737

28.2 PROBLEM FORMULATION
In order to illuminate the challenges that future low inertia grids impose on frequency estimation and
tracking, we first consider a general electricity grid represented by a undirected graph G = (N , E). The
N buses in the network are represented by a node set, N = {1, 2, . . . , N}, while the power lines between
the buses (connections) are represented by an edge set, E . The neighborhood of a node i, denoted by
Ni, comprises all the nodes connected to node i including itself, that is Ni = {j | (i, j) ∈ E} [34], see
Fig. 28.1. Each node (e.g., node i) has access to sampled three-phase voltage measurements, at the
discrete time instant k, to give the state vector

si,k =
⎡
⎣va,i,k

vb,i,k
vc,i,k

⎤
⎦ =

⎡
⎢⎢⎣

Va,i cos(ωk + φa,i)
Vb,i cos

(
ωk + φb,i − 2π

3

)
Vc,i cos

(
ωk + φc,i + 2π

3

)
⎤
⎥⎥⎦ , (28.1)

where the amplitudes of the phase voltages va,i,k, vb,i,k, vc,i,k, are Va,i, Vb,i, Vc,i while the corresponding
phase values are denoted by φa,i, φb,i, φc,i. The angular frequency is ω = 2π fT , with f the fundamental
power system frequency, which is identical throughout the network, and T is the sampling interval.

The three-phase representation of the si,k in Eq. (28.1) is overparametrized and can be compactly
represented as “two-phase” Clarke voltages, vα,i,k and vβ,i,k, via a projection onto a new orthogonal
basis using the so-called “Clarke transform,” given by [4]

[
vα,i,k
vβ,i,k

]
def=
√

2

3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
︸ ︷︷ ︸

Clarke matrix

⎡
⎣va,i,k

vb,i,k
vc,i,k

⎤
⎦ . (28.2)

Moreover, the Clarke transform enables, vα,i,k and vβ,i,k, to be conveniently represented jointly as a
complex-valued scalar,

si,k
def= vα,i,k + jvβ,i,k. (28.3)

Node i

Ni

FIG. 28.1

A distributed network with N = 20 nodes.



738 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

It can be shown that the complex-valued Clarke voltage (also referred to as the αβ voltage) in
Eq. (28.3) takes the form

si,k = Aie
jωk + Bie

−jωk, (28.4)

where the positive and negative sequence phasors Ai and Bi are given by [20,35]

Ai =
√

6

6

[
Va,ie

jφa,i + Vb,ie
jφb,i + Vc,ie

jφc,i
]

, (28.5a)

Bi =
√

6

6

[
Va,ie

−jφa,i + Vb,ie
−j
(
φb,i+ 2π

3

)
+ Vc,ie

−j
(
φc,i− 2π

3

)]
. (28.5b)

Our task is to estimate the system frequency, ω, given noisy observations of the Clarke voltage si,k
in Eq. (28.4). In particular, the noisy observations of si,k can be expressed in the form

yi,k = si,k + ηi,k, (28.6)

where ηi,k, is a zero-mean, complex-valued, white Gaussian noise process with variance
σ 2

ηi
= E

{|ηi,k|2
}
. Notice from the noise-free signal in Eq. (28.5b), that the negative sequence phasor

vanishes, that is Bi = 0, for a balanced system (equal amplitudes, Va,i = Vb,i = Vc,i, and uniform phase
separation, φa,i = φb,i = φc,i), thus yielding the balanced Clarke voltage

si,k = Aie
jωk. (28.7)

Fig. 28.2 depicts the real and imaginary parts of the balanced signal in Eq. (28.7), which exhibits
a circular trajectory. However, for unbalanced systems, Bi �= 0, and therefore si,k does not follow a
uniform circular trajectory. During a fault in the voltage lines, the currents and voltages across the
three phases fail to maintain uniformity and can either experience a sag (undervoltage) or a swell
(overvoltage). These sags and swells are classified into distinct categories denoted by alphabet symbols

Real part

Im
ag

in
ar

y 
pa

rt

Type C sag

Balanced

Type D sag

FIG. 28.2

For a balanced system, characterized by Va,i = Vb,i = Vc,i and φa,i = φb,i = φc,i , the trajectory of Clarke’s
voltage vk is circular. For unbalanced systems, e.g., with Type C and Type D voltage sags, the voltage
trajectories are noncircular.



28.3 WIDELY LINEAR FREQUENCY ESTIMATORS 739

Table 28.1 Voltage Sags and Their Phasor
Representations

Voltage Sag V̄a V̄b V̄c

Type C 1 − 1
2 − j

√
3γ
2 − 1

2 + j
√

3γ
2

Type D γ − γ
2 − j

√
3

2 − γ
2 + j

√
3

2

from A to G [36]. For example, a power system with Type C and Type D voltage sags, whose three-
phase voltage characteristics are provided in Table 28.1, exhibits noncircular Clarke voltage trajectories
as explained by Eq. (28.4).

An unbalanced system condition therefore introduces a problem, as conventional complex-valued
linear estimation theory does not cater for noncircular signals. In fact, it was recently shown that
the standard strictly linear model for Eq. (28.4) is inadequate for unbalanced systems and a widely
linear model is required [16,20,35]. Furthermore, the multisensor nature of the estimation problem
in Eq. (28.6) calls for the extension of standard single-node frequency estimators to a distributed
setting. In the particular application of frequency tracking in low-inertia grids, the distributed estimation
algorithms are crucial to exploit spatially diverse measurements across the grid so as to compensate for
the fewer temporal measurements available in the first few hundred milliseconds after a contingency.
Although spatially diverse measurements, yi,k, from Eq. (28.6) can be collected and processed in a
fusion center, given the growth in the number of measurements from phasor measurements units (PMU)
and smart meters, this makes the network vulnerable to a single point of failure [37,38].

28.3 WIDELY LINEAR FREQUENCY ESTIMATORS AND THEIR NONLINEAR
STATE SPACE MODELS
Because the αβ voltage in Eq. (28.4) can be interpreted as a sum of two phasors, one rotating clockwise
(positive sequence) and the other rotating counter clockwise (negative sequence), at the same frequency,
it is only natural and intuitive to consider an estimate of si,k, that is, ŝi,k, based on the previous value
si,k−1 and its conjugate s∗

i,k−1 (where the conjugate represents the phasor rotating in the opposite
direction) within a widely linear autoregressive (WLAR) model [16–19], given by

ŝi,k = h∗
i,k−1si,k−1 + g∗

i,k−1s∗i,k−1

= h∗
i,k−1

(
Aie

jω(k−1) + Bie
−jω(k−1)

)
+ g∗

i,k−1

(
A∗

i e−jω(k−1) + B∗
k ejω(k−1)

)
=
(

h∗
i,k−1Ai + g∗

i,k−1B∗
i

)
ejω(k−1) +

(
h∗

i,k−1Bi + g∗
i,k−1A∗

i

)
e−jω(k−1), (28.8)

where hi,k−1 and gi,k−1 are the weight coefficients. A comparison of Eq. (28.8) to the state signal si,k in
Eq. (28.4), which is given by

si,k =
(

ejωAi

)
ejω(k−1) +

(
e−jωBi

)
e−jω(k−1), (28.9)



740 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

yields

ejωAi = h∗
i,k−1Ai + g∗

i,k−1B∗
i and e−jωBi = h∗

i,k−1Bi + g∗
i,k−1A∗

i . (28.10)

Solving the simultaneous equations in Eq. (28.10) gives a widely linear estimate of the system
frequency in the form [15,20,21]

ω̂i,k = tan−1

⎡
⎣
√

Im2{hi,k−1} − |gi,k−1|2
Re
{
hi,k−1

}
⎤
⎦ . (28.11)

The signal model in Eq. (28.8) and its corresponding frequency estimate in Eq. (28.11) shall be referred
to as the widely linear AR-I (WLAR-I) model. Note that when the system is balanced (Bi = 0), the
coefficient gi,k−1 = 0 and the widely linear frequency estimate in Eq. (28.11) is identical to its strictly
linear counterpart in [8].

Another similar widely linear frequency estimator was proposed independently in [22–24], which
considers the fact that the positive and negative sequence phasors rotate in opposite directions but at an
identical angular velocity ω, so that

si,k = ejω
(

Aie
jω(k−1)

)
︸ ︷︷ ︸

def=ν+
i,k

+e−jω
(

Bie
−jω(k−1)

)
︸ ︷︷ ︸

def=ν−
i,k

. (28.12)

Both phasors, ν+
i,k and ν−

i,k, independently obey a linear evolution process where their phases are
incremented by ω at every time instant, that is,

ν+
i,k = ejων+

i,k−1, ν−
i,k = e−jων−

i,k−1. (28.13)

In this way, a weight coefficient hi,k−1 can be used to estimate si,k and the frequency ω, to yield

ν̂+
i,k = hi,k−1ν̂+

i,k−1, ν̂−
i,k = h∗

i,k−1ν̂−
i,k−1, ŝi,k = hi,k−1ν̂+

i,k + h∗
i,k−1ν̂−

i,k, (28.14)

ω̂i,k = tan−1

[
Im{hi,k−1}
Re
{
hi,k−1

}
]

. (28.15)

We refer to the model in Eq. (28.14) as the widely linear AR-model-II (WLAR-II), due to its
resemblance to the intuition of the widely linear model in Eq. (28.8). However, it offers a simpler
framework as compared with the WLAR-I in Eq. (28.8) because a single weight coefficient hi,k−1 is
involved. However, the WLAR-I provides the advantage in terms of physical interpretability, as the
coefficient gi,k−1 represents the negative sequence, which characterizes the imbalance of the complex
αβ voltage [15,20].

Nonlinear state space models have been investigated for frequency tracking tasks mainly through
nonlinear Kalman filters [39]. This is due to the fact that nonlinear models provide greater modeling
flexibility and may have near optimal performance under noisy scenarios. For generality, at each node
i, consider a nonlinear state space evolution given by



28.4 DIFFUSION AUGMENTED COMPLEX EXTENDED KALMAN FILTERS 741

wi,k = f i,k−1(wi,k−1) + qi,k,

yi,k = ϕi,k(wi,k) + ηi,k,
(28.16)

where yi,k ∈ C is the observation (or measurement) of the state vector wi,k ∈ CM×1 through a known
nonlinear function ϕi,k(·). The state vector wi,k is also time varying with a known state transition
function f i,k(·). The zero-mean white Gaussian observation noise ηi,k is independent of the white
Gaussian state noise vector qi,k. The nonlinear function ϕi,k(·) caters for a wide-range of models
considered in frequency estimation problems, and the state wi,k can be estimated/tracked using extended
Kalman filters. To achieve this, the first step is to unify the considered widely linear AR models under
the umbrella of the nonlinear state space formulation in Eq. (28.16). Let us consider the WLAR-I
model in Eq. (28.8), whereby the signal si,k and the weight coefficients h∗

i,k and g∗
i,k are represented

as elements in the state vector wi,k = [h∗
i,k, g∗

i,k, si,k]T . This admits the nonlinear state transition model
given by [21]

wi,k =
⎡
⎣h∗

i,k
g∗

i,k
si,k

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 0
si,k−1 s∗i,k−1 0

⎤
⎦

︸ ︷︷ ︸
f i,k−1(wi,k−1)

⎡
⎣h∗

i,k−1
g∗

i,k−1
si,k−1

⎤
⎦+ qi,k, yi,k = [0 0 1

]
︸ ︷︷ ︸
ϕi,k(wi,k)

⎡
⎣h∗

i,k
g∗

i,k
si,k

⎤
⎦+ ηi,k.

(28.17)

In a similar fashion, the process in Eq. (28.14) can be configured within a nonlinear state space model
whereby the state vector contains the WLAR-II coefficients, i.e., wi,k = [hi,k, ν+

i,k, ν−
i,k]T , in the form

wi,k =
⎡
⎢⎣

hi,k
ν+

i,k
ν−

i,k

⎤
⎥⎦ =

⎡
⎣1 0 0

0 hi,k−1 0
0 0 h∗

i,k−1

⎤
⎦

︸ ︷︷ ︸
f i,k−1(wi,k−1)

⎡
⎢⎣

hi,k−1
ν+

i,k−1
ν−

i,k−1

⎤
⎥⎦+ qi,k, yi,k = [0 1 1

]
︸ ︷︷ ︸
ϕi,k(wi,k)

⎡
⎢⎣

hi,k
ν+

i,k
ν−

i,k

⎤
⎥⎦+ ηi,k.

(28.18)

It is important to observe that the nonlinear state space models in Eqs. (28.17) and (28.18), which in
essence employ the linear prediction idea, do not use the signal yi,k and its past sample yi,k−1 to predict
the frequency. Instead the signal yi,k is only used in the observation function while the past sample
yi,k−1 is also estimated as a nuisance state.

28.4 DIFFUSION AUGMENTED COMPLEX EXTENDED KALMAN FILTERS
Early work in the field of distributed Kalman filtering focused on decentralizing the Kalman filtering
operations using individual agents that communicate to a fusion center [40]. This method can be
regarded as the centralized Kalman filter because a central fusion center has access to all the information
in the network. Because communicating to a single fusion center makes the network vulnerable to a
single point of failure, more decentralized solutions were proposed. Fully distributed Kalman filters
then began to emerge where each node was required to share all its information with every other node
in the network [41,42], i.e., effectively replicating the operation of the centralized Kalman filter at each
node in the network [41].



742 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

More general distributed Kalman filters were proposed in the consensus estimation framework,
where the constraint that nodes communicate with every other node in the network was relaxed
[28,43]. To compensate for the fact that nodes only access the measurements in their neighborhood,
consensus Kalman filters include a consensus step for their state estimates whereby the individual
nodes exchange and average their intermediate state estimates with their neighbors several times before
the next measurement is obtained [44]. Therefore, the consensus filters operated at two time scales, a
longer time scale for the measurement updates and a shorter time scale for the consensus update. The
consensus protocol is therefore unsuitable for problems where measurements are taken in a similar time
scale as the communication protocol.

The diffusion Kalman filter, proposed in [26], is based on a wider class of diffusion adaptive
algorithms [32], and enables both the measurement update and information fusion throughout the
network to be applied in a single time scale. Furthermore, it was shown that diffusion strategies
enable information to diffuse more thoroughly in the network compared to consensus strategies [45].
A fundamental feature in the diffusion strategy is that only the state estimates, together with observation
variables, are shared in the network.

However, traditional diffusion strategies only account for strictly linear models with circular noise
processes. To cater for widely linear models, the diffusion augmented Kalman filter (D-ACKF) was
proposed in [46]. In this section, we extend the D-ACKF for nonlinear models using the theory of
extended Kalman filtering and refer to the proposed algorithm as the diffusion augmented complex
extended Kalman filter (D-ACEKF).

28.4.1 SINGLE-NODE COMPLEX KALMAN FILTERS
Consider again Fig. 28.1, where, at each time instant, k, the node i is tasked to estimate a parameter (or
state) vector wk ∈ CM×1, which is assumed to be identical throughout the network but observed locally
through measurements yi,k ∈ CL×1. The measurements and state are coupled via a state space model
given by

wk = Fkwk−1 + qk,

yi,k = Hi,kwk + ηi,k,
(28.19)

where Fk ∈ CM×M is the state transition matrix and Hi,k ∈ CL×M is the observation matrix. In standard
complex-valued Kalman filtering literature, the state noise qk ∈ CM×1 and observation noise ηi,k ∈
CL×1 are temporally uncorrelated and spatially independent zero-mean white Gaussian noise processes
with a joint covariance and pseudocovariance matrices are defined as [26]

Ck
def= E

{
qkqH

k

}
, C̃k

def= E

{
qkqT

k

}
, �i,k

def= E

{
ηi,kη

H
i,k

}
, �̃i,k

def= E

{
ηi,kη

T
i,k

}
, (28.20a)

E

{[
qk
ηi,k

] [
qH

n ηH
�,n

]}
=
[

Ck 0
0 �i,kδi,�

]
δk,n, (28.20b)

E

{[
qk
ηi,k

] [
qT

n ηT
�,n

]}
=
[

C̃k 0
0 �̃i,kδi,�

]
δk,n, (28.20c)



28.4 DIFFUSION AUGMENTED COMPLEX EXTENDED KALMAN FILTERS 743

where δk,n and δi,� are the Kronecker delta functions that satisfy

δa,b =
{

1, if a = b,
0, otherwise.

If no collaboration is allowed, each node is able to perform its own estimation scheme with the
Kalman filter given by [33]

Predict :

{
ŵi,k|k−1 = Fkŵi,k−1|k−1
Mi,k|k−1 = FkMi,k−1|k−1FH

k + Ci,k
(28.21a)

Update :

⎧⎨
⎩

M−1
i,k|k = M−1

i,k|k−1 + HH
i,k�

−1
i,k Hi,k

ŵi,k|k = ŵi,k|k−1 + Mi,k|kHH
i,k�

−1
i,k

[
yi,k − Hi,kŵi,k|k−1

]
,

(28.21b)

where the state estimate ŵi,k|k and state error covariance matrix Mi,k|k at each node are initialized as

ŵi,0|0 = E {w0} , Mi,0|0 = E

{
(w0 − E {w0})(w0 − E {w0})H

}
. (28.22)

Note that the initialization procedure in Eq. (28.22) is technically based on some a priori information
about the mean and covariance of the initial state, w0. However, linear Kalman filters will converge
(in the mean square sense) even when initialized arbitrarily. Therefore, it is common practice to set
ŵi,0|0 = 0 and Mi,0|0 = cI, where c is a real positive constant, when no prior information is
available [47].

Extension to nonlinear models
The linear state space model in Eq. (28.19) can be extended to a nonlinear state space formulation with
the state and measurement evolutions given by

wk = f k(wk−1) + qk,

yi,k = ϕi,k(wk) + ηi,k,
(28.23)

where the nonlinear function f k(·) is the state-transition function while ϕi,k(·) is a general obser-
vation function. The statistics of the process noise, qk, and measurement noise, ηi,k, remain as
Eqs. (28.20b)–(28.20c).

The original Kalman filter was derived for linear Gaussian systems and to cater for nonlinear
models in Eq. (28.23), the complex extended Kalman filter (CEKF) linearizes the nonlinear state and
observation functions by their first order Taylor series expansions (TSE) about the state estimates ŵi,k|k
and ŵi,k|k−1 for each node i, so that [33]

wk ≈ Fi,kwk−1 + F̃i,kw∗
k−1 + ui,k + qk,

yi,k ≈ Hi,kwk + H̃i,kw∗
k + εi,k + ηi,k,

(28.24)



744 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

where the Jacobians of functions f (·) and ϕi(·) are defined as

Fi,k = ∂f k(w)
∂wT

∣∣∣∣
w=ŵi,k−1|k−1

, F̃i,k = ∂f k(w)
∂wH

∣∣∣∣
w∗=ŵ∗

i,k−1|k−1

,

Hi,k = ∂ϕi,k(w)
∂wT

∣∣∣∣
w=ŵi,k|k−1

, H̃i,k = ∂ϕi,k(w)
∂wH

∣∣∣∣
w∗=ŵ∗

i,k|k−1

.

(28.25)

while the variables ui,k and εi,k in Eq. (28.24) represent the Taylor series expansion errors and can be
treated as deterministic inputs to the state equations, given by

ui,k = f (ŵi,k−1|k−1) − Fi,k−1ŵi,k−1|k−1 − F̃i,k−1ŵ∗
i,k−1|k−1,

εi,k = ϕi,k(ŵi,k|k−1) − Hi,kŵi,k|k−1 − H̃i,kŵ∗
i,k|k−1.

Notice that in Eq. (28.24), the linearized equations for a general state space admit a widely linear
form by involving both the state wk and its conjugate1 w∗

k . For this reason, it shall be useful to always
consider the augmented state space to account for the widely linear nature of the linearization procedure

in Eq. (28.24). This is accomplished using an augmented version of the state, w̄k = [wT
k , wH

k

]T
, and

observation vectors, ȳi,k =
[
yT

i,k, yH
i,k

]T
, so that the linearized state space in Eq. (28.24) admits an

augmented form

w̄k = F̄i,kw̄k−1 + ūi,k−1 + q̄k,

ȳi,k = H̄i,kw̄k + ε̄i,k + η̄i,k,
(28.26)

where the augmented state transition matrix, F̄i,k, the observation matrix, H̄i,k, and the Taylor series
errors (deterministic inputs), ūi,k, ε̄i,k, are given by

F̄i,k =
[

Fi,k F̃i,k

F̃
∗
i,k F∗

i,k

]
, H̄i,k =

[
Hi,k H̃i,k

H̃
∗
i,k H∗

i,k

]
, ūi,k =

[
ui,k
u∗

i,k

]
, ε̄i,k =

[
εi,k
ε∗

i,k

]
.

Single-node ACEKF
The complex Kalman filter methodology in Eqs. (28.21a)–(28.21b) can now be applied to the linearized
state space equation in Eq. (28.26), to give the augmented complex extended Kalman filter (ACEKF)
algorithm as [33]

Predict :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F̄i,k = Jacobian
(
f̄k, ŵi,k−1|k−1

)
ŵi,k|k−1 = f̄ k(ŵi,k−1|k−1)

Mi,k|k−1 = F̄i,kMi,k−1|k−1F̄H
i,k + C̄k

(28.27a)

1Note that the widely linear model degenerates into a strictly linear one when the state vector is real (i.e., w∗
k = wk) or if the

observation and state transition functions are analytic (i.e., ∂ϕi(·)/∂wH
k = 0, or ∂f (·)/∂wH

k = 0).



28.4 DIFFUSION AUGMENTED COMPLEX EXTENDED KALMAN FILTERS 745

Update :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H̄i,k = Jacobian
(
ϕ̄i,k, ŵi,k|k−1

)
M−1

i,k|k = M−1
i,k|k−1 + H̄H

i,k�̄
−1
i,k H̄i,k

ŵi,k|k = ŵi,k|k−1 + Mi,k|kH̄H
i,k�̄

−1
i,k

[
ȳi,k − ϕ̄i,k(ŵi,k|k−1)

]
,

(28.27b)

where the augmented nonlinear functions are f̄ k = [
fT

k , fH
k

]T
and ϕ̄i,k =

[
ϕT

i,k, ϕH
i,k

]T
and the

Jacobian(·) operator designates the computation of the Jacobian matrices based on Eq. (28.25). The
ACEKF is initialized with the augmented state vector and state error covariance matrix as

ŵi,0|0 = E {w̄0} , Mi,0|0 = E

{
(w̄0 − E {w̄0})(w̄0 − E {w̄0})H

}
. (28.28)

28.4.2 COLLABORATION SCHEMES
Centralized ACEKF
The most straightforward distributed multisensor Kalman filter is the centralized scheme where all
nodes transmit their measurements to a fusion center that assumes the following centralized augmented
state space formulation

w̄k = f̄ k(w̄k−1) + q̄k, (28.29a)

ȳcen,k = ϕ̄cen,k(w̄k) + η̄cen,k, (28.29b)

where the network observation vector, ȳcen,k ∈ CNL×1, in Eq. (28.29b) represents all the observations
in the network, with the collective measurement and measurement noise vectors given by

ȳcen,k =

⎡
⎢⎢⎢⎣

ȳ1,k
ȳ2,k

...
ȳN,k

⎤
⎥⎥⎥⎦ , ϕ̄cen,k(·) =

⎡
⎢⎢⎢⎣

ϕ̄1,k(·)
ϕ̄2,k(·)

...
ϕ̄N,k(·)

⎤
⎥⎥⎥⎦ , η̄cen,k =

⎡
⎢⎢⎢⎣

η̄1,k
η̄2,k

...
η̄N,k

⎤
⎥⎥⎥⎦ , (28.30)

while the augmented covariance matrices of the measurement and state noise are respectively

�̄cen,k
def= E

{
ηcen,kη

H
cen,k

}
and C̄k

def= E

{
q̄kq̄H

k

}
. Following the augmented state space formulation,

which leads to the ACEKF in Eqs. (28.27a)–(28.27b), the centralized ACEKF can be derived as

Predict :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F̄k = Jacobian
(
f̄k, ŵcen,k−1|k−1

)
ŵcen,k|k−1 = f̄ k(ŵcen,k−1|k−1)

Mk|k−1 = F̄kMk−1|k−1F̄H
k + C̄k

(28.31a)



746 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

Update :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H̄cen,k = Jacobian
(
ϕ̄cen,k, ŵcen,k|k−1

)
M−1

k|k = M−1
k|k−1 + H̄H

cen,k�̄
−1
cen,kH̄cen,k

ŵcen,k|k = ŵcen,k|k−1 + Mk|kH̄H
cen,k�̄

−1
cen,k

[
ȳcen,k − ϕ̄cen,k(ŵcen,k|k−1)

]
.

(28.31b)

Although the centralized ACEKF in Eqs. (28.31a)–(28.31b) is the optimal state-estimation algorithm
that is given access to all the measurements in the network, it requires excessive communications to a
single fusion center. This causes bottlenecks and imposes the risk of the distributed estimation task to
a single point of failure. To avoid these issues, a distributed formulation of Eqs. (28.31a)–(28.31b) is
accomplished by restricting the nodes in the network to only communicate within their neighborhood.

Local ACEKF
To remove the dependence on a fusion center, the so-called “local” ACEKF replicates the centralized
ACEKF at each node using only the observations from its neighborhood. Specifically, the node i
observes ȳicol,k ∈ CLNi×1, where Ni = |Ni|, denotes the number of nodes in neighborhood of node
i, such that the local state equations are

w̄k = f̄ k(wk−1) + q̄k, (28.32a)

ȳicol,k = ϕ̄icol,k(wk) + η̄icol,k, (28.32b)

with the collection of observation variables from the neighborhood of the node i

ȳicol,k =

⎡
⎢⎢⎢⎣

yi1,k
yi2,k

...
yiNi ,k

⎤
⎥⎥⎥⎦ , ϕ̄icol,k(·) =

⎡
⎢⎢⎢⎣

ϕ̄i1,k(·)
ϕ̄i2,k(·)

...
ϕ̄iNi ,k

(·)

⎤
⎥⎥⎥⎦ , η̄icol,k =

⎡
⎢⎢⎢⎣

η̄i1,k
η̄i2,k

...
η̄iNi ,k

⎤
⎥⎥⎥⎦ . (28.33)

The augmented covariance matrix of the collective observation noise vector is then given by

�̄icol,k = E

{
η̄icol,kη̄

H
icol,k

}
=

⎡
⎢⎢⎢⎢⎣

�̄i1 �̄i1i2 · · · �i1i|Ni|
�̄i2i1 �̄i2 · · · �̄i2iNi

...
...

. . .
...

�̄iNi i1
�̄iNi i2

· · · �iNi

⎤
⎥⎥⎥⎥⎦ . (28.34)

The local ACEKF therefore takes the form

Predict :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F̄i,k = Jacobian
(
f̄ k, ŵi,k−1|k−1

)
ŵi,k|k−1 = f̄ k(ŵi,k−1|k−1)

Mi,k|k−1 = F̄i,kMi,k−1|k−1F̄H
i,k + C̄k

(28.35a)



28.4 DIFFUSION AUGMENTED COMPLEX EXTENDED KALMAN FILTERS 747

Update :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H̄icol,k = Jacobian
(
ϕ̄icol,k, ŵi,k|k−1

)
M−1

i,k|k = M−1
i,k|k−1 + H̄H

icol,k�̄
−1
icol,kH̄icol,k

ŵi,k|k = ŵi,k|k−1 + Mi,k|kH̄H
icol,k�̄

−1
icol,k

[
ȳicol,k − ϕ̄icol,k(ŵi,k|k−1)

]
.

(28.35b)

One of the most widely used assumptions in the distributed Kalman filtering literature is that the
observation noise vectors η̄i,k are spatially independent, resulting in a block-diagonal local observation
noise covariance matrix in Eq. (28.34) in the form

�̄icol,k =

⎡
⎢⎢⎢⎣

�̄i1 0 · · · 0
0 �̄i2 · · · 0
...

...
. . .

...
0 0 · · · �̄iNi

⎤
⎥⎥⎥⎦ . (28.35c)

This enables the local ACEKF update equations in Eq. (28.35b) to be expressed as sums of the
individual measurement matrices as

Update :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H̄�,k = Jacobian
(
ϕ̄�,k, ŵi,k|k−1

)
, � = i1, . . . , iNi

M−1
i,k|k = M−1

i,k|k−1 +
∑
�∈Ni

H̄H
�,k�̄

−1
�,k H̄�,k

ŵi,k|k = ŵi,k|k−1 + Mi,k|k
∑
�∈Ni

H̄H
�,k�̄

−1
�,k

[
ȳ�,k − ϕ̄�,k(ŵi,k|k−1)

]
.

(28.35d)

28.4.3 PROPOSED DIFFUSION AUGMENTED COMPLEX EXTENDED KALMAN FILTER
(D-ACEKF)
We next illustrate how to achieve a computationally efficient diffusion strategy for a distributed network
consisting of local ACEKFs by using a weighted averaging scheme. Observe that the centralized state
estimate, ŵcen,k|k in Eq. (28.31b), and the local EKF state estimates ŵi,k|k in Eq. (28.27b) are related
through their respective weight error covariance matrices, Mi,k|k, as

M−1
k|k ŵcen,k|k =

N∑
�=1

M−1
�,k|kŵ�,k|k. (28.36)

Premultiplying both sides of Eq. (28.36) with the centralized state error covariance matrix Mk|k yields

ŵcen,k|k =
N∑

�=1

Mk|kM−1
�,k|kŵ�,k|k, (28.37)



748 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

which implies that the centralized solution ŵcen,k|k in Eq. (28.31b) can be obtained by a weighted
averaging operation of the individual state estimates ŵ�,k|k with weighting matrices Mk|kM−1

�,k|k. Because
the centralized state error covariance matrix, Mk|k, is related to its single-node counterparts M�,k|k as

M−1
k|k =

N∑
�=1

M−1
�,k|k, (28.38)

the weighting matrices satisfy the power-invariance condition, such that

N∑
�=1

Mk|kM−1
�,k|k = I.

To obtain the effect of the fusion rule in Eq. (28.37) without requiring the communication (sharing)
of the state error covariance matrices M�,k|k, we shall replace the weighting matrices Mk|kM−1

�,k|k with
combination coefficients a�,cen such that the fusion rule in Eq. (28.37) is approximately given by

ŵcen,k|k ≈
N∑

�=1

a�,cenŵ�,k|k, (28.39)

where the weighting coefficients a�,cen are only restricted to satisfy the power-invariance condition∑
� a�,cen = 1. The step in Eq. (28.39) resembles the diffusion step introduced in [26], and can

now be incorporated with the local ACEKF in Eqs. (28.35b)–(28.35a), to give the diffusion ACEKF
(D-ACEKF) in the form

F̄i,k = Jacobian
(
f̄k, ŵi,k−1|k−1

)
, (28.40a)

ŵi,k|k−1 = f̄ k(ŵi,k−1|k−1), (28.40b)

Mi,k|k−1 = F̄i,kMi,k−1|k−1F̄H
i,k + C̄k, (28.40c)

H̄icol,k = Jacobian
(
ϕ̄icol,k, ŵi,k|k−1

)
, (28.40d)

M−1
i,k|k = M−1

i,k|k−1 + H̄H
icol,k�̄

−1
icol,kH̄icol,k, (28.40e)

ψ i,k|k = ŵi,k|k−1 + Mi,k|kH̄H
icol,k�̄

−1
icol,k

[
ȳicol,k − ϕ̄icol,k(ŵi,k|k−1)

]
, (28.40f)

ŵi,k|k =
∑
�∈Ni

a�iψ�,k|k (Diffusion step). (28.40g)

The distinguishing feature of the proposed distributed Kalman filters in Eqs. (28.40a)–(28.40g) is
that we generalize the diffusion strategy in [26] by equipping the model with state and noise models
that do not impose any restrictions on: (i) the correlation properties of the cross-nodal observation
noises, (ii) the signal and noise circularity at different nodes, and (iii) the widely linear nature of the
underpinning system. This also allows distributed Kalman filtering algorithms proposed in [26,28,48]
to be used in wider application scenarios. Also note that unlike the linear Kalman filter, the state vector
estimate for the EKF has to be initialized to a value that is “close” to the true state w̄0. This can be
accomplished with a priori knowledge about the system. For example, in frequency estimation tasks,
the state (frequency) can be initialized to the nominal frequency of the grid of ŵi,0 = w0 = 50 Hz,
because the grid frequency is known to stay within a small interval of 49 Hz and 51 Hz. The state error
covariance matrix can be initialized as Mi,0|0 = cI, where c is the positive constant [47].



28.5 SIMULATIONS 749

28.5 SIMULATIONS
To verify the suitability of the proposed D-ACEKF for distributed frequency estimation, simulations
through case studies were performed based on a network of six buses (nodes) where each substation had
access to three-phase voltage measurements via transformers with metering capabilities. The number
of connections in the network was chosen to be nine (each node is connected to less than two other
nodes) as it reflected the topology of substations in a distribution network. The power system under
consideration had a nominal frequency of 50 Hz, and was sampled at a rate of 1 kHz while the signal to
noise ratio (SNR) was determined by the metering accuracy class of the potential transformer. The BS
EN 61869-1:2009 standard for the metering accuracy of potential transformers considers six separate
classes for metering requirements, which translates to an SNR range of 30 dB to 60 dB. To illuminate
the robustness of our proposed augmented diffusion Kalman filters, we chose an SNR level of 35 dB in
all our simulations, unless stated otherwise.

Case Study #1: Voltage sags
First, the performances of the proposed algorithms were evaluated for an initially balanced system that
became unbalanced after undergoing a Type D voltage sag starting at 0.1 s, followed by a balanced
condition starting at 0.3 s. Fig. 28.3 shows that, conforming with the analysis, the widely linear
algorithm, D-ACEKF, was able to converge to the correct system frequency for both balanced and
unbalanced operating conditions while the strictly linear algorithm, D-CEKF, was unable to accurately
estimate the frequency during the voltage sag due to undermodeling of the system (not accounting for
its widely linear nature), and exhibited obvious estimation oscillations. As expected, the widely linear
and strictly linear algorithms had similar performances under balanced conditions, as exemplified in
the time intervals 0–0.1 s and 0.3–0.5 s.

Furthermore, it is important to note that although the standard diffusion scheme is formulated to
share all the states in the network, in the case of frequency tracking in the electricity grid, it is only the
frequency that is common throughout the network while the imbalance levels, amplitudes, and phase
angles are not necessarily the same. Therefore, diffusing other states besides the frequency results in
biased estimates. Fig. 28.4 shows the profile of the voltages at different nodes in the network. Each

0 0.1 0.2 0.3 0.4 0.5
49

49.5

50

50.5

51

51.5

Time (s)

F
re

qu
en

cy
 (

H
z)

 

 
D−CEKF D−ACEKF

Balanced Type D imbalance Balanced

True frequency

FIG. 28.3

Frequency estimation performance of the distributed algorithms (D-CEKF and D-ACEKF) for a system at 35 dB
SNR. The system was balanced up to 0.1 s, it then underwent a Type D voltage imbalance followed by a
balanced condition at 0.3 s.



750 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

Time (s)

 

 

va vb

FIG. 28.4

Each substation (node) had different αβ voltages, including cases where the voltage dropped to zero (line cut).

0 0.1 0.2 0.3 0.4 0.5
49

49.5

50

50.5

51

51.5

Time (s)

F
re

qu
en

cy
 (

H
z)

 

 
D−WLAR−I D−WLAR−II

True frequency

FIG. 28.5

The D-ACEKF was able to estimate the frequency in a distributed setting in the presence of different types of
faults at each node; see Fig. 28.4 for voltage profiles.

substation underwent different faults, which is reflected in the different relative amplitudes and phase
shifts of the αβ voltages. In addition, Substations 1 and 2 underwent total line failures from 0.3 s
to 0.5 s and 0.1 s to 0.3 s, respectively. Fig. 28.5 shows distributed implementations of two widely
linear state space models described in Section 28.3, namely the WLAR-I and WLAR-II models. Notice



28.5 SIMULATIONS 751

that both models are capable of estimating the system frequency under both balanced and unbalanced
conditions. However, within the WLAR-I model, the frequency is embedded within the coefficients
h and g, which also contain information about the level of imbalance in the system. Diffusing the
widely linear coefficients, will therefore lead to biased estimates because the level of imbalance across
the network is not necessarily the same, as illustrated in Fig. 28.4. On the other hand, the WLAR-II
model contains the frequency as an isolated state, which can be diffused across the network. Indeed,
Fig. 28.5 shows that the diffusion-based WLAR-II algorithm was able to estimate the frequency of the
network even with different levels of imbalance at each node while the diffusion-based WLAR-I model
produced biased estimates.

