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Preface

Traditionally, a first course in abstract algebra introduces groups, rings,
and fields, in that order. In contrast, we have chosen to develop ring
theory first, in order to draw upon the student’s familiarity with inte-
gers and with polynomials, which we use as the motivating examples
for studying rings.

This approach has worked well for us in motivating students in the
study of abstract algebra and in showing them the power of abstrac-
tion. Our students have found the process of abstraction easier to
understand, when they have more familiar examples to base it upon.
We introduce groups later on, again by first looking at concrete exam-
ples, in this case symmetries of figures in the plane and space. By this
time students are more experienced, and they handle the abstraction
much more easily. Indeed, these parts of the text move quite quickly,
which initially surprised (and pleased) the authors.

There is more material here than can be used in one semester. Those
teaching a one-semester course may choose among various topics they
might wish to include. There is sufficient material in this text for a
two-semester course, probably more, in most cases. The text is divided
into large sections (numbered with Roman numerals), each containing
a number of short chapters (numbered with Arabic numerals). Each
chapter is in turn divided into subsections, which are numbered us-
ing a decimal system: 38.2 is the second subsection of Chapter 38.
Within a given chapter each mathematical statement (theorem, lemma
or proposition) is numbered consecutively in decimal style, to make
cross referencing easy. The examples in a chapter are also numbered
consecutively in the same style. Cross references to exercises are done

in the same way: Exercise 38.2 refers to the second exercise in Chapter
38.

The diagram below indicates the dependency of the large sections.
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Section I (Numbers, Polynomials, and Factoring) introduces the in-
tegers Z, and the polynomials Q[z] over the rationals. In both cases
we emphasize the idea of factoring into irreducibles, pointing out the
structural similarities. We also introduce the rings of integers modulo
n in this section. Induction, the most important proof technique used
in the early part of this text, is introduced in Chapter 1.

In Section II (Rings, Domains, and Fields) we define a ring as the
abstract concept encompassing our specific examples from Section I. We
define integral domains and fields and then look at polynomials over
an arbitrary field. We make the point that the important properties
of Q[x] are really due to the fact that we have coefficients from a field;
this gives students a nice example of the power of abstraction.

In Section III (Unique Factorization) we explore more general con-
texts in which unique factorization is possible. Along the way, we
introduce the important notion of ideal of a commutative ring. We
find that some experience with ideals, prior to encountering the Fun-
damental Isomorphism Theorem, helps make that difficult topic more
understandable. Chapter 13 concludes with the theorem that every
principal ideal domain is a unique factorization domain. In the interest
of time, many instructors may wish to skip the last two chapters of this
section.

Section IV (Ring Homomorphisms and Ideals) has as its main goal
the proof of the Fundamental Isomorphism Theorem. This section does
not logically depend upon Section III, but we much prefer that students
first encounter the notion of ideal in the first few chapters of Section
III. Section IV also includes a chapter about the connection between
maximal ideals and fields, and prime ideals and domains. There is also
an optional chapter on the Chinese Remainder Theorem.

Section V (Groups) begins with two chapters on symmetries, those
in the plane and those in space, in order to give students some concrete
examples of non-abelian groups. We then define abstract groups. By
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this time, students have some experience with abstract algebra, and
so the instructor should find this part of the text moves fairly quickly,
with students anticipating results and ideas.

Section VI (Permutations and Group Homomorphisms) does enough
permutation group theory to give students plenty of groups to compute
with and has as one of its goals the Fundamental Isomorphism Theorem
for groups. The last three chapters are largely optional, unless you wish
to include Section IX.

Section VII (Constructibility Problems and Field Extensions) is an
optional section that is a great example of the power of abstract algebra.
In it, we show that the three Greek constructibility problems using a
compass and straightedge are impossible. This section does not use
Kronecker’s Theorem and is very computational in flavor. It does not
depend on knowing any group theory and can be taught immediately
after Section IV, if the instructor wishes to delay the introduction of
groups.

We revisit the impossibility proofs in Section VIII (Vector Spaces
and Field Extensions), where we give enough vector space theory to
introduce students to the theory of algebraic field extensions. Seeing
the impossibility proofs again, in a more abstract context, emphasizes
the power of abstract field theory.

Section IX develops Galois Theory with the goal of showing the im-
possibility of solving the quintic with radicals. This section depends
heavily on Section VIII, as well as Chapters 34 and 36.

Each chapter includes Quick Exercises, which are intended to be done
by the student as the text is read (or perhaps on the second reading)
to make sure the topic just covered is understood. Quick Exercises are
typically straightforward, rather short verifications of facts just stated
that act to reinforce the information just presented. They also act as
an early warning to the student that something basic was missed. We
often use some of them as a basis for in-class discussion. The exercises
following each chapter begin with the Warm-up Exercises, which test
fundamental comprehension and should be done by all students. These
are followed by the regular exercises, which include both computational
problems and supply-the-proof problems. Answers to most exercises
that do not require proof are given in the Hints and Answers section.
Hints to many problems are also given there.

Historical remarks follow many of the chapters. For the most part we
try to make use of the history of algebra to make certain pedagogical
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points. We find that students enjoy finding out a bit about the history
of the subject, and how long it took for some of the concepts of abstract
algebra to evolve. We've relied on such authors as Boyer & Merzbach,
Eves, Burton, Kline, and Katz for this material.

We find that in a first (or second) course, students lose track of the
forest, getting bogged down in the details of new material. With this
in mind, we’ve ended each section with a short synopsis that we've
called a “Nutshell” in which we've laid out the important definitions
and theorems developed in that section, sometimes in an order slightly
altered from the text. It’s a way for the student to organize their
thoughts on the material and see what the major points were, in case
they missed them the first time through.

We include an appendix entitled “Guide to Notation”, which provides
a list of mathematical notations used in the book, and citations to
where they are introduced in the text. We group the notations together
conceptually. There is also a complete index, which will enable readers
to find theorems, definitions and biographical citations easily in the
text.

There are a couple of suggested tracks through the text. One way we
use the book, for a one-semester course, is to tackle Sections I through
VI (except Chapters 14, 15, 21, 34, 35, and 36). If time permits, we
either include some of those skipped chapters or Section VII.

For a more leisurely pace, covering less material, one might use Sec-
tions I, II, and Sections IV through VI, except Chapter 21. (This has
the disadvantage of missing our first discussion of ideals in Chapters 11
and 12, but that just gives a bit less motivation to Section IV, which
isn’t a big problem.) One could also use this basic track with Section
VII or selected topics from Section VIII.

A second semester could pick up wherever the first semester left off
with the goal of completing Section IX on Galois Theory.

We assume that the students using the text have had the usual cal-
culus sequence; this is mostly an assumption of a little mathematical
maturity, since we only occasionally make any real use of the calcu-
lus. We do not assume any familiarity with linear algebra, although it
would be helpful. We regularly use the multiplication of 2 x 2 matrices,
mostly as an example of a non-commutative operation; we find that a
short in-class discussion of this (perhaps supplemented with some of
our exercises) is sufficient even for students who’ve never seen matrices
before. We make heavy use of complex numbers in the text but do not
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assume any prior acquaintance with them; our introduction to them in
Chapter 8 should be quite adequate.

This book is a substantial revision of the first edition, which appeared
in 1995. We have carefully edited the entire manuscript and added
many exercises throughout the book; we're grateful for the readers of
the first edition who pointed out various typographical and mathemat-
ical errors. The major change in the book is the addition of Section IX
about Galois theory, which follows naturally from our discussion of field
extensions in Section VIII. As a requirement for Section IX, we have
also added a new chapter on solvable groups (Chapter 36). We have
deleted the last section of the earlier edition, which consisted of several
unrelated applications, although we have included a revised version of
the finite fields chapter (Chapter 46) from that edition. We have also
added Nutshells for this edition.
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Chapter 1

The Natural Numbers

All mathematics begins with counting. This is the process of putting
the set of objects to be counted in one-to-one correspondence with the
first several natural numbers (or counting numbers):

1,2,3,4,5,- .

We denote by N the infinite set consisting of all these numbers. Amaz-
ingly, despite the antiquity of its study, humankind has barely begun
to understand the algebra of this set. This introduction is intended
to provide you with a fund of examples and principles that we will
generalize in later chapters.

1.1 Operations on the Natural Numbers

We encounter no trouble as long as we restrict ourselves to adding nat-
ural numbers, because more natural numbers result. Accordingly we
say our set is closed under addition. However, consider what happens
when we attempt to subtract a natural number a from b, or, equiva-
lently, we seek a solution to the equation a + z = b in the unknown z.
We discover that our set of natural numbers is inadequate to the task.
This naturally leads to the set of all integers, which we denote by Z
(for ‘Zahlen,” in German):

. -3,-2,-1,0,1,2,3,--.

This is the smallest set of numbers containing N and closed under
subtraction. ,
It is easy to make sense of multiplication in N, by viewing it as re-
peated addition:
na=a+a+---+a.

n times
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This operation is easily extended to Z by using the sign conventions
with which you are probably familiar. Why minus multiplied by minus
needs to be plus is something you might reflect on now. We will return
to this question in a more general context later.

We now have a whole new class of equations, many of which lack
solutions: ax = b. This leads to division, and to the rational numbers
@, which are precisely the quotients of one integer by another. The
reason why we don’t allow division by 0 is because if we let a = 0 and
b # 0 in the equation above, we obtain 0 = 0x = b # 0. Why 0z =0
is another question you might reflect on now — we will return to this
later too.

But to address the algebra of Q takes us too far afield from our present
subject. For the present we shall be more than satisfied in considering
Z and its operations.

1.2 Well Ordering and Mathematical Induction

A fundamental property of N (which has a profound influence on the
algebra of Z) is that this set is well ordered, a property that we state
formally as follows, and which we shall accept as an axiom about N:

The Well-ordering Principle Fuvery non-empty subset of N has a
least element.

For any subset of N that we might specify by listing the elements,
this seems obvious, but the principle applies even to sets that are more
indirectly defined. For example, consider the set of all natural numbers
expressible as 12z + 28y, where x and y are allowed to be any integers.
The extent of this set is not evident from the definition. Yet the Well-
ordering Principle applies and thus there is a smallest natural number
expressible in this way. We shall meet this example again, when we
prove something called the GCD identity in the next chapter. (See
also Exercise 1.9.)

Suppose we wish to apply the Well-ordering Principle to a particular
subset X of N. We may then consider a sequence of yes/no questions
of the following form:

isle X?

The Natural Numbers ' 5

is2e X7

Because X is non-empty, sooner or later one of these questions must
be answered yes. The first such occurrence gives the least element of X.
Of course, such questions might not be easily answerable in practice.
But nevertheless, the Well-ordering Principle asserts the existence of
this least element, without identifying it explicitly.

The Well-ordering Principle allows us to prove one of the most pow-
erful techniques of proof that you will encounter in this book. (See
Theorem 1.1 later in this chapter.) This is the Principle of Mathemat-
ical Induction:

Principle of Mathematical Induction Suppose X is a subset of N
that satisfies the following two criteria:

1. 1€ X, and
2. Ifke X forallk <n, thenn € X.
Then X = N.

The Principle of Mathematical Induction is used to prove that certain
sets X equal the entire set N. In practice, the set X will usually be “the
set of all natural numbers with property such-and-such.” To apply it
we must check two things:

1. the ‘base case’: that the least element of N belongs to X, and

2. the ‘bootstrap’: a general statement which asserts that a natural
number belongs to X whenever all its predecessors do.

You should find the Principle of Mathematical Induction plausible
because successively applying the bootstrap allows you to conclude
that

2eX,3eX,4€X, ---.

When checking the ‘bootstrap’, we assume that all predecessors of n
belong to X and must infer that n belongs to X. In practice we often
need only that certain predecessors of n belong to X. For instance,
many times we will need only that n — 1 belongs to X. Indeed, the
form of induction you have used before probably assumed only that
n — 1 was in X, instead of all k£ < n. It turns out that the version you
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learned before and the version we will be using are equivalent, although
they don’t appear to be at first glance. We will find the version given
above of more use. (See Exercise 1.17.)

Before proving the Principle of Mathematical Induction itself, let us
look at some simple examples of its use.

Example 1.1

A finite set with n elements has exactly 2™ subsets.

Proof by Induction: Let X be the set of those positive
integers for which this is true. We first check that 1 € X. But a
set with exactly one element has two subsets, namely, the empty
set () and the set itself. This is 2 = 2' subsets, as required.

Now suppose that n > 1, and k € X for all k¥ < n. We must
prove that n € X. Suppose then that S is a set with n elements;
we must show that S has 2™ subsets. Because S has at least one
element, choose one of them and call it s. Now every subset of S
either contains s or it doesn’t. Those subsets that don’t contain
s are precisely the subsets of S\{s} = {z € S : z # s}. But
this latter set has n — 1 elements, and so by our assumption that
n—1 € X we know that S\{s} has 2"~! subsets. Now those
subsets of S that do contain s are of the form A U {s}, where
A is a subset of S\{s}. There are also 2"~! of these subsets.
Thus, there are 277! + 27~1 = 27 gubsets of S altogether. In
other words, n € X. Thus, by the Principle of Mathematical
Induction, any finite set with n elements has exactly 2" subsets.
O

Notice that this formula for counting subsets also works for a set with
zero elements because the empty set has exactly one subset (namely,
itself). We could have easily incorporated this fact into the proof above
by starting at n = 0 instead. This amounts to saying that the set
{0,1,2,---} is well ordered too. In the future we will feel free to start
an induction proof at any convenient point, whether that happens to
ben =1orn=0. (We can also start induction at, say, n = 2, but
in such a case remember that we would then have proved only that

X =N\{1}.
Example 1.2

The sum of the first n odd integers is n%. That is,

1+34+5+--+(2n—1)=n? forn>1.
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Proof by Induction: In this proof we proceed slightly less
formally than before and suppress explicit mention of the set X.

> Quick Exercise. What is the set X in this proof? <Because

2.1 -1 =12, our formula certainly holds for n = 1. We now
assume that the formula holds for k < n and show that it holds
for n. But then, putting £k = n — 1, we have

143454 +2n—-1)=1)=(n—1)%
Thus,
1434+54+--+2n—1) -1+ 2n—-1)=
(n—1)2 4 (2n —1) = n?,

which shows that the formula holds for n. Thus, by the Principle
of Mathematical Induction, the formula holds for all n. 0O

Students new to mathematical induction often feel that in verifying
(2) they are assuming exactly what they are required to prove. This
feeling arises from a misunderstanding of that fact that (2) is an im-
plication: that is, a statement of the form p = ¢q. To prove such a
statement we must assume p, and then derive ¢. Indeed, assuming
that &k is in X for all £ < n is often referred to as the induction
hypothesis.

Mention should also be made of the fact that mathematical induc-
tion is a deductive method of proof and so should not be confused
with the notion of inductive reasoning discussed by philosophers. The
latter involves inferring likely general principles from particular cases.
This sort of reasoning has an important role in mathematics, and we
hope you will apply it to make conjectures regarding the more general
principles that lie behind many of the particular examples which we
will discuss. However, for a mathematician an inductive inference of
this sort does not end the story. What is next required is a deductive
proof that the conjecture (which might have been verified in particular
instances) is always true.

1.3 The Fibonacci Sequence

To provide us with another example of proof by induction, we consider a
famous sequence of integers, called the Fibonacci sequence in honor
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of the medieval mathematician who first described it. The first several
terms are
1,1,2,3,5,8,13,---.

You might have already detected the pattern: a typical element of the
sequence is the sum of its two immediate predecessors. This means
that we can inductively define the sequence by setting

a); = 1,
as = 1, and

On42 = Gpt1 + Gy, for n > 1.

This sort of inductive or recursive definition of a sequence is often
very useful. However, it would still be desirable to have an explicit
formula for ay,, in terms of n. It turns out that the following surprising
formula does the job:

(VB - (1 VA
n — on \/S .
At first (or even second) glance, it does not even seem clear that this for-
mula gives integer values, much less the particular integers that make
up the Fibonacci sequence. You will prove this formula in Exercise
1.13. The proof uses the Principle of Mathematical Induction, because
the Fibonacci sequence is defined in terms of its two immediate pre-
decessors. We now prove another simpler fact about the Fibonacci
sequence:

Example 1.3

Gn+1 < 2a,, for alln > 1.

Proof by Induction: This is trivially true when n = 1. In the
argument which follows we rely on two successive true instances
of our formula—as might be expected because the Fibonacci se-
quence is defined in terms of two successive terms. Consequently,
you should check that the inequality holds when n = 2.

> Quick Exercise. Verify that the inequality a,;1 < 2a,
holdsforn=1andn=2. «

We now assume that axy1 < 2ax for all k < n, where n > 2.
We must show that this inequality holds for k£ = n. Now

ntl = Gn +ap_1 < 2an_1 + 2052,
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where we have applied the induction hypothesis for both k =
n— 1 and k = n — 2. But because a,_1 + an_2 = a,, we have
an+1 < 2ay, as required. O

1.4 Well Ordering Implies Mathematical Induction

We now prove the Principle of Mathematical Induction, using the Well-
ordering Principle.

Theorem 1.1 The Well-ordering Principle implies the Principle of
Mathematical Induction.

Proof:  Suppose that X is a subset of N satisfying both (1) and
(2). Our strategy for showing that X = N is ‘reductio ad absurdum’
(or ‘proof by contradiction’): we assume the contrary and derive a
contradiction.

In this case we assume that X is a proper subset of N, and so ¥ =
N\X is a non-empty subset of N. By the Well-ordering Principle, ¥’
possesses a least element m. Clearly m # 1 by (1). All natural numbers
k < m belong to X because m is the least element of Y. However, by
(2) we conclude that m € X. But now we have concluded that m € X
and m ¢ X; this is clearly a contradiction. Our assumption that X is
a proper subset of N must have been false. Hence, X = N. O

The converse of this theorem is also true (see Exercise 1.16).

1.5 The Axiomatic Method

Our careful proof of the Principle of Mathematical Induction from the
Well-ordering Principle is part of a general program we are beginning
in this chapter. We wish eventually to base our analysis of the arith-
metic of the integers on as few assumptions as possible. This will be an
example of the axiomatic method in mathematics. By making our as-
sumptions clear and our proofs careful, we will be able to accept with
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confidence the truth of statements about the integers which we will
prove later, even if the statements themselves are not obviously true.
We eventually will also apply the axiomatic method to many algebraic
systems other than the integers.

The first extended example of an axiomatic approach to mathematics
appears in The Elements of Euclid, who was a Greek mathematician
living circa 300 B.C. In his book he developed much of ordinary plane
geometry by means of a careful logical string of theorems, based on
only five axioms and some definitions. The logical structure of Euclid’s
book is a model of mathematical economy and elegance. So much
mathematics is inferred from so few underlying assumptions!

Note of course that we must accept some statements without proof
(and we call these statements axioms)—for otherwise we’d be led into
circular reasoning or an infinite regress.

One cost of the axiomatic method is that we must sometimes prove a
statement that already seems ‘obvious’. But if we are to be true to the
axiomatic method, a statement we believe to be true must either be
proved, or else added to our list of axioms. And for reasons of logical
economy and elegance, we wish to rely on as few axioms as possible.

Unfortunately, we are not yet in a position to proceed in a completely
axiomatic way. We shall accept the Well-ordering Principle as an axiom
about the natural numbers. But in addition, we shall accept as given
facts your understanding of the elementary arithmetic in Z: that is,
addition, subtraction and multiplication. In Chapter 6, we will finally
be able to enumerate carefully the abstract properties which make this
arithmetic work. The role of Z as a familiar, motivating example will
be crucial.

The status of division in the integers is quite different. It is consider-
ably trickier (because it is not always possible). We will examine this
carefully in the next chapter.

Chapter Summary

In this chapter we introduced the natural numbers N and emphasized
the following facts about this set:

e N is closed under addition;

e Multiplication in N can be defined in terms of addition, and under
this definition N is closed under multiplication;
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e The Well-ordering Principle holds for N.

We then used the Well-ordering Principle to prove the Principle of
Mathematical Induction and provided examples of its use.

We also introduced the set Z of all integers, as the smallest set of
numbers containing N that is closed under subtraction.

Warm-up Exercises
a. Explain the arithmetic advantages of Z, as compared with N. How
about Q, as compared with Z?

b. Why isn’t Z well ordered? Why isn’t Q well ordered? Why isn’t
the set of all rational numbers x with 0 < 2 < 1 well ordered?

¢. Suppose we have an infinite row of dominoes, set up on end. What
sort of induction argument would convince us that knocking down
the first domino will knock them all down?

d. Explain why any finite subset of Q is well ordered.

Exercises

1. Prove using mathematical induction that for all positive integers

n7
1
14243+ - +n= @
2. Prove usirig mathematical induction that for all positive integers
n’

2 i 1
124924824 pn2= n+6)("+ ).
3. You probably recall from your previous mathematical work the

triangle inequality: for any real numbers z and y,

|z +y| < |z + [yl

Accept this as given (or see a calculus text to recall how it is
proved). Generalize the triangle inequality, by proving that

|21 + 22+ - + 2| < r] 22| + -0+ |20,

for any positive integer n.
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10.

11.

FEzxercises

Given a positive integer n, recall that n! =1-2-3---n (this is
read as n factorial). Provide an inductive definition for n!. (It
is customary to actually start this definition at n = 0, setting
0l'=1.)

Prove that 2" < n! for all n > 4.

Prove that for all positive integers n,

n(n2+ 1))2.

#4904 =

Prove the familiar geometric progression formula. Namely, sup-
pose that a and r are real numbers with r # 1. Then show that

_ n
a+ar+ar2+---+arn_1-——a a_
1—r
Prove that for all positive integers n,
1 + 1 et 1 _on
1-2 2-3 nn+1) n+1

By trial and error, try to find the smallest positive integer ex-
pressible as 12z + 28y, where z and y are allowed to be any
integers.

A complete graph is a collection of n points, each of which is
connected to each other point. The complete graphs on 3, 4, and
5 points are illustrated below:

/\

Use mathematical induction to prove that the complete graph on
n points has exactly n(n — 1)/2 lines.

Consider the sequence {a,} defined inductively as follows:
ai =az =1, apt2 =20n41 — Qn.

Use mathematical induction to prove that a, = 1, for all natural
numbers n.
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12. Consider the sequence {a,} defined inductively as follows:
al] = 5, as = 7, Ap4+2 = 3an+1 - 2an.

Use mathematical induction to prove that a, = 3 + 2", for all
natural numbers 7.

13. Consider the Fibonacci sequence {ay}.

(a) Prove that apiian_1 = (an)? + (—=1)™.

(b) Use mathematical induction to prove that

(1L+vB)" - (1—vB)"
on\/5 ‘

14. In this problem you will prove some results about the binomial
coefficients, using induction. Recall that

n n!
(1)

where n is a positive integer, and 0 < k < n.

(0= )+ (o)

n > 2 and k < n. Hint: You do not need induction to prove
this. Bear in mind that 0! = 1.

(b) Verify that (j) =1 and (7)) = 1. Use these facts, together
with part a, to prove by induction on n that (Z) is an integer,
for all k£ with 0 < k < n. (Note: You may have encountered
(Z) as the count of the number of & element subsets of a
set of n objects; it follows from this that (}) is an integer.
What we are asking for here is an inductive proof based on
algebra.)

Ap =

(a) Prove that

(¢) Use part a and induction to prove the Binomial Theorem:
For non-negative n and variables x, ¥,

(z4+y)" = z”: (Z) v Ry

k=0
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15.

16.

17.

FEzxercises

Criticize the following ‘proof’ showing that all cows are the same
color.

It suffices to show that any herd of n cows has the same color. If
the herd has but one cow, then trivially all the cows in the herd
have the same color. Now suppose that we have a herd of n cows
and n > 1. Pick out a cow and remove it from the herd, leaving
n — 1 cows; by the induction hypothesis these cows all have the
same color. Now put the cow back and remove another cow. (We
can do so because n > 1.) The remaining n — 1 again must all
be the same color. Hence, the first cow selected and the second
cow selected have the same color as those not selected, and so the
entire herd of n cows has the same color.

Prove the converse of Theorem 1.1; that is, prove that the Princi-
ple of Mathematical Induction implies the Well-ordering Princi-
ple. (This shows that these two principles are logically equivalent,
and so from an axiomatic point of view it doesn’t matter which
we assume is an axiom for the natural numbers.)

The Strong Principle of Mathematical Induction asserts the fol-
lowing. Suppose that X is a subset of N that satisfies the following
two criteria:

(a) 1€ X, and
(b) If n>1andn—1€ X, thenn € X.
Then X = N. Prove that the Principle of Mathematical Induc-

tion holds if and only if the Strong Principle of Mathematical
Induction does.

Chapter 2

The Integers

In this chapter we analyze how multiplication works in the integers
Z, and in particular when division is possible. This is more interesting
than asking how multiplication works in the rational numbers Q, where
division is always possible (except for division by zero).

We all learned at a very young age that we can always divide one
integer by another non-zero integer, as long as we allow for a remainder.
For example, 326 + 21 gives quotient 15 with remainder 11. The actual
computation used to produce this result is our usual long division. Note
that the division process halts when we arrive at a number less than
the divisor. In this case 11 is less than 21, and so our division process
stops. We can record the result of this calculation succinctly as

326 = (21)(15) + 11, where 0 < 11 < 21.

2.1 The Division Theorem

The following important theorem describes this situation formally. This
is the first of many examples in this book of an existence and uniqueness
theorem: We assert that something exists, and that there is only one
such. Both assertions must be proved. We will use induction for the
existence proof.

Theorem 2.1 Division Theorem for Z Let a,b € Z, with a #
0. Then there exist unique integers q and 7 (called the quotient and
remainder, respectively), with 0 < r < |a|, such that b =aq+r.

Proof: We first prove the theorem in case a > 0 and b > 0. To show
the existence of ¢ and r in this case, we use induction on b.
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We must first establish the base case for the induction. You might
expect us to check that the theorem holds in case b = 0 (the smallest
possible value for b). But actually, we can establish the theorem for all
b where b < a; for in this case the quotient is 0 and the remainder is b.
That is, b=a -0+ b.

We may now assume that b > a. Our induction hypothesis is that
there exist a quotient and remainder whenever we attempt to divide
an integer ¢ < b by a. So let ¢ = b — a. Since ¢ < b we have by the
induction hypothesis that ¢ = aq’ + r, where 0 < r < a. But then

b=a¢ +r+a=a(¢d +1)+r, where0<r <a.

We therefore have a quotient ¢ = ¢’ + 1 and a remainder r.

We now consider the general case, where b is any integer, and a is any
non-zero integer. We apply what we have already proved to the integers
|b| and |a| to obtain unique integers ¢’ and r’ so that [b| = ¢|a| + 1/,
with r < |a|. We now obtain the quotient and remainders required,
depending on the signs of a and b, in the following three cases:

Case (i): Suppose that @ < 0 and b < 0. Then let ¢ = ¢’ + 1 and
r = —a — r’. Note first that 0 < r < |a|. Now

ag+r=a(¢d +1)+—-a-r"=a¢d +a-a-7
=ag —r' = —(lalg’ +7') = —[b| = b,

as required.
You can now check the remaining two cases:
Case (ii): If a < 0 and b > 0, then let ¢ = —¢/ and r =7/,
Case (iii): If a >0 and b <0, thenlet g=—¢' —land r=a — 7.

> Quick Exercise. Verify that the quotients and remainders speci-
fied in Cases (ii) and (iii) actually work. <

Now we prove the uniqueness of ¢ and r. Our strategy is to assume
that we have two potentially different quotient-remainder pairs, and
then show that the different pairs are actually the same. So, suppose
that b= ag+r = a¢’ + 7', where 0 < r < |a| and 0 < r’ < |a|. We hope
that q=¢ and r =7,

Since ag + r = aq’ + r’, we have that a(q — ¢) = " — r. Now
|*" — r| < |a|, and so |a|l¢g — ¢'| = |r' —r| < |a|. Hence, |¢ —¢'| < L.
Thus, g — ¢’ is an integer whose absolute value is less than 1, and so
g—q¢ =0. Thatis, g =¢. Butthen " —r =a-0=0 and so ' = r,
proving uniqueness. O
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You should exercise some care in applying the Division Theorem with
negative integers. The fact that the remainder must be positive leads
to some answers that may be surprising.

Example 2.1

For example, while 326 divided by 21 gives quotient 15 and re-
mainder 11, —326 divided by 21 gives quotient —16 and remainder
10, and —326 divided by —21 gives quotient 16 and remainder 10.

We say an integer a divides an integer b if b = ag for some integer
g. In this case, we say a is a factor of b, and write a|b. In the context
of the Division Theorem, a|b means that the remainder obtained is 0.

Example 2.2

Thus, —6[126, because 126 = (—6)(—21). Note that any integer
divides 0, because 0 = (a)(0).

2.2 The Greatest Common Divisor

In practice, it may be very difficult to find the factors of a given integer,
if it is large. However, it turns out to be relatively easy to determine
whether two given integers have a common factor. To understand this,
we must introduce the notion of greatest common divisor: Given two
integers a and b (not both zero), then the integer d is the greatest
common divisor (ged) of a and b if d divides both a and b, and it is
the largest positive integer that does. We will often write ged(a,b) = d
to express this relationship.

For example 6 = ged(42,—30), as you can check directly by com-
puting all possible common divisors, and picking out the largest one.
Because all integers divide 0, we have not allowed ourselves to consider
the meaningless expression ged(0,0). However, if a # 0, it does make
sense to consider ged(a, 0).

> Quick Exercise. Argue that for all a # 0, ged(a,0) = |a]. <

But why should an arbitrary pair of integers (not both zero) have
8 gcd? That is, does the definition we have of ged really make sense?
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Note that if ¢ > 0 and ¢|a and ¢|b, then ¢ < |a| and ¢ < |b]. This means
that there are only finitely many positive integers that could possibly
be the ged of a and b, and because 1 does divide both a and b, a and b
do have at least one common divisor. This means that the ged of any
pair of integers exists (and is unique).

To actually determine ged(a,b) we would rather not check all the
possibilities less than |a| and |b|. Fortunately, we don’t have to, be-
cause there is an algorithm that determines the ged quite efficiently.
This first appears as Proposition 2 of Book 7 of Euclid’s Elements and
depends on repeated applications of the Division Theorem; we call it
Euclid’s Algorithm. We present the algorithm below but first need
the following lemma;

Lemma 2.2 Suppose that a,b,q,r are integers and b = aqg+ r. Then
ged(b,a) = ged(a, ).

Proof: To show this, we need only check that every common divisor
of b and a is a common divisor of ¢ and r, and vice versa, for then the
greatest element of this set will be both ged(b, a) and ged(a,r). But if
d|a and d|b then d|r, because r = b — aq. Conversely, if d|a and d|r,
then d|b, because b =aq+r. ]

We will now give an example of Euclid’s Algorithm, before describing
it formally below. This example should make the role of the lemma
clear.

Example 2.3

Suppose we wish to determine the ged of 285 and 255. If we suc-
cessively apply the Division Theorem until we reach a remainder
of 0, we obtain the following:

285 =255-1+30
255 =30-8+15
30=15-2+4+0

By the lemma we have that
ged(285, 255) = ged(255, 30) = ged(30, 15) = ged(15, 0),

and by the Quick Exercise above, this last is equal to 15.

The Integers 19

Explicitly, to compute the ged of b and a using Euclid’s Algorithm,
where |b| > |a|, we proceed inductively as follows. First, set bg = b,a9 =
a, and let go and 7o be the quotient and remainder that result when by
is divided by ag. Then, for n > 0, let b, = a,—1 and a, = r,—1, and let
¢n and r, be the quotient and remainder that result when b, is divided
by a,. We then continue until r, = 0, and claim that r, 1 = ged(b, a).
Setting aside for a moment the important question of why r, need ever
reach 0, the general form of the algorithm looks like this:

bo = apqo + 1o
by =a1q1 + 11

bpn-1=0an-1qn-1+ 7T
bp = angn +0

We can now formally show that Euclid’s Algorithm does indeed com-
pute ged(b, a):

Theorem 2.3 Euclid’s Algorithm computes ged(b, a).

Proof: Using the general form for Euclid’s Algorithm above, the
lemma says that

ged (b, a) = ged(bo, ap) =
ged(ag, ro) = ged(by,a1) =
ng(al,’f’l) B —
ged(an—1,7n-1) = ged(bn, an) =
ged(an,0) = ap = rp1.

It remains only to understand why this algorithm halts. That is, why
must some remainder 7, = 07 But a;37 = r; < |a;| = ri—1. Thus, the
ri’s form a strictly decreasing sequence of non-negative integers. By
the Well-ordering Principle, such a sequence is necessarily finite. This
means that r,, = 0 for some n. o

We have thus proved that after finitely many steps Euclid’s Algorithm
will produce the ged of any pair of integers. In fact, this algorithm
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reaches the ged quite rapidly, in a sense we cannot make precise here.
It is certainly much more rapid than considering all possible common
factors case by case.

2.3 The GCD Identity

In the equations describing FEuclid’s algorithm above, we can start
with the bottom equation b,_1 = ap_1gn—1 + Tr—1 and solve this for
ged(b,a) = 7,1 in terms of b,_1 and a,-1. Plugging this into the
previous equation, we can express ged(b, a) in terms of b,_9 and an,—o.
Repeating this process, we can eventually obtain an equation of the
form ged(b, a) = ax + by, where z and y are integers. That is, ged(b, a)
can be expressed as a linear combination of a and b. (Here the coef-
ficients of the linear combination are integers  and y; we will use this
terminology in a more general context later.)

Example 2.4
In the case of 285 and 255 we have the following:
15 = 255 — 30(8)

= 255 — (285 — 255 - 1)(8)
= 255(9) + 285(—8)

This important observation we state formally:

Theorem 2.4 The GCD identity for integers Given inte-
gers a and b (not both zero), there exist integers x and y for which
ged(b,a) = ax + by.

> Quick Exercise. Try using Fuclid’s Algorithm to compute
ged(120, 27),

and then express this ged as a linear combination of 120 and 27. <

What we have described above is a constructive (or algorithmic) ap-
proach to expressing the ged of two integers as a linear combination of
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them. We will now describe an alternative proof of the GCD identity,
which shows the existence of the linear combination, without giving us
an explicit recipe for finding it. This sort of proof is inherently more
abstract than the constructive proof, but we are able to conclude a
bit more about the ged from it. We will also find it valuable when we
generalize these notions to more general algebraic structures than the
integers.

Existential proof of the GCD identity: We begin by considering
the set of all linear combinations of the integers a and b. That is,
consider the set

S={ax+by:z,yeZ}

This is obviously an infinite subset of Z. If the GCD identity is to be
true, then the ged of a and b belongs to this set. But which element
is it? By the Well-ordering Principle, S contains a unique smallest
positive element which we will call d.

> Quick Exercise. To apply the Well-ordering Principle, the set S
must contain at least one positive element. Why is this true? <

Since d € S, we can write it as d = axg + by, for some particular
integers xg and yo. We claim that d is the ged of @ and b.

To prove this, we must first check that d is a common divisor, that
is, that it divides both a and b. If we apply the Division Theorem 2.1
to d and a, we obtain a = dg + r. We must show that r is zero. But

r=a—dg=a— (axo+ byo)q = a(l — qzo) + b(—qyo),

and so r € S. Because 0 < r < d, and d is the smallest positive element
of S, r =0, as required. A similar argument shows that d|b too.

Now suppose that ¢ > 0 and cla and c|b. Then a = nc and b = me.
But then az + by = nex + mey = c(nz + my), and so ¢ divides any
linear combination of @ and b. Thus, ¢ divides d. But because ¢ and d
are both positive, ¢ < d. That is, d is the ged of a and b. O

Example 2.5

Thus, the ged of 12 and 28 is 4, because 4 = 12 (-2) 4 28(1) is
the smallest positive integer expressible as a linear combination
of 12 and 28. We referred to this example when introducing the
Well-ordering Principle in the previous chapter; see Exercise 1.9.

We conclude from this proof the following:
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Corollary 2.5 The gcd of two integers (not both zero ) is the least pos-
itive linear combination of them.

2.4 The Fundamental Theorem of Arithmetic

We are now ready to tackle the main business of this chapter: proving
that every non-zero integer can be factored uniquely as a product of
integers that cannot be further factored. This theorem’s importance
is emphasized by the fact that it is usually known as the Fundamental
Theorem of Arithmetic. It first appears (in essence) as Proposition 14
of Book 9 in Euclid’s Elements.

We first need a formal definition. An integer p (other than +1) is
irreducible if whenever p = ab, then a or b is £1. We are thus allow-
ing the always possible ‘trivial’ factorizations p = (1)(p) = (—1)(—p).
We are not allowing +1 to be irreducible because it would unnecessar-
ily complicate the formal statement of the Fundamental Theorem of
Arithmetic that we make below. Because 0 = (a)(0) for any integer
a, it is clear that O is not irreducible. Finally, notice that if p is irre-
ducible, then so is —p. This means that in the arguments that follow
we can often assume that p is positive.

The positive integers that are irreducible form a familiar list:

2, 3, 5 7, 11, 13, 17,---

You are undoubtedly familiar with these numbers, under the name
prime integers, and it may seem perverse for us to call them ‘irre-
ducible’. But this temporary perversity now will allow us to be consis-
tent with the more general terminology we’ll use later.

We reserve the term ‘prime’ for another definition: an integer p (other
than 0 and +1) is prime if, whenever p divides ab, then either p divides
a or p divides b. (Notice that when we say ‘or’ here, we mean one or
the other or both. This is what logicians call the inclusive ‘or’, and is
the sense of this word that we will always use.)

Example 2.6

For instance, we know that 2 is a prime integer. For if 2|ab, then
ab is even. But & product of integers is even exactly if at least
one of the factors is even, and so 2|a or 21b.
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The prime property generalizes to more than two factors:

Theorem 2.6 If p is prime and plaias - - - a,, then pla; for some 3.

Proof:  This is Exercise 2.5. Prove it using induction on n. O

For the integers, the ideas of primeness and irreducibility coincide.
This is the content of the next theorem.

Theorem 2.7 An integer is prime if and only if it is irreducible.

Proof: This theorem asserts that the concepts of primeness and
irreducibility are equivalent for integers. This amounts to two implica-
tions which must be proved: primeness implies irreducibility, and the
converse statement that irreducibility implies primeness.

Suppose first that p is prime. To show that it is irreducible, suppose
that p has been factored: p = ab. Then plab, and so (without loss of
generality) pla. Thus, a = pz, and so p = pxb. But then 1 = b, and so
both z and b can only be +1. This shows that the factorization p = ab
is trivial, as required.

Conversely, suppose that p is irreducible, and p|ab. We will suppose
also that p does not divide a. We thus must prove that p does divide b.
Suppose that d is a positive common divisor of p and a. Then, because
p is irreducible, d must be p or 1. Because p doesn’t divide a, it must
be that ged(p,a) = 1. So by the GCD identity 2.4, there exist x and
y with 1 = az + py. But then b = abx + bpy, and because p clearly
divides both abz and bpy it thus divides b, as required. a

Again, it may seem strange to have both of the terms ‘prime’ and
‘irreducible’, because for Z we have proved that they amount to the
same thing. But we will later discover more general contexts where
these concepts are distinct.

We now prove half of the Fundamental Theorem of Arithmetic:

Theorem 2.8 Every non-zero integer (other than +1) is either irre-
ducible or a product of irreducibles.

Proof: Let n be an integer other than +1, which we may as well
suppose is positive. We proceed by induction on n. We know that
n # 1, and if n = 2, then it is irreducible. Now suppose the theorem
holds true for all m < n. If n is irreducible already, we are done. If not,
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then n = bc, where, without loss of generality, both factors are positive
and greater than 1. But then by the induction hypothesis both b and
¢ can be factored as a product of irreducibles, and thus so can their
product n. O

For example, we can factor the integer 120 as 2-2-2-3-5. Now
(—5)-2-(—2)-3-2 is a distinct factorization of 120 into irreducibles,
but it is clearly essentially the same, where we disregard order and
factors of —1. The uniqueness half of the Fundamental Theorem of
Arithmetic asserts that all distinct factorizations into irreducibles of a
given integer are essentially the same, in this sense. To prove this we
use the fact that irreducible integers are prime.

Theorem 2.9 Unique Factorization Theorem for Integers
If an integer z = aiag---an = biby--- by, where the a; and b; are all
irreducible, then n = m and the b; may be rearranged so that a; = £b;,
fori=1,2,---,n.

Proof: We use induction on n. If n =1, the theorem follows easily.
> Quick Exercise. Check this. <«

So we assume n > 1. By the primeness property of the irreducible
a1, a1 divides one of the b;. By renumbering the b; if necessary, we
may assume a; divides by. So, because by is irreducible, a; = +b;.
Therefore, by dividing both sides by a1, we have

a2a3~-an=:|:b2~~~bm.

(Because by is irreducible, so is —be, and we consider +by as an ir-
reducible factor.) We now have two factorizations into irreducibles,
and the number of a; factors is n — 1. So by the induction hypothesis
n —1=m — 1, and by renumbering the b; as necessary, a; = £b; for
i=1,2,---,n. This proves the theorem. O

2.5 A Geometric Interpretation

As we have indicated already, both Euclid’s Algorithm and the Fun-
damental Theorem of Arithmetic have their origins in the work of the
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Greek geometer Fuclid. It is important to note that Euclid viewed
both of these theorems as geometric statements about line segments.

To understand this requires a definition: A line segment AB mea-
sures a line segment CD, if there is a positive integer n, so that we
can use a compass to lay exactly n copies of AB next to one another,
to make up the segment C'D. In modern language, we would say that
the length of C'D is n times that of AB, but this notion of length was
foreign to Euclid.

Euclid’s Algorithm can now be viewed in the following geometric
way: Given two line segments AB and CD, can we find a line segment
EF, which measures both AB and CD? In the diagram below, we see
by example how Euclid’s Algorithm accomplishes this.

1 AB

|
! CD CD ' CD T EF

CD
E1F1 EsFy

E\Fy
E2F2E2F2

We can recapitulate this geometry in algebraic form, which makes
the connection with Fuclid’s Algorithm clear:

AB =3CD + EiF,
CD = 1E\F, + By,
E\Fy, = 2E,F.

Thus, AB and CD are both measured by EoFy. In fact, CD = 3EyF
and AB = 11E3F5. In modern language, we would say that the ratio
of the length of AB to the length of CD is 11/3. Note that in this
context Euclid’s Algorithm halts only in case this ratio of lengths is a
rational number (that is, a ratio of integers). In fact, it is possible to
prove that the ratio of the diagonal of a square to one of the sides is
irrational, by showing that in this case Euclid’s Algorithm never halts
(see Exercises 2.14 and- 2.15).

Euclid’s proposition that is closest to the Fundamental Theorem of
Arithmetic says that if a number be the least that is measured by prime
numbers, it will not be measured by any other prime number except
those originally measuring it. This seems much more obscure than our
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statement, in part because of the geometric language that Euclid uses.
Euclid’s proposition does assert that if a number is a product of cer-
tain primes, it is then not divisible by any other prime, which certainly
follows from the Fundamental Theorem, and is indeed the most impor-
tant idea contained in our theorem. However, Euclid lacked both our
flexible notation, and the precisely formulated tool of Mathematical
Induction, to make his statement clearer and more modern. It wasn’t
until the eighteenth century, with such mathematicians as Euler and
Legendre, that a modern statement was possible, and a careful proof
in modern form did not appear until the work of Gauss, in the early
19th century.

Chapter Summary

In this chapter we examined division and factorization in Z. We proved
the Division Theorem by induction and then used it to obtain Fuclid’s
Algorithm and the GCD identity. We defined the notions of primeness
and rreducibility and showed that they are equivalent. We then proved
the Fundamental Theorem of Arithmetic, which asserts that all integers
other than 0,1, —1 are irreducible or can be factored uniquely into a
product of irreducibles.

Warm-up Exercises
a. Find the quotient and remainder, as guaranteed by the Division
Theorem 2.1, for 13 and —120, —13 and 120, and —13 and -120.

b. What are the possible remainders when you divide by 3, using the
Division Theorem 2.1? Choose one such remainder, and make a
list describing all integers that give this remainder, when dividing
by 3.

c. What are the possible answers to ged(a, p), where p is prime, and
a is an arbitrary integer?

d. Let m be a fixed integer. Describe succinctly the integers a where

ged(a, m) = m.
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. Give the prime factorizations of 92, 100, 101, 102, 502, and 1002.

. Suppose that we have two line segments. One has length 11/6

units, and the other has length 29/15. What length is the longest
segment that measures both?

. We proved the GCD identity 2.4 twice. Explain the different

approaches of the two proofs to finding the appropriate linear
combination. Which is easier to describe in words? Which is
computationally more practical?

Exercises

(a) Find the greatest common divisor of 34 and 21, using Euclid’s

Algorithm. Then express this ged as a linear combination
of 34 and 21.

(b) Now do the same for 2424 and 772.

. Prove that gecd(a,b) divides a — b. This sometimes provides a

short cut in finding geds. Use this to find ged (1962, 1965). Now
find ged (1961, 1965).

. Prove that the set of all linear combinations of a and b are pre-

cisely the multiples of ged(a, b).

. Two numbers are said to be relatively prime if their ged is 1.

Prove that a and b are relatively prime if and only if every integer
can be written as a linear combination of a and b.

. Prove Theorem 2.6. That is, use induction to prove that if the

prime p divides ajas - - - an, then p divides a;, for some 1.

. Suppose that a and b are positive integers. If a+b is prime, prove

that ged(a,b) = 1.

(a) A natural number greater than 1 that is not prime is called
composite. Show that for any n, there is a run of n con-
secutive composite numbers. Hint: Think factorial.

(b) Therefore, there is a string of 5 consecutive composite num-
bers starting where?
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8.

10.

11.

12.

13.

14.

15.

FExercises

Prove that two consecutive members of the Fibonacci sequence
are relatively prime.

Notice that ged(30,50) = 5ged(6,10) = 5- 2. In fact, this is
always true; prove that if a # 0, then ged(ab, ac) = a - ged(b, ¢).

Suppose that two integers a and b have been factored into primes
as follows:

a= p?lpgm .. .p;lr
and

my, my

b=p; " ps

My
R /J

where the p;’s are primes, and the exponents m,; and n; are non-
negative integers. It is the case that

ng(av b) = pilpgz e 'pira
where s; is the smaller of n; and m;. Show this with ¢ = 360 =
23325 and b = 900 = 223252, Now prove this fact in general.

The least commeon multiple of natural numbers a and b is the
smallest positive common multiple of a and b. That is, if m is
the least common multiple of a and b, then a|m and blm, and
if a|n and b|n then n > m. We will write lem(a,b) for the least
common multiple of @ and b. Find lem(20, 114) and lem(14, 45).
Can you find a formula for the lem of the type given for the ged
in the previous exercise?

Show that if ged(a,b) = 1, then lem(a,b) = ab. In general, show

that
ab

lcm(a, b) = —g‘g&m

Prove that if m is a common multiple of both a and b, then
lem(a, b)|m.
Prove that v/2 is irrational.

This problem outlines another proof that /2 is irrational. We
show that Euclid’s Algorithm never halts if applied to a diagonal
d and side s of a square. The first step of the algorithm yields

d=1-s+r,

The Integers 29

as shown in the picture below:

D C

(a) Now find the point E by intersecting the side CD with the
perpendicular to the diagonal AC at P. It is obvious that
the length of segment EC is v/2r. (Why?) Now prove that
the length of segment DE is r, by showing that the triangle
DEP is an isosceles triangle.

~
-~
-~
~
~

D r E V2r ¢
T

~
-~

P

A B

Why does this mean that the next step in Euclid’s Algorithm
yields
s=2r+ (V2 -1)r?

(b) Argue that the next step of the algorithm yields
r=2(vV2-1)r+ (V2-1)%.

Hint: Consider the square with three vertices E, P, and C,
and use part a. Why does this mean that the algorithm
never halts? -

16. State Euclid’s version of the Fundamental Theorem of Arithmetic
in modern language, and prove it carefully as a Corollary of the
Fundamental Theorem.
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17. (a)
(b)
18. (a)
(b)

FEzrercises

As with many algorithms, one can easily write a recursive
version of Euclid’s Algorithm. This version is for nonnega-
tive a and b. (The symbol < is the assignment symbol and
a mod b is the remainder when dividing a by b.)
function ged(a,b);

if b=0 then gcd « a else ged «— gcd(b,a mod b)

endfunction.

Try this version on 2424 and 772 and a couple of other pairs
of your choice.

One can also write a recursive extended gecd algorithm that
returns the linear combination guaranteed by the GCD iden-
tity. This procedure again assumes that both a and b are
non-negative. When the initial call returns, g will be the
ged of a and b and g = ax + by.
procedure extgcd(a,b,g,x,y);
if =20 then
g—a; t1; y0;
else
extged(b,a mod b, g, z,y);
temp — y;
y <z — a/bly;
T <« temp;
endprocedure.
(Here, |z is the floor function. That is, |z] = the greatest

integer less than or equal to z.) Try this procedure on 285
and 255, then 2424 and 772, and a pair of your choice.

Show that in Euclid’s Algorithm, the remainders are at least
halved after two steps. That is, ;1o < 1/2 7.

Use part a to find the maximum number of steps required for
Euclid’s Algorithm. (Figure this in terms of the maximum
of a and b.)

19. Recall from Exercise 1.13 the definition of the binomial coefficient
(%)- Suppose that p is a positive prime integer, and k is an integer
with 1 < k < p— 1. Prove that p divides binomial coefficient (¥).

Chapter 3

Modular Arithmetic

In this chapter we look again at the content of the Division Theorem
2.1, only this time placing our primary interest on the remainders ob-
tained. By adopting a slightly more abstract point of view, we will be
able to obtain some new insight into the arithmetic of Z.

3.1 Residue Classes

For any positive integer m and integer a, the residue of a modulo
m is the remainder one obtains when dividing a by m in the Division
Theorem. (We will frequently write ‘mod m’ for ‘modulo m’.)

Example 3.1

The residue of 8 (mod 5) is 3. The residue of —22 (mod 6) is 2.

Of course, many integers have the same residue (mod m). Given an
integer a, the set of all integers with the same residue (mod m) as a is
called the residue class (mod m) of a and denoted [a]m.

Example 3.2

For instance,
Bls ={...,—12,-7,-2,3,8,.. .},
and

[-22]6 = {...,—22,—16,-10,-4,2,.. }.

If {a},, = [b]m we say that a and b are congruent modulo m, and
write ¢ = b(mod n). We simplify this notation to a = b, if it is clear
what modulus m is being used.
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Our intention in this chapter is to define addition and multiplication
on these residue classes to give us interesting new number systems.
Before doing this we will explore more about the classes themselves.

Notice that [3]5 consists of the list of every fifth integer, which in-
cludes 3. That is,

Bls=1{..., 3+(-3)5, 3+(=2)5, 3+ (-1)5, 3+(0)5, 3+(1)5,...}.

And similarly, [—22]¢ consists of the list of every sixth integer, which
includes —22. Our first theorem asserts that this is always true.

Theorem 3.1 [a], = {a+km: k€ Z}.

Proof: We must show that two infinite sets are in fact equal. Our
strategy is to show that each of these sets is a subset of the other. For
that purpose, suppose that

ze€{a+km:kelZ}.

Then z = a + kgm for some kg € Z. Suppose the residue (mod m) of a
is . That is, when we divide a by m, we have remainder r. But then
a=qgm+r, where 0 < r < m and ¢ is some integer. Then

z=a+kom=qgm+r+kom= (ko +q)m+r.

But this means that the residue of z modulo m is r, and so = € [a]n.
Thus,

{a+km:ke€Z}Clalm.

Now let z € [a],. In other words, = has the same residue (mod m)
as a. Suppose that the common residue of z and @ modulo m is r, and
so x =qgim+r and a = gam + r. Then r = a — ggm and so

z=qgm+a—qgm= (¢ —¢g)m+a.

That is, = € {a + km : k € Z}, proving the theorem. O

As our examples above suggest, this theorem says that elements in a
given residue class (mod m) occur exactly once every m integers. So, if
z € [a)m, the next larger element in [a],, is +m. Hence, any m consec-
utive integers will contain exactly one element of [an,. Thus, there are
exactly m residue classes (mod m), and we can choose representatives
from each class simply by picking any set of m consecutive integers.
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For example, we could certainly choose the m integers 0,1,2,--- ,;m—1
(which are of course exactly the possible remainders from division by
m). Indeed, with this conventional and convenient choice of representa-
tives we can specify the m distinct residue classes as [0], [1},...,[m—1].
These m residue classes then partition the integers, meaning that each
integer belongs to exactly one of these classes, and if distinct classes
intersect, they are in fact equal. Alternatively, this means that

Z=[0 U lJul2u--U[m-1]

and the sets in this union are disjoint from one another pairwise.
In particular, we have that

Z=1[0]4 U [1]s U [2]4 U [3]s
{...,—4,0,4,8,...} U {...,-3,1,5,9,...} U
{...,-2,2,6,10,...} U {...,-1,3,7,11,...}.

The next theorem provides a very useful way of determining when
two integers are in the same residue class. Indeed, we will use this
characterization more often than the definition itself.

Theorem 3.2 Tuwo integers, x and y, have the same residue (mod m)
if and only if x —y = km for some integer k.

Proof: First, suppose £ = y (mod m). Then z = kym + r, and
y = kom + r for some integers k1 and ky and 0 < r < m. But then
r—y= (kl — kg)m

Conversely, suppose x —y = km, for some integer k with z = kym+r;
and y = kom + ro, where 0 < r; < m and 0 < ry < m. Then

km=xz—y=(k —ka)m+r —r,

which implies that 1 — ro = (k — k; + k2)m. Now, because 7 and ro
are both non-negative integers less than m, the distance between them
is less than m. That is, |ry — ro| < m. So, —m < r; —r9 < m. But we
have just shown that 7y — ro is an integer multiple of m. Hence, that
multiple is 0. Therefore, r1 — 19 = 0 or r; = 7o. O
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Example 3.3
We have [18]7 = [~38]; because 18 — (—38) = 56 = (7)(8).

We now consider the set of all residue classes modulo m. We denote
this set by Z,,. That is,

Zin = {[0], (1}, [2], -+, [m — 1]}

Be careful to note that we are considering here a set of sets: Each
element of the finite set Z,, is in fact an infinite set of the form [k].
While this construct seems abstract, you should take heart from the
fact that for the most part, we can focus our attention on particular
representatives of the residue classes, rather than on the entire set.

3.2 Arithmetic on the Residue Classes

We are now ready to define an ‘arithmetic’ on Z,, which is directly
analogous to (and indeed inherited from) the arithmetic on Z. By
an ‘arithmetic’ we mean operations on Z,, that we call addition and
multiplication.

To add two elements of Z,, (that is, two mod m residue classes)
simply take a representative from each class. The sum of the two
residue classes is defined to be the residue class of their sum. For
instance, to add [3]5 and [4]5, we pick, say, 8 € [3]5 and 4 € [4]5. But
[8 +4]5 = [2]5, and so [3]5 + [4]s = [2]5. Note that any other choice of
representatives would also yield [2]s.

> Quick Exercise. Try some other representatives of these two residue §

classes, and see that the same sum is obtained. <

It is vitally important that this definition be independent of represen-
tatives chosen, for otherwise it would be ambiguous and consequently
not of much use. We will shortly prove that this independence of rep-
resentatives in fact holds. Before we do so, we first observe that we can
define multiplication on Z, in a similar way.

More succinctly, the definition of the operations on Z,, are:

[a]m + [b]m = [a + b]m
[alm - [Blm = [a - blm-
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Thus, [4]5[3]5 = [12]5 = [2]5.

> Quick Exercise. Try some other representatives of these two residue
classes, and see that the same product is obtained. <

We now check to see that these definitions are well defined. That
is, if one picks different representatives from the residue classes, the
result should be the same. You have seen that this worked in the
example above for addition and multiplication in Zs (at least for the
representatives you tried).

Proof that operations are well defined: To show addition on Z,
is well defined, consider [a] and [b]. We pick two representatives from
[a], say  and y, and two representatives from [b], say r and s. Now we
must show that [z + r] = [y + s]. But z,y € [a] implies z — y = k1m,
for some integer k1. Likewise, r — s = kom, for some integer ks. So,

z+r—(y+s)=xz—y+r—s= (ki +ka)m.

In other words, [z + 7] = [y + s, which is what we wanted to show.
The proof that multiplication on Z,, is also well defined is similar
and is left as Exercise 3.9. O

We now have an ‘arithmetic’ defined on Z,. To avoid cumber-
some notation, it is common to write the elements of Z,, as simply
0,1,...,m — 1 instead of [0],[1],...,[m —1]. So, in Z5, 3+ 4 = 2 and
2+3=0. (Thus, —2 = 3 and —3 = 2.) Bear in mind that the arith-
metic is really on residue classes. For the remainder of this chapter we
will not omit the brackets, although later we often will.

Example 3.4

A first simple example of this arithmetic is in the case where
m = 2. We then have only two residue classes. In fact, [0]2
is precisely the set of even integers and [1]2 is the set of odd
integers. The addition and multiplication tables for Z are given
below. The addition table may be simply interpreted as ‘The
sum of an even and an odd is odd, while the sum of two evens or
two odds is even.” The multiplication table may be interpreted

. as ‘The product of two integers is odd only when both integers
are odd.’
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+ | o] [1] o

0 | [0 [ 0 | [0 0]

Ay [ ol [} | o [
addition and multiplication tables for Zg

3.3 Properties of Modular Arithmetic

It is illuminating to compare the arithmetic on Z,, with that on Z.
Later in the book (in Chapter 6) we will meet a common abstraction
of arithmetic on Z and on Z,, that will enable us to pursue this general
question in more detail. For now we intend only to suggest a few of
the ideas we will meet more formally later.

Arithmetic in Z depends heavily on the existence of an additive
identity or zero. Zero has the pleasant property in Z that 0 +n = n,
for all integers n. Note that in Z,, the residue class [0] plays the same
role because [0] 4 [n] = [0 + n] = [n].

Also, each integer n has an additive inverse —n in Z, an element
which when added to n gives the additive identity 0. This is the formal
basis for subtraction, which enables us to solve equations of the form
a+x = bin Z (by simply adding —a to both sides). Notice that additive
inverses are available in Z,, as well. For,

[k] + [m — k] = [k +m — k] = [m] = [0],

and so [m—k] = [—k] serves as the additive inverse of [k]. Consequently,
we can always solve equations of the form [a] + X = [b], where here X
is an unknown in Z,.