Case Study #2: Frequency variations
Fig. 28.6 illustrates the performance of the D-ACEKF when a power network measurement was
contaminated with white noise at 35 dB and 60 dB SNR while the system simultaneously underwent a
gradual drop and increase in frequency from 0.1 s to 0.3 s. This is a typical scenario when generation
does not match the load and system inertia keeps the frequency from changing too quickly. From 0.3 s
to 0.5 s, the system underwent a step change followed by a linear ramp in frequency. The D-ACEKF

0 0.1 0.2 0.3 0.4 0.5
49

49.5

50

50.5

51

51.5

Time (s)

F
re

qu
en

cy
 (

H
z)

 

 
SNR: 35 dB SNR: 60 dB

0.15 0.2 0.25
49

49.5

50

50.5

Time (s)

F
re

qu
en

cy
 (

H
z)

0.3 0.32
49

49.5

50

50.5

Time (s)

F
re

qu
en

cy
 (

H
z)

FIG. 28.6

Frequency tracking performance of D-ACEKF for system measurements at 35 dB and 60 dB SNR, which
experienced a gradual change in frequency from 0.1 s to 0.3 s, a step change in system frequency to 49.2 Hz
at 0.3 s and a linear ramp from 0.3 s to 0.5 s. The solid black line shows the true instantaneous frequency of
the voltage. The proposed D-ACEKF was able to track both slow and rapid changes in frequency.



752 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

was able to track the frequency in both cases, illustrating its suitability for both the current electricity
grid and future smart grids.

Case Study #3: Steady-state mean square error
Fig. 28.7 illustrates the mean square error (MSE) for the proposed distributed frequency estimators.
The steady state frequency estimate at a node i for the trial m is denoted by f̂i,ss[m]. The MSE of the
frequency estimators was calculated over 200 independent trials, as

MSE = 1

200 · 6

200∑
m=1

6∑
i=1

(
f̂i,ss[m] − f0

)2
, (28.41)

where f0 = 50 Hz is the fundamental frequency.
The algorithms were evaluated at different SNR levels for an unbalanced system undergoing a

Type D voltage sag. Observe that the distributed estimation algorithm outperformed its noncooperative
counterpart while the only consistent distributed estimator was the proposed D-ACEKF.

10 20 30 40 50 60
−60

−40

−20

0

20

SNR (dB)

M
S

E
 (

dB
)

D−CEKF D−ACEKF Central

1 2 3 4 5 6
−23

−21

−19

−17

Nodes

M
S

E
 (

dB
)

Individual D−ACEKF Central

FIG. 28.7

Top panel: The average MSE of a frequency estimate by D-ACEKF is lower than that of the D-CEKF under a
Type D sag. Bottom panel: MSE for each node in the network with and without cooperation at SNR = 35 dB
shows that the diffusion strategy reduces the steady state error for all the nodes.



REFERENCES 753

28.6 CONCLUSION
We have introduced a novel diffusion augmented complex extended Kalman filter (D-ACEKF) for
cooperative frequency estimation in power networks. It has been shown to provide sequential state
estimation of the generality of the complex αβ voltage signals, both circular and noncircular, within
a general and unifying framework that also caters to correlated nodal observation noises. This novel
widely linear framework has been applied for distributed state space-based frequency estimation in
the context of three-phase power systems, and has been shown to be optimal for both balanced and
unbalanced operating conditions. Simulations over a range of balanced and unbalanced power system
conditions have illustrated that the proposed D-ACEKF is a consistent estimator, offering accurate and
fast frequency estimation in power networks.

ACKNOWLEDGMENTS
The work by S. Kanna and D.P. Mandic was supported by the EPSRC Pathways to Impact under Grant P96871. The
work of Y. Xia was supported by the National Natural Science Foundation of China under Grants 61401094 and
61771124, the Natural Science Foundation of Jiangsu Province under Grant BK20140645, and the Fundamental
Research Funds for the Central Universities under Grant 2242016K41050.

REFERENCES
[1] Ipakchi A, Albuyeh F. Grid of the future. IEEE Power Energy Mag 2009;7(2):52–62.
[2] Zhang Y, Markham P, Xia T, Chen L, Ye Y, Wu Z, et al. Wide-area frequency monitoring network (FNET)

architecture and applications. IEEE Trans Smart Grid 2010;1(2):159–67.
[3] Phadke AG, Thorp JS, Adamiak MG. A new measurement technique for tracking voltage phasors,

local system frequency, and rate of change of frequency. IEEE Trans Power Apparatus Syst
1983;PAS-102(5):1025–38.

[4] Clarke E. Circuit analysis of A.C. power systems. New York, NY: Wiley; 1943.
[5] Lobos T, Rezmer J. Real-time determination of power system frequency. IEEE Trans Instrum Meas

1997;46(4):877–81.
[6] Yang R, Xue H. A novel algorithm for accurate frequency measurement using transformed consecutive points

of DFT. IEEE Trans Power Syst 2008;23(3):1057–62.
[7] Jeon HJ, Chang TG. Iterative frequency estimation based on MVDR spectrum. IEEE Trans Power Delivery

2010;25(2):621–30.
[8] Pradhan AK, Routray A, Basak A. Power system frequency estimation using least mean square technique.

IEEE Trans Power Delivery 2005;20(3):1812–6.
[9] Dash PK, Pradhan AK, Panda G. Frequency estimation of distorted power system signals using extended

complex Kalman filter. IEEE Trans Power Delivery 1999;14(3):761–6.
[10] Seneviratne C, Ozansoy C. Frequency response due to a large generator loss with the increasing penetration

of wind/PV generation: a literature review. Renew Sust Energy Rev 2016;57:659–68.
[11] Bollen MHJ. Understanding power quality problems: voltage sags and interruptions. New York, NY:

Wiley-IEEE; 2000.
[12] Tielens P, Van Hertem D. The relevance of inertia in power systems. Renew Sust Energy Rev

2016;55:999–1009.

http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0065


754 CHAPTER 28 DIFFUSION AUGMENTED EXTENDED KALMAN FILTERING

[13] von Jouanne A, Banerjee B. Assessment of voltage unbalance. IEEE Trans Power Delivery
2001;26(4):782–90.

[14] Bollen MHJ, Gu IYH, Santoso S, McGranaghan MF, Crossley PA, Ribeiro MV, et al. Bridging the gap
between signal and power. IEEE Signal Process Mag 2009;26(4):11–31.

[15] Xia Y, Mandic DP. Widely linear adaptive frequency estimation of unbalanced three-phase power systems.
IEEE Trans Instrum Meas 2012;61(1):74–83.

[16] Picinbono B, Chevailer P. Widely linear estimation with complex data. IEEE Trans Signal Process
1995;43(8):2030–3.

[17] Mandic DP, Goh SL. Complex valued nonlinear adaptive filters: noncircularity, widely linear and neural
models. New York, NY: Wiley; 2009.

[18] Schreier PJ, Scharf LL. Statistical signal processing of complex-valued data: the theory of improper and
noncircular signals. Cambridge, UK: Cambridge University Press; 2010.

[19] Xia Y, Mandic DP. Complementary mean square analysis of augmented CLMS for second-order noncircular
Gaussian signals. IEEE Signal Process Lett 2017;24(9):1413–7.

[20] Xia Y, Douglas SC, Mandic DP. Adaptive frequency estimation in smart grid applications: exploiting
noncircularity and widely linear adaptive estimators. IEEE Signal Process Mag 2012;29(5):44–54.

[21] Dini DH, Mandic DP. Widely linear modeling for frequency estimation in unbalanced three-phase power
systems. IEEE Trans Instrum Meas 2013;62(2):353–63.

[22] Dash PK, Jena RK, Panda G, Routray A. An extended complex Kalman filter for frequency measurement of
distorted signals. IEEE Trans Instrum Meas 2000;49(4):746–53.

[23] Huang CH, Lee CH, Shih KJ, Wang YJ. Frequency estimation of distorted power system signals using a
robust algorithm. IEEE Trans Power Delivery 2008;23(1):41–51.

[24] Talebi SP, Kanna S, Mandic DP. A non-linear state space frequency estimator for three-phase power systems.
In: Proceedings of the international joint conference on neural networks, Killarney, Ireland; 2015. p. 1–7.

[25] Stadter PA, Chacos AA, Heins RJ, Moore GT, Olsen EA, Asher MS, et al. Confluence of navigation, commu-
nication, and control in distributed spacecraft systems. IEEE Aerosp Electron Syst Mag 2002;17(5):26–32.

[26] Cattivelli FS, Sayed AH. Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans
Autom Control 2010;55(9):2069–84.

[27] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control
2006;51(3):401–20.

[28] Olfati-Saber R. Distributed Kalman filtering for sensor networks. In: Proceedings of the 46th IEEE conference
on decision and control, New Orleans, USA; 2007. p. 5492–8.

[29] Lopes CG, Sayed AH. Diffusion least-mean squares over adaptive networks: formulation and performance
analysis. IEEE Trans Signal Process 2018;56(7):3122–36.

[30] Xia Y, Mandic DP, Sayed AH. An adaptive diffusion augmented CLMS algorithm for distributed filtering of
noncircular complex signals. IEEE Signal Process Lett 2011;18(11):659–62.

[31] Khan UA, Moura JMF. An adaptive diffusion augmented CLMS algorithm for distributed filtering of
noncircular complex signals. IEEE Trans Signal Process 2008;56(10):4919–35.

[32] Sayed AH. Adaptive networks. Proc IEEE 2014;102(4):460–97.
[33] Dini DH, Mandic DP. A class of widely linear complex Kalman filters. IEEE Trans Neural Netw Learn Syst

2012;23(5):775–86.
[34] Xiao L, Boyd S. Fast linear iterations for distributed averaging. Syst Control Lett 2004;53(1):65–78.
[35] Kanna S, Mandic DP. Self-stabilising adaptive three-phase transforms via widely linear modelling. Electron

Lett 2017;53(13):875–7.
[36] Bollen MHJ, Zhang L. Different methods for classification of three-phase unbalanced voltage dips due to

faults. Electr Power Syst Res 2003;66(1):59–69.
[37] Amin SM, Wollenberg BF. Toward a smart grid: power delivery for the 21st century. IEEE Power Energy

Mag 2005;3(5):34–41.

http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0190


REFERENCES 755

[38] Huang YF, Werner S, Huang J, Kashyap N, Gupta V. State estimation in electric power grids: meeting new
challenges presented by the requirements of the future grid. IEEE Signal Process Mag 2012;29(5):33–43.

[39] Kelly C, Gupta S. Discrete-time demodulation of continuous-time signals. IEEE Trans Inf Theory
1972;18(4):488–93.

[40] Hashemipour HR, Roy S, Laub AJ. Decentralized structures for parallel Kalman filtering. IEEE Trans Autom
Control 1988;33(1):88–94.

[41] Speyer J. Computation and transmission requirements for a decentralized linear-quadratic-Gaussian control
problem. IEEE Trans Autom Control 1979;24(2):266–9.

[42] Rao BS, Durrant-Whyte HF. Fully decentralized algorithm for multisensor Kalman filtering. IEE Proc D
Control Theory Appl 1991;138(5):413–20.

[43] Olfati-Saber R. Kalman-consensus filter: optimality, stability, and performance. In: Proceedings of the 48th
IEEE conference on decision and control, Shanghai, China, December 15–18; 2009. p. 7036–42.

[44] Hidayat Z, Babuska R, Schutter BD, Nunez A. Decentralized Kalman filter comparison for distributed-pa-
rameter systems: a case study for a 1D heat conduction process. In: Proceedings of the 16th IEEE conference
on emerging technologies factory automation; 2011.

[45] Tu SY, Sayed AH. Diffusion strategies outperform consensus strategies for distributed estimation over
adaptive networks. IEEE Trans Signal Process 2012;60(12):6217–34.

[46] Dini DH, Mandic DP. Cooperative adaptive estimation of distributed noncircular complex signals. In: Confer-
ence record of the forty sixth Asilomar conference on signals, systems and computers, Pacific Grove, USA;
2012. p. 1518–22.

[47] Ljung L, Sayed AH. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear
systems. IEEE Trans Autom Control 1979;24(1):36–50.

[48] Kar S, Moura J. Gossip and distributed Kalman filtering: weak consensus under weak detectability. IEEE
Trans Signal Process 2011;59(4):1766–84.

http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00028-6/rf0245


CHAPTER

29BEACONS AND THE CITY: SMART
INTERNET OF THINGS

Petros Spachos∗, Konstantinos Plataniotis†

School of Engineering, University of Guelph, Guelph, ON, Canada∗ Electrical and Computer Engineering, University

of Toronto, Toronto, ON, Canada†

29.1 INTRODUCTION
Every day more computer-based devices are connected to the Internet. Most of these devices have at
least one wireless communication unit, creating opportunities for more direct integration between the
physical world and computer-based systems. This is the idea behind the Internet of Things (IoT), a
development of the Internet in which everyday objects have network connectivity, allowing them to
send and receive data. With the current advancements in wireless communication many indoor and
outdoor environments such as streets, parks, shopping malls, museums, hospitals, buildings, offices,
and homes are not just structures but a new platform for smart cities. In this platform, devices and
occupants can share data and information to improve all things ranging from customer experience to
individual quality of life and satisfaction [1,2].

The efficient use of the data that is collected and exchanged between wireless devices is the
main challenge for smart cities [3,4]. An important parameter of wireless data transmission is
the communication infrastructure [5]. Various wireless communication technologies with different
characteristics including Bluetooth [6], ZigBee [7], RF identification (RFID) [8,9], wireless local area
networks (WLANs) [10–12], wireless cellular networks, and the fifth-generation mobile networks
[13], are considered for different smart city applications. Experimental results of some of these
technologies are shown in Table 29.1. Recently, more and more people are adopting Bluetooth low
energy (BLE) beacon hardware as a feasible and scalable solution for many applications such as
indoor positioning system (IPS) solutions [14–18]. Restaurants, hotels, airports, and museums use
BLE beacons to improve their services and enhance visitor experiences. BLE beacons are small and
cost-effective wireless transmitters that can convert a hospital or an airport into a smart infrastructure,
without interfering with other wireless technologies. Due to their high availability, low cost, low power
consumption, and ease of deployment, BLE beacons are an ideal solution in providing indoor location-
based [19,20] and proximity-based services [21,22]. Smart cities could deploy a mesh of cost efficient
BLE beacons to collect data and improve citizen engagement.

In this chapter, the use of BLE beacons in applications where they can improve user experience and
collect useful analytics for smart cities are discussed. Their characteristics along with the available

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00029-8
Copyright © 2018 Elsevier Inc. All rights reserved.

757



758 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

Table 29.1 Experimental Results of Wireless Technologies and
Their Characteristics

Technology Range Power Advantages Disadvantages

IEEE 802.11 Up to 100 m Moderate Availability Prone to interference

RFID 3–12 m Low Energy Low accuracy

BLE Up to 100 m Low Energy Prone to interference

ZigBee 10–100 m Low Low power Low security

communication protocols and their challenges and limitations are discussed, toward the usage of
beacons in large-scale smart city applications. Three BLE beacon applications are described: in a
hospital for asset monitoring, in a shopping mall for proximity marketing, and in a parking lot
for automated check in. To further examine the performance of BLE beacons in terms of accuracy
for proximity services, experiments are also conducted. BLE beacons from three different hardware
vendors were used in the experiment while data smoothing and Kalman filters were used to examine
their effect on beacon accuracy. The purpose is not to find which of the examined beacons can be
claimed to be better than the others. Instead, the objective is to provide insights on beacon accuracy and
eventually guidelines for future beacon application developers.

The rest of this chapter is organized as follows: In Section 29.2, an introduction to BLE beacons as
well as their main characteristics and protocols are provided, followed by Section 29.3 with a discussion
on their limitations and challenges. In Section 29.4 three use cases of BLE beacons in smart cities are
presented. In Section 29.5, proximity estimation through BLE beacons is discussed and in Section 29.6
experiments with BLE beacons that examine their performance are presented. Lastly, the conclusion is
in Section 29.7.

29.2 BLE BEACON CHARACTERISTICS AND PROTOCOLS
In this section, BLE beacons are described along with their characteristics and their most commonly
used protocols for data transmission.

29.2.1 BLE BEACONS
BLE beacons, usually referred to as beacons, are small wireless transmitters that broadcast their
identifier to nearby electronic devices using BLE. BLE, as part of Bluetooth 4.0 [23], is a wireless
technology that is used for applications that do not need to exchange large amounts of data and intend to
provide considerably reduced power consumption and cost while maintaining a similar communication
range with classic Bluetooth.

Beacons broadcast signals at a certain interval and within a certain transmission range. An analogy
of the way beacons work is with the operation of a lighthouse [24]. The lighthouse represents a known
location that can be uniquely identified by its light. All the ships that can see the light know about the
existence of the lighthouse. On the other hand, the lighthouse neither communicates with the ships nor
does it know how many ships see its light or how many other lighthouses are in the area. Similarly,
every beacon is sending out a radio signal to inform all the radio-enabled devices in its range that the



29.2 BLE BEACON CHARACTERISTICS AND PROTOCOLS 759

FIG. 29.1

A BLE beacon broadcasting a signal to nearby devices. Each device can receive the signal and take action in
response.

beacon is there. It does not know how many beacons or receiving devices are in the area and it does not
connect with them. An example of beacon operation is shown in Fig. 29.1.

A beacon broadcasts a signal to all nearby devices that can receive the Bluetooth signal, i.e., the
devices that have a Bluetooth receiver and the receiver is on. In order to collect the signal from the
beacon, it is necessary to have a device with a BLE receiver. This can be a smartphone or a single-
board computer such as Raspberry Pi. Applications or functions can be implemented based on the signal
from the beacons. However, these applications are running on the hosting device, i.e., a smartphone or
a Raspberry Pi, and not on the beacon.

29.2.2 BLE BEACON CHARACTERISTICS
BLE beacons have configuration parameters and a set of values that can determine their performance
and their utility for different applications.

• Size design. As the market for the beacons increases, so do the different design approaches. There
are small beacons that work with one single coin cell battery [25], there are beacons with two AA



760 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

batteries [26], and there are solar-powered beacons [27]. The main power source affects the size,
cost, and lifespan of the beacon.

• Power source. Beacons can be powered by batteries or they can come in the form of USB dongles.
USB dongles, although they are small, lack flexibility because they need to be connected to a USB
port. Battery-powered beacons come in different sizes. Beacons with small batteries can be used in
applications where the batteries can be easily replaced and the size of the beacon should be small,
such as in occupant-tracking applications. The initial cost of these beacons is small; however the
battery replacement cost should be taken into consideration. Beacons with large battery capacity
can be used in applications that need constant broadcasting for a long period of time. The size of
the beacon is related to the size of the necessary batteries. The cost of these beacons is higher but
their extended lifetime can be used as a trade-off between the initial cost and the beacon lifetime
without the need for battery replacement. There are also beacons with energy-harvesting
capabilities. Solar-powered beacons are an appealing solution [28], especially for outdoor
applications. However, they have a higher cost per unit.

• Transmission power. Transmission power is the required power to broadcast the beacon signal.
As in every wireless device, transmission power directly affects the transmission range. The higher
the transmission power, the longer the signal range of the beacon. This is an important trade-off for
most beacon applications. Technically, a beacon’s range can reach up to 70 m; however, the battery
might only last for six months. If the transmission range is constrained to 2 m, then the beacon
might go up to two years without a battery replacement. A small transmission power can also
increase the required number of beacons to cover an area while a large transmission power can
increase the collisions and interference. As can be inferred, an optimal transmission range can help
to extend the lifetime of the beacons and minimize the battery replacement cost. At the same time,
it can minimize unnecessary collisions with other beacons in the area.

• Advertising interval. Advertising interval is another characteristic that affects the overall
performance of beacons. It describes the time between consecutive transmissions. Applications
that need to notify or detect the users that are moving in the area need a short advertising interval
while applications where the users are moving less frequently might improve their performance
with a longer advertising interval. Similar to the transmission power, the advertising interval
affects beacon performance. The shorter the interval, the more stable the signal from the beacon.
At the same time, the shorter the interval, the higher the power consumption. Once again, there is a
trade-off between beacon performance and power consumption.

• Measured power. Most beacons come with a factory-calibrated measured power, which represents
the expected received signal strength indicator (RSSI) at a distance of 1 m from the beacon.
Receiving devices can use this value to calibrate and eventually calculate the distance to the
transmitting beacon. However, this value changes in different environments; hence, calibration is
necessary to improve beacon performance.

• Passive mode. Beacons are broadcasters that do not do anything else besides sending a piece of
information. The logic behind each signal is done by the supporting device, such as smartphones.
Beacon signals are used by applications to trigger events and call actions, allowing the users to
interact with physical things. All the implementation is done on the device while the beacons just
broadcast the signal.

• No need for Internet. Beacons are not necessarily Internet-connected and there is no need for
Internet connection. There are cases where beacons can get updates and configurations through a



29.2 BLE BEACON CHARACTERISTICS AND PROTOCOLS 761

smartphone that works as a gateway between the beacons and a cloud server. However, this extra
functionality is not required. Beacons can be placed in remote locations and operate without
Internet connectivity.

• Platform-independent. Beacons can be used with iOS and Android devices. Each platform
requires different protocols that have different packet layouts but most platforms are able the listen
to the different protocols.

29.2.3 BLE BEACON PROTOCOLS
Beacon protocols are standards of BLE communication. Each protocol describes the structure of a data
packet that beacons broadcast. Beacons can use different protocols, the most popular of which are the
following:

• iBeacon. Apple’s iBeacon was the first BLE beacon technology to come out [29]. iBeacon is a
proprietary, closed standard. It broadcasts four pieces of information:

1. A universally unique identifier (UUID) that identifies the beacon.
2. A major number identifying a subset of beacons within a large group.
3. A minor number identifying a specific beacon within the subset.
4. A transmission power level in 2’s complement, indicating the signal strength one meter from

the device. This number must be calibrated for each device by the user or manufacturer.

iBeacon has a simple implementation and large documentation but it has fewer features in
comparison with the following protocols. iBeacon works with iOS and Android, but is native to
iOS.

• Eddystone. Eddystone, announced from Google, is another protocol that defines a BLE message
format for proximity beacon messages [30]. The Eddystone protocol is able to transmit four
different frame-types:

1. UID, which is used to identify the individual beacon.
2. URL, which can be a website link that redirects to a website that is secured using SSL,

eliminating the need for a mobile app.
3. TLM, which includes sensor and administrative data from the beacon through telemetry.

Examples include the beacon’s battery level and its temperature.
4. EID, which is an encrypted ephemeral identifier that changes periodically at a rate determined

during the initial registration with a web service. This frame type is intended for use in security
and privacy-enhanced devices.

Eddystone also works with both iOS and Android.
• AltBeacon. It is an open-source beacon protocol [31] that was designed by Radius Networks. It

has the same functionality as an iBeacon but is not company-specific. This makes AltBeacon
compatible with any mobile operating platform and more flexible because it has customizable
source code.

• GeoBeacon. It is another open-source beacon protocol, designed for usage in geocaching
applications [32]. It has a very compact type of data storage. GeoBeacon can provide
high-resolution coordinates and is also compatible with different mobile operating platforms.



762 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

29.3 LIMITATIONS AND CHALLENGES
In this section, the limitations of beacons will be discussed, followed by the challenges and some
security and privacy concerns that they pose.

29.3.1 LIMITATIONS
Beacons have a great potential for a plethora of applications. However, they do have some limitations.

First of all, there is a need for an application running on the receiving device in order to take
some action when the beacon signal is received. The passive mode of the beacons makes them easy
to be deployed and used, but at the same time the complexity is moved toward the development of the
necessary application. If there is no application running, beacon signals are useless. Hence, a successful
use case of beacons depends on the application development.

Another important limitation is the need for Bluetooth. Not only must the receiving device have
a Bluetooth receiver, but the Bluetooth must be turned on. Especially when it comes to smartphone
devices or prototyping boards, this can lead to high energy consumption [33,34] while also posing
significant security and privacy concerns. At the same time, devices that do not have Bluetooth
capabilities are not able to interact with the beacons. Hence, application developers should take into
consideration users and devices with the Bluetooth turned off or no Bluetooth capabilities at all.

Beacons are used for proximity and navigation applications; however their accuracy is limited. The
use of RSSI is a good indicator to estimate the distance from the beacons but is not accurate enough
for every application. Beacon performance is prone to interference, especially as the number of nearby
BLE devices increases. Their performance needs to be improved through the application on the receiver
or further processing on a server. Hence, although an Internet connection is not required, to improve
their performance, beacon data might need to be forwarded to a cloud server.

There is also a latency on the initial beacon scanning and the received signal from the beacons.
This can be improved with techniques running on the received application or with a smaller advertising
interval, but these solutions come with increased complexity in application design or higher power
consumption. Latency should be considered when designing the application using beacons, with the
user’s experience and application requirements in mind.

29.3.2 SECURITY AND PRIVACY CHALLENGES
In order for a device with a Bluetooth receiver to collect the beacon signal, it is necessary to have the
Bluetooth turned on. Because the Bluetooth is on and the beacon is among the trusted devices of the
receiver, this poses significant security challenges.

An attacker can physically remove the trusted beacon and replace it with another device with the
same packet format and communicate with the receiving device. This is an important security concern
in beacons, known as spoofing. Beacons do not come with advanced security mechanisms and most
of the time they broadcast their ID. An attacker can create a clone of the trusted beacons and forward
malicious data to the receiving device.

Another security concern is known as piggybacking. In this case, an attacker listens for the UUID
as well as the major and minor values of a beacon and adds them to a different application. The attacker
can even clone the original application and try to capture crucial information from the receiver.



29.4 BLE BEACONS IN SMART CITIES APPLICATIONS 763

There are also many privacy concerns with beacons. Because the ID of the beacons is static, it is
easy to mimic a trusted beacon and perform a number of attacks on the receiving device. Additionally,
in many localization applications, the receiving device is a smartphone that tries to find its location
based on nearby beacons. In this way, the users reveal their location as well. By trusting any beacon
in the area and sharing location information, a user may also share behavioral patterns and location
information to unauthorized personnel.

29.4 BLE BEACONS IN SMART CITIES APPLICATIONS
Beacons can be used in a plethora of applications in smart cities. They can be placed in many
environments such as offices and museums, therefore convert, them into smart environments by
providing interaction with the users. In this section, three beacon use cases are described, along with
the advantages the beacons offer but also the challenges they pose.

29.4.1 ASSET TRACKING AND MONITORING
Beacons can be used to keep track of assets. For instance, a hospital can integrate beacon technology
in order to maximize information exchange, as shown in Fig. 29.2. Beacons can be placed on critical
medical assets and devices. The beacons will report the location of the assets in real time in a general

FIG. 29.2

Asset monitoring in a complex indoor environment with BLE beacons. Valuable assets have a beacon that can
send location information to a general asset-management platform.



764 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

management system. When needed, the exact location of each device in a large hospital can be found.
With further processing, beacons on nearby devices can also navigate the user to the required device.
This can also be implemented for tracking cars, luggage, and even occupants. Mobile applications can
be implemented in order to collect beacon signals and convert them into directions toward a specific
asset.

The cost and ease of deployment are among the advantages of using beacons for such applications
as long as there is no interference with other wireless infrastructures in the area. At the same time, there
are security concerns that are related to the broadcasting nature of beacon signals. Attackers may find
the location of valuable assets through beacon signals, if security mechanisms are not implemented.

29.4.2 PROXIMITY MARKETING AND ENHANCED INTERACTIVITY
Content can be delivered based on the receiver’s location for proximity marketing or for enhanced
interactivity. For example, in a shopping mall, offers or reviews can be provided to the users when they
are about to enter a store or a restaurant, as shown in Fig. 29.3. The user only needs to turn on Bluetooth
and use the application that listens to the beacons. There are many more opportunities to deliver context
and enhance interactivity at the right time and place with the use of beacons. When beacons are used in
such applications, they can provide useful analytics. However, the users might end up getting too many
notifications or information that is not useful.

29.4.3 AUTOMATED CHECK-IN
Beacons can be used to monitor the existence of an individual at a specific location. In a smart parking
system, as shown in Fig. 29.4, beacons can be used to monitor the available parking spots and forward

FIG. 29.3

BLE beacons in different stores in a shopping mall. As the visitors are close to one of the stores, they can get
notifications about store sales and other relevant information.



29.5 PROXIMITY ESTIMATION THROUGH BLE BEACONS 765

Available Available Available

Occupied Occupied

FIG. 29.4

A smart parking system with BLE beacons. When the driver parks the car in front of the beacon, a message is
sent from the driver’s smartphone to a server to mark the specific parking spot as occupied.

the information through the user’s smartphone application to a server that keeps track of all the available
parking spots as well as some other useful analytics. In this way, real-time parking availability is
offered to drivers through a smartphone application. However, the placement of the beacons would
be a challenge, due to the fact that the beacon’s performance decreases when interference increases.
Hence, beacons cannot be placed too close to each other.

29.5 PROXIMITY ESTIMATION THROUGH BLE BEACONS
Proximity estimation is the key feature in all three applications described in the previous section. With
BLE beacons, the distance calculation and eventually the proximity estimation are based on the RF
signals. Unfortunately, RF signals are prone to interference [35,36]. In this section, the main principles
for distance calculation based on RSSI values are described, followed by data filtering techniques that
can improve distance estimation.



766 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

29.5.1 SIGNAL PROPAGATION AND DISTANCE CALCULATION
For distance estimation through beacons, an application should be developed on the receiver. The RSSI
values can be used for the distance calculations. In an ideal propagation medium, RSSI values drops
inversely proportional to the square of the distance between the transmitter and receiver. Hence, the
calculation of the distance is easy and accurate.

A way to calculate the distance is with the use of the Friis transmission equation. It makes a
comparison between the transmitted and received RSSI to estimate the signal attenuation over distance.
With the Friis transmission equation, the received power can be written as:

Pr = PtGtGrλ
2

(4πR)2
, (29.1)

where Pr and Pt is the received and transmit ted power, respectively, Gr and Gt is the antenna gain of
the receiver and the transmitter, respectively, and λ is the wavelength and R is the distance. This model
can be applied only to calculations made in free space, hence in an environment without obstacles that
may interfere with the signals.

Unfortunately, in a real environment RF signals are affected by interference, noise, and other
channel implements that contribute to the RSSI values [37]. As the signal propagates between the
beacon and the receiver, it also attenuates. This attenuation, also known as path loss, increases with
the distance. Path loss relates to dissipation of signal power over distance [38]. At the same time,
reflection, scattering, and absorption caused by obstacles in the environment also affect the signal,
known as shadowing. The parameters on the received signal can be modeled statistically. If a log-
normal distribution is assumed for the ratio of transmit-to-receive power, the combined effect of the
path loss and shadowing can be expressed by the following model [38]:

Pr (dB) = Pt (dB) + 10 log10 K − 10γ log10

(
d

d0

)
− ψ (dB), (29.2)

where Pr and Pt is the received and transmit ted power, respectively, K is a constant related to the
antenna and channel characteristics, γ is the path loss exponent, ψ reflects the effects of log-normal
shadowing in the model, and d0 is a reference distance for antenna far-field.

A simpler propagation model that works better for Bluetooth and the available information from the
beacon packet is the following [39]:

RSSI = Pt + G + 20 log
(

c

4π f

)
− 10 log d, (29.3)

where Pt is the transmit power, G is the combined antenna gain of the transmitter and the receiver, c is
the speed of light, f is the frequency, d is the distance, and n is the attenuation exponent, which can be
calculated as follows:

n = −
(

RSSI − A

10 log10 d

)
, (29.4)

where A is the RSS at 1 m distance—similar to the measured powered of the beacon signals. The
antenna gain and the exact frequencies can not be acquired easily, because they are not part of the
beacon packet; Eq. (29.3) can be further simplified as follows:

RSSI = A − 10n log d. (29.5)



29.5 PROXIMITY ESTIMATION THROUGH BLE BEACONS 767

29.5.2 KALMAN FILTER
To further improve the distance calculation, a Kalman filter can be applied to the received RSSI values
[40]. Kalman filters contain statistical noise and other inaccuracies, and produce estimates of unknown
variables that tend to be more accurate than those based on a single measurement alone by estimating
a joint probability distribution over the variables for each time frame.

The Kalman filter is a recursive estimator. Only the estimated state from the previous time step and
the current measurement are needed to compute the estimate for the current state. The state of the filter
is represented by two variables:

• x̂k|k, the a posteriori state estimate at time k given observations up to and including at time k;
• Pk|k, the a posteriori error covariance matrix–a measure of the estimated accuracy of the state

estimate.

The filter has two phases: prediction and update (correction).

i. Prediction
Prediction phase uses the state estimate from the previous time step to produce an estimate of the
state at the current time step. Prediction step uses a linear-Gaussian system model.
The predicted state estimate is:

x̂(k | k − 1) = Fx̂(k − 1|k − 1). (29.6)

The predicted estimate covariance is:

P(k | k − 1) = FP(k − 1 | k − 1)FT + Q. (29.7)

ii. Update
Given the prediction density computed above, the update step must be carried out. To do this, the
Kalman filter assumes a linear Gaussian measurement model as follows:

r(k) = Hx(k) + v(k). (29.8)

The update state estimate is:

x̂(k | k) = x̂(k | k − 1) + K(r(k) − Hx̂(k | k − 1)). (29.9)

The update estimate covariance is:

P(k | k) = (1 − KH)P(k | k − 1)(1 − KH)T + KPrKT. (29.10)

The value K is known as the Kalman gain and is computed as:

K = P(k | k − 1)H[HP(k | k − 1)HT + Pr]−1. (29.11)



768 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

29.5.3 KALMAN FILTER ON BLE BEACON SIGNALS
Kalman filters can be implemented on the data from BLE beacons [41]. State xi consists of the RSSI
value while the rate of change of RSSI at time i is a function of the state at time i − 1 and the process
noise, which is equal to:

xi = f (xi−1, vi−1). (29.12)

The received RSSI measurements zi at instant i from the beacon is a function of the state i − 1 and
the measured noise wi as follows:

zi = h(xi−1, wi). (29.13)

Assuming that the process and the measurement noise are Gaussian, then Eqs. (29.12) and (29.13)
are linear and can be written as:

xi = Fxi−1 + vi, (29.14)

where wi ∼ N(0, Q) and:

zi = Hxi + wi, (29.15)

where vi ∼ N(0, R)
Then, the prediction stage of the Kalman filter is:

x̂ī = Fx̂i, (29.16)

Pī = FPi−1FT + Q, (29.17)

and the update state is:

Ki = PīH
T (HPīH

T + R)−1, (29.18)

x̂i = x̂ī + Ki(zi − Hx̂ī), (29.19)

Pi = (I − KiH)Pī. (29.20)

As can be inferred, the higher the Kalman gain, the higher the influence of the measurements on the
state. The prediction and update are part of a recursive process, as shown in Fig. 29.5.

The state vector xi consists of the RSSI value yi and the rate of change �yi−1 as follows:

xi =
[

yi
�yi

]
. (29.21)

The higher the noise, the higher the fluctuation of �yi. The value of the current RSSI is assumed to
be the value of the previous RSSI plus the rate of change. Hence, Eq. (29.14) can be written as:

[
yi

�yi

]
=

[
1 δt
0 1

] [
yi−1

�yi−1

]
+

[
v

y
i

v
�y
i

]
(29.22)



29.6 EXPERIMENTS WITH BEACONS 769

Prediction

(1) Predict the state ahead

(2) Project the error covariance ahead

(2) Update the estimate with measurements

(3) Update error covariance

(1) Compute the Kalman Gain

Update

^ ^xi  = F xi-1+  Bvi-1

xi = xi  + Ki(zi - Hxi )^ ^^

Pi = F Pi-1FT+  Q

Ki = Pi H
T (HPi HT + R)-1

Pi = (I -Ki H)Pi

FIG. 29.5

Prediction and update steps in Kalman filter.

and the state transition matrix F is given by:

F =
[

1 δt
0 1

]
. (29.23)

Similarly, Eq. (29.15) can be written as:

[zi] = [
1 0

] [
yi

�yi

]
+ [wy

i ]. (29.24)

Once calibrated, the Kalman filter smooths the RSSI values. The smoothed RSSI value is then used
in the path loss model to calculate the distance between the receiver and the beacon.

29.6 EXPERIMENTS WITH BEACONS
In this section, experiments to examine the accuracy of beacons are described. The purpose of the
experiments is to measure the accuracy of beacons in terms of distance estimation, an important
parameter for the smart city applications that were described in previous sections. Beacons from
three popular hardware vendors were used. As discussed earlier, none of the examined beacons can
be claimed to be better than the others in the parameters that were measured. The purpose of the
experiment was not to find a winner, but to provide insights on each beacon’s accuracy and eventually
guidelines for future beacon application developers.

Because beacon signals are prone to interference, a data smoothing algorithm is implemented while
the efficiency of the Kalman filter is also examined [42]. Both data smoothing and the Kalman filter



770 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

are running on a smartphone application, although there are approaches where they can run on a server
and forward the data to the smartphone application [14].

29.6.1 EQUIPMENT
For the purposes of this experiment, beacons from three popular manufacturers were used to establish
more conclusive results: Estimote [43], Kontakt [44], and Gimbal [25] beacons were used. The
specifications of each beacon are shown in Table 29.2. The receiving and calculating device was a
Google Nexus 5, running Android version 6.0.1 and Bluetooth 4.0. An Android application that utilizes
the AltBeacon Android library is utilized to interact with the BLE beacons. Finally, a measuring tape
was used to provide accurate distance placements during the experiments.

29.6.2 DATA FILTERING
In order to examine each beacon’s performance and check whether it can be improved, the techniques
below are followed:

• Raw data collection. The raw data is the data collected straight from the beacon without further
processing. All the data is kept and used for distance estimation.

• Data smoothing. During data smoothing, an average of the received data is used in the distance
calculation on the receiving device.

• Kalman filter. The Kalman filter, as described in the previous section, is an algorithm that uses a
series of measurements observed over time, containing statistical noise and other inaccuracies, and
produces estimates [16,42].

29.6.3 EXPERIMENTAL ENVIRONMENT
To capture the behavior and performance of raw data, smoothed data, and Kalman filtering under
different environmental conditions, the experiments were conducted in two rooms of different sizes.
The first was a large lecture hall with dimensions 11 m × 9 m, and the second was a smaller meeting
room with dimensions 6 m×4 m. Both rooms were laid out with a set of tables and chairs. These rooms

Table 29.2 Beacon Specifications

Beacon Device

Estimote [43] Kontakt [44] Gimbal [25]

Power supply 4× CR2477, 3.0 V lithium
primary cell battery

2× CR2477, 1000 mAh,
3.0 V

1× CR2032, 3.0 V lithium ion battery

Radio Bluetooth 4.2 LE Bluetooth 4.0 LE Bluetooth 4.0 LE

Size

Length: 62.7 mm Length: 55 mm Length: 40 mm

Width: 41.2 mm Width: 56 mm Width: 28 mm

Height: 23.6 mm Height: 15 mm Height: 5.5 mm

Weight: 67 g Weight: 23 g Weight: 6.52 g



29.6 EXPERIMENTS WITH BEACONS 771

were chosen as they are a common size for many indoor environments. Furthermore, the furniture layout
defines a common set of physical objects found in many indoor environments. These two rooms capture
sufficient characteristics and qualities found in many indoor environments.

The variation in the two room sizes acts as differing environments to compare and contrast
experimental results. Control over environmental settings during the experiments was crucial as small
changes in the environment may have a large impact on beacon performance. To ensure environmental
conditions remained constant in each room, between iterations of the experiment, no objects were added
or removed from each room (i.e., chairs, tables, etc.) nor was anybody granted access to the rooms for
the duration of all experiments.

29.6.4 EXPERIMENTAL PROCEDURE
A three-step procedure was developed to get a suitable set of results for each beacon. The procedure
was conducted for each of the three types of data streams: no filter, smoothed, and Kalman-filtered.

i. The first part of the experiment obtains the raw RSSI values. The smartphone was placed at
different distances from the beacon and the raw RSSI values were captured.

ii. The second part of the experiment applies a smoothing algorithm to the incoming RSSI values,
eliminating the top and bottom 10% values. The top and bottom 10% are eliminated in an attempt
to remove extreme outliers. The processing takes place on the smartphone. The beacon and
smartphone are placed in the same locations as per the previous step.

iii. The third component of the experiment implements a Kalman filter on the smartphone. The
beacon and smartphone are placed in the same locations as per the previous steps.

Within each iteration, 14 measurements are taken, leading to a total of 56 data measurements per
beacon. The beacon remains stationary on a table while the smartphone moves along the table to the
following set of displacements: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, and 3.0 m. At
each distance, the RSSI and corresponding distance is recorded. The received values are compared with
the expected values, which are similar to the measured values that were described before and include
the factory-calibrated RSSI measurement at 1 m.

29.6.5 RESULTS AND ANALYSIS
The performance of each beacon in the large room is shown in Fig. 29.6 and the standard deviation
for the same room is shown in Table 29.3. It is clear that any filtering improves the accuracy of all the
beacons. It is also clear that the performance increases when the Kalman filter is used.

When only the raw data is considered, Estimote beacons have better performance than the other
two beacons. The use of the smoothing algorithm improves the performance for all three beacons but
the Gimbal beacons have the best performance overall with that technique. With the use of the Kalman
filter, all three beacons have further improvement in performance. In this case the Gimbal and Estimote
beacons have similar performance.

The performance of each beacon in the small room is shown in Fig. 29.7 and the standard deviation
for the same room is shown in Table 29.4. Similar to the previous experiment, any filtering improves
the accuracy of all the beacons and the best performance is observed when the Kalman filter is used.



772 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

FIG. 29.6

Large room (11 m × 9 m): average RSSI value of the beacons with the use of different filtering techniques. (A)
Estimote. (B) Kontakt. (C) Gimbal.



29.7 CONCLUSIONS 773

Table 29.3 Large Room (11 m × 9 m):
Standard Deviation in dBm

No Filter Smoothed Kalman Filter

Estimote 6.51 7.19 4.23

Kontakt 8.45 7.25 5.69

Gimbal 7.14 4.62 4.60

Table 29.4 Small Room (6 m × 4 m): Standard
Deviation in dBm

No Filter Smoothed Kalman Filter

Estimote 8.07 7.29 7.10

Kontakt 7.59 5.79 5.10

Gimbal 5.24 3.91 2.71

In contrast with the previous experiment, Gimbal beacons have the best performance when the raw
data are examined. This is an indicator on how sensitive the beacons are to environmental changes.
Another insight is the drastic performance improvement of the Gimbal and Kontakt beacons when the
Kalman filter is used.

It can be inferred that the raw data from beacons does not provide high accuracy in every
environment. Furthermore, the environment effects the performance of the beacons, hence beacons that
perform well in one room might not have similar performance in another room of the same building.
However, the implementation of simple filtering techniques can improve their performance. There are
also many techniques in the literature that can take into consideration the dynamic changes of the
environment and provide more efficient filtering.

29.7 CONCLUSIONS
In this chapter, an introduction to BLE beacons and their capabilities for smart city applications was
presented. BLE beacons are an attractive solution for many smart city applications. The characteristics
and protocols of the beacons were also described. Three use cases were discussed along with their
advantages and challenges. BLE beacons have limitations and pose security and privacy challenges as
well.

Experiments were conducted to examine the performance of different beacons in different rooms.
According to experimental results, the environment has great effect on the performance of the beacon.
Their performance can be improved through data filtering such as with the use of a Kalman filter.

BLE beacons can be used in many smart city applications. However, the selection of the proper
beacon and the optimal configuration of the beacon with the application environmental parameters are
important factors that should always be considered.



774 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

FIG. 29.7

Small room (6 m × 4 m): average RSSI value of the beacons with the use of different filtering techniques. (A)
Estimote. (B) Kontakt. (C) Gimbal.



REFERENCES 775

REFERENCES
[1] Li X, Lu R, Liang X, Shen X, Chen J, Lin X. Smart community: an internet of things application. IEEE

Commun Mag 2011;49(11):68–75. https://doi.org/10.1109/MCOM.2011.6069711.
[2] Atzori L, Iera A, Morabito G. From “smart objects” to “social objects”: the next evolutionary step of the

internet of things. IEEE Commun Mag 2014;52(1):97–105. https://doi.org/10.1109/MCOM.2014.6710070.
[3] Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart cities. IEEE Internet

Things J 2014;1(1):22–32. https://doi.org/10.1109/JIOT.2014.2306328.
[4] Vlacheas P, Giaffreda R, Stavroulaki V, Kelaidonis D, Foteinos V, Poulios G, et al. Enabling smart

cities through a cognitive management framework for the internet of things. IEEE Commun Mag
2013;51(6):102–11. https://doi.org/10.1109/MCOM.2013.6525602.

[5] Djahel S, Doolan R, Muntean GM, Murphy J. A communications-oriented perspective on traffic man-
agement systems for smart cities: challenges and innovative approaches. IEEE Commun Surv Tutorials
2015;17(1):125–51. https://doi.org/10.1109/COMST.2014.2339817.

[6] Yoshimura Y, Krebs A, Ratti C. Noninvasive Bluetooth monitoring of visitors’ length of stay at the Louvre.
IEEE Pervasive Comput 2017;16(2):26–34. https://doi.org/10.1109/MPRV.2017.33.

[7] Daely PT, Reda HT, Satrya GB, Kim JW, Shin SY. Design of smart led streetlight system for smart city
with web-based management system. IEEE Sens J 2017;17(18):6100–10. https://doi.org/10.1109/JSEN.2017.
2734101.

[8] Saab SS, Nakad ZS. A standalone RFID indoor positioning system using passive tags. IEEE Trans Ind
Electron 2011;58(5):1961–70. https://doi.org/10.1109/TIE.2010.2055774.

[9] Lau PY, Yung KKO, Yung EKN. A low-cost printed CP patch antenna for RFID smart bookshelf in library.
IEEE Trans Ind Electron 2010;57(5):1583–9. https://doi.org/10.1109/TIE.2009.2035992.

[10] Aguirre E, Lopez-Iturri P, Azpilicueta L, Redondo A, Astrain JJ, Villadangos J, et al. Design and imple-
mentation of context aware applications with wireless sensor network support in urban train transportation
environments. IEEE Sens J 2017;17(1):169–78. https://doi.org/10.1109/JSEN.2016.2624739.

[11] Collins K, Mangold S, Muntean GM. Supporting mobile devices with wireless LAN/MAN in large controlled
environments. IEEE Commun Mag 2010;48(12):36–43. https://doi.org/10.1109/MCOM.2010.5673070.

[12] Hossain AKMM, Van HN, Jin Y, Soh WS. Indoor localization using multiple wireless technologies. In: 2007
IEEE international conference on mobile ad hoc and sensor systems; 2007. p. 1–8. https://doi.org/10.1109/
MOBHOC.2007.4428622.

[13] Han T, Ge X, Wang L, Kwak KS, Han Y, Liu X. 5G converged cell-less communications in smart cities. IEEE
Commun Mag 2017;55(3):44–50. https://doi.org/10.1109/MCOM.2017.1600256CM.

[14] Zafari F, Papapanagiotou I. Enhancing iBeacon based micro-location with particle filtering. In: 2015 IEEE
global communications conference (GLOBECOM); 2015. p. 1–7. https://doi.org/10.1109/GLOCOM.2015.
7417504.

[15] Ozer A, John E. Improving the accuracy of Bluetooth low energy indoor positioning system using Kalman
filtering. In: 2016 international conference on computational science and computational intelligence (CSCI);
2016. p. 180–5. https://doi.org/10.1109/CSCI.2016.0041.

[16] Zhang K, Zhang Y, Wan S. Research of RSSI indoor ranging algorithm based on Gaussian–Kalman linear
filtering. In: 2016 IEEE advanced information management, communicates, electronic and automation control
conference (IMCEC); 2016. p. 1628–32. https://doi.org/10.1109/IMCEC.2016.7867493.

[17] Takahashi C, Kondo K. Accuracy evaluation of an indoor positioning method using iBeacons. In: 2016 IEEE
5th global conference on consumer electronics; 2016. p. 1–2. https://doi.org/10.1109/GCCE.2016.7800465.

[18] Yang L, Wang Q, Wang G. Positioning in an indoor environment based on iBeacons. In: 2016 IEEE
international conference on information and automation (ICIA); 2016. p. 894–9. https://doi.org/10.1109/
ICInfA.2016.7831945.

[19] Faragher R, Harle R. Location fingerprinting with Bluetooth low energy beacons. IEEE J Sel Areas Commun
2015;33(11):2418–28. https://doi.org/10.1109/JSAC.2015.2430281.

http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0100


776 CHAPTER 29 BEACONS AND THE CITY: SMART INTERNET OF THINGS

[20] He W, Ho PH, Tapolcai J. Beacon deployment for unambiguous positioning. IEEE Internet Things J
2017;4(5):1370–9. https://doi.org/10.1109/JIOT.2017.2708719.

[21] Kim DY, Kim SH, Choi D, Jin SH. Accurate indoor proximity zone detection based on time window and
frequency with Bluetooth low energy. Proc Comput Sci 2015;56(Supplement C):88–95. The 10th interna-
tional conference on future networks and communications (FNC 2015)/The 12th international conference on
mobile systems and pervasive computing (MobiSPC 2015) affiliated workshops, http://www.sciencedirect.
com/science/article/pii/S1877050915016804. https://doi.org/https://doi.org/10.1016/j.procs.2015.07.199.

[22] Ng PC, She J, Park S. High resolution beacon-based proximity detection for dense deployment. IEEE Trans
Mobile Comput 2017. https://doi.org/10.1109/TMC.2017.2759734.

[23] Bluetooth Special Interest Group. Bluetooth 4.0 core specification. https://www.bluetooth.com/specifications/
bluetooth-core-specification.

[24] 10 Things about Bluetooth beacons you need to know. http://academy.pulsatehq.com/bluetooth-beacons.
[25] Gimbal. https://gimbal.com/.
[26] Bluecats. https://www.bluecats.com/.
[27] Cyalkit-e02. http://www.cypress.com/documentation/development-kitsboards/cyalkit-e02-solar-powered-

ble-sensor-beacon-reference-design.
[28] Spachos P, Mackey A. Energy efficiency and accuracy of solar powered BLE beacons. Comput Commun

2018;119:94–100.
[29] Apple. Getting started with iBeacon; 2014. https://developer.apple.com/ibeacon/Getting-Started-with-

iBeacon.pdf.
[30] Eddystone. https://github.com/google/eddystone.
[31] Apple. Specifications on AltBeacon; 2016. https://github.com/AltBeacon/spec.
[32] Geobeacon. https://github.com/Tecno-World/GeoBeacon.
[33] Spachos P, James M, Gregori S. Power tradeoffs in mobile video transmission for smartphones. Com-

put Commun 2018;118:163–170. http://www.sciencedirect.com/science/article/pii/S0140366417305625.
https://doi.org/https://doi.org/10.1016/j.comcom.2017.10.017.

[34] Spachos P, Song L, Gregori S. Power consumption of prototyping boards for smart room temperature monitor-
ing. In: 2017 IEEE 22nd international workshop on computer aided modeling and design of communication
links and networks (CAMAD); 2017. p. 1–6. https://doi.org/10.1109/CAMAD.2017.8031633.

[35] Mazuelas S, Bahillo A, Lorenzo RM, Fernandez P, Lago FA, Garcia E, et al. Robust indoor positioning
provided by real-time RSSI values in unmodified WLAN networks. IEEE J Sel Top Signal Process
2009;3(5):821–31. https://doi.org/10.1109/JSTSP.2009.2029191.

[36] Wu K, Xiao J, Yi Y, Chen D, Luo X, Ni LM. CSI-based indoor localization. IEEE Trans Parallel Distrib Syst
2013;24(7):1300–9. https://doi.org/10.1109/TPDS.2012.214.

[37] Tse D, Viswanath P. Fundamentals of wireless communication. Cambridge University Press; 2004.
[38] Goldsmith A. Wireless communications. Cambridge University Press; 2005.
[39] Wang Y, Yang X, Zhao Y, Liu Y, Cuthbert L. Bluetooth positioning using RSSI and triangulation methods.

In: 2013 IEEE 10th consumer communications and networking conference (CCNC); 2013. p. 837–42.
https://doi.org/10.1109/CCNC.2013.6488558.

[40] Paul AS, Wan EA. RSSI-based indoor localization and tracking using sigma-point Kalman smoothers. IEEE
J Sel Top Signal Process 2009;3(5):860–73. https://doi.org/10.1109/JSTSP.2009.2032309.

[41] Guvenc I. Enhancements to RSS based indoor tracking systems using Kalman filters. In: GSPx & international
signal processing conference; 2003.

[42] Mackey A, Spachos P. Performance evaluation of beacons for indoor localization in smart buildings. In: 2017
IEEE global conference on signal and information processing (GlobalSIP); 2017.

[43] Estimote. https://estimote.com/.
[44] Kontakt. https://kontakt.io/.

http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0105
https://doi.org/https://doi.org/10.1016/j.procs.2015.07.199
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0145
https://doi.org/https://doi.org/10.1016/j.comcom.2017.10.017
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00029-8/rf0215


CHAPTER

30BIG DATA

Morteza Mardani∗, Gonzalo Mateos†, Georgios B. Giannakis‡

Department of Electrical Engineering, Stanford University, Stanford, CA, United States∗ Department of Electrical and

Computer Engineering, University of Rochester, Rochester, NY, United States† Department of Electrical and Computer

Engineering, University of Minnesota, Minneapolis, MN, United States‡

30.1 LEARNING FROM BIG DATA: OPPORTUNITIES AND CHALLENGES
We live in an era of “data deluge.” Pervasive sensors collect massive amounts of information on every
bit of our lives, churning out enormous streams of raw data in a wide variety of formats. To get a
sense of scale, users of the Facebook social network happily feed 10 billion messages per day, click the
“like” button 4.5 billion times, and upload 350 million new pictures each and every day. Consumer data
are collected every time we browse or purchase products online, as business models aim to provide
services that are increasingly personalized. Automated sensors capture essentially every snapshot of
complex phenomena of interest through high-resolution measurements. Mining information from these
large volumes of data is expected to bring significant science and engineering advances along with
consequent improvements in quality of life.

While big data may bring “big blessings,” there are formidable challenges in dealing with large-
scale datasets [1]. The sheer volume of data makes it often impossible to run analytics using central
processors and storage units. Ubiquitous network data are also geographically spread, and collecting
the data might be infeasible due to communication costs or privacy concerns. Consequently, datasets
are often incomplete and thus a sizable portion of entries are missing. Moreover, large-scale data are
prone to contain corrupted measurements, communication errors, and even suffer from anomalies such
as cyberattacks. Furthermore, as many sources continuously generate data in real time, analytics must
often be performed online as well as without an opportunity to revisit past data.

Conventional statistical inference tools cope with the notorious curse of dimensionality as well
as with corruptions and anomalies by exploiting latent structure (of low intrinsic dimensionality) in
the data. Such structure typically emerges due to dependencies present in real-world signals. In large-
scale networks, complex interactions spanning the social, temporal, and spatial dimensions render such
graph-indexed data highly correlated. For instance, the origin-to-destination (OD) traffic that flows in
the backbone of Internet Protocol (IP) networks exhibits dependencies mainly due to traffic generation
patterns [2], which can facilitate network monitoring tasks such as identifying traffic volume anomalies
resulting from cyberattacks [3].

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00030-4
Copyright © 2018 Elsevier Inc. All rights reserved.

777



778 CHAPTER 30 BIG DATA

Table 30.1 Notation

Notation Description

x vector

X matrix

X set

(·)� matrix transpose

tr{·} matrix trace

σi ith singular value of a matrix

‖X‖2
F := tr{X�X} matrix Frobenius norm

‖X‖∗ := ∑
i σi matrix nuclear norm

‖X‖ := maxi σi matrix spectral norm

‖x‖2 vector �2-norm

⊗ Kronecker product

vec(X) concatenates columns of X on top of each other

unvec(x) unfolds x to a matrix

O(·) order of operation count

λmin minimum eigen value

∇f gradient of f

∇2f Hessian of f

In this context, the goal of this chapter is to develop a framework for scalable decentralized
and streaming analytics that facilitates machine learning for big data. For simplicity of exposition,
the presentation focuses on the matrix completion problem with applications to IP network health
monitoring. However, the scope of the ensuing framework can be broadened to accommodate other
fundamental low-rank recovery tasks such as robust PCA and low-rank plus compressed-sparse
recovery. Modern datasets are often indexed by several variables or dimensions giving rise to a
multiway array (or tensor), in general. This chapter focuses on two-way arrays, or matrices, but
extension to tensors is possible. Readers interested in delving into these generalizations are referred
to [4–8]. The notations used througout the chapter are listed in Table 30.1.

30.2 MATRIX COMPLETION AND NUCLEAR NORM
Let X := [xl,t] ∈ RL×T be a low-rank matrix [rank(X) � min(L, T)] and a set � ⊆ {1, . . . , L} ×
{1, . . . , T} of index pairs (l, t) that define a sampling of the entries of X. Given a number of (possibly)
noise corrupted measurements

yl,t = xl,t + vl,t, (l, t) ∈ � (30.1)

the goal is to estimate low-rank X by denoising the observed entries and imputing the missing ones.
Introducing the sampling operator P�(·), which sets the entries of its matrix argument not in � to zero
and leaves the rest unchanged, the data model can be compactly written in matrix form as



30.2 MATRIX COMPLETION AND NUCLEAR NORM 779

P�(Y) = P�(X + V). (30.2)

A natural estimator accounting for the low rank of X will be sought to fit the data P�(Y) in the least-
squares (LS) error sense as well as minimize the rank of X; see e.g., [9]. However, minimizing the
nonconvex matrix rank demands combinatorial complexity, and it is NP-complete [10,11]. Adopting the
nuclear norm ‖X‖∗ := ∑

i σi(X) (σi signifies ith singular value) as a convex surrogate of rank [12,13],
one is then motivated to solve

(P1) min
X

1

2
‖P�(Y − X)‖2

F + λ‖X‖∗, (30.3)

where λ ≥ 0 is the rank-controlling parameter. Being convex (P1) is appealing, and it offers well-
documented guarantees for stable and exact recovery in numerous tasks such as matrix completion
[9,14] and low-rank plus (compressed) sparse matrix decomposition [15–17]. For the matrix completion
setting, typical results establish that if the energy of X is sufficiently spread out, which can be fulfilled
for instance when the singular vectors are nonspiky, then with only O(Pr log2(P)) randomly chosen
matrix entries (r := rank(X) and P := max(L, T)), one can accurately recover the missing entries in the
complement of � [9,14].

However, nuclear-norm regularization lacks separability across rows and columns of X because
singular values σi(X) depend on all entries of the matrix. This coupling challenges streaming and
decentralized data analytics, where columns of X are acquired sequentially in time, or rows of X
are geographically dispersed throughout a network, respectively. The following section introduces
an alternative characterization of the nuclear-norm that proves instrumental to developing scalable
decentralized and online algorithms to tackle (P1).

Separable rank regularization. Being low-rank matrix X admits a bilinear factorization X = LQ�,
with factor matrices L ∈ RL×ρ and Q ∈ RT×ρ . The value of ρ ≥ r is chosen sufficiently large to
overestimate rank(X). Interestingly, the nuclear norm of X can be alternatively written as the solution
of the following nonconvex problem [18,19]

‖X‖∗ := min{L,Q}
1

2

{
‖L‖2

F + ‖Q‖2
F

}
, s.t. X = LQ�. (30.4)

The optimization (30.4) is over all possible bilinear factorizations of X, so that the number of columns
of L and Q is also a variable. For an arbitrary matrix X with SVD X = UX�XV�

X , the minimum in

Eq. (30.4) is attained for L = UX�
1/2
X and Q = VX�

1/2
X . Establishing the uniqueness of such a solution

requires semidefinite programming (SDP) arguments [18].
Adopting this characterization is useful because the Frobenius norm cost in Eq. (30.4) is separable

across the entries of the factor matrices, but it comes at the price of nonconvexity for the corresponding
recovery task. However, as argued later under certain conditions, this choice comes with no loss of
optimality. Next, we leverage (30.4) to obtain a separable cost equivalent to that in (P1) that can be
minimized in a decentralized fashion via the alternating-direction method of multipliers [20–22].



780 CHAPTER 30 BIG DATA

30.3 DECENTRALIZED ANALYTICS
The matrix completion task in (P1) assumes that the samples P�(Y) are entirely available at a central
processing unit, and they can be jointly processed to infer X. Collecting the entire data is challenging in
various applications, or it can be even impossible, e.g., in wireless sensor networks (WSNs) operating
under stringent power budget constraints. In other cases such as the Internet or collaborative marketing
studies, agents providing private data for, e.g., fitting a low-rank preference model, may not be willing
to share their training data but only the learning results. Performing the optimization in a centralized
fashion raises robustness concerns as well because the central processor represents an isolated point of
failure.

Several customized iterative algorithms have been proposed to solve instances of (P1), and have
been shown effective in tackling low- to medium-size problems; see e.g., [4,14,18]. However, most
algorithms require computation of singular values per iteration and become prohibitively expensive
when dealing with high-dimensional data, as argued in [23]. In a similar vein, stochastic gradient
algorithms were recently developed for large-scale problems entailing regularization with the nuclear
norm [6,23]. Even though iterations in [23] are highly parallelizable, they are not applicable to networks
of arbitrary topology. The aforementioned reasons motivate well developing reduced-complexity
decentralized algorithms for nuclear-norm minimization.
Network data model. Consider N networked agents capable of performing some local computations
as well as exchanging messages among directly connected neighbors. An agent should be understood
as an abstract entity, e.g., a sensor in a WSN or a router monitoring Internet traffic. The network
is modeled as an undirected graph G(N ,L), where the set of nodes N := {1, . . . , N} corresponds
to the network agents, and the edges (links) in L := {1, . . . , L} represent pairs of agents that can
communicate. Agent n ∈ N communicates with its single-hop neighboring peers in Jn, and the size of
the neighborhood will be henceforth denoted by |Jn|. To ensure that the data from an arbitrary agent
can eventually percolate through the entire network, it is assumed that graph G is connected; i.e., there
exists a (possibly) multihop path connecting any two agents.
Decentralized matrix completion. With reference to the matrix completion task in (P1), in the network
setting envisioned here each agent n ∈ N acquires a few incomplete and noise-corrupted rows of matrix
Y ∈ RL×T . Specifically, the local data available to agent n is matrix P�n(Yn), where Yn ∈ RLn×T ,∑N

n=1 Ln = L, and Y := [
Y�

1 , . . . , Y�
N

]� = X + V. The index pairs in �n are those in � for which the
row index matches the rows of Y observed by agent n. With regards to the decision variables, partition

also X := [
X�

1 , . . . , X�
N

]� ∈ RL×T similar to Y, where Xn ∈ RLn×T , n = 1, . . . , N. Agents collaborate
to form the wanted estimator (P1) in a decentralized fashion, which can be equivalently rewritten as

(P1) min
X

N∑
n=1

[
1

2
‖P�n (Yn − Xn)‖2

F + λ

N
‖X‖∗

]
.

Our objective is to develop a decentralized matrix-completion (DMC) algorithm based on in-network
processing of the locally available data. The described setup naturally suggests three features that the
algorithm should exhibit: (f1) agent n ∈ N should obtain an estimate of Xn, which coincides with the
corresponding solution of the centralized estimator (P1) that uses the entire data P�(Y); (f2) processing
per agent should be kept as simple as possible; and (f3) the overhead for interagent communications
should be affordable and confined to single-hop neighborhoods.



30.3 DECENTRALIZED ANALYTICS 781

To facilitate reducing the computational complexity and memory storage requirements of the
decentralized algorithm sought, it is henceforth assumed that the decision variable X in (P1) has rank
at most ρ. For instance, empirical analysis of real Internet traffic data has revealed that OD flow traffic
matrices typically have rank[X] ∈ [5, 8]; hence, one can safely choose ρ = 10 [24]. In addition, recall
that the rank of the solution X̂ in (P1) is controlled by the choice of λ, and can be made small enough
for sufficiently large λ. As argued next, the smaller the value of ρ, the more efficient the algorithm
becomes.

Because rank(X̂) ≤ ρ, (P1)’s search space is effectively reduced and one can factorize the decision
variable as X = LQ�, where L and Q are L × ρ and T × ρ matrices, respectively. Adopting this
reparametrization of X in (P1) one obtains the following equivalent optimization problem

(P2) min{L,Q}

N∑
n=1

[
1

2
‖P�n (Yn − LnQ�)‖2

F + λ

N
‖LQ�‖∗

]
,

which is nonconvex due to the bilinear terms LnQ�, and L := [
L�

1 , . . . , L�
N

]�
. The number of variables

is reduced from LT in (P1), to ρ(L + T) in (P2). The savings can be significant when ρ is in the
order of a few dozen, and both L and T are large. Problem (P2) is still not amenable to decentralized
implementation due to: (i) the nonseparable nuclear norm present in the cost function; and (ii) the global
variable Q coupling the per-agent summands.

Leveraging (30.4), the following reformulation of (P2) provides an important first step toward
obtaining a decentralized estimator:

(P3) min{L,Q}

N∑
n=1

[
1

2
‖P�n (Yn − LnQ�)‖2

F + λ

2N

{
N‖Ln‖2

F + ‖Q‖2
F

}]
.

Building on Eq. (30.4) and because rank(X̂) ≤ ρ, it readily follows that the separable Frobenius-norm
regularization in (P3) comes with no loss of optimality, meaning that (P1) and (P3) admit identical
solutions. This equivalence ensures that by finding the global minimum of (P3) [which can have
significantly fewer variables than (P1)], one can recover the optimal solution of (P1). However, because
(P3) is nonconvex, it may have stationary points that need not be globally optimal. Interestingly, the
next proposition offers a global optimality certificate for the stationary points of (P3). For the detailed
proof, see [7, Appendix A].

Proposition 30.1. Let {L̄, Q̄} be a stationary point of (P3). If ‖P�(Y − L̄Q̄
�)‖ ≤ λ (no subscript

in ‖.‖ signifies spectral norm), then X̂ = L̄Q̄
�

is the globally optimal solution of (P1). �
To decompose the cost function in (P3), in which summands are coupled through the global

variables Q, introduce auxiliary variables {Qn}N
n=1 representing local estimates of Q per agent n. These

local estimates are utilized to form the separable constrained minimization problem

(P4) min{Ln,Qn}

N∑
n=1

[
1

2
‖P�n (Yn − LnQ�

n )‖2
F + λ

2
‖Ln‖2

F + λ

2N
‖Qn‖2

F

]

s.t. Qn = Qm, m ∈ Jn, n ∈ N .

Clearly, (P3) and (P4) are equivalent optimization problems because the graph G is assumed to be
connected. The equivalence should be understood in the sense that Q̂1 = Q̂2 = · · · = Q̂N = Q̂, where



782 CHAPTER 30 BIG DATA

{Q̂n}n∈N and Q̂ are the optimal solutions of (P4) and (P3), respectively. Of course, the corresponding
estimates of L will coincide as well. Even though consensus is a fortiori imposed within neighborhoods,
it extends to the whole (connected) network and local estimates agree on the global solution of (P3). To
arrive at the desired decentralized algorithm, it is convenient to reparameterize the consensus constraints
in (P4) as

Qn =F̄m
n , Qm = F̃

m
n , and F̄m

n = F̃
m
n , m ∈ Jn, n ∈ N , (30.5)

where {F̄m
n , F̃

m
n }m∈Jn

n∈N are auxiliary optimization variables that will be eventually eliminated.
Alternating-direction method of multipliers. To tackle the constrained minimization problem (P4),
associate dual variables D̄

m
n and D̃

m
n with the consensus constraints in Eq. (30.5). Next introduce the

quadratically augmented Lagrangian function

Lc (V1,V2,V3,M) =
N∑

n=1

[
1

2
‖P�n (Yn − LnQ�

n )‖2
F + λ

2N
{N‖Ln‖2

F + ‖Qn‖2
F}

]

+
N∑

n=1

∑
m∈Jn

{
〈C̄m

n , Qn − F̄m
n 〉 + 〈C̃m

n , Qm − F̃
m
n 〉

}

+ c

2

N∑
n=1

∑
m∈Jn

{
‖Qn − F̄m

n ‖2
F + ‖Qm − F̃

m
n ‖2

F

}
, (30.6)

where c is a positive penalty coefficient, and the primal variables are split into three groups
V1 := {Qn}N

n=1, V2 := {Ln}N
n=1, and V3 := {F̄m

n , F̃
m
n }m∈Jn

n∈N . For notational convenience, collect all

multipliers in M := {C̄m
n , C̃

m
n , }m∈Jn

n∈N . The remaining constraints in Eq. (30.5), namely CV := {F̄m
n =

F̃
m
n , m ∈ Jn, n ∈ N }, have not been dualized.

To minimize (P4) in a decentralized fashion, a variation of the alternating-direction method of
multipliers (ADMM) will be adopted here. The ADMM is an iterative augmented Lagrangian method
especially well suited for parallel processing [20,21], which has been proven successful to tackle the
optimization tasks encountered, e.g., with decentralized estimation problems [22,25,26]. The proposed
solver entails an iterative procedure comprising four steps per iteration k = 1, 2, . . .

[S1] Update dual variables for all n ∈ N , m ∈ Jn:

C̄m
n [k] = C̄m

n [k − 1] + μ(Qn[k] − F̄m
n [k]), (30.7)

C̃
m
n [k] = C̃

m
n [k − 1] + μ(Qm[k] − F̃

m
n [k]). (30.8)

[S2] Update the first group of primal variables:

V1[k + 1] = arg min
V1

Lc (V1,V2[k],V3[k],M[k]) . (30.9)

[S3] Update the second group of primal variables:

V2[k + 1] = arg min
V2

Lc (V1[k + 1],V2,V3[k],M[k]) . (30.10)



30.3 DECENTRALIZED ANALYTICS 783

[S4] Update the auxiliary primal variables:

V3[k + 1] = arg min
V3∈CV

Lc (V1[k + 1],V2[k + 1],V3,M[k]) . (30.11)

This four-step procedure implements a block-coordinate descent method with dual variable updates.
At each step of minimizing the augmented Lagrangian, the variables not being updated are treated as
fixed and are substituted with their most up-to-date values. Different from ADMM, the alternating-
minimization step here generally cycles over three groups of primal variables V1–V3 (cf. two groups in
ADMM [20]). In [S1], μ > 0 is the step size of the subgradient ascent iterations on the dual problem.
While it is common in ADMM implementations to select μ = c, a distinction between the step size
and the penalty parameter is made explicit here in the interest of generality.

Reformulating the estimator (P1) to its equivalent form (P4) renders the augmented Lagrangian
in Eq. (30.6) highly decomposable. The separability comes in two flavors, both with respect to the
variable groups V1-V3, as well as across the network agents n ∈ N . This in turn leads to highly
parallelized, simplified recursions corresponding to the aforementioned four steps. Specifically, it
is shown in [7, Appendix B] that if the multipliers are initialized to zero, [S1]–[S4] constitute the
DMC algorithm tabulated under Algorithm 30.1. Careful inspection of Algorithm 30.1 reveals that
the inherently redundant auxiliary variables and multipliers {F̄m

n , F̃
m
n , C̃

m
n } have been eliminated. Agent

n does not need to separately keep track of all its nonredundant multipliers {C̄m
n }m∈Jn , but only to

update their respective (scaled) sums On[k] := 2
∑

m∈Jn
C̄

m
n [k]. To derive Algorithm 30.1 it is useful

to recognize that linearity of P�n implies that vec(P�n(Z)) = �nvec(Z), where �n ∈ {0, 1}LnT×LnT is
a diagonal matrix.

Algorithm 30.1 DMC ALGORITHM PER AGENT N ∈ N
Input Yn, �n, λ, c, μ

Initialize O[0] = 0T×ρ , and Ln[1], Qn[1] at random
for k = 1, 2,. . . do

Receive {Qm[k]} from neighbors m ∈ Jn
[S1] Update local dual variables:

On[k] = On[k − 1] + μ
∑

m∈Jn
(Qn[k] − Qm[k])

[S2] Update first group of local primal variables:

En[k + 1] =
{

(IT ⊗ L�
n [k])�n(IT ⊗ Ln[k]) + (λ/N + 2c|Jn|)IρT

}−1

Gn[k + 1] := (IT ⊗ L�
n [k])�nvec(Yn) − vec(O�

n [k]) + cvec(
∑

m∈Jn
(Q�

n [k] + Q�
m [k]))

Q�
n [k + 1] = unvec

(
En[k + 1]Gn[k + 1])

[S3] Update second group of local primal variables:

Dn[k +1]:=
{
(Q�

n [k + 1]⊗ ILn )�n(Qn[k +1]⊗ ILn )+λIρLn

}−1

Ln[k + 1] = unvec
(

Dn[k + 1] (Q�
n [k + 1] ⊗ ILn )�nvec(Yn)

)
Broadcast {Qn[k + 1]} to neighbors m ∈ Jn

end for
Return Qn, Ln



784 CHAPTER 30 BIG DATA

Computational and communication cost. The per-agent computational complexity of the DMC
algorithm is dominated by repeated inversions of ρ × ρ and ρLn × ρLn matrices to obtain En[k + 1]
and Dn[k + 1], respectively, and matrix multiplications to update Qn[k + 1] and Ln[k + 1]. Notice that
En[k + 1] ∈ RρT×ρT has block-diagonal structure with blocks of size ρ × ρ. Overall, the per-iteration
complexity across the network is upper bounded by O(ρ3NT), which grows linearly with the network
size. This is affordable because in practice ρ is typically small for a number of applications of interest
(cf. the low-rank assumption). In addition, Ln, the number of row vectors acquired per agent, and T ,
the number of time instants for data collection, can be controlled by the designer to accommodate
a prescribed maximum computational complexity. One can also benefit from the decomposability
of Eqs. (30.9) and (30.10) across rows of L and Q, respectively, and parallelize the row updates. This
way, one only needs to invert ρ × ρ matrices.