> Quick Exercise. Solve the equation [7]12 + X = [4]12 in Z;2, by
using the appropriate additive inverse. <

We can conveniently summarize the additive arithmetic in Z,, for a
particular m in addition tables. (We have addition tables for m = 5
and m = 6 below.) Note that these tables reflect the fact that every
element of these sets has an additive inverse. (How?)
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+ | (0] 1] [2] (3] [4] + [ [0 1] 2] (3] [4] [5]
(0] | o] [1] [2] (3] [4] (0] | [o] (1] [2] (3] [4] [5]
[ | (1] [2] (3] [] [0] [ | [1] 2] [3] [4] [5] [0]
2] | (2 [3] [4] [0] 1] 2] | [2] (3] [4] [5] [0] [1]
(8] | (3] [4] [0] [1] [2] 3] | (3] (4] [5] [0o] [1] [2]
[4] | {4 [0] (1] [2] [3] [4] | [4] [5] [0] [1] [2] [3]
(5] | [5] [0] [1] [2] [3] [4]

addition tables Zs and Zg

What about multiplication? In Z the integer 1 serves as a multi-
plicative identity, because 1-n = n for all integers n, and clearly [1]
plays the same role in Z,.

> Quick Exercise. Check this. <

A multiplicative inverse in Z,, may be defined analogously to the
way we have defined an additive inverse: [a] is the multiplicative
inverse of [n] if [a][n] = [1]. The disadvantage of Z as opposed to
Q is that no elements have multiplicative inverses (except 1 and —1).
The consequence is that many equations of the form ax = b are not
solvable in the integers. But what about in Z,,? Consider the following
multiplication tables for our examples Zs and Zg.

o] 1] 2] (3] [4 | [o] 1] 2] (3] [4] [5]
[0 | [0] [0] [0} [0] [0] o] | [o] [0] [o] [0] [0] [0]
[A] | o 1] (2] (3] 4] A} | [0 (1 2] (3] [4] [5]
2 | [0 2] [4] [1) [3] 21 | [0} [2] [4] [0] [2] [4]
B | (o] 8] 1) [4] [2] B] | [0] [3] [0] (3] [0] [3]
[4] | o) [4] 3] [2] [1] [4] | [0 [4 2] [0] [4] [2]

51 | [0 [5] [4] (3] [2] [1]

multiplication tables Zs and Zg

Notice the remarkable fact that in Zs, every element (other than [0])
has a multiplicative inverse. For example, the multiplicative inverse
of [3] is [2], because [3][2] = [1]. Thus, to solve the equation [3]X =
[4] in Zs, we need only multiply both sides of the equation by the
multiplicative inverse of [3] (which is [2]) to obtain

X = 218X = [24] = [3).

On the other hand, [3] has no multiplicative inverse in Zg and there
is in fact no solution to the equation [3]X = [2] in Ze.
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> Quick Exercise. Solve the equation [4]X = [10] in Z;;. Then
argue that this equation has no solution in Zq5. <

We have gone far enough here to illustrate the fact that the arith-
metic in Z,, shares similarities with those of Z, but also has some real
differences (which depend on the choice of m).

Historical Remarks

The great German mathematician Karl Friedrich Gauss (1777-1855)
first introduced the idea of congruence modulo m into the study of in-
tegers, in his important book Disquisitiones Arithmeticae. Gauss made
important contributions to almost all branches of mathematics and did
important work in astronomy and physics as well, but number the-
ory (the study of the mathematical properties of the integers) was his
first love. The Disquisitiones was a landmark work, which systematized
and extended the work on number theory done by Gauss’s predecessors,
Fermat and Euler. Gauss’s introduction of the notion of congruence is
a good example of the way in which an effective and efficient notation
can revolutionize the way a mathematical subject is approached.

Chapter Summary

In this chapter we defined the residue class [a]m, of a modulo m (for
a positive integer m) and characterized the elements of such classes.
We then considered the set Z,, of the m residue classes and defined
an arithmetic on this set. We proved the following facts about this
arithmetic:

e Addition and multiplication are well defined;
® Zp, has an additive identity [0] and a multiplicative identity [1];

e All elements in Z,, have additive inverses, but not all elements
have multiplicative inverses.
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Warm-up Exercises

. Write out the three residue classes modulo 3 (as we did for Zs).

Write out the addition and multiplication tables for Zz. Which
elements of Z3 have multiplicative inverses?

. Does {47,100,-3,29,—9} contain a representative from every

residue class of Zs? Does {-14,-21,-10,-3,—2}7
Does {10,21,32,43,54}7

. What is the additive inverse of [13] in Zgg?

. What is the relationship between ‘clock arithmetic’ and modular

arithmetic?

(a) What time is it 100 hours after 3 o’clock?
(b) What day of the week is it 100 days after Monday?

. Solve the following equations, or else argue that they have no

solutions:
(a) [4)+X = 3], in Zg.
(b) [4X [ ], in Zs.
(c) 4]+ X = [3], in Zy.
(d) [4]X = 3], in Z.
Exercises

. Repeat Warm-up Exercise a for modulo 8.

. Determine the elements in Z15 that have multiplicative inverses.

Give an example of an equation of the form [a]X = [b] ([a] # [0])
that has no solution in Z;s.

. In Exercise ¢ you determined the additive inverse of [13] in Zgs.

Now determine its multiplicative inverse.

. Find an example in Zg where [a][b] = [a][c], but [b] # [c]. How is

this example related to the existence of multiplicative inverses in
Zg?
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10.

11.

12.

13.

14.

Ezercises

If ged(a, m) = 1, then the GCD identity 2.4 guarantees that there |
exist integers v and v such that 1 = au + mv. Show that in this |

case, [u] is the multiplicative inverse of [a] in Z,.

Now use essentially the reverse of the argument from Exercise |

5 to show that if [a] has a multiplicative inverse in Z,, then
ged(a,m) = 1.

. According to what you have shown in Exercises 5 and 6, which el-

ements of Zs4 have multiplicative inverses? What are the inverses
for each of those elements? (The answer is somewhat surprising.)

. Repeat the previous exercise for Zig. Give the multiplication

table for those elements in Zig that have multiplicative inverses
and find an [n] such that all these elements are powers of [n].

. Prove that the multiplication on Z,, as defined in the text is well

defined, as claimed in Section 3.2.

Prove that if all non-zero elements of Z,, have multiplicative in-
verses, then multiplicative cancellation holds: that is, if [a][b] =
[a][c], then [b] = [c].

Consider the following alternate definition of addition of residue
classes in Z,,, by defining the set

S={z+y:xze€la,y € b}
Prove that S = [a]+ [b] (as defined in Section 3.2); thus, we could

have used the definition above to define addition in Z,,.

By way of analogy with Exercise 11, one might try to define the
multiplication of residue classes in Z,, by considering the set

M ={zy:x €la],y € [b]}.

Prove that M C [a][b]. Then choose particular m,a, b to show by
example that this containment can be proper (that is, M C [a][b]).

In the integers, the equation 22 = a has a solution only when a is

a positive perfect square or zero. For which [a] does the equation
X? = [a] have a solution in Z7? What about in Zg? What about
in Zg?

Explain what a = b(mod 1) means.

Chapter 4

Polynomials with Rational
Coefficients

In Chapter 2 we proved that every integer (# 0,%1) can be written as
a product of irreducible integers, and this decomposition is essentially
unique. These irreducible integers turn out to be those integers that
we call primes. To summarize, in that chapter we proved the following
important theorems:

e The Division Theorem for integers (Theorem 2.1),

e Euclid’s Algorithm (which yields the ged of two integers) (Theo-
rem 2.3),

e The GCD identity that ged(a,b) = ax + by, for some integers x
and y (Theorem 2.4),

e Each non-zero integer (# +1) is either irreducible or a product
of irreducibles (Theorem 2.8),

e An integer p is irreducible if and only if p is prime (that is, if
plab, then either p|a or p|b) (Theorem 2.7), and

¢ Each non-zero integer (# +1) is uniquely (up to order and factors
of —1) the product of primes (Theorem 2.9).

4.1 Polynomials

In this chapter we turn our attention to another algebraic structure
with which you are familiar—the polynomials (with unknown z) with
coeflicients from the rational numbers Q. In this chapter and the next
we discover that this set of polynomials obeys theorems directly anal-
ogous to those we have listed above for the integers.
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We denote the set of polynomials with rational coefficients by Q|z].
Let’s be careful to define exactly what we mean by a polynomial. A
polynomial f € Q[z] is an expression of the form

f:a0+a1x+a2x2+...+an$n+...

where a; € Q, and all but finitely many of the a;’s are 0. We call the a;’s
the coeflicients of the polynomial. When we write down particular
polynomials, we will simply omit a term if the coefficient happens to
be zero. Thus, such expressions as 2 + z, % +2z2 — %:v?’, and 14 are all
elements of Q[z]. Henceforth, when we wish to write down a generic
polynomial, we will usually be content with an expression of the form
f =ao+a1z+ax?+ - +a,z". This means that we're assuming that
am = 0, for all m > n. It may of course be the case that some of the
a.y, for m < n are 0 too.

We say that two polynomials are equal if and only if their corre-
sponding coeflicients are equal. Thus, 2 + 0z — 22,2 — 22 + 02, and
2 — z? are all equal polynomials. The first two polynomials are simply
less compact ways of writing the third.

For the most part we deal with polynomials with rational coefficients,
but sometimes we wish to restrict our attention to those polynomials
whose coefficients are integers; we denote this set by Z[z]. Of course
Z[z] is a proper subset of Q[x].

Note that x is a formal symbol, not a variable or an indeterminate
element of Q. This is probably different from the way you are used
to thinking of a polynomial, which is as a function from Q to Q (or
from R to R). This is not how we think of them here—we think of a
polynomial as a formal expression. In fact, if we consider polynomials
with coefficients taken not from @ but some other number system,
two of these new polynomials can be equal as functions but not as
polynomials.

> Quick Exercise. Consider polynomials with coefficients from Zo—
denoted by Zg[z], naturally. Show that the three different polynomials
?+2x+1, 2 +23+ 22+ 241, and 1 are indeed the same function
from Zy to Zy. (Two functions are equal if they have the same value at
all points in their domain.) <

We will nearly always think of polynomials in the formal sense. To
emphasize this point of view, when we speak of a particular polynomial
we will denote it by a letter like f, rather than writing f(z). The one
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time we wish to consider a polynomial as a function in this chapter
will be made explicit, and then we will refer to it as a polynomial
function.

The degree of a polynomial is the largest exponent with correspond-
ing non-zero coefficient. So, a polynomial of degree 0 means the poly-
nomial can be considered an element of Q (sometimes called a scalar).
Of course, the zero polynomial has no non-zero coefficients. To cover
this special case conveniently, we say that its degree is —oo. We will
denote the degree of a polynomial f by deg(f).

4.2 The Algebra of Polynomials

We can add, subtract, and multiply polynomials in the ways with which
you are already familiar: If f = a9 + a1z + -+ + a,z™ and g = bo +
b1z + - + bpx™ (let’s suppose n > m), then

f+g= (ao+b0)+(a1+b1)x+---
+(am + bm)x™ + amp1 2™+t az™

The difference, f—g, is similarly defined. The definition of product is
more difficult to write down abstractly; the following definition actually
captures your previous experience in multiplying polynomials:

f- g = agby + (a0b1 + albo)x + -+ Z (aibj)xk + e+ (anbm)x"+m.
itj=k

That is, the coefficient of z* is the sum of all the products of the
coefficients of 2 in f with the coefficients of 27 in g where ¢ and j sum
to k.

Example 4.1

If f=3+az%—2c%+2%+22" and g = —1 + 3z + 22 + 42°, then
the coefficient of 2% in f-gis3-4+1-1+(-2)-3+1-(—1)=6.

How is degree affected when we add or multiply polynomials? Your
previous experience with polynomials suggests the right answer, which
is contained in the following theorem.
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Theorem 4.1 Let f,g € Q[z]. Then

a. deg(fg) = deg(f)+deg(g), where it is understood that —oc added
to anything is —oo.

b. deg(f + g) is less than or equal to the larger of the degrees of f
and g.

Proof: We prove part a first. We consider first the case where one of
the polynomials is the zero polynomial. Now, it is evident that Og = 0,
for any polynomial g. Thus,

—o00 = deg(0) = deg(0g) = —oc + deg(g),

as required.

We thus may as well assume that neither f nor g is the zero polyno-
mial; suppose that deg(f) = n and deg(g) = m. Then f = a,z" + fi,
where a, # 0 and deg(f1) < n. Similarly, g = b,,™+ g1, where b,, # 0
and deg(g;) < m. By the definition of multiplication of polynomials,
the coefficient on "™ is a,b,,, and this is not zero because neither
factor is. But all remaining terms in the product have smaller degree
than n 4+ m, and so

deg(fg) = n + m = deg(f) + deg(g),
as required.

> Quick Exercise. You prove part b. Also show by example that
the degree of a sum of polynomials can be strictly smaller than the
larger of the degrees. Hint: Take two polynomials with the same
degree. < i

An important particular case of the first part of this theorem is this:
If a product of two polynomials is the zero polynomial, then one of the
factors is the zero polynomial.

> Quick Exercise. Prove this, using the theorem. <
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4.3 The Analogy between Z and Qz]

We will now begin to prove the theorems analogous to those proved
about natural numbers and integers and summarized above. (Actually,
in this chapter, you will do some of the proving.) You should notice, as
you proceed through this chapter and the next, that not only are the
theorems similar, but so are the proofs. (You will probably even be able
to anticipate some theorems.) This suggests that the integers share
properties with Q[z] that give rise to these theorems—in particular,
unique factorization. Later, we will be able to identify these properties
and prove unique factorization in a more general setting. This process
of generalization is indeed a common theme in mathematics —one sees
that A and B both have property C. What is shared by A and B that
forces property C on both? For now, we are content to consider the
concrete example of Q[z] and try to build more insight before getting
abstract.

Before starting, recall that the proof technique used for most of the
important theorems for natural numbers is induction. When consid-
ering polynomials, we also frequently use induction, but on the degree
of the polynomial. Note that since the set of degrees of polynomials is
{~00,0,1,2,...}, which is well ordered, induction may be used.

We now start, as with the integers, with the Division Theorem.

Theorem 4.2 Division Theorem for Q[z] Let f,g € Q[z]
with f # 0. Then there are unique polynomials g and r, with deg(r) <
deg(f), such that g = fq+ .

Before proving this theorem, we look at an example.

The actual computation for producing g and r, for given polynomials
f and g, is just long division. For example, let f = 22 +2x —1 and
g=az*+2* -z +2

D 2t + 6
2?12z —1]2% + 2 — z+2
zd+ 223 — 22

9233 + 222 — x4+ 2
—21% — 422 + 2z

6x2 — 3z + 2
622 + 122 — 6

— 15x + 8
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Hence, ¢ = 2 — 2z + 6 and r = —15z + 8. That is,

et + 22—z +2=(2? + 22 - 1)(z® — 2z 4 6) + (—15z + 8).

> Quick Exercise. Find g and r as guaranteed by the Division The-
oremforg=2°+z—1land f=22+2z <«

Proof of the Division Theorem: We first prove the existence of ¢
and 7, using induction on the degree of g. The base case for induction
in this proof is deg(g) < deg(f). If this is the case, then g = f -0+ g.
So, ¢ = 0 and r = g satisfy the requirements of the theorem.

We now assume that f =ap+a1x+ -+ anz™ and g = by + bz +
<+ +bpx™, and m = deg(g) > deg(f) = n. Our induction hypothesis
says that we can find a quotient and remainder whenever the dividend
has degree less than m.

Let h = g — (bm/an)x™ ™ f. This makes sense because m > n. Note
that the largest non-zero coefficient of ¢ has been eliminated in h, so
deg(h) < deg(g). Hence, by the induction hypothesis, h = f¢' +r,
where deg(r) < deg(f). But then,

g=fq +r+ (bm/an)z™ " f
= f(¢' + (bm/an)z™ ™) + 1.

Thus, ¢ = ¢ + (by/an)z™ ™ and r serve as the desired quotient and
remainder.

Now we prove the uniqueness of ¢ and r by supposing that g =
fa+r = fqd + 7', where deg(r) < deg(f) and deg(r’) < deg(f). We
will show that ¢ = ¢’ and r = r/.

So, because fq 4+ r = fq' + 1/, we have that f(¢g —¢) = r' — 7.
Because deg(f) > deg(r) and deg(f) > deg(r’), we have deg(f) >
deg(r’ — r). But deg(f(g — ¢')) > deg(f), unless f(q — ¢’) = 0. Hence,
deg(f(qg — ¢')) > deg(r’ — r) unless both are the zero polynomial. But
this must be the case, and so f(¢ — ¢') = 0, forcing ¢ — ¢’ = 0 and
r’ — r = 0, proving uniqueness. O
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4.4 Factors of a Polynomial

We now make some definitions analogous to those we made for Z. We
say a polynomial f divides a polynomial g if g = fq for some poly-
nomial ¢. In this case we say that f is a factor of g, and write f|g.
In the context of the Division Theorem, f|g means that the remainder
obtained is 0. For example, (2% + 1)|(22% — 32? + 22 — 3), because

223 — 322 + 22 — 3 = (2% + 1)(2z - 3).

Notice that any polynomial divides the zero polynomial because 0 =
()(0). |

Suppose now that a is a non-zero constant polynomial, and f =
ag + a1z + -+ + a,x™ is any other polynomial. Then a necessarily
divides f because

a a
f=(a) (@+ﬂ$+_%x2+...+_ﬂx">.
a a a a

In Exercise 4.11 you will prove that the converse of this statement is
true.

4.5 Linear Factors

In practice, it may be very difficult to find all the factors of a given
polynomial. However, the following theorem shows how to determine
factors of the form x — a, where a € Q.

Note carefully that the next theorem and its corollary are the only
times in this chapter where we think of a polynomial as a function.
For f € Q[z] and a € Q, we define f(a) to be the result that ensues
when we replace z in f by a, and then apply the ordinary operations
of arithmetic in Q to simplify the result. Thus, if f = %:132 —2z+1 and
a = 2, then

F2) = (2 —22) +1= -

This definition obviously gives us a function f(x
all rational numbers.

Wl o

which is defined for

~—
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Of particular interest to us is the case when f(a) = 0. We say
a € Qis aroot of f € Q[z] if f(a) = 0. Thus, %
323 + 1922 — 11z — 2, because g (%) = 0.

is a root of g =

Theorem 4.3 Root Theorem If f is a polynomial in Q[x] and
a € Q, then x — a divides f if and only if a is a root of f.

Proof: If x —a divides f, then f = (z — a)q, and so
f(a) = (a —a)q(a) = 0.

Conversely, suppose f(a) = 0. Using the Division Theorem 4.2, we
write f = (z —a)g + r where deg(r) < deg(z — a) = 1. But deg(r) < 1
means deg(r) = 0 or —oo; that is, r € Q. Thus, when we view 7 as a
function, it is a constant function. We might as well call this constant
r. Hence, f(a) = (a —a)g{a) +r. But, the left-hand side is 0 while the
right-hand side is 7. Hence, r = 0, and so z — a divides f. O

Example 4.2

Counsider the polynomial
f=2* 422422+ 2 -2

We can conclude that f has a factor of 2 + 2 because f(—2) = 0.

We need not go through the trouble of long division to verify the
fact.

In general, evaluating f(a) is a simpler operation than dividing f
by z — a, although the latter does have the advantage of giving the
factorization if indeed x — a is a factor.

> Quick Exercise. Check to see whether z + 2 is a factor of the
following polynomials: 2 — 4z, 224+ 22— 1, and 2190 —42% £ 2 + 2. «

Notice that the Root Theorem 4.3 allows us to determine when any
given linear factor, axz + b (a # 0), divides a polynomial f, because
azx+b is a factor if and only if z + g is a factor, and the Root Theorem
says that this last is a factor if and only if —g is a root.

> Quick Exercise. Let f € Q[z] and a # 0. Prove that ax + b
divides f if and only if z + 2 divides f. <
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Corollary 4.4 A non-zero polynomial f of degree m has at most n
distinct roots in Q.

Proof: We proceed by induction on the degree of f. If f is non-zero
and degree 0, then clearly f has no roots.

Suppose the corollary holds for polynomials with degree smaller than
n, and f has degree n > 0. If f has no roots, the theorem is proved. So,
assume f has at least one root, call it a. Then by the Root Theorem
4.3, z — a divides f. That is, f = (z — a) - g. But deg(g) = deg(f) — 1.
And so, by the induction hypothesis, g has at most n—1 roots. Because
any root of f other than ¢ must also be a root of g, f can have no more
than n roots altogether. O

4.6 Greatest Common Divisors

We now turn our attention to finding greatest common divisors of two
polynomials, paralleling our development for the integers. Notice that
we didn’t say the greatest common divisor. We will find some differ-
ences from the integers here.

If f and g are two polynomials in Q[z] (not both zero), then a poly-
nomial d in Q[z] is a greatest common divisor (ged) of f and g if it
satisfies the following two criteria:

1. d divides both f and g (d is a common divisor), and

2. if a polynomial e divides both f and g, then deg(e) < deg(d);
that is, d has largest degree among common divisors.

Notice that according to this definition = + 1 is a ged for z?2 — 1 and
z%+4z+3, but so are —%a:— %, —z —1, and 20z +20. This is unlike the
integer case, where we have a unique ged for any pair of integers (not
both zero). In fact, for polynomials, we have infinitely many distinct
geds. For if a is any non-zero rational number and d is a ged of f and g,
then so is the polynomial ad. This follows because ad is also a common
divisor of f and g, and has the same degree as d.

> Quick Exercise. Argue that z + 1 is indeed a gcd of z? — 1 and
x? 4 4z + 3 as are the other polynomials listed. <
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As with the integers, Euclid’s Algorithm, when applied to polynomi-
als, yields a ged. (As you might expect, the arithmetic is messier.)

Example 4.3

As an example of this, consider the polynomials
2% — 2% + 72t + 522 + 92 - 21

and
20 — 2% + 522 — 37 — 3.

By repeatedly applying the Division Theorem 4.2 we obtain the
following:

(2 — 2° + 72* 4 52 + 92 — 21) =

2 17

2t — g+ 527 —3z-3) (L -2 4

( S e
39

+<§)(x3—$2+3z—3)

(22* —2® + 52% =3z - 3) =

(B)er-vsrs) (3)erss) o

This means that (39/8)(z® — 2% + 3z — 3) is a ged of the given
polynomials; thus, 23 — 2% 4+ 3z — 3 is one also.

> Quick Exercise. Apply Euclid’s Algorithm to the polynomials
2 322+ 52 —3and 2t — 22° + 422 — 22 + 3. <«

We state formally in the next theorem that Euclid’s Algorithm gives
geds in the polynomial case. You should notice that the proof of this
theorem is nearly identical to the proof of the corresponding theorem
(Theorem 2.3) for integers.

Theorem 4.5 Euclid’s Algorithm produces a GCD
In Euclid’s Algorithm for polynomials f and g, the last non-zero re-
mainder is a greatest common divisor for f and g.

Proof:  The proof of this fact for the integers depended on a lemma,
which remains true in this context. Namely, we observe that if f =
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gq -+, then d is a ged of f and g if and only if d is also a ged of g and
r. (As before, this follows because in fact every common divisor of f
and g is also a common divisor of g and r, and vice versa.)

> Quick Exercise. Show that d is a ged of f and g exactly if d is a
ged of g and r, following the proof of Lemma 2.2, if necessary. <

We proceed by induction on the number of steps required for Euclid’s
Algorithm to terminate. If Euclid’s Algorithm takes one step, f = gq
and so d = g, which is clearly a ged of f and g in this case.

So suppose Euclid’s Algorithm takes n (> 1) steps to obtain d with
the first two steps being

f =99 +ro
g=roq1 +11

Performing Euclid’s Algorithm on g and r¢ also yields d; the process
is exactly the last n — 1 steps of Euclid’s Algorithm for f and g. But
then by the induction hypothesis, d is a ged of g and rg, and so, by the
lemma, d is a ged of f and g. O

We observed above that if d is a ged of f and g, then so is any non-
zero scalar multiple of d. The converse is also true. That is, if d is any
ged of two polynomials, then all the geds are simply scalar multiples of
d. This follows from the next theorem.

Theorem 4.6 Ifd is the gcd of f and g produced by Euclid’s Algorithm
and e is another common divisor of f and g, then e divides d.

Proof: The proof of this theorem is nearly identical to the proof
that Euclid’s Algorithm produces a ged. The only real addition is
that we also check that e divides what it is supposed to. Again, we
use induction on n, the number of steps in Euclid’s Algorithm when
obtaining d.

If Euclid’s Algorithm takes one step, then f = gq, and so d = g.
Clearly, if e divides f and g(= d), then e divides d.

Now, suppose Euclid’s Algorithm takes n(> 1) steps to obtain d,
with the first two steps being

f=gq + 1o
g=r1roq1+ 71
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Because rg = f — gqo, if e divides f and g, e also divides ry. Now
d is also the ged of g and ry obtained from Euclid’s Algorithm. The
process is the last n — 1 steps of Euclid’s Algorithm for f and g. So,

by the induction hypothesis, because e divides g and r, it also divides
d. O

An important consequence of this theorem is that any two gcds of
two given polynomials are just scalar multiples of one another.

> Quick Exercise. Show that if e and d are two gcds of polynomials
f and g, then d and e are scalar multiples of one another. <

Finally, we have the GCD identity for Q[z].
Theorem 4.7 GCD identity for polynomials If d is a gcd
of polynomials f and g, then there exist polynomials a and b so that

d=af +bg.

Proof:  The proof is Exercise 4.8 (or 4.9). O

Chapter Summary

In this chapter we introduced the set Q[z] of all polynomials with ra-
tional coeflicients and described the arithmetic of this set. In direct
analogy with Z, we proved the Division Theorem, Euclid’s Algorithm,
and the GCD identity. In addition, we described the relationship be-
tween the roots of a polynomial and its linear factors; this relationship
is called the Root Theorem.

Warm-up Exercises

a. Compute the sum, difference, and product of the polynomials
2
1-2z+2° - §:v4 and 2+2x2—%m3

in Q[z].

b. Give the quotient and remainder when the polynomial 2 + 4z —
x3 + 32* is divided by 2z + 1.
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. Give two polynomials f and g, where the degree of f+g¢ is strictly

less than either the degree of f or the degree of g.

. Use the Root Theorem 4.3 to answer the following for polynomials

in Q[z]. Does z—2 divide z° —4z? —4z3—22+47 Does z+1 divide
28 4+ 245 + 24 — 23 + 2?7 Does z + 5 divide 223 + 1022 — 2z — 10?
Does 2z — 1 divide z° + 2z* — 322 + 17

. We started this chapter with a list of theorems true about Z. For

how many of them have we stated and proved an analogue for

Q[x]?

Exercises

. Find the ged of the polynomials 28 + 25 — 2% — 2% — 22 + 2z and

328 + 425 — 32% — 422 in Q[z], and express them as af + bg, for
some polynomials a, b.

. Divide the polynomial z? — 3z + 2 by the polynomial 2z + 1, to

obtain a quotient and remainder as guaranteed by the Division
Theorem 4.2. Note that although z? — 3z + 2 and 2z + 1 are
elements of Z[z], the quotient and remainder are not. Argue that
this means that there is no Division Theorem for Z[z].

. By Corollary 4.4 we know that a third-degree polynomial in Q[x]

has at most three roots. Give four examples of third-degree poly-
nomials in Q[z] that have 0, 1, 2, and 3 roots, respectively; justify
your assertions. (Recall that here a root must be a rational num-
ber!)

. Your example in the previous exercise of a third-degree polyno-

mial with exactly 2 roots had one repeated root; that is, a
root a where (z — a)? is a factor of the polynomial. (Roots may
have multiplicity greater than two, of course.) Why can’t a third-
degree polynomial in Q[x] have exactly 2 roots where neither is a
multiple root?

. Let n be an odd integer and consider the polynomial

O, =z"+z" 1+ - z+1
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10.

11.

12.

13.

Ezxercises

Use the Root Theorem 4.3 to argue that ®,, has a linear factor.
We call @, a cyclotomic polynomial; see Exercise 5.17 for more
information.

Suppose that f € Q[z], ¢ € Q, and deg(f) > 0. Use the Root
Theorem 4.3 to prove that the equation f(z) = ¢ has at most
finitely many solutions.

Let f € Q[z]. Recall from Exercise 4 above that a rational number
a is a repeated root of f if (zx — a)? is a factor of f. Given
f=ay+aiz+- -+ a,z" we define the formal derivative of
fas f ' =nap,z™ 1+ (n—1)ap_12" 2+ --- + a;. Prove that a is
a repeated root of f if and only if a is a root of both f and f'.
Conclude that if f is irreducible, then f has no repeated roots.

. Prove Theorem 4.7: the GCD identity for Q[z]. Use Euclid’s

Algorithm 4.5, and the relationship we know between the ged
produced by the algorithm and an arbitrary ged (Theorem 4.6).

One can also prove the GCD identity for Q[z] with an argument
similar to the existential proof of the GCD identity for integers,
found in Section 2.3. Try this approach.

We say that p € Q[z] has a multiplicative inverse if there ex-
ists a ¢ € Q[z] such that pg = 1. Prove that p € Q[z] has a
multiplicative inverse if and only if deg(p) = 0.

Suppose that g € Q[z], and g divides all elements of Q[z]. Prove
that ¢ is a non-zero constant polynomial.

Find two different polynomials in Z3|x] that are equal as functions
from Z3 to Zs.

Find a non-zero polynomial in Z4[z] for which f(a) = 0, for all
a € Zy.

Chapter 5

Factorization of Polynomials

We have already seen the Fundamental Theorem of Arithmetic, which
says that every integer (other than 0, 1, and —1) can be uniquely fac-
tored into primes. We wish to come up with a corresponding theorem
for the set Q[z] of polynomials with rational coefficients.

5.1 Factoring Polynomials

We note first that uniqueness of factorization cannot be as nice for
polynomials as for integers because any factorization in Q[z] can be
adjusted by factoring out scalars. The following example shows what
we mean:

2’ —4=(z+2)(x—2)
= (%m+1> (2z — 4)

:(2x+4)<%az—1),

and so on.

But there is a close connection, after all, between the factors z + 2
and %x + 1. Namely, they differ by only a scalar multiple. In fact,
we will obtain uniqueness of factorization for polynomials, up to scalar
multiples. We now head toward this result. The first order of business
is to define irreducible polynomials in a way analogous to our definition
of irreducible integers. |

A polynomial p is irreducible if

a. p is of degree greater than zero, and

b. whenever p = fg, then either f or g has degree zero.
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In other words, an irreducible is a non-scalar polynomial, whose only
factorizations involve scalar factors. We are thus regarding such factor-
izations as = + % = %(230 +1) as trivial, just as we regard factorizations
such as 3 = (—1)(—3) as trivial in the integer case. So, a non-trivial
factorization of a polynomial is one that has at least two non-scalar
factors. We say that a polynomial is reducible if it does have a non-
trivial factorization. Thus, z* + 222 + 1 is reducible.

> Quick Exercise. Why is 2% 4+ 222 + 1 reducible? <

Which polynomials in Q[z] are irreducible? One immediate conse-
quence of the definition is that all polynomials of degree one are irre-
ducible because if p is of degree 1 and p = fg, then exactly one of f
and g has degree 0, and is consequently a scalar.

Are there any others? Consider the polynomial f = z2 + 2. If this
polynomial had a non-trivial factorization 2 + 2 = gh, then both g
and h would be degree one factors. But then the Root Theorem tells
us that 22 + 2 would have a rational root. But f(q) = ¢®> +2 > 2 for
all rational numbers ¢, and so f can have no roots.

Consider next the polynomial 22 — 2. By the same reasoning, if this
polynomial were reducible, it would have a root, and so there would
exist a rational number ¢ so that ¢ = 2. There is no such rational
number, as you probably know. The fact that v/2 is an irrational
number is a very famous theorem, first proved by the ancient Greeks.
You will prove it (and more) in Exercise 5.13 (see also Exercise 2.14).
Thus, 22 — 2 is irreducible.

> Quick Exercise. Show that z* + 2 is irreducible in Q[z], taking
your lead from the discussion of 2 + 2 above. <«

> Quick Exercise. Show that z® — 2 is irreducible in Q[z]. Hint: If
z3 — 2 were reducible, then it would have a linear factor. You may
assume (see Exercise 5.13) that there is no rational number r so that
=2«

These examples suggest that there are many irreducible polynomials
in Q[z], and indeed there are, of arbitrarily high degree. (See Exercise
5.12.) It would be difficult to describe them all, however.

Note that we are interested only in factors which belong to Q[z] (for
the time being, at least). Thus, z? — 2 is irreducible in Q[z], even
though we can factor it if we allow ourselves to use real numbers as

coefficients:
z-—2= (:1:—\/5) (m—}—ﬁ)
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In Chapter 9 we will discuss factorization of polynomials over the real
numbers R and the complex numbers C.
We now claim that every polynomial can be factored into irreducibles:

Theorem 5.1 Any polynomial in Q[x] of degree greater than zero is
either irreducible or the product of irreducibles.

Proof: Prove this in a similar way to the proof for the corresponding
theorem for the integers, Theorem 2.8. This proof is Exercise 5.1. O

5.2 Unique Factorization

The previous theorem is the first half of the unique factorization the-
orem that we want for Q[z]. Recall that to obtain the uniqueness of
factorization in Z, we required the concept of a prime integer. We now
make the analogous definition: a polynomial p (with degree bigger than
0) is prime if whenever p divides fg, then p divides f or p divides g.

We claim that  —2 is a prime polynomial. Suppose that z—2 divides
the product fg. Then by the Root Theorem 4.3, 2 is a root of fg, and
so f(2)g(2) = 0. But f(2) and g(2) are rational numbers, and the only
way a product of rational numbers can be zero is if at least one of the
factors is zero. That is, f(2) (or g(2)) is zero, and so 2 is a root of f
(or g). Notice that this argument could be modified to show that any
degree one polynomial is prime.

> Quick Exercise. Modify the argument in the previous paragraph
to prove that all degree one polynomials in Q[z] are prime. <

But we need not pursue any further examples because the concept
of prime polynomial turns out to be equivalent to that of irreducible
polynomial. This situation is what we discovered for Z, and the proof
is the same:

Theorem 5.2 A polynomial in Q[z] is irreducible if and only if it is
prime. '

Proof: Prove this, again taking your lead from the proof of Theorem
2.7, the analogous result for the integers. This proof is Exercise 5.2. 0
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Corollary 5.3 If p is an irreducible polynomial that divides

fife - fa,

then p divides one of the f;.

Proof: Prove this. This proof is Exercise 5.3. O

So, for both Z and Q[z], primeness and irreducibility are equivalent.
Be warned that we will eventually examine structures where this is not
the case. It is thus important to keep these definitions straight.

Finally, we come to the unique factorization theorem for polynomials.
It is similar to the unique factorization theorem for integers, except we
must account for the fact that we can always factor out scalars, as noted
above. Accordingly, we first make the following convenient definition.

Two polynomials f and g are called associates if there is a non-
zero scalar a such that f = ag. For instance, z2 — 3 and 222 — 6 are
associates. Note that any two non-zero scalars are associates.

> Quick Exercise. Describe the set of all associates of the polyno-
mial z2 — 3 (there are infinitely many). <

Theorem 5.4 Unique Factorization Theorem for Polynomi-
als If h is a polynomial in Q[z], and

h=fifor- fo=9192""" 9m,

where the f; and g; are all irreducible, then n = m and the g; may be
rearranged so that f; and g; are associates, for i =1,2,...n.

Before we prove this theorem, let’s look at an example. Consider
the polynomial h = 223 4 322 + 5z + 2. Now h can be factored into
irreducibles as (2z + 1)(2? + z + 2) or as (z + 3)(22% + 2z + 4), or an
infinite number of other ways. But, of course, 2z + 1 and z + % are
associates, as are £2 4+ + 2 and 222 + 2z + 4.

> Quick Exercise. Verify that the factors of h given above are really
irreducible. <«

Proof: We use induction on n, the number of factors f; of h. If
n = 1, the theorem follows easily. (Right?) So, we assume n > 1. By
the primeness of the irreducible fi, fi divides one of the g; (see the

Factorization of Polynomials 59

Corollary 5.3). By renumbering the gj, if necessary, we may assume f;
divides g;. So, because g; is irreducible, af; = ¢1, for some non-zero
scalar a. That is, f; and g; are associates. Therefore, by dividing
both sides by fi, we have fofs--- f,, = agags- - gm. (Because gy is
irreducible, so is ags, and we consider ags as an irreducible factor.)
We now have two factorizations into irreducibles and the number of
fi factors is n — 1. So, by the induction hypothesis, n — 1 = m — 1
and, by renumbering the g; if necessary, f; and g; are associates for
i=2,3,...,n. (Actually, we have that ags is an associate of fy. But
then gs is also an associate of fy.) This proves the theorem. |

Notice that the proof of this theorem is nearly identical to the proof
of the corresponding Theorem 2.7 for Z. We had only to handle the
problem of associates. By now, you should have seen this similarity
with allthe theorems in this chapter and might be wondering the reason
for it. We will eventually find a close connection between the integers
and Q[z] that explains this similarity.

5.3 Polynomials with Integer Coefficients

We close this chapter by discussing the relationship between Q[z] and
Z[z]. You should first note that some of the theorems we have proved
about Q[z]| are false when we restrict ourselves to polynomials with
integer coefficients. In particular, the Division Theorem is false for
Z|z]. To see this, merely try to divide 22 + 7z by 2z + 1: the Division

Theorem 4.2 for Q[x] provides us with the unique quotient %x + %

and remainder —%. These are not elements of Z[z], and so no such

quotient/remainder pair can exist in Z[z]. (See also Exercise 4.2).
Similarly, the GCD identity fails in Z[z]. Consider the polynomials

2 and z; a ged for these polynomials is 1. But we cannot write 1 as a

linear combination of 2 and z in Z[z].

> Quick Exercise. Show that we cannot write 1 as a linear combi-

nation of 2 and z. Hint: Suppose that 1 = 2f + zg, where f,g € Z[z],

and consider the constant term of the right-hand side of the equation.
<

It is thus not surprising that we look to Q[z] (rather than Z[z]) for our
analogue to Z. However, the news is not all bad. For it turns out that
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if a polynomial with integer coefficients can be non-trivially factored
into polynomials with rational coefficients, then it can be factored into
polynomials with integer coefficients; this result is known as Gauss’s
Lemma.

For example, consider 222 4+ 3z —2. Because % is a root, we have that

1
222 + 3z — 2= (1:—5) (2z +4).

This is a factorization in Q[z]. But by adjusting scalars, we can obtain
the factorization

222 4+ 3z —2= (22— 1)(z +2)

in Z[z].

The idea of the proof below is essentially that of the example we've
just given, although it is a bit messy to carry it out in general. Some
readers may want to skip this proof on a first reading.

Theorem 5.5 Gauss’s Lemma If f € Z[z] and f can be fac-
tored into a product of non-scalar polynomials in Qlz|, then f can be
factored into a product of non-scalar polynomials in Z[x]; each factor
in Z[z] is an associate of the corresponding factor in Q[z].

Proof: Suppose f = gh, where g, h € Q[z]. We can assume that the
coefficients of f have no common factors (other than £1), or else we
factor out the greatest common divisor of those coefficients, apply the
following, and then multiply through by the ged. So, suppose that

an n an—l n—1 aO
=—z"+ —2"  +---+—, and
g bn bn—l bO
Cm Cm—1 -1 Co
h=-""gm 4 =g o —
dm dm—l dO

where the a;’s, b;’s, ¢;’s, and d;’s are all integers and each fraction is in
lowest terms. Multiply the first equation by the product B of the b;’s.
We get

Bg=Alz"+ Al 2" 4.+ A

Now divide by the greatest common divisor A of the Aj’s, yielding

(B/A)g = Anzn + An_la:n_l + -+ A,
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which is a polynomial in Z[z] whose coefficients have no common divisor
(other than +1).

Do likewise to the second equation, yielding
(D/C)h = Crpz™ + Crp_yz™ 1 4 -+ + Cy,

which again is a polynomial whose coefficients have no common divisor
(other than +1).
Because f = gh, we get

BDf = (AC)((B/A)g)((D/C)h). (5.1)

Because the coefficients of f have no common divisor, we see that BD
is the ged of the coefficients of BD f. Because AC' is a common divisor
of the coefficients of this polynomial (as we see by looking at the right
side of equation 5.1) we have that AC|BD. Let E = BD/AC, which
is an integer. We have

Ef = (Anx" + An_ll‘n_l + -+ Ao)(cm$m + Cm_l.’Bm_l + -+ Co)
(5.2)
We need only show that E = +1 to be done, because then f has been
written in the required form. If E # %1, then let p be a prime factor of
E. Remember that all the A4;’s have no common factor and all the C;’s
have no common factor. Therefore, there is a smallest ¢ such that p fA4,
and a smallest j such that p /C;. We now compute the coefficient of
', From the left side of equation 5.2 we see that this coefficient is
divisible by E, and hence by p. From the right side, the coefficient is

i—1 i+J
> ACivjr+ D AkCiyji + ACj.
k=0 k=i+1

In the first sum, each of Ay is divisible by p because those k are less
than i. In the second sum, each C;y;_ is divisible by p because those
i+ j — k are less than j. But A;C; is not divisible by p. Hence, the
entire coefficient cannot be divisible by p, which is a contradiction. So
it must be that £ = %1 as desired. a

We can rephrase Gauss’s Lemma in the following way: To see whether
a polynomial in Z[z] can be factored non-trivially in Q[z], we need only
check to see if it can be factored non-trivially in Z[z]. This latter is
presumably an easier task.
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For example, consider the case of cubic equations. If a cubic poly-
nomial in Z[z] can be factored non-trivially in Z[z], one of the factors
must be a degree one polynomial ax + b, where a and b are integers.
This implies that the polynomial must have a root —g in Q. But we
can limit the possibilities for a and b, which in turn limits which roots
are possible. For a specific example of this, consider the polynomial
323 +z + 1. We wish to factor this into irreducibles in Q[z] or deter-
mine if the polynomial is itself irreducible. If 32% + z + 1 factors in
Q[z], then, by Gauss’s Lemma, it factors in Z[z] and in fact must have
a linear factor in Z[z]. The only possible such factors are of the form
(3z £1) or (z £ 1), in order that the leading and trailing coefficients
be correct. But this implies that the polynomial has a root of +1/3 or
+1, which, by inspection, is not the case. We conclude that 323+ 2 +1
is irreducible in Z[z], and hence in Q[z].

The argument above can be generalized to obtain a valuable tool for
factoring in Z[z], known as the Rational Root Theorem.

Theorem 5.6 The Rational Root Theorem Suppose that
f=ap+a1z+---+anx™ is a polynomial in Z[z|, and p/q is a rational
root; that is, p and q are integers, ¢ # 0, and f(p/q) = 0. We may as
well assume also that ged(p, q) = 1. Then q divides the integer a,, and
p divides agp.

Proof: You will prove this in Exercise 5.6. O

> Quick Exercise. Determine which of the following polynomials
has a rational root:

3zt + 522 +10, dzt4+ 22— 422 + 7z + 2.

<
> Quick Exercise. Is 323+ 2z+1 irreducible in Q[z]? Is 2® —3z+47?
Is 223+ 722 -2z - 17 <
Another important tool when considering factorization is the follow-

ing sufficient condition for a polynomial being irreducible in Z[z].

Theorem 5.7 Eisenstein’s Criterion Suppose that f € Z[z],
and
f=ap+a1z+ax?+ - +apz™

Let p be a prime integer, and suppose that
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1. p divides ag, for 0 < k <n,
2. p does not divide a,, and
3. p? does not divide ag.

Then f is irreducible in Z[z].

Proof:  Once again, you will prove this theorem in Exercise 5.16. O
Example 5.1

It is quite evident that the Eisenstein criterion implies that
the polynomial z° + 5z + 5 is irreducible in Z[z], by using p =
5. But note that the criterion does not directly apply to the
polynomial % + 5z + 4. However, you will discover in Exercise
5.15 how to apply the criterion to show that this is in fact an
irreducible polynomial.

Notice that although Eisenstein’s criterion is phrased as a theorem
about irreducibility in Z[z], Gauss’s Lemma 5.5 implies that such a
polynomial is also irreducible in Qlx].

Example 5.2

Consider the polynomial

1, 24 5 2
=zt + 228 4 42? — Zp 42 .
f 3% —+—9:c+m 5z+ € Q[z]
We wish to conclude that f is irreducible in Q[z]. By multiplying
through by 45, we obtain the element

g =45f = 152* + 1023 + 1402% — 18z + 2 € Z[z].

Note that we could apply the Rational Root Theorem to g to
conclude that it has no roots in Q; it would be tedious to carry out
the details. However, we can in fact apply Eisenstein’s Criterion
(with p = 2) to reach the strictly stronger conclusion that g is
irreducible in Z[z]. But then Gauss’s Lemma says that g is in
fact irreducible in Q[z]. But then f is irreducible in Q[z] too.
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Historical Remarks

In the last two chapters we have given a systematic account of the
theory of Q[z], the set of polynomials with rational coefficients, giving
due emphasis to its similarity to Z. We have consequently emphasized
a formal, algebraic approach to Q[z], which probably seems foreign to
your previous experience with polynomials.

The pieces of this theory were put together over a number of cen-
turies, beginning in earnest with the 17th-century French algebraists
Descartes and Viete, and culminating in the work of Gauss. This de-
velopment was relatively slow, primarily for two reasons. First of all,
algebraic notation at the time of Viete was cumbersome and not stan-
dardized. Algebra flows much more easily when our notation is clear
and efficient. Secondly, in the 17th century people had little agree-
ment about the nature of numbers. Doubts were cast on the ‘reality’
and utility of irrational numbers, complex numbers, and even negative
numbers. We’ll discuss this issue more in Chapter 9. The process by
which the number system which we use was standardized and widely
accepted was long and difficult. The lesson from history is clear: It
takes a lot of hard work to become comfortable with the elegant point
of view of a modern mathematician!

Chapter Summary

In this chapter we considered factorization in Q[z] and proved that a
polynomial is irreducible if and only if it is prime, and we used this
fact to prove the Unique Factorization Theorem for Polynomials. We
then proved Gauss’s Lemma, which describes the relationship between
factoring in Z[z] and in Q[z]. We concluded by considering two impor-
tant tools useful in factoring in Z[z], called the Rational Root Theorem
and FEisenstein’s Criterion.

Warm-up Exercises

a. Why is a linear polynomial in Q[z] always irreducible?

b. Why is a polynomial of the form z? + a € Q[z], where a > 0,
always irreducible?
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. Determine a factorization of z* — 5z2 + 4 into irreducibles in

Q[z].

. Give several distinct factorizations of z* — 5z2 + 4 into irre-

ducibles in Q[z]. Why don’t these distinct factorizations violate
the Unique Factorization Theorem 5.47

. We know that 7 is an irreducible integer, but is 7 an irreducible

polynomial?

. Pick your favorite polynomial. What are its associates in Q[z]?

. Factor 223 + 7z? — 2z — 1 completely into irreducibles in Q[z],

using Gauss’s Lemma and the Root Theorem. Adjust your fac-
torization (if necessary) so that all factors belong to Z[z].

Exercises

. Prove Theorem 5.1: A polynomial in Q[z] of degree greater than

zero is either irreducible or the product of irreducibles.

. Prove Theorem 5.2: A polynomial in Q[z] is irreducible if and

only if it is prime.

. Prove Corollary 5.3: If an irreducible polynomial in Q[z] divides

a product fifofs--- fn, then it divides one of the f;.

. Use Gauss’s Lemma to determine which of the following are irre-

ducible in Q[z]:

4+ -2, 32 -6 +2-2 4+t +z-1.

. Show that z* 4 222 4 4 is irreducible in Q[z].
. Prove the Rational Root Theorem 5.6.

. Use the Rational Root Theorem 5.6 to factor

2x% — 172% — 10z + 9.
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10.

11.

12.

13.

14.

15.

Ezercises
Use the Rational Root Theorem 5.6 to argue that
24z +7

is irreducible over Q[z]. Use elementary calculus to argue that
this polynomial does have exactly one real root.

. Use the Rational Root Theorem 5.6 (applied to 2% — 2) to argue

that /2 is irrational.

Suppose that « is a real number (which might not be rational),
and suppose that it is a root of a polynomial p € Q[z]; that is,
p(a) = 0. Suppose further that p is irreducible in Q[z]. Prove
that p has minimal degree in the set

{f €Q[z]: f(a) =0 and f # 0}.

This is a continuation of Exercise 10. Suppose as above that o
is a real number, p € Q[z] is irreducible, and p(a) = 0. Suppose
also that f € Q[z] with f(a) = 0. Prove that p divides f.

Construct polynomials of arbitrarily large degree, which are irre-
ducible in Q[z].

(a) Prove that the equation a? = 2 has no rational solutions;
that is, prove that v/2 is irrational. (This part is a repeat of
Exercise 2.14.)

(b) Generalize part a, by proving that a” = 2 has no rational
solutions, for all positive integers n > 2.

Let f € Z[z] and n an integer. Let g be the polynomial defined
by g(z) = f(z+n). Prove that f is irreducible in Z[z] if and only
if ¢ is irreducible in Z[z].

(a) Apply Eisenstein’s criterion 5.7 to check that the following
polynomials are irreducible:

52° — 622 + 27 — 14 and 4z° + 523 — 15z + 20.

(b) Make the substitution = y + 1 to the polynomial 25 +
5z +4 that appears in Example 5.1. Show that the resulting
polynomial is irreducible. Now conclude that the original
polynomial is irreducible.
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(c) Use the same technique as in part b to find a substitution
Z = y 4+ m so you can conclude the polynomial

ot +62% + 1222 + 10z + 5

is irreducible.

(d) Show that this technique works in general: Prove that if
f(z) € Z[z], then f(z) is irreducible if and only if f(y + m)
is.

16. Prove Theorem 5.7 (Eisenstein’s criterion).
17. Let p be a positive prime integer. Then the polynomial

zP -1

-1

p =

is called a cyclotomic polynomial.

(a) Write out, in the usual form for a polynomial, the cyclotomic
polynomials for the first three primes.

(b) Prove that all cyclotomic polynomials ®,, are irreducible over
Z[z], using Eisenstein’s criterion 5.7 and Exercise 15d for
m = 1.

L



Section I in a Nutshell

This section examines the integers (Z), the integers modulo m (Z,,),
and polynomials with rational coefficients (Q[z]). These structures
share many algebraic properties:

o Each has addition defined and the addition is commutative.

e Each has multiplicative defined and the multiplication is commu-
tative.

e Each has an additive identity (0 for Z, [0] for Z,,, and the zero
polynomial for Q[z]).

e Each has a multiplicative identity (1 for Z, [1] for Z,, and the
polynomial 1 for Q[z]).

e All elements have additive inverses, but not all elements have
multiplicative identities.

Furthermore, Z and Q[z] have some notion of ‘size’. The size of an
integer is given by its absolute value, while the size of a polynomial is
given by its degree.

This notion of size along with their similar algebraic properties, allow
us to prove a series of parallel theorems for Z and QJz]:

(Theorem 2.1) Division Theorem for Z: Let a,b € Z with a # 0. Then
there exist unique integers ¢ and r with 0 < r < |a| such that b = ag+r.

(Theorem 4.2) Division Theorem for Q[z]: Let f,g € Q[z] with f # 0.
Then there are unique polynomials ¢ and r with deg(r) < deg(f) such
that g = fq+r.

These Division Theorems allow us to develop Euclid’s Algorithm,
which is a method to compute the ged of two integers (Theorem 2.3)
or polynomials (Theorem 4.5).

We then developed the notion of an irreducible integer and irreducible
polynomial: An integer (polynomial) p is irreducible if # +1 (deg(p) >
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0) and whenever p = ab, then either a or b is +1 (either a or b has
degree 0). We were then able to prove the Fundamental Theorem of
Arithmetic, and its analogue for polynomials: every integer (other than
0, 1 or —1) is irreducible or a product of irreducibles (Theorem 2.8).
Similarly, any polynomial in Q[z] of degree greater than 0 is either
irreducible or the product of irreducibles (Theorem 5.1). Both of these
factorizations are unique:

(Theorem 2.9) If an integer x = ajas---a, = bibe - - - by, where the a;
and b; are all irreducible, then n = m and the b; may be rearranged so
that a; = £b; for i =1,2,...,m.

(Theorem 5.4) If the polynomial p = fy fo - f, = g192 - - - g Where the
fi and g; are all irreducible, then n = m and the g; may be rearranged
so that f; and g; are associates (that is, non-zero scalar multiples of
one another), for i =1,2,... n.

There is also a shared notion of primeness: An integer (polynomial)
is prime if p is not 0, 1 or -1 (deg(p) > 0) and whenever p divides
ab, then either p divides a or p divides b. For Z and Q[z], the idea of
primeness and irreducibility are one and the same: (Theorems 2.7 and
5.2). An integer (polynomial) is irreducible if and only if it is prime.

Finally, we examined the polynomials with integer coefficients, Z[z].
Unfortunately, there is no Division Theorem for Z[z] and no GCD iden-
tity. However, Z[z] does have some interesting factorization properties:

(Theorem 5.5) Gauss’s Lemma If f € Z[z] and f can be factored into a
product of non-scalar polynomials in Q[z], then f can be factored into
a product of non-scalar polynomials in Z[z].

(Theorem 5.6) Rational Root Theorem Suppose f = ag + a1z + -+ +
anz™ € Z[z] and p,q € Z with ¢ # 0, ged(p,q) = 1 and f(p/q) = 0.
Then ¢ divides a,, and p divides a,.

(Theorem 5.7) Eisenstein’s Criterion Suppose f = ag + a1z + -+ +
anz™ € Z[x] and p is a prime where (1) p divides a; for 0 < k < n, (2)
p does not divide a,, and (3) p? divides ag. Then f is irreducible in

Qlz].

S e L R e AR R R

I1

Rings, Domains, and Fields

i



Chapter 6

Rings

In the previous chapters we have examined several different algebraic
objects: Z, Q[z], and Z,, (for integers m > 1). You are also prob-
ably aquainted with the larger sets of real numbers, R, and complex
numbers, C. In each of these cases we have a set of elements, which is
equipped with two operations called addition and multiplication. Each
of these is an example of an abstract concept called a ring. In this
chapter we will give an abstract definition of this concept and look at
some basic properties and examples.

6.1 Binary Operations

Before we can do this, we must understand better what we mean by
an ‘operation’ defined on a set. A binary operation on a set S is a
function o : § x S +— S, where

SxS={(st):steS}

is the set of all ordered pairs with entries from S. Thus, o is a function
that takes ordered pairs of elements from S to elements of S.

If you think about it, that is exactly what an operation like addition
(on Z) does: It takes an ordered pair of elements (such as (4,6)), and
assigns to that pair another element (4 + 6 = 10).

Because we wish to make this function o look like our more familiar
operations like addition or multiplication, we write the image of an
element (s,t) in S x S, under the function o as sot.

Thus, addition and multiplication on the set Z (or for that matter
on Zm, Q[z], Q, or even the natural numbers N) are binary operations.
Notice that although in our discussion above we were using the notation
o for our generic binary operation, we are perfectly happy to denote
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addition by + as usual. Subtraction is a binary operation on the first
four of these sets but is not a binary operation on N because the function
— is not defined on such pairs as (3,4).

Similarly, division is not a binary operation on any of our sets con-
sidered so far because of zero: The function + has no image defined
for such ordered pairs as (1,0). However, + is a binary operation on
the sets QT of strictly positive rational numbers, and Q* of non-zero
rational numbers.

For a rather different example of a binary operation, consider any
nonempty set S and define s ot = s. That is, o assigns the first entry
to any ordered pair it’s given.
> Quick Exercise. Which of the following are binary operations?
Matrix multiplication, on the set of all 2 X 2 matrices.
aob=a+b+ ab, on the set Z.

Dot product, on the set of all vectors in the plane.

Cross product, on the set of all vectors in space.

AN B, on the set of all subsets of {1,2,3,4}.

aob=+ab, on the set R.

. aob = Vab, on the set R, the set of all positive real numbers. <

N R e

Note the crucial importance of both the set on which the operation
is defined, as well as the operation itself. A function can be a binary
operation only if it gives a value for all possible ordered pairs in the
set. We often say a set is closed under an operation if this is the case.
Thus, N is closed under addition and multiplication but is not closed
under subtraction or division.

You might already suspect that because the definition of binary op-
eration is so general, we should reserve terms like ‘addition’ and ‘sub-
traction’ for very special binary operations which obey nice rules. This
is precisely what we do when we define a ring.

6.2 Rings

A ring R is a set of elements on which two binary operations, addi-
tion (+) and multiplication (-), are defined that satisfy the following
properties. (The symbols a,b, and c represent any elements from R.)

(Rulel) a+b=b+a

Rings 75
(Rule 2) (a+b)+c=a+(b+c)
(Rule 3) There exists an element 0 in R such that a +0=a

(Rule 4) For each element a in R, there exists an element  such that
a+z=0

(Rule 5) (a-b)-c=a-(b-c)
(Rule 6) a-(b+c)=a-b+a-c, (b+c)-a=b-a+c-a

Let’s introduce some terminology to describe these rules: Rule 1 says
that addition is commutative, and Rules 2 and 5 say that addition and
multiplication, respectively, are associative. Rule 3 says an additive
identity (or zero) exists, and Rule 4 says that each element of the
ring has an additive inverse. Finally, Rule 6 says that multiplication
distributes over addition on the right and the left.

We will usually write ab instead of a - b.

What are some examples of rings?

Example 6.1

The integers Z, equipped with the usual addition and multipli-
cation. The properties listed above should all be familiar facts
about arithmetic in the integers.

Example 6.2

The rational numbers Q, with the usual addition and multipli-
cation. Once again, we rely on our previous experience with
arithmetic to check that all these properties hold.

Example 6.3

Ze. In Chapter 3 we constructed what we mean by this set and
defined operations + and - on it. Let’s check that addition in Zg
is commutative: By the definition of addition in Zs, [a]g + [b]¢ =
[a + ble. But because addition in Z is commutative, [a + bl =
[b+ale. And so (again by the definition of addition), [a]s + [b]¢ =
[b+ ale = [bl¢ + [als, as required.

The proof we just performed was admittedly tedious. Note
that it could have been paraphrased as follows: Addition in Zg
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is defined in terms of addition in Z, and because addition in Z is
commutative, so is addition in Zg.

> Quick Exercise. Check that the other five ring axioms are
satisfied by Zg. Note that we have already discussed the existence
of the additive identity and additive inverses for Zg in Chapter
3.«

Example 6.4

Zp, for any integer m > 1, with the addition and multiplication
defined in Chapter 3. The proofs in Example 6.3 certainly work
for any m.