On a per-iteration basis, network agents communicate their updated local estimates Qn[k] only with
their neighbors in order to carry out the updates of primal and dual variables during the next iteration.
In terms of communication cost, Qn[k] is a T × ρ matrix and its transmission does not incur significant
overhead for small values of ρ. Observe that the dual variables On[k] need not be exchanged, and the
overall communication cost does not depend on the network size N.

Convergence and optimality. When employed to solve nonconvex problems such as (P4), ADMM (or
its variant used here) offers no convergence guarantees. However, there is ample experimental evidence
in the literature that supports empirical convergence of ADMM, especially when the nonconvex
problem at hand exhibits “favorable” structure. For instance, (P4) is biconvex and gives rise to the
strictly convex optimization subproblems (30.9)–(30.11), which admit unique closed-form solutions
per iteration. This observation and the linearity of the constraints endow Algorithm 30.1 with good
convergence properties—extensive numerical tests in [7] demonstrate that this is indeed the case. The
following proposition proved in [7, Appendix C] asserts that upon convergence, Algorithm 30.1 attains
consensus and global optimality thus yielding the performance of the centralized estimator (P1).

Proposition 30.2. If the sequence of iterates {Qn[k], Ln[k]}n∈N generated by Algorithm 30.1

converge to {Q̄n, L̄n}n∈N , and G is connected, then: i) Q̄n = Q̄m n, m ∈ N ; and ii) if ‖P�(Y−L̄Q̄
�
1 )‖ ≤

λ, then X̂ = L̄Q̄
�
1 , where X̂ is the global optimum of (P1). �

30.3.1 INTERNET DELAY CARTOGRAPHY
End-to-end network latency information is critical toward enforcing quality-of-service constraints
in many Internet applications. However, probing all pairwise delays becomes infeasible in large-
scale networks. If one collects the end-to-end latencies of source-sink pairs (i, j) in a delay matrix
X := [xi,j] ∈ RN×N , strong dependencies among path delays render X low rank [27]. This is mainly
because the paths with nearby end nodes often overlap and share common bottleneck links. This
property of X along with the decentralized processing requirements of large-scale networks motivates
well the adoption of the DMC algorithm for network-wide path latency prediction. Given that the
nth row of X is partially available to agent n, the goal is to impute the missing delays through agent
collaboration.

End-to-end flow latencies are collected from the operation of the Internet-2 backbone network
during August 18–22, 2011 [28]. The Internet-2 network (Fig. 30.1 (left)) comprises N = 9 agents,
L = 26 links, and F = 81 flows. Spectral analysis of the delay matrix reveals that the first four singular



30.3 DECENTRALIZED ANALYTICS 785

2
4

6
8

2
4

6
8

0

10

20

30

40

Node index
Node index

D
el

ay

True
Estimated

FIG. 30.1

Internet-2 end-to-end delay prediction. (top) Topology of the Internet-2 backbone network. (bottom) Predicted
and true end-to-end delays of the Internet-2 network when only 20% of the paths are randomly sampled.



786 CHAPTER 30 BIG DATA

values are markedly dominant, demonstrating that X is low rank. A fraction of the entries in X are
purposely dropped to yield an incomplete delay matrix P�(X). After running the DMC algorithm, the
true and predicted latencies are depicted in Fig. 30.1 (bottom) (for 20% missing data). The relative
prediction error is around 10%.

30.4 STREAMING ANALYTICS
Extracting latent low-dimensional structure from high-dimensional data is of paramount importance
in timely inference tasks encountered with big data analytics. However, the collection of massive
amounts of data far outweighs the ability of modern computers to store and analyze them in a batch
fashion. In addition, in practice (possibly incomplete) observations are acquired sequentially in time,
which motivates updating previously obtained estimates rather than recomputing new ones from scratch
each time a new datum becomes available. In this context, the present section permeates benefits from
rank minimization to scalable imputation of missing data, via tracking low-dimensional subspaces and
unraveling latent structure from incomplete streaming data.

Subspace tracking has a long history in signal processing. An early noteworthy representative
is the projection approximation subspace tracking (PAST) algorithm [29]; see also [30]. Recently,
an algorithm (termed GROUSE) for tracking subspaces from incomplete observations was put forth
in [31], based on incremental gradient descent iterations on the Grassmannian manifold of subspaces.
Recent analysis has shown that GROUSE can converge locally at an expected linear rate [32], and
that it is tightly related to the incremental SVD algorithm [33]. PETRELS is a second-order recursive
LS type algorithm that extends the seminal PAST iterations to handle missing data [34]. As noted
in [35], the performance of GROUSE is limited by the existence of barriers in the search path
on the Grassmannian, which may lead to GROUSE iterations being trapped at local minima; see
also [34]. Lack of regularization in PETRELS can also lead to unstable (even divergent) behaviors,
especially when the amount of missing data is large. Accordingly, the convergence results for PETRELS
are confined to the full-data setting where the algorithm boils down to PAST [34]. Relative to all
aforementioned works, the algorithmic framework for online matrix completion presented here offers
provable convergence and theoretical performance guarantees in a stationary setting, and is flexible to
accommodate tensor streaming data models as well.
Streaming data model. Consider a sequence of high-dimensional data vectors, which are corrupted
with additive noise and may be missing some of their entries. At time instant t, the incomplete streaming
observations are modeled as

Pωt (yt) = Pωt (xt + vt), t = 1, 2, . . . , (30.12)

where xt ∈ RL is the signal of interest and vt stands for the noise. The set ωt ⊂ {1, 2, . . . , L} contains the
indices of available observations while the corresponding sampling operator Pωt (·) sets the entries of
its vector argument not in ωt to zero, and keeps the rest unchanged; note that Pωt (yt) ∈ RL. Depending
on the application, these acquired vectors could, e.g., correspond to (vectorized) images, link traffic
measurements collected across physical links of a computer network, or movie ratings provided by



30.4 STREAMING ANALYTICS 787

Netflix users. Suppose that the sequence {xt}∞t=1 lives in a low-dimensional (�L) linear subspace Lt,
which is allowed to change slowly over time. Given the incomplete observations {Pωτ (yτ )}t

τ=1, ensuing
sections deal with online (adaptive) estimation of Lt, and reconstruction of xt as a byproduct. The
reconstruction here involves imputing the missing elements, and denoising the observed ones.

Online matrix completion. Collect the indices of available observations up to time t in the set
�t := ∪t

τ=1ωτ , and the actual batch of observations in the matrix P�t (Yt) := [Pω1 (y1), . . . ,Pωt (yt)] ∈
RL×t. Likewise, introduce matrix Xt containing the signal of interest. Because xt lies in a low-
dimensional subspace, Xt is (approximately) a low-rank matrix. A natural estimator leveraging the
low rank property of Xt attempts to fit the incomplete data P�t (Yt) to Xt in the LS sense, and minimize
the rank of Xt. This motivates recovering Xt by solving (P1).

Scalable imputation algorithms for streaming observations should effectively overcome the follow-
ing challenges: (c1) the problem size can easily become quite large, because the number of optimization
variables Lt grows with time; (c2) existing batch iterative solvers for (P1) typically rely on costly SVD
computations per iteration; see e.g., [14]; and (c3) (columnwise) nonseparability of the nuclear-norm
challenges online processing when new columns {Pωt (yt)} arrive sequentially in time. To limit the
computational complexity and memory storage requirements of the algorithm sought, it is henceforth
assumed that the dimensionality of the underlying time-varying subspace Lt is bounded by a known
quantity ρ. Accordingly, it is natural to require rank(X̂t) ≤ ρ. Because rank(X̂t) ≤ ρ, one can factorize
the matrix decision variable as X = LQ�, where L and Q are L × ρ and t × ρ matrices, respectively.
Such a bilinear decomposition suggests Lt is spanned by the columns of the tall matrix L while the
rows of Q are the projections of {xt} onto Lt.

Leveraging once more the separable nuclear-norm regularization in Eq. (30.4), a possible adaptive
counterpart to (P1) is the exponentially weighted LS (EWLS) estimator found by minimizing the
empirical cost

(P5) min{L,Q}

t∑
τ=1

θ t−τ

[
1

2

∥∥Pωτ (yτ − Lqτ )
∥∥2

2 + λ̄t

2
‖L‖2

F + λt

2
‖qτ ‖2

2

]
,

where Q := [q1, . . . , qt], λ̄t := λt/
∑t

τ=1 θ t−τ , and 0 < θ ≤ 1 is the so-termed forgetting factor.
When θ < 1, data in the distant past are exponentially downweighted, which facilitates tracking in
nonstationary environments. In the case of infinite memory (θ = 1) and for λt = λ, the formulation (P5)
coincides with the batch estimator (P1). This is the reason for the time-varying factor λ̄t weighting
‖L‖2

F .
Toward deriving a real-time, computationally efficient, and recursive solver of (P5), an alternating-

minimization (AM) method is adopted in which iterations coincide with the time-scale t of data
acquisition. Per time instant t, a new datum {Pωt (yt)} is drawn and qt is estimated via

q[t] = arg min
q

[
1

2
‖Pωt (yt − L[t − 1]q)‖2

2 + λt

2
‖q‖2

2

]
, (30.13)



788 CHAPTER 30 BIG DATA

which is an �2-norm regularized LS (ridge-regression) problem. It admits the closed-form solution

q[t] =
(
λtIρ + L�[t − 1]�tL[t − 1]

)−1
L�[t − 1]Pωt (yt), (30.14)

where diagonal matrix �t ∈ {0, 1}L×L is such that [�t]l,l = 1 if l ∈ ωt, and is zero elsewhere. In the
second step of the AM scheme, the updated subspace matrix L[t] is obtained by minimizing (P5) with
respect to L, while the optimization variables {qτ }t

τ=1 are fixed and take the values {q[τ ]}t
τ=1, namely

L[t] = arg min
L

⎡
⎣λt

2
‖L‖2

F +
t∑

τ=1

θ t−τ 1

2
‖Pωτ (yτ − Lq[τ ])‖2

2

⎤
⎦ . (30.15)

Notice that Eq. (30.15) decouples over the rows of L which are obtained in parallel via

ll[t] = arg min
l

⎡
⎣λt

2
‖l‖2

2 +
t∑

τ=1

θ t−τ ωl,τ (yl,τ − l�q[τ ])2

⎤
⎦ (30.16)

for l = 1, . . . , L, where ωl,τ denotes the lth diagonal entry of �τ . For θ = 1 and fixed λt = λ, ∀t,
subproblems (30.16) can be efficiently solved via recursive LS (RLS) [36]. Upon defining sl[t] :=∑t

τ=1 θ t−τωl,τ yl,τ q[τ ], Hl[t] := ∑t
τ=1 θ t−τωl,τ q[τ ]q�[τ ] + λtIρ , and Ml[t] := H−1

l [t], one updates

sl[t] = sl[t − 1] + ωl,tyl,tq[t]

Ml[t] = Ml[t − 1] − ωl,t
Ml[t − 1]q[t]q�[t]Ml[t − 1]

1 + q�[t]Ml[t − 1]q[t]
and forms ll[t] = Ml[t]sl[t], for l = 1, . . . , L.

However, for 0 < θ < 1 the regularization term (λt/2)‖l‖2
2 in Eq. (30.16) makes it impossible

to express Hl[t] in terms of Hl[t − 1] plus a rank-one correction. Hence, one cannot resort to the
matrix inversion lemma and update Ml[t] with quadratic complexity only. Based on direct inversion of
each Hl[t], the alternating LS algorithm for subspace tracking from incomplete data is tabulated under
Algorithm 30.2.

Algorithm 30.2 ALTERNATING LS FOR SUBSPACE TRACKING FROM INCOMPLETE OBSER-
VATIONS

input {Pωτ (yτ ), ωτ }∞
τ=1, {λτ }∞

τ=1, and θ .
initialize Gl[0] = 0ρ×ρ , sl[0] = 0ρ , l = 1, ..., L, and L[0] at random.
for t = 1, 2,. . . do

D[t] =
(
λtIρ + L�[t − 1]�tL[t − 1]

)−1
L�[t − 1].

q[t] = D[t]Pωt (yt).
Gl[t] = θGl[t − 1] + ωl,tq[t]q[t]�, l = 1, . . . , L.
sl[t] = θsl[t − 1] + ωl,tyl,tq[t], l = 1, . . . , L.

ll[t] = (
Gl[t] + λtIρ

)−1 sl[t], l = 1, ..., L.
return x̂t := L[t]q[t].

end for



30.4 STREAMING ANALYTICS 789

Before moving on to reduced-complexity subspace trackers it is worth commenting that the basic
idea of performing online rank-minimization leveraging the separable nuclear-norm regularization was
first introduced in [6], in the context of unveiling network traffic anomalies. Since then, the approach
has gained popularity in real-time nonnegative matrix factorization for singing voice separation from
its music accompaniment [37] and online robust PCA [38], to name a few examples.

Low-complexity stochastic-gradient subspace updates. To further reduce Algorithm 30.2’s compu-
tational complexity in updating the subspace L[t], here we develop lightweight algorithms that better
suit big data applications. To this end, the basic AM framework is retained and the update for q[t] will
be identical [cf. Eq. (30.14)]. However, instead of exactly solving an unconstrained quadratic program
per iteration to obtain L[t] [cf. Eq. (30.15)], the subspace estimates will be obtained via stochastic-
gradient descent (SGD) iterations. As shown later on, these updates can be traced to inexact solutions
of a certain quadratic program related to Eq. (30.15).

For θ = 1, it is shown in Section 30.4.1 that Algorithm 30.2’s subspace estimate L[t] is obtained by
minimizing the empirical cost function Ĉt(L) = (1/t)

∑t
τ=1 fτ (L), where

ft(L) := 1

2
‖Pωt (yt − Lq[t])‖2

2 + λ

2t
‖L‖2

F + λ

2
‖q[t]‖2

2, t = 1, 2, . . . . (30.17)

By the law of large numbers, if {Pωt (yt)}∞t=1 are stationary, solving minL limt→∞ Ĉt(L) yields the
desired minimizer of the expected cost E[Ct(L)], where the expectation is taken with respect to the
unknown probability distribution of the data. A standard approach to achieve this same goal—typically
with reduced computational complexity—is to drop the expectation (or the sample averaging operator
for that matter), and update the subspace via SGD; see e.g., [36]

L[t] = L[t − 1] − (μ[t])−1∇ft(L[t − 1]), (30.18)

where (μ[t])−1 is the step size, and ∇ft(L) = −Pωt (yt − Lq[t])q�[t] + (λ/t)L. The subspace update
L[t] is nothing but the minimizer of a second-order approximation Qμ[t],t(L, L[t − 1]) of ft(L) around
the previous subspace estimate L[t − 1], where

Qμ,t(L1, L2) := ft(L2) + 〈L1 − L2, ∇ft(L2)〉 + μ

2
‖L1 − L2‖2

f .

To tune the step size, the backtracking rule is adopted, whereby the nonincreasing step-size se-
quence {(μ[t])−1} decreases geometrically at certain iterations to guarantee the quadratic function
Qμ[t],t(L, L[t − 1]) majorizes ft(L) at the new update L[t]. Other choices of the step size are discussed
in Section 30.4.1. Different from Algorithm 30.2, no matrix inversions are involved in the update of the
subspace L[t]. In the context of adaptive filtering, first-order SGD algorithms such as Eq. (30.17) are
known to converge slower than RLS. This is expected because RLS can be shown to be an instance of
Newton’s (second-order) optimization method [36, Ch. 4].



790 CHAPTER 30 BIG DATA

Algorithm 30.3 ONLINE SGD FOR SUBSPACE TRACKING FROM INCOMPLETE OBSERVA-
TIONS

input {Pωτ (yτ ), ωτ }∞
τ=1, ρ, λ, η > 1.

initialize L[0] at random, μ[0] > 0, L̃[1] := L[0], and k[1] := 1.
for t = 1, 2,. . . do

D[t] =
(
λIρ + L�[t − 1]�tL[t − 1]

)−1
L�[t − 1]

q[t] = D[t]Pωt (yt)
Find the smallest nonnegative integer i[t] such that with μ̄ := ηi[t]μ[t − 1]

ft(L̃[t] − (1/μ̄)∇ft(L̃[t])) ≤ Qμ̄,t(L̃[t] − (1/μ̄)∇ft(L̃[t]), L̃[t])
holds, and set μ[t] = ηi[t]μ[t − 1].
L[t] = L̃[t] − (1/μ[t])∇ft(L̃[t]).
k[t + 1] = 1+

√
1+4k2[t]
2 .

L̃[t + 1] = L[t] +
(

k[t]−1
k[t+1]

)
(L[t] − L[t − 1]).

end for
return x̂[t] := L[t]q[t].

Building on the increasingly popular accelerated gradient methods for batch smooth optimiza-
tion [39,40], the idea here is to speed-up the learning rate of the estimated subspace (30.18) without
paying a penalty in terms of computational complexity per iteration. The critical difference between
standard gradient algorithms and the so-called Nesterov’s variant is that the accelerated updates
take the form L[t] = L̃[t] − (μ[t])−1∇ft(L̃[t]), which relies on a judicious linear combination
L̃[t − 1] of the previous pair of iterates {L[t − 1], L[t − 2]}. Specifically, the choice L̃[t] =
L[t − 1] + k[t−1]−1

k[t] (L[t − 1] − L[t − 2]), where k[t] =
[
1 +

√
4k2[t − 1] + 1

]
/2, has been shown

to significantly accelerate batch gradient algorithms resulting in a convergence rate no worse than
O(1/k2); see e.g., [40] and references therein. Using this acceleration technique in conjunction with
a backtracking stepsize rule [41], a fast online SGD algorithm for imputing missing entries is tabulated
under Algorithm 30.3. Clearly, a standard (nonaccelerated) SGD algorithm with backtracking step size
rule is subsumed as a special case, when k[t] = 1, t = 1, 2, . . .. In this case, complexity is O(|ωt|ρ2)
mainly due to the update of qt while the accelerated algorithm incurs an additional cost O(Pρ) for the
subspace extrapolation step.

Computational cost. Careful inspection of Algorithm 30.2 reveals that the main computational burden
stems from ρ × ρ inversions to update the subspace matrix L[t]. The per iteration complexity for
performing the inversions is O(|ωt|ρ3) (which could be further reduced if one leverages also the
symmetry of Gl[t]), while the cost for the rest of operations is O(|ωt|ρ2). The overall cost of the
algorithm per iteration can thus be safely estimated as O(|ωt|ρ3), which can be affordable because
ρ is typically small (cf. the low-rank assumption). In addition, for the infinite memory case θ = 1
where the RLS update is employed, the overall cost is further reduced to O(|ωt|ρ2). The first-order
Algorithm 30.3 reduces this cost by order ρ, that is in the same order as GROUSE and PETRELS,
which incur costs of O(Pρ + |ωt|ρ2) and O(|ωt|ρ2), respectively.



30.4 STREAMING ANALYTICS 791

30.4.1 PERFORMANCE GUARANTEES
This section studies the performance of the proposed first- and second-order online algorithms for the
infinite memory special case; that is θ = 1. In the sequel, to make the analysis tractable the following
assumptions are adopted:

(a1) Processes {ωt,Pωt (yt)}∞t=1 are independent and identically distributed (i.i.d.);
(a2) Sequence {Pωt (yt)}∞t=1 is uniformly bounded; and
(a3) Iterates {L[t]}∞t=1 lie in a compact set.

To clearly delineate the scope of the analysis, it is worth commenting on (a1)–(a3) and the
factors that influence their satisfaction. Regarding (a1), the acquired data is assumed statistically
independent across time as is customary when studying the stability and performance of online
(adaptive) algorithms [36]. While independence is required for tractability, (a1) may be grossly violated
because the observations {Pωt (yt)} are correlated across time (cf. the fact that {xt} lies in a low-
dimensional subspace). Still, in accordance with the adaptive filtering folklore, e.g., [36], as θ → 1
or (μ[t])−1 → 0 the upshot of the analysis based on i.i.d. data extends accurately to the pragmatic
setting whereby the observations are correlated. Uniform boundedness of Pωt (yt) [cf. (a2)] is natural in
practice as it is imposed by the data acquisition process. The bounded subspace requirement in (a3) is
a technical assumption that simplifies the analysis, and has been corroborated via extensive computer
simulations [5].

Convergence of the second-order algorithm. Convergence of the iterates generated by Algorithm 30.2
(with θ = 1) is established first. Upon defining

gt(L, q) := 1

2
‖Pωt (yt − Lq)‖2

2 + λt

2
‖q‖2

2

in addition to �t(L) := minq gt(L, q), Algorithm 30.2 aims at minimizing the following average cost
function at time t

Ct(L) := 1

t

t∑
τ=1

�τ (L) + λt

2t
‖L‖2

F . (30.19)

Normalization (by t) ensures that the cost function does not grow unbounded as time evolves. For any
finite t, Eq. (30.19) is essentially identical to the batch estimator in (P3) up to a scaling, which does not
affect the value of the minimizer. Note that as time evolves, minimization of Ct becomes increasingly
complex computationally. Hence, at time t the subspace estimate L[t] is obtained by minimizing the
approximate cost function

Ĉt(L) = 1

t

t∑
τ=1

gτ (L, q[τ ]) + λt

2t
‖L‖2

F (30.20)

in which q[t] is obtained based on the prior subspace estimate L[t − 1] after solving q[t] =
arg minq gt(L[t − 1], q) [cf. Eq. (30.13)]. Obtaining q[t] this way resembles the projection approxi-
mation adopted in [29]. Because Ĉt(L) is a smooth convex quadratic function, the minimizer L[t] =
arg minL Ĉt(L) is the solution of the linear equation ∇Ĉt(L[t]) = 0L×ρ .



792 CHAPTER 30 BIG DATA

So far, it is apparent that because gt(L, q[t]) ≥ minq gt(L, q) = �t(L), the approximate cost function
Ĉt(L[t]) overestimates the target cost Ct(L[t]), for t = 1, 2, . . .. However, it is not clear whether the
subspace iterates {L[t]}∞t=1 converge, and most importantly, how well can they optimize the target

cost function Ct. The good news is that Ĉt(L[t]) asymptotically approaches Ct(L[t]), and the subspace
iterates null ∇Ct(L[t]) as well, both as t → ∞. This result is summarized in the next proposition.

Proposition 30.3. Under (a1)–(a3) and θ = 1 in Algorithm 30.2, if λt = λ and λmin[∇2Ĉt(L)] ≥ c
for some c > 0, then limt→∞ ∇Ct(L[t]) = 0L×ρ almost surely (a.s.), i.e., the subspace iterates {L[t]}∞t=1
asymptotically fall into the stationary point set of the batch problem (P3). �

It is worth noting that the pattern and the amount of missing data, summarized in the sampling
sets {ωt}, play a key role toward satisfying the Hessian’s positive semidefiniteness condition. In fact,
random misses are desirable because the Hessian ∇2Ĉt(L) = λ

t ILρ + 1
t

∑t
τ=1(q[τ ]q�[τ ])⊗�τ is more

likely to satisfy ∇2Ĉt(L) � cILρ , for some c > 0.
The proof of Proposition 30.3 is inspired by [42], which establishes convergence of an online

dictionary learning algorithm using the theory of martingale sequences. Details can be found in [5],
and in a nutshell the proof procedure proceeds in the following two main steps:

(S1) Establish that the approximate cost sequence {Ĉt(L[t])} asymptotically converges to the target
cost sequence {Ct(L[t])}. To this end, it is first proved that {Ĉt(L[t])}∞t=1 is a quasimartingale
sequence, and hence convergent a.s. This relies on the fact that gt(L, q[t]) is a tight upper bound
approximation of �t(L) at the previous update L[t − 1], namely, gt(L, q[t]) ≥ �t(L), ∀L ∈ RL×ρ ,
and gt(L[t − 1], q[t]) = �t(L[t − 1]).

(S2) Under certain regularity assumptions on gt, establish that convergence of the cost sequence
{Ĉt(L[t]) − Ct(L[t])} → 0 yields convergence of the gradients {∇Ĉt(L[t]) − ∇Ct(L[t])} → 0,
which subsequently results in limt→∞ ∇Ct(L[t]) = 0.

Optimality. Beyond convergence to stationary points of (P3), one may ponder whether the online
estimator offers performance guarantees of the batch nuclear-norm regularized estimator (P1), for
which stable/exact recovery results are well documented, e.g., in [9,14]. Specifically, given the learned
subspace L̄[t] and the corresponding Q̄[t] [obtained via Eq. (30.13)] over a time window of size t, is

{X̂[t] := L̄[t]Q̄�[t]} an optimal solution of (P1) as t → ∞? This in turn requires asymptotic analysis of
the optimality conditions for (P1) and (P3), and a positive answer is established in the next proposition
whose proof is available in [5].

Proposition 30.4. Consider the subspace iterates {L[t]} generated by either Algorithm 30.2 (with
θ = 1), or Algorithm 30.3. If there exists a subsequence {L[tk], Q[tk]} for which (c1) limk→∞
∇Ctk (L[tk]) = 0L×ρ a.s., and (c2) 1√

tk
σmax[P�tk

(Ytk − L[tk]Q�[tk])] ≤ λtk√
tk

hold, then the sequence

{X[k] = L[tk]Q�[tk]} satisfies the optimality conditions for (P1) [normalized by tk] as k → ∞ a.s. �
Regarding condition (c1), even though it holds for a time-invariant rank-controlling parameter λ as

per Proposition 30.3, numerical tests indicate that it still holds true for the time-varying case; see [5,
Remark 2] for guidelines on the choice of λt. Under (a2) and (a3) one has σmax[P�t (Yt − L[t]Q�[t])]
≈ O(

√
t), which implies that the quantity on the left side of (c2) cannot grow unbounded. Moreover,

upon choosing λt ≈ O(
√

t) the term in the right side of (c2) will not vanish, which suggests that
the qualification condition can indeed be satisfied [5]. Effective heuristic rules are devised in [5,9] for
tunning λ.



30.4 STREAMING ANALYTICS 793

30.4.2 REAL-TIME NETWORK TRAFFIC MONITORING
Accurate estimation of OD flow traffic in the backbone of large-scale IP networks is of paramount
importance for proactive network security and management tasks [43]. Several experimental studies
have demonstrated that OD flow traffic exhibits low rank, mainly due to common temporal patterns
across OD flows, and periodic trends across time [2]. However, due to the massive number of OD
pairs and the high volume of traffic, measuring the traffic of all possible OD flows is impossible for all
practical purposes [2,43]. Only the traffic level for a small fraction of OD flows can be measured via
the NetFlow protocol [2].

Aggregate OD-flow traffic is collected from operation of the Internet-2 during December 8–28,
2003, containing 121 OD pairs [28]. The measured OD flows contain spikes (anomalies), which are
discarded to end up with an anomaly-free data stream {yt} ∈ R121. The detailed description of the
considered dataset can be found in [6]. A fraction π of the entries of yt are then randomly sampled to
yield the input of Algorithm 30.2. Evolution of the running-average traffic estimation error is depicted
in Fig. 30.2(left) for different subspace trackers and π values. Evidently, Algorithm 30.2 outperforms
the competing alternatives when λt is adaptively tuned as in [5]. When only 25% of the total OD flows
are sampled by NetFlow, Fig. 30.2(right) depicts how Algorithm 30.2 accurately tracks representative
OD flows.

30.4.3 LARGE-SCALE MACHINE LEARNING
The advocated subspace learning framework identifies latent low-dimensional structure in streaming
data, and can facilitate large-scale machine learning tasks beyond matrix completion. The scope could
be, for instance, broadened to accommodate large-scale dimensionality reduction and feature extraction

0

(A) (B)
1000 2000 3000 4000 5000 6000

101

10−1

10−2

100

Iteration index (t)

A
ve

ra
ge

 e
st

im
at

io
n 

er
ro

r

Algorithm 1, π = 0.25

GROUSE, π = 0.25

PETRELS, π = 0.25

Algorithm 1, π = 0.45

GROUSE, π = 0.45

PETRELS, π = 0.45
0 500 1000 1500 2000 2500 3000 3500 4000

0

2

4
× 107 CHIN−−IPLS

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2
× 107

F
lo

w
 tr

af
fic

 le
ve

l

CHIN−−LOSA

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2
× 107

Iteration index (t)

LOSA−−ATLA

FIG. 30.2

Internet-2 flow traffic estimation. Traffic estimation performance for Internet-2 data when ρ = 10 and θ = 0.95,
and a variable fraction π of data is available. (Left) Average estimation error for π = 0.25 (thin solid) and
π = 0.45 (thick solid). (Right) Algorithm 30.2’s estimated (thin dash) versus true (thick solid) OD flow traffic for
75% missing data (π = 0.25).



794 CHAPTER 30 BIG DATA

from multiway tensors [44] as well as categorical and finite-alphabet datasets [45]. In addition, the
developed subspace trackers can be adopted in conjunction with support vector machines (SVMs) to
classify incomplete data online [46]. These generalizations are briefly summarized next.
Multilinear decomposition and dimensionality reduction. Many applications involve data indexed by
three, or more variables giving rise to a tensor, instead of just two variables as in the matrix settings dealt
with so far. It is not uncommon that one of these variables indexes time [5,47], and that sizable portions
of the data are missing [48,49]. Examples of time-indexed, incomplete tensor data include: (i) dynamic
social networks represented through a temporal sequence of adjacency matrices while it may be the
case that not all pairwise interactions among nodes can be sampled; and (ii) multidimensional nuclear
magnetic resonance (NMR) analysis, where missing data are encountered when sparse sampling is used
in order to reduce the experimental time. Various data analytic tasks aim at unveiling underlying latent
structures, which calls for high-order tensor factorizations even in the presence of missing data [48,
49]. With this objective in mind, [5] puts forth for the first time an online (adaptive) algorithm for
decomposing low-rank tensors with missing entries; see also [44] for an adaptive algorithm to obtain
parallel factor analysis (PARAFAC) decompositions—a natural extension of the bilinear model in (P5)
to the multilinear case. The proposed online algorithm offers a viable approach to solving large-scale
tensor decomposition (and completion) problems, even if the data is not actually streamed but they are
so massive that do not fit in the main memory.
Sketching of categorical data. With the scale of data growing every day, reducing the dimensionality
(aka sketching) of high-dimensional data has emerged as a task of paramount importance. Critical
challenges arise with increasingly ubiquitous datasets comprising incomplete categorical samples.
For instance, in movie recommender systems, observation yt represents the users’ categorical ratings
(e.g., like/dislike or in a 1–5 integer-valued scale) for the tth movie. Because each user rates only
a small fraction of movies, ratings for a sizable portion of movies will be missing. In this context,
effective sketching tools were developed in [45] for large-scale categorical data that are incomplete
and streaming. Low-dimensional Probit, Tobit, and Logit models were considered and learned, using
a maximum likelihood approach regularized with a separable surrogate of the nuclear norm as in
Eq. (30.4). The developed online algorithms are provably convergent and lightweight while they achieve
sublinear regret bounds for finite data streams and asymptotic convergence for infinite data streams.
Classification with absent features. The SVM is a workhorse classification technique that breaks down
when some of the features in the input vectors are missing. Consider streaming high-dimensional data
xt from two classes, namely C1 and C2, and suppose only a small fraction of features is present due to
security concerns, or outliers that render data unreliable. Building on the subspace learning framework
discussed in this section, a joint imputation and supervised classification scheme is developed in [46]
that operates in two alternating steps upon arrival of a new datum: (i) the algorithm first imputes the
missing features based on the learned low-dimensional subspace; and (ii) subsequently adjusts the SVM
hyperplane to match the imputed datum to its binary label.

30.5 CONCLUDING SUMMARY
Nowadays machine learning tasks deal with sheer volumes of data of possibly incomplete,
decentralized, and streaming nature that demand on-the-fly processing for real-time decision-making.
Conventional inference analytics mine such big data by leveraging their intrinsic parsimony, e.g., via



REFERENCES 795

models that include rank and sparsity regularization or priors. Convex nuclear and �1-norm surrogates
are typically adopted and offer well-documented guarantees in recovering informative low-dimensional
structure from high-dimensional data. However, the computational complexity of the resulting
algorithms tends to scale poorly due to the nuclear norm’s entangled structure, which also impedes
streaming and decentralized analytics. To mitigate this computational hurdle, this chapter discussed
a framework that leverages a bilinear characterization of the nuclear norm to bring separability at
the expense of nonconvexity. This challenge notwithstanding, under mild conditions stationary points
of the nonconvex program provably coincide with the optimum of the convex counterpart. Using
this idea along with the theory of alternating minimization, lightweight algorithms are developed
with low communication overhead for in-network processing. Provably convergent online subspace
trackers that are suitable for streaming analytics are developed as well. Remarkably, even under the
constraints imposed by decentralized computing and sequential data acquisition, one can still attain
the performance offered by the prohibitively-complex batch analytics. While the ideas were presented
for a matrix completion problem, the scope of the presented framework can be broadened to be
jointly adopted with downstream machine learning tasks such as dimensionality reduction, clustering,
classification, multidimensional scaling, and anomaly detection.

ACKNOWLEDGMENTS
The work was supported in part by NSF grants NSF 1500713, 1509040, 1514056, 1711471, and ARO W911NF-
15-1-0492.

REFERENCES
[1] Slavakis K, Giannakis GB, Mateos G. Modeling and optimization for Big Data analytics. IEEE Signal Process

Mag 2014;31(5):18–31.
[2] Lakhina A, Papagiannaki K, Crovella M, Diot C, Kolaczyk ED, Taft N. Structural analysis of network traffic

flows. In: Proceedings of ACM SIGMETRICS, New York, NY; 2004.
[3] Mateos G, Rajawat K. Dynamic network cartography: advances in network health monitoring. IEEE Signal

Process Mag 2013;30(3):129–43.
[4] Mardani M, Mateos G, Giannakis GB. Recovery of low-rank plus compressed sparse matrices with

application to unveiling traffic anomalies. IEEE Trans Inf Theory 2013;59:5186–205.
[5] Mardani M, Mateos G, Giannakis GB. Subspace learning and imputation for streaming big data matrices and

tensors. IEEE Trans Signal Process 2015;63:2663–77.
[6] Mardani M, Mateos G, Giannakis GB. Dynamic anomalography: tracking network anomalies via sparsity and

low rank. IEEE J Sel Top Signal Process 2013;7:50–66.
[7] Mardani M, Mateos G, Giannakis GB. Decentralized sparsity regularized rank minimization: applications and

algorithms. IEEE Trans Signal Process 2013;61:5374–88.
[8] Wright J, Ganesh A, Min K, Ma Y. Compressive principal component pursuit. In: Proceeding of international

symposium on information theory, Cambridge, MA; 2012. p. 1276–80.
[9] Candès EJ, Plan Y. Matrix completion with noise. Proc IEEE 2009;98:925–36.

[10] Chistov A, Grigorev D. Complexity of quantifier elimination in the theory of algebraically closed fields.
In: Mathematical foundations of computer science. Lecture notes in computer science, vol. 176. Berlin/Hei-
delberg: Springer; 1984. p. 17–31.

http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0055


796 CHAPTER 30 BIG DATA

[11] Natarajan BK. Sparse approximate solutions to linear systems. SIAM J Comput 1995;24:227–34.
[12] Fazel M, Hindi H, Boyd SP. A rank minimization heuristic with application to minimum order system

approximation. In: Proceedings of American control conference, vol. 6; 2001. p. 4734–9.
[13] Candes EJ, Tao T. Decoding by linear programming. IEEE Trans Inf Theory 2005;51(12):4203–15.
[14] Candes EJ, Recht B. Exact matrix completion via convex optimization. Found Comput Math

2009;9(6):717–22.
[15] Candes EJ, Li X, Ma Y, Wright J. Robust principal component analysis? J ACM 2011;58(1):1–37.
[16] Chandrasekaran V, Sanghavi S, Parrilo PR, Willsky AS. Rank-sparsity incoherence for matrix decomposition.

SIAM J Optim 2011;21(2):572–96.
[17] Mardani M, Mateos G, Giannakis GB. Exact recovery of low-rank plus compressed sparse matrices. In: 2012

IEEE statistical signal processing workshop (SSP). IEEE; 2012. p. 49–52.
[18] Recht B, Fazel M, Parrilo PA. Guaranteed minimum-rank solutions of linear matrix equations via nuclear

norm minimization. SIAM Rev 2010;52(3):471–501.
[19] Srebro N, Shraibman A. Rank, trace-norm and max-norm. In: Proceedings of learning theory; 2005.

p. 545–60.
[20] Bertsekas DP, Tsitsiklis JN. Parallel and distributed computation: numerical methods. 2nd ed. Athena-Scien-

tific; 1999.
[21] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Found Trends Mach Learn 2010;3:1–122.
[22] Giannakis GB, Ling Q, Mateos G, Schizas ID, Zhu H. Decentralized learning for wireless communications

and networking. In: Glowinski R, Osher S, Yin W, editors. Splitting methods in communication and imaging,
science and engineering, scientific computation. Springer New York; 2016. p. 461–97.