Example 6.5

The set {0}, where 04+ 0 = 0-0 = 0. This is the world’s most
boring ring, called the zero ring. Because our set has only a
single element, and any computation we perform gives us 0, all
six axioms must certainly hold.

Example 6.6

Ql[z], with the addition and multiplication we defined in Chap-
ter 4. When we add polynomials, we just add corresponding
coefficients (z? terms added together, etc.). But then, because
addition of rational numbers is commutative and associative, it
follows that addition of polynomials is commutative and asso-
ciative. The polynomial 0 clearly plays the role of the additive
identity in Q[z], and we can obtain an additive inverse for any
polynomial by changing the sign of every term (this amounts to
just multiplying by -1).

Thus, to show that Q[z] is a ring, it remains only to prove
that multiplication is associative, and that it distributes over ad-
dition. Because the multiplication of polynomials is difficult to
describe formally (even though it is very familiar), formal proofs
that Rules 5 and 6 are satisfied by Q[z] are exceedingly tedious.
We consequently omit them here, and refer you to Exercises 6.21
and 6.22.
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Example 6.7

Z[z], with the addition and multiplication as in Chapter 5. We
first note that whenever we add or multiply two polynomials with
integer coefficients, we get another one. That is, this set is closed
under addition and multiplication. Because the rational polyno-
mials satisfy Rules 1, 2, 5, and 6, it is quite evident that Z[z] does
too because Z{z] C Q[z]. Rule 3 holds because the polynomial
0 € Zz], and Rule 4 holds because multiplying a polynomial with
integer coefficients by -1 gives more integer coeflicients.

Example 6.8

The set of all even integers, which we abbreviate as 2Z, together
with ordinary addition and multiplication.

> Quick Exercise. Use an argument modelled on that we used for
Example 6.7 to show that 27Z is a ring. <

Example 6.9

Let Z x Z be the set of ordered pairs with integer entries. That
is,
ZxZ={(a,b):a,beZ}.

Define addition and multiplication point-wise; that is,

(n,m)+ (r,s) = (n+r,m+ s)
(n,m) - (r,s) = (nr,ms).

Then Z x Z is a commutative ring. You will verify the details
in Exercise 6.13.

Example 6.10

Let R and S be arbitrary rings, and let R x S be the set of ordered
pairs with first entry from R, and second entry from S. Then if
we define addition and multipication point-wise (as in Example
6.9), we have created a new ring, called the direct product
of the rings R and S. You will check the details, and further
generalize this, in Exercise 6.15.
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> Quick Exercise. Write out the addition and multiplication tables
for the direct product ring Zo X Z3. <

It might also be worthwhile to provide a few examples of sets equipped
with two operations, which are not rings:

Example 6.11

The set N of natural numbers, equipped with the usual addition
and multiplication. This structure satisfies Rules 1, 2, 5, and 6,
but Rules 3 and 4 are false.

> Quick Exercise. Check that these assertions are true. <

Example 6.12

The set Z, with the usual addition, and the operation o defined by
aob = a. This structure satisfies the first five rules. Furthermore,
o distributes over addition from the right, because

(b+cjoca=b+c=boa+coa.

However, o does not distribute over addition from the left. To
see this, we need only provide an example:

208344)=2#2+2=203+204.

Thus, Z equipped with these operations is not a ring.

Let us now look a little more carefully at the rules determining a
ring. Rules 1, 2, 5, and 6 specify that addition and multiplication
are to satisfy certain nice properties (thus distinguishing them from
general binary relations). These properties are universal statements
applying to all elements of the ring. Thus, addition is required to be
commutative and associative, multiplication is to be associative, and
multiplication should distribute over addition. Note that we do not
require that multiplication be commutative. If that is the case, we say
that we have a commutative ring. The rings in Examples 6.1-6.9
are all commutative. Example 6.13 below is a non-commutative ring.

Rule 3 is quite different. It asserts that an element of a particular kind
(the additive identity) exists in the ring. Without Rule 3, the empty
set would qualify as a ring. Rule 4 specifies that additive inverses exist
for each element we find in the ring, but it certainly does not require
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that a ring have any other elements than 0, because 0 + 0 = 0 means
that 0 is its own additive inverse. We already saw in Example 6.5 that
a ring can consist of the additive identity only.

Example 6.13

Let M3(Z) be the set of 2 x 2 matrices with integer entries. We
equip this set with the usual addition and multiplication of ma-
trices. (In case you have not seen these operations before, or don’t
remember them well, we have relegated a discussion of them to
Exercises 6.6 and 6.7.) Note that when we add or multiply two
matrices with integer entries, we obtain another one, and so this
set is closed under the operations. We claim that M»(Z) is a ring:

Rules 1 and 2 follow easily because they hold in Z. The zero
of My(Z) is (8 8), which can easily be verified. The additive

inverse of ( i Z is :‘; :Z) That multiplication is associative
and that the distributive laws hold are left as Exercise 6.7.

But note that M3(Z) is not commutative. For example,

(53 (3) = (33) #
(1)-(0) (2).

The previous example shows the relevance of the ring concept to
students of linear algebra. Our final example of the chapter connects
algebra to the study of calculus and analysis:

Example 6.14

Let C[0, 1] be the set of real-valued functions defined on the closed
unit interval [0,1] = {# € R : 0 < z < 1}, which are continu-
ous. Define the sum and product of two functions point-wise:
(f +9)(@) = f(2) + g(x) and (fg)(z) = f(x)g(x). You can use
theorems from calculus to show that this set is a commutative
ring. (See Exercise 6.9.)
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6.3 Arithmetic in a Ring

We can now begin to talk about the arithmetic in an arbitrary ring.
The following theorem shows some of the simple arithmetic operations
we're used to doing in Z, which we can now perform in an arbitrary
ring:

Theorem 6.1 Suppose R is a ring, and a,b,c € R.

a. (Additive Cancellation) Ifa + b=a +c, then b= c.

b. (Solution of equations) The equation a + x = b always has a
unique solution in R.

c. (Uniqueness of additive inverse) Every element of R has exactly
one additive tnverse.

d. (Uniqueness of additive identity) There is only one element of R
which satisfies the equations z + a = a, for all a; namely, the
element 0.

Proof: We will proceed very carefully from the rules defining a ring,
for the first of these proofs, and then argue less formally. The reader
is invited to fill in the careful details.

> Quick Exercise. Fill in the details for the proofs below of parts
b, ¢, and d of the theorem. <

(a): Suppose that R is a ring, a,b,c € R, and a+b = a+c. By Rule
4, we know there exists an element x € R for which a + 2 = 0. By
Rule 1 we know that 0 = a + z = = + a. We can now add z to both
sides of our given equation, to obtain z+ (a +b) = z+ (a+c¢). By two
applications of Rule 2, we then have that (x+a)+b = (z+a)+c. But
then we have 0+ b = 0 + ¢, and so by Rules 1 and 3, we conclude that
b = ¢, as required.

(b): We will now proceed less formally than in the proof for (a).
Note that x = d + b will do the job, where d is the additive inverse
of a. Suppose that e is some other solution to the equation. Then
a+e = a+ (d+b), and so, by the Additive Cancellation property,
e = d + b. Thus, our solution is unique.
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(c): Suppose a has two additive inverses; say,  and y. Then a+z =
0 = a+y, and so, by the Additive Cancellation property, z = y.
(d): This is left as Exercise 6.2. O

Note well that although additive cancellation holds in any ring (by
part a of Theorem 6.1), multiplicative cancellation can certainly fail.
For instance, we have already seen that in Zg, 3-2 = 3 -4 (= 0), but
2 # 4. Because the axioms in the definition of a ring require less of
multiplication, we should expect fewer nice properties for multiplication
than for addition.

A very careful reader may still be concerned about the rigor of the
proof we offered above for part (a). How can we justify adding z
to both sides of the given equation? First of all, note that elements
x + (a+b) and z + (a + ¢) exist in the ring, because the ring is closed
under addition. The fact that they are equal follows, not from one of
our Rules for rings, but rather from a property of equality, known as
the Substitution Rule for Equality. This says that if @ = b (that is, if a
and b are identical elements of the ring), then we can safely replace any
appearances of a in an expression by b and get a new expression equal to
the old. This is actually a rule of logic, rather than of ring theory, and
in this book we have made no attempt to carefully axiomatize the rules
of logic, since this would take us too far afield from algebra. In proofs
you write you should feel free to use the ordinary properties of equality
with which you have been long familiar, including the Substitution Rule.
In particular, note that a = a, for all a (this is called Reflezivity). If
a = b then b = a (this is called Symmetry). And if @ = b and b = ¢,
then a = c (this is called Transitivity).

6.4 Notational Conventions

Because additive inverses are unique, we can thus denote the additive
inverse of element a by the unambiguous notation —a.

You should exercise some care in using this notation, however. We
are not interpreting —a as meaning the product of —1 and a. In an
arbitrary ring we have no guarantee that there exist such elements as
—1 or 1 (see Example 6.8).

We can now make sense of subtraction in an arbitrary ring, simply
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by interpreting a — b as a + (—b). In Exercise 6.5, you will show that
subtraction in an arbitrary ring obeys rules like those found in Z.

Here are some further handy notational conventions: For n € N and
ring element ¢, na =a+a+...+aand a" =a-a-...-a, where a
appears n times on the right-hand side of the equations. Thus, 3a is
shorthand for a + a + a, and a* is shorthand for a-a - a - a.

Care must be exercised in the use of these conventions. For example,
in 2Z, we can write

24+2+2=3(2),

and interpret this as a calculation inside 2Z, even though there is no
element 3 belonging to the ring.

> Quick Exercise. In the ring Ms(Z), what are the elements

3
12 12
?
3<34> and <34> [

6.5 The Set of Integers is a Ring

In Chapters 1 and 2 we relied on your previous experience with the
integers when dealing with arithmetic and admitted that this was a
flaw if we were attempting to make a careful axiomatic development of
the properties of the integers. We now have the language necessary to
rectify this logical flaw by stating carefully what we’ve been assuming
all along,.

Axiom of Arithmetic The integers Z under ordinary addition and
multiplication is a ring.

This axiom (together with the Well-ordering Principle) is all we need
to prove what we have about the integers. In the future we will be
showing that many other rings have ‘integer-like’ properties.

Historical Remarks

In this chapter we defined the abstract concept of ring, as a way of
generalizing the arithmetic properties possessed by our particular ex-
amples Z and Q[z]. Historically, this definition was a long time in

Rings 83

coming, but, in broad strokes, we are being accurate to the historical
development in basing our definition on Z and Q[z]. This is true be-
cause in the 19th century, the formal definition of ring (and its ensuing
popularity in mathematical circles) grew out of two subjects, related
respectively to Z and Q[z]. The first subject is number theory. Such
mathematicians as the Germans Ernst Kummer and Richard Dedekind
discovered that number-theoretic questions about Z are related to such
rings as Z[i] (described in Exercise 6.12). We will follow this topic fur-
ther in ensuing chapters. The second subject is the geometry related
to polynomial equations (especially in more than one variable). Q|x]
is a starting point for this subject (called algebraic geometry), which
we won'’t pursue in this book. The crucial historical figure here is an-
other German, named David Hilbert. Hilbert was a great believer in
the power of axiomization and abstraction, and his success profoundly
influenced the course of 20th-century mathematics. If you are having
some difficulty understanding the utility of such an abstract concept as
ring, you should take solace in the fact that many of Hilbert’s late 19th-
century colleagues were also reluctant to follow him down the road of
abstraction! But this road has many wonders, just around the corner.

Chapter Summary

In this chapter we defined what we mean by a ring: a set equipped with
two operations called addition and multiplication, which satisfy certain
natural axioms. We examined numerous examples of rings (including
Z and Q[z]) and began the study of the arithmetic of an arbitrary ring.

Warm-up Exercises

a. Explain why our definition of a binary operation guarantees that
the set is closed under the operation.

b. Are the following binary operations?

(a) a*xb=1, on the set Z.
(b) a*xb=a/b, on the set Q.
(¢) axb=a+bi, on the set R.
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c. Give examples of binary operations satisfying the following:

(a) A non-commutative binary operation.

(b) A non-associative binary operation.
d. Give examples of rings satisfying the following:

(a) A ring with finitely many elements.

(b) A non-commutative ring.
e. Are the following rings?

(a) 3Z, the set of all integers divisible by 3, together with ordi-
nary addition and multiplication.

(b) The set of all irreducible integers, together with ordinary
addition and multiplication.

(c) R, with the operations of addition and division.

(d) The set R* of non-zero real numbers, with the operations of
multiplication, and the operation a o b = 1. Note: We are
trying to use ordinary multiplication as the ‘addition’ in this
set!

(e) The set of polynomials in Q[z], where the constant term
is an integer, with the usual addition and multiplication of
polynomials.

(f) The set of all matrices in My(Z), whose lower left-hand entry
is zero, with the usual matrix addition and multiplication.

f. Compute 4a and a* for the following elements a of the following
rings:
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Exercises

. Show that in a ring, 0Oa = a0 = 0.

. Prove part d of Theorem 6.1: Show that in a ring the additive

identity is unique, by supposing that both 0 and 0’ satisfy Rule
3 and proving that 0 = (.

. Show that in a ring, (—a)b = a(—b) = —(ab).
. Show that in a ring, (—a)(—b) = ab.

. Prove the following facts about subtraction in a ring R, where

a,b,c € R:

(a) a—a=0.

(b) a(b—c) = ab— ac.
(¢) (b—c)a=ba—ca.

. Given two matrices in M(Z),

A= (all a12> and B = (bn b12>,
as1 a2 bo1 bag

define their matrix sum to be the matrix

a1l + b1 a1z + bio
A+ B = .
+ (6121 + b1 a9 + 522>

Verify that this is a binary operation, which is associative, com-
mutative, has an additive identity, and has additive inverses.

. Given two matrices in M»(Z),

A= [ o and B — bi1 b12
as a2 bo1 bag |’

define their matrix product to be the matrix

_ [ a11b11 + a12b21 ar1bi2 + ai2boo
AB = .
a1b11 + a22ba1 a1 biz + azzbao

Verify that this is a binary operation, which is associative and
distributes over matrix addition, but is not commutative.
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10.

11.

12.

13.

Ezxercises

We generalize Exercises 6 and 7: Let R be any commutative ring
(other than the zero ring). Define My(R) as the set of 2 x 2
matrices with entries from R. Show that M3(R) is a ring which
is not commutative. (Note that for the most part the proofs in
Exercises 6 and 7 lift over without change.)

Check that Example 6.14 is indeed a ring; that is, let C[0, 1] be
the set of functions defined from the closed unit interval [0,1]
to the real numbers that are continuous. Define the sum and
product of two functions point-wise: (f + g)(z) = f(z) + g(z)
and (fg)(z) = f(z)g(z). Show that C[0,1] is a commutative
ring. (You may use theorems from calculus.)

Let D be the set of functions defined from the real numbers to
the real numbers that are differentiable. Define addition and
multiplication of functions point-wise, as in the previous exercise.
Show that D is a commutative ring. (You may use theorems from
calculus.)

Let C be the complex numbers. That is,
C={a+bi:abeR},
where 7 is the square root of -1 (that is, i - ¢ = —1). Here,
(a+ b))+ (c+di)=(a+c)+ (b+d)i

and
(a+bi)(c+ di) = (ac — bd) + (ad + be)i.

Show that C is a commutative ring.

Let
zZli) ={a+bicC: a,bez}.

Show that Z[i] is a commutative ring (see Exercise 11). This is
called the ring of Gaussian integers.

Verify that Example 6.9 is a ring. That is, let Z x Z be the set of
ordered pairs with integer entries. That is,

Z x Z = {(a,b) : a,b € Z}.

Define addition and multiplication coordinate-wise; that is,

14.

15.

16.

17.

18.

19.
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(n,m)+ (r,8) = (n+r,m+s)

(n,m)-(r,s) = (nr,ms).

Show that Z x Z is a commutative ring.

We generalize Exercise 13: Let Z™ be the set of ordered n-tuples
with integer entries. Define addition and multiplication on Z®
coordinate-wise and show Z" is a commutative ring. Similarly,
define R™ for any ring R. Show R" is a ring and is commutative
if R is.

Verify that Example 6.10 is a ring. Namely, let R and S be
arbitrary rings. Define addition and multiplication appropriately
to make R x S a ring, where R x S is the set of ordered pairs
with first entry from R and second entry from S. Now generalize
this to the set B} x Ry x -+ X R, of n-tuples with entries from
the rings R;. This new ring is called the direct product of the
rings R;.

Find an example in M3(Z) to show that (a+ b)? is not necessarily
equal to a® + 2ab + b?. (Recall that 2ab = ab + ab.) What is the
correct expansion of (a-+b)? for an arbitrary ring? What can you
say if the ring is commutative?

(This exercise extends the discussion of Exercise 16.) Let R be a
commutative ring and a,b € R. Then prove the binomial theorem
for R, by induction on n: Namely, show that

(a+b)" = zn: (Z) a™kpk,

k=0

Suppose that a-a = a for every element a in a ring R. (Elements
a in a ring where a® = a are called idempotent.)

(a) Show that a = —a.

(b) Now show that R is commutative.
Let S = {(z1,x2,23,...) : ; € R}, the real-valued sequences.

Define addition and multiplication on S coordinate-wise (see Ex-
ercises 13 and 14). Show that S is a commutative ring.
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20.

21.

22,

23.

Ezxercises

Let X be some arbitrary set, and P(X) the set of all subsets of X. | .:
In Example 1.1 we proved that if X has n elements, then P(X) |

has 2" elements; we are here allowing the possibility that X (and

hence P(X)) has infinitely many elements. Define operations on
P(X) as follows, where a,b € P(X):

a+b=(aUb)\(anb) and ab=anb.

(Addition here is often called the symmetric difference of the
two sets a,b.) Prove that P(X) is a commutative ring. (P(X) is
called the power set for the set X.)

Prove that multiplication is associative in Q[z], as claimed in
Example 6.6. Suppose that

f=ataz+ - +anz",

g=bo+biz+ - +byx"™,
and
h=cy+ecix+---+cpx'.

Compute the =¥ coefficient in f(gh) and (fg)h. In each case these
will be double summations. Argue that these double summations
actually include the same terms and are therefore the same.

Prove that multiplication is distributive in Q[z], as claimed in
Example 6.6.

Let R be any commutative ring. Let R[z| be the collection of

polynomials with coefficients from R. Show that R[] is a ring.

Chapter 7

Subrings and Unity

Consider Example 6.7: We discovered that it was relatively easy to
show that Z[z] is a ring, because it is a subset of Q[z], which we had
already shown is a ring. Because the operations in Z[z] are the same as
in Q[z], we didn’t have to check again the associative laws, the distrib-
utive laws, or that addition was commutative. Because the addition
and multiplication of Q[z] have these properties, the addition and mul-
tiplication of Z[z| inherit them automatically. What did need to be
checked was that addition and multiplication were closed in Z[z], that
the additive identity of Q[z] was also in Z[z], and that the additive
inverses of elements of Z[z] were also in Z[z]. Similarly, in Example 6.8
you showed that 2Z is a ring, taking advantage of the fact that 2Z C Z.

7.1 Subrings

We generalize this situation: A subset S of a ring R is said to be a
subring of R if S is itself a ring under the operations induced from R.

Example 7.1
Z[x] is a subring of Q[x].

Example 7.2
2Z is a subring of Z.

Example 7.3

Z is a subring of QQ, which is in turn a subring of R.
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Example 7.4

The Gaussian integers Z[3] are a subring of C. (See Exercises 6.11
and 6.12.)

Example 7.5

Let R be any ring. Then {0} and R are always subrings of R.
We call {0} the trivial subring, and R the improper subring.
All subrings other than R we call proper subrings.

In the general case, what exactly do we need to check to see that a
subset of a ring is a subring? We need not go through all the work
we did in showing that Z[z] is a subring of Q[z], as listed above. The
following theorem provides a simpler answer. We will often use this
theorem to check whether something is a ring (by considering it as a
subset of a larger well-known ring):

Theorem 7.1 The Subring Theorem A non-empty subset of
a ring 18 a subring under the same operations if and only if it is closed
under multiplication and subtraction.

Proof: It is obvious that a subring is closed under multiplication and
subtraction. For the converse, suppose that R is a ring and S a non-
empty subset, which is closed under multiplication and subtraction. We
wish to show that S is a ring. Now, because S is non-empty, we can
then choose an element of it, which we call s. First note that because
S is closed under subtraction, then s —s = 0 € S. That is, the additive
identity belongs to S (Rule 3). Next, suppose that a € S. Because S is
closed under subtraction, —a = 0 —a € S. This means that S is closed
under taking additive inverses (Rule 4). Now suppose that a,b € S.
Then we’ve just seen that —b € S. But then

a+b=a-(-b) €S,

and so .S is closed under addition as well.

To show that S is a ring, it remains to show that addition is com-
mutative, that addition and multiplication are associative, and that
multiplication distributes over addition. But all these properties hold
in R, and so are automatically inherited for S. O
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The most important use of this theorem is to check that some set is in
fact a ring, by viewing it as a subring of some larger previously known
ring. We will see this principle illustrated repeatedly in the examples
below.

Because commutativity is automatically inherited by a subset, it fol-
lows that a subring of a commutative ring is also commutative. Note
that a subring of a non-commutative ring may be commutative, be-
cause the zero ring is a commutative subring of any ring. Example 7.9
is a more interesting example of this.

Example 7.6

Let mZ = {mn : n € Z}, where m is an integer greater than 1.
That is, mZ is the set of integer multiples of m. We have already
seen this example in case m = 2 as Example 7.2. We claim that
mZ is a subring of Z. For if ma, mb € mZ, then

ma —mb=m{a —b) € mZ
and so mZ is closed under subtraction. Similarly,
(ma)(mb) = m(mab) € mZ,

and so mZ is closed under multiplication.

Example 7.7

6Z is a subring of both 3Z and 2Z.

> Quick Exercise. Check that 6Z is a subring of 3Z and 2Z,
modelling your proof on that of Example 7.6. <

We generalize this example in Exercise 7.4.

Example 7.8

{0,2,4} is a subring of Ze. It is easy to check directly that this
set is closed under subtraction and multiplication. We extend
this example in Exercise 7.c.



92 A First Course in Abstract Algebra: Rings, Groups, and Fields

Example 7.9

Let Dy(Z) be the set of all 2-by-2 matrices with entries from Z
and with all entries off the main diagonal being zero. We call

these the diagonal matrices. We claim that this is a subring of
Ms(Z).

> Quick Exercise. Check that the set of diagonal matrices is
closed under subtraction and multiplication. <

Note that Dy(Z) is in fact a commutative ring:

al c0\ (acO0) [cO al

0b 0d) \0bd) \Od 0b)°
Thus, Dy(Z) is a commutative subring (bigger than the zero ring)
of a non-commutative ring.

Example 7.10

The direct product Z x Q is a subring of the ring R x R. (See
Example 6.10.)

Here are a few examples of subsets of rings which are not subrings.

Note how many different ways a subset can fail to be a subring.
Example 7.11

Consider the set Q1 of all strictly positive elements from Q. This

is clearly not a subring, because the additive identity 0 does not
belong to Q7.

Example 7.12

Consider the set Q7 U {0} C Q. This set does include 0 and is
in fact closed under multiplication. But it is not closed under
subtraction and so is not a subring.
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Example 7.13

Consider the set

7l = {mn:n € L},

that is, the set of all integer multiples of the real number 7. This
is a subset of the ring R of all real numbers. It is closed under
subtraction.

> Quick Exercise. Check that 77 is closed under subtraction. <

However, it is not closed under multiplication, for if it were, then
72 would be an integer multiple of 7. But then = itself would be

an integer, which is false.

Example 7.14

Consider Zy = {0,1,2,3}. Is it a subring of Z? Clearly not,
because although our notation makes it look as if Z4 is a sub-
set of Z, this is not actually the case. Recall from Section 3.2,
that when working with the rings Z,, we often drop the square
brackets around the integers, if it is clear from context what we
mean. In Z4, 3 means a residue class, and so is an infinite set of
integers. This infinite set of integers is certainly not the same as
the individual integer 3.

7.2 The Multiplicative Identity

We close this chapter by mentioning another topic, which further il-
lustrates the different roles that addition and multiplication play in a
ring. It is an important part of the definition of a ring that it have an
additive identity or 0. We make no such assumption about a multiplica-
tive identity; many rings do possess a multiplicative identity, however.
We call an element u of a ring R a unity or multiplicative identity
if ua = au = a for all elements a € R.
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Example 7.15

Obviously, the integer 1 is the unity of Z. Similarly, 1 is the unity
for the rings Q, R, and C. In Q[x], the constant polynomial 1 is

the unity. In the ring Ms(Z), the unity is é (1) . In Chapter 3,

we were careful to point out that the residue class [1] plays the
role of multiplicative identity in Z,,. On the other hand, the ring
2Z has no unity, because in the integers 2a = 2 holds exactly
when ¢ = 1, an element which 2Z lacks. More generally, mZ
lacks unity for all m > 1.

Note that for the particular examples we’ve discussed, we have spoken
as if the unity element of a ring (if it exists) is unique. This is in fact
the case and can be proved by a proof very similar to the one we used to
show that the zero of a ring is unique. We leave this proof as Exercise
7.17. Because unity is unique, we can thus denote it unambiguously by
1.

There is a surprising difficulty with this, however. Consider the zero
ring {0}. In this ring 0 is both the additive identity and the multiplica-
tive identity, and so in this case 0 = 1. In order to avoid this trivial
case, we will henceforth reserve the term ‘unity’ for rings other than the
zero ring. In Exercise 7.16, you will prove that in a ring with more than

one element, the additive identity and multiplicative identity cannot be
the same.

Chapter Summary

In this chapter we defined the notion of subring and proved that the
subrings of a ring are exactly those non-empty subsets closed under
subtraction and multiplication. We provided many examples of sub-
rings.

We also defined the notion of unity (or multiplicative identity) and
observed that many rings have unity, and many don’t.

Warm-up Exercises

a. Give examples of the following:

Subrings and Unity 95
(a) A non-empty subset of a ring, closed under subtraction, but
not multiplication.

(b) A non-empty subset of a ring, closed under multiplication,
but not subtraction.

b. Are the following subsets subrings?

(a) ZC Q.
(b) Q* C Q; recall that Q* is the set of non-zero rational num-
bers.

(c) QF C Q; recall that Qt is the set of strictly positive rational
numbers.

(d) The set of irrational numbers, a subset of R.
(e) {Oa 1, 27 3} C Zs.
(f) The linear polynomials, a subset of Q[z].

c. Find all the subrings of these rings: Zs, Z¢, Z7, Z12.
d. Give examples of the following (or explain why they don’t exist):

(a) A commutative subring of a non-commutative ring.
(b) A non-commutative subring of a commutative ring.

(c) A subring without unity, of a ring with unity. (See Exercise
22 for the converse possibility.)

(d) A ring (with more than one element) whose only subrings
are itself, and the zero subring. Hint: Look at an earlier
Warm-up Exercise.

e. What is the unity of the power set ring P(X) considered in Ex-
ercise 6.207

f. What is the unity of the ring Z x Z? (See Example 6.9.) What
about of Rx.S, where R and S are rings with unity? (See Example
6.10.)
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Ezxercises

8.

Exercises

. Let Z[v2] = {a + bv/2 : a,b € Z}. Show that Z[v/2] is a commu-

tative ring by showing it is a subring of R.

. We generalize Exercise 1: Let Z[\/n] = {a + by/n : a,b € Z},

where n is some fixed integer (positive or negative). Show Z[\/n]
is a commutative ring by showing it is a subring of C.

Let
a= V5
and
Z[o] = {a+ba+ ca’ : a,b,c € Z} CR.
Prove that Z[o] is a subring of R.

. Show that mZ is a subring of nZ if and only if n divides m. (See

Example 7.7.)

(a) Show that
4Z N 6Z = 127Z.

(b) Let m and n be two positive integers. Show that
mZNnZ = lZ,

where [ is the least common multiple of m and n. (See
Exercise 2.11.)

. Let S be the set of all polynomials in Q[z] which have 0 as con-

stant term (that is, polynomials of the form ajz+ax?+- - - a,z™).
Show that S is a subring of Q[z].

Let f be some polynomial with rational coefficients, with deg(f) >
0, and let S be the set of all polynomials g in Q[z] for which f
divides g. Show that S is a subring of Q[z]. How is this exercise
related to the previous exercise?

(a) Show that the set
{(a,a) :a ez}

is a subring of Z x Z.

10.

11.

12.

13.
14.
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(b) Now consider the set
{(a,—a):a € Z}.

Show that this set is closed under subtraction, but not closed
under multiplication, and so is not a subring of Z x Z.

Show that the intersection of any two subrings of a ring is a
subring.

Show by example that the union of any two subrings of a ring
need not be a subring. Hint: You can certainly find such an
example by working in Z.

Let

Z<2)={q€(@:q:%, a,beZ, bisodd}.

(a) Why is Z a proper subset of Q7
(b) Show that Z) is a subring of Q.
(c) Show that

{qu:cj:%, a,b€eZ, aisodd, b;éo}

is not a subring of Q.
(d) Show that

a
{qEquz—na (LEZ,TLIO,LQ,"'}

is a subring of Q.
Let R be an arbitrary ring, and define
Z(R)={r € R:rz =zr,for all z € R};

this subset is called the center of the ring R. Show that Z(R) is
a subring. What is Z(R) if R is a commutative ring?

Find the center of M3(Z) (see the previous exercise).

Let R be a ring, and s a particular fixed element of R. Let

Zs(R)={r e R:rs=sr}.
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16.

17.
18.

19.

Ezxercises

(a) Prove that Z,(R) is a subring of R.
(b) Recall the definition of Z(R) from Exercise 12. Prove that

Z(R) =n{Zy(R):s € R}.

(a) An element a of a ring is nilpotent if a® = 0 for some
positive integer n. Given a ring R, denote by N(R) the set
of all nilpotent elements of R. (This subring is called the

nilradical of the ring.) If R is any commutative ring, show
that N(R) is a subring,.

(b) Determine N(Zy), the nilradical of Z;q.
(c) Determine N(Zg), the nilradical of Zg.

Suppose that R is a ring with unity, and R has at least two
elements. Prove that the additive identity of R is not equal to
the multiplicative identity.

Show that if a ring has unity, it is unique.

(a) Let Rbearing, and consider the set RxZ of all ordered pairs
with entries from R and Z. Equip this set with operations

(r,n) + (s,m) = (r +s,n+m)
and
(r,n)(s,m) = (rs +mr + ns,nm).
Prove that these operations make R x Z a ring. (Note that
this is not the same ring discussed in Example 6.10.)

(b) Show that R x Z under these operations has unity, even if
R does not.

(c) Show that Rx {0} is a subring of the ring R x Z. Argue that
this ring is ‘essentially the same’ as R. (Note: Later in the
book we will make precise the notion of two rings which are
‘essentially the same’, by defining ring 1somorphism.) This
means that any ring without unity can essentially be found
as a subring of a ring which has unity.

Consider the set

abl b .
0d) % ,cE€ Z and a is even ; .

Prove that this set is a subring of My(Z). Does it have unity?

e e B e T T L vl

20.

21.

22.

23.

24.

25.
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Some students wonder why we require that the addition in a ring
be commutative; this exercise shows why. Suppose that R is a
set with two operations + and o, which satisfy the rules defining
a ring, except for Rule 1; that is, we do not assume that the
addition is commutative. Suppose that R also has a multiplicative
identity 1. Then prove that the addition in R must in fact be
commutative, and so R under the given operations is a ring.

Consider the ring S of all real-valued sequences, as discussed in
Exercise 6.19. Let F be the set of all sequences (z1,z2,Z3, - *)
where at most finitely many of the entries z; are non-zero. Prove
that F is a subring of S. Does F' have unity?

Let F be the ring of finitely non-zero real-valued sequences, con-
sidered in the previous exercise. Now let W consist of all se-
quences (1, T2, 23 --) where 0 = 23 = x3 = ---. Show that W is
a subring that has unity, even though the larger ring F' does not.

Let R be a ring, and let
S={reR:r+r=0}
Prove that S is a subring of R.

Generalize Exercise 23. That is, let R be a ring, and let n be a
fixed positive integer. Let

S={reR:nr=0}

Prove that S is a subring of R. (Recall that nr means to add r
to itself n times; the integer n need not belong to R.)

Let R be a commutative ring with unity. An element e € R is
idempotent if ¢2 = e. Note that the elements 0 and 1 are idem-
potent. Throughout this problem assume that e is idempotent in
R.

(a) Find a commutative ring with unity with at least one idem-
potent element; other than 0 and 1.

(b) Let f =1 —e. Prove that f is idempotent, too.

(c) Let Re = {re: r € R}. Prove that Re is a subring of R, and
that e is unity for this subring.




100 Ezxercises

(d) Prove that Re N Rf = {0} (where f is the idempotent from
part b).

Chapter 8

(e) Provethat forallr € R, r = a+b, wherea € Re and b € Rf. . .
Integral Domains and Fields

v Something surprising happens in the arithmetic in Zg: two non-zero
] elements 2 and 3 give 0 when multiplied together. This is something
that never happens in Z (or Q or R). In fact, this never happens in Zs.

> Quick Exercise. Use the multiplication table for Zs in Chapter
3 to check that the product of two non-zero elements in Zs is always
non-zero. <

The fact that 2-3 = 0 in Zg has undesirable consequences. For
example, it means that 2-3 = 2-0, and so we cannot cancel the 2 from
each side of this equation.

8.1 Zero Divisors

We make a definition to explore this situation: Let R be a commutative
ring. An element a # 0 is a zero divisor if there exists an element
b € R such that b # 0 and ab = 0. Of course, then b is a zero divisor
also.

Example 8.1

Thus, the elements 2 and 3 in Zg are zero divisors because 2-:3 = 0.
For another example, consider the elements (1,0) and (0,1) in
Z x Z. They are zero divisors because (1,0)(0,1) = (0,0). On
the other hand, 2 is not a zero divisor in Z because the equation
2z = 0 has only z = 0 as a solution.

> Quick Exercise. Détermine the set of all zero divisors for the
rings Zg, Zs, Z X Z, and Z. <

You should have just concluded that the rings Z and Zs have no
zero divisors. This desirable property we highlight by a definition:
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A commutative ring with unity that has no zero divisors is called an
integral domain, or simply a domain.

Example 8.2

Thus, Z and Zs are integral domains, as are such rings as Q, R
and C.

)

Example 8.3

What about the ring Q[z]? We observed in Chapter 4 that the
product of two non-zero polynomials is non-zero, because the
degree of the product is the sum of the degrees (Theorem 4.1).
Thus, Q[z] (and similarly Z[z]) is a domain too.

Example 8.4

On the other hand, we have seen that the rings Z x Z and Zg
are not domains, simply because we have already exhibited the
existence of zero divisors in them. In fact, if n is not prime, then
Z., is not a domain.

> Quick Exercise. Show that Z, is not a domain when n is
not prime by exhibiting zero divisors in each such ring. <

Notice that in the definition of domain we require both that it be
commutative and have unity. These restrictions are standard in the
subject, and we will consequently adhere to them. But note that this
means that 2Z is not a domain, even though it is commutative and has
no zero divisors.

The arithmetic in integral domains is much simpler than in arbitrary
commutative rings. An important example of this is the content of
the following theorem: We can cancel multiplicatively in a domain. Of
course, we already saw above that multiplicative cancellation fails in
Zs.

Theorem 8.1 Multiplicative Cancellation Suppose R is an

wntegral domain and a,b, c are elements of R, with a # 0. If ab = ac,
then b = c.
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Proof: Suppose that R is a domain, a # 0, and ab = ac. Then
ab — ac = 0. But then a(b— ¢) = 0, and because R is a domain with
a # 0, we must have b — ¢ = 0, or b = ¢, as required. a

If a,b, ¢ had been rational numbers in the previous proof, we would
have been inclined to multiply both sides of the equation ab = ac by
1/a, the multiplicative inverse of a. However, the proof of the theorem
holds even in the absence of multiplicative inverses (as is the case for
most elements in Z).

8.2 Units

Of course, when multiplicative inverses do exist, life is much simpler.
Let us introduce some terminology to deal with this case. Suppose R
is a ring with unity 1. Let a be any non-zero element of . We say a
is a unit if there is an element b of R such that ab = ba = 1. In this
case, b is a (multiplicative) inverse of a. (Of course, b is also a unit
with inverse a.)

First note that the unity 1 is always a unit, because 1-1 = 1. What
other elements are units? In Z, the units are just 1 and -1, because
the only integer solutions of ab = 1 are £1. In Q and R, all non-zero
elements are units. In Zg we have 5-5 = 1, and so 5 is a unit, as well as
1. Furthermore, there are no other elements a and b for which ab =1
is true (see the multiplication table for Zg in Chapter 3).

> Quick Exercise. Compute the units of these rings: Zs, Z12, ZX Z,
R xR, Qz]. <

Note that the concept of multiplicative inverse makes perfectly good
sense in non-commutative rings. For example, in the (non-commutative)
ring of matrices M3(R), the elements

12 d -2 1
aa) 4 {3

are units, because their product (in either order) is the multiplicative
identity. In Exercise 8.2 you will obtain all the units in this ring.

We now claim that multiplicative inverses, if they exist, are unique.
To show this, suppose that a has multiplicative inverses b and c¢: then
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1 = ba = ca. But now multiply through these equations on the right
by b: We then have b = bab = cab = ¢ (where the last equation holds
because ab = 1 also). But then b = ¢, as required. Consequently, we
will denote the (unique) inverse of an element a (if it exists) by a™1.
This is of course consistent with the ordinary notation for multiplicative
inverse which we use in R.

We denote the set of units of a ring R by U(R).
{1,-1}, U(Q) = Q\{0}, and U(Ze) = {1,5}.
The set U(R) has some very nice properties, only some of which we

can fully exploit right now. What we wish to observe immediately is
that U(R) is closed under multiplication.

Thus, U(z) =

> Quick Exercise. Check that this is true for Z, Q, and Zg. <

To show that U(R) is closed under multiplication, suppose that a,b €
U(R). Then we claim ab is also a unit. But this is easy to see, because

its inverse is just b~ 1a"!:

(ab)(bla™ Y =abb HNa =aa"t =1,

and similarly for the product in the other order.

You might be surprised to see that taking the multiplicative inverse
reverses the order of multiplication. But interpret a as putting on socks,
and b as putting on shoes. To reverse the operation ab of putting on
both socks and shoes, you must reverse the order: you take off shoes
first, and so the inverse operation is b~'a~!'. You will explore the
importance of the order of the multiplication of the elements a~! and

b~! in non-commutative rings in Exercise 8.3.

Students often confuse the unity of a ring with the concept of units,
and you should take care to understand the definition. The unity of a
ring is unique if it exists, and it is of course a unit (because it is its own
multiplicative inverse). And a ring with units must necessarily have
unity (because otherwise the concept of multiplicative inverse makes
no sense). However, most rings have many units other than unity, as
our examples above make clear.

i
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8.3 Fields

Of course, rings like Q and R where all non-zero elements have multi-
plicative inverses seem particularly attractive, and we emphasize them
by making a definition: A commutative ring with unity in which every
non-zero element is a unit is called a field. Another way to look at the
definition of a field is this: as a commutative ring in which one can al-
ways solve equations of the form az = b (when a # 0). The solution is,
of course, £ = a~'b. In other words: In all rings we can add, subtract,
and multiply, but in fields we can also divide.

Example 8.5

Thus, Q and R are fields. By the Quick Exercise above, Zs is
also a field.

Every field is a domain. This follows immediately from the next
theorem.

Theorem 8.2 A field has no zero divisors.

Proof:  Suppose F is a field and a € F, with a # 0. Now suppose
that ab = 0. Then 0 = ¢! -0 = a~lab = b. Thus, a is not a zero
divisor. |

Note that the above proof actually shows that a unit of any ring
cannot be a zero divisor. For example, in Zg, the units are 1 and 5,
while the zero divisors are 2, 3, and 4.

8.4 The Field of Complex Numbers

Another important example of a field is the commutative ring C of
complex numbers. (See Exercise 6.11.) To see that this ring is actually
a fleld, we must compute the multiplicative inverse of the arbitrary
non-zero complex number &« = a + bi, where a and b are real numbers
(not both zero). We do this first by means of a bit of algebraic trickery.

The complex number a — bi we call the complex conjugate of a+ bi.
We write it as a.
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> Quick Exercise.
ing complex numbers:

Determine the complex conjugates of the follow-

1
1474, 4—51', 61, 7 <
It is easy to see that the product of a complex number with its
conjugate is a real number:
ad = (a + bi)(a — bi) = a® — (bi)? = a® + b2

But this means that

. . 1 . a b,
1= (a+bi)(a— bi) (W) :(a+bl)<a2+b2 - a2+b2z>’

and so any non-zero complex number has a multiplicative inverse.
Thus, C is a field. Note also that R is a subring of this field.

> Quick Exercise. Determine the multiplicative inverses of the fol-
lowing complex numbers:

1
Li, 4= 5i, 66, 7 <

There is a geometric approach to understanding these computations.
Because a complex number a + bi is determined by an ordered pair
(a,b) of real numbers, it is only natural to associate with each complex
number a point in the plane. The first coordinate gives us the real
part of o, and the second coordinate gives us the imaginary part of
a. We call the plane interpreted in this way the complex plane.

(a.b)
________________ ta + bi

I
|
I
I
|
1

We can now talk about the length (or modulus) of a complex num-
ber. By the Pythagorean Theorem, this is evidently just

Va2 + b2 = Vaa.
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We abbreviate this by |a|. This generalizes the notion of absolute value
for real numbers.

> Quick Exercise.
numbers:

Compute the moduli of the following complex
: . .
1+1, 4—§z, 62, 7 <

It is certainly true that the absolute value of a product of real num-
bers is the product of the absolute values. That is,

|ab| = |al[b].

This generalizes to complex numbers:

Theorem 8.3 For any complex numbers o and 3,
laf] = [of|B].

Proof:
Then

Suppose that & = a+bi, and 3 = c+di are complex numbers.

laB|? = |(ac — bd) + (ad + be)i|? = (ac — bd)? + (ad + be)?
— a202 +b2d2 +a2d2 +b2C2 — (a2 +b2)(02 +d2)
= |af?|8]*.

By taking the (positive) square root of both sides, we obtain what we
wish. 0O

But a geometric understanding of complex multiplication extends
even further than this. Note that the radial line from the origin to
the point (a,b) makes an angle with the positive real axis. Let’s call
this angle 6, and always choose it in the interval —m < 6 < 7. (We
will leave this angle undefined for the complex number 0.) We call this
angle the argument of o and write it as arg(«).

> Quick Exercise. Compute the arguments of the following com-
plex numbers (you may have to use a calculator to approximate the
angle):

: 1
1+i, 4~ 5i, 66, 7 <

As the following diagram suggests, this means that we can now write
any non-zero complex number as a product of its modulus (a positive
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real number), and a complex number of length 1, which can be written
trigonometrically:

Vi, a b )
«=l 2+b2)(\/a2+b2+\/a2+b22>

= |a|(cos(arg(e)) + isin(arg(a))).

(a,b)

(cosf,sinf)

> Quick Exercise. Put together your results from the last two Quick
Exercises to write 1 414, 4 — %i, 67, 7 in this trigonometric form. <

We can now interpret multiplication in the field C as a geometric
operation. Suppose that o and  are non-zero complex numbers, and
we have factored them as

a = |a|(cosd + isin9)
and

8 = |8)(cos ¢ + isin p),

where 6 and ¢ are, respectively, the arguments of o and 3. To multiply
these numbers, we first multiply the moduli to obtain the modulus of
the product. Now let’s deal with the trigonometric part. A surprising
thing happens.

(cos @ + isinf)(cos ¢ + ising) =

(cos @ cos p — sin @ sin 8) + i(cos fsin ¢ + cos psin f) =
cos(f + ) + isin(f + ¢).

(We have used two familiar trigonometric identities.) This means that
the argument of a product is the sum of the arguments (except that
we may have to adjust the angle by 27 if 8 + ¢ does not fall between
—7 and 7).
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> Quick Exercise. Verify this statement about the argument of a
product by computing the arguments of the products (1 + ¢)(6¢) and
(=14 4)(1 +V/3i) in two ways. <

We record this statement precisely for future reference:

Theorem 8.4 DeMoivre’s Theorem
gles. Then

Let 6 and ¢ be two an-

(cos @ +isinf)(cosp +isinp) =
cos(f + ) + isin(0 + ¢).

This theorem is often written in a very compact way by making use of
exponential notation. If we define ¢ = cos @+ isin 6, then DeMoivre’s
Theorem takes the form efe® = ¢i®+¥) Remarkably enough, this
expression actually makes sense analytically, where e = 2.71828--- is
the base of the natural logarithm. In this book we will use this only as
a formal shorthand for the more explicit expression involving the sine
and cosine function. In Exercise 8.18 you will explore a derivation of
the exponential form of DeMoivre’s Theorem that depends on power
series from calculus.

We can now interpret the computations of inverses in the field C
geometrically. If we wish to compute the multiplicative inverse of the
non-zero complex number a = |a|(cosf + isinf) = |ale??, we need a
complex number whose modulus is 1/|a| (because the modulus of 1 is
1), and whose argument is —6 (because the argument of 1 is 0). What
this means geometrically is this: Flip through the z-axis (which obtains
the complex conjugate), and then adjust the length.

(o] cos 8, | sin &)

(1/le cos(—0),1/|a| sin(—0))

In future chapters we will return often to the field of complex num-
bers, as a very important example, both practically and historically.

We have based our discussion of the field of complex numbers on your
previous experience with the real numbers: The arithmetic of C comes
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entirely out of our understanding of the field properties of R. Actually,
it is possible to carefully prove that Q and R are fields, by basing their
arithmetic on the arithmetic of the ring Z. In this book we will not
enquire into these details, and rely instead on your previous experience
with these sets of numbers. We will continue to use Q and R as two of
our most important examples of fields.

8.5 Finite Fields

To provide further examples of fields, we now turn our attention to
the important collection of commutative rings, Z,. We will determine
which of these are fields. From our examples above, we know that Zs is
a field while Zg is not. These examples suggest the following theorem:

Theorem 8.5 Z, is a field if and only if n is prime.

Proof: If n is not prime, then n = zy for some 0 < z,y < n. But
then in Z,, [z][y] = [0]. So, Z, could not be a field by Theorem 8.2.
Conversely, suppose n is prime and let 0 < z < n. We need to
establish the existence of [z]~!. That is, we must find a y with [z][y] =
[1]. Because n is prime, we know that gcd(n,z) = 1. Then by the
GCD identity 2.4, there exist r,s such that rn + sz = 1. But then
[s][z] = [1] — [rn] = [1], and so [z]7 = [s]. )

The proof above has an interesting application: We can use it to
compute multiplicative inverses in Z,, where p is prime.

Example 8.6

Let’s compute [23]7! in Z119. First apply Euclid’s Algorithm to
obtain the equation 1 = (6)(119) + (—31)(23). But then [23]~! =
[-31] = [88].

> Quick Exercise. Check directly that [23](88] = [1]in Z119. <

Thus, the general recipe for computing [z]~! in Z, is this: Given
z and p, apply Euclid’s Algorithm to show that ged(p,z) = 1, and
then work backward through the resulting equations to obtain 7 and s.
Reducing s modulo p then gives the appropriate residue class. Notice

e e R e

e
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that this method applies even if p is not prime, as long as ged(p, z) = 1.
We can then conclude the following:

Theorem 8.6 Let 0 < x < m. Then [z] is a unit in the ring Zn, if
and only if ged(z,m) = 1.

Proof:
above.
Conversely, if ged(z,m) = d and d # 1, then m = rd and =z = sd,
where r and s are integers with m > r, s > 1. But then [z][r] = [sdr] =
[sm] = [0]. That is, [z] is a zero divisor, and so cannot be a unit.
(Notice that if you have done Exercises 3.5 and 3.6, that you have
already completed this proof!) a

To show that [z] has an inverse, merely repeat the argument

For an alternative approach to computing [z]™! in Z,, we consider
a beautiful and important theorem due to the 17th-century French
mathematician Fermat.

Theorem 8.7 Fermat’s Little Theorem If p is prime and
0 < x < p, then 27~! = 1(mod p). (Hence, in Z,, [z]7! = [zP72].)

Example 8.7

In Zs, this theorem asserts that [3]* = [1]. But then [3][3]3 = [1],
and so {3]7! = [3]® = [27] = [2].

Proof:  Suppose that p is prime and 0 < z < p. Then [z] is a non-
zero element of the field Z,. Consider the set S of non-zero multiples
of [z] in Zy:

S={lz-1,[z-2],...,[z-(p—- DI}
Because a field has no zero divisors, each element of S is non-zero.

Because a field satisfies multiplicative cancellation, no two of these
elements are the same.

> Quick Exercise. Why? «

Thus, the set S consists of p — 1 distinct non-zero elements and so
must consist of the set

{[1]7 [Q]a"' ) [p - 1]}

of all non-zero elements in Z,, in some order.
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It might be helpful for you at this point in the proof to verify this
fact in a particular case; see Exercise 8.8.

We now multiply all the elements of S together; this is the same as
multiplying all the non-zero elements of Z, together. We thus obtain
the following equation in Zj:

[i2)-+ lp = P = 1)+ [p— 1)

But by multiplicative cancellation in the domain Z,, we may cancel the
non-zero elements [1],[2],---,[p — 1] from each side of this equation,
leaving [z]P~1 = [1]. Or in other words, 2P~! = 1(mod p), as claimed.
|

Example 8.8

As another example of this theorem, consider the element [3] in
Z7. To compute [3]7! we do the following:

35 = ((39)2)(3) = (99)(3) = (29)(8) = (4)(3) = 12 = 5.

Thus, [3]~! = [5]; you can check directly that [3][5] = [1].

We have now exhibited infinitely many distinct finite fields (Z,, for
any prime p). It is natural to ask whether this is a complete list. We
shall discover later that there are fields with finitely many elements
which are not of the form Z,, but we will need to know a lot more
about field theory. (See Chapter 46, and also Exercise 8.12.)

Note that we have not exhibited a finite domain that is not a field.
There is good reason for this: The next theorem asserts that all finite
domains are actually fields. Of course, the finiteness here is important;
Z is an example of an infinite domain that is not a field.

Theorem 8.8 All finite domains are fields.

Proof: Suppose D is a finite domain with n elements. Then we can
list the elements of D as 0,dg,--,d,. (Somewhere in this list must
occur the multiplicative identity 1.) Suppose now that a is a non-
zero element of D. It is then one of the d;, where ¢ > 2. Consider
now the list of n — 1 elements ads, ads, ---,ad,. Because D is a do-
main, none of these elements is 0. Because multiplicative cancellation
holds in a domain, no two of these elements are the same (because
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if ad; = ad;, then d; = d; by cancellation). There are thus n — 1
distinct elements in this list. This means the list consists of all the
non-zero elements of D). But then ad; = 1 for some ¢, because 1 is
certainly one of the non-zero elements of D. This means that a is a
unit. Hence, all non-zero elements of D are units, and so D is a field.

O

You should think carefully about why the proof of the above theo-
rem does not work when the domain in question has infinitely many
elements. (See Exercise 8.10.)

Historical Remarks

Pierre Fermat was one of the most important mathematicians of the
17th century, even though he was an amateur. A lawyer by trade, he
did most of his mathematical work in the evenings, as an intellectually
stimulating recreation. Consequently, almost no mathematics under
his name was published until after his death. He did engage actively
in the mathematical life of his day, by corresponding with most of
the great names in physics and mathematics of the era; such men as
Huygens and Descartes were his correspondents. In this way, many of
Fermat’s results became well known to the mathematical community
of the time. In the present day, mathematicians (and other scientists)
communicate their results in widely available scholarly journals. In
this way, scientific results can be easily used (and checked) by others.
This sort of wide access to scientific knowledge was not yet available in
the 17th century. The evolution toward that system began only with
the founding of such scholarly societies as the Royal Society in Britain,
near the end of the seventeenth century.

Fermat’s Little Theorem is so called to distinguish it from his Great
or Last Theorem. This asserts that there are no solutions in non-zero
integers to the equation

xn+yn =Zn’

whenever n > 2. (Of course, there are many such solutions when n = 2;
for example, 32442 = 52.) . This assertion was found, without proof, in a
margin of a book of Fermat’s after his death. He noted that the margin
was insufficiently large to contain his ‘truly marvelous demonstration.’
Because no mathematician for 350 years was able to prove this asser-
tion, it seems highly unlikely that Fermat could prove it. Attempts to
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prove what might more properly be called Fermat’s Last Conjecture

have had an important impact on the development of abstract algebra.
But note that if there had been a system of mathematical journals
at that time, we might now have an answer to this famous problem,
or at least know whether Fermat’s proof was fallacious! In 1993 the
British mathematician Andrew Wiles thrilled the mathematical world
by announcing that he had proved Fermat’s Last Theorem, basing his
results on a large body of modern mathematical work. A gap in his
proof was discovered as his work underwent the present-day scrutiny
of peer review, but Wiles and his colleague Richard Taylor were able
to fill in the gap, and complete the proof of a 350 year old conjecture.

Chapter Summary

In this chapter, we defined integral domains (commutative rings with
unity without zero divisors) and fields (commutative rings in which all
elements have multiplicative inverses).

We proved the following theorems about fields and domains:

e Multiplicative cancellation holds in integral domains.

Every field is an integral domain.

Every finite integral domain is a field.

The ring Z,, is a field exactly if n is prime.

Fermat’s Little Theorem.

This last theorem gives a method for computing multiplicative inverses
in Z,, for p prime.

Warm-up Exercises

a. Determine the units and the zero divisors in the following rings:

ZxXZ, Zoy, Z4XZLo, Zn1, Z[II)]

b. Suppose that a is a unit in a ring. Is —a a unit? Why or why
not? '

e e
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. Find two non-zero matrices A and B in M3(Z) so that AB = 0;

that is, find some zero divisors.

. Find a non-zero matrix A in Ms(Z) so that A2 =0. Then A is a

zero divisor. (A ring element a so that o = 0, for some positive
integer n is called nilpotent. See Exercise 7.15.)

. Suppose that D is a domain. Show that the direct product D x D

is not a domain.

. Compute the argument, modulus, and multiplicative inverse of

the complex number 3 — 4.

. What is the argument of a (non-zero) real number?

. A complex number with modulus 1 is said to lie on the unit circle.

Why?

i. Choose two complex numbers on the unit circle (see Exercise h).

Why is their product also on the unit circle?

j. Consider the complex numbers 1 — /3¢ and 2 + 2.

(a) Compute their product twice: First do the arithmetic di-
rectly; then determine the arguments and moduli of these
numbers, and compute the product using Theorems 8.3 and
8.4.

(b) Compute their multiplicative inverses twice: First do the
arithmetic directly, and then use Theorems 8.3 and 8.4 in-
stead.

. Write out the following complex numbers in the form a+b¢, giving

exact values for a and b if possible, or by using a calculator if
necessary:

in) ; 27

e, e1, e, 2e3

. Give examples of the following, or explain why they don’t exist:

(a) A finite field.

(b) A finite field that isn’t a domain.
(¢) A finite domain that isn’t a field.
(d) An infinite field.
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. Does there exist an integer m for which Z,, is a domain, but not

. Use Euclid’s Algorithm to compute the multiplicative inverse of

. Use Fermat’s Little Theorem 8.7 to compute the multiplicative
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(e) An infinite domain that isn’t a field.

a field? Explain.

[2] in Zg.

inverse of (2] in Zs.

. Prove that if R is a commutative ring and a € R is a zero divisor,

. Consider the set M3(R) of all 2 x 2 matrices with entries from the

. Generalizing Example 7.9, consider the subring Ds(R) of diagonal

. Let @ = €' = cos1 +isinl. (Note that the argument here is 1

. Use Fermat’s Little Theorem 8.7 to find [6] 7! in Zig.

Exercises

then az is also a zero divisor or 0, for all z € R.

real numbers R; by Exercise 6.8, we know this is a ring. Prove
that the units of Ms(R) are precisely those matrices

(d)

such that ad — bc # 0. In this case, you can find a formula
for the multiplicative inverse of the matrix. We call ad — bc the
determinant of the matrix. And so the units of My (R) are those
matrices with non-zero determinant; we will explore the notion
of determinant further in Example 27.4.

Find two non-commuting units A4, B in M3(R), and check that
(AB)™'=B7'A71and (AB)"! £ A"1B1.

matrices with real entries. What are the units of Dy(R)?

radian.) What is the modulus of o™, where n is a positive integer?
Prove that o™ # o™, whenever n and m are positive integers and
n # m.
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7. Use Euclid’s Algorithm to find [36]~! in Zj.

8. Verify explicitly the key idea in the proof of Fermat’s Little The-
orem 8.7 for z = 3 and p = 17; that is, check that the set S
consists of the 16 non-zero elements of Z7.

9. Suppose that b € R, a non-commutative ring with unity. Suppose
that ab = bc = 1; that is, b has a right inverse c and a left
inverse a. Prove that a = ¢ and that b is a unit.

10. Try to apply the proof that every finite integral domain is a field
to the integral domain Z. Where does it go awry?

11. Let R be a commutative ring with unity. Suppose that n is the
least positive integer for which we get 0 when we add 1 to itself
n times; we then say R has characteristic n. If there exists no
such n, we say that R has characteristic 0. For example, the
characteristic of Zs is 5 because 1 +1+ 1+ 1+ 1 = 0, whereas
1+1+41+10. (Note that here we have suppressed ‘[" and ].)

(a) Show that, if the characteristic of a commutative ring with
unity R is n and a is any element of R, then na = 0. (Recall
thatna=a+a+---+a.)

N ———

n times
(b) What are the characteristics of Q, R, Z177?

(c) Prove that if a field F has characteristic n, where n > 0,
then n is a prime integer.
12. Consider the commutative ring

F={0,1,0,1 4 a},

where 0 is the additive identity, 1 is the multiplicative identity,
r+z=0foralz € F,and o? = a+ 1.

(a) Write out explicitly the addition and multiplication tables
for F.
(b) Prove that F'is a field.

(c) Because F has four elements, you might expect that F’ would
be the ‘same’ as the ring Z4. Show this is false, by computing
the characteristics of F' and Zg4 (see the previous exercise).
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13

14.

15.

16.

17.

18.
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. Suppose that R is a commutative ring and a is a non-zero nilpo-
tent element. (See Exercise 7.15; this means that a™ = 0 for some
positive integer n.) Prove that 1 — a is a unit. Hint: You can
actually obtain a formula for the inverse.

Prove that Z,, is the union of three mutually disjoint subsets: its
zero divisors, its units, and {0}. Show by example that this is
false for an arbitrary commutative ring.

Prove that if p is prime, then [(p —1)!] = [~1] in Z,. Note: In
number theory, this result is known as Wilson’s Theorem.

Suppose that
A={%") cmym)
" \ed 2

is a non-zero element, which is not a unit. Show that A is actually
a zero divisor. (You might want to look at Exercise 2.) What is
the relationship of this result to Exercise 147

Consider the ring C[0, 1]. (See Example 6.14.)

(a) What are the units in this ring? (You need a theorem from
calculus to prove your answer is correct.)

(b) Given f € C[0,1], define Z(f) = {z € [0,1] : f(z) = 0}
Prove that if f, g are associates, then Z(f) = Z(g).

Recall the Taylor series expansions centered at 0 for the three
functions sinz,cosx,e®. (These are also called the MacLaurin
series for these functions.) In calculus we discover that these
series converge to their functions absolutely for all real numbers
z. Let’s assume that these series also make sense for imaginary
numbers ix . By replacing x in e” by iz, and rearranging terms of
the series, verify that e*® = cosz + isinz, for all real numbers z.
(This verification can be made rigorous, using analytic techniques
we will avoid here.)

Chapter 9

Polynomials over a Field

In this chapter we generalize what we’ve learned about Q[z], the ring of
polynomials with rational coefficients, by replacing the rational num-
bers by entries from an arbitrary field. We will discover that the re-
sulting rings behave very similarly to Q[z], and hence to the ring Z as
well.

9.1 Polynomials with Coefficients from an Arbitrary Field

Suppose we consider polynomials with coefficients not from @, but
from some arbitrary field F. We denote this set of polynomials by
Flz]. Addition and multiplication are defined as in Q[z], but when
coefficients are added or multiplied, it is done in F.

Example 9.1

Consider Zy[z], the set of polynomials with coefficients from Z.
(So coefficients are either 0 or 1.) Consider the sum and product
of 2 + £ +1 and 2% + 1:

(@@ +z+)+ (@@ +) =@+ +z+(1+1) =z
and

(P+z+1)(?+1) =@+ +22)+ (@ +z+1)
=t + (@ +?)+r+1
=zt+2+r+ 1L

Notice how various of the above terms disappear, because

1+ 1 = 0 in the ring Z of coefficients. Similar care must be
taken with other finite fields.
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> Quick Exercise. Compute the sum, difference, and product of
2 +2z+1and 22 +z+2in Zs[z] (here, the coefficients consist of 0,
1,or 2). <

It is clear that Flz] (like Q[z]) is a commutative ring with unity; in
fact, it is an integral domain. But these two rings have much more in
common than that.

> Quick Exercise. Convince yourself that F[z] is an integral do-
main. <

If you return to Chapters 4 and 5 and look at the theoremF ('and
their proofs), you'll see that every theorem about Q[z] is valid if Q
is replaced by a field F' of your choice. The properties of Q that are
important in those theorems are the field properties of Q. As before,
the theorem that is the driving force is the Division Theorem.

> Quick Exercise. Prove the Division Theorem for F[z], by care-
fully re-reading the proof of this theorem for Q[z]. You will see that
multiplicative inverses for coefficients are required in this proof, but
nothing else special about Q. <

So, the Division Theorem, the Root Theorem, Euclid’s Algorithm,
the GCD identity, and the Unique Factorization Theorem hold for Rx],
Clz], and Z,[z] (for prime p), as well as F[z] where F is any other
field. Notice that to make sense of these theorems in this new and
more general context, we must be careful also to define such terms as
irreducible, prime, and associate here.

> Quick Exercise. Check that our definitions for these terms for
Q[z] still make sense for Flz]. <

> Quick Exercise. State the Unique Factorization Theorem for Flz],
where F is an arbitrary field. <

It is perhaps just as well to pause here a moment, and make certain
that you are aware of what we have just done. We have just asserted
(and you have checked!) that the statement and proofs of the Division
Theorem, the Root Theorem, Euclid’s Algorithm, the GCD identity,
and the Unique Factorization Theorem generalize when Q is replaced
by any field whatsoever. This is a striking example of the power of gen-
eralization and abstraction in algebra. We will devote the rest of this
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chapter to examining many examples of these theorems in action, using
various fields (other than Q) for the coefficients on our polynomials.

Example 9.2

Let’s find a gcd of 22 + z + 1 and 22 + 1 in Zy[z], using Euclid’s
Algorithm:

B rz+l=(?+1z+1
2 +1=1(z? +1) +0.

Therefore, I is a ged of 22 + + 1 and x? + 1. Now any other
ged of these two polynomials would be an associate of 1. That
is, it would be a non-zero scalar multiple of 1. But in Zy{z], the
only non-zero scalar is 1 itself. Thus, in Zg[z], 1 is the unique
ged of 23 + 2+ 1 and 22 + 1.

> Quick Exercise. Write 1 as a linear combination of z®+z+1
and 22 + 1 in Zy[x]. <

Example 9.3

Let’s now compute a ged of 2° + 2% + 1 and 22 + 2 in Zs[z]:

P+t 1=(@*+2)@ +z+1)+ (z+2)
2 42=(x+2)(x+1)+0.

Therefore, z 4 2 is a ged of 2° + 2% + 1 and 2° + 2 in Zs[z].
> Quick Exercise. Divide z° + 2%+ 1 by z +2in Zglz]. <

> Quick Exercise. List all the geds of 2° + 22 + 1 and 22 + 2
in Zs[z]. <

9.2 Polynomials with Complex Coeflicients

Given a quadratic polynomial with real coefficients, you probably recall
the quadratic formula that provides the roots for the polynomial;
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you may recall that the formula is proved by means of an algebraic
technique called completing the square.

To demonstate this, suppose that f = az?+bz+c € R[z], with a # 0.
To solve the equation az? + bz + ¢ = 0 we can do a little algebra to
obtain 22 + %x = —£. To make the left side of the equation a perfect

2a
little further algebraic simplification (see Exercise 9.1), we obtain the

usual form for the quadratic formula:

_—b+ Vb? — dac

2a

2 - .
square, we add the term (—b—) to both sides of the equation. With a

T

The quantity D = b2 — 4ac is called the discriminant of f. Clearly
the two roots are equal if D = 0, and we get two distinct real roots if
D > 0.

But if D < 0, the quadratic formula gives two distinct complex roots,
which are conjugates of one another. But by the Root Theorem these
two roots also give a factorization of f (in C[z]) into linear polynomials:

—b+ Vb? — 4ac> <x b=V 4ac> _

2a 2a

f:cw:2+b:c—|—c=a<x—

But in this case it is now clear that f cannot be non-trivially factored
in R[z]. For if it did so factor, it would then also have real roots, making
more than two roots for f in C, which is impossible.

We have thus shown that if f € R[z] is a quadratic polynomial with
negative discriminant, then it is an irreducible element of Riz]. But
any such quadratic polynomial can be factored further in Clz].

Example 9.4

Let’s factor the polynomial
f =272+ 17z — 15 € Rlz],

into irreducibles, in both R[z] and C[z]. By the Root Theorem,
z — 3 is a factor of f because f(3) = 0. We can then factor x —3
out of f:

f=(x—3)(z* -4z +5).

Because z — 3 is linear, it is irreducible. Now consider 2?2 —4x+5.
Its discriminant is D = —4 < 0, and so 2 — 4z + 5 is the other
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irreducible factor of f in R[z]. But if we apply the quadratic
formula we obtain two linear irreducible factors in Clz]:

f=-3)(z-2+i)(x—2—-1).

The example we’ve just examined, showing that more factorization
is possible in C[z] than in R[z], is a particular example of an important
general fact about C[z]: Fwvery non-constant polynomial in C[z] can
be factored into linear factors. This fact is known as the Fundamental
Theorem of Algebra, a very important theorem first proved rigorously
by Gauss. We won’t prove this theorem here. The easiest proof of
the Fundamental Theorem of Algebra uses complex analysis and is
accessible only to those who have taken an introductory course in this
subject. We will state the Fundamental Theorem in an (apparently
weaker) form, and then prove the statement we’ve made above as a
corollary.

Theorem 9.1 Fundamental Theorem of Algebra Every non-
constant polynomial in Clz] has a root in C.

Proof: We omit this proof, and refer the reader to any introductory
text in complex analysis. O

Corollary 9.2 Every non-constant polynomial with degree n in Clz]
is linear or can be factored as a product of n linear factors. Thus, the
irreducibles in Clz] consist exactly of the linear polynomials.

Proof:  Let f be a polynomial in C[z]. The essence of this proof
is to apply the Fundamental Theorem of Algebra to f and its factors,
over and over again. We make this precise by means of an induction
argument on n, the degree of f. If n = 1, then the polynomial is itself a
linear polynomial. Now suppose n > 1. By the Fundamental Theorem
of Algebra, f has a root a. By the Root Theorem, x — a is a factor
of f, and so f = (z — a)g, where deg(g) = n — 1. By the induction
hypothesis, g is either linear or a product of linear factors, and thus f
itself is a product of linear factors.

We’ve already observed that linear polynomials are always irreducible.
Any polynomial in C[z] of higher degree can be factored and so is not
irreducible. O
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One important observation needs to be made about the Fundamental
Theorem of Algebra: It merely asserts the existence of the linear factors.
Neither in the statement of the theorem nor in its (omitted) proof is an
effective method provided for actually finding them. We will return to
this subject in the final section of this book, on what is called Galos

Theory.

9.3 Irreducibles in Riz]

We now use the Fundamental Theorem of Algebra to find all irreducible
polynomials in R[z]. We have already proved half of the following
theorem:

Theorem 9.3 The irreducible polynomials in R[x] are the linear poly-
nomials, and those quadratic polynomials with negative discriminant.

Proof: We know already that linear polynomials are irreducible.
And in our discussion of the quadratic formula in Section 9.2 above
we have argued already that if a quadratic polynomial has a negative
discriminant, then it is irreducible in R[z]. We now will argue that
linear polynomials and quadratics with negative discriminant are the
only irreducibles in Rz].

Suppose that f is a non-linear irreducible in Rlz]. Then f can have
no real roots (else it would have a linear factor, by the Root Theorem).
But f has complex roots, by the Fundamental Theorem of Algebra.
Let a be a complex root of f. Suppose that & = s + ti, where s and ¢
are real and t # 0. We now use & = s — ti, the complex conjugate of
which we discussed in the previous chapter. We define

g=(r—a)lx—a)=(z~(s+t))(z— (s —1i))
=22 — 2sz + (s* + t2),

which is a polynomial in R[z]. We now apply the Division Theorem for
R[z]. By this theorem, f = gq + r, where f, g, ¢, and r all have real
coefficients. Now think of these polynomials as being in C[z]. So,

0= fla) = gla)g(a) +r(a).
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Because g(a) = 0, we have r(a) = 0. But deg(r) < 2 andsor =cr+d
with ¢,d € R. But r(a) = 0; that is, ca + d = 0. But a is not real,
and therefore we must have that ¢ = d = 0. Hence, f = gq, and so f
is not irreducible unless ¢ is a scalar. But then f is of degree two with
negative discriminant, which proves what we wanted. O

9.4 Extraction of Square Roots in C

We now know that we can use the quadratic formula to factor any
quadratic polynomial in R[z], over the complex numbers. But what
about quadratic polynomials in C[z]? We know by the Fundamental
Theorem of Algebra that such polynomials factor and thus must factor
into two linear factors. Surely the quadratic formula should still work.
But we must extract a square root when using the quadratic formula,
and if the original quadratic polynomial belongs to C|[z], this means
extracting the square root of an arbitrary complex number.

Example 9.5

Consider the quadratic equation
z? —iz — (14+14) =0.
If we proceed with the quadratic formula, we obtain the following:

L iEV3Td
===

> Quick Exercise. Check the above computation. <

Unfortunately, we have a complex number under the radical
sign. If we are lucky enough to observe that (24 )% = 3 +4i, we
can then obtain the two roots t = —1 and z =1+ 1.

> Quick Exercise. Check our arithmetic, and verify that the
given complex numbers are roots of the original equation. <

In the previous example we were lucky. But how can we extract
square roots of arbitrary complex numbers? We make use of the geo-

metric representation for complex numbers we discussed in the previous
chapter.
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Suppose that & = a+bi € C. We wish to find roots to the polynomial

x2 — . From the previous chapter, we can factor o as

o = |al(cos 8 + isin ) = |ae?,

where 0 is the argument of «. We wish to find a complex number whose
square is this. But because the modulus of a product is the product of
the moduli (Theorem 8.3), the modulus of a square root of a must be
Vlal. And one argument that will surely work is 6/2. Thus,

B = Va2 + b2(cos(8/2) 4- isin(6/2))

is a square root of the complex number o, and of course — (3 is another.
Because the polynomial z? — « can have at most two roots, these must
be the only roots it has; these roots are distinct unless @ = 0. Thus,
every non-zero complex number has exactly two square roots.

Example 9.6

Let’s compute the square roots of i. Its modulus is 1, and so its
square roots will also have modulus 1. Its argument is /2, and
S0 one square root must be

cos(w/4) + isin(w/4) = % + %z

and the negative of this is the other.

> Quick Exercise. Check this explicitly by squaring both these
complex numbers. <

1 .
Vo
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The two values for V2
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> Quick Exercise. Apply this method to compute the square roots
of 14++/3i. <

In Exercise 9.23, you will extend this method to compute the nth roots
of an arbitrary complex number.

Historical Remarks

Naturally, given a particular polynomial with real coefficients it may be
very difficult to come up with the factorization into irreducibles, partic-
ularly if the degree of the polynomial is large. Of course, the quadratic
formula allows us to find such a factorization for all polynomials of
degree two, and there exist progressively more complicated cubic and
quartic formulas, which allow us to factor all polynomials of degree 3
and degree 4. (See Exercise 9.12 for the degree 3 case, and Exercise 9.20
for degree 4.) However, a difficult theorem due to the 19th-century Nor-
wegian mathematician Abel states that there are polynomials of degree
5 or higher for which no explicit determination of the roots is possible,
using the ordinary operations of addition, subtraction, multiplication,
division, and extraction of roots. We will encounter this theorem in
the last chapter in this book.

The Fundamental Theorem of Algebra was one of Karl Gauss’s fa-
vorites; he returned to it several times over the course of his career,
proving it by different means. He had his first proof in hand before his
twentieth year. The theorem had been conjectured (and believed) by
such predecessors of Gauss as Lambert and Legendre. One of the most
important obstacles preventing a proof before the time of Gauss was
that there still remained doubts in the minds of most mathematicians
as to the status of complex numbers. You may yourself when first en-
countering complex numbers have doubted they were as ‘real’ as real
numbers; it is precisely this attitude which is reflected in the terms
‘real’ and ‘imaginary’. Gauss was among the first mathematicians to
use complex numbers with confidence and rigor. He made full use of
the geometric interpretation we have discussed. In part, this reduc-
tion of complex arithmetic to geometry gave some reassurance to those
who doubted the possibility of such calculations. Such doubts (which
had been the rule in mathematical circles since the 16th century) were
forgotten in the generation of mathematicians after Gauss.
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Chapter Summary

In this chapter we discussed how the ring F[z] of polynomials with
coeflicients from a field F" has properties analogous to those of Q[z]. In
particular, this means that the Division Theorem, Euclid’s Algorithm,
the GCD Identity, the Unique Factorization Theorem, and the Root
Theorem hold for Fz].

We also considered the important exarples C[z] and R[z]. We stated
the Fundamental Theorem of Algebra and inferred from it that the
irreducible polynomials in R[z] are exactly the linear polynomials, and
the quadratic polynomials with negative discriminant.

Warm-up Exercises
a. Calculate the quotient and remainder for the following, in various

rings Fz]:

) @®+4z + 1 by z + 2, in Zs[z].

) 3+ 4z + 1 by 2z + 1, in Zs[z].

(¢) 22— (24922 +5byiz—1,in Clz].
) 2t — 223 + % by 7z + 1, in Rz].

b. Use the Root Theorem to check for roots of z* + 4 in Zs[z]. Use
your result to completely factor this polynomial.

c. Why are z + 4 and (1 +4)z + (—1 + ©) associates in C[z]?

d. List all associates of 22% + 3z + 3 in Zs[z]. Is it clearer how to
factor this polynomial, if you consider one of its associates?

e. Why is 22 + 2 irreducible in Zs[x]?
f. Factor x3 — 2 into irreducibles in
Q[z], R[], Clz].
Repeat this problem for 2 + .

g. Extract the square roots of —3 + /37 in C.
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. Let F be a field. Could the ring F[z] be a field? Why or why

not?

Exercises

. Use the method of completing the square to complete the proof of

the quadratic formula for finding roots of polynomials of degree
two in R[z|, as begun at the beginning of Section 9.2.

(a) Why does every non-zero complex number have exactly two
square roots?

(b) Given part a, check that the proof of the quadratic formula
obtained in Exercise 9.1 still holds in C[z].

(c) Use the quadratic formula to compute the roots of the poly-
nomials

22— (3+2i)z+ (1 +3i) and 22 — (1 + 3d)z + (-2 + 24).

. Give examples of two different polynomials in Zs[z] that are iden-

tical as functions over Zs. This shows that equality of polynomi-
als in F[z] cannot be thought of as equality of the corresponding
polynomial functions. (See the Quick Exercise in Section 4.1 for
the F' = Zy case, and Exercise 4.12 for the case F' = Z3.)

. Consider the polynomial f = z3 + 322 + 22 € Zg[z]. Show that

this polynomial has more than three roots in Zg. Why doesn’t
this contradict the Root Theorem?

. Find a ged of 22 + 422 + 42 + 9 and 22 + ¢ — 2 in Q[z]; in Rz];

in Clz].

. Find a ged of 23 + 2% + = and 2% + z + 1 in Zg[z]; in Zs[z]; in

Zu [{E]

. Write the ged you found in Exercise 5 as a linear combination of

the two polynomials involved.

. Show that if f is a polynomial with real coefficients and o = s+ti

is a root of f in C, then so is @ = s — tt.
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10.

11.

12.
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Use Exercise 8 to construct a polynomial in R[z] with roots
3, 4 2— 1.

Factor z* + 23 + 222 + 1 into irreducibles in Z3[z]. Be sure to
prove that your factors are in fact irreducible.

Determine all the irreducible elements of Zy[x], with degree less
than or equal to 4.

In this exercise, we describe the cubic formula for factoring an ar-
bitrary polynomial of degree 3 in R[z]. This version of the formula
is called the Cardano-Tartaglia formula, after two 16th-century
Italian mathematicians involved in its discovery. Consider the
polynomial f = 23+ ax? + bz + ¢ € R[z] (by dividing by the lead
coefficient if necessary, we have assumed without loss of generality
that it is 1).

(a) Show that the change of variables © = y — %a changes f
into a cubic polynomial that lacks a square term; that is, a
polynomial of the form g = f(y — %a) =3 +py+q=0.
Note: This process is called depressing the conic. Clearly we
can solve f = 0 for z if and only if we can solve g = 0 for y.

(b) Find explicit solutions u, v to the pair of simultaneous equa-

tions
B =g
1
uv = =p.
3P
Hint: These equations reduce to a quadratic equation in u?
3
or v°.

(c) Prove the identity
(u—v)% + 3uv(u —v) + (¥ —u®) =0

and use it to show that y = u — v is a solution to the cubic
equation y3 + py + ¢ = 0.

(d) Let D = ¢ + 1121’;;-. (This is called the discriminant of the
conic.) Conclude that

i/—q+\/5 \s/q+\/5
2 B 2

is a root for g = 0. (This is just u —v.)

o B e

13.

14.

15.

16.

17.

18.
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In Exercise 12, there is an apparent ambiguity arising from the
plus or minus when extracting the square root of D to obtain
values for u® and v3. However, show that we obtain the same
value for the root u — v, regardless of which choice is made.

Apply the Cardano-Tartaglia formula to find a root of the cubic
equation
3 =6z+49.

Then factor z2 — 6z — 9, and use the quadratic formula to obtain
the remaining two roots.

Suppose as in Exercise 12 that g = y3+pz+¢ is a cubic polynomial
with real coefficients, and y = w — v is the root given by the
Cardano-Tartaglia formula. Suppese that D > 0. (Thus w and v
are real numbers.) Let { = e be a cube root of unity (called the
primitive cube root of unity in Exercise 25 below). Argue that
the other two distinct roots of g = 0 are the complex conjugates
ul — v¢? and u¢? — v¢. Note: Be sure and check both that these
are roots and that they are necessarily distinct.

Apply Exercise 15 to obtain all three of the roots for the cubic
y® 43y + 1.

An interesting and surprising conclusion one can draw from Ex-
ercise 15 is that if the discriminant D > 0, then the cubic poly-
nomial 3 4+ pz 4 ¢ € R[z] necessarily has exactly one real root,
and a conjugate pair of complex roots. In this exercise you will
use elementary calculus to verify this fact again:

(a) Consider the function g(y) = y>+pz+q. Suppose that p > 0.
Compute the derivative ¢'(y), and use it to argue that g has
exactly one real root, and consequently two complex roots.

(b) Suppose now that p = 0. Then conclude that g # 0. In this
simple case, what are the roots of g7

(c) Now suppose that p < 0. Compute the two roots of ¢'(y) =
0. Argue that the values of g at these two roots are both
positive (using the assumption that D > 0). Why does this
mean that g has exactly one real root?

(a) Find a cubic polynomial whose roots are 14 +/3,1—+/3, 3.
Hint: Use the Root Theorem.
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b) Apply the Cardano-Tartaglia cubic formula derived in the
g
previous exercise to solve the cubic obtained in part a.

(c) The answer you have obtained should be one of the roots
you started with, but it does not appear to be. Can you
explain this?

(d) Obtain the other two roots for this polynomial, by using
the same strategy as in Exercise 15. Note that we must use
complex arithmetic to obtain these three real numbers!

19. Exercise 18 is a particular example of what is called the irreducible
case for a real cubic. Show that in case D < 0, we obtain a real
root for the polynomial g = y3 4 px + ¢ by an appropriate choice
for v and v.

20. In this problem we will explore Ferrari’s approach to solving the
general quartic equation. Consider the arbitrary quartic

f=azt+ asz® + asz® + a1z + ag € Rlz].

(a) Find a linear change of variables y = x + m so as to depress
the quartic — that is, to eliminate the cubic term, as we
eliminated the quadratic term in Exercise 12.

(b) We may by part a assume that our quartic equation is of
the form z* = px? + gz +r, where p,q,7 € R. Add the term
2bx% 4 b? to both sides of this equation. Clearly this makes
the left-hand side of the equation a perfect square. We would
like to choose b so that the right-hand side is also a perfect
square. Obtain an equation for b (in terms of p,q,r) that
makes this true. The equation you obtain should be a cubic
equation in b. Explain why a (real) solution to this cubic
will always lead to a solution to the quartic equation. How
do you then get all four solutions?

21. Carry out Ferrari’s method for solving quartic equations, for the
equation z* = —z? — 4z + 3.

22. Use a calculator and our algorithm to compute (approximations
of) the square roots of 5 4+ 11.67 in C.

23. Suppose that the complex number o = a + bi has been factored
as

o = Va2 + b2(cos§ + isin §) = |ale?,
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as we did in the text when computing the square roots of a.

(a) Show that

B = X/a2 + b2 (cos (———0 +n27rk> +isin <0+ 27rk>> ,

n
for k=0,1,2,---n — 1, are all nth roots of a.

(b) Show that these are all distinct roots.

(c) Why is this the complete list of nth roots of a?

24. What are the five complex fifth roots of 1?7 What are the five
complex fifth roots of 1 447

25. We generalize the previous exercise. Let p be a positive prime
integer, and consider the cyclotomic polynomial
z? —1

o, = =P 4P it
z—1 :

first encountered in Exercise 5.17. Clearly its roots (together with
1) are exactly the p distinct pth roots of 1; these are called the
pth roots of unity. If we set
27
¢ = cos(2m/p) +isin(2w/p) = e ® ,
show that the pth roots of unity are precisely

17 Ca Cz? "'Cp_l'
We call ¢ the primitive pth root of unity.

26. A field F is said to be algebraically closed if every polynomial
f € Flz] with deg(f) > 1 has a root in F; we can rephrase this
definition roughly by saying that a field is algebraically closed
if it satisfies the Fundamental Theorem of Algebra. Thus, C is
algebraically closed, while R and Q are not. Show that for every
prime p, the field Z,, is not algebraically closed.

27. Show that the field in Exercise 8.12 is not algebraically closed.
(See the previous exercise for a definition.)

28. Show that, if Fis a field with infinitely many elements, then
f(x) = g(x) for all z € F implies that f = g as polynomials. (We
have already seen that this is not the case if F' is a finite field.
For example, consider 2° + z + 1 and 1 in Z3[z].)
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This section defines three important algebraic structures: rings, inte-
gral domains and fields.

Well-known objects (Z, Q[z], Zm, Q, R and C) share many algebraic
properties. These properties define an abstract object called a ring:

A ring R is a set of elements on which two binary operations, addi-
tion (+) and multiplication (-), are defined that satisfy the following
properties for all a,b,c € R:

1. (Addition is commutative) a +b="b+a
2. (Addition is associative) (a +b) +c=(a+ (b+¢)

3. (Additive identity exists) There exists an element 0 in R such that
a+0=a.

4. (Additive inverses exist) For each element a in R, there exists an
element x such that a +z = 0.

5. (Multiplication is associative) (a-b)-c=a-(b-c)

6. (Multiplication distributes over addition) a-(b+c)=a-b+a-c,
(b+c)-a=b-a+c-a

Note that the multiplication in a ring need not be commutative. A
ring where multiplication is commutative is called a commutative ring,
naturally. All the examples of rings we’ve listed above are commutative
rings. An example of a non-commutative ring is M3(Z), the collection
of 2 x 2 matrices with integer entries.

Addition in rings has some useful properties:

(Theorem 6.1) Suppose R is a ring and a,b € R.
1. (Additive Cancellation) If a +b=a+c, then b= c.

2. (Solution of equations) The equation a + x = b always has a
unique solution in R.
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3. (Uniqueness of additive inverses) Every element of R has exactly
one additive inverse.

4. (Uniqueness of additive identity) There is only one element of
R that satisfies the equations z + a = a, for all a; namely, the
element 0.

A subring S of ring R is subset of R that is itself a ring under the
operations induced from R. To determine whether a subset of a ring
is a subring, the Subring Theorem asserts that it is not necessary to
verify all the rules that define a ring:

(Theorem 7.1) A non-empty subset of a ring is a subring under the
same operations if and only if it is closed under multiplication and
subtraction.

Some rings R have a unity, or multiplicative identity; that is, an
element v € R where au = ua = a for all a € R. The number 1 is the
unity in Z, Q, R and C. The scalar polynomial 1 is the unity in Q[z]

and Z[z]. And the matrix ((1) (1)) is the unity in M2(Z). The residue
class [1] is the unity in Z,,. But 2Z has no unity. If the unity exists, it
is unique.

An element A # 0 is a zero divisor if there is an element b # 0 with
ab = 0. A commutative ring with unity is an integral domain if it has
no zero divisors. Z, Q, R, C, Q[z] and Z[z] are all integral domains. Z,
is an integral domain if and only if n is prime. M3(Z) is not an integral
domain.

Integral domains have the nice property of multiplicative cancella-
tion:

(Theorem 8.1) If R is an integral domain and a,b,c € R with a # 0,
then ab = ac implies that b = c.

If R is a ring with unity 1, then an element a € R is a unit if there
exists b € R such that ab = 1. In this case, b is said to be the mul-
tiplicative inverse of a. If all the non-zero elements of a commutative
ring with unity are units, then we say the ring is a field. The rings Q,
R, and C are all fields but Z, Q[z] and Z[z] are not fields. All fields are
integral domains (Theorem 8.2). Z, is a field, for prime p (Theorem
8.5). Indeed, all finite integral domains are fields (Theorem 8.8).

The field Z, is the setting for the important Fermat’s Little Theorem:
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(Theorem 8.7) If p is prime and 0 < z < p, then 2P~' = 1(mod p).
(Thus, 272 =27} in Z,.)

Finally, consider F[z], the polynomials over an arbitrary field F.
F[z] is an integral domain. The Division Theorem, the Root Theorem,
Euclid’s Algorithm, the GCD identity and Unique Factorization all
hold for F[z]. A particularly important example is F' = C, the field of
complex numbers. C[z] satisfies the Fundamental Theorem of Algebra
9.1: every non-constant polynomial in C has a root.
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Unique Factorization




Chapter 10

Associates and Irreducibles

In this chapter we begin to lay the groundwork necessary to explore
those domains for which a unique factorization theorem is true. We
wish to obtain a common generalization of Z and Q[z].

In both Z and Q[z], we ended up factoring elements into irreducibles.
Roughly speaking, this means elements that admit no ‘non-trivial’ fac-
torizations. But what do we mean by ‘non-trivial’? In the case of the
integers we disregarded factors of +1, while in the ring of polynomials
with coefficients from a field we disregarded scalar factors (that is, poly-
nomials of degree 0). In either case, these trivial factors amount exactly
to those elements of the domain that have multiplicative inverses; that
is, the units.

10.1 Associlates

Recall from Chapter 5 that two polynomials that are scalar multiples
of one another are called associates. This idea can be generalized: Two
elements a and b of a commutative ring with unity are associates if
there exists a unit u such that a = ub. Thus, if we speak intuitively,
two elements are associates if they differ by only a ‘trivial’ factor.

Example 10.1

The set of units of Z consists of exactly {1,—1}, and so two
elements are associates if they differ only by a factor of £1.

Example 10.2

The set of units of Q[z] consists of the non-zero constant polyno-
mials (which we can identify with the non-zero rational numbers)



142 A First Course in Abstract Algebra: Rings, Groups, and Fields

and two polynomials are associates if they differ only by a (non-
zero) rational multiple. Of course, this is exactly the definition
we made of ‘associate’ in Section 5.2, and so our general definition
is consistent.

Example 10.3

In Z, the units are {1,5,7,11}; 4 and 8, for example, are asso-
ciates, because 5 -4 = 8.

> Quick Exercise. What are the other associates of 4 in Z;57
What are the associates of 4 in Zog? <

Example 10.4

In a field, all non-zero elements are units, and so in this case all
(non-zero) elements are associates of one another.

10.2 Irreducibles

We now define what we mean by an irreducible element for an arbitrary
commutative ring, generalizing our earlier notions for Z and Q[z]. A
non-zero element p of a commutative ring R is irreducible if

(1) it is a non-unit, and

(2) if whenever p = ab, then (exactly) one of a and b is a unit.

Example 10.5
The irreducibles in Z are exactly the prime numbers (and their
negatives).

Example 10.6

The irreducibles in R[z] are exactly the linear polynomials, to-
gether with the quadratics with negative discriminant. (See The-
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Example 10.7

The irreducibles in Q] include all linear polynomials, in addition
to such polynomials as 22 4+ 1, 2° — 2, and others.

Example 10.8

Consider first the case of a field. Here, all non-zero elements are
units, and so in a field there are no irreducible elements.

Example 10.9

What are irreducible elements in Z[z]? Note that although 3z+6
is irreducible in Q[z], it is not irreducible in Z[z]. This is because
3 is a non-unit in Z[x], and so the factorization 3z+6 = 3(x+2) is
non-trivial. Thus, the coefficients of an irreducible polynomial in
Z[z] can have no common integer factor (other than +1). Such
polynomials in Z[z] are called primitive. Gauss’s Lemma 5.5
asserts that primitive polynomials (with degree greater than zero)
of Z[x] are irreducible if and only if they are irreducible in Q[z].
And what about polynomials of degree zero in Z[z] (that is, the
integers)? Any factorization of such a polynomial would also be
factorization in Z. Thus, 3 (and any other prime integer, or its
negative) will be an irreducible element of Z{z].

Example 10.10

What are the irreducible elements of Z4? In this ring, 1 and 3
are units, and so the only possible irreducible is 2. But the only
factorizations of 2 in Z4 are 2 = 1-2 and 2 = 3 - 2, which are
both trivial; thus, 2 is irreducible. Note in this case that 2 has
no associates other than itself.
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In all these cases, our general definition coincides with our earlier
definitions of irreducible. Let’s consider some examples of irreducibles
in other commutative rings.

orem 9.3.)

Although the examples just described are illustrative, we need further
examples to really understand the idea of irreducible in general, and
we will investigate such examples in the remainder of this chapter.
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10.3 Quadratic Extensions of the Integers

We now describe a large class of rings of complex numbers, which
are called quadratic extensions of Z. Let n be an integer (positive or
negative), other than 1. Suppose further that n has no non-trivial
factors that are perfect squares. We call such an integer square-free.

Thus, —21 is square-free, while 18 is not. We now define a subset of C
as follows:

Zlvn] = {a+by/n:a,be 7},

which we call a quadratic extension of Z. Our restriction to n being
square-free is merely to ensure that no rational simplification is neces-
sary under the radical sign. In particular, if n is square-free, we know
that \/n is an irrational number (see Exercise 10.16). Notice that if 7
is positive, the quadratic extension consists of a set of real numbers.
We have met these sets before in the exercises. (See Exercise 6.12,
and Exercises 7.1 and 7.2.) But in case you have not done these exer-
cises, we now review the proof that these sets are subrings of C. For
a fixed n, we equip the set Z[\/n] with the usual addition and multi-
plication inherited from C. It is an easy matter to see that this set is
non-empty, and closed under subtraction and multiplication:

(a+bv/n) — (c+dv/n) = (a—b) + (c — d)/n,

and

(a +bv/n)(c+ dv/n) = (ac + nbd) + (ad + bc)v/n.

This means by the Subring Theorem 7.1 that Z[\/n] is a subring of C,
and so is a commutative ring (with unity), for each square-free integer
n.

The case where n = —1 is of particular importance; this is called the
ring of Gaussian integers and is usually written Z[i] (as we noted in
Exercise 6.12).

What are the units and irreducibles of these rings? This general
question actually turns out to be a fairly sophisticated inquiry from
number theory, and we cannot give a general answer here. We will
make some progress on this question, particularly in special cases.
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10.4 Units in Quadratic Extensions

Let’s see first what the question regarding units amounts to. If a+by/n
is a unit, then we have an equation of the form

(a + bv/n)(c + dy/n) = (ac + nbd) + (ad + bc)y/n = 1.

This means that we must find all simultaneous solutions a, b, ¢, d to the
equations ac+nbd = 1 and ad + bc = 0, where a, b, c,d are integers'(re-
call that here n is fixed). Equations where we require integer solutions
are called Diophantine equations. Study of such equations makgs
up an important branch of number theory. In Exercise 10.1, you will
try to solve this pair of equations directly in the particular case of the
Gaussian integers (that is, where n = —1).

However, in the long run we will be better off by recalling our geo-
metric representation for complex numbers introduced in Chapter 8.
Let us view the Gaussian integers as points in the complez plane.

Recall that for a complex number p = r+si, we computed its modulus
(or length) as |p| = Vr?+s2. Actually, for our purposes here it is
rather less messy to consider the square of the length of a complex
number 7+ si. We call that quantity L(r+s3). Thus, L(r+si) = r’+s%
Notice that we can view L(p) as just pp = (r + si)(r — si), where
p =71 — st is the complex conjugate of p.

What is important for us is that the modulus function and, hence,
the function L preserve multiplication. By this we mean that L(p7) =
L(p)L(7), for any pair of complex numbers p, 7. If you don’t recall this
fact, it would be well worth reviewing the proof of Theorem 8.3 now.

The fact that this function preserves multiplication means that we
can translate certain algebraic questions about Z[i] into questions in
the integers Z, where they are presumably easier to answer.

For example, suppose that « € Z[i] is a unit. Then there exists
another Gaussian integer 3 for which a8 = 1. But then we have that

L(@)L(B) = L(af) = L(1) = 1.

Since L(a) and L(B) are positive integers, this means that L(a) =
L(B) = 1. Hence, if a Gaussian integer « is a unit, then L(a + bi) =
a® + b2 = 1. Tt is then easy to check in Z that the only solutions to
this equation are a = +1 and b = 0, or vice versa. That is, the units of
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Zli] consist precisely of {1,—1,4,—i}, the four points on the unit circle
in the complex plane at angles 0,7/2,m,37/2. Notice that we have
arrived at this conclusion much more easily than by directly solving
the appropriate Diophantine equations, as in Exercise 10.1.

What we would really like to do is to equip Z[/n] with a function
playing the same role as L does for the Gaussian integers, where n is
any square-free integer. The function we propose to use is the following.
Let N : Z[/n] — N U {0} be defined by setting

N(a+bvn) = |(a +bvn)(a - bv/n)| = |a® - nb?|.

We call N(a) the norm of a.

Notice that if n is negative (as in the case of the Gaussian integers),
this is merely the square of the ordinary complex modulus, and is
automatically non-negative; consequently, the absolute value sign in
the definition is superfluous. However, if n is positive, we need the
absolute value, or else we might not get non-negative integer values.
And note that as long as n is square-free, N(a) = 0 only if & = 0
(otherwise, v/n would be rational, which contradicts Exercise 10.16).

In order to use the function N as we did L for the Gaussian integers,
we need to show that it preserves multiplication:

Theorem 10.1 Let n be a square-free integer, and let o, 3 € Z[\/n].
Then N(af) = N(a)N(B).

Proof:  This proof is similar in flavor to that given for Theorem 8.3
and is left to the reader; see Exercise 10.2. O

We now show that the norm is useful for identifying units, in any of
the rings Z[/n]:

Theorem 10.2 Let n be a square-free integer, and let a € Z[/n].
Then «a is a unit if and only if N(a) = 1.

Proof:  Suppose that n is a square-free integer, and o € Z[/n] is a
unit. Then there exists § with 3 = 1. But then application of the
function N gives us N(a)N(3) = 1. Because all values of the norm
function are non-negative integers, we must have that N(a) = 1, as
required.

Conversely, suppose that N(a) = 1. But if @ = a + by/n, this means
that (a + by/n)(a — by/n) = 1 or —1, which means that a — by/n (or
—a + by/n) is the required multiplicative inverse. O
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> Quick Exercise. Notice that 52 — 6(2)? = 1. What units does
this provide for the ring Z[V6]? <

Let us for the moment restrict ourselves to the question of explicitly
determining the units in quadratic extensions of the form Z[/n], where
n is negative. If in this case @ = a + by/n is a unit, then 1 = N(a) =
a2 — nb?. If n = —1, this is the case of the Gaussian integers, and we
get {1,—1,4,—i} as the units, exactly as before. But if n < —1, then
there are no solutions to this equation if b > 0. And so the only units
in this case are *1.

> Quick Exercise. Check for yourself the solutions to the equation

l=a’>—nb* whenn<—-1. <

Ounce we know the units for a ring, we know which elements are
associates of which. For example, what are the associates of 3+ ¢ in
Z[i]? They are (1)(3+1) = 344, (—1)(34+14) = —3—1, (i)(3+1i) = —1+31,
and (—1)(3+1¢) =1 - 3:.

> Quick Exercise. What are the associates of a + bi in Z[i]? <
Example 10.11

What are the associates of a given element in Z[v/—5]? The only
units in this ring are +1+04/—5 = £1. Thus, the only associates
of an element in Z[v/—5| are the element itself and its negative.

Let’s now turn to the case Z[y/n], for n > 0. If we wish to find the
units of Z[,/n], when n is a positive square-free integer, we must solve
the Diophantine equation |a? — nd?| = 1. In the Quick Exercise after
Theorem 10.2 we actually gave a solution to this equation for n = 6,
which then gave us units in Z[\/é]

Unfortunately however, this is in general a rather more subtle ques-
tion than the corresponding question when n < 0. We are looking for
integers a, b satisfying either a? = nb?+ 1, or else nb?> = a? + 1, where n
Is a constant positive square-free integer. Such Diophantine equations
have a long history and are known as Pell’s equations. The description
of how such equations are solved in general is a fascinating piece of
mathematics that is unfortunately beyond the scope of our text.
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Example 10.12

For n = 2, observe that a = 1 and b = 1 does in fact give a
solution, because |12 — 2(1)%| = 1. Thus, 1 + 1/2 is a unit for
Z[\V2).

We have already observed that in any ring the set of units
is closed under multiplication, and so this means that (1 + v/2)?
must also be a unit in Z[v/2], and indeed so is (1 4+ v/2)", for any
positive integer n. Furthermore, each of these units is distinct:
since 1+ v/2 > 1, these numbers form a list of strictly increasing
real numbers.

Notice that we could also have concluded that the positive
powers of o are units by observing that if N(«a) = 1, then
N(a™) = (N(a))™ = 1™ = 1. But this even makes sense for nega-
tive exponents. After all, because 1+ /2 is a unit, (14 /2)~! =
—1+ /2 is a unit of Z[\/i], and so all elements of the form
(1+v2)™™ = (1 +v2)~1)" = (=1 + v/2)™ are units too.

> Quick Exercise. Why is (1 4+ v2)™! = -1+ +/2? «
But —1 is a unit too (it is its own multiplicative inverse), and
so we obtain the following lists of units of Z[+/2):

1L, 14v2, (1+v2)?2=3+2v2, (1+vV2P3=7+5V2,---,

-1, —-1-v2, —-3-2v2, -7-5V2,---,
1+V2)l=—14+Vv2, (1+v2)2=-3+2V2
1+V2) 3 =-7+5V2,--,

and

1-v2, 3-2v2, 7-5V2,---.

It turns out (though we will not prove it here) that this is a
complete list.

This infinite list of units means that detecting whether or not
two elements in Z[/2] are associates is not the trivial matter it
is in Z (or even in Z[i]). For example, 4 + /2 and 8 — 5v/2 are
associates, because (4 + v/2)(3 — 2v/2) = 8 — 5/2, and 3 — 2V/2
is a unit.

&> Quick Exercise. Calculate several distinct associates of 3+

5v2 in Z[v2]. <

> Quick Exercise. Find several units of Z[v/3] (other than +1), and
then compute several associates of V3. «
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Notice that in any of these quadratic extension rings, it is obvious
that if two elements are associates, then they have the same norm.

> Quick Exercise. Why do two elements that are associates have
the same norm? <

It is tempting to conjecture that the converse of this statement is
true, but you will demonstrate by explicit example in Exercise 10.14 two
elements of such a ring, with the same norm, which are not associates.

10.5 Irreducibles in Quadratic Extensions

What about irreducibles for Z[/n] (for any square-free n)? First ob-
serve that if N(«) is an irreducible (integer), then certainly « itself is
an irreducible. For if & = 37, then the norm of exactly one of 3 and y
must be 1 (because N() is a (positive) irreducible in Z) and units are
exactly those elements of Z[/n] which have norm one. We state this
result for emphasis:

Theorem 10.3 Letn be a square-free integer, and o € Z[\/n]. If N(o)
is a prime integer, then « is irreducible in Z[\/n].

Example 10.13

Thus, 2+5+/—5 is irreducible in Z[\/—5], because N (2+5+/—5) =
129, which is prime (in Z). And 1+ 2v/2 is irreducible in Z[v/2],
because its norm is 7.

Example 10.14

Notice that 1 + ¢ is irreducible in the Gaussian integers. But
because 2 = (1 + i)(1 — 4), 2 (an irreducible in Z) is not an
irreducible in Z[i).

> Quick Exercise. Use Theorem 10.3 to find some irreducible ele-
ments in Z[v/6] and in Z[y/=3]. <

Unfortunately, the converse of Theorem 10.3 is false. That is, there
exist irreducibles that do not have prime norm.
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Example 10.15

For example, we claim that 1 4 /=5 (which has norm 6) is irre-
ducible in Z[y/=5]. For if it had a non-trivial factorization, the
factors would have to have norms of 2 and 3. But this would re-
quire integer solutions of the Diophantine equations a2 + 5% = 2
and a? + 5b% = 3. Obviously, no such solutions are possible.

Example 10.16

Similarly, we claim that 3 is irreducible in Z[v/2], even though
the norm of 3 is 9 (which is not prime in Z). In this case we
would need solutions of at least one of the Diophantine equations
a?® = 2b% + 3 or 2b% = a2 + 3. Suppose by way of contradiction
that the first of these equations did in fact have a solution. Then
a would have to be an odd integer, and so a = 2k + 1. But then
(2k + 1)% = 2b% + 3, or after a little algebra, 2k* + 2k =b? + 1.
This means that b must be odd, and so b = 2m + 1. Then
2k? 4+ 2k = (2m + 1)2 + 1, or after simplification, k? + k =
2m? + 2m + 1. But k% + k, as the product of consecutive
integers, is necessarily even, while 2m? + 2m + 1 is necessarily
odd. This contradiction shows that no integer solution to the
equation a? = 2b% + 3 is possible. We leave it to you to check
(see Exercise 10.4) that there is no solution to the other equation
either. This means there are no members of Z[v/2] which have
norm 3, and so 3 (with norm 9) has no non-trivial factorizations.

The fact that it required this excursion into number theory to prove
that 3 is irreducible in Z[v/2] might convince you that the general ques-
tion of determining all irreducibles for quadratic extensions of Z is
difficult. This is in fact the case, and we will not pursue the matter
here.

Chapter Summary

In this chapter we introduced the concepts of associate and irreducible,
for any commutative ring. We examined examples of these concepts in
many previously encountered rings.

We then introduced the quadratic ertensions of the integers and
looked at units and irreducibles in such rings, making heavy use of
the norm function.
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Warm-up Exercises

a. Determine whether the following pairs of elements are associates:

. Discover which elements of Zi5 are associates of which.
. List all associates of 2% + 3z + 4 in Zs[x].

. What are the units in Q x Q7 What are the associates in this

ring of (1,2)7 of (1,0)7?

. Determine four distinct associates of 3 + 2v/2 in Z[v/2].
. Determine all associates of 5 + 4 in Z[i].

. Let n be any square-free integer. Why is n not irreducible in

Z[\/A)?

. Determine four distinct irreducibles in Z[v/2]. Hint: Look for

elements with prime norm.

1. Do irreducible elements of Z[,/n] necessarily have prime norm?

j. Determine which of the following elements are irreducible:

(a) 9+ /10 in Z[/10].
(b) 5+ /5 in Z[V/5].
(c) 222+ 4 in Z[z].

(d) 2z% + 4 in Q[z].

(e) 22 + 4 in Z7[x].
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(f) (1,3)in Z x Z.
(g) (0,3)inZ xZ.
(h) (1,-1)in Z x Z.
(i) (1,3)in Z x Q.
Exercises

1. Find all simultaneous integer solutions to the Diophantine equa-
tions ac — bd = 1,ad + bc = 0 directly, by eliminating variables;
interpret your solutions as determining all units in the Gaussian
integers.

2. Prove Theorem 10.1. That is, let n be a square-free integer. As in
the text, define N (a4 by/n) = |a? — nb?|. Prove that N preserves
multiplication, that is, N(af) = N{a)N(5).

3. Suppose that n, m are distinct square-free integers. Prove that

ZIVn] N Z[v/m] =
This is not true if at least one of the integers n and m is not
square-free. Give an example to show this.

4. Prove that the Diophantine equation 26> = a? + 3 has no integer
solutions, proceeding similarly as the problem a? = 2b% + 3 is
handled in the text in Example 10.16.

5. Find infinitely many distinct units in Z[v/7]. Then list infinitely
many associates of v/7 in Z[v/7].

6. Suppose that n is a square-free integer and n > 0. Prove that
Z[v/—n] has only finitely many units.

7. Show that there are no irreducible elements in Zg.

8. Show that 2 is irreducible in Zg, and that every non-unit in Zg is
irreducible or a product of irreducibles.

9. Determine all irreducible elements of Z x Z.

10. Prove that if p is a prime in Z and p is congruent to 3 mod 4,

then p is irreducible in Z[i].

11.

12.

13.

14.

15.

16.
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Prove 2 is irreducible in Z[/n] for all square-free n < —2.

Find two distinct square-free integers n (with n > 1) for which 2
is not irreducible in Z[/n].

Suppose that p is a positive prime integer. Prove that /p is
irreducible in Z[,/p]. Show by example that this is false if p is
not prime; in particular, consider p = 6.

Show that 11 4+ 64/—5 and 16 + 34/—5 are irreducible elements in
Z[/—5], with the same norm. Show that these elements are not
associates.

Suppose that R is a commutative ring with unity, and consider the
ring R[z] of polynomials with coefficients from R. (See Exercise
6.23.) Let r be an irreducible element of R. Prove that r is an
irreducible element of Rlx].

Suppose that n is a square-free integer. Prove that /n is irra-
tional.



Chapter 11

Factorization and Ideals

In the last chapter we acquainted ourselves with the constituent pieces
of a general theory of factorization for domains: namely, the irre-
ducibles. In this chapter and the next we discuss what is required
to obtain a factorization into irreducibles, and along the way we meet
some vitally important concepts for all of ring theory. Conditions nec-
essary to force such a factorization to be unique will be examined in
Chapter 13.

You should now recall the proof that every integer can be factored
into irreducibles (and the analogous proof for Q[z]). Both of these
proofs depend heavily on the fact that N is well ordered: by continuing
to extract factors from a positive integer, we decrease its size, and
we cannot continue this indefinitely. What more general context is
possible?

11.1 Factorization for Quadratic Extensions

For the quadratic extensions of Z discussed in the last chapter we have
the appropriate tool at hand: The norm function N provides a measure
of size. In fact, it shouldn’t be too surprising that this might work,
because the norm function takes values precisely in the set of non-
negative integers. Recall that for any square-free integer n,

N(a+ by/n) = |a® — nb?,

and N preserves multiplication (Theorem 10.1). We have also shown
that the units of Z[/n] are precisely those numbers with norm 1 (The-
orem 10.2). ‘

We can now prove the following:

Theorem 11.1 Factorization Theorem for Quadratic Exten-
Slons of 7 Let n be a square-free integer. Then every non-zero
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non-unit of Z[\/n] is either irreducible or a product of irreducibles.

Proof: Let a # 0 be a non-unit of Z[\/n]. We proceed by induction
on N(a). Note that N(a) # 1, because « is a non-unit, and if N(a) =
2, then « is itself irreducible.

> Quick Exercise. Show that if o € Z[y/n] (n square-free) and
N(a) = 2, then « is irreducible. <

Now suppose the theorem holds true for all 3 with N(8) < m. If o
is irreducible already, we are done. If not, then a = (v, where both
factors are non-units. But because N(a) = N(B)N(vy) and N(8) > 1
and N(v) > 1, we have that N(8) < m and N(y) < m. By the
induction hypothesis both 8 and 7 can be factored as a product of
irreducibles and, thus, so can their product a. a

> Quick Exercise. Find irreducible elements in Z[i] and Z[v—7]
that have norm 2. <

It is of great importance to note that we have neither claimed nor
proved that the factorization into irreducibles provided by this theorem
is unique. There is good reason for this: For suitable choice of n, such
factorizations are mot unique.

To see this, consider the following two factorizations of 6 in Z[v/—5]:

6=(1++v—-5)-(1-+v=5)=2-3.

We argued in Example 10.15 that 1+ +/—5 is irreducible, and a similar
argument applies for the other factors in the two given factorizations.

> Quick Exercise. Verify that 1 —+/—5, 2, and 3 are irreducible in
Z[v/—5], by considering their norms. <

Now, if a unique factorization theorem applied for Z[v/—5], this would
mean that these two factorizations would be the same, up to order and
unit factors. But it is quite easy to see that 2 is not an associate of
either 14+1/—5 or 1—+/—5, because associates must have the same norm.
In Exercise 11.7, you will provide two essentially distinct factorizations
of 8 in Z[v/—7].

But before we inquire into this uniqueness question, we must first
confess that we have really made little progress toward a general theory
of factorization into irreducibles, because the quadratic extensions of Z
remain a fairly special class of domains to discuss.
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11.2 How Might Factorization Fail?

To make a more general attack on the factorization problem, let us
think about how factorization into irreducibles in a domain R could
fail. Suppose then that 0 # a7 € R is not irreducible and is not the
product of irreducibles. Then there exists a factorization a; = agbs,
where neither ao nor by is a unit. Furthermore, because a; cannot be
factored into a product of irreducibles, this must be true of at least one
of ag or bz. To be specific, let’s suppose that as can’t be so factored.
But then ag can be factored as as = agbs, where neither as nor b3 is a
unit, and where a3 cannot be factored into a product of irreducibles. If
we continue in this fashion, we obtain an infinite sequence of non-trivial
factorizations:

a1 = az2ba, ag =aszbs, a3 = asby,

where every element in sight is a non-unit.
Here is a slightly different way to think of this infinite sequence. Let

(a) = {b € R:b=ax,for some z € R}

That is, (a) consists of the multiples of a in R. Our sequence of factor-
izations clearly in part asserts that

(a1) C {az) C (a3) C---

This string of inclusions really says something very simple: All multi-
ples of a; are in turn multiples of ay (because a; is itself a multiple of
az), all multiples of ay are in turn multiples of a3, and so on.

But we claim further that these containments are proper. For if
_(a) = (b), then a is a multiple of b, and b is a multiple of a. That
18, axr = b and by = a, for some z,y € R. Therefore, byr = b, and
80 yz = 1 (because the cancellation law holds in domains). But this
means that y and z are units, and so a and b are associates. We are
assuming in our infinite sequence that none of the a;’s are associates,
and so our infinite sequence of proper factorization leads to an infinite
ascending sequence of sets of the form (a). If we could always factor
Into irreducibles, such a situation would be impossible.
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Example 11.1

Let’s consider an example of these ideas and this notation in the
ring Z. Consider the integer 360. By successively factoring 360,
we might obtain the following chain of inclusions:

(360) C (180) C (60) C (20) C (10) C (5).

We cannot continue any further in this example, precisely because
5 is irreducible and so admits no further non-trivial factorization.
Of course, we know already that Z has a factorization theorem,
and so we should have expected this chain of inclusions to halt.

The argument above about the potential lack of factorization will be
important in the next chapter, and so we record its conclusion as a
lemma:

Lemma 11.2 Let R be a domain and 0 # a1 an element of R that
is neither irreducible nor the product of irreducibles. Then there exist
non-units as, as, aq, - -, such that

<a1> C (a2> C (a3> e,

® a9 ® a3

11.3 Ideals

What we need now is a further abstraction that will enable us to talk
fruitfully about such subsets of a ring as (a). The required definition
is the following: Let R be a commutative ring. An ideal of R is a
non-empty subset I of R satisfying the following criteria:

1. I is closed under subtraction;
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2. ifa€e I and r € R, then ar € I.

Thus, an ideal is a subring that satisfies the stronger multiplicative
closure property (2). This property says that I ‘absorbs’ multiplication
by any ring element. We remind ourselves of this by calling (2) the
multiplicative absorption property of ideals.

We have made this definition only for commutative rings, because
we deal primarily with such rings in this book. However, the definition
above can be modified to account for the notion of ideal in the non-
commutative case: Simply strengthen (2) to require that both ar and
ra belong to I if a € I.

We now consider examples of ideals:

Example 11.2

Every commutative ring (except the zero ring) has at least two
ideals. The first is the trivial or zero ideal {0}. We've already
noted that this is a subring, and the multiplicative absorption
property holds, because 0a = 0 for all a. The second is the im-
proper ideal consisting of the entire ring. It is obviously closed
under subtraction and multiplicative absorption. Note that we

call any ideal which does not consist of the entire ring a proper
ideal.

Example 11.3

Let’s discuss some ideals of Z. Consider the following subsets:
0)y={0}, (HY=2, (2)={reZ:ziseven}, (3), (), -

Each of these is a subring, and in fact, each satisfies the multi-
plicative absorption property. For example, to see that (2) does,
we need only observe that (2) is the set of even integers: If we
multiply an even integer by any integer, we obtain another even
integer.

> Quick Exercise. Check that the set (3) in Z satisfies the
multiplicative absorption property. <
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11.4 Principal Ideals

We can clearly generalize the observation in Example 11.3: Given a
commutative ring R with a € R, we claim that (a) is an ideal. We first
show that it is closed under subtraction. For if z,y € (a), then z = ar
and y = as, for some r,s € R. But then z —y = ar — as = a(r — s),
which is clearly a multiple of a, and so an element of (a). To show that
(a) is closed under multiplicative absorption, suppose that = € (a) and
y € R. Then x = ar, and so zy = ary = a(ry). This latter element is
a multiple of a, and so belongs to (a). We call ideals of the form (a)
principal ideals, and call a a generator for (a).

Example 11.4

Consider the principal ideal (3) in Z;2. Clearly, this ideal consists
of the elements {0, 3,6,9}.

Example 11.5

Consider the principal ideal (v/5) in Z[v/5]. What does a typical
element of this ideal look like? All such elements are multiples
of /5, and this naturally leads one to think of such elements
as V5, —v/5,2v5, and so forth. However, these are merely in-
teger multiples of v/5, and we must allow multiples of V5 by
any element from the ring in question: namely, Z[v/5]. Thus, a
typical element of this principal ideal is an element of the form
(a +bv/5)(V/5) = 5b + a+/5. This means that

(VB) = {57+ sV5 : r,s € Z}.

That is, (v/5) consists of all elements of Z[/5] whose “rational
part” is divisible by 5.

Example 11.6

Consider the principal ideal (z%) in Q[z]. This consists of all
multiples of z2; that is, those polynomials with z? as a factor.
Equivalently, (x2) is the set of all polynomials whose constant
and degree 1 coefficients are zero. More generally, (f) in Q|z]
consists of all polynomials with f as a factor.
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Example 11.7

Cousider the principal ideal (2} in the ring 2Z of even integers. In
this example, when we form the multiples of 2, we are restricted
only to even numbers. Thus,

(2y=4{--,0,4,8,12,---}.

Notice that in this case 2 ¢ (2). This situation arises because 2Z
lacks unity.

In case a commutative ring has unity, it is certainly always the case
that @ € {(a). And in fact, this gives us a more abstract but still
useful way of describing the principal ideal (a) of an element a in a
commutative ring R with unity: It is the smallest ideal of R containing
a. This merely means that (a) is a subset of any ideal of R containing
a. But this is obvious because if a € I, where [ is an ideal, then by the
multiplicative absorption property for I, all multiples of ¢ are elements
of I.

Example 11.8

Consider now the ring Q. We know that Z is a subring of Q. Is
it an ideal of Q7 Suppose it is; we now apply the multiplicative
absorption property to the element 1 of Z. Choose any rational
number ¢. Then by multiplicative absorption, (¢)(1) = ¢ would
be an element of Z, which is certainly not always true. Thus, Z
is a subring of Q which is not an ideal.