[23] Recht B, Ré C. Parallel stochastic gradient algorithms for large-scale matrix completion. Math Program
Comput 2013;5(2):201–26.

[24] Lakhina A, Crovella M, Diot C. Diagnosing network-wide traffic anomalies. In: Proceeding of ACM
SIGCOMM, Portland, OR; 2004.

[25] Schizas ID, Giannakis GB, Luo ZQ. Distributed estimation using reduced-dimensionality sensor observations.
IEEE Trans Signal Process 2007;55:4284–99.

[26] Mateos G, Bazerque JA, Giannakis GB. Distributed sparse linear regression. IEEE Trans Signal Process
2010;58(10):5262–76.

[27] Liao Y, Du W, Geurts P, Leduc G. DMFSGD: a decentralized matrix factorization algorithm for network
distance prediction. IEEE/ACM Trans Network 2011;21(5):1511–24. See also arXiv:1201.1174v1 [cs.NI].

[28] The Internet Observatory Data Collection; 2012. http://internet2.edu/observatory/archive/data-collections.
html.

[29] Yang B. Projection approximation subspace tracking. IEEE Trans Signal Process 1995;43(1):95–107.
[30] Yang JF, Kaveh M. Adaptive eigensubspace algorithms for direction or frequency estimation and tracking.

IEEE Trans Acoust Speech Signal Process 1988;36(2):241–51.
[31] Balzano L, Nowak R, Recht B. Online identification and tracking of subspaces from highly incomplete

information. In: Proceeding of Allerton conference on communication, control, and computing, Monticello,
USA; 2010.

[32] Balzano L, Wright SJ. Local convergence of an algorithm for subspace identification from partial data. Found
Comput Math 2015;15(5):1279–314.

[33] Balzano L, Wright SJ. On GROUSE and incremental SVD. In: IEEE 5th international workshop on
computational advances in multi-sensor adaptive processing (CAMSAP). IEEE; 2013. p. 1–4.

[34] Chi Y, Eldar YC, Calderbank R. Petrels: parallel subspace estimation and tracking by recursive least squares
from partial observations. IEEE Trans Signal Process 2013;61(23):5947–59.

[35] Dai W, Milenkovic O, Kerman E. Subspace evolution and transfer (SET) for low-rank matrix completion.
IEEE Trans Signal Process 2011;59(7):3120–32.

http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0100
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0140
http://internet2.edu/observatory/archive/data-collections.html
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0180


REFERENCES 797

[36] Solo V, Kong X. Adaptive signal processing algorithms: stability and performance. Prentice Hall; 1995.
[37] Sprechmann P, Bronstein AM, Sapiro G. Real-time online singing voice separation from monaural recordings

using robust low-rank modeling. In: Proceedings of the annual conference of the international society for
music information retrieval, Porto, Portugal; 2012.

[38] Feng J, Xu H, Yan S. Online robust PCA via stochastic optimization. In: Proceedings of the advances in
neural information processing systems, Lake Tahoe, NV; 2013.

[39] Nesterov Y. A method of solving a convex programming problem with convergence rate o(1/k2). Sov Math
Doklady 1983;27:372–6.

[40] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J
Imag Sci 2009;2:183–202.

[41] Bertsekas DP. Nonlinear programming. 2nd ed. Athena-Scientific; 1999.
[42] Mairal J, Bach F, Ponce J, Sapiro G. Online learning for matrix factorization and sparse coding. J Mach Learn

Res 2010;11:19–60.
[43] Kolaczyk ED. Statistical analysis of network data: methods and models. Springer; 2009.
[44] Mardani M, Giannakis GB, Ugurbil K. Tracking tensor subspaces with informative random sampling for

real-time MR imaging; 2016. arXiv preprint arXiv:160904104.
[45] Shen Y, Mardani M, Giannakis GB. Online categorical subspace learning for sketching big data with misses.

IEEE Trans Signal Process 65(15):4004–18.
[46] Sheikholeslami F, Mardani M, Giannakis GB. Streaming support vector classification of big data with misses.

In: Proceedings of Asilomar conference on control, signal and systems; 2014. p. 516–20.
[47] Nion D, Sidiropoulos ND. Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor.

IEEE Trans Signal Process 2009;57(6):2299–310.
[48] Acar E, Dunlavy DM, Kolda TG, Mrup M. Scalable tensor factorizations for incomplete data. Chemom Intell

Lab Syst 2011;106(1):41–56.
[49] Bazerque JA, Mateos G, Giannakis GB. Rank regularization and Bayesian inference for tensor completion

and extrapolation. IEEE Trans Signal Process 2013;61(22):5689–703.

http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0205
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00030-4/rf0250


CHAPTER

31GRAPH SIGNAL PROCESSING ON
NEURONAL NETWORKS

Selin Aviyente∗, Marisel Villafañe-Delgado∗
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI United States∗

31.1 INTRODUCTION
The study of the human brain has attracted a lot of research over the centuries. Many noninvasive
imaging modalities such as topographical techniques based on the electromagnetic field potential, e.g.,
EEG and magnetoencephalography (MEG) and tomography approaches including positron emission
tomography (PET) and magnetic resonance imaging (MRI), have been used widely to study the
neural basis of cognition, perception, and emotion. Early analysis of neuroimaging data was based
on correlational evidence of brain regions being related to specific functions, known as functional
segregation [1]. However, over the past 20 years it has become obvious that the brain operates as a
global complex system with many interactions, also known as functional integration [2]. This revelation
has increased the interest in the study of statistical dependencies between anatomically distinct brain
regions, also known as functional connectivity (FC).

In the last decade, the use of advanced tools from statistical physics, graph theory, statistics, and
signal processing has led to the representation of the functional connectivity of the brain as a complex
network and revolutionized the analysis of brain connectivity patterns estimated from neuroimaging
data [3–5]. The construction of these networks consists of identifying the vertices that correspond to
specific brain regions defined by the neuroimaging modality, estimating the edges of the network by
measuring the FC between the activity of brain vertices, and encoding this information in a connectivity
matrix. Once the network has been mapped, it can be analyzed with respect to either its connectivity or
topology [6,7]. Connectivity analysis concentrates on variations in the type and strength of connectivity
between brain regions. Topological analysis, based on graph theory, is concerned with understanding
how connections are arranged with respect to each other and provides insight into key organizational
principles of the connectome. Topological analysis has relied on different graph theoretic measures at
the local, intermediate, and global scales [5]. At the local scale, the degree distribution and centrality
of vertices have been used to identify hubs in the network. At the intermediate scale, the focus has
been on community detection through network clustering methods and modularity [8]. At the global
scale, the efficiency, clustering coefficient, path length, and small-worldness of the network have been
computed to quantify the interplay between functional integration and segregation [9,10]. Selecting the
appropriate topological metric depends mostly on the research question at hand. The different graph

Cooperative and Graph Signal Processing. https://doi.org/10.1016/B978-0-12-813677-5.00031-6
Copyright © 2018 Elsevier Inc. All rights reserved.

799



800 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

theoretic measures have been used as features to classify and characterize changes in brain dynamics
due to pathology, or cognitive state change. This network-centric perspective has provided fundamental
insights in terms of the organization of the healthy and diseased brain, how information processing is
distributed across the network, and the resilience of the network architecture to trauma [10,11].

While this network-centric view of the brain has been successfully applied to the study of different
neurological diseases, it does not fully consider the multivariate signals that live on the vertices of
the brain graph. Graph signal processing (GSP) offers a new direction for analyzing multivariate
neuroimaging data by taking into account both the connectivity features of the brain graph, such as
structural and functional connectivity, as well as the time series that live on the vertices of this graph.
Unlike classical multivariate signal processing, which treats the data as vectors in a high-dimensional
Euclidean space, GSP can take advantage of the nonlinearities in the space where the data lives. In
particular, GSP can extract information from complex neuroimaging data using the underlying graph
structure as the non-Euclidean space or the manifold that the signal is defined over. With the underlying
network informing the multivariate signal analysis, GSP can improve the extraction of low-dimensional
representations where the subspaces are defined by different levels of spatial variability across the brain.
In this chapter, we will illustrate different GSP methodologies developed for brain graphs, including
dimensionality reduction and classification, graph-based filtering (GBF), graph learning, and spatial
filtering.

31.2 BASIC CONCEPTS OF GRAPH SIGNAL PROCESSING IN
NEUROSCIENCE
In this section, we will review the basic concepts and notations that will be utilized in this chapter,
with the complete list of notations given in Table 31.1. The application of GSP methods on brain
connectivity networks starts with the definition of a weighted graph and the associated matrices that
describe its structure. We can characterize the structure of brain imaging data by a weighted graph
G(V , E , W), consisting of a finite set V(|V| = N) of vertices corresponding to brain regions, a finite set
of edges E ⊆ V × V and W with Wij ≥ 0 quantifying the similarity between vertices i and j.

Table 31.1 List of Commonly Used
Notations

Symbol Definition

W weighted adjacency matrix

D weighted degree matrix

L graph Laplacian

U eigenvectors of the Laplacian

ui ith eigenvector

λi ith eigenvalue

x graph signal

x̃ graph Fourier transform (GFT)



31.2 BASIC CONCEPTS OF GRAPH SIGNAL PROCESSING IN NEUROSCIENCE 801

In general, the mapping between the brain space and the vertices is based on the particular
neuroimaging modality. Voxel-based modalities, such as fMRI, define vertices in the measurement
space whereas sensor-based modalities, such as EEG and MEG, offer a choice between assigning
vertices directly to sensors or to reconstructed sources. In voxel-based modalities, there are several
approaches to define brain vertices including single voxels, anatomically defined regions of interests
(ROIs), or data-driven methods such as ICA [12]. In sensor-based modalities, brain vertices are
commonly assigned directly to sensors or electrodes [11,13], even though the brain vertices may suffer
from a biased nonneural dependence. Once the vertices of the graph are uniquely defined, a time series
that corresponds to each vertex is defined. In the case of fMRI, either a temporal average time series of
all the voxels within a region or components from spatial ICA are used to define the time series.

After defining the brain vertices, assigning links or edges between them is the subsequent crucial
modeling step. Different data-driven and model-based methods have been used to construct the
adjacency matrix, W [14]. Some common choices for W in the context of GSP include the physical
distance in the case of structural imaging modalities and data-driven metrics such as the absolute value
of the correlation or coherence in the case of functional imaging modalities. In particular, structural
graphs that model the geometric structure of the brain can be computed as follows:

Wi,j = exp

(
−d(vi, vj)2

2σ 2

)
, (31.1)

where d(vi, vj) is the Euclidean distance between the barycenters of the different brain areas and σ is an
empirically chosen spread parameter. This is known as the full geometric graph as it is fully connected
[15]. An alternative to this is proposed through the geometric graph, which only connects close brain
areas by applying a threshold to d(vi, vj) resulting in

Wi,j =
⎧⎨
⎩ exp

(
− d(vi,vj)2

2σ 2

)
, if d(vi, vj) < α,

0, otherwise,
(31.2)

where α is an empirically determined threshold.
For functional connectivity graphs, given the time series at two vertices of the graph, xi(t) and

xj(t), different connectivity measures such as absolute correlation, frequency domain coherence, and
phase synchrony can be used. Correlation, ρ(xi, xj), is a basic estimation of statistical dependency
for functional connectivity, especially for fMRI data. Coherence connectivity is the frequency domain
analog of the cross-correlation coefficient and is commonly computed through the Fourier transform or
Wavelet transform of the time series data with

Wi,j =
∣∣∣∣∣∣

1
T

∑T
t=1 Axi (t)Axj (t)e

j[φxi (t)−φxj (t)]√
1
T

∑T
t=1 A2

xj
(t)

√
1
T

∑T
t=1 A2

xj
(t)

∣∣∣∣∣∣ , (31.3)

where Axi (t) and φxi(t) refer to the amplitude and phase of the analytic signal, respectively. Similarly,
phase synchrony or phase locking value (PLV) is commonly used to quantify connectivity for
neurophysiological recordings such as the EEG and MEG. PLV separates the amplitude effects from
the phase and quantifies the consistency of the phase differences. The PLV connectivity between two
regions i and j is defined as [16]:



802 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

Wi,j = 1

T

∣∣∣∣∣∣
T∑

t=1

e
j[φxi (t)−φxj (t)]

∣∣∣∣∣∣ . (31.4)

Finally, mixed graphs that combine structural and functional connectivity can be used such as:

Wi,j = exp

(
−(1 − ρ(xi, xj))2

2σ 2
1

)
exp

(
−d(vi, vj)

2σ 2
2

)
, (31.5)

where ρ(xi, xj) is the correlation coefficient and d(vi, vj) is the normalized Euclidean distance between
two brain regions or sensors.

As GSP deals with the spectral properties of the brain graph, in addition to the adjacency matrix, we
introduce the graph Laplacian as another important graph-associated matrix. Denoting D as the diagonal
degree matrix with Dii = ∑N

j=1 Wij, the graph Laplacian is defined as L = D−W. In GSP applications,
it is important to choose W with Wij ≥ 0 and Wij = Wji to ensure the positive definitiveness and
the symmetry of the resulting Laplacian matrix. A symmetric and positive definite L will have a
complete set of orhonormal eigenvectors {ui}i=1,...,N with the associated eigenvalues {λi}i=1,...,N real
and nonnegative with the smallest eigenvalue being zero. The eigenvalues can be increasingly sorted
as 0 = λ1 ≤ λ2 ≤ · · · ≤ λN and the corresponding eigendecomposition of the graph Laplacian can be
written as L = U�UT , where � is a diagonal matrix with �ii = λi being the ith smallest eigenvalue
and the ith column of U, ui is the associated eigenvector.

Once the graph-associated matrices are defined, we can define the graph signal as a vector in RN .
This vector can be denoted by x where x(i) or xi refer to the value of the signal at the ith vertex. In
practice, PET scans or fMRI time series at a particular time point t can be defined as graph signals.

Similar to the Fourier transform, which encodes the temporal variation in time domain signals, the
graph Fourier transform (GFT) is defined to encode a notion of spatial variation in graph signals. Using
the eigenvector matrix U of the graph Laplacian, we can define the GFT of a graph signal x as [17]:

x̃ = UHx. (31.6)

The inverse GFT (iGFT) of x̃ with respect to L is defined as:

x = Ux̃ =
N∑

k=1

x̃kuk. (31.7)

Because UUH = I, the iGFT is the inverse of GFT. As k increases, the graph Laplacian eigenvectors
fluctuate more rapidly. Therefore, the eigenvalues of the graph Laplacian, λks, encode the graph
frequency information with small ks corresponding to low frequency and large ks corresponding to
high frequency in the graph domain. Fig. 31.1 illustrates an example of a graph signal defined on a
brain connectivity graph.

This variation in frequency can also directly be captured through the graph Laplacian. For a graph
signal x, the graph Laplacian behaves as a difference operator on it and can be used to define the total
variation (TV) of the graph signal with respect to the network as:



31.2 BASIC CONCEPTS OF GRAPH SIGNAL PROCESSING IN NEUROSCIENCE 803

FIG. 31.1

An illustration of the construction of brain networks and the graph signals defined on these networks. (A)
Illustration of a graph over the human brain. Vertices (circles) represent different electrodes or brain regions,
and their relationship is described by edges interconnecting them (lines). (B) Time-series corresponding to
each vertex in (A). (C) Signals defined over the graphs at two different time instances. The graph signals at
each vertex are defined by the amplitude of the time series from that vertex at a specific time.

TV(x) = xT Lx =
∑
i�=j

Wij(xi − xj)2. (31.8)

TV(x) is a measure of how much the signal changes with respect to the network. When Wij is large
we expect the values xi and xj to be similar as a large weight Wij signifies the similarity between brain
regions i and j. The contribution of the difference (xi − xj)2 to the total variation is amplified by the
weight Wij. A signal with small total variation corresponds to one that changes slowly over the graph.

Similar to GFT, other well-known signal transforms have been extended to the graph domain. One
of the major spectral transforms extended to brain graphs is spectral graph wavelet transform (SGWT)
[18]. The one-dimensional continuous wavelet function �s,a(x) = 1

s ψ( x−a
s ) at scale s and location a

can be equivalently rewritten in the Fourier domain as

ψs,a(x) = 1

2π

∫ ∞
−∞

ψ̂(sω)e−jωaejωxdω, (31.9)

where the shifting is given by the term ejωl and scaling ψ by 1
s corresponds to scaling ψ̂ by s.



804 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

Hammond et al. [18] defined the SGWT, replacing the Fourier domain in Eq. (31.9) with the
eigenspace of the graph Laplacian. Specifically, the spectral graph wavelet, ψs,n(m) at scale s and node
n is defined as

ψs,n(m) =
N∑

l=1

g(tsλl)u∗
l (n)ul(m), (31.10)

where g(·) is the wavelet-generating kernel that behaves as a scaled band pass filter, and ts, s = 1, . . . , J
are the sampled scaling parameters. Comparing Eq. (31.10) with Eq. (31.9), the wavelet is now
represented by the eigenvectors ul(m) of the Laplacian matrix instead of ejωx and shifting the wavelet to
node n corresponds to a multiplication by u∗

l (n), replacing e−jωa. The corresponding scaling function
that will capture the low pass components localized at each graph node n is given by

φn(m) =
N∑

l=1

h(λl)u∗
l (n)ul(m), (31.11)

where h is the scaling function generating kernel and behaves as a low-pass filter; i.e., h(0) > 0,
h(λ) = 0 as λ → ∞.

Similar to the continuous wavelet transform, SGWT can be computed by the inner product of the
graph signal x with the wavelets and the scaling function as

Wψ (s, n) = 〈
x, ψt,n

〉 =
N∑

l=1

g(tsλl)x̃lul(n), (31.12)

and

Wφ(n) = 〈x, φl〉 =
N∑

l=1

h(λl)x̃lul(n), (31.13)

where x̃l is the lth frequency component of the GFT.

31.3 DIMENSIONALITY REDUCTION AND SUPERVISED CLASSIFICATION
THROUGH GSP
One common problem in the analysis of brain imaging data such as EEG, MEG, or fMRI is the
large amount of high-dimensional spatiotemporal measurements that commonly require dimensionality
reduction before being used for classification applications such as the ones encountered in brain-
machine interface (BMI) and task-based fMRI. Traditional methods for dimensionality reduction of
large amounts of neuroimaging data include principal component analysis (PCA), independent compo-
nent analysis (ICA) and Laplacian eigenmaps. The novelty of graph-based approaches in comparison
to these traditional methods is that they can use the underlying graph model as side information to
help reduce the dimensionality in a more robust manner. By leveraging the graph structure that may
contain more accurate long-term correlation information compared to the instantaneous measurements,
one can learn a more accurate low-dimensional subspace. In effect, these methods model the nonlinear
data manifold with data-dependent graph structures. Moreover, the proposed projector is independent



31.3 DIMENSIONALITY REDUCTION 805

of the training dataset and does not require the estimation of the statistics of the actual data, which may
be noisy. Experimental results show that the proposed dimensionality reduction methods work well
in classification accuracy even in the case where the size of available data for training is very small
[19,20].

In GSP-based dimensionality reduction, the first r eigenvectors of the graph Laplacian, L, computed
from the adjacency matrix constructed from either the functional connectivity or the structural network,
are used to form the low-dimensional subspace, Ur. The cut-off frequency is found by sorting the
eigenvalues from higher to lower and the eigenvectors whose eigenvalues are larger than the cut-
off frequency are used for building the subspace. Subsequently, the noisy measurements, or signals
living on the graph, are projected to this low-dimensional subspace to reduce the dimensionality of the
signals, i.e., UT

r X, where X ∈ RN×T is the collection of graph signals across time. Finally, the reduced
dimensional signals can be used as features in a standard classifier such as a support vector machine
(SVM). A simple application of this approach has been tested on both synthetically generated brain
networks and MEG and fMRI data with different types of connectivity graphs. It has been shown that
graph-based dimensionality reduction with a Granger causality connectivity graph gave the best overall
performance compared to correlation, coherence, and phase locking value-based graphs. Moreover, the
proposed dimensionality reduction performs better than conventional approaches including PCA, LDA,
and LE [19].

More recently, this approach has been extended for dimensionality reduction of sample covariance
matrices [20] for decoding motor imagery (MI) in BMI applications using a common spatial pattern
(CSP). The CSP is defined as a vector that maximizes the ratio between the variances of two MI
tasks and can be found as the solution of a generalized eigenvalue problem for a pair of covariance
matrices. In practice, these covariance matrices are estimated as empirical average of sample covariance
matrices (SCMs). The limitation of this method is that they reduce SCMs to single eigenvectors and
are applicable only to two-class classification problems. To address these limitations, SCMs have
been modeled as points on a Riemannian manifold and each point can then be mapped to a tangent
space. The computation of tangent mapping methods requires accurate estimation of SCMs. GFT-based
dimensionality reduction methods can be used to obtain low-dimensional accurate estimates of SCMs.
More specifically, if X ∈ RN×T is an N-channel, T-time point data, the proposed approach estimates
the SCMs not from X but from the dimensionality-reduced version. The dimensionality reduction of
the column space can be obtained as Y = UT

r X, where Ur is a projection matrix obtained from the first
r eigenvectors of the graph Laplacian.

Hu et al. [21] generalized these projection based dimensionality reduction methods by offering a
more formal signal detection and classification theory for neural graph signals defined on brain graphs.
The matched signal detection (MSD) theory was extended to graph signals where the subspace for the
graph signal is formed by the eigenvectors of the graph Laplacian matrix, L. Three graph signal models
are considered to derive the corresponding hypothesis tests. In the first case, the graph signals are
assumed to be band-limited. Band-limited graph signals are defined as signals that are only supported on
lower-frequency components corresponding to the first few smaller eigenvalues. This case is equivalent
to the dimensionality reduction described above [19,20]. In the second model, prior information about
the signal x is incorporated via a constraint on its GFT coefficients. The constraint can be put in a
normalized quadratic form described as:

C(x̃) =
∑N

i=1 αix̃i
2∑N

i=1 x̃2
i

, (31.14)



806 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

where αis are nonnegative penalty weights. When αi = λi, the constraint function is equivalent to the
normalized TV. This constraint function assures that the graph signals have bounded variations on the
graph. To satisfy the constraint of smoothness on the graph, the signal should have a higher energy
concentration on the lower-frequency components compared with the higher-frequency components.
In the third model, a probabilistic graph signal model is considered. In this case, the distribution of
the GFT coefficients is modeled as a degenerate Gaussian distribution. A test statistic is derived under
each of these three models. For bounded variation signals described in Eq. (31.14), the test reduces
to a weighted energy detector. For the random signal model, the test statistic is the difference of
signal variations on associated graphs. The application of MSD to brain imaging data classification of
Alzheimer’s disease (AD) from two different imaging modalities revealed higher accuracy and earlier
detection of AD compared to standard methods such as PCA, SVM, and LDA. MSD methods on
graphs detect which orthonormal subspace derived from the AD or the healthy group best captures the
properties of a signals.

31.4 GRAPH FILTERING OF BRAIN NETWORKS
Dimensionality reduction described in Section 31.3 is a special case of graph-based filtering (GBF),
where the filtering focuses only on the low-frequency components. Graph filters offer a generalization
of this concept as they permit the decomposition of a graph signal into components that represent
different modes of variability and not just the low-dimensional components corresponding to the
spatially smooth variations.

Given a graph signal x with GFT x̃, one can isolate the different frequency components by defining
the filtered spectrum. For example, the KL low graph frequency components x̃L = H̃Lx̃ can be defined
as x̃Lk = x̃k for k < KL and x̃Lk = 0, otherwise. The filter H̃L := diag(h̃L) can be written as a diagonal
matrix where the diagonal elements, i.e., the vector h̃L, take the value 1 for frequencies smaller than KL

and are equal to zero otherwise. Utilizing the spectral decomposition of the network and the definition
of GFT, filtering is equivalent to xL = HLx in the graph vertex domain, where the filter HL := UH̃LU−1

can be written as HL = ∑n−1
k=0 hLkLk in terms of Laplacian powers [17]. The coefficients hLk in this

expansion are elements of the vector hL = �−1hL where � is the Vandermonde matrix defined by the
eigenvalues of L. The coefficients hLk tend to be concentrated in small indexes k, and the expansion is
dominated by small powers Lk. In general, Lkx describes interactions between k-hop neighbors.

Other types of graph filters can be defined in a similar manner. A graph band pass filter HM and a
graph high pass filter HH , whose graph frequency responses are defined as:

h̃Mk = I[KL ≤ k < KL + KM],
h̃Hk = I[KL + KM ≤ k]. (31.15)

Using the filtered signals, the original signal can be written as the sum x = xL + xM + xH . This
decomposition provides an analysis of spatial variability of brain activity across regions of the brain
with respect to the underlying connectivity network.

In [22,23], this framework was applied to fMRI data collected across time where the subjects learned
a simple motor task. The brain graph was constructed using the magnitude squared spectral coherence
as the adjacency matrix, W. The fMRI time series data was then decomposed into three frequency bands



31.5 GRAPH LEARNING 807

defined by this adjacency matrix. The magnitude of the decomposed signals, xL, xM , xH , for each brain
region was averaged across all sample signals. It was shown that for xL, the magnitudes on adjacent
brain regions tend to possess highly similar values, whereas for xH , neighboring signals exhibit highly
dissimilar values. Moreover, the signals from the different frequency bands were correlated with the
learning rate, which showed that most of the association between learning comes from the brain signals
that either vary smoothly (xL) or rapidly (xH) with respect to the brain network.

The analysis of spatial variation discussed above can also be carried out at a more local scale. In
particular, visual and motor modules are known to be associated with motor learning. In order to assess
the fluctuations or spatial variation within a module, a modified TV measure can be defined. Given an
eigenvector uk, its variation on any given module, i.e., a subset of vertices, Vs, can be defined as:

TV(uk) =
∑

i,j∈Vs,i�=j Wij(uk(i) − uk(j))2∑
i,j,∈Vs,i�=j Wij

. (31.16)

This measure computes the difference for signals on this module for each unit of edge weight. This total
variation can be averaged over the eigenvectors corresponding to different frequency bands, resulting
in TVL

s , TVM
s , TVH

s . Moreover, the variation of eigenvectors on edges across modules can be quantified
in a similar manner:

TVs,t(uk) =
∑

i∈Vs,j∈Vt
Wij(uk(i) − uk(j))2∑

i∈Vs,j∈Vt
Wij

. (31.17)

This analysis revealed that as learning takes place, the motor module becomes more strongly connected
and the visual module weakens. Moreover, an analysis of the temporal variation of the decomposed
signals revealed that brain activities with smooth spatial variations, xL, exhibit the most rapid temporal
variation. As the temporal variation is associated with better performance in tasks, this indicates a
stronger contribution of low graph frequency components during the learning process.

Along similar lines, Medaglia et al. [24] examined the relationship between functional alignment
with anatomical networks and its relationship to cognitive flexibility. In this setting, the underlying
network was constructed from the white matter graph, and the graph signals are defined from the
average fMRI BOLD signals over different regions of interest (ROIs). Here, it is of interest to assess
the portions of the graph signals that are aligned to the anatomical network. Based on graph filtering,
it was found that alignment relevant to cognitive flexibility was more present in the anterior cingulate
cortex and regions related to mechanisms of cognitive flexibility. Moreover, it was shown that these
results cannot be observed from unimodal studies alone, demonstrating the advantage of multimodal
analyses based on GSP.

31.5 GRAPH LEARNING
Understanding network features of brain pathology is essential for determining the underlying causes
of neurodegeneration such as Alzheimer’s Disease, which is not possible with analysis focused only on
region-wise differences of neuroimaging data. Various statistical methods have been developed to infer
functional connectivity networks from neuroimaging data. The most common technique for fMRI data
is correlation analysis, which estimates the correlation matrix by computing the sample correlation of



808 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

the data. Other methods include the coherence and phase synchrony metrics presented in Section 31.2.
However, these methods cannot distinguish between indirect and direct connections. Partial correlation,
i.e., the precision matrix, addresses this problem, but is often ill-conditioned due to a limited amount
of samples [25,26]. One common way of overcoming this problem is graphical Lasso [27], which
estimates the partial correlation with l1-regularization because the sample correlation matrix is often
singular due to the small sample size. However, all these methods require a lot of data for reliable
estimation of the functional connectivity networks.

Recently, two novel GSP-based frameworks for learning brain connectivity from neuroimaging
data have been proposed. The first one, referred to as a graph regression model (GRM), makes the
assumption that the observed data are smooth signals on a deterministic graph [28]. This reduces the
required number of samples to estimate the graph because the GRM does not depend on a specific
probability distribution of the data. As a result, GRM produces more balanced network structures, in
contrast to those from sample correlation matrices.

The smoothness, or signal variation, can be quantified through metrics such as the total variation,
or its variations such as the metric MG(x) = xT Lsx

xT x , where s > 0 is an adjustable parameter usually
chosen in the range of 1 to 3. s controls the impact of the different graph frequencies. In a smooth
signal regularization, if s is increased, there will be a greater penalty on higher frequency components
of x. Given N brain regions of interest with M samples or subjects and X ∈ RN×M as the data observed
on these regions, GRM can be formulated by minimizing the total variation across all samples, i.e.,∑M

m=1 MG(xm) which is equivalent to tr(XTLsX). Minimizing the total variation of the observed signals
with respect to the unknown graph Laplacian and adding a regularization term on the graph Laplacian
yields:

min
L

tr(XT LsX) − β‖L‖2
F

s.t. tr(L) = N, L1 = 0. (31.18)

The first term in the objective function finds the graph Laplacian that would yield the smallest variation
across all samples while the second term controls the uniformity of the graph Laplacian. The constraints
normalize the sum of all the connection weights to prevent the solution of a null graph. Because the
constraints are linear, this optimization problem can be solved using the projected gradient descent
method. In contrast to the noisy sample correlation, the resulting Laplacian matrix extracts cleaner
and potentially more meaningful information from the data, yielding the most significant connections
within each lobe.

A similar line of work was introduced to learn the graph Laplacian from brain imaging data with an
added constraint that the high dimensional neuroimaging data is low rank [29]. Thus, an optimization
function that minimizes the total variation of the signal on the graph and the smoothness of the
Laplacian with the added terms that the underlying data is low rank has been introduced as:

min
L,S,M

‖M‖∗ + δ‖S‖1 + γ tr(MT LM) + β‖L‖2
F

s.t. X = M + S, (31.19)

where M and S correspond to the low rank and sparse parts of the observed neuroimaging data,
respectively. The first two terms correspond to the cost function of robust PCA [30] for the observed
data and the last two terms correspond to the graph smoothness regularization with the constraint that



31.6 SPECTRAL GRAPH WAVELETS 809

the underlying graph topology captures the data correlation. This approach is an extension of GRM
such that it not only estimates the underlying connectivity structure but also learns the low-dimensional
structure of the observed data, thus denoising the neuroimaging data. The addition of these terms
requires the use of an alternating minimization approach. In the first step, the robust PCA problem
is solved for a fixed Laplacian with an additional constraint on the underlying (unknown) low-rank data
M, where tr(MTLM) forces the low-rank representations of the time series to be similar for highly
correlated sensors or brain regions. In the second step, the graph Laplacian is learned given S, M which
is similar to the GRM problem. This method is suitable for learning both the low-rank component and
graph simultaneously for cases where the perturbations to the neuroimaging data are sparse in nature.

31.6 SPECTRAL GRAPH WAVELETS
Over recent decades, the wavelet transform has contributed significantly to the multiscale analysis of
neuronal data. From single-unit recordings to noninvasive neuroimaging modalities such as EEG, MEG,
and fMRI [31], the wavelet transform has been employed in classification [32], artifact suppression
and denoising [33], synchronization and computation of functional connectivity [34], and signal
compression [35]. More recently, its extension to graph-signals SGWT has been found to be useful
in a wide variety of neuroscience applications, including source estimation in EEG and MEG, fMRI
activation mapping and denoising, and connectivity analysis [36–39].

In EEG applications, the signals recorded by the sensors in the scalp are the result of electric
potentials generated by dipole current sources and volume conduction. The goal of source estimation
is to estimate the current sources from the electrode’s measurements. Estimating the location of these
sources from the recorded EEG signals is an ill-posed problem, as there are more sources than sensors.
Specifically, the signals recorded by φ ∈ RNc×1 are the result of the linear superposition φ = K j, where
each entry ji of j ∈ RNd×1 corresponds to a source dipole, and K ∈ RNc×Nd is the lead-field matrix.
Approaches to estimate such sources include minimum norm estimates and beamforming techniques
and may rely on prior information such as the total number of dipoles [40]. In recent work, Hammond
et al. [36] incorporated knowledge of the anatomical connectivity of the brain from diffusion tensor
imaging (DTI) in the regularization for the inverse problem of source estimation for EEG. Specifically,
the authors constructed a wavelet frame on the cortical connectome graph based on the assumption
that cortical sources are sparse in the cortical graph wavelet frame. The cortical connectome graph is
formed by constructing a hybrid adjacency matrix consisting of a tractography-based connectome and
a local connectivity graph from DTI. As cortical graph wavelets are defined on this cortical connectome
graph, they are good at representing signals that are coherent across graph edges and localized in the
graph. An alternative formulation of the inverse problem is presented where both the objective function
and the penalty term are defined in the cortical graph wavelet domain. If c ∈ R(s+1)Nd is the vector of
the wavelet and scaling coefficients and W ∈ R(s+1)Nd×Nd is the matrix representation of the SGWT,
then j = WTc and the inverse problem becomes c∗ = argminc‖φ − KWTc‖2

2 + τ‖c‖1. The cortical
sources can then be found as j∗ = WTc∗. Using data from a motor potential study where subjects were
required to press a button as response to a visual task, the authors showed that the proposed method
was effective at estimating the sources in the motor cortex and the resulting sources were less diffused
than those obtained from the minimum norm solution.



810 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

Leonardi and Van De Ville [39] extended the formulation of SGWT to tight (Parseval) graph
frames because of their important property of energy conservation. Parseval graph wavelet frames were
generated by designing the wavelet and scaling generating kernels, g(·) and h(·), in the spectral graph
domain and then designing Meyer-like wavelets with the spatial scales defined as sj = a

λmax
2j, j =

1, . . . , J. These tight frame graph wavelets were applied to the problem of fMRI activation mapping.
Statistical parametric mapping (SPM), widely used in the estimation of stimulus-related activity,
fits a general linear model (GLM) on each voxel using regressors defined by the experimental
paradigm. Recently, transform-based SPM, including wavelet SPM (WSPM), has been introduced to
take advantage of the spatial localization of brain activity, which enables the sparse encoding of a
cluster of active voxels, thus providing a higher sensitivity than voxel-wise testing. Behjat et al. [38]
extended this framework by constructing SGWTs over structural connectivity graphs, i.e., a gray matter
adapted graph, consisting of the cerebellar and the cerebral graphs and applying these to functional data
for activation mapping. In this manner, the resulting wavelets are adaptive to the convolutive structure
of the gray matter and further avoid the assumptions made by WSPM, which are defined in regular
Euclidean spaces and are stationary and quasi shift-invariant. Moreover, tight-frame SGWT prevents
linear irreversible smoothing and allows for assessment at multiple scales. Results show an increase in
type-1 error control, higher detection sensitivity, and improved spatial localization when compared to
the traditional SPM and WSPM.

In [39], the tight frame graph wavelets were adapted to multilayer networks such as dynamic
functional connectivity networks (dFCNs) constructed from fMRI data. In this two-step approach, first
“eigennetworks” of a multislice graph, where each slice corresponds to a weighted adjacency matrix
W for a different time window (T time points), are extracted through Higher Order Singular Value
Decomposition (HoSVD) of the connectivity tensor, W ∈ RN×N×T .

W = C ×1 B ×2 B ×3 F, (31.20)

where C ∈ RN×N×T is the core tensor, and B ∈ RN×N , F ∈ RT×T are the factor matrices along
the modes. Through this tensor decomposition, the authors construct eigennetworks that capture
the variability of the network across time. In particular, the kth eigennetwork is defined as C′

::k =∑T
t=1 fktW::t, which is equivalent to a weighted average of the different adjacency matrices. Treating

these eigennetworks as the building blocks of network connectivity, different linear combinations of
C’ are generated to define new adjacency matrices, W’. From these new adjacency matrices, Laplacian
matrices and the corresponding tight frame spectral graph wavelets are constructed. The results suggest
that eigennetworks obtained from the HoSVD of a dFCN capture relevant variability across graph
edges, such that each eigennetwork may correspond to different well-known resting-state networks
such as the default mode network (DMN). Thus, the resulting adjacency matrices and the fMRI data
decomposed with the SGWTs built from them emphasize different types of brain activity and different
experimental conditions.