> Quick Exercise. Is Q an ideal of the ring R? <

The previous example makes clear that if R is a commutative ring
with unity, then any ideal containing 1 must be the improper ideal R.
In particular, this means that (1) = R.

What other elements besides 1 generate the improper ideal? To an-
Swer this, suppose that (r) = R, where R is a commutative ring with
unity, and » € R. This means that 1 is a multiple of r; but if rs = 1,
then r is a unit. And conversely, if r is a unit, then 1 = rt, for some
t € R. But then z = r(tx), for any z € R. Thus, all elements of R are
multiples of r. We have thus shown that in a commutative ring with
unity, (r) = R if and only if r is a unit. We record this fact for future
reference in the theorem below:
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Theorem 11.3 Let R be a commutative ring with unity, with r € R.
Then {r) = R if and only if v is a unit.

> Quick Exercise. Consider the unit 5 in Z;5. Verify explicitly that
(5) = Zy2. (That is, show by computation that every element of the
ring is a multiple of 5.) <

Because all non-zero elements in a field are units, a field has only the
two ideals that all commutative rings possess: namely, the zero ideal
and the improper ideal. The converse is also true:

Corollary 11.4 A commutative ring with unity is a field if and only
if its only ideals are the trivial and improper ideals.

Proof: We have already proved half of this corollary. For the con-
verse, suppose that R is a commutative ring with unity whose only
ideals are the trivial and improper ideals. Choose any non-zero ele-
ment r € R. Because r is non-zero, then (r) # {0}, and so (r) = R.
But then 1 € (r), and so 1 = rs, for some element s. But then r is a
unit. Thus, all non-zero elements of R are units, and so R is a field. O

Let’s return to our discussion of ideals in Q[z], in Example 11.6.
Example 11.9

Consider the ideal () in Q[z]. Clearly, this consists of those
polynomials with no constant term. But what about the ideal
(3z)? We claim that (z) = (3z). It is clear that (3z) C (z),
but the reverse inclusion holds too, because z = %(3x), and so
z € (3xz).

This example raises a more general question: When do two elements
of a commutative ring generate the same principal ideal? The previous
example suggests the answer, at least in the case of domains. (The
answer given in the next theorem for domains does not hold for all
commutative rings.)

Theorem 11.5 Let R be a domain, and r,s € R. Then {r) = (s) if
and only if v and s are associates.

Proof: Suppose first that 7 and s are associates. Then r = su, where
u is a unit. Thus, r is a multiple of s, and so r € (s). Hence, (r) C (s).
But s = ru~!, and so similarly (s) C (r). .
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For the converse, suppose that (r) = (s). Then r is a multiple of s
and vice versa; that is, r = sz and s = ry, for some = and y. But
then » = ryz, and so by the multiplicative cancellation property for
domains, 1 = yx. That is, y and x are units, and so r and s are
associates. (Note that we used exactly this argument in our discussion
of factorization above.) 0

In Example 11.3 we listed as ideals of Z the principal ideals (n), for
all non-negative integers n. But are there any ideals other than these?
The next theorem asserts that there are not.

Theorem 11.6 All ideals of Z are principal.

Proof:  Suppose that I is an ideal of Z. We wish to show that I is
principal. If I is the zero ideal this is already obvious; so suppose I
has more elements than just 0. What element of I might serve as a
generator for I?7 We answer this question by using the Well-ordering
Principle: Choose the smallest positive element m of I.

> Quick Exercise. Why need I have any positive elements? <

We claim that (m) = I. Because I is an ideal (and so satisfies the
multiplicative absorption property), it is clear that (m) C I. Suppose
now that b € I. We claim b € (m); that is, we claim that b is a multiple
of m. To check this, we will use the Division Theorem 2.1 to obtain a
quotient ¢ and a remainder r where b = gm + r. Obviously, we hope
that the remainder is zero. But what do we know about r? Because
7 =b—qm, r € I, using both of the defining properties of ideal. But
we also know that 0 < r < m, and because m is the smallest positive
element of I, r = 0, as required. Thus for Z, all ideals are principal. O

We are leaving it to you in Exercise 11.2 below to show that the
same fact holds true for Q[z]. By this time you should not be surprised
by this analogy between Z and Q[z]. The proof you will construct is
similar, except you will choose m to be a non-zero polynomial with
smallest degree in the ideal.

All the examples of ideals we’ve encountered so far have been prin-
cipal ideals. Are there any non-principal ideals? Such ideals do exist
(but not in Z or Q[z]), and we will meet some in the next chapter.
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Chapter Summary

In this chapter we proved the Factorization Theorem for Quadratic
Extensions of Z and showed by example that such factorizations need
not be unique.

We then discussed how factorization in a domain could fail. This led
us to the notion of ideal and principal ideal. We showed that all ideals
in Z are principal.

Warm-up Exercises

a. Do the two factorizations
5=+v-5-—/-b=1-5

provide another example that factorization into irreducibles is not
unique in Z[/—5|? Why or why not?

b. Do the two factorizations
6=3-2=(-24+2vV2)(3+3V2)

provide an example to show that factorization into irreducibles is
not unique in Z[v/2]? Why or why not?

¢. Are the following ideals?

(a) QinR.

(b) {0,2,4,6} in Zs.

(¢) z[z] in Q[z].

(d) Z in Z[3].

(e) {ni:n € Z} in Z[i.

(f) Zx {0} inZ x Z.
g) {n +5mv2:n,m € Z} in Z[V2).
)

(
(h) The set of all polynomials with even degree (together with
the zero polynomial), in Q[z].
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. Are the following equalities true or false?

. Suppose that R is a commutative ring with unity, and [ is an

ideal of R. If 1 € I, what can you say about I?

. Give a nice description of the elements of the ideal (v/7) in the

ring Z[v/7].

. Have we given an example in this chapter of an ideal that is not

principal?

. Give examples of the following (or explain why they don’t exist):

(a) A non-zero proper ideal of a finite ring.

)
(b) A non-zero proper ideal of C.
(c) A non-zero proper ideal of Z[i].
)

(d) A non-zero proper ideal of Z[z].

Exercises

. In Examples 7.1-7.10, determine in each case whether the sub-

rings described there are ideals.

. Prove that all ideals in Q[z] are principal, using a similar proof

to that for Z (Theorem 11.6).

. Consider the set

I'={feQlz]: f(i) = 0}.
(Here, i is the usual complex number.)

(a) Prove that I is an ideal.

(b) We know that I is a principal ideal (why?). Find a generator
for I, and prove that it works. Hint: The generator should
be an element in I with the smallest degree greater than 0.
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10.

11.

12.

Ezercises

. Consider the set

I={fecC[z]: f&) =0}
Repeat Exercise 3 for this set.
Consider the set
I={feql:f(3)=0and f(V3) =0}

Repeat Exercise 3 for this set.

. Determine all the principal ideals of Zj3, and draw a diagram

describing their containment relations. Prove that Z;2 has no
other ideals.

. Find two factorizations of 8 into irreducibles in Z[/—7] that are

essentially distinct.

. Consider the ring Z[a], where a = V/5, as described in Exercise

7.3. Describe the elements of the principal ideals (@) and (2).

I:{(ZS) EMQ(Z):a,bEZ}.

(a) Show that I is a subring of M2(Z).

(b) Show that I is not an ideal of M3(Z) (using the stronger
definition of ideal used for non-commutative rings).

. Consider

Consider the principal ideal (3 + v/5) in Z[v/5]. Prove that

B+ V5) = {c+dV5:4|(c+d)}.
Suppose that p,q are distinct prime integers in Z. Prove that
{p) N {q) = (pq)-

Let R be a commutative ring, and suppose that I and J are
ideals. Prove that I NJ is an ideal. (Note the many examples of
intersections of ideals provided in Exercise 11. Also compare this
exercise to Exercise 7.9.) Now describe the ideal in Exercise 5 as
an intersection of two proper ideals.

13.

14.

15.

16.

17.

18.

19.
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Suppose that R is a commutative ring, I and J are ideal of R,
and I C J. Prove that I is an ideal of the ring J.

Let R be a commutative ring, with ideals I and J. Let
I+J={a+b: a€l, beJ}.

Prove that I + J is an ideal of R. For obvious reasons, we call
the ideal I + J the sum of the ideals I and J.

Suppose that R is a commutative ring with unity, and I and J
are ideals. Define

n
I-J:{Zakbk: ap €1, by € J, neN}.
k=1

(That is, I - J consists of all possible finite sums of products of
elements from I and J.)

(a) Prove that I - J is an ideal. We call the ideal I - J the
product of the ideals I and J.

(b) Prove that I-J CINJ.

(c) Prove that if a,b € R, we have that (a) - (b) = (ab).

(d) Show by example in R = Z that we can have I - J C INJ.

Suppose that I, J, K are ideals in R, a commutative ring with
unity. Prove that I - (J+ K)=1-J+1 K.

Let X be a set; consider the power set ring P(X), described in
Exercise 6.20. Pick a fixed subset a of X, and let

I={be P(X):bCa}
(a) Prove that I is an ideal of P(X).
(b) Prove that I is a principal ideal (find the generator!).

Prove that the nilradical of a commutative ring with unity is an
ideal. (See Exercise 7.15, where you proved it is a subring.)

Suppose that R is a commutative ring with unity, and r € R. Let
A(r) = {s € R: rs = 0}. (This set is called the annihilator of
7.) Prove that A(r) is an ideal.
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20.

21.

22.

23.

FEzxercises

Generalize Exercise 19: Suppose that R is a commutative ring
with unity, and [ is an ideal. Let

A(I)={s€R:rs=0, for all r € I};
we call A(I) the annihilator of I. Prove that A(I) is an ideal.

Suppose that R and S are domains. Determine all possible ideals
of the direct product R x S, which occur as annihilators A((r, s)).
Hints: See Exercise 19 for the definition of annihilator. In this
problem there are only four cases.

Suppose that R is a commutative ring with unity, and e is an
idempotent. In Exercise 7.25, we defined what this means and
also considered the subring Re; we now know that this subring
is the principal ideal {e). Prove that the annihilator A(e) is a
principal ideal. (See Exercise 19 for the definition of annihilator.)

Generalize Theorem 11.5: Suppose that R is a commutative ring
with unity and r,s € R, with r not a zero divisor. Prove that
(ry = (s) if and only if r, s are associates.

Chapter 12

Principal Ideal Domains

In the previous chapter we encountered the notions of ideal and princi-
pal ideal and proved that in Z (and in Q[z]) all ideals are principal. In
this chapter we will discover the close connection between this property
and the Factorization Theorems we know are true for Z and Q[z].

12.1 Ideals that are not Principal

Before proceeding, we should first convince you that there do exist
ideals that are not principal. It turns out that we can find such ideals
in the domains Z[x] and Z[v/-5].

To describe these examples we first introduce a little more general
notation. Suppose that R is a commutative ring with unity and a,b €
R. We shall define (a,b) as

{az+by: z,y € R}.

We leave it as Exercise 12.1 below for you to prove that this is an
ideal and is in fact the smallest ideal of R that contains both @ and b.
(In fact, this idea can be generalized to ideals generated by any finite
number of elements; see Exercise 12.2.) Note that (a,b) is really just
the set of all linear combinations of @ and b (where the coefficients on
@ and b are allowed to be any ring elements).

Example 12.1

In the ring Z, the ideal (12,9) consists of the set of all linear
combinations of 12 and 9. We know from our work about the
integers that this is the set of all multiples of ged(12,9) = 3, and
so

(12,9) = (3).
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This is a principal ideal, which shouldn’t be too surprising, be-
cause we’'ve already proved that all ideals of Z are principal.

Example 12.2

For a first example of a non-principal ideal, let’s work in the
ring Z[z]. We claim that the ideal (2,z) is not principal. To see
this, we will first look more closely at arbitrary elements of this
ideal. Any element of it is of the form 2 f + xg, where f and g are
arbitrary polynomials from Z[z]. Let’s consider the constant term
of this polynomial. The polynomial zg has no constant term, and
so the constant term for 2f + xg is equal to the constant term of
2f. This constant must be even. Thus, every element in (2, z)
has even constant term. But conversely, consider any polynomial
in Z[x] with even constant term. We can write such a polynomial
as 2n + zh, where n is an integer and h is a polynomial. Thus,
(2, z) consists of all polynomials with even constant term. (Note
of course that zero is an even integer.)

We now claim that (2,z) is not a principal ideal. If it were,
with generator f, then all polynomials in the ideal would be mul-
tiples of f. In particular, 2 and x would be multiples of f. Be-
cause 2 is a multiple of f, the degree of f must be zero. But
the only zero-degree polynomials that have 2 as a multiple are
+1. Neither of these could be f, because their constant terms
are odd. Thus, (2, z) is not a principal ideal.

Example 12.3

Now let’s consider an example in the ring Z[v/—5]: We claim
that (3,1++/—5) is an ideal that is not principal. To see this, we
examine a typical element of this ideal; it is a linear combination
of the elements 3 and 1 + v/—5. Such an element must be of the

form
(a+bvV=5)3+ (c+dvV-5)(1+V-5) =
(3a+c—5d)+ (Bb+c+d)vV-5.

(Note that in this linear combination we must choose as coeffi-
cients arbitrary elements a + by/—5 and ¢ + dv/—5 from the ring
Z(V=5).)

What elements from Z[\/—5| are of this form? Note that if
we subtract the coefficients 3a + ¢ — 5d and 3b + ¢+ d, we obtain
3(a — b) — 6d, which is divisible by 3. We have thus shown that
if x +yv/—=5 € (3,1 + /=5), then = — y is divisible by 3. This
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means in particular that such elements as 5+ +/—5 and 1 are not
elements of the ideal (3,1 +1/—5). Thus, we have a proper ideal.

> Quick Exercise. Is 12+ 7+/—5 an element of (3,1+ +/—5)?
<

But surprisingly this property actually characterizes elements
of the ideal (3,1 + +/—5). For if z — y is divisible by 3, then
xr —y = 3k, and so

r+yv-b5=2(1+vV=5)+ @y —2)vV-5=

(1 +v=5) — k(+v/=5)(3) € (3,1 4+ V-5).
That is,

(3,1 ++v—=5) = {4+ yv—5:3 divides (z —y)}.

We now claim that (3,1 + +/=5) is not a principal ideal.
Suppose by way of contradiction that this ideal is generated by
a = a+ by/=5. But then 3 and 1 + /=5 are multiples of a, and
so the norm N(a) divides both N(3) = 9 and N(1 + /-5) = 6.
This means that N(«) is either 1 or 3. It can’t be 1 (because then
it would be a unit, which can’t be an element of a proper ideal),
and it can’t be 3 because (as we observed in Example 10.15) the
Diophantine equation a? 4+ 56> = 3 has no solutions. Thus, the
ideal (3,1 + 1/=5) is a non-principal ideal in Z[v/—5].

12.2 Principal Ideal Domains

The two examples above make the following definition more interesting.
A domain is a principal ideal domain (or PID) if all its ideals are
principal.

We have thus proved that Z and Q[z] are principal ideal domains,
while Z[\/=5] and Z[z] are not.

We now obtain the following elegant theorem that provides a suffi-
cient condition for factorization into irreducibles. This returns us to
the discussion of factorization near the beginning of Chapter 11.

Theorem 12.1  Factorization Theorem for PIDs In a prin-
cipal ideal domain, every non-zero non-unit is either irreducible or a
product of irreducibles.
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Proof: Suppose by way of contradiction that R is a PID with at
least one non-zero non-unit that is neither irreducible nor factorable
as a product of irreducibles. By Lemma 11.2, we then have a properly
ascending chain of principal ideals, where each a; is a non-unit:

<CL1> C <a2> - <a3> (GEEEIEN

Consider now the set I = |J{(a;) : i € N}. We claim that this is an
ideal. First, we check that I is closed under subtraction. Given z,y €1,
there exist i and j such that z € (a;) and y € {aj). Suppose (without
loss of generality) that j is the larger of 4 and j. Then z,y € (a;), and
so x —y € (a;) € I. Now I also satisfies the multiplicative absorption
property: Suppose that z € I and r € R. There exists i so that
z € (a;), an ideal. So, rz € (a;) C I. Thus, I is an ideal.

Because R is a PID, I = (a), for some a € R. But I is the union of
the (a;)’s, and so a € (a;), for some j; thus, (a) = (a;). But then

(@) = (a5) = {aj11) = (aj42) = -,

which is contrary to our assumption. This contradiction means that
every non-unit can be factored into irreducibles. |

This abstract proof now gives an alternate approach to seeing that
factorization holds for Z and for Q[z]. The additional abstraction of
this proof makes it more powerful. As we shall see, it applies to many
more domains than our two familiar examples.

An important generalization of one of the ideas in the proof above
is due to the great German mathematician Emmy Noether, who in
the 1920s laid much of the important groundwork for axiomatic ring
theory. She isolated as particularly important those commutative rings
where every ascending sequence of ideals is finite. That is, if a set of
ideals I, is totally ordered under inclusion

L <L CI3C---C1I, C---
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then there must exist an integer j for which I; = I;4;; = ---. We
have seen in the proof above that PIDs satisfy this property. Such
commutative rings are said to have the ascending chain condition
(ACC for short) on ideals, and are called Noetherian.

Chapter Summary

In this chapter we discovered that not all ideals are principal; when all
ideals of a domain are principal, we call it a principal ideal domain. We
then proved the Factorization Theorem for all PIDs.

Warm-up Exercises

a. What is the ideal (35,15) in Z? What about (12,20,15)?

b. What is the ideal (4,z) in Z[z]? What about (4,z2)?

c. What is the ideal (22 — 3z + 2,22 — 2z + 1) in Q[z]?

d. What is the ideal {(1,0),(0,1)) in Z x Z? What about ((1,1))?
e. Why is a field always a PID, practically by default?

f. Give examples of the following (or explain why they don’t exist):

(a) A domain that is not a PID.
(b) Elements f,g € Z[z], so that f # g, but (f) = (g).
() Elements f,g € Qlz], so that (f,g) = () but (£,g) # (g).

Exercises

1. Let R be a commutative ring with unity and a,b € R. Prove that
{a,b) = {ax + by : z,y € R}

is an ideal; furthermore, show that it is the smallest ideal of R
that contains @ and b.
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Ezercises
. Let R be a commutative ring with unity and aq,as,---,a, € R.
Prove that
<(11,(12,' o 7an> =

{a11‘1+a2x2+...+anxn:miER,i:LQ’...’n}

is an ideal; furthermore, show that it is the smallest ideal of R
that contains all the a;’'s. We call the a;’s the generators of
the ideal; we say that the ideal is finitely generated. Note that
each element of the ideal can be expressed as a linear combination
of its generators.

Let n be a positive integer and consider the ideals
(z")

in Q[z]. Describe succinctly the elements of (z"). What con-
tainment relations hold among these ideals? Explain why Q[z] is
Noetherian. Explain why the ideals (™) do not contradict the
assertion that Q[z] is Noetherian.

Consider the ideal I = (3,1 — /=5) in Z[\/—5|. Prove that
I={z+yv-5:3 divides (z +y)}.

Show that I is not principal. (See Example 12.3.)

. Let X be an arbitrary set, and consider the power set ring P(X).

(See Exercise 6.20, where we made P(X) a ring, by equipping
it with an addition (symmetric difference) and a multiplication
(intersection).) In Exercise 11.17 we discussed a principal ideal
of P(X); that exercise is relevant to the present problem but not
strictly necessary.

(a) Let a € P(X). Describe the elements of the principal ideal
().

(b) Suppose that X has more than one element. Show that
P(X) is not a domain.

(c) Suppose that X has infinitely many elements. Let
I = {a € P(X) : a has finitely many elements}.

Prove that I is an ideal of P(X). Show that I is not a
principal ideal.
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6. Consider the domain Z[v/3]. Prove that in this ring,

(14+V3) = {z +yV3:z+yis an even integer}.

7. Consider the ring Z[v/2]. Prove that
(3+8v2,7) = (3+2).
8. Consider the ring S of real-valued sequences considered in Exer-
cise 6.19.
(a) Let n be a fixed positive integer, and let
I, ={{sk} € S: 8, =0, for all m > n}.

Prove that I, is an ideal of S.
(b) Use the ideals in part a to show that S is not a Noetherian
ring.
(c) Let
¥ = {{s,} € S : at most finitely many s; # 0};

prove that ¥ is an ideal of S. What is the relationship
between X and the I;’s?

(d) Prove that X is not finitely generated. Recall from Exercise
2 that by this we mean that

¥ # (51,82, 8n)s
for any finite set of sequences 5.
9. Consider again the ring S of real-valued sequences. Let
B = {{s,} € S : there exists M € R with |s,| < M, for all n}.

These are the bounded sequences. Note that M is not fixed
in the definition of B; that is, different sequences may require
different bounds. Prove that B is a subring, but is nonetheless
not an ideal of S.

10. Let I be an ideal of Z[/n], where n is a square-free integer. Define

I={a+b/n:a—-b/nel}
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11.

12.

FEzercises

(a) Prove that I is an ideal of Z[\/n].

(b) Provide particular examples of such ideals, where I # I, and

where I = 1.
(c) Prove that I is a principal ideal if and only if I is a principal
ideal.

In this exercise we generalize an argument used in the proof of
Theorem 12.1. Let R be a commutative ring with unity, and sup-
pose that I, is a proper ideal for all positive integers n. Suppose
further that

LCL - CI,CIp1C---.

Let I =|J1I,. Prove that I is a proper ideal.

Consider Q[z, y], the set of all polynomials with coefficients from
Q, in the two indeterminates x and y. In Exercise 6.23, you
showed that the ring of polynomials R[z] with coefficients in any
given commutative ring makes sense. Applying this construction
with coefficients from Q[z], where we then have to use a different
symbol y for the new indeterminate, gives us the ring Q[z, y]. It
turns out (though we won’t verify all details here) that addition
and multiplication in this ring behave just as you would expect.
Formally then, an element of Q[z,y] can be viewed as an element
of the form

2 2
ap,0 + a1,0% + ap, Y + a2,0x” + a1y + ag ey + - -,

where the q; ;’s are rational numbers, and only finitely many of
them are not zero.
(a) Provide a nice description of the elements in the ideal (z,y).

(b) Show that the ideal (x,y) is not principal, thus showing that
Q[z,y] is not a PID.

Chapter 13

Primes and Unique Factorization

You should now recall the proof of the uniqueness of factorization into
irreducibles for Z (or Q[z]). Our intent in this chapter is to construct

a more general context in which this proof is true.

13.1 Primes

This proof relies heavily on the fact that irreducible elements in Z (or
Qlx]) are in fact prime. It should not then be surprising that a general
unique factorization theorem should rely on the same considerations.
We now define prime elements in an arbitrary domain: A non-unit
p # 0 of a domain R is a prime if, whenever p divides ab, then p

divides a or b.
Example 13.1

Under this new definition, the prime integers remain prime in Z.
And the irreducible polynomials in Q[z] are prime also.

Example 13.2

Let’s show directly that the element V3 is prime in the domain
Z[/3]. For that purpose, we must suppose that /3 divides a
product a8, where a,3 € Z[V3]. Now a = a+bV/3 and 3 =
c+ d\/§, and

afB = (ac + 3bd) + (ad + bc)V/3.

If +/3 divides this product, it must clearly divide the rational part
ac+ 3bd. But V3 obviously divides 3, and so v/3 must divide ac,
in Z[v/3]. But ac is an integer, and so the only way this can
occur is if 3 actually divides ac. Now 3 is a prime integer, and
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so (without loss of generality) 3 divides a. But then v/3 divides
a + bV/3, as required.

Note that an easy inductive proof (identical to that for Z) shows that
if p is prime and it divides a product of n terms, then p divides at least
one of the factors. (See Exercise 2.5 and Exercise 5.3.)

Now examine the proof that for Z, irreducible and prime elements
are the same (Theorem 2.7). Notice that the proof that primeness
implies irreducibility is general, while the converse depends on the GCD
identity (a theorem which need not hold for arbitrary domains). We
thus have the following:

Theorem 13.1 In any domain, prime elements are irreducible.

Proof:  Check that the proof for Z (Theorem 2.7) holds in general.
(This is Exercise 13.1.) O

Example 13.3

The converse of this theorem is in general false, and the factor-

ization
6=2-3=(1++v-5)(1-+-5)

in Z[v/—5] that we considered in Section 11.1 provides the coun-
terexample, for 2 is irreducible, yet it divides (1++/—5)(1—+/—5)
without dividing either factor and hence is not prime.

The previous example finally justifies our long-standing careful dis-
tinction between the concepts of irreducibility and primeness.

The following theorem now shows that uniqueness of factorization ]
fails in a domain exactly when the concepts of irreducibility and prime- |

ness fail to coincide:

Theorem 13.2 Consider a domain in which every non-zero non-unit |
is either an irreducible or a product of irreducibles. Then all irreducible }
elements are prime if and only if the factorization of non-units into |

irreducibles is unique, up to order and unit factors.

Proof: Suppose that D is a domain with unique factorization, and p ,
is an irreducible element. We wish to show that p is prime and toward |
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that end assume that p|jab. Then pc = ab, for some ¢ € D. Now factor
¢, a, and b into irreducibles, thus obtaining the following equation:

pPCLCy ... Cp = 0102 ... Ambiba .. by,

By the uniqueness of the factorization of pc, p must be an associate of
some a; or bj;; that is, pla or plb, as required.

For the other direction, check that the proof for Q[z] works in general.
(This is Exercise 13.2; see Theorem 5.4.) 0

Example 13.4

In Exercise 11.7 you obtained two essentially distinct factoriza-
tions of 8 in Z[v/—7]; namely, as

2.2.2=(1+vV=-7(1-V=7).

Theorem 13.2 means that of necessity Z[v/—7] must possess some
element that is irreducible, but not prime. It is in fact easy in
this case to identify a particular element that plays this role.

> Quick Exercise. What element is that? <

13.2 UFDs

We now introduce some convenient terminology: A unique factoriza-
tion domain (or UFD) is a domain in which all non-zero non-units
can be factored uniquely (up to units and order) into irreducibles. More
concretely, uniqueness of factorization means that if a is a non-unit, and

a=a1a2-~-an=b1b2---bm,

where the a; and b; are irreducibles, then n = m, and under some
rearrangement of the b; we find a; and b; are associates, fori =1,---n.

Let’s now rephrase Theorem 13.2 in light of our new terminology:
We showed that if factorization of non-units into irreducibles is always
possible, then the domain is a UFD if and only if each irreducible
element is prime. Following the model of our PIDs Z and Q[z], we’d now
like to prove that all PIDs are UFDs. Because we already know that
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factorization occurs in PIDs, we can complete this proof by showing
that in a PID all irreducible elements are prime. Our analysis of this
question depends on discussing a bit more closely the principal ideals
of a domain in general, and of a PID in particular.

13.3 Expressing Properties of Elements in Terms of Ideals |

Let D be a domain with a,b € D. We first note that divisibility can
be phrased in terms of ideal containment. For a divides b if and only
if b = azx, for some x € D, and this is true if and only if (b) C (a).
Furthermore, this containment is proper if and only if b = az, for some
non-unit z € D.

> Quick Exercise. Show that (b) C (a) exactly if b = az, for some
non-unit z € D.

Example 13.5

Thus, in Z the ideal (6} is a proper subset of (2), because 6 = 2-3,
and 3 is a non-unit.

Note that we already referred to a particular case of this result in
Chapter 11: (a) = (b) if and only if a and b are associates (Theorem
11.5).

Now suppose that p € D is an irreducible. Then if a divides p, we
have that either a is a unit or ¢ and p are associates. Thus, if p is an
irreducible and (p) C (a), then either (a) = D (if a is a unit), or else
(a) = (p) (if @ and p are associates). This means that p is irreducible
exactly if D has no proper principal ideals strictly larger than (p). In a
PID all ideals are of course principal, and so in this case p is irreducible
exactly if D has no proper ideals strictly larger than (p).

This latter property of the ideal (p) deserves its own definition: An
ideal I of a ring R is maximal if the only ideal properly containing
is R. Using our new terminology, we have shown that in a PID, p is an
irreducible element if and only if (p) is a maximal ideal.
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Example 13.6

In Z, there is no proper ideal larger than (3), because 3 is irre-
ducible. But we can see this directly: Because Z is a PID, a larger
ideal would have to be principal, and (3) C (a) is true exactly if
a divides 3. That is, @ must be =1 {(and so {(a) = Z), or else a
must be +3 {and so (3) = (a)).

You are forgiven for doubting the usefulness of translating statements
about elements into statements about ideals. After all, an individual
element seems rather more concrete and understandable than the more
abstract notion of an ideal. However, it is one of the important lessons
of abstract algebra that the abstract ideal is often easier to deal with
than the concrete element. For example, the annoying and insignificant
distinction between z% + 1 and 522 + g in Q[z] disappears when we
consider the ideal (z2+1) = (222+3). We will later see more dramatic
evidence of the simplicity and clarity that comes from discussing ideals
rather than elements.

Let us record here for future reference the translations we have made
up to now between statements about elements and statements about
principal ideals:

Theorem 13.3 Let D be a domain, and a,b € D.
a. (a) = D if and only if a is a unit.

b. (b) C {(a) if and only if a divides b; this inclusion is proper if and
only if b = ax where x is a non-unit.

c. a is irreducible if and only if (a) is mazimal among all proper
principal ideals. If D is a PID, this is true if and only if (a) is a
mazimal ideal.

Let’s now look at the whole ideal structure of Z in light of the above
discussion. We know that the maximal ideals are given exactly by the
ideals of the form (p), where p is an irreducible (or prime) integer, and
containments reflect divisibility:
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(12) *@18) *(20) T(30) " (50) " (45) " (75)

What is the meaning in a computational sense of the maximality of
a principal ideal in a domain? If (p) is maximal and a ¢ (p), then
the ideal (p,a) must be the entire domain, because it is certainly a
strictly larger ideal than (p). But (p, a) is the entire domain exactly if it
contains (any) unit, and in particular if 1 € (p,a). That is, 1 = pz+ay,

for some z,y in the domain.
Example 13.7

Consider the maximal ideal (7) in Z. Now, 12 ¢ (7). But
3.124 (=5)-7=1,

and so (7,12) = Z. Of course, the fact that there exist z and y
such that 122+ Ty = 1 is just an example of the GCD identity for
7. This reveals a more general principle operating in the ideal
structure of Z: {a,b) = (c), where ¢ = ged(a,b). (See Exercise
13.6.)

Example 13.8

Because z is an irreducible element in Q[z], we know from Theo-
rem 13.3 that (x) is a maximal ideal. To see this computationally,
choose f ¢ (z). Because (z) consists of the polynomials in Q[z]
with zero constant term, f must have a non-zero constant term c,
and so f can be written as f = c+xg, where g is some polynomial
in Q[z]. But direct computation shows that

l=c'f+ (~c'g)z

This last expression is a linear combination of f and z, and so
1€ (z, f). Thus, (z, f) = Q[z], and so (z) is a maximal ideal, as
claimed.
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13.4 Ideals in Z[\/=5)

Unfortunately, this sort of structure fails in domains that are less nice
than Z. Consider for example the irreducible 3 in Z[\/—5]. Because 3
is irreducible, we know by Theorem 13.3c that (3) is maximal among
proper principal ideals; but it need not be maximal among all proper
ideals (because Z[y/—5] has non-principal ideals). And indeed, we have
already seen (Example 12.3) that (3,1 + /—5) is a non-principal ideal
with (3) C (3,14 v/=5).

Now we claim that the ideal (3,1++/=5) is maximal in Z[v/=5]. How
would we prove this? We need to show that if a+by/ =5 & (3,1++/=5),
then (3,1 + v/—=5,a + by/—5) is the whole domain. We show this by
giving a linear combination of these three elements equal to 1. But
recall that (3,1 + v/=5) = {x + yv/=5 : 3|(z — y)}. Because a + by/=5
is not in this ideal, this means that a — b is not divisible by 3 (and
hence, relatively prime to 3). Thus, by the GCD identity for Z, there
are integers z and w with 3z + (@ — b)w = 1. But then

1=2(3) + (=bw)(1 + V=5) + (w)(a + bV/=5),

the linear combination which we required.

13.5 A Comparison between Z and Z[y=5)

Notice the distinction between Z and Z[/—5]: In Z the ideal (a,b) is
always principal, and a generator is ged(a,b), which can be expressed
as ax + by for some x and y. In particular, if @ and b have no common
divisors (other than #1), then 1 can be so expressed. That is, (1) =
{a,b) if and only if @ and b have no non-trivial common divisors.

On the other hand, in Z[v/-5], 3 and 1 + /=5 have no common
divisors (except units), but ‘ought to’, because

1¢ (3,14++=5) C Z[V-5].

This is precisely why the 19th-century German mathematician Ernst
Kummer first used the term ‘ideal’. He viewed an ideal like (3, 1++/—5)
s an ‘ideal number’ playing the role of a ged for 3 and 1+ /-5, and
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thus filling in a gap in the multiplicative structure of Z[v/—5]. This, as
we shall see, is one of the advantages of considering ideals, instead of
elements.

Actually, Kummer’s formulation of ideal was different than ours; our
definition is due to Richard Dedekind. The crux of the Dedekind ver-
sion of the definition is to identify the ‘ideal number’ with the set of
all those numbers that ought to be its multiples. The set-theoretic na-
ture of this definition is typical of a modern mathematical definition;
Dedekind was a pioneer of this set-theoretic approach, and not only to
the definition of ideal, but also in his axiomatic construction of the real
numbers.

13.6 All PIDs are UFDs

We can now use what we have learned about ideals in PIDs to prove
the following crucial theorem, which allows us to then conclude that
all PIDs are UFDs:

Theorem 13.4 In a PID, all irreducibles are prime.

Proof:  Suppose p is irreducible in the PID D. To show that p is
prime, we suppose further that p|ab. We claim that p|a or p|b. Suppose
that p does not divide a. Then a ¢ (p), and so (p) C (a,p). Because
(p) is maximal this means that (a,p) = D, and so 1 € (a,p). That is,
1 = az + py, for some x,y € D. But then b = abz + pby. Now p|pby
and p|abz, and so p|b. Thus, p is prime, as claimed. O

We have actually encountered special cases of the previous argument
twice before: namely, for Z (in the proof of Theorem 2.7) and for Q[z]

(in the proof of Theorem 5.2, where you did the proving). What we ]

used in those arguments was the GCD identity. In the argument above
we arrive at the conclusion 1 = ax + py by using the fact that (p) is a
maximal ideal.

From Chapter 12 we know that any non-unit in a PID is irreducible }
or factorable into irreducibles (Theorem 12.1). From Theorem 13.2

we know that uniqueness of factorization is equivalent to irreducible

elements being prime. Because we’ve just proved that this is true in a

PID, we have the following theorem:
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Theorem 13.5 Any PID is a UFD.

This theorem thus encompasses both the Fundamental Theorem of
Arithmetic for Z, and the Unique Factorization Theorem for Q[z]. In
Chapter 15 we will discover other PIDs as well, and hence other UFDs
too.

The natural question to ask at this point is: Is the converse of this
theorem true? That is, are all UFDs PIDs? The answer is no, and we
have already encountered a domain which will serve as a counterex-
ample. That domain is Z[z]. In Example 12.2 we argued that (2, z)
is a non-principal ideal, and so Z[z] is not a PID. It thus remains to
show that this domain is in fact a UFD. In order to accomplish this, we
will need to inquire more carefully into the relationship between Z|z]
and Q[z]. Note that the relationship cannot be too simple, because the
former ring is not a PID, while the latter ring is. This inquiry is the
subject of Chapter 14; it requires Gauss’s Lemma 5.5.

Chapter Summary

In this chapter we considered the notion of prime element in an arbi-
trary domain. We showed that prime elements are always irreducible,
but the converse need not be true. If a domain has a factorization
theorem and all irreducible elements are prime, then factorizations are
essentially unique. We call such a domain a UFD. We then proved that
all PIDs are UFDs.

Warm-up Exercises

a. Give examples of the following (or explain why no example ex-
ists). You should specify both a domain and an element of it:

(

a) A prime element that isn’t irreducible.
(b) An irreducible element that isn’t prime.

(c) A non-unit that is neither prime nor irreducible.

b. Give examples of the following (that is, specify both a domain
and an ideal of it):

(a) A principal ideal that is maximal.
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FEzxercises

(b) A principal ideal that is not maximal.
(c) A maximal ideal that is not principal.
(d) An ideal that is neither maximal nor principal.

Translate the following statements into statements about princi-
pal ideals:

(a) 3 divides 12 in Z.

(e) 2z + 1 is irreducible in Z[z].

Why is the following statement silly? Every commutative ring
has exactly one maximal ideal because the whole ring is an ideal,
which is obviously as large as possible.

. Why do we care whether all irreducible elements of a domain are

prime?

. Explain which implies which: UFD and PID.

. What does the GCD identity have to do with the fact that in Z,

(9, 50) = Z?

Exercises

_ Prove Theorem 13.1: In any domain, prime elements are irre-

ducible.

. Complete the proof of Theorem 13.2. That is, suppose we have

a domain in which all non-zero non-units are irreducible, or a
product of irreducibles. Furthermore, suppose all irreducible el-
ements are prime. Prove that the factorization of any non-unit
into irreducibles is unique (up to order and unit factors).

. Exhibit in the ring Zg a non-unit a for which a™ = a, for all |

positive integers n. Why does this mean that there is no unique
factorization into irreducibles for this ring? Now repeat this ex-
ercise for Z x Z.
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4. Prove that z is a prime element of Z[z].
5. Consider 1+ ¢ € Z[i].
(a) Show that
(1+4)={a+bi:a+biseven}
= {a € Z[i] : N(a) is even}.
(b) Use part a to prove that 1 + ¢ is a prime element of Z[z].

6. Suppose that a,b,c € Z and ¢ = ged(a, b). Show that (a,b) = (c).
(See Example 13.7 for an illustration of this.)

7. Find two integers n with n < —5 where 2 is not prime in Z[\/n].
(Note by Exercise 10.11 that 2 is irreducible in these rings.)

8. Describe the elements of the ideal (3, z) in Z[z]. Show that (3, z)
is not a principal ideal. (See Example 12.2.)

9. Show that (3,z) is a maximal ideal in Z[z].

10. Show that (9, z) is an ideal in Z[z], which is neither principal nor
maximal.

11. Consider the ring Z[\/i]
(a) Show that

I={a+bV2€Z[V2|:a is even}

is an ideal.

(b) Show that I is principal. Hint: Think of ‘small’ elements of
1.

(c) Show that I is a maximal ideal.
(d) Show that

J={a+bv/2€Z[V2]:bis even}
is closed under subtraction but is not an ideal.

12. Using arguments similar to those used in Section 13.4 for Z[v/—5],
show that (2,1 + 4/=7) is a maximal ideal in Z[/—7] that is not
principal.
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13.

14.

15.

16.

17.

18.

Ezxercises

Consider the ideal (7 4+ v/=5,9) in Z[v/—5|. Show that this ideal
is neither maximal nor principal.
(a) Why is 22 + 1 irreducible in Q[z|?

(b) By part a we now know that (x? + 1) is a maximal ideal
in Q[z]. Provide a direct argument for this, similar to the
corresponding argument for (z) in Example 13.8.

Let n be a square-free integer and suppose that n = 1(mod 4).
Prove that Z[/n] is not a UFD.

Consider the ideal (z) in Q[z, y]; see Exercise 12.12 for more about
this ring and this ideal. Show that this ideal is not maximal.

Consider the element z +y in Q[x, y]; see Exercise 12.12 for more
about this ring. Argue that z + y is irreducible, and so (x+y)is
maximal among all principal ideals in Q[z,y]. Show that (z +y)
is not maximal among all ideals of Q[z,y].

In Exercise ¢ part e, your translation should have been that
2z +1)

is maximal among all principal ideals in Z[zx]. Show that this
ideal is not maximal among all ideals, by considering the ideal

2z +1,3).

Chapter 14

Polynomials with Integer
Coefficients

QOur aim in this chapter is to prove that Z[z], the ring of polynomials
with integer coefficients, is a UFD. It probably seems plausible that
every polynomial with integer coefficients can be factored uniquely into
irreducibles, but the proof of the analogous statement for Q[z] will not
work for Z[z].

14.1 The Proof that Q[z] is a UFD

Let’s recall how we prove that Q[z] is a UFD, to see where the argument
fails for Z[z]. We proved this result for Q[z] originally in Theorems 5.1
and 5.4 and then provided another proof in Theorem 13.5 which de-
pends on the fact that Q[z] is a PID. In either proof we showed two
things: (1) non-units factor into irreducibles, and (2) such factoriza-
tions are unique. We proved in Chapter 5 that non-units factor by
using induction on degree, and in Chapter 13 by using the fact that
Q[z] is a PID. We then proved that such factorizations are unique by
showing that in Q[z] irreducible elements are prime. In the first version
of our proof, this latter depended on the GCD identity; in the proof in
Chapter 13, this depended on the fact that in a PID an element a is
irreducible if and only if (a) is a maximal ideal.

Because the idea of degree still makes good sense, we will find that
proving the existence of factorizations is not difficult. However, there
is no GCD identity for Z[z]. Consider 2 and z in Z[z]. A ged in
Z[z] for these two elements is 1, but 1 cannot be written as a linear
combination of 2 and z. Furthermore, Z[x] is not a PID: We saw already
in Example 12.2 that (2,z) is not a principal ideal. Note that the lack
of a GCD identity (for the elements 2 and z) and the fact that (2,z) is
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not principal, amount to the same thing. So, we cannot use either of
the proofs for Q[z] to show that all irreducible elements are prime in
Zlz].

14.2 Factoring Integers out of Polynomials

We shall now concentrate on showing that every non-zero non-unit in
Z[x] can be factored into irreducibles (recall that 1 and —1 are the only
units in Z[z]). Let’s restrict our attention first to those factorizations
that involve elements of Z. For example, the factorization

622 — 127 + 24 = 2- 3(z% — 22 + 4),

while considered trivial in Q[z], is of interest in Z[z] because 2 and 3
are not units in Z{z].

Consider now an irreducible p from Z. We can also consider p as
an element of Z[z] (of degree 0), and so we can ask whether p is an
irreducible element of Z[z]. But if p = fg, where f,g € Z[z], then f
and g would both have to have degree 0 (because deg(fg) = deg(f) +
deg(g)). This means that p = fg can be considered a factorization
in Z, and so one of f and g must be a unit in Z (and hence in Zz]).
Thus, irreducible elements in Z are also irreducible elements in Z[x].
For example, 2 (considered as a degree 0 polynomial) is an irreducible
element of Z[z].

Example 14.1

It is not always the case that an irreducible element in a smaller
ring stays irreducible in a larger one: 2 is irreducible in Z but is
not irreducible in Z[i], because 2 = (1 +i)(1 — ¢). (See Example
10.14.)

We know that an element Z is prime if and only if it is irreducible.
On the other hand, we have not (yet) shown that Z[z] is a UFD, and,
consequently, we cannot yet infer that irreducible elements in Z[z] are
prime. We will show this eventually, but you should exercise care until
then to preserve the (potential) distinction between irreducible and
prime elements.
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14.3 The Content of a Polynomial

So, a first step toward factoring elements in Z[z] is to factor out any
non-trivial constant (that is, degree 0) elements. To describe this effi-
ciently, we introduce the following terminology:

Given a polynomial

f=anz" +a,_ 12"+ +ag € Z[x],

consider a ged in Z of the elements a,,a,_1, - - ag. We shall call such a
ged the content of f and denote it by cont f. Of course, the content
is only well defined up to plus or minus (that is, unit multiples), but
the notation cont f is convenient enough that we will live with this
harmless ambiguity.

Example 14.2

The content of the polynomial 6x2 — 12z + 24 in Z[z] is 6 (or —6).

Recall from Example 10.9 that we called a polynomial in Z[z| prim-
itive if its coefficients have no non-trivial common factor; that is, it is
primitive if its content is 1. Our first important theorem asserts that
the set of primitive polynomials is closed under multiplication.

Example 14.3

Both 22+ 3 and 322 +4x +1 are primitive polynomials; note that
their product 623 4+ 1722 + 24z + 18 is then primitive as well.

> Quick Exercise. Choose two other primitive polynomials and
check that their product remains primitive. <

Theorem 14.1 Suppose that f and g are primitive polynomials in
Zlz]. Then fg is primitive.

Proof: This is just Gauss’s Lemma 5.5 in disguise. Suppose that
f and g are primitive polynomials, and let d = cont fg. Consider
the polynomial h = (1/d)fg; this is an element of Z[z]. Now h =
((1/d)f)(g) is a factorization in Q[z]; by Gauss’s Lemma, this leads
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to a factorization in Z[x]. That is, there are rational numbers A, B so
that h = (A(1/d)f)(Bg), with A(1/d)f and Bg being elements of Z[z];
note that AB = 1. Because g is primitive and Bg € Z[z], we must
have that B is an integer, because if B were not an integer, then the
denominator of B would be cancelled by a non-trivial integer factor of
all the coefficients of g; that is, cont g would not be 1. But because
f is primitive, this means that A/d must be an integer too. Because
AB = 1, this means that A, B, and d must each be £1. That is,
cont fg = +1, and so fg is primitive. O

An important consequence of this theorem is that the content func-
tion preserves multiplication:

Corollary 14.2 Given f,g € Z[x], we have that

cont fg = cont f-cont g.

Proof:  Given f,g € Z[z], we have that f = (cont f)f1 and g =
(cont g)g1, where fi, g1 are primitive. But then

fg = (cont £ - cont g)f1g1

and by Theorem 14.1, fig1 is primitive. Hence, cont fg = cont f -
cont g. O

> Quick Exercise. Check this corollary by multiplying together two
polynomials from Z[z] of your choice. <

To achieve our goal of proving that Z[z] is a UFD we must first prove
that every element of Z[z] either is irreducible or can be factored into
a product of irreducibles. As promised, this is easy to prove, using
induction on degree.

Theorem 14.3 Every non-zero non-unit of Z[z] is either irreducible
or a product of irreducibles.

Proof:  Suppose that 0 # f € Z[z] is a non-unit. We proceed by
induction on deg(f). If deg(f) = 0, then f € Z. Because Z is a
UFD, f is either irreducible in Z, or a product of irreducibles in Z; but
irreducibles in Z are irreducible in Z[z], and so we have the required
result.
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Now suppose that deg(f) = n > 0. If f itself is irreducible, we are
done. Otherwise, we first factor out of f the element cont f; this is
an element of Z that we can factor into irreducibles of Z (and hence of
Z[z]). So we may suppose that f is primitive. If f isn’t irreducible, we
can then factor it as f = gh. Because f is primitive, we must have that
deg(g) > 0 and deg(h) > 0. So by the induction hypothesis, g and h
are irreducible or the product of irreducibles, and therefore so is f. By
the Principle of Mathematical Induction, this proves the theorem., O

14.4 Irreducibles in Z[z] are Prime

So, what remains to be done to prove that Z[z| is a UFD? Theorem 13.2
asserts that a domain in which factorization into irreducibles is possible
has unique factorization if and only if all irreducible elements are prime
(remember, of course, that prime elements are always irreducible). We
thus must show that all irreducible elements of Z[z] are actually prime.
We will do this by relating factorizations of polynomials in Z[z] to
factorizations in Q[z], using Gauss’s Lemma 5.5.

Theorem 14.4 In Zz], all irreducible elements are prime; consequently
Z|z] is a UFD.

Proof:  Suppose that f is an irreducible polynomial in Z[z]. Note
first that because f has no non-trivial factors from Z, this means that
[ is primitive. By Gauss’s Lemma, f must be irreducible in Q[z] as
well. Because Q[z] is a PID, f is then a prime element of Q[z]; we must
show that f is a prime element of Z{x].

To show this, suppose that f divides gh, where g,h € Z[z]. Now
consider g and h as elements of Q[z]. Because f is prime in Q[z],
this means that f must divide one of them (say, g) in Q[z]. That is,
g = fg1, where g1 € Q[z]. But by Gauss’s Lemma 5.5 there exist
rational numbers A and B, so that AB = 1 and Af, Bg; € Z[z]. But
because f is primitive and Af € Z[z], A must be an integer; otherwise,
the denominator of A would be cancelled by a non-trivial factor of
cont f. Thus, g = f(ABgi) is a factorization in Z[z], and so f divides
g in Z[z]. Hence, f is prime in Z[z], as required. It then follows
immediately that Z[z] is a UFD. i
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This means that Z[z] is an example of a UFD that is not a PID, thus
showing that the converse of Theorem 13.5 is false.

The method of this chapter can actually be generalized to prove
that anytime D is a PID, then D[z] is a UFD that is not a PID. The
general proof, while quite similar, requires a bit more machinery than
we presently have available to us, and so we will not pursue it here.

Chapter Summary

In this chapter, we used Gauss’s Lemma to prove that in Z[z], irre-
ducible elements are prime, and so Z[z] is a UFD.

Warm-up Exercises
a. What properties does Z[z] lack that prevent us from proving that
it is a UFD just as we did for Q[z]?
b. Determine the content of
30z* — 1222 + 42z — 54 and 492° + 702* — 14
What is the content of the product of these two polynomials?

¢. Why would it be silly to try to talk about the content of polyno-
mials from Q[z]?

d. Factor the following polynomials completely into irreducibles in
Z[z]; do they have the same irreducibles as factors in Q[z]?

(a) 62 —
(b) 3z* - 6.
(c) 5zt — % — 1522 — Tz + 2.

e. Give examples of the following (or say why they don’t exist):

(a) A PID that isn’t a UFD.
(b) A UFD that isn’t a PID.

f. Give examples of the following polynomials from Z[z] (or say why
they don’t exist):
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(a) An irreducible polynomial of degree 4.
(b) An irreducible polynomial that isn’t prime.
(c¢) An irreducible polynomial of degree 0.
(d) A unit.

)

(e) A polynomial that can’t be non-trivially factored in Z[z],
but can be non-trivially factored in Q[z].

(f) A polynomial that can’t be non-trivially factored in Z[z],
but can be non-trivially factored in R[z].

(g) A polynomial that can’t be non-trivially factored in Qfz],
but can be non-trivially factored in Z[z].

Exercises

. Suppose that f € Z[x] and the coefficient on its highest power of

x is 1 (we say that such a polynomial is called monic).

(a) Why is a monic polynomial necessarily primitive?

(b) Give an example of a primitive polynomial in Z[z] that isn’t
monic.

. Suppose that f € Z[z] is monic (see Exercise 1).

(a) Prove that all rational roots of f are integers.
(b) Prove that all integer roots of f divide its constant term.

(¢) Give examples of primitive polynomials for which parts a
and b fail.

. Use Exercise 2 and the Root Theorem 4.3 to show that z3+2x+7

is prime in Z[z].

. Consider the ring Z[i][z] of polynomials with coeflicients from the

Gaussian integers Z[i]. Argue that this ring is not a PID, by an
argument analogous to that for Z. (The argument in the text
that Z[x] is a UFD can actually be generalized to this case too,
but we will not do this here.)

. Prove that in Z[z], (3¢ + 1,z + 1) = (2,2 — 1). Show that this

ideal is not principal.




Chapter 15

Euclidean Domains

The difficulty we encountered in the last chapter in proving that Z[z] is
a UFD might convince you of the advantage of having a Division The-
orem available: The Division Theorem makes proving that Z and Q|z]
are UFDs relatively easy. It seems natural then to define a more gen-
eral class of domains (including both Z and Q[z]) that have a Division
Theorem. We name this class of domains in honor of Euclid, in whose
Elements we find the first reference to that corollary of the Division
Theorem, Euclid’s Algorithm. This is a typical gambit of mathemati-
cians. We have identified an important tool we’d like to study in general
(in this case, a Division Theorem for domains), and so we isolate those
domains having this tool by means of a definition.

15.1 Euclidean Domains

A Euclidean domain is a domain D that can be equipped with a
function v : D\{0} — N that satisfies the following two criteria:

a. For a,b € D with a # 0, there exist q,r € D (called the quotient
and remainder, respectively) such that b = ag + r, with » =0
or v(r) < v(a).

b. For all a,b # 0, v(a)v(b) = v(ab).

The function v is called a Euclidean valuation for D.

You should think of the function v as a measure of ‘size’ of the el-
ements. Thus, the first condition says that we can always divide an
element of D by a non-zero element; either the division is exact, or
we have a remainder ‘smaller’ than the divisor. To be consistent with
our earlier terminology, we will call this the Division Theorem for
Euclidean domains (even though we have built it right into the defi-
nition). The second condition allows us to relate divisibility in D to
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divisibility in Z (which we presumably know more about). Note that
because the function v takes on its values in N, we have available to us
all we know about this set, including such tools as the Well-ordering
Principle and Mathematical Induction.

Before making any abstract inferences about Euclidean domains, we
shall first list a number of examples, showing that this concept is in fact
a common generalization of a number of the domains we have already
considered.

Example 15.1

7 is a Fuclidean domain. Here, the valuation (or ‘size’ function)
is obvious; just let v(n) = |n|. The first condition is then the
Division Theorem of Z (Theorem 2.1), and the second condition
holds because |nm| = |n||m|.

Example 15.2

Qlz] is a Euclidean domain. How did we measure ‘size’ of ele-
ments for polynomials? We just used their degree; thus, v(f) =
deg(f) seems a natural definition; condition (1) is now just the
Division Theorem for Q[z] (Theorem 4.2). However, the sec-
ond condition fails, because after all, deg(fg) = deg(f) + deg(g)
(rather than deg(f)deg(g)). We can escape this problem by
means of a trick: Just let v(f) = 9deg(f), Because exponenti-
ation turns addition into multiplication, condition (2) is now sat-
isfied. But what about condition (1)? This still works because
deg(f) < deg(g) exactly when v(f) <v(g).

Example 15.3

Any field is a Euclidean domain. In a field we can divide any
element by any non-zero element, with no remainder. Thus, all
non-zero elements should be ‘small’. A function that works easily
is just v(a) = 1, for all @ # 0. This seems almost too easy, but,
after all, we are only really interested in a Division Theorem
where we have at least some elements that do not divide one
another exactly.
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15.2 The Gaussian Integers

We will now show that the ring of Gaussian integers Z[i] is a Euclidean
domain. In Chapter 10 we had already measured the ‘size’ of Gaussian
integers, by means of the norm function N(a + b)) = a? + b?. We wish
to show that the norm function serves as a Euclidean valuation. Note
that the second condition holds because N(aff) = N(a)N(3) (Theorem
10.1). Unfortunately, the Division Theorem is not really obvious. What
should the quotient and remainder be if we divide one Gaussian integer
by another?

Example 15.4

Let’s look at a particular example: Consider 11 4 6i divided by
2+ 3i. Now we can certainly perform this division in the field C.
We obtain the following:

11467  (11+6:)(2—3i) 40-21i 40 21

2+3i  (2+3)(2-3) 13 13 13"

What is the Gaussian integer closest to this quotient? Because
£ =3L and & =13, the answer to this question seems to be
3 — 24. If this is to be our quotient ¢, then the remainder r must
be given by

(11 + 66) — (2 + 31)(3 — 2i) = —1 +14.
Note that v(—1+1i) =2 < 13 = v(2 + 3i).

This example makes plausible the assertion that the norm function
is in fact a Euclidean valuation for the Gaussian integers. Let us now
prove this carefully:

Theorem 15.1 Z[i] is a Euclidean domain.

Proof:  As observed above, we clearly need check only that the Di-
vision Theorem (that is, condition (1) above) really works. So suppose
that 3 = m + ni and a = r + si are Gaussian integers, and we wish
to verify the Division Theorem for them, where o # 0 will serve as the
divisor. Using the example above as our model, consider the following
computation in C:

8 m+ni mr+ns nr—ms,

— = i
o r+ si r2 4 g2 r2 + 52
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The real and imaginary parts of this complex number certainly need
not be integers, but we shall now choose integers ¢ and ¢s as close as
possible to them. Any real number is within % of an integer, and so

this amounts to saying that

mr + ns <1

r2 + 52 a =3
and

nr —ms <1

r2 4+ 52 TR =3

We will use v = ¢1 + goi as the proposed quotient in the Division
Theorem. The remainder p will then necessarily be given by

p:ﬁ—ow:(m—rql+sq2)+(n—rq2—sq1)i.

Tt remains to check that the valuation of p is less than the valuation of
a (or else p = 0). To verify this we use the fact that the function N
preserves multiplication even in C (Theorem 8.3). We can thus do the
following computation:

e

~ N(@)N <§ - 7>

e
~ N(a) (mr-l—ns >2+(nr—ms_ >2
N Zrsz 1 Zrs2 2
1 1

< N(a) (Z + Z) < N(a) = v(e)

This shows that the remainder p is indeed suitably ‘small’. a

You will use similar means to prove that Z[v2] is a Euclidean do-
main in Exercise 15.1. Not all such domains are; it is a deep and not
completely solved problem of number theory to distinguish which are
Euclidean domains, and which aren’t.

The proof of Theorem 15.1 can be interpreted geometrically. The
crucial step is the choice of the quotient ; we do this by finding a
point in the complex plane with integer coordinates, whose distance
to 3/a (the quotient in C) is less than 1. If the complex number 3/
happened to fall between points with consecutive integer coordinates,
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as illustrated in the diagram below, we would actually have two possible

choices for the quotient:
[ ] [ ]

N
.7

Thus, the quotient and remainder need not be unique in a Kuclidean
domain; the careful reader might have noted earlier the absence of the
word ‘unique’ in the original definition. We will illustrate this point
algebraically, in the following example, where we actually have four
choices for the quotient available:

here, v can be either
of these points

Example 15.5

Let’s divide 3 +5i by 2. Because the quotient in C is 3/2+(5/2)¢,
which element of Z[i] should we choose as the quotient? In this
case, each of the four nearby points with integer coordinates are
at distance less than 1 from 3/2 + (5/2)i, and so we have four
different quotient/remainder pairs:

3+5i = (1+2i)(2) + (1 +1)
= (1+30)(2) + (1 —4)
= (2+20)(2) + (-1 +1)
= (24 3i)(2) + (-1 — i),

15.3 Euclidean Domains are PIDs

We are now ready to make some abstract observations about Euclidean
fiomains. We first prove that the units of a Fuclidean domain are
identifiable by means of its valuation:

Theorem 15.2 Let D be a Euclidean domain with valuation v. Then
u is a unit of D if and only if v(u) = 1.

Proof: Notice first that because 12 = 1, v(1)? = v(1); the only
Positive integer with this property is 1, and so v(l) = 1. But then
if 4 is a unit, v(u)v(u™!) = v(uu™!) = v(1) = 1, and so v(u) = 1.
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Conversely, if v(u) = 1, apply the Division Theorem to 1 and u to
obtain 1 = qu + 7. But v(r) < v(u) =1, which is impossible, and so
r = 0. That is, v is a unit with inverse g. O

We next show that all Euclidean domains are PIDs, using very much
the same sort of proof as we used for Z and Q[z].

Theorem 15.3 Each Euclidean domain is a PID.

Proof:  Suppose that I is a proper ideal of the Euclidean domain
D. What element of I might serve as its generator? We answer this
question (as we did for Z) by using the Well-ordering Principle. Choose
an element d of I with smallest valuation; there may be many choices
for d. Note that this valuation is necessarily larger than 1 because
contains no units. We claim that (d) = I. Because I is an ideal, it is
clear that (d) C I. Suppose now that b € I. We claim b is a multiple of
d. To check this, we should clearly use the Division Theorem to obtain
a quotient ¢ and remainder 7: b =qd+r. Because r = b — gd, this
means that r € I. But v(r) < v(d), which is impossible unless r = 0.
Thus, b = qd € (d). O

Because every PID is a UFD, we have:

Corollary 15.4 Each Euclidean domain is a UFD.

Example 15.6

We thus know that the ring Z[i] of Gaussian integers is a PID.
The crucial idea in the proof above is that a generator for an
ideal is an element with smallest valuation. As an example of
this procedure in Z[i], consider the set
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and so we require that 2ac — 2bd — bc — ad is an integer divisible
by 5. But

2ac — 2bd — bc — ad =
c(2a — b) — d(2b+ a) = ¢(2a — b) — d(ba — 2(2a — b)),

and this is divisible by 5 because 2a — b is.

The theorem asserts that I is a principal ideal, and the proof
tells that we can find a generator by picking an element of [
with smallest valuation. To find out what this is, suppose that
a+ bi € I; then 2a — b = 5k, for k € Z. So

v(a +bi) = a® + b* = a® + (2a — 5k)® = 5 (a® — 4ak + 5k%)

and so this smallest valuation is divisible by 5. But note that
2 — 4 has valuation 5 and 2 — i € I; consequently, we must have
that (2 — i) = I. Let’s do some arithmetic in C, to see explicitly
that every element of I is a multiple of 2 — 4. For that purpose,
let a + bi € I; then

a+bi  (a+b)2+1 1
T (2_i))((2+;)) = =((2a—b) + (a + 20)i)
1

5

((2a — b) + (3(2a — b) — 5(a — b))i)

and this latter element is in Z[i], because the real and imaginary
parts of the numerator are divisible by 5. Thus, any element of I
is a multiple of 21, as claimed. Note that in practice it might be
quite difficult to find the generator for an ideal by this method.
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= {a+bieZli:5|(2a—0b)}.

We claim that I is an ideal. It is quite easy to show that I is
closed under subtraction.

> Quick Exercise. Check this. <

Suppose now that a+bi € I and c+di € Z[i]. Then

(a + bi)(c + di) = (ac — bd) +i(bc + ad)

15.4 Some PIDs are not Euclidean

A natural question to ask at this point is: Are there PIDs that are
_HOt Euclidean? The answer is yes, but it is difficult to prove this. It
IS' gsually quite easy to show that a domain is not a PID: Just ex-
hibit a particular ideal and prove it is not principal. However, to show
that a domain D is not Euclidean, one must prove that all functions
v: D\{0} — N fail to satisfy at least one of the two defining conditions.
The difference between these two tasks is that the definition of PID is
& universal statement—all ideals are principal—while the definition of
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a Euclidean domain is an ezistential statement—there erists a function
satisfying particular properties. And the negation of a universal state-
ment is existential, while the negation of an existential statement is
universal.

The picture below provides a nice summary of the relationships be-
tween the various sorts of commutative rings we have studied in the
last several chapters. All inclusions shown are proper, whether or not
we have been able to provide examples in this book.

Fields:
Q,C,Z

Euclidean domains:
Z, Qlz], Z[]

PIDs

UFDs:  Za] i

Domains with factorization
into irreducibles:  Z[v/=5]|

Domains

Commutative rings: ZXxZ, Zg, C|0,1]

Rings: M2(R)

Chapter Summary

In this chapter we defined the concept of Euclidean domain and proved
that all Euclidean domains are PIDs. We showed that Z[i] is a Euclid-
ean domain, in addition to Z and Q[z].
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Warm-up Exercises

. Compute a quotient and remainder for the following pairs of ele-

ments, in the given Euclidean domain.

(a) 116 divided by 7 in Z.
(b) z* — 22 + 5z — 3 divided by 222 — 1 in Q[z].
(c¢) 13+ 5i divided by 3 + 2¢ in Z[5].

)

(d) 7 divided by 7 in R.

. Given an ideal I in a Euclidean domain, we know that [ is prin-

cipal. Describe conceptually how to determine the generator of
I. (This description is very simple; it might not be so simple to
carry out in practice.)

Exercises

. Using a similar argument to that in the text for Z[i], prove that

Z[v/2] is a Euclidean domain, using the function N as the valua-
tion.

. Compute a quotient and remainder for 17 4+ 32+v/2 divided by 3 —

44/2 in the Euclidean domain Z[\/i] Check that your remainder
has a smaller valuation than 3 — 44/2.

. Show by example that quotients and remainders are not unique

in the Euclidean domain Z[v/2].

. Make a definition for greatest common divisor of two elements in

a Euclidean domain.

. Suppose that a,b € D, and D is a Euclidean domain. Consider

the ideal (a,b) = {az + by : x,y € D}; see Exercise 12.1. Let d
be an element of (a,b) with least valuation.

(a) Why does the element d exist?

(b) Prove that d is a ged of a,b. (See Exercise 4.)

(¢) Why does this mean that Euclidean domains possess a GCD
identity?
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FEzercises

(d) Rephrase the GCD identity for Euclidean domains in terms
of ideals of the form (a,b).

(a) Explain why Euclid’s Algorithm for finding a ged makes
sense in a Euclidean domain.

(b) Apply Euclid’s Algorithm to 5+ 1334 and 17 + 34 in Z[3].

(c) Backtrack through Euclid’s Algorithm to show explicitly
that (5 + 133i,17 + 341) is a principal ideal.

Suppose that a and b are integers. Prove that their ged in Z[i] is
the same as in Z, up to unit multiples in Z[g].

Prove that if D is a Euclidean domain and a, b € D are associates,
then v(a) = wv(b). (This is easy!) Show by example that the
converse is false in Z[/2]. (You should compare this exercise to
Exercise 10.14, where two non-associates of the same norm are
exhibited in Z[y/=b]; of course, the latter ring is not a Euclidean
domain.)

Provide a geometric interpretation of the proof that Z[V2] is a
Euclidean domain, analogous to the interpretation we discussed
for Z[i].

Section III in a Nutshell

This section examines conditions that Z and Q|z] share, which provide
them with a unique factorization theorem into irreducibles, like the
Fundamental Theorem of Arithmetic.

To accomplish this goal, the section first considers analogues for the
concepts of irreducible, prime and associate. The ultimately insignifi-
cant distinction between two elements in a ring that are associates of
one another leads to the definition of a principal ideal in a commutative
ring R: (a) ={b€ R:b=ac, c € R}. Statements about elements can
be efficiently and elegantly translated into statements about principal
ideals, especially for integral domains D (Theorem 13.3): (a) = D if
and only if @ is a unit; (a) C (b) if and only a divides b; a is irreducible
if and only if (a) is maximal among all principal ideals.

The idea of principal ideal can be generalized to that of ideal, which
is a subring I of a commutative ring R satisfying the multiplicative
absorption property: if a € I and r € R, then ar € I.

For Z and Q[z], all ideals are principal (Theorem 11.6). An integral
domain where this holds is called a principal ideal domain (or PID). For
a PID, we have factorization into irreducibles (Theorem 12.1). To prove
uniqueness of such factorization requires precisely that the concepts of
irreducibility and primeness coincide (Theorems 13.4 and 13.5), as they
do for the integers. An integral domain that has unique factorization
into irreducibles is called a unique factorization domains (or UFD).

Integral domains of the form Z[/n] = {a +b\/n : a,b € Z} are called
quadratic extensions of the integers. These are important examples;
some such rings are PIDs, but not all. The ring Z[v/~5] is not a PID
and is not even a UFD.

The ring Z[z] of polynomials with integer coefficients is not a PID,
but it is a UFD; this follows essentially from Gauss’s Lemma.

Some quadratic extensions (such as the Gaussian integers Z[\/—1])
share even more properties in common with Z and Q[z] and are called
Euclidean domains: elements in such domains have a notion of ‘size’,
which equips them with a Division algorithm. This makes it easy to
prove (Theorem 15.3) that they are PIDs, and hence UFDs.
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Chapter 16

Ring Homomorphisms

Up to now we have examined the relationship between rings by looking
at properties they might have in common. Some pairs of rings can ac-
tually be placed into a rather closer relationship by means of a function
between them. The most important example of this idea is the rela-
tionship between Z and Z,, as given by the residue function ¢ : Z — Z,
defined by ¢(m) = [m],. Another example is the evaluation function
Y : Q[z] — Q defined by ¥(f) = f(a) (where a is some fixed rational
number). Exploring the general context of these examples will then
give us a new tool with which to study rings.

Because we deal extensively with functions in this chapter, we should
remind you of some terminology regarding them. If R and S are sets
and ¢ : R — S is a function, we call R the domain of the function
and S its range. Please note that this is a dramatically different use
of the word domain than we have already encountered (where domain
is really a short version of integral domain), but standard usage forces
this ambiguity upon us; we hope you will be able to tell from context
which meaning is intended.

16.1 Homomorphisms

Now consider the functions ¢ and ¢ defined above. They certainly have
rings as their ranges and domains; however, they also carry significant
parts of the structure of the domain ring over to the range ring. We
make this precise in the following definition: Let R and S be rings and
¥: R — S a function such that

p(a+b) = p(a) + ¢(b)
and
p(ab) = p(a)p(b),
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for all a,b € R. We call this a ring homomorphism. Speaking
more colloquially, we say that ¢ preserves addition and ¢ preserves
multiplication.

Later in the book we will consider homomorphisms between other
algebraic structures than rings and will then have to be careful to refer
to ring homomorphisms, as opposed to others we might discuss; but for
now the term homomorphism will suffice. The word homomorphism
comes from Greek roots meaning ‘same shape’. We shall see as we
explore this concept how appropriate this term is.

It is time now to look at some examples of ring homomorphisms. We
will begin with specific examples of the functions with which we started
the chapter.

Example 16.1

Consider the residue function ¢ : Z — Z4 defined by ¢(m) =
[m]s. Thus, for example, ¢(7) = [3]. Is this function a homomor-
phism? That is, does it preserve addition and multiplication?
Let’s check addition:

p(a+b) =la+b] = [a] + [b] = p(a) + ¢(b).

The crucial step here is the second equal sign; it holds because
of the way we defined addition in Z4, back in Chapter 3. The
proof for multiplication works just the same. We can view the
homomorphism ¢ as a somewhat more abstract and precise way
of conveying the fact that we already know: The operations on Z4
are related to those on Z. Notice of course that there’s nothing
special about 4: The residue function is a homomorphism, for
any modulus.

Example 16.2

Consider the evaluation function ¢ : Q[z] — Q defined by ¢(f) =
f(2): evaluation of polynomials at 2. For example, if f=a?—

3z+1, then p(f) = 4—6+1 = —1. This is also a homomorphism:
o(f +9) = (F +9)(2) = f(2) +9(2) = o(f) + ¢(9)-

Once again, the crucial step is the second equal sign. It holds
because of the way we defined the addition of polynomials in
Chapter 4. Once again, the proof for multiplication is just the
same. Notice of course that there’s nothing special about 2: The
evaluation function is a homomorphism, for any element of Q.
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Example 16.3

Consider the function 7 : Z x Z — Z defined by 7{a,b) = a.
It is easy to see that this is a homomorphism. For example, it
preserves multiplication because

m({a,b) - (¢, d)) = w(ac, bd) = ac = w(a,b) - w(c,d).
This function is called a projection homomorphism (we are pro-

jecting on the first component of the ordered pair). See the dia-
gram below.

Example 16.4

Consider the function ¢ : C — C defined by ¢(a) = @&, which
takes a complex number to its complex conjugate. For example,
©(3 — 1) = 3 + 4. This preserves addition:

e(la+bi)+ (c+di)) = p(la+c)+ (b+d)i) =

(a+c)—(b+d)i=(a—bi)+(c—di) =
w(a + bi) + o(c+ di).

It also preserves multiplication:
o((a+bi)(c+ di)) = p((ac — bd) + (ad + be)i) =

(ac — bd) — (ad + bc)i = (a — bi)(c — di) =
pla + bi)p(c+ di).

Of course, we can define many functions whose ranges and domains
are rings that are not homomorphisms; here is one example:
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Example 16.5

Consider the function p : Z — Z defined by p(n) = 3n; this
function merely multiplies by 3. Note that p(nm) = 3nm, while
p(n)p(m) = 9nm, and so this function certainly does not preserve
multiplication; it is consequently not a ring homomorphism.

> Quick Exercise. Does this function preserve addition? <

16.2 One-to-one and Onto Functions

We now must remind you of two very important properties descriptive
of functions (whether homomorphisms or not); namely, onto and one-
to-ome. In order to review the definitions of these properties, let’s
suppose that X and Y are sets,and ¢ : X — Y is a function.

It may well be the case that ¥ contains elements that do not occur
as () for any x € X. Writing {¢(z) : = € X} as ¢(X), we are saying
that it may be the case that ¢(X) C Y. If (X) =Y, we say that
is an onto function. (An alternate term in common use is to call ¢ a
surjective function in this case.)

For each element y of ¢(X), there exists an element x of X such
that o(x) = y (this is just the definition of ¢(X)). If this element is
unique for each such y € ¢(X), we say that ¢ is a one-to-one function.
Another way of saying this is to assert that ¢ never takes two distinct
elements of X to the same element of Y. (An alternate term in common
use is to call ¢ an injective function in this case.)

For numerous examples of these concepts in action, see the examples
of homomorphisms below.

> Quick Exercise. Which of the functions in Examples 16.1 to 16.5
are one-to-one? Which are onto? <
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16.3 Properties Preserved by Homomorphisms

Although we have in our definition required only that a homomorphism
preserve the ring operations addition and multiplication, a homomor-
phism actually preserves much more of the ring structure. We catalog
such properties of a homomorphism in the following theorem:

Theorem 16.1 Let ¢ : R — S be a homomorphism between the rings
R and S. Let Or and Og be the additive identities of R and S, respec-
tively.

a. ¢(0r) = 0g.
b. p(—a) = —p(a), and so p(a —b) = p(a) — p(b).

c. If R has unity 1gr and ¢ is onto S, and S is not the zero ring,
then ¢(1g) is unity for S.

d. If a is a unit of R and ¢ is onto S, and S is not the zero ring,
then ¢(a) is a unit of S. In this case, p(a)~! = p(a™!).

In other words, a homomorphism always preserves the zero of the
ring and the additive inverses. Furthermore, a homomorphism pre-
serves unity and units if the homomorphism is onto. This theorem
thus asserts that the assumption that a function preserve addition and
multiplication is enough to conclude that it preserve other additive and
multiplicative structures. Note that a ring always has an additive iden-
tity and additive inverses, and so (a) and (b) are phrased to reflect that
fact. On the other hand, a ring need not have unity or units, and so
(c) and (d) are phrased rather differently.

Proof:  (a): Now ¢(0gr) + ¢(0r) = ¢(Or + Or) = (0g). By sub-
tracting ¢(0g) from both sides, we obtain ¢(0g) = 0.

(b): Now ¢(—a) + ¢(a) = p(—a + a) = p(0r) = Og; thus by the
?}?ﬁni‘cion and uniqueness of —y(a), we have that p(—a) = —p(a). But

en

pla—b) = pla+(=b)) = p(a) + o(-b) = v(a) — w(b),

as claimed.

‘ (¢): If S is the zero ring, we have previously decreed that we won’t call
Its unique element 0 unity; we’ve excluded this case in our hypothesis.
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Let s be any element of S; then there exists r € R with o(r) = s,
because ¢ is onto. Then

sp(1R) = @(r)p(1r) = @(r - 1r) = »(r) = s,

and so ¢(1g) must be the unity of S.
(d): Suppose that aa™! = 1g. Then

pla)p(a™) = plaa™!) = p(1r) = 1s,

and so ¢(a) is a unit of S with inverse ¢(a™t). ]

16.4 More Examples

We now look at some further examples of homomorphisms, which will
illustrate both the theorem and the notions of one-to-one and onto. In
each case you should check that the example given does preserve mul-
tiplication and addition. The first three examples seem rather trivial
but are important.

Example 16.6

Let R be a ring with unity 1, and S another ring. Define ¢ :
R — S by ¢(r) =0, for all r € R (this is called the zero homo-
morphism). If S has unity, note that {(1) = 0 # 1, and in this
case the function is not onto, and so (c) of Theorem 16.1 does
not apply. Notice that this homomorphism is (notoriously) not
one-to-one.

Example 16.7

Let R be aring and define ¢ : R — R by ¢(r) = 7 (this is called the
identity homomorphism). It of course preserves all structure
of the ring R; it is both one-to-one and onto.

Example 16.8

Let R be a subring of the ring S. Consider the function¢: R — S
defined by «(r) = r (this is called the inclusion homomor-
phism). It is always one-to-one, but not onto if R C S.

Ring Homomorphisms

Example 16.9

Reconsider the residue map ¢ : Z — Z,4. Notice that although
2 is not a zero divisor in Z, p(2) is a zero divisor in Z4 because
[2][2] = [4] = [0]. Another thing to notice about this function is
that although the domain is infinite, the range is finite; although
onto, it is not one-to-one.

Example 16.10

Consider the rings Q and Q x Q (recall from Example 6.10 how
the direct product Q x Q is made into a ring). Define the function
¢ : Q — Q x Q by setting ¢(r) = (r,0). This homomorphism is
one-to-one, but not onto. Now 3 is a unit in Q because 3 - % =1.
But the unity of Q x Q is (1,1), and so ¢(3) = (3,0) cannot be a
unit in Q x Q, because there is no (z,w) such that (3,0)(z,w) =
(1,1). In fact, ©(3) (and ¢(1)) are zero divisors.

Example 16.11

Reconsider the evaluation map ¢ : Q[z] — Q given by (f) =
f(2), which we considered in Example 16.2. This homomorphism
is onto, but not one-to-one. Notice that the polynomial z in Q[z]
is not a unit, but ¢(z) = 2 is a unit in Q.

Example 16.12

Let C[0, 1] be the ring of continuous real-valued functions with
domains [0, 1] (we discussed this ring in Example 6.14). Consider
the evaluation map % : C[0,1] — R defined by ¥(f) = f(1).
Define the elements f, g of C|0, 1] like this:

and

() = 0, ifOSmS%
I r—1, ifi<z<l

(The graphs of f and g are shown below.) Then fg = 0, and so
[ is a zero divisor. However, ¢(f) = %, which is a unit of R.

217
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> Quick Exercise. Verify the claims made in the above examples. <

16.5 Making a Homomorphism Onto

Sometimes we wish to modify a homomorphism so that it becomes
onto. Given homomorphism ¢ : R — S, if we restrict the range to the
set @(R), the new function (which we still call @) ¢ : R — @(R) is
obviously onto. But is it still a homomorphism? Because we have not
affected preservation of addition and multiplication by restricting the
range, this new function must still be a homomorphism, if p(R) is a
ring. But this is always the case, as we prove next:

Theorem 16.2 Let ¢ : R — S be a homomorphism between rings R
and S. Then ¢(R) is a subring of S.

Proof:  We need only check that the set ¢(R) is closed under sub-
traction and multiplication; then we’ll know by the Subring Theorem
7.1 that it is a subring of S. For this purpose, choose z,y € ¢(R); there
exist a,b € R such that ¢(a) = z and ¢(b) = y. Then

z—y=ypla) —pb) = pla—b) € (R),

and similarly, zy = ¢(ab) € ¢(R). a

Historical Remarks

The functional point of view is a very powerful one in all branches of
mathematics. Analysts and topologists generally restrict themselves
to continuous functions, because these are the functions that preserve
analytic or topological structure. Similarly, in algebra we generally
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restrict ourselves to homomorphisms, because they are the functions
that preserve algebraic structure.

The great 19th-century German mathematician Felix Klein was the
first to use the word homomorphism in the context of a function pre-
serving algebraic structure. He was actually talking about groups
rather than rings; a group is a set endowed with algebraic structure
that we will meet in Chapter 24.

Chapter Summary

In this chapter we introduced the idea of ring homomorphism, a func-
tion between two rings which preserves algebraic structure. We looked
at numerous examples of such functions.

Warm-up Exercises

a. Consider the functions f, g, h, and k£ with range and domain R,
defined by

fx) =22 glz)=2% h@)=¢ k) =2z

Which of these functions is one-to-one? Which of these functions
is onto? (Note: We are not claiming that these functions are ring
homomorphisms.)

b. Suppose that f : X — Y is a one-to-one function, and X is a
finite set with n elements. What can you say about the number
of elements in Y'?

c. Suppose that f : X — Y is an onto function, and X is a finite
set with n elements. What can you say about the number of
elements in Y7

d. Give an example of a ring homomorphism ¢ : R — S satisfying
each of the following (or explain why they cannot exist):
(a) ¢ is onto but isn’t one-to-one.
(b) ¢ is one-to-one but isn’t onto.

(c) ¢ is both one-to-one and onto.
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FEzxercises

(d) ¢ is neither one-to-one nor onto.
(e) R has unity 1, but ¢(1) is not unity for S.

(f) R has additive identity 0, but ¢(0) is not the additive iden-
tity for S.

(g) ais a zero divisor for R, but ¢(a) is not a zero divisor for S.

)

(h) a is a unit for R, but ¢(a) is not a unit for S.

(i) a is not a zero divisor for R, but ¢(a) is a zero divisor for S.
)

a is not a unit for R, but ¢(a) is a unit for S.

(

We often write Z4 as {0,1,2,3}. Using this notation, define the
function ¢ : Z4 — Z by p(n) = n. Is this a ring homomorphism?

. The function o : Z — Z defined by a(n) = |n| is not a ring

homomorphism. Why not?

Suppose that R and S are rings, and ¢ : R — S is an onto ring
homomorphism.

(a) If R is a domain, is S a domain?

(b) If R is commutative, is S commutative?

Exercises

In Exercises 1-24, functions are defined whose domains and ranges
are rings. In each case determine whether the function is a ring homo-
morphism, and whether it is one-to-one or onto. Justify your answers:

. Define ¢ : Z — mZ by p(n) = mn.

Define ¢ : Q[z] — Q[z] by ¢(f) = f'. (f' is the formal derivative
of f, discussed in Exercise 4.7.)

. Define ¢ : Ms(Z) — Z by mapping a matrix to its determinant.

(The determinant function is discussed in Exercise 8.2.)

. Let R and S be rings and define m : R x S — R by m(r,s) =r,

the projection homomorphsim from R x S to R. Similarly,
we can define mp : R x S — S. (This generalizes Example 16.3.)

. Let R be a ring, and define ¢ : R — R x R by ¢(r) = (r,1).

11.
12.
13.

14.

15.
16.
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. Let R be a ring with unity and define ¢(r) = —r. Hint: Consider

Exercises 6.3 and 6.4.
Case 1: There is at least one element a € R with a + a # 0.
Case 2: Forallre R, r+r =0.

Recall from Example 7.9 that Do (Z) is the ring of 2-by-2 matrices
with entries from Z, with all entries off the main diagonal being
zero. Define

by¢<32) = (a,b).

0:Dy(Z) = Z X Z

. Define ¢ : Z[v2] — Z by ¢(a + bv/2) = a. (See Exercise 7.1 for

Z[V2].)

. Define ¢ : Z[v/2] — Z[V/2] by p(a + bv/2) = a — bv/2.

. Let X be an arbitrary set; recall the power set ring P(X) of

subsets of X (described in Exercise 6.20). Choose some fixed
z € X. Then define ¢ : P(X) — Z3 by setting

1], z€a

wla) = { 0, z¢a.

Define ¢ : Z X Z — Z by ¢(a,b) = a +b.
Define ¢ : Z x Z — Z by ¢(a,b) = ab.

Recall the ring S of all real-valued sequences. (See Exercise 6.19.)
Define ¢ : S — S by

@({81,82,- : }) = {82533" : }

(That is, ¢ obtains the new sequence merely by dropping the first
term of the sequence.)

Recall the ring Z[a], where oo = /5, as described in Exercise 7.3.
Define ¢ : Z[a] — Z4 by ¢(a + ba + ca?) = [a + b + cJ4.

Define ¢ : Z X Z — Zg by ¢(a,b) = [a — bjs.

Define ¢ : Z x Z — Zg by ¢(a,b) = [a + bls.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Exercises
Define ¢ : Zo x Z3 — Zg by ([a]2, [b]3) = [3a + 2b]e.
Define ¢ : Zo x Z3 — Zg by ¢([a]s, [b]3) = [3a + 4bl.
Define ¢ : Z X Z — Zg by ¢(a,b) = [3a + 4bje.
Define ¢ : Zg — Z4 by ¢([als) = [a]a-
Define ¢ : C — R by ¢(a + bi) = a.
Define ¢ : C[0,1] — R x R by ©(f) = (£(0), f(1))-
Define ¢ : Q[z] — Q by letting ¢(f) be the z-coefficient in f.

Define ¢ : Q[z] — M2(R) by
of) = (f 07 ((g))) |

Let R be a commutative ring, and suppose that ¢ : R — Ris a
ring homomorphism. Consider

S={reR:p(r)=r}

(a) Show that S is a subring of R.
(b) Show that S might not be an ideal.

Suppose that R and S are arbitrary rings, and ¢ : R — S is an
onto ring homomorphism. Prove that o(Z(R)) C Z(S). (Recall ,‘
from Exercise 7.12 that Z(R) is called the center of the ring R.) |

Suppose that R and S are commutative rings, and ¢ : R — Sis a §
ring homomorphism. Let N(R) and N(S) be the nilradicals of R |
and S, respectively. (See Exercise 7.15.) Prove that p(N(R)) € §
N(S).

Let R and S be rings, with ¢ : R — S a ring homomorphism.
Suppose that T is a subring of S. Let |

e HT)={reR:p(r)eT}

Prove that ¢~ !(T) is a subring of R. When is ¢~!(T) the whole
ring R? '
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29. Suppose that R is a (not necessarily commutative) ring with
unity, and a is a unit in R. Define the function ¢ : R — R
by ¢(r) = ara™!. Prove that ¢ is a one-to-one, onto ring homo-
morphism from R to R.

30. Consider the ring S of real-valued sequences. (See Exercise 6.19.)
Let

C = {(z1,22,23,...): #Lrgoxn exists}.

This is the set of convergent sequences.

(a) Prove that C is a subring of S.
(b) Define ¢ : C — R by setting

)= lim z,.

QO((ZL'],xQ, I3y
n—oo

Prove that this is a ring homomorphism.

31. In this exercise we extend Theorem 16.2 to ideals.

(a) Suppose that R and S are commutative ringsand ¢ : R — S
is an onto ring homomorphism. Let I be an ideal of R. Prove
that ¢(I) is an ideal of S.

(b) Show by example that part a is false, if we do not require
that ¢ is onto.



Chapter 17

The Kernel

Let’s consider the residue homomorphism ¢ : Z — Z4. There are
exactly four residue classes modulo 4; namely,

{,-4,0,4,8,--},
{-,-3,1,5,9,---},
{--,-2,2,6,10,---}, and
-, -1,3,7,11,---}.

How do they relate to the function ¢? The answer to this question
is reasonably obvious: They consist of the four pre-images of the
elements of Z4. Namely, the residue classes consist of the four sets

e ([0]) = {n € Z: p(n) = [0},
P M), ¢7H([2]), and ©7H([3])

Furthermore, these sets are rather nicely related: ¢~1([0]) = 4Z, the
multiples of 4, and the other three can be obtained from 4Z by adding
a fixed element to every element of 4Z;

e M) ={a+1:a€4z},
90_1([2]) ={a+2:a€4Z}, and
o ' ([3]) ={a+3:ac4z}.

We say that we have obtained ¢~ !([1]), ©»~2([2]), and ¢~ 1([3]) by
additively translating 4Z by 1, 2, and 3, respectively.

BRI

translation of 4Z by 1
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17.1 Ideals

In Chapter 11 we introduced some notation to describe sets like 47,
which we now review. For any commutative ring R and a € R, let

(a) = {ar : 1 € R},

the multiples of a in R. Then we can write 4Z as (4). And furthermore,
we will denote the pre-image

e () ={a+1:ae (1)}

as (4) + 1. Using this notation, the four residue classes modulo 4 can
then be written as

(), (4)+1, (4) +2, (4) +3.

Note that the set ¢ ~1([0]) = (4) has some properties that the other
pre-images do not have. Most obviously, (4) is a subring of Z (as we
saw in Chapter 7). But in addition to this, (4) satisfies a stronger
multiplicative closure property: namely, if a is an element of (4), then
so is ar for any r in the ring Z. In Chapter 11 we said that a subset
I of a commutative ring R satisfies the multiplicative absorption
property if whenever a € I and r € R, then ar € I. We called
subrings with this stronger multiplicative closure ideals.

17.2 The Kernel

We'd like to generalize this situation as far as possible to arbitrary
rings. This leads us to the following definition: Let ¢ : R — S be a
homomorphism between the rings R and S. The kernel of ¢ is

91 (0) = {r e R: p(r) = 0};

we will denote this set by ker(¢). In other words, the kernel is the |

pre-image of 0.
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Thus, the kernel of the residue homomorphism above is exactly (4).
Notice that the kernel always contains the additive identity of R (be-
cause homomorphisms take zero to zero). But as the example above
shows, the kernel can include a great many other elements as well.

Let’s go back to some of the examples from the previous chapter and
compute their kernels.

Example 17.1

(From Example 16.2) This is the homomorphism that evaluates
each rational polynomial at 2, and so its kernel is the set of all
polynomials f such that f(2) = 0. By the Root Theorem, this is
the set of all polynomials of the form (x — 2)g, where g is some
arbitrary element of Q[z]. Note that this set is precisely (z — 2).

Example 17.2

(From Example 16.3.) This is the projection homomorphism onto
the first component, from Z x Z to Z. When is 7(a,b) = 07 The
answer is precisely when a = 0; thus,

ker{m) = {(0,b) : b € Z}.

Note that this is precisely ((0,1)).

Example 17.3

(From Example 16.4.) This is the homomorphism ¢ taking each
complex number to its conjugate. Thus, a + bi = « € ker(p)
exactly if a — bi = & = 0. But this means that both a and b are
zero, and so a = 0. Thus,

ker(ip) = {0} = (0)-

Example 17.4

(From Example 16.6.) This is the zero homomorphism ¢ : R — S,
and its kernel is quite evidently the entire ring R.
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Example 17.5

(From Example 16.12.) This is the homomorphism v : C[0,1] —
R that sends a continuous function to its value at 1/4. Here,

ker(y) = {f € C[0,1] : f(1/4) = 0}.

> Quick Exercise. Compute the kernels of the other examples of
ring homomorphisms from the previous chapter. <

17.3 The Kernel is an Ideal

Note that every kernel from the above examples is an ideal: a subring
that has the multiplicative absorption property. In the case of Example
17.4, this is evident because the kernel is the entire ring. In the case of
Examples 17.1, 17.2, and 17.3, the kernel is of the form

(a) ={ar:7 € R}.

We proved in Chapter 11 that this set is an ideal, for any commutative
ring R. We called such ideals principal ideals.

> Quick Exercise. Reconstruct this proof yourself (or at least read
the proof in Chapter 11). <

For Example 17.5, let’s check explicitly that

ker(y) = {f € C[0,1] : f(1/4) =0}
is an ideal. We first see that it is a non-empty set, by noting that the

zero function is in ker(t). It is easy to check that ker(¢)) is closed under - 2

subtraction.

> Quick Exercise. Show that the kernel from Example 17.5 is closed
under subtraction. <

This kernel also has the absorption property: If f is in ker(¢)) and g
is any function in C[0, 1], then

(f9)(1/4) = f(1/4) - g(1/4) = 0-g(1/4) = 0.
In other words, fg is also in ker(v).

With the examples above before us, you may be ready to believe the }

following theorem:
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Theorem 17.1 Let ¢ : R — S be a homomorphism between the com-
mutative rings R and S. Then ker(yp) is an ideal of R.

Proof:  To show that ker(y) is an ideal, we must first check that it
is a non-empty set. But evidently, the zero element of R belongs to
the kernel. We next check that the kernel is closed under subtraction.
So suppose a and b are elements of the kernel. We need to check that
a—>b € ker(p). But p(a —b) = p(a) — () = 0—0 = 0. That
is, a — b € ker(yp), as required. Similarly, if r € R, then p(ar) =
p(a)p(r) = 0p(r) = 0, and so ar € ker(p). O

17.4 All Pre-images Can Be Obtained from the Kernel

The residue homomorphism example suggests that we can capture all
pre-images by additively translating the kernel. Let’s look at the pre-
images of Example 17.1, the evaluation map

¢:Qz] - Q

defined by ¢(f) = f(2). This is more complicated than the residue
homomorphism example because the range Q is infinite, and so there
are infinitely many pre-images. Recall that the kernel of ¢ is (z — 2).
We wish to show that it is also the case in this example that each pre-
image can be obtained by additively translating the kernel. That is,
we claim that each pre-image can be written as

(x—2)+g={f€Qz]: f=h+g where h € (x —2)},

for some choice of g. To show this, choose a € Q@ and consider g in
¢~ !(a). This means that ¢(g) = g(2) = a. We claim that every f in
¢~ (a) can be written in the form f = h + g where h € (z — 2). This
would show that ¢~1(a) = (z — 2) + g. Now because f(2) = a, and
9(2) = a, we have that (f — g)(2) = 0. That is, f — g € ker(p). But
ker(y) = (x — 2), so f — g = h, where h is some multiple of z — 2. But
then f = h + g, as we wish.

Note that the g we picked to represent ¢~ !(a) was chosen arbitrarily
from all the elements of ¢~'(a). Another element in ¢~ '(a) would
have served just as well. The form of the translation would be different
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but would give the same set. In other words, if g; and g, are both in
¢~ 1(a), then

e Ha)=(x—2)+ g1 = (z —2) + go.

This is analogous to our freedom of choice in representing residue classes
in Zp: for instance, [4]¢ = [10]¢ = [16]g; or, to express this using the
notation of ideals,

(6) +4 = (6) + 10 = (6) + 16.

It turns out that we can always capture all the pre-images of a ring
homomorphism by additively translating the kernel. To state this for-
mally, we need a definition. Let I be an ideal of the ring R. Given
r € R, the coset of I determined by r consists of the set {a+7: a € I},
which we write as I 4 7. Thus, (4) + 3 is a coset of the ideal (4) in Z.

> Quick Exercise. Consider the function ¢ in Example 17.1; de-
scribe the coset ker(y)+ 5. What values do the polynomials in this set
take on at 27

Theorem 17.2 Let ¢ : R — S be a homomorphism between the rings
R and S, and s € ¢(R). Then ¢~1(s) equals the coset ker(p)+r, where
T is any given element of ¢~ (s).

Proof:  Let s € ¢(R), and choose any 7 € ¢~ !(s) (which is non-
empty by assumption). We must show that the sets ker(¢) + r and
¢~ '(s) are equal. Choose an arbitrary element a + r € ker(p) + r,
where a € ker(p). Then p(a+ 1) = ¢(a) + p(r) = 0+ ¢(r) = s. Thus,
a+r1 € ¢ 1(s), as claimed.

Conversely, choose t € ¢ ~!(s). Then consider ¢ — r;

Pt —r)=p(t) —p(r) =s—-5=0,

and so t—r1 € ker(p). But then ¢t = (t—7)+r € ker(yp) +r, as required.
0

Now because pre-images of distinct elements are clearly disjoint from
one another, we have that the set of cosets of the kernel decomposes
the domain ring into a set of pairwise disjoint subsets. That is, the set
of cosets of the kernel partitions the ring. The unique one of these sets
containing 0 is an ideal (because an ideal has to contain 0, it is clear
that only one of the cosets can be an ideal). Notice that we can (and
will) think of the ideal itself as a coset, namely, as ker() + 0.
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Example 17.6
Let’s explicitly compute this decomposition for the function ¢ :
Zaa — Zy defined by ¢([al12) = [a]4-

> Quick Exercise. Check that this function is a ring homo-
morphism. <

The kernel of ¢ is
70 ={0,4,8} =) = (4 +0={4) +4=(4) +38,

{(where we have omitted the square brackets for simplicity’s sake).
The other distinct cosets of (4} are

e (1) ={1,5,9} =) +1=(4)+5=(4)+9,
0 1(2) ={2,6,10} = (4) + 2 = (4) + 6 = (4) + 10, and
e 3) ={3,7,11} = (4) +3=(4) + 7= (4) + 11.

Notice that in Example 17.6, each of the cosets has exactly the same
number of elements. This is true in general because there is a one-
to-one correspondence between any pair of cosets of an ideal: Given
two cosets I + @ and I + b, the function a : I + a — I + b defined by
a(z) =z — a + b is both one-to-one and onto.

> Quick Exercise. Show that « is both one-to-one and onto. <

It is important to make clear that the function « is not a homomor-
phism; it does not preserve the operations, and the domain and range
(except in the special case of the coset I) are not even rings. Two sets
have the same number of elements exactly if there is a one-to-one cor-
respondence between them; this is the situation in our example above.
(Although we will not inquire into this here, this one-to-one correspon-
dence is even useful if the ideal (and hence its cosets) is an infinite set,
because it turns out that not all infinite sets can be put into one-to-one
correspondence with one another; some are ‘bigger’ than others.)

We record our result formally:

Theorem 17.3 Let I be an ideal of the commutative ring R, and let
I+ a and I +b be any two cosets of I. Then there is a one-to-one
correspondence between the elements of I +a and I +b. In particular,
if these sets are finite, they have the same number of elements.
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17.5 When is the Kernel Trivial?

An important special case to consider of this one-to-one correspondence
is when the kernel consists of only a single element; namely, when the
ideal is {0} (because an ideal is a subring this is the only possible one
element ideal). Thus, every coset consists of a single element. Because
the cosets consist of the pre-images of elements from the range ring,
this means that a homomorphism with kernel {0} is necessarily one-
to-one. To rephrase: If a homomorphism takes only zero to zero, then
there is only a single element that it takes to any of its values. We
state this formally as a corollary:

Corollary 17.4 A ring homomorphism is one-to-one if and only if its
kernel is {0}.

17.6 A Summary and Example

We have thus concluded that each homomorphism gives rise to an ideal,
and this ideal in essence determines the pre-images of elements from
the range of the function. We thus know (from just knowing the kernel)
which elements in the ring are sent by the homomorphism to the same
elements.

For example, consider the ring Z x Z and the ideal I = {(z,0) : z €
Z}.

> Quick Exercise. Check that this is an ideal. <

Suppose we are told that this is the kernel of some homomorphism.
Then we know that all elements in the coset

I+3,4)=I+(-54)={(z,4):z€Z}

must be sent by the homomorphism to the same element in the range

ring (whatever that might be). Can you in fact think of a homomor-

phism with domain Z x Z of which I is the kernel? (If not, rest assured |

that in Example 19.8 we will return to this example.)
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This all suggests that knowing the kernel of a homomorphism in
essence gives us the homomorphism. This is precisely the content of
the next chapter, where we will prove that every ideal of a ring is the
kernel of some homomorphism. That is, we will prove the converse of
the Theorem 17.1, which asserts that the kernel of a homomorphism is
always an ideal.

Chapter Summary

In this chapter we defined the notion of the kernel of a ring homomor-
phism and proved that the kernel is always an ideal. Furthermore, the
pre-images of a ring homomorphism are exactly cosets of the kernel.

Warm-up Exercises

a. What is the kernel of
w1 Ze — Lo
given by ¢([als) = [a]2?

b. Write down the pre-images from the example in part a, and check
that they are cosets.

c. Consider the function f : R — R defined by f(z) = 22. How
many real numbers are there for which f(z) = 0?7 How about for
f(z) = 47 Why does this tell us that f is not a homomorphism?

d. Give examples of ring homomorphisms ¢ satisfying the following
(or say why you can’t):

(a
(b

(c
(d

¢ is onto, and its kernel is {0}.
¢ is onto, and its kernel is not {0}.

( is one-to-one, and its kernel is {0}.

N’ e e N

¢ is one-to-one, and its kernel is not {0}.

e. If you've read Chapter 11, give an example of a subring that is
not the kernel of any ring homomorphism (if you can).

f. If you’ve read Chapter 11, give an example of a kernel of a ring
homomorphism that is not a subring (if you can).
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Ezxercises

10.

11.

12.

Exercises

. Consider the homomorphism given in Exercise 16.5. What is its

kernel? What does this mean about the homomorphism?

. Consider the homomorphism given by Exercise 16.7. What is its

kernel?

. Consider the homomorphism given by Exercise 16.10. What is

its kernel? Can you describe this kernel as a principal ideal (b},
for some subset b € P(X)?

. What is the kernel of the homomorphism given by Exercise 16.137

. Consider the homomorphism ¢ given by Exercise 16.14. Prove

that ker(¢) = (3 + «,4).

. What is the kernel of the homomorphism given by Exercise 16.177

What is the kernel of the homomorphism given by Exercise 16.227

Consider again the ring homomorphism of Example 17.1, namely,
the function ¢ : Q[z] — Q defined by ¢(f) = f(2). Consider the
translates of (x —2) by each of the constant polynomials (one for
each rational). Show that each of these gives rise to a different
pre-image of .

(Continuation of Exercise 8.) Now show that all the pre-images
of ¢ can be obtained in this manner.

If F is a field and ¢ is a ring homomorphism, is ¢(F’) also a field?
If yes, prove it. If no, give a counterexample.

Consider the projection homomorphism 71 : R x § — R given in
Exercise 16.4. What is the kernel of 717 When do two elements
of R x S get mapped to the same element of R? The set of pre-
images of 1 is naturally in one-to-one correspondence with what
ring?

If I is an ideal of a commutative ring R, then show that two cosets
of I (say, I + a and I + b) are either equal or disjoint. (That is,

the set of all translates of I partition R.) If you’'ve previously 1

13

14

15

16

17

18
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encountered the idea of equivalence relation, rephrase this result
in terms of that concept.

. Consider the homomorphism given by Exercise 16.24. What is
the kernel of this homomorphism? Can you describe this kernel
as a principal ideal?

. Let R be a commutative ring with unity, and suppose that e is
an idempotent element. (That is, €2 = e.) See Exercise 7.25 for
more about idempotents. Define ¢ : R — R by setting ¢(r) = er.
Prove that ¢ is a ring homomorphism. Describe its kernel.

. This is a converse for Exercise 14. Suppose that R is a com-
mutative ring with unity, ¢ € R, and ¢(r) = ar defines a ring
homomorphism. Prove that a is idempotent.

. Let R be a finite commutative ring, with n elements. Suppose
that I is an ideal of R with m elements. Prove that m divides
n. (This result will be put in a more general context in Theorem
31.2, which is called Lagrange’s Theorem.)

. Suppose that F'is a finite field with characteristic 2. (See Exercise
8.11 for a definition of characteristic.)

(a) Prove that ¢ : F — F, defined by ¢(r) = r? is a ring

isomorphism.

(b) One example of a field with characteristic 2 is Zs. Describe
the isomorphism ¢ explicitly in this case.

(c) Another example of a field with characteristic 2 is the field
described in Exercise 8.12, which consists of the elements

{0,1,,1 + a}.
Describe the isomorphism ¢ explicitly in this case.

. Generalize Exercise 17. That is, suppose that F' is a finite field
with characteristic p.

(a) Prove that ¢ : F — F defined by ¢(r) = rP is a ring iso-
morphism. This function is called the Frobenius isomor-
phism.
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(b) Suppose now that the finite field F' is the field Z,. Explain
why Fermat’s Little Theorem 8.7 implies that in this case the
Frobenius isomorphism is actually the identity map. (Note
that in Chapter 46 we will encounter many finite fields that
are not of the form Z,.)

Chapter 18

Rings of Cosets

In practice when we think of the ring Z4 we think of the four elements
[0, 1], 2], [3] (or even 0,1,2,3) together with the appropriate opera-
tions. But technically, when we first considered Z, and its operations
in Chapter 3, we defined those elements as infinite sets of integers; that
is,

o) ={a+4m:meZ}={ne€z:4/(a —n)}.

We then defined addition and multiplication by setting
[a] + (] =[a+b] and [a][b] = [ab].

While these definitions look innocuous enough, what we first had to
do was to check that they make sense (or are well defined): if [c] = [a]
and [b] = [d], do [c+ d] = [a + b] and [cd] = [ab]? We now wish to
follow the same line of thought for the cosets of an arbitrary ideal of a
commutative ring.

18.1 The Ring of Cosets

We first need some notation. Let R be a commutative ring with ideal
I. Then we denote the set {I +r : r € R} of all cosets of I in R by
R/I; we read this as ‘R modulo I'. Note that by defining R/I in this
way, it looks as if R/I has as many elements as R does. But this is
certainly not the case, for different elements of R may well give rise to
the same coset.

For example, we saw in Section 17.4 that we can write

Z/(4) = {(4) +n:n ez} = {{4) +0,(4) +1,(4) +2,(4) +3}.
Another example we discussed in the previous chapter is this:

Qal/(z—2)={{z-2+f:feQ]}={{z-2)+q:q€Q}.
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What we are going to do now is define an addition and multiplication
on R/I in such a way as to make it a commutative ring. We do this so
that Z/(4) becomes a ring essentially the same as Z4, and Q[z]/({x — 2)
becomes a ring essentially the same as Q.

Given a commutative ring R with ideal I, we define

I+a)+(I+7r)=I+(a+7) and (I+a){I +7)=1+ar.

We must now check that these definitions make sense. As when
checking that addition and multiplication are well defined on Z,,, we
must show these definitions for addition and multiplication on cosets of
I are well defined by showing that different representations of the cosets
yield the same sum (and product). That is, suppose that I +a = I +c¢
and I+r=1+s:1Is

(I+a)+T+r)={T+b)+ (I +9)?

Is
I+a)I+ry=(T+b){I +s)?

What does such an assumption as I + a = I + b mean? In other
words: When do two elements determine the same coset of I? This is
important enough to characterize in the following theorem. But before
stating the theorem, think again about the example Z/(4). When do
two integers a and b determine the same coset (or in this case, residue
class modulo 4)? The answer is exactly if their difference a — b belongs
to the ideal (4). This is the answer in general; we shall prove this
now, along with some other important observations about cosets, in
the Coset Theorem.

Theorem 18.1 The Coset Theorem
commutative ring R with a,b € R.

Let I be an ideal of the

a. IfI+aCIT+b,thenl+a=1+0.
b. If I+anI+b+#0, thenI+a=1+b.
c. I+a=I+bifand onlyifa—bel.

d. There exists a one-to-one and onto function between any two
cosets I +a and I +b. Thus, if I has finitely many elements,
every coset has that same number of elements.
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Notice that if you have done Exercise 17.12, you have already checked
that parts (a) and (b) are true.

Proof: (a) Suppose that I is an ideal of the commutative ring R,
and a and b are elements of the ring for which I +a C I + b. Then

a=0+4+a€l+aCIT+5,

and so there exists € I such that a =z +b. But then b= -z +a €
I+a Now,ifkel,k+b=(k—z)+a€l+a,andsol+bCI+a.
That is, I +a=1+b.

(b): Suppose that I +an I+ b # (. Choose ¢ in this intersection.
Then ¢ € I+a, and so I +¢ C I+a. But then by part (a), [+¢ = I+a.
But similarly, I +c¢=I+b,andso I +a=1+0b.

(c)) fI+a=1I1+bthena=0+a€l+a=1+b, and so there
exists k € I such that a = k +b. But then a — b=k € I, as required.
Conversely, suppose if a —b € I, then a = (a —b) +b € I +b. But then
a€l+anI+b, and so by part (b), [+a=1+5b.

(d): In the Quick Exercise following Example 17.6, you argued that
the function a : I +a — I +b defined by a(z) = £ —a+ b is one-to-one
and onto. i

We now use the Coset Theorem 18.1, as promised, to show that the
addition and multiplication we have defined above on R/I are well
defined:

Proof that Operations are Well Defined: We can now return to
the task of checking that the above definitions of addition and multipli-
cation for R/I make sense. Suppose that [+a = I+band I+r = I+s;
we claim first that I+ (a+r) = I +(b+s). But this amounts to claiming
that (a+r)—(b+s) € I, and because (a+7r)—(b+s) = (a—b)+(r—s),
this is clear. We claim next that I + ar = I + bs, or in other words,
that ar — bs € I. But

ar —bs=ar —br+br —bs = (a—b)r +b(r —s).

Because I has the multiplicative absorption property, (a — b)r € I and
b(r — s) € I, and so therefore ar — bs € I. O

Notice that in order to show that multiplication makes sense for
cosets, we needed the full strength of the definition of ideal. You will
see by example in Exercise 18.8, that multiplication of cosets does not
make sense if I is merely a subring.

Now that we have the appropriate operations defined on R/I, the
rest of the following theorem is easy:
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Theorem 18.2 Let I be an ideal of the commutative ring R. Then
the set R/I of cosets of I in R, under the operations defined above, is
a commutative ring.

Proof:  We know from above that the addition and multiplication
defined on R/I are in fact binary operations. They are associative and
commutative because the corresponding operations on R are:
I+a)((I+b)(I+c)={T+a)I+bc)y=14a(be)
=TI+ (ab)c= (I +a)(I+b))(I +0),

and similarly for addition. In a similar fashion the distributive law for
R/I carries over from the distributive law for R. You should check that
the additive identity for R/I is I + 0, and the additive inverse of I + a
is I+ (—a).
> Quick Exercise. Perform these verifications. <

O

The ring R/I is called the ring of cosets, or the quotient ring of
R modulo I.

Example 18.1

Let’s look at an example of this construction in the commutative
ring Zy2. Consider the ideal

4y = {0,4, 8}.
This ideal has 4 distinct cosets:
Zaz/(4) = {{(4),{4) + 1,(4) +2,(4) + 3}.
> Quick Exercise. Write down the multiplication and addi-

tion tables for the ring Zi5/(4), and thus check quite explicitly
that this is a ring. <

18.2 The Natural Homomorphism

Suppose that R is a commutative ring with ideal I. Consider the
function v : R — R/I defined by

v(ia)=1+a.
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Because of the definition of the operations on R/I, it is obvious that
this function preserves them both. Thus, v is a homomorphism from
R onto R/I. We call it the natural homomorphism from R onto
R/I.

Our experience in the previous chapter suggests the following ques-
tion: What is the kernel of the natural homomorphism? If v(a) = I+0
(the additive identity of R/I), then I +a = I + 0. But by the Coset
Theorem 18.1, this is true exactly if a = a — 0 € I. Thus, the kernel of
the natural homomorphism from R to R/I is exactly I. This is very
easy but is important enough to record as a theorem:

Theorem 18.3 Let R be a commutative ring with ideal I, andv : R —
R/I the natural homomorphism. Then ker(v) = I.

In the last chapter we saw that every kernel of a homomorphism is
an ideal. In this chapter we have seen that every ideal is the kernel
of some homomorphism, namely, the natural homomorphism from R
to R/I. We have thus obtained a completely different way of thinking
about ideals: Ideals are kernels of homomorphisms. This is the sort of
surprise that mathematicians particularly enjoy: Two apparently quite
different ideas (in this case, homomorphisms and ideals) turn out to be
inextricably linked! But to really say that the ideas of homomorphisms
and ideals amount to the same thing, we need a bit more. To see this,
let’s look again at an example.

Consider again the evaluation homomorphism v : Q[z] — Q where
Y(f) = f(2). We know that ¢(Q[z]) = Q. Now ¢ has kernel (z — 2),
which is an ideal. In this chapter we have constructed a ring and a
homomorphism of which the ideal (x — 2) is the kernel; namely, we
have the ring of cosets Q[z]/(z — 2) and the natural homomorphism
v : Qz] — Q[z]/(z — 2). The two functions 1) and v are certainly
different; the range of one is the set of rational numbers, while the
range of the other is a certain set of subsets of Q[z]. However, in
structure these two ranges (and the functions ¢ and v which connect
them to the domain Q[z]) seem essentially the same. The ring of cosets
Q[z]/{x —2) appears to be just our old friend the rationals, in disguised
garb. Our goal in the next chapter is to show that this is no accident.

Chapter Summary

In this chapter we saw how to make a ring out of the set of cosets of
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an ideal in a commutative ring, generalizing the construction of Z, in
Chapter 3.

Warm-up Exercises

. How many elements does the ring

Z1s/(4)

have? Which one is its additive identity? Does this ring have
unity? Does it have any zero divisors?

. Compute
((4) +3)({4) +2)

in Z12/(4) twice, using different representatives from these two
cosets.

. What is the additive inverse of
(z —2) + (2%~ 2)
in Q[z]/(x —2)?
. What is the multiplicative inverse of
(@ ~2) + (2* — 2)

in Q[x]/(x — 2)?

. Let R be a commutative ring and I one of its ideals. What is the
nature of the elements belonging to the set R/I?

. What is the kernel of the natural homomorphism v : R — R/I?
. Is the natural homomorphism always onto? Why or why not?

. Is the natural homomorphism always one-to-one? Why or why
not?

i. Is every ideal of a commutative ring a kernel of some homomor-
phism? Why or why not?

Rings of Cosets 243

Exercises

. Consider the ideal (x?) in Q[z].

(a) Prove that for each f € Q[z], there exists a + bz € Q[z], so
that

(z%) + f = (%) + (a + ba).
(b) Show that Q[z]/{z?) is not a domain.

. Consider the ring Z/I, for some ideal I. For what ideals I does

this ring have infinitely many elements? For what ideals I does
this ring have finitely many elements?

. Consider the ideal (1 + %) in Z[4].

(a) Make use of the description of this ideal provided in Exercise
13.5 to show that for all a + bi € Z[i], there exists ¢ € Z,
such that

(14+i)+(a+bi)=(1+1%) +c

(b) Use part a to prove that Z[i]/(1 + ¢) has only two elements.

. Consider the ideal

I={feC0,1]: f(1/4) = 0}

in the commutative ring C[0, 1]; we considered this ideal in Ex-
ample 17.5.

(a) Prove that
I+ f=1+gifandonlyif f(1/4) = g(1/4).

(b) Prove that C[0,1]/I is a field.

. Consider the ideal I = ((3,4)) of the ring Z x Z. Prove that

(Z x 2)/I is not a domain.

. Prove that J = {(z,0) : z € Z} is an ideal in Z X Z. Prove that

(Z x Z)/J is a domain (even though Z x Z is not a domain).

. Consider the ring Z[a] described in Exercise 7.3.
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8.

10.

11.

Ezercises
(a) Prove that any element
(1+a) + (a+ba+ca®) € Z[a] /(1 + )

can be written in the form (14+a)+m, where m is an integer.
(b) Show that 1 + a divides 6.
(c) Use (a) and (b) to show that

Z[a]/(1+a)={(1+a)+0,(1+a) +1,(1+a)+2,
o (14 @) + 5}

(d) Use c to show that Z[o]/(1 + @) is not a domain.

The ring Z is a subring of Q but is not an ideal. Therefore,
it makes no sense to speak of the ring of cosets Q/Z. Show by
explicit example that multiplication makes no sense for Q /Z. (We
will see in Chapter 32 that addition does make sense. This means
that Q/Z is an additive group, but not a ring.)

. Consider the ring S of real-valued sequences, and X the ideal of

S, considered in Exercise 12.8.

(a) Give a nice description of the elements of the coset ¥ +
(1,1,1,...).
(b) Show by explicit computation that S/¥ is not a domain.

(¢) Show that the ring S/¥ has infinitely many distinct idem-
potents. (Recall from Exercise 7.25 that an idempotent is
an element e for which e? = e.)

Let R be a commutative ring; recall from Exercise 7.15 that the
nilradical N(R) of R is a subring.
(a) Prove that N(R) is an ideal of R.

(b) Prove that the ring R/N(R) has no non-zero nilpotent ele-
ments.

(¢) Check explicitly that part b is true for the ring R = Zg. To
what ring is Zg/N(Zs) isomorphic?

Consider the following alternate definition of addition of the cosets
of an ideal I of a commutative ring R.

(I+a)+(I+b)={z+y:zcl+ayecl+b}
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Prove that this definition is equivalent to the definition of addition

on R/I given in the text. (Compare this exercise to Exercise
3.11.)
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The Isomorphism Theorem for Rings

What we now must do is make careful sense of what we mean by say-
ing that two rings ‘are essentially the same’. Clearly there should be a
one-to-one correspondence between the elements of the two rings, and
this one-to-one correspondence should preserve the ring structure. Pre-
serving the ring structure just means that we have a homomorphism.

19.1 Isomorphism

We make this formal in the following definition: Let R and S be rings.
If there exists a one-to-one onto homomorphism ¢ : R — S, we say that
R and S are isomorphic; the function ¢ we call an isomorphism.
Recall (the Corollary 17.4) that a homomorphism is one-to-one if and
only if its kernel is {0}; this fact then applies to isomorphisms and in
practice is the way to check that part of their definition.
Let’s now look at some examples of isomorphisms.

Example 19.1

Recall the identity homomorphism, defined on a ring R; it is
the map ¢ : R — R defined by «(r) = r. This is obviously an
isomorphism. Here, the domain and range rings are exactly the
same, rather than only ‘essentially’ the same.

Example 19.2
For a more interesting example, we claim that the function
A Q- Qlal/{x ~2)

defined by A(r) = (z — 2) + r is an isomorphism. Because of the
way addition and multiplication are defined on the ring of cosets,
this function clearly preserves them.
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> Quick Exercise. Verify that the function A preserves addi-
tion and multiplication. <

We next claim that A is one-to-one. To do this, we show
that its kernel is {0}. For that purpose, suppose that r € Q and
A(r) = 0; we must show that r = 0. But (z~2) +7 = (z - 2)4+0
means that 7 € (z—2); that is, the rational number r is a multiple
of the polynomial z — 2. But deg(r) < deg(z — 2) forces us to
conclude that r = 0.

Finally, we claim that this function is onto. Suppose that

(z—2) + f € Qlz]/(z - 2).

We must find an element of Q whose value is (z — 2) + f. By
applying the Division Theorem 4.2 we have that f=(x—=2)q+r,
where the degree of the remainder r is less than the degree of
z — 2; this means that r is a constant. But then

APy =@ -2 +r={(2-2)+(x-2g+r=(x—2)+/

as required.