In [37], SGWTs were used to offer a multiresolution analysis of structural networks rather than
functional ones. Unlike other applications of GSP with graph signals corresponding to functional
activity over the vertices of a brain network, in this case the application domain is solely the structural
connectivity network such as DTI. In order to apply SGWT to structural connectivity networks, the
notion of line graphs is used. The structural connectivity networks are first transformed to line graphs
such that the edges of the original network become the signal on the graph. In this manner, the edge



31.6 SPECTRAL GRAPH WAVELETS 811

values in the structural connectivity network become the new domain of analysis. Using wavelets,
multiscale filtering of edges can be efficiently performed by removing high-frequency components tied
to finer scales.

31.6.1 DYNAMIC CONNECTIVITY ANALYSIS
Most applications of GSP framework to neuroimaging data make the assumption that the functional
or structural networks are stable for a window of time as the networks are constructed through long-
term correlation between the neurophysiological time series. Brain activity can vary more frequently,
forming multiple samples of brain signals defined on a common underlying network. However, recent
research has shown that functional connectivity networks also change dynamically in short time scales
and exhibit task-related patterns [41–45]. This continuous formation and destruction of functional
connectivity also controls the emergence of a unified neural process [45].

The current literature on dynamic functional connectivity networks (dFCNs) relies on the computa-
tion of bivariate connectivity over sliding windows, which causes the connectivity measures to depend
on the window length. As a result, the dFCNs constructed through this method do not have the same
high temporal resolution of the original data, as in the case of EEG. In a recent study, Smith et al.
[46] introduced GSP as an alternative framework for the assessment of connectivity dynamics for EEG
signals recorded during visual short-term memory (VSTM) tasks. Specifically, the authors construct
a weighted graph using connectivity analysis between signals using metrics defined in Section 31.2
and take the graph signal as the EEG epoch at each electrode. Analysis at two different time scales,
short-term and long-term, and at two different spatial scales, local and global, is then proposed through
Dirichlet energy (DE) and graph modular Dirichlet energy (MDE). The Dirichlet energy of a graph G
is defined as

E(G) =
N∑

i,j=1

Wij(xi − xj)2, (31.21)

where Wij is the weight between the ith and the jth electrodes, and xi and xj are the amplitudes of the
signals at a given time on each electrode. E(G) quantifies the agreement between the correlation between
EEG signals i and j and the difference between the graph signals xi and xj at time t. It’s important to
note that the Dirichlet energy is equivalent to the total variation defined in Eq. (31.8). Four different
cases can be considered when the signals are highly correlated. First, if the weights Wij are positive
and the difference xi − xj is large, it means that there is a discrepancy between the connectivity and the
amplitude of the signals at time t, and the resulting E(G) is large and positive. On the other hand, if the
difference xi − xj is small it implies that both the weights and the signals’ amplitude are in agreement
and E(G) is small. In the third case, if the weights Wij are negative and the difference xi − xj is large,
it implies that there is a strong agreement between the weights and the signal amplitudes, and E(G) is
large and negative. Lastly, if the weights are negative and the difference xi − xj is small, it implies that
both the weights and the signals’ amplitude are in disagreement and E(G) is negative and small.

To provide quantification of the spatial smoothness at the local level, graph Modular Dirichlet
Energy (MDE) is defined over a module Gx as:

MDE(Gx) =
∑
i∈Vx

∑
j∈V

Wij
(
xi − xj

)2 , (31.22)



812 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

where Vx consists of the vertices in the module Gx.
DE and MDE can be used to analyze the temporal dynamics of brain activity as the DE of the signal

during any time period is the sum of the individual DE at each point in time. This way, one can look at
both short and long intervals of time to probe the connectivity information for dynamic behavior within
the epoch from which the graphs are constructed. DE and MDE analysis offer a different perspective
to existing dFCN methods as a single network of general connectivity patterns over a long epoch is
constructed rather than a collection of time-varying networks. Thus, the dynamic activity is encoded in
the graph signal rather than in the edge weights of a time-varying graph.

In the application of this framework to EEG data from a visual short-term memory binding task, two
time windows corresponding to the encoding and maintenance periods are considered. Similarly, two
modules corresponding to the frontal and occipital regions of the brain are identified. Through MDE, it
was possible to discern driving effects in the occipital module coinciding with the P100 visually evoked
potential within the 100–140 ms interval, and a driving effect in the frontal region in the 140–180 ms
interval.

31.7 AN ILLUSTRATION: ERP CLASSIFICATION ON EEG FUNCTIONAL
CONNECTIVITY NETWORKS
In this section, we illustrate the application of the GSP principles presented in this chapter on the
classification of event-related potentials (ERPs). The EEG data is collected from a cognitive control
experiment based on a Flanker speeded reaction task [47]. During the experiment, subjects are required
to identify a target letter in a five-letter string, which can be congruent (MMMMM) or incongruent
(MMNMM). An event-related potential (ERP) of interest in this experiment is the error-related
negativity (ERN), which is observed as a large negative amplitude occurring 0–100 ms after the subjects
commit errors. The ERN potential is illustrated in Fig. 31.2A, as well as the EEG time series from
correct responses.

Previous studies assessing functional connectivity during cognitive control have shown increased
synchrony in the theta band (4–8 Hz) in the frontal and lateral regions from error responses compared to
correct responses [47]. Fig. 31.2B shows the functional connectivity networks constructed using PLV
[48], averaged over the time interval 25–75 ms and over subjects. Fig. 31.2C shows the topographic
distribution of the graph signals across different frequency bands averaged over the 25–75 ms time
interval. The graph signals at each time point in the 25–75 ms time window are filtered into the low-
middle- and high-frequency bands determined by the eigenvalues of the graph Laplacian and averaged
over time [22]. Fig. 31.2D shows topoplots of the filtered signals. It can be observed that the low-
frequency component of the graph signals from error responses have a great contribution to the large
negative potential in the frontal-central regions, and to the large positive amplitudes in the frontal-
lateral and medial regions. On the other hand, in the case of correct responses, there is also a strong
contribution from the low-frequency signals, although in a less structured manner. The middle- and
high-frequency range also show some of the large negative potential corresponding to the ERN in the
frontal-central regions for the error response, indicating the persistence of this activity across different
levels of spatial variation.



31.8 CONCLUSIONS AND FUTURE DIRECTIONS 813

FIG. 31.2

An illustration of the construction of brain networks and the graph signals defined on these networks. (A) EEG
signals from error and correct responses. The error-related negativity potential is observed as a large negative
peak between 0 and 100 ms in the error signals. (B) Functional connectivity networks from PLV averaged over
the 25–75 ms time interval for error and correct responses. (C) Topoplots of the EEG graph signals averaged
over the 25–75 ms time interval for error and correct responses. (D) Topoplots of filtered graph signals in the
low-, middle-, and high-frequency bands, from error and correct responses averaged over the 25–75 ms time
interval.

31.8 CONCLUSIONS AND FUTURE DIRECTIONS
As illustrated in this chapter, the current state-of-the-art methods in GSP have made it possible to
extract rich brain activity from multivariate neuroimaging data. However, there are still some remaining
challenges and promising directions in the application of GSP methods to brain connectivity networks.
First, all the previously discussed methods assume that the connectivity network is symmetric. It is
well known that FC is directional and a variety of measures, such as Granger causality, have been
defined to quantify this directional nature of the interactions [49]. This requires the development of
graph spectral transforms for directed adjacency matrices. Recent developments in this area [50] can
provide the tools to extract brain activity across different levels of spatial variation simultaneously with
the direction of information flow between regions. Another important area of growing interest is the
study of dFCNs, as discussed in Section 31.7. Current methods of dFCN analysis using GSP assume
a stationary network with the graph signal changing with time. However, in reality the connectivity
is quasistationary and these methods are limited to small epochs. Recently, new definitions of GFT



814 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

for time-varying signals have been provided [51]. However, the analysis of time-varying signals on
dynamic networks requires the definition of a common subspace and common graph frequencies
across time [52,53]. Finally, the GSP framework offers opportunities for multimodal neuroimaging
data analysis, combining information across different modalities to extract brain activity that is not
available through a single modality. Even though there is some recent work in this area [24,38], the
potential for extending it to different structural and functional imaging modalities may offer huge gains
in the era of big data neuroimaging.

REFERENCES
[1] Friston KJ. Modalities, modes, and models in functional neuroimaging. Science 2009;326(5951):399–403.
[2] Friston K. Functional integration and inference in the brain. Prog Neurobiol 2002;68(2):113–43.
[3] Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain

networks. Trends Cogn Sci 2004;8(9):418–25.
[4] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional

systems. Nat Rev Neurosci 2009;10(3):186.
[5] Fallani FDV, Richiardi J, Chavez M, Achard S. Graph analysis of functional brain networks: practical issues

in translational neuroscience. Philos Trans R Soc B 2014;369(1653):20130521.
[6] Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome: promise, progress, and

pitfalls. Neuroimage 2013;80:426–44.
[7] Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks.

Neuroimage 2010;53(4):1197–207.
[8] Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET. Hierarchical modularity in human brain

functional networks. Front Neuroinform 2009;3:37.
[9] Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;12(6):512–23.

[10] Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human
brain functional network with highly connected association cortical hubs. J Neurosci 2006;26(1):63–72.

[11] Braun U, Muldoon SF, Bassett DS. On human brain networks in health and disease. eLS 2015:1–9.
[12] Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among

spatially independent resting-state components in schizophrenia. Neuroimage 2008;39(4):1666–81.
[13] Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys

2007;1(1):3.
[14] Fingelkurts AA, Fingelkurts AA, Kähkönen S. Functional connectivity in the brain—is it an elusive concept?

Neurosci Biobehav Rev 2005;28(8):827–36.
[15] Ménoret M, Farrugia N, Pasdeloup B, Gripon V. Evaluating graph signal processing for neuroimaging through

classification and dimensionality reduction; 2017. arXiv preprint arXiv:170301842.
[16] Lachaux JP, Rodriguez E, Martinerie J, Varela FJ, et al. Measuring phase synchrony in brain signals. Hum

Brain Mapp 1999;8(4):194–208.
[17] Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing

on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal
Process Mag 2013;30(3):83–98.

[18] Hammond DK, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory. Appl Comput
Harmon Anal 2011;30(2):129–50.

[19] Rui L, Nejati H, Cheung NM. Dimensionality reduction of brain imaging data using graph signal processing.
In: 2016 IEEE international conference on image processing (ICIP). IEEE; 2016. p. 1329–33.

http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0010
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0015
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0020
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0025
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0030
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0035
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0040
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0045
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0050
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0055
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0060
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0065
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0070
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0075
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0080
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0085
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0090
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0095
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0100


REFERENCES 815

[20] Tanaka T, Uehara T, Tanaka Y. Dimensionality reduction of sample covariance matrices by graph Fourier
transform for motor imagery brain-machine interface. In: 2016 IEEE statistical signal processing workshop
(SSP). IEEE; 2016. p. 1–5.

[21] Hu C, Sepulcre J, Johnson KA, Fakhri GE, Lu YM, Li Q. Matched signal detection on graphs: theory and
application to brain imaging data classification. NeuroImage 2016;125:587–600.

[22] Huang W, Goldsberry L, Wymbs NF, Grafton ST, Bassett DS, Ribeiro A. Graph frequency analysis of brain
signals. IEEE J Sel Top Signal Process 2016;10(7):1189–203.

[23] Goldsberry L, Huang W, Wymbs NF, Grafton ST, Bassett DS, Ribeiro A. Brain signal analytics from
graph signal processing perspective. In: 2017 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE; 2017. p. 851–5.

[24] Medaglia JD, Huang W, Karuza EA, Thompson-Schill SL, Ribeiro A, Bassett DS. Functional alignment with
anatomical networks is associated with cognitive flexibility; 2016. arXiv preprint arXiv:161108751.

[25] Varoquaux G, Gramfort A, Poline JB, Thirion B. Brain covariance selection: better individual functional
connectivity models using population prior. In: Advances in neural information processing systems. 2010.
p. 2334–42.

[26] Marrelec G, Krainik A, Duffau H, Pélégrini-Issac M, Lehéricy S, Doyon J, et al. Partial correlation for
functional brain interactivity investigation in functional MRI. Neuroimage 2006;32(1):228–37.

[27] Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics
2008;9(3):432–41.

[28] Hu C, Cheng L, Sepulcre J, Johnson KA, Fakhri GE, Lu YM, et al. A spectral graph regression model for
learning brain connectivity of Alzheimer’s disease. PLOS One 2015;10(5):e0128136.

[29] Rui L, Nejati H, Safavi SH, Cheung NM. Simultaneous low-rank component and graph estimation for
high-dimensional graph signals: application to brain imaging. In: 2017 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE; 2017. p. 4134–8.

[30] Candès EJ, Li X, Ma Y, Wright J. Robust principal component analysis? J ACM (JACM) 2011;58(3):11.
[31] Hramov AE, Koronovskii AA, Makarov VA, Pavlov AN, Sitnikova E. Wavelets in neuroscience. Springer;

2015.
[32] Nazimov AI, Pavlov AN, Hramov AE, Grubov VV, Koronovskii AA, Sitnikova E. Adaptive wavelet-based

recognition of oscillatory patterns on electroencephalograms. In: Proceedings of SPIE, vol. 8580; 2013.
p. 85801D-1.

[33] Ahmadi M, Quiroga RQ. Automatic denoising of single-trial evoked potentials. NeuroImage 2013;66:672–80.
[34] Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, et al. Functional connectivity and

brain networks in schizophrenia. J Neurosci 2010;30(28):9477–87.
[35] Srinivasan K, Dauwels J, Reddy MR. Multichannel EEG compression: wavelet-based image and volumetric

coding approach. IEEE J Biomed Health Inform 2013;17(1):113–20.
[36] Hammond DK, Scherrer B, Malony A. Incorporating anatomical connectivity into EEG source estimation

via sparse approximation with cortical graph wavelets. In: 2012 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE; 2012. p. 573–6.

[37] Kim WH, Adluru N, Chung MK, Charchut S, GadElkarim JJ, Altshuler L, et al. Multi-resolutional brain
network filtering and analysis via wavelets on non-Euclidean space. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer; 2013. p. 643–51.

[38] Behjat H, Leonardi N, Sörnmo L, Van De Ville D. Anatomically-adapted graph wavelets for improved
group-level FMRI activation mapping. NeuroImage 2015;123:185–99.

[39] Leonardi N, Van De Ville D. Tight wavelet frames on multislice graphs. IEEE Trans Signal Process
2013;61(13):3357–67.

[40] Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, et al. Review on solving the inverse
problem in EEG source analysis. J Neuroeng Rehabil 2008;5(1):25.

http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0105
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0110
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0115
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0120
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0125
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0130
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0135
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0140
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0145
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0150
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0155
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0160
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0165
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0170
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0175
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0180
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0185
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0190
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0195
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0200
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0205


816 CHAPTER 31 GRAPH SIGNAL PROCESSING ON NEURONAL NETWORKS

[41] Prabhakaran R, Blumstein SE, Myers EB, Hutchison E, Britton B. An event-related FMRI investigation of
phonological-lexical competition. Neuropsychologia 2006;44(12):2209–21.

[42] Goebel R, Esposito F, Formisano E. Analysis of functional image analysis contest (FIAC) data with brain-
voyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing
group independent component analysis. Hum Brain Mapp 2006;27(5):392–401.

[43] Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, Luxen A, et al. Breakdown
of within-and between-network resting state functional magnetic resonance imaging connectivity during
propofol-induced loss of consciousness. Anesthesiol: J Am Soc Anesthesiol 2010;113(5):1038–53.

[44] Schrouff J, Perlbarg V, Boly M, Marrelec G, Boveroux P, Vanhaudenhuyse A, et al. Brain functional
integration decreases during propofol-induced loss of consciousness. Neuroimage 2011;57(1):198–205.

[45] Chang C, Glover GH. Time-frequency dynamics of resting-state brain connectivity measured with FMRI.
Neuroimage 2010;50(1):81–98.

[46] Smith K, Ricaud B, Shahid N, Rhodes S, Starr JM, Ibá nez A, et al. Locating temporal functional dynamics
of visual short-term memory binding using graph modular Dirichlet energy. Sci Rep 2017;7:42013.

[47] Moran TP, Bernat EM, Aviyente S, Schroder HS, Moser JS. Sending mixed signals: worry is associated with
enhanced initial error processing but reduced call for subsequent cognitive control. Soc Cogn Affect Neurosci
2015;10(11):1548–56.

[48] Aviyente S, Bernat EM, Evans WS, Sponheim SR. A phase synchrony measure for quantifying dynamic
functional integration in the brain. Hum Brain Mapp 2011;32(1):80–93.

[49] Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L, et al. Estimation of the cortical functional
connectivity with the multimodal integration of high-resolution EEG and FMRI data by directed transfer
function. Neuroimage 2005;24(1):118–31.

[50] Sardellitti S, Barbarossa S, Di Lorenzo P. On the graph Fourier transform for directed graphs. IEEE J Sel Top
Signal Process 2017;11(6):796–811.

[51] Loukas A, Foucard D. Frequency analysis of temporal graph signals; 2016. arXiv preprint arXiv:160204434.
[52] Mahyari AG, Aviyente S. Fourier transform for signals on dynamic graphs. In: 2014 48th Asilomar conference

on signals, systems and computers. IEEE; 2014. p. 2001–4.
[53] Villafa ne-Delgado M, Aviyente S. Dynamic graph Fourier transform on temporal functional connectivity

networks. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP).
IEEE; 2017. p. 949–53.

http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0210
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0215
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0220
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0225
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0230
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0235
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0240
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0245
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0250
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0255
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0260
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0265
http://refhub.elsevier.com/B978-0-12-813677-5.00031-6/rf0270


Index

Note: Page numbers followed by f indicate figures, t indicate tables, and b indicate boxes.

A
Access points (AP), 420–425, 433
ACEKF. See Augmented complex extended Kalman filter

(ACEKF)
Active learning. See also Bayesian active learning

batch active learning, 285
sequential active learning, 285

Adaptation/learning trade-off
large deviations, 94
MSE performance, 83
universal scaling laws, 101

Adaptive combination strategy, 118–119
Adaptive directed information (ADI), 690–691, 693–694
Adaptive filtering algorithm, 535
Adaptive grouping strategy, 117–118

estimated group structures
at different nodes, 122–124, 123f, 126f
at different time instants, 122–124, 123f, 125f

vs. static grouping strategies, 121–124, 122f, 123f, 124f,
125f, 126f

Adaptive learning, 512–513
Adaptive networks

asynchronous (see Asynchronous adaptive networks)
diffusion implementations, 76–79
distributed adaptive detection

asymptotic normality, 92–93
construction, 88–89
detection performance, 89–90
vs. distributed adaptive estimation, 100, 100f
example, 98–100, 99f
large deviations, 93–96
refined large deviations analysis, 96–98
weak law of small step sizes, 91–92

distributed adaptive estimation, 79–87
comparisons, 84–86
vs. distributed adaptive detection, 100, 100f
example, 86–87, 86f
MSE performance, 81–83
network topology, 78f, 86–87

inference over networks
canonical inference problems, 70–72
distributed adaptive detection, 75
distributed adaptive detection and estimation, 75–76
distributed adaptive estimation, 75
distributed inference problems, 72–74

universal scaling laws, 101–103

Adapt-then-combine (ATC) strategy, 36–37, 53–54, 77,
109–110, 140, 141b, 276–277

ADI. See Adaptive directed information (ADI)
Adjacency matrix, 241, 249–250, 255
ADMM. See Alternating direction method of multipliers

(ADMM)
Afriat’s theorem, 527–528, 567–568, 577
Aggregated network, 681, 681f
Aggregation sampling, 261–262
Algebraic connectivity, 438–441, 440f
Algebraic graph theory, 447–448

connectivity-influential node, 450
Fiedler value and graph connectivity (see Fiedler value

and network connectivity)
Algebraic signal processing, 243, 255
AltBeacon protocol, 761
Alternating direction method of multipliers (ADMM),

156–158, 157b, 369, 401, 782–784
Alternating minimization (AM) method, 787–788
Altruistic data routing

group Nash equilibrium, 643–646
network, 641–643
optimum routing problem, 642–643

A-optimal design, 267–270
Approximate fusion relations, 178–180
Approximate master equations (AME), 536
Arbitrary graphs, 318–320
Area under precision-recall (AUPR) approach, 616–617,

617f
Area under ROC (AUROC), 616–618, 617f
ARMA filters, 310–313
ARX model. See Autoregressive with exogenous input

(ARX) model
Asset tracking and monitoring, 763–764, 763f
Asymptotic equivalence among agents

asymptotic normality, 93
MSE performance, 83
universal scaling laws, 101

Asymptotic normality, 92–93
Asynchronous adaptive networks

asynchronous behavior, 4
asynchronous multiagent adaptation and learning

asynchronous model, 38–39
mean graph, 40
Perron vectors, 42–44, 44f
random combination policy, 40f, 41–42

817



818 Index

Asynchronous adaptive networks (Continued)
centralized adaptation and learning

centralized MSE processing, 22–25
noncooperative MSE processing, 21–22
performance of centralized solution, 26–28
stochastic-gradient centralized solution, 25–26

MSD performance, 45–47
network stability and performance

diffusion networks, 53–61
MSE networks, 47–53

with noncooperative processing, 29–31, 31f
single-agent adaptation and learning

conditions on cost function, 7–8
conditions on gradient noise process, 11–12
mean-square-error performance, 16–21, 18f
mean-square-error stability, 14–16
random updates, 12–14
risk and loss functions, 5–7
stochastic-gradient approximation, 8–11

synchronous multiagent adaptation and learning
distributed optimization, 33–35
strongly connected networks, 32–33, 32f
synchronous consensus strategy, 35–36
synchronous diffusion strategies, 36–38

Asynchronous consensus LMS networks, 39
Asynchronous diffusion LMS networks, 39
Asynchronous LMS adaptation performance, 20
Asynchronous model, 38–39
Asynchronous multiagent adaptation and learning

asynchronous model, 38–39
mean graph, 40
Perron vectors, 42–44, 44f
random combination policy, 40f, 41–42

Asynchronous network model, 41
Asynchronous online learners performance, 21
Asynchronous power behavior, 422–423
ATC strategy. See Adapt-then-combine (ATC) strategy
Augmented complex extended Kalman filter (ACEKF)

centralized ACEKF, 745–746
D-ACEKF, 736, 747–748

features, 748
frequency variations, 751–752
steady-state mean square error, 752
voltage sags, 749–751

local ACEKF, 746–747
single-node ACEKF, 744–745

Augmented Lagrangian, 156
AUPR approach. See Area under precision-recall (AUPR)

approach
AUROC. See Area under ROC (AUROC)
Automated check-in, 764–765, 765f
Automated sensors, 777

Autonomous systems (ASs), 707
Autoregressive (AR) model, 339–340
Autoregressive with exogenous input (ARX) model,

537–538, 541, 542f
Average consensus (AC) approach, 406
Azuma-Hoeffding inequality, 536

B
Bandlimited graph signals, 433

consistent reconstruction, 265
Laplacian eigenvectors, 265–266
�1-norm reconstruction, 272–274
noise and model mismatching, 266–267
observation model, 264
perfect recovery of, 265–266
selection sampling, 264

Barabási-Albert model, 623, 646
Base band units (BBU), 434–435
Basis Pursuit (BP), 433–434, 434f
Batch active learning, 285
Battery-powered beacons, 760
Bayes decision rule, 286
Bayesian active learning, 295–296

binary Markov random field
Bayes decision rule, 286
EEM (see Expected error minimization (EEM))
Gaussian distribution, 285–286
LP prediction, 286

experiment
real-world data, 294, 294t
toy data, 293–294, 293f

linear chain graph, 284, 284f
problem definition, 284–285
star graphs, 283–284, 284f

Bayesian collaborative inference
Bayesian estimators, merging of

combination algorithm, 137–138
covariance intersection, 137
example, 138–139
Kullback-Leibler divergence, 135–136

diffusion Kalman filter
with ATC strategy, 140, 141b
hidden Markov model, 139
observation model, 139
recursions, 139–140
simulation example, 141, 142f, 143f
state transition, 139–140

inference over networks, strategies for, 134–135
sharing of measurements/statistics, 135

Bayesian estimators
combination algorithm, 137–138
covariance intersection, 137



Index 819

example, 138–139
Kullback-Leibler divergence, 135–136

Bayesian filtering problem, 545
Bayesian learning in networks, 223–229, 228f, 229f
Bayesian-Nash equilibrium (BNE), 213, 222–223, 225–228
Bayesian social learning model, 527, 529, 529f

agents, 566
BP algorithms, 547
information exchange, 545–546, 546f
monotone and ordinal decision-making, 561–562
multiagent social network, interactions in, 545–546, 546f
online reputation systems

data incest, 526–527, 547, 557–560
incest removal algorithms, 546, 560–561
social learning model, 527, 547–548

psychology experiment, 562–565
risk-averse social learning, market shock detection,

526–527, 548–549
CVaR, 548–552
market observer’s quickest detection objective, 552
nonconvex stopping set, 555–556, 556f
social learning region, 554–555, 554f, 555f
stochastic dynamic programming formulation,

553–554
wisdom-of-crowds hypothesis, 566

Belief propagation (BP) algorithms, 547
Bellman’s stochastic dynamic programming equation,

553–556
Bernoulli model, random updates, 13
Bernoulli Naive Bayes classifier, 528
Best linear unbiased estimator (BLUE), 266–267
Best response optimization approach, 473–474
Beta model, random updates, 13–14, 14f
Bibliographic information networks, 682
Big data

decentralized analytics
alternating-direction method of multipliers, 782–784
computational and communication cost, 784
convergence and optimality, 784
decentralized matrix completion, 780–782, 783b
internet delay cartography, 784–786, 785f
network data model, 780

decentralized signal processing (see Decentralized signal
processing)

matrix completion and nuclear norm, 778–779
streaming analytics

alternating LS algorithm for subspace tracking, 788,
788b

computational cost, 790
GROUSE algorithm, 786
large-scale machine learning, 793–794, 793f

low-complexity stochastic-gradient subspace updates,
789–790, 790b

online matrix completion, 787–789
PAST algorithm, 786
performance guarantees, 791–792
PETRELS algorithm, 786
real-time network traffic monitoring, 793
streaming data model, 786–787

Bilinear decomposition, 787
Bilinear factorization, 779
Binary Gaussian random field. See Binary Markov random

field (BMRF)
Binary Markov random field (BMRF)

Bayes decision rule, 286
expected error minimization

approximation of marginal, 289–290
continuous relaxation, 287–289
inverse Laplacian, 291–292
linear chain and query algorithms, 291, 291f
lookahead risk, 286–287
multiclass extension, 292
posterior marginal distribution, 287

Gaussian distribution, 285–286
LP prediction, 286

BioShock Infinite, 589, 590f
Bipartite decomposition, 319–320
Bipartite graphs, 318
Blind compressed sensing, 602
Bluetooth low energy (BLE) beacons

broadcasting signal to nearby devices, 758–759, 759f
characteristics

advertising interval, 760
measured power, 760
needless for Internet, 760–761
passive mode, 760
platform-independent, 761
power source, 760
size design, 759–760
transmission power, 760

definitions, 758
experiments

data filtering, 770
equipment, 770, 770t
experimental environment, 770–771
results and analysis, 771–773, 772f, 773t, 774f
three-step procedure, 771

limitations, 762
protocols

AltBeacon, 761
Eddystone, 761
GeoBeacon, 761
iBeacon, 761



820 Index

Bluetooth low energy (BLE) beacons (Continued)
proximity estimation

Kalman filter, 767–769, 769f
signal propagation and distance calculation, 766

security and privacy challenges, 762–763
in smart cities applications

asset tracking and monitoring, 763–764, 763f
automated check-in, 764–765, 765f
proximity marketing and enhanced interactivity, 764,

764f
wireless technologies, 757, 758t

BMRF. See Binary Markov random field (BMRF)
BNE. See Bayesian-Nash equilibrium (BNE)
Boolean quadratic program (BQP), 366–367
Bounded confidence, 603
Box-Ljung test, 584–585
Brain graph, 369–370, 370f
BroadBandTV (BBTV) dataset, 579–580
Byzantine attacks, collaborative spectrum sensing, 506

Byzantine data, 506
Byzantine generals problem, 506
parallel CRN

CMBA, 510, 511f
critical power, 509, 509b
IMBA, 510, 511f
KLD, 509–510, 511f
optimal attack strategy, 509, 510b
reputation-based scheme, 511–512
system model, 508–509
three-tier adaptive learning scheme, 512–513

peer-to-peer CRNs
conventional weighted average consensus algorithm,

518
decentralized spectrum sensing, 514
decision making phase, 516–517
deflection coefficient, 517–518, 517b, 518f
information fusion phase, 515–516
network model, 514
optimal weights, 519–520, 520b
robust distributed weighted average consensus

algorithm, 519, 519b, 520f
sensing phase, 515
three-tier mitigation scheme, 519

C
Canonical inference problems, 70–72
Cauchy-Schwarz inequality, 288–289
Cayley-Hamilton theorem, 352
CDE problem. See Cooperative data exchange (CDE)

problem
CEKF. See Complex extended Kalman filter (CEKF)
Centralized adaptation and learning

centralized MSE processing, 22–25
noncooperative MSE processing, 21–22
performance of centralized solution, 26–28
stochastic-gradient centralized solution, 25–26

Centralized (adaptive) detector, 94
Centralized MSE processing, 22–25
Centralized (adaptive) processing, 84
Central limit theorem (CLT), 92–93

for detection performance, 92–93
and small/normal deviations, 93

Chair-Varshney rule, 512
Channel state information (CSI), 472–473
Chebyshev polynomials, 312–313
ChIP-seq, 727–728
Chung’s directed Laplacian, 302–303
Clarke transform, 737
Classes of games

congestion, 215
potential, 215
quadratic, 216
supermodular, 216
zero-sum, 216

Classical fictitious play, 218–220
Classic inference scaling laws, 102–103
Classic nondistributed detection, 71–72
Classic nondistributed estimation, 71
Class mass normalization (CMN), 392–393
Clinical decision support system (CDSS), 700
Cloud RANs, 470
CLT. See Central limit theorem (CLT)
CMBA. See Cooperative malicious Byzantine attacks

(CMBA)
Cognitive MIMO radio networks, 210
Cognitive radio networks (CRNs), 434–435, 505. See also

Collaborative spectrum sensing (CSS)
Coherence connectivity, 801–802
Collaborative spectrum sensing (CSS), 505

adversarial attacks, 506
Byzantine attacks (see Byzantine attacks, collaborative

spectrum sensing)
data fusion scheme, 506
energy detection scheme, 506–508
path-loss model, 506–508

Collective network-friendly intelligence, 471
Combination algorithm, Bayesian estimators,

137–139
Combinatorial Laplacian, 301–302
Combine-then-adapt (CTA) diffusion, 36
Common spatial pattern (CSP), 805
Communication, computation, and caching (3C) resources

graph-based resource allocation
matching theory, 434–435



Index 821

proactive caching, 432
REM, 432–434

joint optimization of
communication and caching, 432–435
communication and computation, 422–427

Community detection
aggregation-based methods, 689
model-based methods, 689
multilayer setting, 687–688, 687f
score-based methods, 688–689
single-layer community detection, 687–688, 687f

Complex extended Kalman filter (CEKF), 743–744
Compressed sensing, 611
Compressive covariance sensing, 326
Conditional value-at-risk (CVaR), 548–549

agent’s private observation, 550
agent’s trading decision, 550
market observer’s action, 551–552
private belief update, 550
sequential detection, 552, 553f
shock in asset value, 549–550
social learning and public belief update, 551
social learning region for, 554–555, 554f

Congestion games, 569
Connected networks, 30–31, 31f
Consensus-based methods, 189–198

based on likelihood consensus, 190–194
distributed Gaussian particle filter, 196–197
distributed proposal adaptation, 189–198
exponential family, 193–195
Gaussian observation noise, 195
GLF, distributed calculation of, 191–194
local expansion coefficients calculation, 192–194

Consensus LMS networks, 36
Constraint relaxations, 151–152
Contextual zooming method, 705, 705f
Continuous Fourier transform, 315
Continuous multiscale transform, 314–316
Continuous-time fictitious play, 218–219
Continuous-time independent cascades (CTIC), 659

Hazard radius, 660, 662–663
influence, 665
Laplace Hazard radius, 663–664
nontrivial vector inequality, 662
simulation of, 660, 661f

Convergence of Lyapunov recursion, 202–203
Convex relaxation, 270–271, 343
Convolutional neural networks (CNNs), 254–255, 730
Cooperative data exchange (CDE) problem, 492

faulty clients, data exchange with, 490
algorithm analysis, 499
approximation algorithm, 496–498

g-robust schedule, 496–497
robust schedule, 496, 497f

index coding problem, 491
instance of, 489, 491f
integer linear program, 492–493
local databases and file systems, synchronization of,

489–490
MMI measure, 491
one-hop broadcast networks, 491
randomized algorithm, 493–496
SKA problem, 491
subpacketization, 493
wiretappers, g-weakly secure coding scheme, 491,

499–502, 500f
Cooperative malicious Byzantine attacks (CMBA), 510,

511f
Coordinated multi-point transmission methods, 470
Corporate network, 569
Correlogram, 334–335
Cortical graph wavelets, 809
Cost function conditions, 7–8, 54
Cournot best response dynamics, 214
Covariance-intersection (CI) method, 137, 180
Covariance matching, 335
Cramér-Rao bound, 336
CRNs. See Cognitive radio networks (CRNs)
Crowd wisdom, 603
CSS. See Collaborative spectrum sensing (CSS)
CTIC. See Continuous-time independent cascades (CTIC)
Cumulative distribution function (CDF),

438–441
CVaR. See Conditional value-at-risk (CVaR)
Cybersecurity technologies, 445

D
D-ACEKF. See Diffusion augmented complex extended

Kalman filter (D-ACEKF)
DAD. See Distributed adaptive detection (DAD)
DAE. See Distributed adaptive estimation (DAE)
Data analytics, 241–242
Data falsification attack. See Byzantine attacks,

collaborative spectrum sensing
Data filtering, 770
Data fusion, 176–178
Data incest, 526–527, 564–565

information flow network, example of, 558–559, 558f
social influence constraint, 559–560
time-dependent directed acyclic graphs,

557–558
Data routing. See Altruistic data routing
Data science, 241–242, 242f
Data smoothing, 770



822 Index

Decentralized analytics
alternating-direction method of multipliers, 782–784
computational and communication cost, 784
convergence and optimality, 784
decentralized matrix completion, 780–782, 783b
internet delay cartography, 784–786, 785f
network data model, 780

Decentralized Frank-Wolfe (DeFW) algorithm, 401,
405–410

aggregation step, 406–407
algorithm, 404–406b
benefits, 410
convergence analysis, 407–408

for convex problems, 408
for nonconvex problems, 409

vs. decentralized projected gradient algorithm, 410
iteration, 405
linear optimization step, 407–408
matrix completion problem, 410–411

computation time, 412–413, 414f
consensus-based optimization method, 411
convergence rates, 412–413, 413f
Fast DeFW algorithm, 412
low-rank subspace system, 410–411
MATLAB program, 412–413
matrix factorization, 411
real data experiment, 412–413, 415f
square loss function, 411
storage/communication cost, 411–412

near-neighbor communication steps, 406
Decentralized learning, 3
Decentralized matrix completion (DMC), 780–782, 783b
Decentralized MIMO precoding, TD methods

discretization-based approach, 482
hierarchical approach, 483
model-based approach, 480
system setting, 477

decentralized precoding, 478
information structure, 477–478
network utility, 478–479
team decision formulation, 479–480

Decentralized power method, 412
Decentralized projected gradient (DPG) algorithm

centralized PG algorithm, 403
consensus and PG step, 403
convergence rate analysis

for convex problems, 403–404
for nonconvex problems, 404–405

vs. decentralized Frank-Wolfe algorithm, 410
iteration steps, 403–404
matrix completion problem, 412–413
projection step, 403–404

Decentralized signal processing, 399
decentralized optimization algorithms

average consensus protocol, 401
centralized FW algorithm, 400–401, 405
DeFW algorithm (see Decentralized Frank-Wolfe

(DeFW) algorithm)
DPG algorithm (see Decentralized projected gradient

(DPG) algorithm)
first-order optimization methods, 401
machine learning algorithms, 399
near-neighbor information exchanges, 399
nonconvex optimization, 401
primal-dual optimization framework, 401

empirical risk minimization problem, 399–400, 400f
notations and mathematical preliminaries, 402–403

Decomposition of gene Regulatory network into External
and Internal components based on State Space
models (DRIESS), 730

Deep learning approach, 730
Deferred-acceptance (DA) algorithm, 434–435
Deformed Laplacian, 301–302
DeFW algorithm. See Decentralized Frank-Wolfe (DeFW)

algorithm
DeGroot learning, 716
DeGroot opinion dynamics model, 602

agents’ opinions, 605–606
first order autoregressive graph filter, 603
group think, 603
rational herds, 603
stubborn agents, effects of, 606–608

Demand response management in energy systems, 210
Demand-side management (DSM) strategy, 574–575
Deterministic hierarchical information structure (DHIS),

475–476
Device centric network, 469–470
Device-to-device (D2D) communication, 434–435, 489–490
dFCNs. See Dynamic functional connectivity networks