We can certainly have functions between rings that satisfy several of
the requirements for being an isomorphism without meeting them all.
Here are a number of examples of this phenomenon:

Example 19.3

Suppose that R is a proper subring of the ring S; recall the
inclusion homomorphism ¢ : R — S, where ¢(r) = r. This homo-
morphism is one-to-one but not onto.

Example 19.4

Consider the rings Z4 and Zy X Z2; they both have 4 elements,
and so there exists a one-to-one correspondence between them. Is
there any such correspondence that preserves addition and mul-
tiplication? We claim something stronger: There isn’t even a
one-to-one correspondence that preserves addition. If there were,
0 would have to go to (0, 0). (See Theorem 16.1a.) There are then
three possibilities for where 1 might be mapped: (1,0), (0, 1),(1,1).
But if the correspondence preserves addition, then the images of

2=14+1and3=1+1+1
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under the correspondence are forced by choice of the image of 1.
It is easy to see that none of the three choices listed above allow
a one-to-one function.

> Quick Exercise. Check that each of the three choices above
yield a function that is not one-to-one. <

Example 19.5

Consider the rings Z and 27Z. There certainly is a one-to-one onto
function between these rings that preserves addition; namely,
w(n) = 2n. But there can be no such onto map that also pre-
serves multiplication, because Z has unity, while 2Z doesn’t. (See
Theorem 16.1c.)

Suppose now that ¢ : R — § is an isomorphism. Let’s consider
the inverse function ¢~!. How is ¢! defined? Given s € 3, there
exists 7 € R such that ¢(r) = s (because  is onto). But there is only
one such r (because ¢ is one-to-one). It thus makes sense to define
¢~1(s) = r. This new function is also clearly one-to-one and onto. But
is it an isomorphism? Given s,t € S, suppose that z,y are the unique
elements of R for which p(x) = s and ¢(y) = t. Then

e (s +t) =90 (e(z) + 0(y) = ¢ (plz + 1))
=z+y=p (s)+¢ (),

and similarly ¢! also preserves multiplication. To summarize, we have
just shown that the inverse function of an isomorphism is an isomor-
phism. Thus, to say that R and S are isomorphic really is a symmetric
relationship; the order in which we state them doesn’t matter, because
the existence of an isomorphism in one direction implies the existence
of an isomorphism in the other direction.

19.2 The Fundamental Isomorphism Theorem

We're now ready to show the true equivalence of the notions of ho-
momorphism and ideal by proving the theorem we’ve been leading up
to for some time. Given an onto homomorphism ¢ : R — S between
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commutative rings R and S, we know that ker(y) is an ideal, and so
we have another homomorphism v : R — R/ ker(y). We claim that the
ranges of these homomorphisms are ‘essentially the same’, and what’s
more, the functions themselves are ‘essentially the same’. We use the
language of isomorphism to state this formally.

Theorem 19.1 The Fundamental Isomorphism Theorem for
Commutative Rings Let ¢ : R — S be an onto homomorphism
between rings, and let v : R — R/ker(y) be the usual natural homo-
morphism. Then there exists an isomorphism p : R/ ker(yp) — S such
that pov = .

We exhibit this situation in the following diagram:

R ¥

\

R/ker(p)

S
w

For simplicity’s sake, in this book we are restricting our attention in
this theorem to commutative rings, because we’ve really only looked
at the concept of ideal in this case. However, at the expense of only
slightly more work, a more general such theorem actually remains true
in the case of arbitrary rings; we won’t pursue this matter here.

Proof: Suppose that R and S are commutative rings, ¢ : B —
S is an onto homomorphism, and v : R — R/ker(y) is the natural
homomorphism. Clearly what we need to do is define a function u,
and prove that it has the desired properties. Once we’ve obtained the
appropriate definition, the rest of the proof will flow smoothly (if a bit
lengthily, because there are a lot of properties for u we have to verify).
Choose an arbitrary element of R/ ker(y); it is a coset of the form
ker(p) + r, where r € R. What element of S should it correspond to?
If the composition of functions required in the theorem is to work, we
must have that p(ker(y) 4+ r) = @(r); this is our definition of p.
There is an immediate problem we must solve: This definition ap-
parently depends on the particular coset representative r. That is, our
function does not appear to be unambiguously defined. But suppose
that ker(¢) +71 = ker(p) +s. Then r — s € ker(y), and so ¢(r) = ¢(s).
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Thus, it really didn’t matter what coset representative we chose, and so
our function is well defined. Furthermore, it has been defined precisely
so that powv(r) = ulker(p) +7r) = p(r).

We must now check that p is an isomorphism; we take each of the
required properties in turn:

@ s a homomorphism: But

p((ker(p) + r)(ker(p) +5))

u(ker() +7s)
= p(rs) = p(r)p(s)
uker(p) + r)p(ker(p) + ),

and similarly for addition.

i is onto: But ¢ is onto, and so for any s € S, there exists r € R
such that ¢(r) = s. Then p(ker(p) +7) = ¢o(r) = s.

p is one-to-one: Suppose that p(ker(p) + r) = p(ker(¢) + s); then
o(r) = ¢(s), and so r — s € ker(y). But then ker(p) +r = ker(p) + s,
as required. (You should note that this argument is just the reverse of
the argument proving that p is well defined.)

> Quick Exercise. Think about why the parenthetic remark is true.

<
We thus have the isomorphism required by the theorem. O

19.3 Examples

Example 19.6

Let’s look yet again at Example 16.2 where ¢ : Q[z] — Q is the
function that evaluates a polynomial at 2. Because this homo-
morphism is onto and its kernel is {z — 2), Theorem 19.1 asserts
that the rings Q[z]/(z — 2) and Q are isomorphic, via the map u
which is defined by p((z — 2) + f) = f(2). In Example 19.2 we
proved directly that these two rings are isomorphic, via the map
A Q — Q[z]/{x — 2) defined by A(q) = (x —2) +¢. What is
the relationship between the functions A and p? They are inverse
functions. For

w(Mq) = p({x —2) +q) = pov(q) = p(g) =q(2) =q.
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(Notice this last equality holds because we are thinking of ¢ as a
constant polynomial.)

Example 19.7

If we apply the theorem to the residue homomorphism ¢ : Z —
Z4, we obtain what we already suspected: Z/(4) and Z4 are
isomorphic rings.

Example 19.8

Consider the function ¢ : Z x Z — Z defined by ¢(z,y) = y; you
can easily check that this is an onto homomorphism. (Indeed,
this was verified in a more general context as Exercise 16.4.) The
kernel of this homomorphism is clearly {(z,0) : € Z}, which
we might write as Z x {0}. {Note that in Section 17.6 we asked
you for a homomorphism with this ideal as kernel.) Our theorem
thus asserts that (Z x Z)/(Z x {0}) is isomorphic to Z. Notice
also that in Exercise 18.6 you proved that this quotient ring is
a domain; because we’'ve now shown that it is isomorphic to Z,
this result should not be surprising.

Example 19.9

Let’s now consider two general but trivial examples of the the-
orem. Given any commutative ring R, it always possesses two
ideals; namely, the trivial ideal {0} and the improper ideal R it-
self. These are certainly the kernels of the identity isomorphism
t : R — R and of the zero homomorphism ¢ : R — {0}, re-
spectively. Theorem 19.1 then asserts in the one case that R is
isomorphic to R/{0}, and in the other that R/R is isomorphic
to {0}. Speaking informally, this says that if we mod zero out of
a ring, we have left it unaffected, while if we mod out the entire
ring, we are left with the zero ring.

Example 19.10

As another example of the theorem, consider the function ¢ :
R[z) — C defined by ¢(f) = f(i). Notice that evaluating a
polynomial with real coeflicients at the complex number ¢ will
certainly give a complex number. As usual, an evaluation map of
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this sort is a homomorphism. What is the kernel of this function?
It consists of {f € R[z] : f(i) = 0}, but these are precisely those
polynomials which have z? + 1 as a factor. That is, the kernel
here is again a principal ideal, this time (x? + 1). Thus, we have
that the field of complex numbers is isomorphic to R[z]/{z? + 1).

The previous example is actually an algebraically elegant way of de-
scribing how we obtain the complex numbers from the real numbers.
The goal in obtaining the complex numbers is after all to be able to
solve more equations (such as 2 + 1 = 0). We will inquire more care-
fully into this example soon, but we will first have to characterize those
ideals that lead to fields as their rings of cosets. This characterization
is one of the goals of the next chapter.

Example 19.11

For ancther more sophisticated example of a homomorphism onto
a field, consider the function

@ : Z[V=5]| — Zs3

defined as ¢(a + bv/—5) = [a — b]s. (Recall Exercise 7.2 and our
discussion in Section 10.3 for a description of rings of the form

Z[\/n].)
Let’s first check that this is a homomorphism. We see that ¢
preserves addition:

p((a+bV=5) + (c+dV=5)) =[(a+¢) - (b+d)] =
[a — B + [c — d] = p(a +bV/=5) + ¢(c + dv/=5).

Similarly, ¢ preserves multiplication:

o((a + bv'=5)(c + dv—5)) = ¢((ac — 5bd) + (ad + bc)v/—5)

= [ac — 5bd — ad — bc]

= [ac — ad + bd — bc]

= [(a=b)(c-d)]

= ¢(a + bv/=5)p(c + dv—5)
(where we've used the fact that [—5] = [1]). The kernel of this
function is {a + by/=5 : 3|(a — b)}. But in Example 12.3 we
showed that this is the smallest ideal of Z[v/—5] that contains the

elements 3 and 1 + v/—5; we denoted this ideal by (3,1 4+ 1/—5).
We have thus concluded that the ring of cosets

Z[vV=5]/(3,1 4+ V/=5)
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is isomorphic to Z3. In the next chapter we will discover the
property that the ideals (z% + 1) in R[z] and (3,1 4+ +/=5) in
Z[+/—5] have in common.

Historical Remarks

The equivalence between homomorphisms and kernels, as expressed
in the Fundamental Isomorphism Theorem for Commutative Rings, is
a crucial idea in abstract algebra; there are corresponding theorems
for many other algebraic structures. Indeed, we will encounter the
corresponding theorem for groups in Chapter 33. The crisp, abstract
formulation of this theorem contained in this chapter is very much an
artifact of the 20th century axiomatic approach to algebra. The ideas
behind this theory were encountered in many specific situations in the
19th century, but the sort of formulation we give here was not possible
until the now accepted axiomatics for such algebraic structures as rings,
groups, and fields were firmly in place. A lot of work and thought by
many mathematicians went into these definitions. The French mathe-
matician Camille Jordan was probably the first to consider clearly the
notion of a quotient structure such as our ring of cosets R/I; he was
working in the specific context of permutation groups. (See Chapters
29 and 30.) It is important for you to keep in mind that the abstract
and efficient structure of modern algebra was not born overnight, but
rather was the result of painstaking study of examples, from all over
mathematics. The lesson of this history is clear: We should appreci-
ate the generality of our theorems but must always return to specific
examples to understand their purpose and application.

Chapter Summary

In this chapter we proved the Fundamental Isomorphism Theorem for
Commutative Rings, which asserts that every onto homomorphism can
be viewed as a natural homomorphism onto the ring modulo the kernel.

Warm-up Exercises

a. Why aren’t Zs and Z; isomorphic?
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. Suppose that the field F is isomorphic to a ring R. Is R a field?

. Suppose that the domain D is isomorphic to a ring R. Is R a

domain?

. Is every commutative ring isomorphic to a ring of cosets?

. Suppose that ¢ : R — § is a ring homomorphism between com-

mutative rings R and S. Is R/ ker(p) isomorphic to S? Be care-
ful'! What is true in this situation?

. In what sense are the ideas of ‘ideal’ and ‘homomorphism’ equiv-

alent?

. Suppose that the elements of a commutative ring R are matrices,

and R is isomorphic to the ring S. Are the elements of the ring
S necessarily matrices? (If necessary, you should have a look at
Exercise 16.7.)

. Explain why ¢ : Zs — Zs, defined by ¢([a]s) = [3a]s, is a one-to-

one onto function that is not a ring isomorphism.

Exercises

. Check that the homomorphisms given in Exercises 16.7 and 16.9

are in fact isomorphisms.

. Show that the rings

Zg, Z4 X Lo, and Zig X Ly X Zo

are all non-isomorphic, even though each of these rings has the
same number of elements.

. Prove that Z[i]/(1 4 4) is isomorphic to Zg, by defining a homo-

morphism from Z[i] onto Zy whose kernel is (1 + ), and using the
Fundamental Theorem 19.1. (Compare this to Exercise 18.3.)

.Let I ={f ¢ C[C, 1] : f(1/4) = 0}. Prove that C[0,1]/I is iso-

morphic to R by defining the appropriate homomorphism from
C[0,1] onto R and using the Fundamental Theorem 19.1. (Com-
pare this to Exercise 18.4.)



256

10.

FEzxercises

Let I = ((3,4)) C Z x Z. Prove that (Z x Z)/I is isomorphic to
Z12, by using a homomorphism of the form ¢(a,b) = [az + by|i2
(for some fixed z,y). (Compare this to Exercise 18.5.)

Use the Fundamental Theorem to prove that

(Qlz] x 2)/{(=,2))
is isomorphic to Q X Zs.

Let R be the set Q x Q. We will equip this set with operations,
other than the usual ones for the direct product, as described in
Example 6.10. Namely, define the operations

(a,0) + (c,d) = (a + ¢, b+ d)
(this is the usual addition), and
(a,b)(c,d) = (ac, ad + be).

(a) Prove from first principles that R is a ring.

(b) Use the Fundamental Theorem to prove that R is isomorphic
to Q[z]/(z?).

Prove that Zs X Zs is isomorphic to Zg by showing that the
homomorphism ¢([a]z, [b]3) = [3a + 4b]¢ is onto and has zero
kernel. (Or, simply that it is onto and Zy x Z3 and Zg both have
6 elements.) What gets mapped to [1]6? To [2]67 [3]67 [4l67 [5]6?

. Let X be a set with n elements; consider the power set ring P(X)

of subsets of X (described in Exercise 6.20). Consider also the
ring

T X Lo X -+ X Lo
of n-tuples whose entries are taken from Zo. Prove that these two
rings are isomorphic.

Consider the ring Z[a], described in Exercise 7.3. Prove that
Zla) /(1 + o)

is isomorphic to the ring Zg, by defining a homomorphism ¢ :
Z[a] — Zg with the appropriate kernel. (Compare this to Exercise
18.7.)

11.

12.

13.

14.

15.

16.

17.
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Consider the homomorphism ¢ : C — R given in Exercise 16.30.
What two rings are isomorphic, according to the Fundamental
Theorem?

Use the Fundamental Theorem to prove that Q[z]/(z?) and

{(82) € M3(Q) : a, bEQ}

are isomorphic. (Compare this to Exercise 7 above.)

In this problem you will prove that the fields R and C are not
isomorphic. Suppose by way of contradiction that there exists a
ring isomorphism ¢ : C — R. Now answer the following questions
(justifying your answers, of course): What is ¢(1)? What is
©(—1)? What does this tell you about ¢(i)?

In this problem you will prove that the fields R and Q are not
isomorphic. Suppose by way of contradiction that there exists a
ring isomorphism ¢ : R — Q. Now answer the following questions
(justifying your answers, of course): What is ¢(1)? What is ¢(2)?
What does this tell you about (+/2)?

Use the ideas of Exercise 13 (or Exercise 14) to prove that Q and
C are not isomorphic.

If you have encountered the ideas of countably infinite and un-
countably infinite sets, another proof of Exercise 14 (and 15) is
possible. What is it?

Suppose that rings R and S are isomorphic, via the isomorphism
p:R—S.

(a) Show that the rings R[x] and S[z] are isomorphic, by defin-
ing a ring isomorphism @ : R[z] — S[x] which extends ¢; by
this we mean that if r € R, then ¢(r) = @¢(r).

(b) Suppose now that the rings R and S are fields. Prove that
r € R is a root of f € R[z] if and only if ¢(r) is a root of

@(f)-
(c) Suppose again that R and S are fields. Prove that f € R|x]
is irreducible if and only if @(f) € S[z] is irreducible.
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18.

19.

20.

21.

22.

23.

24.

Exercises

Suppose that the commutative rings R and S are isomorphic, via
the isomorphism ¢ : R — S. Let » € R. Use the Fundamental
Isomorphism Theorem to prove that the rings R/{r) and S/{¢(r))
are isomorphic.

Extend Exercise 18. Suppose that the commutative rings R and
S are isomorphic via the isomorphism ¢ : R — S. Let I be an
ideal of R; by Exercise 16.31 we know that ¢(I) is an ideal of S.
Prove that the rings R/I and S/¢(I) are isomorphic.

Suppose that the commutative rings R and S are isomorphic via
the isomorphism ¢ : R — §. Combine Exercises 17 and 19 to
conclude that if f € R[z], then the rings R[z]/{f) and S[z]/{(@(f))
are isomorphic.

Suppose that R is a commutative ring, with ideals A and I, where
I1CA.

(a) Prove that A/I is an ideal in the ring R/I.
(b) Prove that (R/I)/(A/I) is isomorphic to R/A.

Let R = C[0,1}, I = {f € C[0,1] : f(0) = f(1) = 1} and
A={f€C[0,1]: f(0)=1}. Check that R, A, I satisfy the hy-
potheses of Exercise 21. Then exhibit explicitly the isomorphism
given by that exercise.

Let R be a commutative ring with ideals I and J. Then I NJ
and I + J are also ideals of R. (See Exercises 11.12 and 11.14.)
Furthermore, INJ is an ideal of I and J is an ideal of I +J. (See
Exercise 11.13.) Prove that the rings I/(INJ) and (I + J)/J are
isomorphic.

Let R be Z, I = (12) and J = (8). Check that R, I, J satisfy the
hypotheses of Exercise 23. Then exhibit exphc1tly the isomor-
phism given by that exercise.

Chapter 20

Maximal and Prime Ideals

Let’s return to Example 19.10. We saw that the ring homomorphism
(the evaluation homomorphism) ¢ : Rlz] — C given by ¢(f) = f(¢) has
kernel (z% + 1). This homomorphism was onto, and so R[z]/(x? + 1) is
isomorphic to the field C. We would like to find out what sort of ideal
leads to a ring of cosets that is a field.

20.1 Maximal Ideals

Now z2 + 1 is an irreducible element of R[] (that is, it is a polynomial
that cannot be further factored over the reals). Readers of Chapter 13
may recall that in a principal ideal domain, an element is irreducible
if and only if the corresponding principal ideal is mazimal (Theorem
13.3¢). Thus, we conclude that (z%+ 1) is a maximal ideal of R[z]. For
your convenience we review the definition of maximal ideal as follows:
An ideal T of a ring R is maximal if the only ideal of R properly
containing [ is R itself.

Let’s prove again that (z? + 1) is a maximal ideal, without using
results from Chapter 13. We assume that I is an ideal of R[z| that
properly contains {(x2+1); we must show that in fact I = R[z]. Because
I properly contains <:)32 + 1), I contains a polynomial p that is not a
multiple of z2 4+ 1. Because p is not a multiple of 22 + 1, we have that

(22 +1) # (22 + 1) + p.
But the ring of cosets of (z%+1) is isomorphic to C, which is a field. So,

(224 1)+p has a multiplicative inverse, and so there exists a polynomial
¢ in R[z] such that

(Z2+ D)+ + D 4+¢) =@+ +pg=@*>+ 1)+ 1.
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But then
(24 1) = (£ +1)+1—pg

and so 1 — pqg = r for some r € {x? +1). That is, 1 = pg + r. Now
pE€Tandre (z2+1) C I, andso 1 = pg+r € I (because I is an
ideal). But an ideal that contains 1 is the entire ring; thus, we have
shown that the only ideal that properly contains (z? 4 1) is R[z]. We
have thus proved (again) that (z? 4 1) is a maximal ideal of R[z].

Example 20.1

For another example, consider the residue homomorphism from
Z onto Z,, where p is prime. Once again, the homomorphism is
onto a field, and the kernel (in this case, (p)) is a maximal ideal.
(See Exercise 20.3.) Of course, we could also conclude this by
noting that p is irreducible and use Theorem 13.3c.

These examples suggest the following general theorem:

Theorem 20.1 Let R be a commutative ring with unity. Then M is

a mazimal ideal of R if and only if R/M is a field.

Proof: Let R be a commutative ring with unity, and suppose first
that M is a maximal ideal. To show that R/M is a field, we consider
any M +a € R/M, with M + a # M + 0; we must show that M + a
has a multiplicative inverse. But because M + a # M, we know that
a ¢ M. Consider

(M,a) ={m+ab:me M,b e R};

we are using the notation (M, a) to suggest that this is in fact the
smallest ideal of R that contains both M and a. In Exercise 20.1, you
prove exactly this.

Furthermore, (M, a) properly contains M, because a € (M,a) but
a ¢ M. Thus, because M is maximal, (M,a) = R. So there exist
b € R and m € M such that m 4+ ab = 1. But then

M+1=M+ (m+ab)=M+ab= (M +a)(M+b),

and so M + b is the required multiplicative inverse.
Conversely, suppose that R/M is a field. Let I be an ideal with
R D I D M; we must show that I = R. Choose r, an element in [
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but not in M. Because R/M is a field, there exists s € R such that
M+rs=M+1. Thatis, M=M+1—rsor 1—rs=m for some m
in M. But 1 = rs+ m implies 1 € I, because r € I and m € I. But
1 € I implies that I = R. Hence, M is maximal. a

Example 20.2

An important if relatively trivial example of this theorem occurs
in case R itself is a field. Because all non-zero elements are units,
we’ve observed before that the only proper ideal a field has is {0};
hence, {0} is (practically by default) a mazimal ideal, and so the
theorem applies. That is, the ring of cosets R/{0} is a field; but
of course this ring is just (isomorphic to) R itself. But we can
also apply the converse: If R is a commutative ring with unity
without ideals (other than {0} and R), then R is necessarily a
field. (Of course, we’ve seen this result before as the Corollary
11.4.)

Example 20.3

In Example 19.10 we proved that R[z]/(z? + 1) is isomorphic to
the field C. This means that (z2 + 1) is a maximal ideal in R[z].

Example 20.4

In Example 19.11 we proved that Z[v/—5]/(3, 1++/—5) is isomor-
phic to the field Zs. This means that (3,1 + 4/=5) is a maximal
ideal of Z[/—5]. Note we proved the maximality of this ideal
directly in Section 13.4.

Example 20.5

Consider the irreducible polynomial z? — 2 in Q[z] (note that
this is not irreducible in R[z]). Readers of Chapter 13 know
that (z? — 2) is a maximal ideal, because Q[z] is a PID and
by Theorem 13.3 principal ideals generated by irreducibles are
maximal. (Alternatively, it is possible to prove this directly, using
an argument like that we provided earlier in this chapter, for
(z? + 1) in R[z]; see Exercise 20.13.) Thus, by Theorem 20.1,
we know that Q[z]/(z? — 2) is a field. But what is this field?
Consider the evaluation homomorphism ¢ : Q[z] — R, given by
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o(f) = f(v/2). Quite evidently, the kernel of this homomorphism
is exactly (z? — 2). But it seems clear that ¢ is not onto R. For
example, V3 ¢ o(Q[z]): We cannot obtain v/3 by plugging v/2
into a rational polynomial (this statement is probably plausible,
but we won’t prove it here — see Example 38.2). But if ¢ is not
onto, we cannot directly apply the Fundamental Isomorphism
Theorem 19.1. What the Fundamental Isomorphism Theorem
does tell us is that Q[z]/(z? — 2) is isomorphic to ¢(Q[z]), a
proper subfield of the field R.

Furthermore, this field Q[z]/(z% — 2) contains a subring iso-
morphic to Q: Consider the function

11 Q— Qlal/(a® — 2)

defined by 1(q) = (% —2) +q.

> Quick Exercise. Check that this is a one-to-one homomor-
phism (which is not onto). <

Thus, ¢(Q) is the isomorphic copy of Q contained in the field
Q[z]/{z*—2). This suggests that we can use the previous theorem
to build bigger fields. In this case we seem to have constructed
a field strictly between @ and R. We'll have a lot to say about
this in Chapters 42 and 43.

20.2 Prime Ideals

We now consider a class of ideals closely related to the class of maximal
ideals. A proper ideal I of a commutative ring with unity is a prime
ideal if whenever ab € I, then either a € T or b € I. Let’s look at an
example of a prime ideal.

Example 20.6

Consider the ideal (z) in Z[z]. We claim that it is prime: For if
pq € {x), then pq is a polynomial with no constant term. But the
constant term of a product of polynomials is the product of their
constant terms, and so this means that at least one of p and ¢
must also lack a constant term; that is, at least one of p and ¢
belongs to {x). This is what we wished to show.
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Thus, (z) is a prime ideal in Z[z]. Readers of Chapter 13 may recall
that this is not a maximal ideal; we can use the theorem above to verify
this. To do that, we need to find a homomorphism defined on Z[z]
whose kernel is (z). Reflection on our earlier examples might suggest
another evaluation homomorphism, this time at zero: If ¥(f) = f(0),
then ker(¢) = (z). Of course, 1 is here a homomorphism onto Z,
and so Z[z]/{x) is isomorphic to Z. Thus, we conclude that (z) is not a
maximal ideal (because Z is not a field). More directly, we can conclude
that (z) is not a maximal ideal, by noting that

(z) C (2,z) C Z[z].

However, the homomorphic image Z is at least a domain; this obser-
vation suggests the following theorem:

Theorem 20.2 Let R be a commutative ring with unity. Then P is a
prime ideal if and only if R/P is an integral domain.

Proof: Let R be a commutative ring with unity, and suppose first
that P is a prime ideal. To show that R/P is a domain (because it
obviously has unity) we need only show that it has no zero divisors.
So suppose that (P + a)(P +b) = P + 0. But then ab € P, and so
because P is prime a or b belongs to P, and so P+a = P+ 0 or
P+b= P+0, as required. In the Quick Exercise below you will do
the converse argument, which is essentially the reverse of what we’ve
just done. O

> Quick Exercise. Prove the converse of the above theorem. <

Note in particular the special case when R itself is a domain. We
conclude that a ring with unity is a domain if and only if {0} is a prime
ideal.

Because all fields are domains, we can conclude that maximal ideals
are necessarily prime.

For principal ideals, determination of whether an ideal is prime re-
duces to determining whether the generator itself is a prime element
(see Chapter 13 for a definition and discussion of prime elements):

Theorem 20.3 Let R -be a commutative ring and 0 # a € R. Then
(a) is a prime ideal if and only if a is a prime element.

Proof: We have left this easy proof as Exercise 20.2. O
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Example 20.7

As an example of Theorem 20.2, consider (from Example 16.3)
the ring Z x Z and the homomorphism 7(z,y) = y, which is onto
Z. Because Z is a domain, the kernel Z x {0} is a prime ideal of
Z x Z (that is also not maximal).

This example is worth generalizing. Suppose
Ry, Ry, Rp

are rings and [ R; = Ry X Ry X --- X R, is their n-fold direct product.
Recall that

HRi = {(r1,r2,---,rn) 11 € Ry, for i =1,2,--- n}.
(See Exercise 6.15.) Now for each j consider the function
T HRl — R;

defined by m;(r1,re,--+,rn) = r;. This map is called the jth projec-
tion. Because of the definition of the ring operations on [[ R; (which
are componentwise) it is obvious that 7; is an onto homomorphism;
furthermore, its kernel is

RixRyx---xRj_1 x {0} x Rj41 X -+ X Rp.

Note that if R; is a domain, then this kernel is a prime ideal. Similarly,
if R; is a field, then this kernel is a maximal ideal.

> Quick Exercise. Why? <

Even if all the R; are domains, then [] R; certainly is not: For

(al,azy-.-’an)(bl,b2’~.-,bn) = (0,07’0)

if and only if a;b; = 0 for each 7. But because the R; are domains, either
a; or b; is 0. We thus have the product in [] R; being zero if and only
if the set {i : a; # 0} is disjoint from the set {j : b; # 0}. For example,
(3,1,0,0)(0,0,0,5) = (0,0,0,0). Thus, although [T R; is not a domain,
determination of which elements are zero divisors is certainly an easy
matter. This means that representing a given ring as (isomorphic)
to a product of rings is often a real help toward understanding the
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arithmetic of the ring. We will see a dramatic and famous example of
this in the next chapter.

Chapter Summary

In this chapter we discussed mazimal ideals and showed that an ideal
I of a commutative ring R is maximal if and only if R/T is a field.
Similarly, we discussed prime ideals and showed that an ideal I is prime
if and only if R/I is a domain.

Warm-up Exercises
a. Give examples of a commutative ring with unity and an ideal
satisfying the following (or argue that no such example exists):

(a) the ideal is prime but not maximal.
(b) the ideal is maximal but not prime.

(c) the ideal is prime and the ring has zero divisors.
b. Explain why (22 — 2) is a maximal ideal of Q[z], but not of R[z].
c. Explain why (z — 2) is a prime ideal of Z[z] but is not maximal.
d. Give the quickest possible proof that a maximal ideal is prime.
e. What are the zero divisors of Z x Z?7 What about of Z4 x Z?

f. Let R be a commutative ring with unity. Under what circum-
stances is {0} a prime ideal? A maximal ideal?

g. Let R be a commutative ring with unity. Why isn’t the ideal R
maximal or prime?
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Ezxercises

. Let R be a commutative ring with unity, I an ideal of R, and

. Find all prime ideals of Zgg. Find all maximal ideals of Zag.

. Find all prime ideals of Z x Z. Find all maximal ideals of Z x Z.

. Find all prime ideals of Q and Q x Q; do likewise for all maximal

Exercises

a € R. Define
(I,a) ={k+ab: keI, be R}.

Prove that (I,a) is an ideal. Then show that I C (I,a) and
a € (I,a). Furthermore, show that (I,a) is the smallest ideal of
R that contains both I and a. (This result is needed in the proof
of Theorem 20.1.)

Prove Theorem 20.3. That is, suppose the R is a commutative
ring, and 0 # a € R. Prove that (a) is a prime ideal if and only
if a is a prime element.

Let p be a prime integer in Z. Prove directly that (p) is a maximal
ideal.

Find all prime ideals of Z. Find all maximal ideals of Z.

Find all prime ideals of Z x Z3; find all maximal ideals of Zs X Z3.
Now do the same for Zg X Zy4.

ideals.

Consider Q[z,y], the set of all polynomials with coefficients from
Q, in the two indeterminates x and y. In Exercise 12.12, you
considered this ring and showed that it is not a PID.

(a) Consider the function
¥:Qlz,y] - Q

defined by ¥(f) = f(0,0). Why is this a ring homomor-
phism? Why is the kernel of ¢ a maximal ideal? Determine
explicitly a nice description of the kernel.
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(b) Consider the function

p: Qlz,y] — Qlz]

defined by p(f) = f(z,0). Why is this a ring homomor-
phism? Why is the kernel of p a prime ideal? Determine
explicitly a nice description of the kernel. Find a larger
proper ideal, thus showing concretely that this ideal is not
maximal.

(¢) Consider the function
¢ : Qlz,y] — Qlz]

defined by ¢(f) = f(z,z). Prove that this is a ring homo-
morphism. Why is the kernel of ¢ prime but not maximal?
Determine explicitly a nice description of the kernel. Find a
larger proper ideal, thus showing concretely that this ideal
is not maximal.

10. Consider the function

11.

p:Z—-ZXZL

defined by ¢(n) = (n,n). Check that this is a homomorphism.
Now, ker(p) = {0}. Argue directly from the definition that {0}
is a prime ideal of Z. Now Z x Z is obviously not a domain; why
does this not contradict the theorem in the text characterizing
prime ideals?

Consider the function
p:Qlz] = R
defined by (f) = f(v/2). Check that this is a homomorphism.

(a) Describe the elements of the ring ¢(Q[x]).

(b) This ring is clearly a domain (because it is a subring of R).
Is it a field?

(c) What is the kernel of this homomorphism? Is it prime or
 maximal?

(d) How could we reach the conclusion for part c, using an ar-
gument from Chapter 137
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12.

13.

14.

15.

16.

17.

18.

19.

FEzxercises

Consider the function
¢ : Zlx] — Ly[x]
defined by
plag+ a1z + -+ apz™) =[ag) + [a1]z + -+ + [an]z".

(a) Prove that this is an onto ring homomorphism.

(b) Why is the kernel of ¢ a prime ideal? Give an explicit de-
scription of its kernel (it is a principal ideal).

Consider the ideal (z? — 2) in Q[z], discussed in Example 20.5.
Prove that this is a maximal ideal, without using either Chapter
13 or Theorem 20.1.

Consider the function ¢ : Z[z] — Q defined by ¢(f) = f(—1/2).

(a) What is the kernel of ¢?

(b) We know that Q is a field. Does this mean that ker(y) is a
maximal ideal? Be careful!

(c) Give a nice description of the elements ¢(Z[z]).

Consider the homomorphism discussed in Exercise 16.30 and Ex-
ercise 19.11. What ideal do we now know is maximal? Prove that
this ideal is maximal directly, from the definition.

Consider the homomorphism discussed in Exercise 16.10 and Ex-
ercise 19.9. What ideal do we now know is maximal? Prove that
this ideal is maximal directly, from the definition.

Let R be a commutative ring with unity, and I a prime ideal of
R. Note that I[z] is a subring of R[z]. Prove that I[z] is a prime
ideal of R[z]. Now suppose that I is a maximal ideal; show by
example that I[z] need not be a maximal ideal.

Let R and S be commutative rings. Prove that if the direct
product R x § is a domain, then exactly one of R and S is the
Zero ring.

It turns out that in a commutative ring with unity, every proper
ideal is a subset of a maximal ideal. (The proof of this theorem
requires more sophisticated set theory than we wish to enquire
into here.) Use this theorem to establish the following:

20.

21.

22.

23.
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(a) Prove that every commutative ring with unity has a field as
a homomorphic image.

(b) If the commutative ring R with unity has a unique maximal
ideal M, then M consists of exactly the set of non-units.

Let P be an ideal of a commutative ring with unity. Prove that
P is a prime ideal if and only if, whenever P 2 I - J, where I
and J are ideals, then P D I or P D J. (For the definition of the
product of two ideals, see Exercise 11.15.)

Prove that in a PID, a non-zero proper ideal is prime if and only
if it is maximal.

Prove that in a finite commutative ring with unity, a proper ideal
is prime if and only if it is maximal.

Let R be a commutative ring with unity, for which every element
is an idempotent; such a ring is called Boolean. (See Exercise
7.25 for more about idempotents.) Prove that in R, a proper
ideal is prime if and only if it is maximal.
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The Chinese Remainder Theorem

We can cast considerable light on the arithmetic of the rings Z,,,
by making use of the theory of the previous chapters. We will in the
process encounter a famous and ancient result known as the Chinese
Remainder Theorem.

21.1 Direct Products of Domains

Let’s begin by looking at an example.

Example 21.1

Consider the ring Ze¢. The function ¢ : Zg — Z3 defined by
¢([ale) = [a]s obviously preserves addition and multiplication
and hence is a homomorphism, if it is well defined. But if [a]g =
[bl6, then 6](a — b), and so 3|(a — b); thus, ¢([als) = [a]s = [b]s =
©([ble) and so ¢ is well defined. Note also that ¢ is onto. Because
Z3 is a field, we have that ker(p) = ([3]) is a maximal ideal.

Now the corresponding function 1 : Zg — Zg is also a homo-
morphism, and its kernel ([2]) is also a maximal ideal.

Let’s put these two homomorphisms together, using the idea
of direct product. Namely, define p : Zg — Z3 x Zy by setting

u(lals) = (¢(lals), ¥ (lals) = ([a]s, [a]2).

It is easy to see that this is a homomorphism, because ¢ and
are.

> Quick Exercise. Check this. «

Because the zero element of the direct product Zs x Z, is the
element ([0], [0]), an element of Zg belongs to the kernel of y only
if it belongs to the kernels of both ¢ and 1. That is, the kernel
of i is

(BN N ([21) = {10}, 31} n {[01, [2], [4]} = {[0]}-
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Thus, p is actually a one-to-one homomorphism (Corollary 17.4).
Let’s write out the homomorphism p explicitly:

[0] [0]2, 0]

(16 = ([1]2,[1]3)
[2]6 — ([0]2,[2]3)
[3]6 = ([1]2,[0]3)
[4]e = ([0]2,[1]3)
[5]6 = ([1]2, [2]3)

Notice that this function is actually onto, and so Zg is isomorphic
to Zs X Zgy. We have represented Zg as a direct product of simpler
pieces. And because those simpler pieces Z3 and Z, are domains
(and in fact fields), the zero divisors in this ring are easy to
determine: They are those elements with a zero in at least one
component.

> Quick Exercise. Check that this analysis coincides with

what you already know about which elements of Z¢ are zero di-
visors. <

In Example 21.1, our ability to obtain an isomorphism between Zg
and a direct product of two domains (and, in fact, fields), depended
on the fact that this ring has two prime (and, in fact, maximal) ideals,
whose intersection is zero. Let’s examine this situation in a more gen-
eral context.

Suppose that the commutative ring R is isomorphic to a direct prod-
uct of n domains Dy, Dy, -+ Dy, via the isomorphism

p:R— Dy xDyx---x Dy
Consider the n projection homomorphisms
m; D1 X Dy X -+ X Dy, — Dy,

as discussed in Section 20.2. The composition 7; o u is a ring homomor-
phism from R onto the domain D;, and as such its kernel is a prime
ideal (Theorem 20.2). Notice that if an element of R belongs to the
kernels of all these maps, then the element is sent by p to the zero
element of the direct product. That is, such an element belongs to the
kernel of . But p is one-to-one, and so its kernel is the zero ideal.
This means that R possesses a collection of n prime ideals whose inter-
section is zero. We record the result of this argument in the following
theorem:
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Theorem 21.1 If a commutative ring with unity is isomorphic to a
direct product of finitely many integral domains, then it has a finite
collection of prime ideals, whose intersection is the zero ideal.

In Exercises 21.9-21.11 we will inquire into the possibility of a con-
verse for this theorem.

Example 21.2

Example 21.1 provides an example for this theorem, because
Zg is isomorphic to a product of two domains and had two prime
ideals whose intersection is the zero ideal.

Example 21.3

Consider the direct product of domains Z x Zs x Q. It has three
prime ideals whose intersection is zero, namely,

{0} xZ3 xQ, Z x {0} x Q, and Z x Z3 x {0}.

Example 21.4

Now consider Z1,. Here, our representation is not so nice. In
Exercise 21.3 you will show that the only prime ideals of Z5 are

([2]) = {[0]; {2, {4], [6], (8], [10]} and ([3]) = {[0], [3], [6], [9]}.

Notice that
([2]) n([3) = {[o], (6]} > {[0]}.

This means that it is not possible to find a homomorphism from
Zy2 onto a direct product of domains, as we were able to for Zg
in Example 21.1. The difference turns out to be this: 6 does not
have any repeated prime factors, while 12 does. We can show that
Zy2 is isomorphic to Z4 x Z3 (of course, Z4 is not a field). Consider
the obvious residue homomorphisms Ziy — Z4 and Zi; — Zs:
They have kernels {[0], [4], [8]} and {[0], [3], [6],[9]}, and the in-
tersection of these ideals is zero.

> Quick Exercise. Write down the two residue homomor-

phisms explicitly, verify that their kernels are as stated, and then

write out the isomorphism between Z,2 and Z4 x Z3 explicitly.
<
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Now, what are the zero divisors of Z4 X Z3? They must consist
of elements that are either zero in exactly one component, or
else zero in the second component and a zero divisor of Z, in
the first component. These elements must correspond under our
isomorphism to the zero divisors of Z15.

> Quick Exercise. Check this explicitly. <

21.2 Chinese Remainder Theorem

We now prove the general theorem that explains the representation of §
Zg and Zi2 as direct products, which we obtained in Examples 21.1 and §
21.4 above.

Theorem 21.2 Let py,po,---

,Pn be distinct prime integers and m = ‘ ‘
k1, ko =
Py pe” -

-pkn. Then Z,, is isomorphic to

Z ki XL ko X+ XL ke,
pll p22 "

Proof:  Consider the function ¢; : Z,, — Z x; defined by vi(lalm) = B
[a]p@i; this is well-defined because if [a], = [bz]m, then m|(a — b), and |

so pfi|(a — b). Tt is clearly a homomorphism with kernel ([p¥]). Now ‘
define the function '

gy, = L iy XD kg X o+ XL &
K- Lim ph PR pkn

by setting
p(lal) = (er(lal), -

This is evidently a ring homomorphism.

Check this. <

y¢n([a])).

> Quick Exercise.

Now, its kernel is
n

(D) = {la] : p*a,for all ¢} = {[0]}.

i=1

This means that the homomorphism g is one-to-one.
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To show that p is an isomorphism, it remains to check that it is onto.
We will actually do this twice, because both proofs are illuminating:
Existential Proof: Now Z,, and Zpk:l X Zpk:2 X e X Zpkn are both finite
1 2 n

sets with m elements; thus, because u is one-to-one, it must be onto.
Constructive Proof: Given

([al], [ag], EEIRIN [an]) € Zp}lcl X Zp;? X +-+- X Zpﬁ”’

we must find [a] € Z,, such that p;([a]) = [a;], for all 7. Let

because m; and p; are relatively prime, by the GCD identity there exist
integers x; and y; with x;m; + y,-pf" = 1. But then

[wimi e = [1].
Now let
a = x1miay + ToMmaaz + -+ - + TpMpay.

We claim that ¢;([a]) = [a], for all 5. But p’|m; for all j # i, and so
villa]) = [al = [wimiai] = [zimallai] = [1][ai] = [ai],

as required. O

The number theory version of this theorem is known as the Chinese
Remainder Theorem, because an example of the sort of number theory
problem it solves first appears in a work by the Chinese mathematician
Sun Tsu, in about the third century AD. We now restate the theorem
in its number theoretic guise:

Theorem 21.3 The Chinese Remainder Theorem Let
D1,p2,- -+, pp be distinct prime integers and m = pII“pIQg2 -o-pfn. Then
the set of congruences

z = a; (mod p*)

T = ag (mod pk?)
— kn

x = an (mod prr)

has a simultaneous solution, which is unique modulo m.
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Proof: Consider the element
([al], [ag], cee [an]) S Zpllcl X Zp1292 X o0 X Zpﬁ”'

Because the function y in the previous proof is onto, there exists [a] €
Z, so that ¢;([a]) = [a;], for all i. Then a simultaneously satisfies the
n congruences in the theorem.

> Quick Exercise. Why? < O

Example 21.5

Consider the three congruences z = 4 (mod 7), x = 1 (mod 2),
and z = 3(mod 5); the theorem asserts that they have a si-
multaneous solution modulo 70. In fact, we can construct the
solution by following the constructive proof above. In this case
my = 10, mg = 35, and ms = 14. Then z; = 5 because

[5]7[10]7 = [5]7(3]7 = [1]7.

In a similar fashion zo = 1 and 23 = 4. Then

a = (5)(10)(4) + (1)(35)(1) + (4)(14)(3) = 403.

But 403 = 53 (mod 70), and so our simultaneous solution of the
three congruences is 53.

> Quick Exercise. Check directly that 53 satisfies these three
congruences. <

Alternatively, we can view this example in light of our first
version of the Chinese Remainder Theorem (Theorem 21.2). From
that version of the theorem, we know that Z; X Zg X Zs is iso-
morphic to Zrg. The isomorphism takes the element (4,1,3) to
53.

Note that if all the primes in the factorization of m occur only once,
we then have that Z,, is a direct product of finitely many domains (in
fact, fields). But suppose that at least one prime divisor of m occurs
with degree at least two. We claim that Z,, cannot be a direct product
of domains; this amounts to claiming that the intersection of all the
prime ideals of Z,, is not zero.

To show that this is true, we must first convince ourselves that Zm,
even has any prime ideals. But because Z,, is a finite ring, it has only
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finitely many ideals; consequently, it certainly has at least one maximal
ideal (which is necessarily a prime).

To show that the intersection of all the prime ideals of Z,, is not
zero, choose an arbitrary prime ideal P. Now Z,, is isomorphic to
Z P X Z k2 Y/ ki under the “usual” isomorphism given in the

proof of Theorem 21. 2 where we may as well assume that k; > 1.

Let [z], be the element of Z, that gets mapped to the element of

Zpkl X Zpk2 X o XL that has [pl]pkl in the first component and
2 n 1

1
[0] in all the other components. Because ki > 1, the element [z], is
non-zero. Furthermore,

[zl = [0]m € P.

But because P is prime, this implies that [z] € P.
> Quick Exercise. Why? <

Hence, the intersection of all prime ideals of Z,, contains [z]m,, and
so cannot be {[0],, }; thus, Z,, in this case cannot be a direct product
of domains. This is the general explanation of the case m = 12.

> Quick Exercise. What would be the value for [z],, in the case
m=127 <

Historical Remarks

Sun Tsu’s problem was phrased in this way: “We have things of which
we do not know the number. If we count them by threes, the remainder
is 2; if we count them by fives, the remainder is 3; if we count them
by sevens, the remainder is 2. How many things are there?” This is
clearly an example of the Chinese Remainder Theorem, which you will
solve in Exercise e below. Because this is the only problem treated by
him, it is unclear whether he had available a general method of solving
a system of linear congruences. However, in the 13th-century, another
Chinese mathematician named Qin Jiushao published a mathematical
text that includes a number of examples of such problems. These exam-
ples provide in essence our algorithmic proof of the Chinese Remainder
Theorem. In particular, to solve such congruences as [z;m;] = [1], he
uses a version of Euclid’s Algorithm, where operations are carried out
on a counting board. This medieval Chinese mathematics is much more
sophisticated than anything happening in Europe at the same time.
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Chapter Summary

In this chapter we proved that any ring of the form Z,, is isomorphic
to a direct product of rings of the form Z,, where p is prime. In
its number-theoretic guise, this is known as the Chinese Remainder
Theorem.

Warm-up Exercises
a. According to the Chinese Remainder Theorem, what direct prod-
uct of rings is Zgg isomorphic to? What about Zgg? Z117 Zg?

b. Note that [2]* = [0] in Z16. Why does this mean that [2] belongs
to all prime ideals of this ring?

c. What’s the relationship between m and n, if there exists an onto
ring homomorphism ¢ : Z,, — Z,"?

d. Solve the simultaneous congruences
z =1 (mod 2)
z = 2 (mod 3).

e. Express Sun Zi’s problem in modern notation, and solve it.

Exercises

1. Show directly that Z;s is isomorphic to Z3 x Z4 by defining a
homomorphism from Zi2 onto Zg X Z4 as p was defined in the
proof of Theorem 21.2. Write out an explicit element-by-element
description of this isomorphism, as we did in Section 21.1 for Zg.

2. Repeat Exercise 1 for the ring Zsy. (First of all you must deter-
mine the direct product to which it is isomorphic.)

3. Determine the prime ideals of Z,2; determine the maximal ideals
of Zlg.

10.
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. Repeat Exercise 3 for Zsg.

. Solve the simultaneous congruences

z = 1(mod 4)
z = 5 (mod 7)
z = 3 (mod 9).

. Solve the simultaneous congruences

z = 1(mod 2)
z = 6(mod 7)
z = 2(mod 27)
z = 6 (mod 11).

Find a,b € Z so that there is no simultaneous solution to
z = a(mod 6) and z = b(mod 4).
Why does this not contradict the Chinese Remainder Theorem?

The rings Zg and Z3 x Z3 both have nine elements; indeed, a
careless reading of Theorem 21.2 might lead one to suppose that
these rings are isomorphic. Show that this is false.

In Exercise 21.11 you will discover that the converse of Theorem
21.1 is false. However, the following theorem is true: A commuta-
tive ring R with unity is isomorphic to a direct product of finitely
many integral domains if and only if it has a finite collection of
prime ideals {P;} whose intersection is zero, and for each r € R,
there exist r; € N{P; : j # i} for which r = Zr;. Prove this.

In this exercise we consider exactly the condition described in
Theorem 21.1. We call a ring R a finite subdirect prod-
uct of domains if there exist finitely many integral domains
Dy, Dy,---, D, and a one-to-one homomorphism

u:R—»HDi

such that m;(u(R)) = D, for all i, where m; is the projection
homomorphism. Prove that R is a finite subdirect product of
domains if and only if it has a finite collection of prime ideals
whose intersection is zero.
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11. Consider
R = {(n,n+3m):n,meZ} C ZXL.

In this exercise you will show that R is a finite subdirect product
of domains but it is not a direct product of domains.

(a) Prove that R is a subring of Z x Z. Show that R is not an
integral domain.

(b) Show by specific example that R does not include all ele-
ments of Z x Z. (That is, R is not the entire direct product.)

(c) Consider the kernels P; and P, of the projection homomor-
phisms 7; and my that project onto the first and second
coordinates, respectively. Prove that P; = ((0,3)) and that
Py, = <(37 0)>

(d) Show from the definition given in Exercise 21.10 that Ris a
subdirect product of the domains Z.

(e) Suppose that P is any other prime ideal of R. Show that P
necessarily contains either P, or Ps.

(f) Now use the previous result and Exercise 9 to argue that R
cannot be a finite direct product of domains.

12. Show that Zg[z] is a finite subdirect product of domains.

13. Make a definition for a finite subdirect product of fields, on the ;; |

model of the definition in Exercise 21.10. Then state and prove
the theorem analogous to the result proved in Exercise 21.10.

14. In this exercise we construct a ring that is a domain (and so

is trivially a finite subdirect product of domains) but is not a : ‘
finite subdirect product of fields; to do this exercise you need to &

understand Exercises 21.10 and 21.13. Let p be a prime integer,
and define

a

Ly = {qu:ng, a,b €Z, p doesnot divide b}.

(a) Show that Z, is a subring of @, and so is an integral domain. |

(b) Define
Y Z(m s Zp
by setting (%) = [a]p[b], "
homomorphism.

Prove that ¢ is an onto ring ;
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Prove that the kernel of the homomorphism ¢ from part b
is (p). This means that (p) is a maximal ideal of Zy,.

Prove that § € Z, is a unit if and only if ¢ ¢ (p).

Use part d to argue that (p) contains every proper ideal of
Zpy, and so this ring has a unique maximal ideal.

Why does part e mean that Zg, is not a finite subdirect
product of fields?




Section IV in a Nutshell

This section considers functions from one ring R to another ring S that
preserve certain algebraic properties: consider ¢ : R — S such that

pla+b) =p(a) +¢(b) and ¢(ab) = p(a)p(b),

for all a,b € R. We call ¢ a ring homomorphism.

A ring homomorphism always preserves the zero of the ring, additive
inverses, unity and multiplicative inverses (Theorem 16.1). While a
ring homomorphism ¢ : R — S need not be onto, it is onto the image
of Rin S (p(R)) which is itself a subring of S (Theorem 16.2).

The kernel of ¢ is defined by

ker(p) = ¢~ '(0) = {r € R: o(r) = 0}.

The kernel is always an ideal of R (Theorem 17.1). Furthermore, if
s € p(R) C S, then ¢~1(s) is the coset ker(yp) + r, for any r € ¢~ 1(s).
ker(p) = 0 if and only if ¢ is one-to-one (Theorem 17.4).

The cosets of any ideal I of R partitions R into pairwise disjoint sets
(Theorem 18.1), called cosets. The set of cosets R/I is itself a ring,
called the ring of cosets or the quotient ring of R mod I. There is a
natural homomorphism from R onto R/I given by

via)=1I+a.

The kernel of v is I (Theorem 18.3).

If p: R — S is a one-to-one onto homomorphism, we call ¢ an
isomorphism; in this case we say the R and S are isomorphic. The
Fundamental Isomorphism Theorem (Theorem 19.1) states that if ¢ :
R — S is an onto homomorphism and v : R — R/ker(y) is the natural
homomorphism, then R/ker(y) is isomorphic to S. Furthermore, if
we define p : R/ker(p) — S by p(ker(y) + r) = ¢(r), then p is an
isomorphism and p o v = ¢. The essential content of this important
theorem is that the output of a ring homomorphism can be obtained
by forming the ring of cosets of the appropriate ideal. Chapter 19 gives
many examples of this theorem.
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An ideal I of R is mazimal if the only ideal of R properly containing
I is Ritself. An ideal I is maximal if and only if R/I is a field (Theorem
20.1).

An ideal I of R is prime if whenever ab € I then either a € I or
b € I. An ideal I is prime if and only if R/ is a domain (Theorem
20.2). It follows that every maximal ideal is a prime ideal, since every
field is a domain.

Finally, the section closes with a chapter on the famous Chinese
Remainder Theorem. This is presented in two forms, of which the
latter is the more usual:

(Theorem 21.2) Let p1,p2,---,pn be distinct prime integers and m =
pMpk2 ... pEn. Then Z, is isomorphic to

Zpllcl X Zp]2§2 X e X Zpﬁ"'
(Theorem 21.3) Let p1,p2,---,pn be distinct prime integers and m =
pMpk2 ... pkn. Then the set of congruences
z = a; (mod p)
T = ag (mod p&?)
- kn
z = a, (mod p;r)

has a simultaneous solution, which is unique modulo m.

Groups




Chapter 22

Symmetries of Figures in the Plane

Many geometric objects possess a large amount of symmetry. Roughly
speaking, this means that a change of the viewer’s perspective does
not change what is seen. Equivalently, we can move the object instead.
In this case we want to consider motions of the object that leave it
apparently unchanged.

22.1 Symmetries of the Equilateral Triangle

For example, consider an equilateral triangle with vertices labelled 1,
2, and 3:

3

/\

1 2

Notice that a counterclockwise rotation through 120° moves vertex
1 to the location vertex 2 has just vacated, and moves vertex 2 to
location 3, and vertex 3 to location 1. We shall denote this rotation by
p. Notice that if we ignore the labels of the vertices, after applying p
the triangle is in the same position as it was before the motion. Note
that if we apply p twice, that is, we rotate the triangle through 240°,
the triangle again appears unchanged. We shall denote this rotation
by pp, or p? for short.

Perhaps we need a more precise definition: a rigid motion of the
blane is a one-to-one function from the plane onto itself that preserves
distance. We call these rigid motions because they can be realized by
moving the plane in three-dimensional space. If S is a subset of the
plane (that is, a figure in the plane like our equilateral triangle), a
Symmetry of S is a rigid motion of the plane that takes S onto itself.
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So, when we talk of a rotation of the equilateral triangle, we can
just as well think of rotating the entire plane. Thus, p and p? are
symmetries of the triangle.

Are there any other symmetries of the triangle? First of all, there is
certainly the identity: the one-to-one onto distance-preserving function
that takes each point to itself. This corresponds to no motion at all,
and we will denote it by .

But are there any more interesting symmetries? Yes! Consider the
reflection through the line ¢; which assigns to each point P the point
P’ which is the same perpendicular distance from ¢; but on the other
side. (If P is actually on the line, it is sent to itself.)

We could think of this as rotating the plane on axis ¢; through 180°.
(Notice this motion happens in three-dimensional space.) This rigid
motion takes the triangle onto itself, and so is a symmetry of the tri-
angle that we will call ¢ (for flip).

Now, obviously one symmetry followed by another is still a symmetry;
note that ‘followed by’ here means functional composition, if we think
of these rigid motions as functions from the plane onto itself.

So we have

p,p2,p3 = no motion at all =¢.

2
@, 0" =1

in our list of symmetries of the triangle. But we also have py (where
we mean by this juxtaposition the composition of these two functions,
first ¢ and then p).

3 3 1
VANEIVANEIVAN
1 2 2 1 3 2
Now this is just a reflection about the line #5:

A\

~
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Similarly, ¢p looks like a reflection about the line #3:

X

-

> Quick Exercise. Verify that pp is indeed equivalent to the reflec-
tion about the line £3. <

Note that the order in which these compositions are done makes a
big difference! These six turn out to be a list of all the symmetries of
the equilateral triangle (we’ll prove this later).

We can now obtain a multiplication table of these symmetries as fol-
lows. The entry in the o row and 8 column consists of the composition

af:

Lop P g pp op
L Lop PP o pp pp
p p Pt oL opp wp @
PPl p e @ pp
@ o pp pp L Pt op
pp | pp w wp p L P
wp | wp pp @ PP p 1

For instance, let’s compute ppp. We can picture this composition as
follows:

3 2 2 3
TANEVANE VAN AN
1 2 3 1 1 3 2 1

We see that this is indeed equivalent to ¢.

> Quick Exercise. Try generating the remainder of this multiplica-
tion table yourself, thinking geometrically about composing movements
of the triangle. <

Notice that this ‘multiplication’ obeys the associative law because it
Is simply the composition of functions, which is associative. Note also
that there seems to be a block substructure to this table. Namely, if
we denote the three rotations by R and the three flips by F, we have
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R F
R R F
F F R

We will return to this substructure of the table in Example 27.5.

22.2 Permutation Notation

Now, how do we know that this comprises the complete list of the
symmetries of the equilateral triangle?

To answer this question, we make the following observation: If we
specify where each of the vertices goes, then we have determined the
symmetry. We introduce some notation here, to describe what a sym-
metry does to the vertices of the triangle. For example, to describe
p, we put beneath the integers 1, 2, and 3 the names of the vertex
locations they’re taken to. Thus, we should put 2 under 1 to indicate
that the counterclockwise rotation of p takes vertex 1 to the location
vertex 2 has just vacated. This is an example of a general notation for
permutations, which we will study later. Thus, the permutation of the
vertices 1, 2,3 accomplished by the rotation p is just

123
231/

This then means that the vertex in location 1 is moved to location 2,
and likewise for the other two columns.
This latter notation gives us a function from {1, 2,3} onto {1,2,3}.

For example,
123
(2 3 1) (2) =3

Explicitly, we have the following correspondence between symmetries
of the triangle and permutations of their vertex locations:

_ (123
L 123
(123
p 231
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2, 123
P 312
123
«—
(2 1 3)
- 123
P 132

_ (123
Py 321

Now, there are only six ways to rearrange the list 1,2,3: We have
three choices for the first element in the list, two remaining choices
for the second element, and only one remaining choice for the third
element, making 3 -2 -1 = 3! = 6 altogether. So we have the complete
list of the symmetries of the triangle.

We call the set of these six symmetries the group of symmetries
of the equilateral triangle; the table above is called its group table
or multiplication table. The group of symmetries of the equilateral
triangle is sometimes called the 3rd dihedral group and denoted Dj.
In general, the group of symmetries of a regular n-sided polygon is
called the nth dihedral group and is denoted D,,. In the future, we
will call these groups either dihedral groups or the groups of symmetries
of appropriate regular polygons. In Exercise 22.8, you will show that
D,, has 2n elements.