(dFCNs)
DGD. See Distributed gradient descent (DGD)
Diffusion adaptation, 107–108
Diffusion augmented complex extended Kalman filter

(D-ACEKF), 736, 747–748
features, 748
simulations

frequency variations, 751–752
steady-state mean square error, 752
voltage sags, 749–751

Diffusion Kalman filter
with ATC strategy, 140, 141b
D-ACEKF (see Diffusion augmented complex extended

Kalman filter (D-ACEKF))
hidden Markov model, 139



Index 823

observation model, 139
recursions, 139–140
simulation example, 141, 142f, 143f
state transition, 139–140

Diffusion LMS networks, 37
Diffusion logistic regression, 37–38
Diffusion networks, 53–61
Diffusion process engineering, 653
Diffusion tensor imaging (DTI), 809
Dijkstra’s algorithm, 446
Dimensionality reduction, GSP, 804–806
Directed acyclic graphs (DAGs), 557
Directed information (DI), 690
Dirichlet energy (DE), 811–812
Dirichlet form, 303–304, 311
DisCo algorithm. See Distributed cooperative learning

(DisCo) algorithm
Discrete actions opinion models, 603–604
Discrete multiscale transforms

arbitrary graphs, 318–320
bipartite graphs, 318
cascaded filterbank, 316, 317f
filtering and decimation operations, succession of, 316,

317f
Discrete opinion dynamics, 603
Discrete signal processing (DSP), 299–300

DFT matrix, 246–247
filters process signals, 245
filters, shift invariant, 246
Fourier transform, 246–247
time signal, 243–244
z-transform, 243, 246

Discrete-time independent cascades (DTIC), 658–659
Dissimilarity error, 704–705
Distributed adaptive detection (DAD)

asymptotic normality, 92–93
constructing algorithm, 88–89
detection performance, 89–90
vs. distributed adaptive estimation, 100, 100f
example, 75, 98–100, 99f
large deviations, 93–96
refined large deviations analysis, 96–98
weak law of small step sizes, 91–92

Distributed adaptive estimation (DAE)
assumptions, 79
comparisons, 84–86
constructing algorithm, 80–87
vs. distributed adaptive detection, 100, 100f
example, 75, 86–87, 86f
MSE performance, 81–83
network topology, 78f, 86–87

Distributed approximations, Newton step, 159–161, 161b

Distributed cooperative learning (DisCo) algorithm,
713–715, 715f

DisCo-FI algorithm, 712, 712f, 714–715, 715f
DisCo-PI algorithm, 714
exploitation phase, 711–712
exploration phase, 711

Distributed Gaussian particle filter, 196–197
Distributed gradient descent (DGD), 152–154, 154b
Distributed inference problems

architectures with fusion center, 72–73
fully flat architectures, 73–74

Distributed Kalman filtering
approximate fusion relations, 178–180
data fusion, 176–178
diffusion cooperation, 180–183
incremental cooperation, 174–176
linear state-space models, 172
network topology, 170–172
noncooperative filtering, 172–174
performance analysis, 183–186

Distributed learning
cooperative contextual bandits

contextual zooming, 705, 705f
dissimilarity and sample size error, 704–705
exploitation phase, 706
exploration phase, 706
ideal and real cooperation networks, 707
training phase, 705–706

global/group feedback
combinatorial bandit problems, 710
deterministic algorithms, 710–711
DisCo algorithm, 711–712, 712f, 714–715, 715f
DisCo-FI algorithm, 713–715, 715f
DisCo-PI algorithm, 714
distributed bandit algorithms, 710
individualized feedback, 708, 709f
linear reward models, 710
safe experimentation algorithms, 714–715, 715f
stream-mining system, classifier chain for, 708–710,

709f
UCB1 algorithm, 714–715, 715f

Distributed-least squares estimation, 150
Distributed optimization, 33–35

centralized problem, 149–150
constraint relaxations, 151–152
distributed-least squares estimation, 150
matrix representations of graphs, 150–151
optimization problem, 148–149

Distributed particle filtering (DPF)
consensus-based methods, 189–198

based on likelihood consensus, 190–194
distributed Gaussian particle filter, 196–197



824 Index

Distributed particle filtering (DPF) (Continued)
distributed proposal adaptation, 189–198
exponential family, 193–195
Gaussian observation noise, 195
GLF, distributed calculation of, 191–194
local expansion coefficients calculation, 192–194

diffusion-based methods, 198–202
particle filter, 188–189
sequential Bayesian estimation, 188
state-space model, 186–187

Distributed proposal adaptation, 189–198
Distributed sequential state estimation, 169–170
DMC. See Decentralized matrix completion (DMC)
DNA-seq, 727
D-optimal design, 269–270
DPF. See Distributed particle filtering (DPF)
DPG algorithm. See Decentralized projected gradient

(DPG) algorithm
DSP. See Discrete signal processing (DSP)
Dual ascent method, distributed algorithm, 154–156, 155b
Dynamic caching, 429
Dynamic connectivity analysis

Dirichlet energy of graph, 811–812
modular Dirichlet energy, 811–812

Dynamic covariance model, 691
Dynamic functional connectivity networks (dFCNs),

810–812
Dynamic spectrum access (DSA), 505

E
Echo chambers, 651–652
Eddystone protocol, 761
Edge cloud

architecture, 420–421, 421f, 424–425
communication, computation, and caching

(see Communication, computation, and caching (3C)
resources)

Edge-colored networks, 683
Edge-variant graph filters, 345
EEG functional connectivity networks, 812, 813f
EEM. See Expected error minimization (EEM)
Effective isotropic radiated power (EIRP), 510
Eigenvalue perturbation theory, 655
Eigenvector centrality, 684–686
Electrocorticography (ECoG), 277, 279f
Electronic health records (EHRs), 700
Empirical risk minimization (ERM), 399–400, 400f
End-to-end (E2E) latency, 422–423, 425
Energy detection scheme, 506–508, 515
E-optimal design, 267–270
Equal gain combining scheme, 520, 521f
Erdos-Renyi (ER) random networks, 612–615

Ergodicity, 345
Error-related negativity (ERN), 812
Essential nodes Determining based on CP Tensor

Decomposition (EDCPTD), 686
Estimote beacon, 770, 770t, 771, 772f, 773t, 774f
Event-related potential (ERP), 812, 813f
Exact asymptotics, 96–98, 103
Excess-risk (ER), machine learning, 18–20
Expectation maximization (EM) algorithm, 520
Expected error minimization (EEM)

approximation of marginal
two-step approximation, 289–290,

295–296
ZLG, 289–290

Bayes decision rule, 286
continuous relaxation

SOpt, 288–289
V-optimality, 288–289

inverse Laplacian, 291–292
linear chain and query algorithms, 291, 291f
lookahead risk, 286–287
multiclass extension, 292
posterior marginal distribution, 287

Exponential family, 193–195
Exponentially weighted moving average (EWMA), 89

F
Facebook, 526
Fast DeFW algorithm, 412
Fictitious play (FP) algorithm, 218

classical, 218–220
network-based, 220–222

Fiedler value and network connectivity, 448
disconnected network, 448
eigenvalue optimization problem, 448
Laplacian matrix, 448–449
network interference attack

authority’s and jammer’s strategies, 464–465, 464f,
465f, 466

decentralized algorithm, 452–453
distributed algorithm, 452–453
expected duration of game, 465f, 466
game theory, 455
genetic and swarm algorithm, 452–453
optimal strategies, jammer, 462
routing protocols, 454–455
scanner’s strategies, 462–463
Shannon formulation, 450
stochastic game, antijamming strategies, 455–462
symmetric communication, 451
throughput connectivity, 451–452, 452f, 453, 454f



Index 825

weighted throughput connectivity, 451–452, 452f, 453,
454f

node Fiedler value, 449, 456–457
Fifth-generation (5G) communication networks

challenges, 421–422
5G-MiEdge, 424–425
network slicing, 419, 421–422
proactive resource allocation strategies, 432
services, 419, 421–422
system capacity, increase of, 420–421
virtualization, 419

Filterbanks, 314
continuous multiscale transform, 314–316
discrete multiscale transform

arbitrary graphs, 318–320
bipartite graphs, 318
cascaded filterbank, 316, 317f
filtering and decimation operations, succession of, 316,

317f
Finite impulse response (FIR) filters, 310–311
Finite Markov Information Exchange (FMIE) process, 531
Fixed grouping strategy, 117
Flow theory, 446
Flying radio access networks, 469–470
Fog computing, 420–421
Fortuin-Kasteleyn-Ginibre (FKG) inequality, 662
FP algorithm. See Fictitious play (FP) algorithm
Frank-Wolfe (FW) algorithm, 400–401, 405. See also

Decentralized Frank-Wolfe (DeFW) algorithm
Frequency estimation, in power networks, 735–736

challenges, 736
Kalman filtering models (see Kalman filters)
problem formulation, 737–739
WLAR model, 736, 739–740

nonlinear state space models, 740–741
WLAR-II, 740
WLAR-I model, 739–740

Frobenius norm, 353–354, 368
Full geometric graph, 801
Fully connected networks, 30–31, 31f
Functional connectivity (FC), 799–800
Fundamental scaling law

large deviations, 94
MSE performance, 83

FW algorithm. See Frank-Wolfe (FW) algorithm

G
Game theoretic learning

cognitive MIMO radio networks, 210
complete information games, network learning

algorithms for
assumptions, 216

classical fictitious play, 218–220
fictitious play algorithm, 218
network-based fictitious play, 220–222
prototypical network-based learning algorithm, 217

demand response management in energy systems, 210
games preliminaries

classes of games, 215–216
learning dynamics, 214
target assignment game, 211, 212t
target assignment game incomplete information, 213,

213t
HVAC control in smart buildings, 210–211
incomplete information games, network learning

algorithms for
Bayesian learning in networks, 223–229, 228f, 229f
Bayesian-Nash equilibrium, 222–223
network-based fictitious play, 229–231, 230f, 231f

Nash equilibrium, 210
network learning of player, 210–211, 210f
payoff-based learning algorithms, 232
power control in wireless networks, 210
target assignment, 210
utility design, 232

Game theory, 455
Gamma distribution, 438–441
GARP. See Generalized Axiom of Revealed Preference

(GARP)
Gaussian distribution, 285, 288–289
Gaussian graphical models (GGM), 690
Gaussian harmonic function (GHF) method, 375, 382f, 383,

386, 392–393
Gaussian Markov random field (GMRF), 329–330, 608
Gaussian noise process, 738
Gaussian observation noise, 195
Gaussian particle filter (GPF), 196
Gaussian random field (GRF), 285
Gaussian regression data, 56–61
Gene coexpression networks, 727–728
Gene contact networks, 691–693
Gene expression, 726
Generalized Axiom of Revealed Preference (GARP), 568
Generalized Gompertz model, 579, 587–588, 589f
Generalized graph frequency, 304
Gene regulation, 726–727
Gene regulatory networks, 725–726

centrality, 728
dynamic models, 730
gene coexpression analysis, 727
hierarchy, 729
logical modeling, 729–730
machine learning modeling, 730
modules, 728–729



826 Index

Gene regulatory networks (Continued)
motif structure, 728
pathways, 729
regulatory circuits, 728
signal processing and graph models, 725–726

GeoBeacon protocol, 761
Gershgorin circle theorem, 304
GFT. See Graph Fourier transform (GFT)
GHF method. See Gaussian harmonic function (GHF)

method
Gibbs oscillations, 312–313
Gimbal beacon, 770, 770t, 771, 772f, 773, 773t, 774f
Global/group feedback

combinatorial bandit problems, 710
deterministic algorithms, 710–711
DisCo algorithm, 711–712, 712f, 714–715, 715f
DisCo-FI algorithm, 713–715, 715f
DisCo-PI algorithm, 714
distributed bandit algorithms, 710
individualized feedback, 708, 709f
linear reward models, 710
safe experimentation algorithms, 714–715, 715f
stream-mining system, classifier chain for, 708–710, 709f
UCB1 algorithm, 714–715, 715f

Global likelihood function (GLF), 188–196
Gossip and consensus algorithms, 162
GPF. See Gaussian particle filter (GPF)
Gradient-descent algorithm, 8–9
Gradient noise, 11–12, 54
Granger causality test, 579, 584–585
Graph aggregation, 318–320, 320f
Graph-based filtering (GBF), 806
Graph-based resource allocation

matching theory, 434–435
proactive caching, 432
REM, 432–434

Graph convolution theorem, 253
Graph covariance sampling, 340
Graph filters, 250–251

AR filters, random processes, 311–312
ARMA filters, 310–313
definition of, 307–309
direct approach, 312–313
FIR filters, 310–311
frequency definition, 306
Lanczos approximate filtering approach, 312–313
polynomial approximate filtering approach, 312–313
properties of, 309–310

Graph Fourier decomposition, 252, 255
Graph Fourier transform (GFT), 251–253, 263, 326–327,

802
definition, 300–301

directed graphs, 302–303
filterbanks and multiscale transforms (see Filterbanks)
frequency analysis, 303–305
implementation and illustrations, 305–306, 306f, 307f
symmetric reference operators, 301
undirected graphs, 301–302

Graph frequency ordering, 253–254
Graphical LASSO (gLASSO) method, 602, 604, 608–609,

616–617
Graph shift, 325–326
Graph shift operator (GSO), 326–327, 351–353
Graph signal processing (GSP), 299–300, 349

applications, 254–255
data science, 241–242, 242f
DSP

DFT matrix, 246–247
filters process signals, 245
filters, shift invariant, 246
Fourier transform, 246–247
time signal, 243–244
z-transform, 243, 246

goal of, 261
graph convolution theorem, 253
graph filters (see Graph filters)
graph Fourier transform, 251–253
graph frequency ordering, 253–254
graph shift, 249f, 250
graph signals, 248–249, 249f
interpolation from samples, 261
network inference frameworks (see Network topology

inference)
network science, 240–241, 240f
on neuronal networks

brain connectivity graph, 802, 803f
brain geometric structure model, 801
coherence connectivity, 801–802
dimensionality reduction and supervised classification,

804–806
ERP classification on EEG functional connectivity

networks, 812, 813f
functional connectivity, 799–802
graph filtering, 806–807
graph learning, 807–809
inverse GFT, 802
SGWT, 803–804
spectral graph wavelets, 809–812
total variation, 802–803
voxel-based modalities, 801
weighted graph, 800

REM, 432–433
sampling and recovery (see Sampling and recovery of

graph signals)



Index 827

smoothness assumption, 261
stationary graph processes (see Weak stationarity)

Graph spectral decomposition, 251–254
Graph theory, 447t

algebraic graph theory
connectivity-influential node, 450
Fiedler value and graph connectivity (see Fiedler value

and network connectivity)
edges and vertices, 446
flow theory, 446
network algorithms, 446

Grassmannian quantizer, 482–483
Greedy algorithm, 604
Greedy sampling, 268–270, 268b
Group diffusion LMS

with adaptive grouping strategy, 122
algorithm, 112–113
with five groups, 121
network behavior

mean-square error behavior analysis, 115–117
mean weight behavior analysis, 113–115
stacked optimum weight vector, 113
stacked weight estimate vector, 113

with preset groups, 122
uniform scaling limitation, 111–112, 111f

Group feedback. See Global/group feedback
Grouping strategies

adaptive combination strategy, 118–119
adaptive grouping strategy, 117–118
fixed grouping strategy, 117

Group Nash equilibrium, 643–645
Group-sparsity, 108
Group think, 603
GROUSE algorithm, 786
GSO. See Graph shift operator (GSO)
GSP. See Graph signal processing (GSP)

H
Haar filterbank, 319–320
Harary’s decomposition, 319
Hastings combination rule, 84–86
Hawkes model, 604
Hazard matrix, 655–656
Higher order singular value decomposition (HoSVD), 810
HVAC control in smart buildings, 210–211
Hyperlink-induced topic search (HITS) algorithm, 684

I
iBeacon protocol, 761
Inaltekin-Chiang-Poor Models, 646

Inaltekin-Chiang-Poor Model 1, 632–636
Inaltekin-Chiang-Poor Model 2, 636–640

Independent malicious Byzantine attacks (IMBA), 510,
511f

Index coding, 491
Inference over networks

adaptive networks
distributed adaptive detection, 75
distributed adaptive detection and estimation, 75–76
distributed adaptive estimation, 75

canonical inference problems, 70–72
distributed inference problems, 72–74

Influenza-like Illness Surveillance Network (ILInet), 526,
531

Informational message, 559–560
Information Cascade Models (ICMs), 652

activity shaping, 653
Hazard matrix, 655–656
independent cascades, 654–655
influence optimization, 653–655
multivariate Hawkes processes, 654–655
network structure, information spread and control, 655

Information cascades
characteristics of, 660
ICMs (see Information Cascade Models (ICMs))
independent cascades

CTIC (see Continuous-time independent cascades
(CTIC))

DTIC, 658–659
Hazard functions, 659
Pokemon go, 660, 661f

influence, 656–657, 665–666
multivariate stochastic process, 656–657
NetShape algorithm

convergence and scalability, 667–668
experiments, 671–674
gradient and projection steps, 666–667
Hazard matrix, 667, 667b
partial quarantine problem, 668–669
projected subgradient descent, 666

social learning protocol, 548
virus models

memoryless stochastic processes, 657
SI model, 657
SIR model, 658

Information-centric networking (ICN), 428
Information diffusion, in social networks, 525–526, 529f

Bayesian filtering problem, 545
critical threshold, 545
diffusion process engineering, 653
diffusion threshold, 545
echo chambers, 651–652
Facebook, 526
homophily, 651–652



828 Index

Information diffusion, in social networks (Continued)
information cascades (see Information cascades)
interacting and private entities, 651
large-scale online social networks, 651
mean field dynamics, 526, 529–531, 535–537, 538f
misinformation, types of, 651–652
reactive information diffusion, 545
rumors and false news

computational and inference problems,
655–656

security hazards, 653
SIR-like epidemic models, 654
spreading and control, 651–652, 654

sentiment-based sensing mechanism
MCMC based RDS, 526, 531, 543–544
social sampling, 526, 531, 543
uniform sampling, 543

setting, 530
SIS model, 526, 532f, 533–535
social network model, 531–533
Twitter, influenza infection rate and detection, 526

ARX and NARX models, 537–538, 541, 542f
Harvard undergraduate social network, 531, 538–539,

540f
ILInet, 526, 531, 540
PeopleBrowsr, 540
SVM classifier, 537–538
U.S. CDC, 537–538

underlying target process, 530
Information network, 428, 428f
Information structure (IS), 471–472

additive white Gaussian noise model, 475
DHIS, 475–476
master-slave information structure, 476
SHIS, 476–477

Integer linear program (ILP), 428, 431, 492–493
Internet delay cartography, 784–786, 785f
Internet-2 end-to-end delay prediction, 784–786, 785f
Internet of Things (IoT), 683, 757
Inverse covariance matrix, 604
Inverse GFT (iGFT), 802
Inverse Laplacian, 291–292
Ising’s model, 604

J
Jackson-Chebyshev polynomials, 312–313
Jensen’s inequality, 662
Johnson-Lindenstrauss (JL) transform, 578
Joint network topology inference,

354–355
Joint probability distribution, 472

K
Kalman filters, 767–769, 769f, 770

centralized ACEKF, 745–746
centralized Kalman filter, 741
consensus filters, 742
D-ACEKF, 736, 747–748

features, 748
frequency variations, 751–752
steady-state mean square error, 752
voltage sags, 749–751

distributed Kalman filtering (see Distributed Kalman
filtering)

fully distributed Kalman filters, 741
local ACEKF, 746–747
single-node complex Kalman filters, 742–743

nonlinear state space models, 743–744
single-node ACEKF, 744–745

Karush-Kuhn-Tucker (KKT) conditions, 568, 669
Kleinberg’s small-world search model, 628–630, 646
Kontakt beacon, 770, 770t, 772f, 773, 773t, 774f
Kron reduction, 318–320
Kruskal rank, 610–611
Kullback-Leibler divergence (KLD), 135–136, 509–510,

511f

L
Label propagation (LP), 286
Lanczos approximate filtering approach, 312–313
Laplace Hazard radius, 663–664
Laplacian eigenvectors, 265–266
Large-scale machine learning, 793–794, 793f
Learning dynamics

Cournot best response dynamics, 214
stubborn players, 214

Learning in games. See Game theoretic learning
Learning on graphs, ParWalks

different regularizers, comparisons of, 386–388, 387f
GHF method, 382f, 383, 386
graph Laplacian matrix, pseudoinverse of, 384–386
hitting times, 384
Laplacian regularized kernel matrix, 381
normalized personalized PageRank, 384
personalized PageRank algorithm, 381, 382f
random regularizers, 386

Least-mean-squares (LMS)
adaptation, 9–10
asynchronous adaptation performance, 20
asynchronous consensus networks, 39
asynchronous diffusion networks, 39
consensus networks, 36
diffusion, 109–110, 121
diffusion networks, 37



Index 829

group diffusion
with adaptive grouping strategy, 122
with five groups, 121
with preset groups, 122
with three groups, 121

multitask diffusion, 122
noncooperative, 121–122

Least-squares (LS) estimator, 335
Likelihood consensus (LC), 190–194
Linear least-mean-squares error (LLMSE), 172–177
Linear optimization (LO), 407–408
Linear prediction, 311–312
Linear state-space models, 172, 743
Linear Threshold Models, 654–655
Lipschitz utility functions, 577
LMS. See Least-mean-squares (LMS)
Load balancing, 435
Local and global consistency (LGC) method, 392–393
Local expansion coefficients, 192–194
Local likelihood function (LLF), 187, 189–195
Locally robust (LR) policy, 474
Logarithmic moment generating function (LMGF), 94–95
Logistic/log-loss risks, 6–7
Long-term recursion, 17–18, 18f
Low rank, 778–780, 784, 787–789, 793

M
Machine learning

large-scale
classification with absent features, 794
multilinear decomposition and dimensionality

reduction, 794
sketching of categorical data, 794

modeling, 730
MAP. See Mean average precisions (MAP)
Marginal rate of substitution (MRS), 575
Markov chain Monte Carlo (MCMC) sampling, 543–544
Markov perfect Bayesian equilibrium (MPBE), 223–226,

228
Master-slave information structure, 476
Matched signal detection (MSD) theory, 805–806
Matching theory, 434–435
Matrix completion, 778–779
Matrix completion (MC) problem

DeFW algorithm, 410–411
computation time, 412–413, 414f
consensus-based optimization method, 411
convergence rates, 412–413, 413f
Fast DeFW algorithm, 412
low-rank subspace system, 410–411
MATLAB program, 412–413
matrix factorization, 411

real data experiment, 412–413, 415f
square loss function, 411
storage/communication cost, 411–412

DPG algorithm, 412–413
Erdos-Renyi graph, 412
Metropolis-Hastings rule, 412
test MSE, 412–413
training and testing sets, 412–413

Matrix representations of graphs, 150–151
Maximum likelihood (ML) estimation, 520
MCAs. See Multimedia content aggregators (MCAs)
Mean average precisions (MAP), 386, 387f, 389, 391t
Mean field dynamics model, 526, 529–531, 535–537, 538f
Mean graph, 40
Mean-square-deviation (MSD), 10–11

alternative transient expression, 116
convergence behavior, 122–124, 122f
defined, 16–17
learning curves, 120f, 121
performance, 45–47, 56
steady-state, 116

Mean square error (MSE), 261–262, 266–268, 275,
335–336, 412–413, 536, 752, 752f

behavior analysis
MSD learning curves, 120f, 121
network, 115–117, 120–121, 120f
variance of regressors and noise at each node,

120–121, 120f
centralized processing, 22–25
costs, 6
networks, 34

error dynamics, 47–49
mean-error behavior, 49–50
potential instability in consensus networks, 50–51
stability, 55
with uniform agents, 50
useful stability result, 51–53

noncooperative processing, 21–22
performance, 16–21, 18f

N-fold improvement, 29
random fusion, 30

with random updates, 46
stability, 14–16
of various strategies, 141, 143f

Mean-square stability, 116
MEC. See Multiaccess Edge Computing (MEC)
Median graph filters, 345
Metropolis-Hastings rule, 412
Milgram letter-referral experiment, 627–628
Millimeter wave (mmWave) communications, 419–420,

424–425
Minimum-distance separable (MDS) codes, 502



830 Index

Minimum mean-square-error (MMSE), 176–178, 188–189,
196

Mixed integer linear program (MILP), 428
Modular Dirichlet energy (MDE), 811–812
Monotonically increasing stochastic models, 654
Monte Carlo approach, 665–666
Moving average (MA) filtering, 310
Moving average (MA) model, 338–339
MPBE. See Markov perfect Bayesian equilibrium (MPBE)
MSD. See Mean-square-deviation (MSD)
MSE. See Mean square error (MSE)
Multiaccess Edge Computing (MEC), 419–425
Multiagent distributed optimization

distributed gradient descent, 152–154, 154b
distributed optimization

centralized problem, 149–150
constraint relaxations, 151–152
distributed-least squares estimation, 150
matrix representations of graphs, 150–151
optimization problem, 148–149

dual methods
ADMM, 156–158, 157b
dual ascent, 154–156, 155b

push-sum methods, 162–163
second-order methods

distributed approximations, Newton step, 159–161,
161b

Hessian computation, 158–159
Hessian decomposition, 159
Hessian inverse, 159

synchronous vs. asynchronous methods, 161–162
Multiagent learning

cooperative contextual bandits
cooperation costs, 707–708
distributed learning algorithm, 704–707
regret, 703–704
requesting and serving agents, 702–703
similarity assumption, 703
total expected reward, 703–704

distributed learning, global/group feedback
combinatorial bandit problems, 710
deterministic algorithms, 710–711
DisCo algorithm, 711–712, 712f, 714–715, 715f
DisCo-FI algorithm, 713–715, 715f
DisCo-PI algorithm, 714
distributed bandit algorithms, 710
individualized feedback, 708, 709f
linear reward models, 710
safe experimentation algorithms, 714–715, 715f
stream-mining system, classifier chain for, 708–710,

709f
UCB1 algorithm, 714–715, 715f

incomplete information, 716
opinion dynamics, 716–717
strategic network formation, 717–719

medical expertise discovery problem, 700–701
multimedia content aggregators, 699–700
popularity forecasting, 701–702

Multiclass extension, 292
Multi-input multi-output (MIMO), 419–420, 438–441
Multilayer network

applications
gene contact networks, 691–693
US senators, ADI network, 693–694

centrality methods
eigenvector centrality, supra-adjacency matrix,

684–686
multiplex participation coefficient, 683–684
nodal degree, 683–684
tensor decomposition, 686

clustering and community detection
aggregation-based methods, 689
model-based methods, 689
multilayer setting, 687–688, 687f
score-based methods, 688–689
single-layer community detection, 687–688, 687f

directed information, 690
GGM models, 690
interlayer structure, 679
mathematical formulation of

aggregated network, 681, 681f
edge-colored networks, 683
node-colored networks, 682–683
single-layer network, 680
supragraph representation, 681, 681f
temporal network, 683
tensor representation, 681–682

Multilinear decomposition and dimensionality reduction,
794

Multimedia content aggregators (MCAs), 699–700
Multiple linear regression, 537–538
Multiplex participation coefficient, 683–684
Multiresolution analysis, 319–320, 320f
Multitask learning

diffusion LMS, 109–110
group diffusion LMS

algorithm, 112–113
network behavior, 113–117
uniform scaling limitation, 111–112, 111f

grouping strategies
adaptive combination strategy, 118–119
adaptive grouping strategy, 117–118
fixed grouping strategy, 117

network model, 109



Index 831

simulations
model validation, 120–121, 120f
static vs. adaptive grouping strategies, 121–124, 122f,

123f, 124f, 125f, 126f
Multivariate mutual information (MMI), 491

N
Narrowed-sense graph filter, 308
NARX model. See Nonlinear autoregressive exogenous

(NARX) model
Nash equilibrium (NE), 210, 212, 216–218, 222–223, 232,

569f, 570
Nash rationality, 570–572
Nash-stable, 435
NetShape algorithm, 653

convergence and scalability, 667–668
experiments

experimental setup and evaluation, 671–673
results, 673–674

gradient and projection steps, 666–667
Hazard matrix, 667, 667b
partial quarantine problem, 668–669
projected subgradient descent, 666

Network-based fictitious play, 220–222
Network centrality

eigenvector centrality, supra-adjacency matrix, 684–686
multiplex participation coefficient, 683–684
nodal degree, 683–684
tensor decomposition, 686

Network coding
applications, 489
CDE (see Cooperative data exchange (CDE) problem)

Network data model, 780
Network Function Virtualization (NFV), 419–420, 422
Network identification

gLASSO method, 602, 604, 608–609
identifiability condition, 617–618, 618f
model-based learning method, 602, 604, 609–616
real network, randomized opinion dynamics, 618–620,

619f
topology recovery performance, 616–617, 617f, 618

Network learning algorithms
for complete information games

assumptions, 216
classical fictitious play, 218–220
fictitious play algorithm, 218
network-based fictitious play, 220–222
prototypical network-based learning algorithm, 217

for incomplete information games
Bayesian learning in networks, 223–229, 228f, 229f
Bayesian-Nash equilibrium, 222–223
network-based fictitious play, 229–231, 230f, 231f

Network learning curve, 116
Network science, 728, 730–731
Network slicing, 419, 421–422
Network topology inference

historical overview, 350
joint network inference, 354–355
network diffusion process, 351–353
nonstationary diffusion processes, 362–363

brain graph, 369–370, 370f
linear graph filter identification, 363–364
quadratic graph filter identification, 364–369
social network, 370–371

optimal graph shift operator, 353–354
robust network inference

incomplete spectral templates, 357–358
noisy spectral templates, 355–357

SpecTemp approach
vs. correlation networks and graphical lasso, 358–360,

359f
network deconvolution, 361, 362f
smooth graph signals, 360–361, 361t

Network traffic monitoring, 793
Neuronal networks, GSP

brain connectivity graph, 802, 803f
brain geometric structure model, 801
coherence connectivity, 801–802
dimensionality reduction and supervised classification,

804–806
ERP classification on EEG functional connectivity

networks, 812, 813f
functional connectivity, 799–802
graph filtering, 806–807
graph learning, 807–809
inverse GFT, 802
SGWT, 803–804
spectral graph wavelets, 809–812
total variation, 802–803
voxel-based modalities, 801
weighted graph, 800

Next-generation sequencing (NGS) techniques, 727
NMSE. See Normalized mean square error (NMSE)
Node-colored networks, 682–683
Node Fiedler value, 449, 456–457
Node-varying graph filters, 345
Noncooperative filtering, 172–174
Noncooperative MSE processing, 21–22
Nonlinear autoregressive exogenous (NARX) model, 538,

541, 542f
Nonlinear state space models, 740–741
Nonstationary diffusion processes, 362–363

brain graph, 369–370, 370f
linear graph filter identification, 363–364



832 Index

Nonstationary diffusion processes (Continued)
quadratic graph filter identification, 364

nonsymmetric graph filters, 367–369
positive semidefinite graph filters, 364–365
symmetric graph filters, 365–367

social network, 370–371
Nonsymmetric graph filters, 367–369
Normalized Laplacian, 301–302
Normalized mean square error (NMSE), 270–271, 433–434,

616–618, 618f
Nuclear norm, 778–781, 787, 789, 792, 794

O
One time slot matrix game, 460–461
Online learning. See Multitask learning
Online matrix completion, 787–789
Online reputation systems

data incest, 526–527, 547
information flow network, example of, 558–559, 558f
social influence constraint, 559–560
time-dependent directed acyclic graphs, 557–558

incest removal algorithms, 546, 560–561
social learning model, 527, 547–548

Opinion dynamics model, 602
DeGroot model

agents’ opinions, 605–606
first order autoregressive graph filter, 603
group think, 603
rational herds, 603
stubborn agents, effects of, 602, 606–608

discrete opinion dynamics, 603
social system identification, 602
voter model, 603

Optimal probabilistic sampling, 277, 278f
Outage probability, 438–441

P
Packet Success Rate (PSR), 434–435
Pair approximations (PA), 536
Pareto front, 708
Partially absorbing random walks (ParWalks)

absorption probability, 377–394
flow diffusion perspective, 376–377, 376f
image retrieval, 389–390, 390f, 391f, 391t
learning on graphs

different regularizers, comparisons of, 386–388, 387f
GHF method, 382f, 383, 386
graph Laplacian matrix, pseudoinverse of, 384–386
hitting times, 384
Laplacian regularized kernel matrix, 381
normalized personalized PageRank, 384
personalized PageRank algorithm, 381, 382f

random regularizers, 386
second-order Markov chain, 376f, 377
second-order ParWalks, 379
semisupervised classification methods, 378–394
standard Markov chain with additional sinks, 376f, 377
transition probabilities, 379
unified framework, 375–376

Partially observed Markov decision process (POMDP), 552
Partial node immunization problem, 670–671
Partial quarantine, 668–669
Particle filter (PF), 188–189

DPF (see Distributed particle filtering (DPF))
Gaussian, 196
local, 189

ParWalks. See Partially absorbing random walks (ParWalks)
Payoff-based learning algorithms, 232
Penalty successive convex approximation (PSCA)

algorithm, 426–427, 427f
PeopleBrowsr, 540
Periodogram, 333–334, 334f
Perron-Frobenius theorem, 304
Perron matrix, 515–516
Perron vectors, 42–44, 44f
Personalized PageRank (PR), 375, 381, 382f, 384
Perturbation analysis, 436–437
Perturbation centrality, 437, 438f
Pervasive sensors, 777
PETRELS algorithm, 786
Phase locking value (PLV), 801–802
Phase type (PH) distribution, 549–550
Phasor measurements units (PMU), 739
Piggybacking, 762
Poisson distributions, 532
Pokemon go, 660, 661f
Polynomial approximate filtering approach, 312–313
Polynomial approximation approach, 312–313
Positive semidefinite (PSD)

covariance matrix, 364
graph filters, 364–365

Posterior marginal distribution, 287, 289–290
Potential games, revealed preferences. See Revealed

preference approach
Potential Generalized Axiom of Revealed Preference

(PGARP), 571
Power control in wireless networks, 210
Power spectral density (PSD), 325–326, 328, 345

compressed LS estimator, 341–342
GFT process, 330
nonparametric estimators

correlogram, 334–335
Cramér-Rao bound, 336
LS estimator, 335



Index 833

mean squared error, 335–336
periodogram, 333–334, 334f
windowed average periodogram, 336–338

parametric estimators
autoregressive graph processes, 339–340
moving average graph processes, 338–339

random process, 329–330
sampling problem, 341
sparse sampler design, 342–345

Preferential attachment model, 536–537
Proactive caching, 427, 432
Probabilistic sampling method, 275–277, 278f
Projection approximation subspace tracking (PAST)

algorithm, 786
Proposal adaptation, 189–198
Prototypical network-based learning algorithm, 217
Proximity marketing and enhanced interactivity, 764, 764f
PSCA algorithm. See Penalty successive convex

approximation (PSCA) algorithm
PSD. See Positive semidefinite (PSD). See also Power

spectral density (PSD)
Public social networks, 683
Push-sum methods, 162–163

Q
Quadratically constrained quadratic programs (QCQP),

366–367
Quadratic Gaussian network games, 226–229, 228f, 229f

R
Radio access network (RAN), 419–420
Radio environment map (REM), 420, 432–434
Radio remote heads (RRH), 434–435
Random combination policy, 40f, 41–42
Random fusion coefficients conditions, 24
Random graph models, 612
Random graph processes and signals, 325–327
Randomized opinion dynamics, 615–616
Random sampling, 262, 274
Random step-size process, 13
Random updates

Bernoulli model, 13
Beta model, 13–14, 14f
conditions on step-size process, 13
MSE, 46
stochastic-gradient recursion, 12

Random walk Laplacian, 301–302, 305
RDS. See Respondent-driven sampling (RDS)
Real-time network traffic monitoring, 793
Received signal strength indicator (RSSI), 760, 762,

765–769, 771, 772f, 774f
Receiver operating characteristics (ROC), 513

Refined large deviations analysis, 96–98
REM. See Radio environment map (REM)
Repository nodes, 429
Reputation systems. See Online reputation systems
Resilience, network attacks

adversarial resilience, 445
definition, 445
graph theory, 447t

algebraic graph theory (see Algebraic graph theory)
edges and vertices, 446
flow theory, 446
network algorithms, 446

Respondent-driven sampling (RDS), 526, 531, 543–544
Revealed preference approach, 529, 529f

Afriat’s theorem, 527–528, 567–568, 577
change point detection problem, 578
data-centric, 527, 567
multiagent social sensors, 569–570
Nash rationality, 570–572
online multiwinner auction, 572–574
Ontario electrical energy market dataset, 574–576
response prediction, learning algorithm for, 572
Twitter, 576–577

Risk-averse social learning, 526–527, 548–549
CVaR, 548–552
market observer’s quickest detection objective, 552
nonconvex stopping set, 555–556, 556f
social learning region, 554–555, 554f, 555f
stochastic dynamic programming formulation, 553–554

RNA-seq, 727–728
RSSI. See Received signal strength indicator (RSSI)
Rumors

computational and inference problems, 655–656
security hazards, 653
SIR-like epidemic models, 654
spreading and control, 651–652, 654

S
Safe experimentation (SE), 714–715, 715f
Sample covariance matrices (SCMs), 805
Sample size error, 704–705
Sampling and recovery of graph signals

adaptive methods
distributed adaptive recovery, 276–277
LMS algorithm, 262, 274, 274b
probabilistic sampling method, 275–277, 278f

bandlimited graph signals
consistent reconstruction, 265
Laplacian eigenvectors, 265–266
�1-norm reconstruction, 272–274
noise and model mismatching, 266–267
observation model, 264



834 Index

Sampling and recovery of graph signals (Continued)
perfect recovery of, 265–266
selection sampling, 264

batch methods, 262
graph Fourier basis, 261–262
notations, 262–264
numerical results

brain activity, inference of, 277, 279f
IEEE 118 bus graph, 270–271, 271f, 277, 278f
road networks, traffic flow prediction, 270–271, 272f

random sampling strategies, 262, 274
sampling strategies, 267–268

convex relaxation, 270
greedy sampling, 268–270, 268b

Scale-free networks, 624–625b, 623, 625–626
Schur complement, 288–289
Second-order methods

distributed approximations, Newton step, 159–161, 161b
Hessian computation, 158–159
Hessian decomposition, 159
Hessian inverse, 159

Secure key agreement (SKA) problem, 491
Segmented linear regression method, 588
Selection sampling, 264
Semidefinite positive (SDP), 301–304
Semi-definite programming (SDP), 367, 453
Semidefinite relaxation (SDR), 366–367
Semisupervised classification methods, 378–394
Semisupervised learning, 283
Separable rank regularization, 779
Sequential active learning, 285
Sequential Bayesian estimation, 188
SGWT. See Spectral graph wavelet transform (SGWT)
Shank’s method, 311
Shannon capacity, 455
Shannon formulation, 450
Shapley equation, 457–460
Shift matrix, 249–250
SHIS. See Stochastic hierarchical information structure

(SHIS)
Signal processing on graphs. See Graph signal processing

(GSP)
Signal to interference and noise ratio (SINR), 450, 455
Signal-to-noise ratio (SNR), 438–441, 749
Single-agent adaptation and learning

conditions on cost function, 7–8
conditions on gradient noise process, 11–12
mean-square-error performance, 16–21, 18f
mean-square-error stability, 14–16
random updates, 12–14
risk and loss functions, 5–7
stochastic-gradient approximation, 8–11

Single-input-single-output (SISO), 438–441
Single-layer networks, 679–680
SIR epidemic model. See Susceptible-Infected-Removed

(SIR) epidemic model
SIS model. See Susceptible-infected-susceptible (SIS)

model
Small-world networks, 625–626

algorithm, 625, 625b
properties, 625
regular ring lattice, 625, 626f
targeted social search process

Inaltekin-Chiang-Poor Models, 632–640, 646
Kleinberg’s model, 628–630
Milgram letter-referral experiment, 627–628
Watts-Dodds-Newman model, 630–631, 646

Smart grid, 735
Smart parking system, 764–765, 765f
Smartphones, 422–423
Smooth graph signals, 360–361, 361t
Smoothness conditions, 16, 56
Social influence constraint, 559–560
Social learning, 527, 547–548, 564. See also Bayesian

social learning model
Social learning filter, 548
Social media, 526
Social message, 559–560
Social network

altruistic data routing
group Nash equilibrium, 643–646
network, 641–643
optimum routing problem, 642–643

information diffusion (see Information diffusion, in social
networks)

learning in multiagent systems (see Multiagent learning)
modeling, 603–604
multilayer networks (see Multilayer network)
network identification

gLASSO method, 602, 604, 608–609
identifiability condition, 617–618, 618f
model-based learning method, 602, 604, 609–616
real network, randomized opinion dynamics, 618–620,

619f
topology recovery performance, 616–617, 617f, 618

nonstationary diffusion processes, 370–371
process dimension of, 626
scale-free networks, 624–625b, 623, 625–626
small-world networks (see Small-world networks)
social sensors (see Social sensors)

Social sampling, 526, 531, 543
Social sensors

Bayesian social learning, 527, 529, 529f
agents, 566



Index 835

BP algorithms, 547
information exchange, 545–546, 546f
monotone and ordinal decision-making, 561–562
multiagent social network, interactions in, 545–546,

546f
online reputation systems (see Online reputation

systems)
psychology experiment, 562–565
risk-averse social learning, market shock detection (see

Risk-averse social learning)
wisdom-of-crowds hypothesis, 566

challenges, 525–526
information diffusion (see Information diffusion, in social

networks)
revealed preferences, detecting utility maximizers, 529,

529f
Afriat’s theorem, 527–528, 567–568, 577
change point detection problem, 578
data-centric, 527, 567
multiagent social sensors, 569–570
Nash rationality, 570–572
online multiwinner auction, 572–574
Ontario electrical energy market dataset, 574–576
response prediction, learning algorithm for, 572
Twitter, 576–577

statistical inference, applications, 525
user opinions/ratings, 525
YouTube (see YouTube)

�-optimality (SOpt)
inverse Laplacian, 291
linear chain and query algorithms, 291, 291f
lookahead risk, 288
multiclass explicitly, 292
nonadaptive, 288
real-world data, 294, 294t
survey error, 288
toy dataset, 293–294, 293f
vs. V-optimality, 288–289

Sparse covariance sensing, 326
Sparse Gaussian graphical model, 728
Sparse matrix decomposition, 778–779
Sparse network, 604
Sparse sampling, 341–345
Spatially uncorrelated model, 41–42
SpecTemp approach

vs. correlation networks and graphical lasso, 358–360,
359f

network deconvolution, 361, 362f
smooth graph signals, 360–361, 361t

Spectral graph wavelets
cortical graph wavelets, 809
dFCNs, 810

diffusion tensor imaging, 809
dynamic connectivity analysis

Dirichlet energy of graph, 811–812
modular Dirichlet energy, 811–812

HoSVD, 810
Parseval graph wavelet frames, 810
source estimation, 809
statistical parametric mapping, 810

Spectral graph wavelet transform (SGWT), 803–804,
809–811

Spectrum sensing, 505. See also Collaborative spectrum
sensing (CSS)

Spectrum sensing data falsification (SSDF), 506
Spoofing, 762
State-space model, 186–187
Stationary graph signal processing

graph shift, 325–326
weak stationarity, 325

definitions, 327–328, 328f
joint time and graph stationarity, 330–333
power spectral density (see Power spectral density

(PSD))
Wiener filtering, 325

Statistical inference, 70
Statistical parametric mapping (SPM), 810
Steady-state analysis, 81
Steady-state mean-square-error, 83
Steady-state mean-square value, 10–11
Stochastic approximation, 535–536, 577
Stochastic block model (SBM), 689
Stochastic game, antijamming strategies, 455

attack model, 455–456
cost of connectivity attack, 456–457
defensive strategy, 457–462
game formulation, 456

Stochastic gradient algorithms, 7
Stochastic-gradient approximation, 8–11
Stochastic-gradient centralized solution, 25–26
Stochastic gradient descent (SGD) iterations, 789–790, 790b
Stochastic-gradient recursion, 8–9, 12
Stochastic hierarchical information structure (SHIS),

476–477
Strategic network formation models, 717–719
Streaming analytics

alternating LS algorithm for subspace tracking, 788, 788b
computational cost, 790
GROUSE algorithm, 786
large-scale machine learning, 793–794, 793f
low-complexity stochastic-gradient subspace updates,

789–790, 790b
online matrix completion, 787–789
PAST algorithm, 786



836 Index

Streaming analytics (Continued)
performance guarantees

assumptions, 791
convergence, second-order algorithm, 791–792
optimality, 792

PETRELS algorithm, 786
real-time network traffic monitoring, 793
streaming data model, 786–787

Streaming data model, 786–787
Strongly connected asynchronous model, 43
Strongly connected networks, 32–33, 32f
Subpacketization, 493
Subspace learning, 793–794
Subspace tracking

algorithms, 786
alternating LS algorithm, 788, 788b
SGD iterations, 789–790, 790b

Successive convex approximation (SCA), 426
Support vector machines (SVMs), 793–794
Susceptible-alert-infected-susceptible (SAIS), 536
Susceptible-exposed-infected-vigilant (SEIV), 536
Susceptible-Infected (SI) model, 657
Susceptible-Infected-Removed (SIR) epidemic model, 652,

654
continuous-time Markov process, 658
infection times, 658
inhomogeneous SIR model, 658
mean field approximation, 655
partial node immunization problem, 671

Susceptible-infected-susceptible (SIS) model, 526, 532f,
533–535

Synchronous centralized strategy, 25–26
Synchronous consensus strategy, 35–36
Synchronous diffusion strategies, 36–38
Synchronous multiagent adaptation and learning

distributed optimization, 33–35
strongly connected networks, 32–33, 32f
synchronous consensus strategy, 35–36
synchronous diffusion strategies, 36–38

Systems biology
gene regulation, 726–727
gene regulatory networks (see Gene regulatory networks)
NGS techniques, 727

T
Target assignment, 210
Target assignment game, 211, 212t, 213, 213t
Targeted social search process

Inaltekin-Chiang-Poor Models
Inaltekin-Chiang-Poor Model 1, 632–636
Inaltekin-Chiang-Poor Model 2, 636–640

Kleinberg’s model, 628–630, 646

Milgram letter-referral experiment, 627–628
Watts-Dodds-Newman model, 630–631

Target tracking, 169
Taylor series expansions (TSE), 743–744
Team decision (TD)

best response optimization approach,
473–474

decentralized MIMO precoding
discretization-based approach, 482
hierarchical approach, 483
model-based approach, 480
system setting, 477

general formulation of, 472–473
information structure

additive white Gaussian noise model, 475
DHIS, 475–476
master-slave information structure, 476
SHIS, 476–477

naive and LR policy, 474
static vs. sequential policy design, 473

Teleportation probability, 381
Temporal network, 683
Throughput connectivity, 451–452, 452f, 453, 454f
Throughput Fiedler value, 451–452
Tikhonov denoising, 313
Time-dependent detection error probability, 89
Time-sequential processing, 170
Transduction, 283
Transfer factor graph model, 604
Transient analysis, 81
Truncated Jacobi algorithm, 305–306
Trusts evolution model, 604
Twitter

influenza infection rate and detection, 526
ARX and NARX models, 537–538, 541, 542f
Harvard undergraduate social network, 531, 538–539,

540f
ILInet, 526, 531, 540
PeopleBrowsr, 540
SVM classifier, 537–538
U.S. CDC, 537–538

utility maximization, 576–577
Two-step approximation (TSA), 295–296

inverse Laplacian, 292
linear chain and query algorithms, 291, 291f
log probability ratio approximation,

289–290
multiclass explicitly, 292
posterior marginal distribution, 289–290
real-world data, 294, 294t
toy dataset, 293–294, 293f
vs. Zhu-Lafferty-Ghahramani, 290



Index 837

U
Unified framework. See Partially absorbing random walks

(ParWalks)
Uniform averaging rule, 77–78
Uniform sampling, 543
Universal scaling laws, 101–103, 103t
Unsupervised clustering strategy, 107–108
Urban transportation networks, 683
User equipments (UE), 422–425
Utility design, 232

V
Value-at-risk (VaR), 549
Virtualization, 419
Virtual machines (VM), 424–425
V-optimality (VOpt)

inverse Laplacian, 291
linear chain and query algorithms, 291, 291f
lookahead risk, 288
multiclass explicitly, 292
nonadaptive methods, 288
vs. �-optimality, 288–289
squared error, 288
toy dataset, 293–294, 293f

Voter model, 603

W
Warshall’s algorithm, 568
Watts-Dodds-Newman small-world search model, 630–631,

646
Wavelets, 314–316
Weak law of small step sizes, 91–92
Weak stationarity, 325

definitions, 327–328, 328f
joint time and graph stationarity, 330–333
power spectral density (see Power spectral density (PSD))

Web-scale graphs, 262
Weighted throughput connectivity, 451–452, 452f, 453, 454f
Widely linear autoregressive (WLAR) model, 736, 739–740

nonlinear state space models, 740–741
WLAR-II, 740
WLAR-I model, 739–740

Wiener filtering, 325
Windowed average periodogram, 336–338

Wireless network, 436
CDE (see Cooperative data exchange (CDE) problem)
device-centric coordination

Cloud RANs, 470
coordinated multi-point transmission methods, 470
decentralized decision algorithms, 470–471
flying radio access networks, 469–470
infrastructure-centric designs, 469–470
salient feature, 470–471
TD methods (see Team decision (TD))

robust information transmission, 438–441
Wiretappers, 491, 499–502, 500f
Wisdom-of-crowds, 566
WLAR model. See Widely linear autoregressive (WLAR)

model

Y
YouTube, 528–529, 529f

dataset, 579–580
edge formation, 591, 592f
generalized Gompertz model, 579, 587–588, 589f
Granger causality test, 579, 584–585
metalevel optimization, 578–583
monetary incentives, 528–530, 591
time-series analysis methods, 528, 587
user-driven video content provider, 528
users and channel owners, interaction between, 591
users-content-users interactions, 528–530
user-user interactions, 528–530
video game playthrough, 579, 589, 590f
video upload scheduling dynamics, 579, 585–587

Yule-Walker (YW) equations, 311–312

Z
Zhu-Lafferty-Ghahramani (ZLG), 289–290

inverse Laplacian, 292
linear chain and query algorithms, 291, 291f
LP prediction, 289
marginal approximation, 289
multiclass extension, 292
real-world data, 294, 294t
toy dataset, 293–294, 293f
vs. two-step approximation, 290




	Front Cover
	Front-Matter
	Front Matter

	Copyright
	Copyright

	Contributors
	Contributors

	Preface
	Preface

	CH01
	Asynchronous Adaptive Networks
	Introduction
	Asynchronous Behavior
	Organization of the Chapter

	Single-Agent Adaptation and Learning
	Risk and Loss Functions
	Conditions on Cost Function
	Stochastic-Gradient Approximation
	Conditions on Gradient Noise Process
	Random Updates
	Mean-Square-Error Stability
	Mean-Square-Error Performance

	Centralized Adaptation and Learning
	Noncooperative MSE Processing
	Centralized MSE Processing
	Stochastic-Gradient Centralized Solution
	Performance of Centralized Solution
	Comparison With Noncooperative Processing

	Synchronous Multiagent Adaptation and Learning
	Strongly Connected Networks
	Distributed Optimization
	Synchronous Consensus Strategy
	Synchronous Diffusion Strategies

	Asynchronous Multiagent Adaptation and Learning
	Asynchronous Model
	Mean Graph
	Random Combination Policy
	Perron Vectors

	Asynchronous Network Performance
	MSD Performance

	Network Stability and Performance
	MSE Networks
	Diffusion Networks

	Concluding Remarks
	References


	CH02
	Estimation and Detection Over Adaptive Networks
	Introduction
	Inference Over Networks
	Canonical Inference Problems
	Distributed Inference Problem
	Architectures with fusion center
	Fully flat architectures

	Inference Over Adaptive Networks

	Diffusion Implementations
	Distributed Adaptive Estimation (DAE)
	Constructing the Distributed Adaptive Estimation Algorithm
	Mean-Square-Error Performance
	Useful Comparisons
	DAE at Work

	Distributed Adaptive Detection (DAD)
	Constructing the Distributed Adaptive Detection Algorithm
	Detection Performance
	Weak Law of Small Step-Sizes
	Asymptotic Normality
	Large Deviations
	Refined Large Deviations Analysis: Exact Asymptotics
	DAD at Work

	Universal Scaling Laws: Estimation Versus Detection
	Procedure to Evaluate Eq. (2.69)
	References


	CH03
	Multitask Learning Over Adaptive Networks With Grouping Strategies
	Introduction
	Network Model and Diffusion LMS
	Network Model
	A Brief Review of Diffusion LMS

	Group Diffusion LMS
	Motivation
	Group Diffusion LMS Algorithm
	Network Behavior
	Mean weight behavior analysis
	Mean-square error behavior analysis


	Grouping Strategies
	Fixed Grouping Strategy
	Adaptive Grouping Strategy
	Adaptive Combination Strategy

	Simulations
	Model Validation
	Performance of the Adaptive Grouping Strategy

	Conclusion and Perspectives
	References


	CH04
	Bayesian Approach To Collaborative Inference In Networks Of Agents
	Introduction
	Bayesian Inference Over Networks
	Strategies for Inference Over Networks
	Sharing of Measurements or Statistics
	Merging of Bayesian Estimators
	Example: Covariance intersection
	Which combination algorithm?
	Example


	Example: Diffusion Kalman filter
	Simulation Example

	Conclusion
	Acknowledgments
	References


	CH05
	Multiagent Distributed Optimization
	Introduction
	Distributed Optimization
	Matrix Representations of Graphs
	Constraint Relaxations

	Distributed Gradient Descent
	Dual Methods
	Dual Ascent
	Alternating Direction Method of Multipliers

	Second-Order Methods
	Distributed Approximations of the Newton Step

	Practical Considerations
	Synchronous Versus Asynchronous Methods
	Push-Sum Methods

	Conclusion
	References


	CH06
	Distributed Kalman and Particle Filtering
	Distributed Sequential State Estimation
	The Setup

	Distributed Kalman Filtering
	Network Topology
	Linear State-Space Models
	Noncooperative Filtering
	Incremental Cooperation
	Data Fusion
	Approximate Fusion Relations
	Diffusion Cooperation
	Performance Analysis

	Distributed Particle Filtering
	State-Space Model
	Sequential Bayesian Estimation
	Review of the Particle Filter
	Consensus-Based Methods
	DPF based on likelihood consensus
	Distributed calculation of the GLF
	Calculation of the local expansion coefficients
	Exponential family
	Gaussian measurement noise
	Distributed Gaussian particle filter
	Distributed proposal adaptation

	Diffusion-Based Methods

	Conclusions
	Acknowledgments
	Appendix
	References


	CH07
	Game Theoretic Learning
	Introduction
	Power control in wireless networks
	Cognitive MIMO radio networks
	Target assignment
	Demand response management in energy systems
	HVAC control in smart buildings

	Learning in Games Preliminaries
	Learning dynamics
	Stubborn players
	Cournot best response dynamics

	Important classes of games
	Potential games
	Congestion games
	Quadratic games
	Zero-sum games
	Supermodular games


	Network Learning Algorithms for Complete Information Games
	Classical Fictitious Play
	Network-Based Fictitious Play

	Network Learning Algorithms for Incomplete Information Games
	Bayesian Learning in Networks
	Quadratic Gaussian network games
	Simulation


	Network-Based Fictitious Play for Incomplete Information Games
	Simulation


	Summary and Discussion
	Payoff-based learning algorithms
	Utility design

	References


	CH08
	Graph Signal Processing
	Introduction
	Brief Review of the Literature
	DSP: A Quick Refresher
	Graph Signal Processing
	Graph Signals
	Graph Shift
	Graph Filters and Graph Convolution
	Graph Fourier Transform and Graph Spectral Decomposition
	Further Topics and Applications

	Conclusion
	References


	CH09
	Sampling and Recovery of Graph Signals
	Introduction
	Notation and Background
	Sampling and Recovery
	Sampling and Perfect Recovery of Bandlimited Graph Signals
	The Effect of Noise and Model Mismatching
	Sampling Strategies
	Greedy sampling
	Convex relaxation

	Numerical Results
	ℓ1-Norm Reconstruction of Graph Signals

	Adaptive Sampling and Recovery
	Probabilistic Sampling Strategies
	Distributed Adaptive Recovery
	Numerical Results

	Conclusions
	References


	CH10
	Bayesian Active Learning on Graphs
	Bayesian Active Learning on Graphs
	Notations
	Problem Definition
	Binary Markov Random Field: A Bayesian Model of Graph Labels
	Predictions by BMRF

	Active Learning in BMRF: Expected Error Minimization
	Algorithms to Approximate EEM
	Continuous Relaxation
	V-optimality (VOpt)
	Σ-optimality (SOpt)
	Comparison

	Approximation of the Marginal
	Zhu-Lafferty-Ghahramani (ZLG)
	Two-step approximation (TSA)
	Comparison

	Case Study: Linear Chain
	Implementation
	A multiclass extension


	Experiments
	Acknowledgments
	Appendix
	Proof of [LEM:TSA]Lemma 10.1
	Proof of [LEM:ZLG-QUICK]Lemmas 10.2 and 10.3
	References


	CH11
	Design of Graph Filters and Filterbanks
	Graph Fourier Transform and Frequencies
	Introduction
	Notations

	Graph Fourier Transform
	The special case of symmetric reference operators
	GFT for undirected graphs
	The combinatorial Laplacian [symmetric]
	The normalized Laplacian [symmetric]
	The adjacency matrix, or deformed Laplacian [symmetric]
	The random walk Laplacian [not symmetric]
	Other possible definitions of the reference operator

	GFT for directed graphs
	Some straightforward approaches [not symmetric]
	Chung's directed Laplacian [symmetric]
	Other possible definitions of the reference operator


	Frequencies of Graph Signals
	Justification: the link between frequency and variation

	Implementation and Illustration
	Implementation
	Illustrations


	Graph Filters
	Definition of Graph Filters
	Examples of narrowed-sense filters

	Properties of Graph Filters
	Consequence
	Consequence
	Consequence

	Some Designs of Graph Filters
	FIR filters
	ARMA filters
	Design of coefficients
	AR filters to model random processes

	Implementations of Graph Filters
	The direct approach
	The polynomial approximate filtering approach
	The Lanczos approximate filtering approach
	Distributed implementation of ARMA filters
	Illustration


	Filterbanks and Multiscale Transforms on Graphs
	Continuous Multiscale Transforms
	Discrete Multiscale Transforms
	Filterbanks on bipartite graphs and other strongly structured graphs
	Filterbanks on bipartite graphs
	Filterbanks on other regular structures

	Filterbanks on arbitrary graphs
	Graph decimation
	Graph aggregation
	Coarse graph reconstruction
	Illustrations



	Conclusion
	Acknowledgments
	References


	CH12
	Statistical Graph Signal Processing: Stationarity And Spectral Estimation
	Random Graph Processes
	Introduction
	Chapter Organization
	Notation

	Weakly Stationary Graph Processes
	Power Spectral Density
	Joint Time and Graph Stationarity

	Power Spectral Density Estimators
	Nonparametric PSD Estimators
	Periodogram, correlogram, and LS estimator
	Mean squared error and the Cramér-Rao bound
	Windowed average periodogram

	Parametric PSD Estimators
	Moving average graph processes
	Autoregressive graph processes


	Node Subsampling for PSD Estimation
	The Sampling Problem
	Compressed LS Estimator
	Sparse Sampler Design

	Discussion and the Road Ahead
	References


	CH13
	Inference of Graph Topology
	Introduction
	Graph Inference: A Historical Overview
	Graph Inference From Diffused Signals
	Structure of a Network Diffusion Process
	Optimal Graph Shift Operator
	Problem statement
	Criteria
	Constraints

	Joint Inference of Multiple Graphs

	Robust Network Topology Inference
	Noisy Spectral Templates
	Incomplete Spectral Templates
	Laplacian graph shift operators

	Numerical Tests
	Comparison with baseline statistical methods
	Comparison with GSP methods
	Network deconvolution


	Nonstationary Diffusion Processes
	Linear Graph Filter Identification
	Input-output signal realization pairs

	Quadratic Graph Filter Identification
	Positive semidefinite graph filters
	Symmetric graph filters
	Nonsymmetric graph filters

	Numerical Tests
	Brain graph
	Social network


	Discussion
	Acknowledgments
	References


	CH14
	Partially Absorbing Random Walks: A Unified Framework For Learning On Graphs
	Introduction
	Partially Absorbing Random Walks
	The ParWalk Model
	The Absorption Probabilities of ParWalks
	Higher-Order ParWalks

	A Unified View for Learning on Graphs
	ParWalks Starting From a Fixed State
	Relation with personalized PageRank
	Relation with the kernel matrix (L+αI)-1
	Relations with the harmonic function method and its variants

	ParWalks Absorbed at a Fixed State
	Relation with the normalized personalized PageRank
	Relation with the hitting times
	Relation with the pseudoinverse of the graph Laplacian and the commute times
	Random regularizers
	Absorption probabilities of absorbing random walks
	Comparisons of different regularizers


	Experiments
	Image Retrieval
	Parameter setup
	Datasets
	Experimental results

	Semisupervised Classification
	Semisupervised classification with ParWalks
	Parameter setup
	Experimental results


	Conclusions
	Acknowledgment
	Appendix
	Proofs
	References


	CH15
	Methods For Decentralized Signal Processing With Big Data
	Introduction
	Background
	Notations and Mathematical Preliminaries

	Decentralized Optimization Algorithms
	Decentralized Projected Gradient (DPG)
	Convergence analysis

	Decentralized Frank-Wolfe (DeFW)
	Convergence analysis

	Comments on DPG and DeFW Algorithms

	Application: Matrix Completion
	Faster matrix completion

	Numerical Experiments
	Convergence rates
	Running time
	Application on real data

	Conclusions and Other Extensions
	Acknowledgments
	References


	CH16
	The Edge Cloud: A Holistic View Of Communication, Computation, And Caching
	Introduction
	Holistic View of Communication, Computation, and Caching
	Joint Optimization of Communication and Computation
	Joint Optimization of Caching and Communication
	Graph-Based Resource Allocation
	Radio Environment Map
	Matching Users to 3C Resources

	Network Reliability
	A New Measure of Edge Centrality
	Application: Robust Information Transmission Over Wireless Networks

	Conclusions
	Acknowledgments
	References


	CH17
	Applications Of Graph Connectivity To Network Security
	Introduction
	Algebraic Graph Theory Overview
	Fiedler Value and Graph Connectivity
	Most Connectivity-Influential Node

	Using Connectivity to Direct an Interference Attack
	Improving Connectivity Against Self-Interference

	Dynamic Game for Improving Connectivity Against Jamming
	A Stochastic Game: Connectivity Intrusion Prevention
	Attack model
	Game formulation
	Cost of connectivity attack
	Defensive strategy

	Comparison of Different Attacks
	Numerical Results

	Conclusions
	References


	CH18
	Team Methods For Device Cooperation In Wireless Networks
	Introduction
	Device Centric Network Optimization
	Cooperation With Decentralized Information
	Chapter Organization and Objectives

	Team Decisions Framework
	General Formulation of Team Decision
	Static Versus Sequential Policy Design
	Best Response Formulation
	Naive and Locally Robust Coordination
	Information Structures
	Additive white Gaussian noise model
	Deterministic hierarchical information structure
	Stochastically hierarchical information structure


	Team Decision Methods for Decentralized MIMO Precoding
	System Setting
	Model-Based Approach
	Principle
	Performance Evaluation And Simulations

	Discretization-Based Approach
	Principle
	Performance Evaluation

	Hierarchical Approach
	Principles
	Performance Evaluation


	Conclusion
	Acknowledgment
	References


	CH19
	Cooperative Data Exchange in Broadcast Networks
	Introduction
	Problem Definition
	Randomized Algorithm for Problem CDE
	Algorithm Description
	Algorithm Analysis

	Data Exchange With Faulty Clients
	Approximation Algorithm
	Phase I
	Phase II
	Phase III

	Algorithm Analysis

	Data Exchange in the Presence of an Eavesdropper
	Conclusion
	References


	CH20
	Collaborative Spectrum Sensing In The Presence Of Byzantine Attacks
	Introduction
	Cognitive Radio Networks
	Byzantine Attacks

	Collaborative Spectrum Sensing
	Spectrum Sensing in a Parallel CRN
	System Model
	Network model
	Byzantine attack model

	Fundamental Limit
	Mitigation Techniques
	Reputation-based scheme
	Adaptive learning


	Spectrum Sensing in a Peer-to-Peer CRN
	System Model
	Network model
	Decentralized spectrum sensing in peer-to-peer CRNs

	Sensing Phase
	Information Fusion Phase
	Decision Making Phase
	Byzantine attack model

	Fundamental Limit
	Mitigation Technique

	Conclusion and Open Issues
	Acknowledgment
	References


	CH21
	Dynamics Of Information Diffusion And Social Sensing
	Introduction and Motivation
	Context: Why Social Sensors?
	Main Results and Organization
	Information diffusion in large-scale social networks
	Bayesian social learning in online reputation systems
	Revealed preferences and detection of utility maximizers
	Social interaction of YouTube consumers

	Perspective

	Information Diffusion in Large Scale Social Networks
	Social Network Model
	SIS Diffusion Model for Information in Social Networks
	Mean Field Dynamics of Information Diffusion
	Example: Social Sensing of Influenza Using Twitter
	Twitter as a social sensor
	Social network influenza dataset
	Models for influenza diffusion
	Time series model for influenza tweets

	Sentiment-Based Sensing Mechanism
	Uniform sampling
	Social sampling
	MCMC based respondent-driven sampling (RDS)

	Summary and Extensions

	Bayesian Social Learning Models For Online Reputation Systems
	Classical Social Learning
	Risk-Averse Social Learning and Detecting Market Shocks
	Data Incest in Online Reputation Systems
	Data Incest Model and Social Influence Constraint
	Aim
	Discussion. Fair rating and social influence

	Incest Removal in Online Reputation Systems
	Ordinal Decisions and Bayesian Social Sensors
	Psychology Experiment Dataset
	Experiment setup
	Experimental results
	Social learning model
	Data incest


	Summary and Extensions
	Wisdom of crowds
	In which order should agents act?


	Revealed Preferences: Are Social Sensors Utility Maximizers?
	Afriat's Theorem for a Single Agent
	Revealed Preferences for Multiagent Social Sensors
	Decision Test for Nash Rationality
	Learning Algorithm for Response Prediction
	Dataset 1: Online Multiwinner Auction
	Dataset 2: Ontario Electrical Energy Market Dataset
	Dataset 3: Twitter Data
	Summary and Extensions
	Change point detection in utility functions


	Social Interaction Of Channel Owners And Youtube Consumers
	YouTube Dataset
	Social Sensor Engagement Sensitivity to Metalevel Optimization
	Causal Relationship Between Channel Subscribers and Social Sensor Engagement
	Video Upload Scheduling and Social Sensor Engagement
	Social Sensor Engagement Dynamics With YouTube Videos
	Social Sensor Engagement for Channel Playthroughs
	Summary and Extensions

	Closing Remarks
	References


	CH22
	Active Sensing Of Social Networks: Network Identification From Low-Rank Data
	Introduction
	Models for the Analysis of Opinions
	Social network modeling
	Social network identification

	Notation

	DeGroot Opinion Dynamics
	Effects of Stubborn Agents

	Network Identification
	Graphical LASSO
	Model-Based Learning

	Numerical Experiments
	Conclusions
	Acknowledgments
	References


	CH23
	Dynamic Social Networks: Search and Data Routing
	Introduction
	Targeted Social Search Process
	Milgram Social Search Experiment
	Kleinberg's Small-World Search Model
	Watts-Dodds-Newman Small-World Search Model

	Inaltekin-Chiang-Poor Small-World Search Models
	The Inaltekin-Chiang-Poor Model 1
	The Inaltekin-Chiang-Poor Model 2

	Altruistic Data Routing
	Model for Altruistic Data Routing
	Network details
	Optimum routing problem
	Solution concept: Group Nash equilibrium

	Group Nash Equilibria for the Process of Altruistic Data Routing

	Conclusions
	References


	CH24
	Information Diffusion and Rumor Spreading
	Introduction
	Rumor spreading and control
	Contribution and summary

	Related Work
	Modeling information and rumor spreading
	Influence optimization
	Network structure, information spread, and control approaches
	Related applications

	Models of Information Cascades
	Early Models: Viruses Spreading Through Social Networks
	Susceptible-Infected model
	Susceptible-Infected-Removed model

	Independent Cascades

	Large-Scale Dynamics of Independent Cascades
	Existence of a Supercritical Cascade
	Long-Term Behavior of Independent Cascades
	Explosive Dynamics in the Supercritical Regime

	Monitoring Information Cascades
	An Algorithm for Reducing Information Cascades
	Convergence and Scalability

	Case Studies
	Partial Quarantine
	Partial Node Immunization

	Experiments
	Experimental Setup and Evaluation
	Compared policies

	Results

	Conclusion
	References


	CH25
	Multilayer Social Networks
	Introduction
	Mathematical Formulation of Multilayer Networks
	Modeling and Representation
	Supragraph representation
	Tensor representation

	Examples of Multilayer Networks

	Diagnostics for Multilayer Networks: Centrality Analysis
	Overlapping Degree and Multiplex Participation Coefficient
	Eigenvector Centrality in Supragraph
	Nodal Centrality via Tensor Decomposition

	Clustering and Community Detection in Multilayer Networks
	Score-Based Methods
	Model-Based Methods
	Aggregation-Based Methods

	Estimation of Dynamic Social Interaction Networks
	Applications
	Identifying Genes Encoding Allelic Differences in Gene Contact Networks
	Interaction Networks in Presidential and Senatorial Datasets

	Conclusions
	Acknowledgments
	References


	CH26
	Multiagent Systems: Learning, Strategic Behavior, Cooperation, And Network Formation
	Learning in Multiagent Systems: Examples and Challenges
	Content Aggregation
	Discovering Expertise
	Popularity Forecasting
	Overview of the Chapter
	Notation

	Cooperative Contextual Bandits
	Modeling Multiagent Learning Using Cooperative Contextual Bandits
	A Distributed Learning Algorithm for Cooperative Contextual Bandits
	Learning to Cooperate When Cooperation Is Costly

	Distributed Learning With Global or Group Feedback
	Achieving Cooperation Through Global Feedback
	Accelerating Learning Through Reward Informativeness

	Learning in Networks With Incomplete Information
	Learning and Opinion Dynamics
	Learning and Strategic Network Formation

	Conclusion
	References


	CH27
	Genomics and Systems Biology
	Introduction
	Gene Regulation
	Next-Generation Sequencing Techniques
	Gene Regulatory Network Prediction
	Gene Regulatory Network Analysis
	Gene Regulatory Network Modeling
	Conclusions and Future Directions
	References


	CH28
	Diffusion Augmented Complex Extended Kalman Filtering for Adaptive Frequency Estimation in Distributed Power Networks
	Introduction
	Problem Formulation
	Widely Linear Frequency Estimators And Their Nonlinear State Space Models
	Diffusion Augmented Complex Extended Kalman Filters
	Single-Node Complex Kalman Filters
	Extension to nonlinear models
	Single-node ACEKF

	Collaboration Schemes
	Centralized ACEKF
	Local ACEKF

	Proposed Diffusion Augmented Complex Extended Kalman Filter (D-ACEKF)

	Simulations
	Case Study #1: Voltage sags
	Case Study #2: Frequency variations
	Case Study #3: Steady-state mean square error

	Conclusion
	Acknowledgments
	References


	CH29
	Beacons and the City: Smart Internet of Things
	Introduction
	BLE Beacon Characteristics and Protocols
	BLE Beacons
	BLE Beacon Characteristics
	BLE Beacon Protocols

	Limitations and Challenges
	Limitations
	Security and Privacy Challenges

	BLE Beacons in Smart Cities Applications
	Asset Tracking and Monitoring
	Proximity Marketing and Enhanced Interactivity
	Automated Check-In

	Proximity Estimation Through BLE Beacons
	Signal Propagation and Distance Calculation
	Kalman Filter
	Kalman Filter on BLE Beacon Signals

	Experiments With Beacons
	Equipment
	Data Filtering
	Experimental Environment
	Experimental Procedure
	Results and Analysis

	Conclusions
	References


	CH30
	Big Data
	Learning From Big Data: Opportunities and Challenges
	Matrix Completion and Nuclear Norm
	Separable rank regularization

	Decentralized Analytics
	Network data model
	Decentralized matrix completion
	Alternating-direction method of multipliers
	Computational and communication cost
	Convergence and optimality
	Internet Delay Cartography

	Streaming Analytics
	Streaming data model
	Online matrix completion
	Low-complexity stochastic-gradient subspace updates
	Computational cost
	Performance Guarantees
	Convergence of the second-order algorithm
	Optimality

	Real-Time Network Traffic Monitoring
	Large-Scale Machine Learning
	Multilinear decomposition and dimensionality reduction
	Sketching of categorical data
	Classification with absent features


	Concluding Summary
	Acknowledgments
	References


	CH31
	Graph Signal Processing on Neuronal Networks
	Introduction
	Basic Concepts of Graph Signal Processing in Neuroscience
	Dimensionality Reduction
	Graph Filtering of Brain Networks
	Graph Learning
	Spectral Graph Wavelets
	Dynamic Connectivity Analysis

	An Illustration: ERP Classification on EEG Functional Connectivity Networks
	Conclusions and Future Directions
	References


	Index
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z


	Back Cover