From the group table, we know that the composition of symmetries
p(pp) gives us the symmetry . But consider the two corresponding
permutations of the vertices:

_(128) o (123
P=\2s1) 29 $P=l132)"

These are both functions, which can be composed together. Let’s see
what p(¢p) does to vertex 1. First, the symmetry ¢p sends 1 to 1, then
p sends 1 to 2. Thus, the composition function sends 1 to 2.

> Quick Exercise. Compute what this composition does to 2 and

3. g
123 R 123y (123
231 132/ \213)°

We thus have
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(Remember, this composition is done right-to-left.) This is of course
exactly the permutation describing what the corresponding symmetry
¢ does to the vertex locations! Thus, plop) = ¢.

22.3 Matrix Notation

If you’ve had a bit of linear algebra, we can describe the symmetries of
the equilateral triangle using matrix notation. Let’s now look again at
the rigid motions of the plane we’ve used in describing the symmetries
of the equilateral triangle. Remember a rigid motion of the plane is
really a one-to-one onto function from the plane onto the plane, which
preserves distance.

Now the plane can be considered algebraically as the set R? of all
ordered pairs of real numbers. We denote this by writing P(z,y) for
the point P in the plane with coordinates (z,y).

How then can we represent rotation (about the origin, say) through
angle 87 To answer this, suppose that P(z,y) is rotated through angle
0 to point P'(z',y'). If we represent P by the polar coordinates (r, )
then

r=rcosp and y=rsing,

and so

' =rcos(@+¢) and y =rsin(f+¢).
By using the trigonometric sum formulas, we obtain

z = rcospcosf —rsinpsing = zcos — ysinb

y = rcosysinf + rsinpcosd = xsinf + ycosb.

These two equations describe the transformation P(x,y) — P'(z’, Y, ‘

which is the rotation through the angle 8 about the origin.
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SP(Y)
_~P(z.y)
i 9 \ 7"
oll-—Ve

A particularly nice way to look at this transformation is as a matrix
multiplication. Consider the 2 x 2 matrix

cosf —sinf
R={ .
( sinf cosf )
/
and the 2 x 1 arrays P = ;j and P’ = x,). Then we have that
Yy
RP = P’. Note that we think of P and P’ as columns in order to make
this matrix multiplication work. Thus, we can represent rotation of the
plane by means of a matriz multiplication. (See Exercise 6.7.)
What about the reflection through lines? Consider the matrix

F=<—01(1)>.

—x
Note that FP = < y > , and so we see that multiplication by F exactly

describes reflection of the plane through the y-axis.

So now consider the equilateral triangle centered about the origin
‘(0,0), so that vertex 1 is (—-@, —1), vertex 2 is (3§, —3), and vertex 3
is (0,1). (Note that the vertices of this triangle are all distance 1 from
the origin.) We can then explicitly describe the symmetries p and ¢ by
multiplication by R and F, respectively. We then obtain the following
correspondence between symmetries and matrices:

10
“_’I_(01>
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_1_V3
p<—>R:<l£§ _i)
2 2
2 :_ (-3 %
p — R :<_ﬁ_l>
2 T3
¢<—>F=(_10
1
1 V3
o= (%)
3 73
1 _V3
p(p<—>RF:(_§§ _i)
2 2

Note the interconnection among the composition of symmetries, the
composition of permutations of the vertex locations, and the matrix
multiplication! In other words, the matrix corresponding to the com-
position of two symmetries is exactly the product of the matrices cor-
responding to those symmetries.

> Quick Exercise. Pick a couple of symmetries and verify that the
product of the symmetries has as its corresponding matrix exactly the
product of the corresponding matrices of the original symmetries. <

(We will explore this correspondence more carefully later.)

22.4 Symmetries of the Square

Let’s now examine the symmetries of the square. We consider the
square pictured below, with vertices at

(-1,-1), (1,-1), (1,1), (-1,1).

(Call these vertices 1, 2, 3, and 4.)
4 3
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Because vertices must be moved to vertices, there can be no more
than 4! = 24 symmetries of the square. However, consider the permu-
tation of the vertex locations

1234
1243/

1 2 1 2

There is no way to move the square in this way, because vertex 1
(wherever it is moved) must stay adjacent to vertices 2 and 4. Let’s
count how many such permutations are possible. We can move ver-
tex 1 to any of four places. But because vertex 2 must be adjacent,
this means that there remain only two possibilities for 2. And once
we’ve established where the 12 edge goes, the entire square’s motion
is accounted for. This means there are at most 8 symmetries of the
square. In Exercise 22.1, you will find all 8 and analyze them as we
have analyzed the symmetries of the equilateral triangle. As mentioned
before, we denote the group of the symmetries of the square by Dy, the
4th dihedral group. In Exercise 22.8 you actually argue that the nth
dihedral group D,, has 2n elements.

Chapter Summary

In this chapter we explored the notion of symmetry of figures in the
plane. We obtained the group of symmetries for the equilateral triangle.
This group is called the 3rd dihedral group.

Warm-up Exercises
a. Explain geometrically why ¢ appears in each row and in each
column of the group table for Ds.

b. We pointed out a block substructure in the group table for Ds.
What does this substructure mean geometrically?
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c. Give the matrices that accomplish rotations through 45° and 30°.
Check that these matrices work for (1,0) and (0,1).

d. Compute ppp three times: (1) by making an equilateral trian-
gle out of cardboard, and actually performing the motions; (2)
by composing the permutation functions which describe what lo-
cations the vertices are taken to; (3) by multiplying the corre-
sponding matrices. Did you get the same answer all three times?

e. Consider an isosceles triangle, which is not equilateral. How
many symmetries does it have?

f. Consider a scalene triangle (all sides have different lengths). How
many symmetries does it have?

Exercises

1. Complete the analysis of the symmetries of the square, which
we began in the text. Some will be rotations, and some will
be flips. Determine matrix and permutation representations for
them, draw a table of correspondence, and compute the group
table for your symmetries.

2. Repeat Exercise 1 for Ds, the group of symmetries of a regular
pentagon.

3. Determine all symmetries of a non-square rectangle, and repre-
sent them with matrices and permutations. How many are rota-
tions, and how many are flips?

4. Repeat Exercise 3 for a rhombus (that is, an equilateral parallel-
ogram, which is not a square).

5. Show algebraically that the rotation transformation preserves dis-
tance: Consider the points

P (z1,y1) and Py(z2,y2).

(a) What is the square of the distance between P; and P»?
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(b) Now rotate through the angle 6, by multiplying by the ap-
propriate matrix, to obtain the points

Pi(z,y1) and Py(z5,y5).

Compute the square of the distance between these points.
Use trig identities to show that this is the same as in part a.

. Verify by multiplying two matrices together that a rotation

through angle 6, followed by a rotation through angle ¢, gives
a rotation through angle 6 + .

. How many symmetries can you find for the unit circle? Which

rotations are possible? Which flips?

. Find out how many elements there are in D,,, the group of sym-

metries of a regular n-sided polygon.

. You can check that all of the matrices of the symmetries of the

equilateral triangle and the square have the property that their
determinants are always +1. (See Exercise 8.2 for a definition of
the determinant of a 2 X 2 matrix.) In this exercise you will show
that if a matrix preserves distance, then its determinant must be
1.

(a) Suppose that A € M»(R), and det(A) = 0. Show that multi-
plication by A cannot preserve distance. Do this by showing
that multiplication by A takes some point in the plane to
the origin, and hence cannot preserve distance.

(b) Suppose next that

(‘; Z) = A€ My(R),

but det(A) # 0. Suppose that multiplication by A does
preserve distance, and consider successively what happens

() () (4) (2)

You will be able to infer that det(4) = £1.
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10. Our description of the symmetries of the equilateral triangle can
be elegantly rephrased using the arithmetic of the complex num-
bers C, described in Chapter 8.

(a) Argue that the three vertices of the triangle can be thought
of as numbers of the form e** in the complex plane, for
appropriate angles «;.

(b) Show that you can represent the rotations of the triangle in
the symmetry group by complex multiplication by a number
of the form €', for an appropriate choice of 6.

(c) What operation on the complex numbers performs the flip

o7

Chapter 23

Symmetries of Figures in Space

We'd now like to turn to symmetries of three-dimensional objects, in
particular of the regular tetrahedron and the cube. By way of analogy
with plane figures, it should be clear that we should be concerned with
rigid motions of three-dimensional space (R®) taking the given object
onto itself. However, we should make clear what is meant by a rigid
motion of R3. We mean more than just a one-to-one onto distance-
preserving function. Consider R® equipped with a coordinate system
with the usual right-hand rule orientation as depicted below (where
ixj=k):

k

i

The function 3 : R® — R? defined by 3(z,y,2) = (z, -y, 2) (that is,
reflection through the zz-plane) is a one-to-one onto distance-preserving
function that cannot be accomplished by moving R® in R3. We can see
this because it changes the set of vectors i, f, E, which has right-handed
orientation, into the set Z, —f, E, which has left-handed orientation.

The pertinent comparison is to the reflection (z,y) — (z,—y) in the
plane, which can’t be accomplished in the plane. It is an accident
of physics that we inhabit three-dimensional space. Hence, we are
happy with reflections through a line in the plane, because they can
be accomplished in three-dimensional space. We are not so happy with
reflections through a plane in space (even though it turns out they
can be accomplished as a motion in four dimensions). The key here
is to restrict ourselves to one-to-one onto distance-preserving functions
that preserve the right-handed orientation of our coordinate system; we
call such functions rigid motions of space. (This should jibe with
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your intuition of rigid motion.) This definition of symmetry is quite
restrictive because it excludes functions like 3, which can be realized as
mirror reflections. Many people would call such functions symmetries
too, but we will not do so here.

23.1 Symmetries of the Regular Tetrahedron

We’re now ready to determine the group of symmetries of a regular
tetrahedron. Because it has four vertices, there are no more than 4! =
24 such symmetries.

1

Let’s first consider symmetries leaving one vertex (say, number 1)
fixed. We have the rotations

(1234
Pl 13492

. (1234
P1 1423 )"

where, of course, p} = ¢, the identity.

and

But consider another permutation of the vertices leaving number 1 l

fixed, say,

1234
1432/
This corresponds to a reflection through a plane.

> Quick Exercise. What plane? <

But this can’t be accomplished with a rigid motion! To see this, paint §
the exterior of face 234 white and the interior of face 234 red. Now apply §
the above permutation. Clearly, for this to be a symmetry of the regu- 4
lar tetrahedron, a face must be mapped to another face. Here, because }
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vertex 1 is fixed, face 234 is clearly mapped to itself. But after the per-
mutation, what color are the exterior and interior of face 234? They’ve
switched colors! This permutation has caused the tetrahedron to turn
‘inside itself’. This doesn’t jibe with our intuition of rigid motion. In-
deed, this is the sort of thing that happens when a distance-preserving
permutation is applied that changes the right-handed orientation.

To see this change in orientation another way, place vectors i and
i m the plane of the face 234, with ] parallel to the edge 24. Then
i X j pomts toward the tetrahedron. Suppose 7 and j' are the i images
of 7 and j, respectively. Note that i’ x ] now points away from the
tetrahedron. That is, the side of the face that was formerly in the
interior of the tetrahedron is now on the exterior.

3 i3
: /]
4 — 2
2 " 4
1 1

So we lose altogether three of the symmetries of the triangle 234:

namely,
1234 1234 d 1234
1432 )\ 1243 ) 2% {1324
Similarly, we have rotations corresponding to the other three vertices:
. 1234 2 1234
P27 4213) P27 3241
_ 1234 2 1234
Pe7\2431) B 7 {4132
. 1234 2 (1 234
Pr=\3124) P77 2314
These give us 8 symmetries fixing exactly one vertex, together with one

fixing all four, while we have banned 6.

®> Quick Exercise. For each fixed vertex, we found 3 permutations
that are not allowed. There are 4 vertices, so why are there only 6
banned permutations and not 12? <

What about the 24 — 15 = 9 permutations that leave no vertex fixed?
How many of these lead to symmetries? Let’s try to consider a typical
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one. We may suppose without loss of generality that vertex 1 is sent
to vertex 2. So, the permutation looks like this:

1234
2777 )°

If 2 — 1, then (because we’ve assumed that it fixes no vertex) it must

look like this:
1234
2143

This is a symmetry! Just let £ be the line connecting the midpoints
of the segments 12 and 34, respectively. Then this symmetry can be
accomplished by rotating 180° about the line £.

1

We will call this symmetry 1; note that ©% = t. In a similar fashion

we have
. 1234 . 1234
271 3412)° T \4321)
But what if 2 is not mapped to 1? Suppose without loss of generality
that 2 — 3. Then, because we have no fixed points, we must have

1234
2341/

We claim this can’t be accomplished by a rigid motion of R3. Why?
Once again, this motion would not preserve the orientation of our co-
ordinate system. Consider any face of the tetrahedron. Note that the
permutation will flip this face around-—the exterior side becomes the
interior side. This cannot be accomplished by a rigid motion.

> Quick Exercise. Pick a particular face of the tetrahedron and

check explicitly that this permutation interchanges the interior and ;

exterior sides of the face. <
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Thus, there are six more permutations that are forbidden:
1234 1234 1234
2341 3421 4123
1234 1234 1234
2413 4312 3142

We thus have 12 symmetries of the regular tetrahedron: 8 that fix
exactly one vertex, 3 that fix no vertex, and the one that fixes all four.
We then obtain the following group table for the symmetries of the
regular tetrahedron:

Pi Pi Pg Pg P% L @2 Y3 Y1 P11 P3 P4 P2
P3| ps LA P w2 L w1 Y3 pa p2 p1oP3
P2 | PE Pt P Pt vz o L w2 pa pa p3 M

Py P P32 P P3 Y1 Y3 Y2 L pP3 p1 P2 P4

In examining this group table we can detect a block substructure,
similar to that we discovered in the group table for D3. We can high-
light this by labelling the symmetries

{01,002, 03}
by F', the symmetries
{p1,p2, p3, pa}
by R, and the symmetries
{0}, 03, 03, i}
by R?. Then the block structure looks like this:
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| F R R?
F F R R?
R R R*! F
R? R® F R

We will examine this block structure further in Example 27.6.

23.2 Symmetries of the Cube

We shall now determine the symmetries of a cube. We shall identify
the vertices and the faces of the cube as follows:

2 3
1 4
,'-6 ---------- 7
) 8
face 1485 F (front)
face 3267 B (back)
face 4378 R (right)
face 2156 L (left)
face 2341 U (up)
face 5876 D (down)

As we’ve seen before, each symmetry corresponds to a distinct per-
mutation of the vertices. However, there are

8! = 40,320

of these permutations! We’d like a more clever approach than this.
Notice that each symmetry corresponds to a distinct permutation of
the faces. However, there are still 6! = 720 of these permutations.

To improve our geometric intuition a bit, let’s paint the faces of the
cube as follows:
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front — W (white) left — O (orange)

back — Y (yellow) up — B (black)

right — R (red) down — G (green)
This allows us to distinguish easily among the moving faces of the
cube (the colors), and the unchanging locations to which the faces
travel—such locations as front or right. (At this stage you might find
it worthwhile to get a cube—a die, say—to manipulate.)

Now, notice that a symmetry is entirely determined once we know
the colors of the front and right faces after the symmetry has been per-
formed. (This would of course be true with any other pair of adjacent
faces.)

This observation makes it easy to count all the symmetries of the
cube, by counting all possible adjacent color pairs:

WR

WB RB

WO RY BY OY GY
WG RG BO OG

Of course, the symmetry making the front red and right green is distinct
from the symmetry making the front green and right red, and so this
gives us 24 symmetries of the cube.

But 24 is the number of permutations of 4 objects. Perhaps there
is some way of describing the symmetries of the cube as permutations
of 4 geometric objects. Notice that the cube has exactly 4 diagonals,
and each symmetry takes the diagonals onto diagonals. Let’s label the
diagonals as follows:

a(1-7), b2-8), ¢3-5), d4-6).

Each symmetry can be realized as a permutation of these four diago-
nals.

Example 23.1

Consider the symmetry of the cube that places R on the front
face and W on the right face. Note that this symmetry leaves
diagonals a and c fixed while interchanging diagonals b and d.

> Quick Exercise. Check that symmetry in Example 23.1 does in-
deed move the diagonals of the cube in the way described there. <
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We can even make explicit the geometric motion necessary for each

Symmetries of Figures in Space

Symmetries of the Cube

of the symmetries if we introduce some more fixed locations, so that Front Right Geometric
we can specify certain axes of rotation: Element Color Color Motion Permutation
20 L W R no motion abed
E P %% B 90° on F.B dcab
970 17 I W 0 180° on F,B badc
18116 15 p W G 270° on F,B cdba
§ 19 02 R Y 90° on U,D beda
13 /,/’ """ i; """" 03 Y 0] 180° on U,D cdab
/,/1’1 $ 03 0] w 270° on U,D dabc
03 B R 90° on L,R bdac
10 03 Y R 180° on L,R dcba
03 G R 270° on LR cadb
1 O G 120° about a adbc
Example 23.2 w3 B Y 240° about a acdb
o G W 120° about b dbac
Return to the example above. Notice that this symmetry is real- ,u% R G 240° about b cbda
ized by a 180° rotation about the line through the points 14 and U3 9] B 120° about c dacb
16. 13 G Y 240° about ¢ bdca
ha B W 120° about d cabd
u3 R B 120° about d bcad
> Quick Exercise. Verify this. < a1 0 Y 180° about 13 & 15 cbad
o) R W 180° about 14 & 16 adcb
We perform a similar analysis for all 24 symmetries of the cube, o3 G O 180° about 10 & 20 acbd
obtaining the following table. In the first column, we have given names Q4 Y G  180° about 9 & 19 bacd
to the symmetries. In the second and third columns, we have specified a5 Y B 180° about 11 & 17 abdc
the color of the front and right faces, after the symmetry has been g B O 180° about 12 & 18 dbca
accomplished. In the fourth column, we describe the geometric motion

necessary to accomplish the symmetry; note that all motions (except
the identity) are rotations of the cube. The axes of rotation are

1. lines through opposite faces, > Quick Exercise. Verify the internal consistency of several lines of
this table. It’s easier if you have a cube to handle, preferably painted

2. diagonals, or appropriately! <«

3. lines through midpoints of opposite edges.

By means of some exceedingly tedious computation, we can then

The fifth column specifies the permutation of the diagonals that results. | obtain a group table for the group of symmetries of the cube:
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v o1 02 6% pa pZ o} pa 02 P31 nd pp wd ps uf pa pf @1 a2 a3 g 05 a6
o| o1 02 03 p2 63 63 pa P2 P3 m1 ud w2 bE ua pf 4 ki o1 @2 a3 04 o5 0p Warm-up Exercises
p1| P10 3 ¢ u2 as ua u? og p2 0§ @ as p2 01 A3 p3 az p1 K3 K3 P3 A3 Ha
02| P23 ¢ p1 az pF a1 as P3 a3 wg sa uE K3 p1 pz T 3PS P2 p3 a5 a4 p3
Bl 0 0 oy o2 ud a mr ma e u3 o pe p3 oz pd an as 2 wa # w2 P} oF ud a. We noted that a symmetry of the cube is determined if we specify
o2 pg u? o 2 p% Py v i 2 w3 p% @4 1 @3 ps o pz ag P T w3 p2 ua i the color of the front and right faces, after the motion. Is the
p2l pZag p2 ag p3 L p2 az p? ag py w2 KT K3 By M4 M3 M1 @2 O P3 PL PY P . . .
2| 200300 f3 0200 P1 G0 MG Ka MY KA kg KA U3 U 03 0 P9 0 D) P symmetry determined when we specify the color of some different
P3| P3 w2 az pa ¢ p2 P M3 a1 p1 @6 PL X4 P3 A3 PT @5 PR PT PR K3 MY B3 MY ir of faces? D thi K f i of £ 2
pa| p3ms as pd n? ag g p2 P3¢ P a1 pd asas pz az p1 HE pa 0 w1 pf AT pal s? Does this work Ior any palr ol 1aces!
2 2 2 2 3 2,2 2 .2 3 3
02| 0% o5 p3 as o1 pT @z P ¢ p3 pp B3 B4 M1 BY BT K2 B3 P2 PR X6 P] PL O3 . L .
o] 03 2 cm s 02 na o pa o2 au oo 0o pd o1 en pd as w3 s o3 ud e 02 b. Compute the following elements twice in the group of symmetries
1| w1 el w3 ae p% u2 0s 03 ps a1 w2 o P} ua mz o3 03 w3 p1 as a2 p3 a3 P2 of the tetrahedron, once using the group table, and once using
W3] wd e uf p2 oo pa pa aa mz p1 ¢ w1 ms P35 4] kG AT P§ as as pf a2 o] the representation as permutations:
pa| wzoo pa p3 P8 n2 an py u? oa pf 43wk o P2 m1 ua P§ a6 p3 AT P2 01 O3
2 2 3 2 3 2 2 2 2 3 3
u2| uZp3 m3 az oq p1 Py o2 pE P2 M3 PT L M2 B4 PR P KT @5 PL P2 P3 06 01 2
102 .
us| maas ud ps p1 62 as a1 p1 o3 pa e} P2 w2 uE ¢ p3 p2 A} s P2 o1 P32 Yip2 P2, P20102, LIP3
p2| p2pg w2 a1 s ua p3 oF ma as P} 43 4 T ¢ w3 m1 P33 a6 P12 P au
pa| w03 2 as s u? as as pd 3 o2 ua w1 p3 P% n3 ki ¢ @3 P ca a1 p2 ;1 c. Explain the geometric meaning of the block substructure in the
2 2 3 2 2 2,2 .2 2 3 3 .
Wi| oo mod o ms e pn d en e o 0L UG 06 ¢ b @4 P1 123 23 P2 group table for the symmetries of the regular tetrahedron.
a1| a1p? pz p? P2 ag p% p1 P3 M3 P3 PT 05 06 P3 PL XA A3 L Po My M4 K2 B
3 2 2 .2 2 3 3 2 2 ,,2
ag| aops P3 w2 PE o1 I pE P2 BE O3 05 P] P3 X6 Q4 PL P3 PR L M1 B3 K K3 : : :
s 1P1 Mg P2 2 oo AR R d. Compute the following elements twice in the group of symme-
az| aznul p3 ua p2 p3 M3 P Q6 P3 a5 @2 P2 PL PY P3 O1 C4 M4 BY L MY M1 PR tries of the cube, once using th tabl d i h
oa| cap? as o2 p1 0% 12 p2 o1 p? p2 p3 03 03 a o a3 o1 kf pa ma ¢ pY na . ? USIH.g e group table, and once using the
as| a5 0l g p2 pa o1 43 b3 0% pa o a3 o o1 p2 p3 PE PY 3w ki A1 ¢ w2 representation as permutations:
as| aspr p2 42 s p3 12 0% as p? p1 PY o1 @5 04 a2 2 AT o MG PR w3 M)

a3p2u12, P2P1, 01,013041-
> Quick Exercise. Check several interesting computations in the
group table. Having a cube to manipulate will help here. < e. Describe any block substructure that you detect in the group

table for the cube.
We have seen that all rigid motions in the symmetry groups of the ¢

tetrahedron and the cube are rotations about some line. In fact, all
rigid motions of three-dimensional space are such rotations; we will not
prove this interesting fact here.

Exercises

1. Find all symmetries of a pyramid as drawn below (the base is a
square, and the four sides are congruent):

Chapter Summary

In this chapter we extended our notion of symmetry to symmetry of
objects in three-dimensional space. We then applied these ideas to
obtain the symmetries of the regular tetrahedron and the cube.

2. Show that p; and ¢ generate the group of symmetries of the
tetrahedron. This means that you can find a formula for each of
the other symmetries, in terms only of p; and ;. (By all means,
use our group table!)
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. Consider the flatlanders, who live in the plane and consequently

. In our discussion of the symmetries of the tetrahedron, we ex-

. Are there any mirror reflections that leave the cube fixed? (See

Ezxercises

cannot conceive of motion in three dimensions. Formulate a defi-
nition for symmetry in R? for flatlanders, and then determine for
them the group of symmetries of the equilateral triangle and the
square.

cluded the symmetry corresponding to the permutation

1234
1432)°

because it could not be accomplished by a rigid motion of space.
However, we did observe that it could be accomplished by a re-
flection through a plane; this is a called a mirror reflection. Show
that all of the excluded permutations for the group of symmetries
of the tetrahedron are mirror reflections. Specify the plane for
each of these twelve permutations.

the previous exercise for a discussion of mirror reflections.) Can
you determine how many such there are?

Find all symmetries of the ‘tent’:

/X

The ends are equilateral triangles, and the sides are congruent
non-square rectangles. Give the group table. Comment on its
relationship to the group table for the triangle.

(For those comfortable with multiplying 3 x 3 matrices.) Consider
the tetrahedron in R3 with vertices at

(1,1,-1),(-1,-1,-1),(1,—1,1), and (-1,1,1).

If we label these vertices 1, 2, 3, 4, respectively, then this corre-
sponds to the labeling of the tetrahedron we used in the text.
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Notice that the matrix

-1 00
FF=10-10
0 01

corresponds to the symmetry ;. Find a matrix which corre-
sponds to the symmetry p;, and then determine matrices for all
the other symmetries, using Exercise 2 above.

. Consider a cube with a special down face: This face is different,

and consequently, a symmetry must leave it alone; the face might
be rotated, but must remain the down face. (You might imagine
a circular dot in the center of this face.) How many symmetries
of the unmarked cube are still symmetries of this cube?



Chapter 24

Abstract Groups

In this chapter we intend to generalize the examples of the previous two
chapters, to obtain an abstract notion of group, quite similar in flavor
to our abstract definition of ring in Chapter 6. We have a set of ob-
jects (which up to now have been symmetries), equipped with a binary
operation (which up to now has been the composition of symmetries).
What abstract properties should this binary operation satisfy?

Because the composition of symmetries can be viewed as a composi-
tion of functions, this binary operation is clearly associative. We will
include this in our abstract definition.

Notice that we always included the identity symmetry: the symme-
try consisting of no motion at all. When composed with any other
symmetry, we obtain the second symmetry. This clearly seems simi-
lar to our definitions of additive and multiplicative identities. We will
include an identity element in our abstract definition.

Any symmetry can be undone; that is, there is a motion that restores
the object in question to its original orientation. What does this mean
in terms of the group table? For example, in the group D3 of symme-
tries of the equilateral triangle, the motion that undoes the rotation p
is simply p?, and this fact is reflected in the group table by the fact
that

pp> =1 and p’p=1.
So, the existence of inverses is the third requirement of our definition.

> Quick Exercise. Choose several elements in the groups of sym-
metries for the cube and tetrahedron. What are their inverses? Does
this make sense geometrically? <
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24.1 Definition of Group

We now state our definition formally. A group G is a set of elements
on which one binary operation (o) is defined that satisfies the following
properties: (The symbols g, h, and k represent any elements from G.)

(Rule 1) (goh)ok=go(hok)

(Rule 2) There exists an element e in G such that
goe=eog=g
(Rule 3) For each element g in G there exists an element z so that

gox=xog=ce

We introduce some terminology to describe these rules (which will
seem familiar after our experience with rings): Rule 1 says that the
operation o is associative, Rule 2 says that an identity exists, and
Rule 3 says that each element of the group has an inverse. We can
thus paraphrase our definition by saying this: A group is a set with an
associative binary operation with an identity, where all elements have
inverses.

24.2 Examples of Groups

What are some examples of groups?
Example 24.1

The groups of symmetries for the triangle, square, tetrahedron,
and cube, where the operation o is functional composition. The
operation (being functional composition) is associative, and the
identity is the symmetry consisting of no motion (the identity
function). The inverse of each element is also clearly a symmetry
and consists geometrically of ‘undoing’ the symmetry. Function-
theoretically, it is exactly the inverse function of the given sym-
metry.
L ¢
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Now let R be a ring, equipped with operations + and -. Let’s for-
get the multiplication. We claim that R equipped with + is a group.
Obviously, + is associative (Rule 2 in the definition of ring). Clearly,
0 plays the role of the identity for + (Rule 3 in the definition of ring).
And every element in a ring has an (additive) inverse, by Rule 4 in the
definition of a ring.

We have thus provided ourselves with an extremely large fund of
group examples, because we know about so many rings. It’s proba-
bly worthwhile listing a few of these explicitly, so that you can better
appreciate the ground covered by this observation.

Example 24.2

The integers Z, equipped with +.

Example 24.3

The integers modulo m (that is, Z, ), equipped with +, as defined
in Chapter 3.

Example 24.4

The set M3(Z) of 2 x 2 matrices, with integer entries, equipped
with matrix addition.

Example 24.5

The Gaussian integers Z[i], under addition.

When we look at the additive structure of a ring, and consider it as
a group, we call it the additive group of a ring. If the only groups
around occurred as the additive groups of rings, the abstract concept of
group would clearly be superfluous. But by Rule 1 from the definition
of ring, the binary operation addition for a ring is always commutative.
That is, it satisfies the rule

at+b=>b+a.

Note that we do not include such a requirement on the abstract op-
eration o in our definition of group above, because we wish to include
those groups in Example 24.1.
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Thus, the notion of group is a genuine generalization of the notion of
additive group of a ring because it includes more structures. As a more
general concept, we will in the next chapters discuss quite a distinct
algebraic theory regarding groups.

If a group satisfies the additional rule

Rule 4 aob="boa

we say that the group is abelian. That is, a group with a commutative
operation is abelian. The word ‘abelian’ honors the early 19th-century
mathematician Abel, whom we mentioned in Chapter 9. (Although
‘commutative group’ might seem a reasonable term to use, we will
follow long-standing practice and say ‘abelian’ instead.)

24.3 Multiplicative Groups

We need some more examples:

Example 24.6

The set Q@* of non-zero rational numbers, under multiplication,
is a group. Multiplication is clearly an associative operation,
and its identity is 1. Note that every such rational number has
a (multiplicative) inverse: the multiplicative inverse of rational
number a/b (where a,b # 0) is b/a.

Examples 24.2 through 24.5 might have led you to infer that we
should invariably associate ‘group operation’ with addition, rather than
multiplication. This is certainly false, as Example 24.6 and several
examples below show.

We can generalize Example 24.6. Let F be any field. Then let F*
be the set of non-zero elements of F. Equip this set with its usual
multiplication. Then this is a group.

> Quick Exercise. Why? <
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Example 24.7

Let’s create this group, for a particular field. Consider the field
Z7. We are then claiming that the set

Z% ={1,2,3,4,5,6}

of residue classes modulo 7 forms a group under multiplication.
Because Z is a field, we know that all these elements have (mul-
tiplicative) inverses, but let’s compute them explicitly anyway:
Because it is the identity, clearly the inverse of 1 is 1. Because
2-4 =1, 2 and 4 are inverses of one another; because 3 -5 = 1,
3 and 5 are inverses of one another. And because 62 = 1, 6 is its
own inverse.

> Quick Exercise. Compute the inverses in the multiplicative group
*
. <
11

We can generalize even further. Suppose that R is any ring with
unity. In Chapter 8 we defined U(R), the set of those elements of R
that are units; that is, U(R) is the set of those elements of R that
have multiplicative inverses. For a field F', U(F') is just F*, its set of
non-zero elements.

But we claim that for any ring with unity, U(R) is a group under
multiplication. Because R has unity, the set U(R) evidently possesses
an identity. And clearly (by definition) every element of U(R) has a
(multiplicative) inverse. There remains a subtle point to verify, before
we can claim that U(R) is a group: Is in fact U(R) closed under multi-
plication? That is, is multiplication on U(R) a binary operation? The
answer is yes, and we proved exactly this in Chapter 8.

> Quick Exercise. Carefully re-read this proof in Section 8.2. <«

We will consequently call U(R) the group of units for the ring (with
unity) R.

> Quick Exercise. Why are we restricting ourselves to rings with
unity? <

Thus, each ring with unity has associated with it two groups: its
additive group, and its group of units. Let’s look concretely at a few
groups of units:
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Example 24.8

The set U(Zg) = {1,5} is a group under multiplication. The
multiplicative inverse of 5 is itself.

Example 24.9
Consider the group of units of the Gaussian integers:

Note that —1 is its own inverse and ¢ and —i are inverses of each
other.

Example 24.10

Counsider the sets U(Mz(Z)) and U(M;(R)); they are both groups,
where the operation is matrix multiplication. Recall that the
units of Mz(Z) and Mz(R) are those matrices with non-zero de-
terminant. (See Exercise 8.2.) Both groups have infinitely many
elements. For example,

31 q 34
52) 9 \45
are both elements of U{(M2(Z)).
> Quick Exercise. What are their inverses? <

> Quick Exercise. Show that U(M2(Z)) is a non-abelian group.
(The examples we’ve just given will do!) <

Example 24.11

Consider U(Z[v2]). In Example 10.12 we computed infinitely
many elements of this multiplicative group. We in fact gave a
complete list of its elements (although we were unable to prove
the completeness of this list).

> Quick Exercise. Verify that 7+ 5v/2 is an element of this
group. (That is, compute its inverse.) <

We can have multiplicative groups living inside previously studied |
rings, which do not consist of the entire group of units. For a couple §

of such examples, consider the following.

k.
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Example 24.12

Let’s work inside the field Z;3. Take the element 4. We now
compute the (multiplicative) powers of this element; to make our
computations clear, we will this time make explicit use of modular
notation:

[ =14], [ =[6l=13], [4=[4]18]=[2]
[4)* = [41[12) = [48] = [9), [4]° = [4][9] = [10],
[41° = [4][10] = [40] = [1].

We have stopped here, because if we continue, we will repeat
elements we have already obtained. We now claim that

{[1]; (4], 181, 121, 9], [10]} =

{[1], (4], [4)%, (4], (4], [41°}
is a group under multiplication. You can check this by brute
force, but the fact that all elements are powers of [4], and that

[4]% = [1], means that computation of products and inverses is
easy! For example,

[P [4)* = [4]" = [4]°[4] = [4].

And what’s the inverse of [4]2? We claim it is [4]°72; the compu-
tation
[4]?[4]* = [4]° = [1]

makes this evident. We will return to this example (and general-
izations) in Chapter 26.

Example 24.13

Let’s work inside the field C. Consider the set of all complex
numbers of modulus 1. We call this set S:

S:{046(31|CY|:1}={a~|—bz‘e(C:a2-1-b2:1},

Considered within the complex plane, this consists of exactly the
points on the circle centered at the origin, of radius one. (You
should certainly review our discussion of complex numbers in
Chapter 8, if necessary.) We consequently call S the unit circle.
We claim that S is a group, under complex multiplication. This
set is certainly closed under multiplication because

lafBl = |a|lfl =1-1=1.
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And clearly, the multiplicative identity 1 belongs to S. But what
about multiplicative inverses? If we express an element of S in
trigonometric form, it looks like

e = cosf + isinb.

And by DeMoivre’s Theorem 8.4, its multiplicative inverse is ex-

actly '
e~ = COS(—O) +1 sin(—@) = cosf —isind,

which still belongs to S, as you can easily verify.
The diagram below shows graphically the values of a, a?, and
o~} for an arbitrary complex number a € S.

Example 24.14

We now work inside Mo(R). Consider the following set of 2 x 2
matrices:

Then this is a grovp under matrix multiplication. To verify
this explicitly, we would need to make sure each element has an
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inverse in the set (this is not too difficult), and also check that
this set is closed under multiplication. If we were to do this
by brute force, there would be a lot of multiplications to check!
(How many?) However, this set of matrices should look familiar:
It was a geometrically explicit realization of Dj, the group of
symmetries of an equilateral triangle. (See Chapter 22.)

> Quick Exercise. Recall from Chapter 22 that multiplica-
tion of these matrices corresponds to composition of symmetries.
With this observation, why must this set of matrices be closed
under multiplication? <

Example 24.15

We now work inside M, (C), the ring of 2 x 2 matrices with com-
plex entries. Consider the following set of 2 x 2 matrices:

(1) (50)- (50)- (65)
(0 4) () (55) (379)

Then this is a group under matrix multiplication. It is a
tedious matter to verify that this set is closed under multiplica-
tion, and we will not carry out this project. However, it would

be worthwhile for you to try a few sample multiplications, to get
a feel for how this group works:

> Quick Exercise. Do this. <

It is important to note that every element in this set has an
inverse; you will verify that this is the case in Exercise 24.3. This
group is non-abelian; it is known as the group of quaternions.
We will denote by Qg. In Exercise 28.14 we will introduce a more
compact notation for the elements of Qg.

It’s worth noting that many sets equipped with a single operation do
not satisfy the group axioms.
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Example 24.16

Consider the integers Z equipped with multiplication. This is not
a group. Although the operation is associative, and there is an
identity (namely, 1), almost none of the elements have inverses
(with respect to this operation).
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Chapter Summary

In this chapter we have generalized the notion of group of symmetries,
to obtain the concept of abstract group. We looked at many examples of
groups, including two important classes arising from rings: the additive
group of a ring, and the group of units of a ring with unity.

More generally, if we take a ring R and forget its addition, we will
never obtain a group! To begin with, we wouldn’t get a group unless we
had a multiplicative identity (unity). But even if R has unity, we would
then require that every element of R have a multiplicative inverse; yet
0 never has a multiplicative inverse! (The only exception here is the
trivial example of the zero ring.)

Of course, this isn’t the only way a set with a binary operation can
fail to be a group.

Example 24.17

The non-negative integers {0,1,2,---} is not a group under ad-
dition: Although it has an additive identity, all elements (except
0 itself) lack an inverse.

Example 24.18

Let R be an arbitrary ring. We consider the set Aut(R) of all ring
isomorphisms from R onto itself; such isomorphisms are called
automorphisms. We claim that Aut(R) is a,group, under func-
tional composition. We need to check that this operation is well
defined; that is, is the composition of two such isomorphisms it-
self an isomorphism? You will do this in Exercise 24.10, where
you check that such a composition still preserves addition and
multiplication and is one-to-one and onto. Next, note that for
any ring R, the identity function ¢ : R — R defined by «(r) = is
in fact a ring isomorphism (see Example 19.1). This element will
be the identity element in this group, because when we compose
it with any other automorphism, we get the same function back.
And in the discussion following Example 19.5, we described how
the inverse function of a ring isomorphism is itself a ring isomor-
phism, and so each element of Aut(R) has a inverse. In Exercises
24.11-24.14 you will determine the elements of Aut(R), for cer-
tain specific rings.

Warm-up Exercises

a. Give examples of the following:

(a) An abelian group with infinitely many elements.
(b) An abelian group with finitely many elements.

(c) A non-abelian group with infinitely many elements.
)

(d) A non-abelian group with finitely many elements.

b. Determine the inverses of the following elements, specifying the
group operation in each case:

(a) [3] € Zs.
(b) [3] € z2.

(©) (_34 _45> € UM ().

(d) ¢p € Ds.

() (2,4 eQxQ

(f) (2,-4) eU@Q@x Q).

(g) 2+ %ies.

c. Give examples of the following (you need to specify both the

group in which you are computing, as well as specific elements):

(a) A non-identity element that is its own inverse.
(b) Two elements a and b, so that (aob)™! #a 1 ob~ L.

(¢) A non-identity element a so that acaoaoa = 1.
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FExercises

d. Let R be a commutative ring with unity. What two groups are

associated with R?

Consider the element

- (21

in the group U(M2(R)). Why is it true that AB = BA, for all
other elements B in this group? Does this mean that this group
is abelian?

Consider the following sets, equipped with an operation. Are
they groups, or not?

(a) Z, with subtraction.

(b) Z, with multiplication.

(¢
(d

2(Z), with matrix addition.
2(Z), with matrix multiplication.

e
f

)

)

) M.

) M.

(e) R*, with multiplication.

(f) R*, with division.

(g) R*, with addition.

(h) Z xZ, with the operation x, defined by (a, ) * (c,d) = (a, d).
(i) The set of vectors in R3, with cross product.

)

(j) The set R* of strictly positive real numbers, with multipli-
cation.

g. The following table represents a binary operation on the set {a, b, c, d}. ,

Argue that this set with this operation is not & group. (This fails
to be a group for more than one reason.)

QU O o Qe
O AR oo
Q oo alo
SR A0 R

QO o
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Exercises

. Suppose you have a set of n elements with a binary operation that

you think might be a group. You easily check that there is an
identity and that every element has an inverse, but you are now
faced with showing the operation is associative. So, you check
the equation ao(boc) = (aob)oc for all possible a, b, and c. How
many equations must you check? If n = 5, how many equations
is this? If n = 10, how many?

. Specify the elements of the groups of units of the following com-

mutative rings:

215, Q[IIJ], Z[.’E], Z X Q

. Consider the group of quaternions, described in Example 24.15.

Determine explicitly which of these eight elements are inverses of
one another. Also, show by example that this is not an abelian

group.

. Consider the set R\{—1} of all real numbers except —1. Define

the operation * by
axb=a+b+ ab.

Prove that this is a group.

. In this problem we consider permutations of the set R.

(a) Let S(R) denote the set of all real-valued functions f: R —
R, such that f is one-to-one and onto. Prove that S(R) is a
group, where the operation is functional composition.

(b) Now let A(R) be the set of functions from S(R) that are also
order-preserving: By this we mean that if £ < y, then
f(z) < f(y). Prove that A(R) is a group under functional
composition.

6. Consider the set of matrices of the form

lab
Olc],
001
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10.

11.

12.

13.

FEzercises

where a, b, ¢ are arbitrary real numbers. Show that this set forms
a group under matrix multiplication.

Let n be a positive integer and C be a circle. Now for ¢ =
0,1,...,n—1, let p; be the rotation of C counterclockwise through
the angle 27i/n radians. Show that this set of rotations is a group
under the operation of composition. How many elements are in
this group?

Let G be a group with operation o. Suppose that z ox = 1, for
all z € GG. Prove that G is abelian.

Suppose that G is a group with operation o; suppose that z,y €
G. Show that if

(zoy)o(zoy)=(zxoxz)o(yoy),
then zoy =yox.

Let R be any ring, and suppose that ¢,% € Aut(R). Show that
the composition ¢y € Aut(R), by checking that this function
has the appropriate domain and range, is one-to-one, onto, and
preserves addition and multiplication. (This exercise verifies that
Aut(R) is closed under functional composition; in Example 24.18
we complete the verification that Aut(R) is a group under this
operation.)

Prove that Aut(Z) is a group with only a single el.ement.
Show that Aut(Q) is a group with only a single element.

In this problem you will sketch the proof that Aut(R) is a group
with only a single element. You will use the fact that all positive
real numbers have exactly two square roots.

(a) Let a,b € R. Show that a > b if and only if a — b = 22, for
some r € R.

(b) Use part a to show that if ¢ € Aut(R), then a > b if and
only if ¢(a) = ¢(b).

(c) Argue that any automorphism of R is fixed on the rational
numbers Q. (See Exercise 12.)

14.

15.
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(d) You may assume that between any two real numbers is a
rational number. Use this to prove that any automorphism
of R is fixed on all real numbers, and so Aut(R) has only a
single element.

Consider the field of complex numbers C, and its group of auto-
morphisms Aut(C). Show that this group has only two elements,
namely the identity automorphism ¢, and the complex conjuga-
tion map ¢ defined by ¢(a + bi) = a — bi. (See Example 16.4).

Let n be a positive integer; consider the set
Gpn ={1,-1} X Zy,.
We define an operation on this set by

(3, [k]) * (4, [m]) = (4, [m + jK))-

Prove that this makes G, a group. Note: Do not neglect to
show that this operation is associative! In Exercise 28.12 we
will provide a more compact notation for this group, and show
rigorously that it is ‘essentially the same’ as the dihedral group
D,, we introduced in Chapter 22—the group of symmetries of a
regular n-sided polygon.



Chapter 25

Subgroups

In this chapter we will follow closely our exposition of abstract rings,
in Chapters 6 and 7. We first prove a theorem about arithmetic in an
abstract group, quite similar to Theorem 6.1. We then introduce the
idea of subgroup, which is quite analogous to the corresponding idea
subring.

25.1 Arithmetic in an Abstract Group

Theorem 25.1 Suppose that G is a group with operation o, and g, h, k €

G.

. (Cancellation on the right) If gok = hok, then g = h.
. (Cancellation on the left) If kog=koh, then g = h.

. (Solution of Equations) The equation g oz = h always has a

unique solution in G; likewise, the equation x o g = h always has
a unique solution in G.

. (Uniqueness of inverse) Every element of G has exactly one in-

VETse.

. (Uniqueness of identity) There is only one element of G which

satisfies the equations zo g = goz = g for all g; namely, the
element e.

. (Inverse of a product) The inverse of a product is the product of

the inverses, in reversed order: (goh)™ ' =h"log L.

Notice that we need to state both parts a and b, because in an

arbitrary group the operation is not commutative: Hence, one of these
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statements does not immediately follow from the other. Likewise, the
solutions guaranteed for the two equations in part ¢ need not be the
same.

> Quick Exercise. Consider these equations in the group of sym-
metries of the tetrahedron:

g1z =p3 and zp1 = p3.

Discover the solutions to these equations (by examining the group table
in Section 23.1); note that they are not the same. <

Notice that we have already encountered the rule in part f for comput-
ing inverses of products, when we discussed the multiplicative inverse
of a product in a non-commutative ring; it might be worthwhile to
re-read our discussion of this rule in Section 8.2.

Proof:  (a) & (b): Merely operate on the appropriate side of the
equation by an inverse of k.

(c): This is Exercise 25.2; your proof will be similar to part b of
Theorem 6.1.

(d): This is Exercise 25.3.

(e): Suppose that e and z both serve as identities in G. Then e = eoz
(because z is an identity); but eoz = z, (because e is an identity). Thus
e=z.

(f): Consider that

(goh)o(htog)=go(hoh™)og =goeog ' =gog'=e.

> Quick Exercise. Similarly, show that (h™log 1) o(goh) =e. <

Because inverses are unique, (goh)™ ! =h"log™ L a

25.2 Notation ‘

Henceforth, when we discuss a generic abstract group, we will tend to
denote its operation by juxtaposition, rather than by using the symbol
o for the operation; we will say that the group is being written mul-
tiplicatively. In this case, we will usually denote the (unique) identity
by 1 and will denote the (unique) inverse of element g by g~!. Note
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that we have already used multiplicative notation for symmetry groups
(this despite the fact that the group operation in symmetry groups is
functional composition). As in those groups, g> =gog, ¢ =gogogy,
and so on. In fact, when we use this multiplicative notation, we will
often refer informally to the operation as multiplication.

If a generic abstract group is abelian, we will tend to denote its
operation by +; we will say that the group is being written additively.
In this case, we will usually denote the identity by 0 and will denote
the inverse of element g by —g. We can in this situation talk about
subtraction:

g—h=g+(—h).

However, for some abelian groups, it is still most natural to use multi-
plicative notation; for example, we will still use multiplicative notation
for the abelian multiplicative group Q* of non-zero rational numbers.

You should exercise extreme care in sorting out which sort of notation
we use for a given group. General remarks, definitions, and theorems
may be expressed multiplicatively, but they still apply for groups writ-
ten additively. Note that for many sets equipped naturally with more
than one operation (such as rings), only one of those operations makes
the set a group. Be sure you know which!

25.3 Subgroups

It is often easier to check whether a given set is a group, if it is a subset
of a larger group with the same operation. This is directly analogous
to the ring theoretic situation, where we were led to a definition of
subring. Similarly, we say that a subset H of a group G is a subgroup
if H is itself a group under the operation induced from G.

We can immediately list some examples:

Example 25.1

The additive group of integers Z is a subgroup of the additive
group of reals R.

We can generalize Example 25.1. If R is a subring of S, and we ignore
the multiplication, then clearly the additive group R is a subgroup
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of the additive group S. This obviously provides us with a raft of
additional examples of subgroups.

> Quick Exercise. List for yourself at least six interesting examples
of subgroups arising in this way. <

Example 25.2
The unit circle S is a subgroup of the multiplicative group C* of
non-zero complex numbers. (See Example 24.13.)

Example 25.3
The set {1,4,3,12,9, 10} is a subgroup of the multiplicative group
of units U(Z13) = Z15. (See Example 24.12.)

Example 25.4

Let G be any group (written multiplicatively). Then {1} and G
itself are always subgroups of G. We call {1} the trivial sub-
group of G. G is the improper subgroup of G. All sub-
groups of G other than the improper subgroup G are proper
subgroups.

Example 25.5
Note that because Z is an additive group, the trivial subgroup of

this group is {0}.

> Quick Exercise. Is {1} asubgroup of Z? (Under what operation?
Remember that when we say that H is a subgroup of G, we are implying
that G is also a group.) <

Example 25.6

Consider the subset {i, ¢} of D3. Because ¢ is its own inverse, it
is easy to see that this is a subgroup.
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25.4 Characterization of Subgroups

As with rings, we have a theorem that makes it easy to check whether
a given set is a subgroup:

Theorem 25.2 The Subgroup Theorem A non-empty sub-
set H of a group G is a subgroup if and only if whenever h,k € H, then
hk~l € H.

Note that in an abelian group (written additively), this says just that
a non-empty subset of a group is a subgroup if and only if it is closed
under subtraction.

Proof:  This theorem is proved just like the corresponding theorem
for rings (Theorem 7.1) and is Exercise 25.4. O

Note that Examples 7.6 through 7.9 are examples of this theorem in
action (if you just ignore multiplication).

> Quick Exercise. Review these examples from Chapter 7. <

Here are some examples, which are not additive groups of rings:

Example 25.7

We work in the multiplicative group Q. Let
m .
H= {— :m,n are odd 1ntegers}.
n

We claim that H is a subgroup. Pick two typical elements of H,
m/n and r/s, where m,n,r, and s are all odd integers. Then

m (r)—l ms ms

n \s nr nr

But ms and nr are clearly odd integers, and so this is an element
of H. By the theorem, H is a subgroup. (The most interesting
thing about this conclusion is that H is a group at all!)
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Example 25.8

We work in Dy, the group of symmetries of the square. Consider
the set

{1, p,0% 0%}
Note that p=! = p3, and (p?)~! = p?®. This means that any
substitution into hk~! by elements from this set will turn into a

power of p and hence will belong to the set. We will generalize
this example in the next chapter.

Subgroups 335

(a) pu1x = p2, in the group of symmetries of the cube.
(b) zui = p2, in the group of symmetries of the cube.
(c) 114+ 2z =4, in Z;s.
(d) 4z =11, in U(Z;5).

Chapter Summary

In this chapter we proved some elementary properties of the arithmetic
of an abstract group. We then introduced the concept of subgroup,
listed many examples, and proved a theorem which characterizes sub-
groups.

Warm-up Exercises

a. Which of the following are subgroups? (The operation on the

[

[¢]

larger group is always the obvious one.)
(a) The subset of even integers in Z.
(b) The subset {0,2,4} in Z7.
(c) The subset {2" :n € Z} in Q.
(d) The subset {2" : n € Z} in Q*.
(e) The subset {¢,p} in Ds.
(f) The subset N of Z.
. Is every subring also a subgroup?

. Is the group of units of a ring a subgroup of the ring?

. How many identity elements can a group have? How many in-
verses can a given element of a group have?

. Provide the (unique) solution to the following group equations:

Exercises

. Consider the set

iR={ai:a €R} CC;

these are the imaginary numbers. Prove that this is a subgroup
of the additive group of C. Is I a subring of the ring C? Similarly,
show that iZ = {ni : n € Z} is a subgroup of the additive group
of the Gaussian integers Z[3].

. Prove Theorem 25.1c. That is, suppose that GG is a group and

g,h € G. Prove that gr = h has a unique solution; likewise,
prove that zg = h has a unique solution. (We have written the
equations multiplicatively.)

. Prove Theorem 25.1d. That is, prove that in a group, every

element has exactly one inverse.

. Prove the Subgroup Theorem 25.2: A non-empty subset H of a

group G is a subgroup if and only if whenever h,k € H, then
hk~l e H.

. Show that if H and K are subgroups of the group G, then HNK

is also a subgroup of G. Show by example that H U K need
not be a subgroup.(This exercise can and should be compared to
Exercises 7.9 and 7.10.)

. Suppose that G is a group, written multiplicatively. Let g € G,

and suppose that g2 = g. Prove that g is the identity.

. Let G be a group, and a,b,c € G. Prove that the equation azc = b

has a unique solution in G.
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8.

10.

11.

12.

13.

14.

15.

Fzxercises

Suppose that G is equipped with an associative operation *. Sup-
pose that G has an element e so that g xe = g, for all g € G;
furthermore, for all ¢ € G, there exists an element ¢ € G so
that g¢ = e. Why are these assumptions apparently weaker
than decreeing that G be a group? Prove, however, that these
assumptions are sufficient to force G to be a group.

. Show that if (zy)~! = z~!y~! for all  and ¥ in the group G,

then G is abelian.

Complete the following multiplication table so the following will
be a group.

QU O oK
=9

Find all subgroups of U(Zg); of Z%; of U(Z15).

Show that nZ is a subgroup of the additive group of integers Z,
for all integers n.

Find all finite subgroups of the additive group C. What can you
say about all finite subgroups of the multiplicative group C*?

Argue geometrically that the dihedral group, D,,, has a subgroup
of order n.

Let G be a group and a € G. Define the centralizer of a to be
C(a)={g € G:ga=ag}
That is, C(a) consists of all the elements that commute with a.

(a) Find C(p) in Ds.
(b) Find C(4) in Zs.
(c) Show that C(a) is a subgroup of G.

16.

17.

18.

19.

20.

21.

22.

23.
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(d) Let H be a subgroup of G, and let
C(H)={g€G:gh=hgforal heH}

call C(H) the centralizer of H. Show that C(H) is a
subgroup of G.

Let Z(G), the center of G, be the set of elements of G that
commute with all elements of G.

(a) Find the center of the quaternions, defined in Example 24.15.
(b) Find the center of Zs.

(c) Show that Z(G) is a subgroup of G.

(d) If Z(G) = G, what can you say about the group G?

If H is a subgroup of G, then show that Z(G) N H is a subgroup
of Z(H).

Recall that the elements of U(M3(R)) are the real-valued 2 x 2
matrices with non-zero determinants. (See Exercise 8.2.) Show
that the collection of such matrices with determinants equal to
one is a subgroup of U(Mz(R)).

Consider the elements of U(M3(R)) of the form

al
b1)’
where a # 0. Prove that this is a subgroup.

Show that the group given in Exercise 24.7 is a subgroup of S,
the group given in Example 24.13.

Suppose a and b are non-identity elements of a group G, that
ab = ba and % = 1. Show that {a™,ba™ : n € Z} is a subgroup of
G.

We generalize Exercise 21: Suppose that a and b are non-identity
elements of a group G, that ab = ba and > = 1. Show that
{a™ ba",b%a™ : n € Z} is a subgroup.

Generalize the situation in the previous two exercises, replacing
2 and 3 by some positive integer m.



Chapter 26

Cyclic Groups

Suppose that G is a group (written multiplicatively), and g € G. If we
repeatedly multiply g by itself, we get the powers of g:

=9, =99, @=49d, g"=90*),

Given an element g" of this form, we call n an exponent; for now, we
are restricting ourselves to exponents that are positive integers.

Example 26.1

Choose the element 2 in Q*. Then the powers of 2 are the distinct

elements
2, 4, 8, 16,

Note that there are infinitely many distinct elements in this list.

Example 26.2

Choose element p in Ds, the group of symmetries of the equi-
lateral triangle. Then the powers of p are the repeating list of
elements

p, P, pP=u, pt=p

Note that there are exactly three distinct elements in this list.

26.1 The Order of an Element

It turns out that all elements in a group behave in one or the other of
the two ways illustrated by our examples above. We make this precise
in the following theorem:
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Theorem 26.1 Suppose that G is a group and let g € G. Then exactly
one of the following two cases holds:

a. (The Torsion-free Case) All the powers
9. 9% ¢ 4"
of g are distinct elements of G.

b. (The Torsion Case) There exists a least positive integer n for
which g™ = 1. In this case, the elements

9, ¢ ¢ -, gl g =1
are all distinct.

If an element falls into the second case, we say that it is a torsion
element. The integer n we call its order. In this case, we denote
the (finite) order of an element g by o(g). Thus, in Example 26.2
above, o(p) = 3. If an element falls into the first case, we say that
it is a torsion-free element and that it has infinite order. The
word ‘torsion’ is intended to reflect the fact that in the second case the
powers of the element cycle back on themselves:

2

9.9
g" _ Lo<—---<—og4

Proof: Let G be a group, and g € G. If all the powers of g are
distinct, we obviously have the first case. Suppose, then, that not all
powers of g are distinct. Then there exist positive integers r and s with
g" = g°. We may as well assume that r < s. But now multiply both

sides of this equation by 7 copies of ¢!

1=(g")(¢) =g )¢ =g""

This tells us that there exists some positive integer n (in this case, s—r)
so that 1 = g™. By the Well-ordering Principle choose the smallest such
n. We then claim that

g9 9 ¢, -, ¢ =1
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are all distinct elements. If not, then g" = ¢°, where 1 <r < s <n. By
the same argument as above, ¢g°~7 = 1. But this is impossible because
s —r < n, and we had chosen n to be the least such exponent. We have
thus concluded that the second case holds, if the first fails. |

Example 26.3

The order of ¢ in the group of symmetries of the equilateral
triangle is 2. Of course, we could then write o(p) = 2.

Example 26.4

The order of the identity in any group is 1.

> Quick Exercise. What are the orders of the elements 1, 2, and 4
in Zj3? <

Note that you have just illustrated the fact that non-identity elements
in a given group need not have the same order.

> Quick Exercise. What is the order of the element —1 in the group
U(Z[/2])? What about the element 1 + /27 <

The point of the previous Quick Exercise is this: It is possible that
a group possess some elements with infinite order, and some elements
(other than the identity) with finite order. The next two examples
provide a somewhat more complicated illustration of this.

Example 26.5

The element e = cos(r/5) + isin(n/5) in the unit circle S has
order 10. (Use DeMoivre’s Theorem 8.4.)

Example 26.6

Consider the element cos1 + isinl in the unit circle S. (Here,
the angle in question is 1 radian, or about 57 degrees.) We claim
that this element is torsion-free. If not, there must exist a positive
integer n for which

1= (cosl+isinl)" = cosn +isinn.
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Thus, n is an angle whose cosine is 1. Elementary trigonometry
tells us that » must be an integer multiple of 27m: n = 2rk.
But then m = n/(2k). That is, 7 must be a rational number!
This is certainly false, and is known as Lambert’s theorem; we
will discuss this fact further in Section 39.3. Thus, the element
cos 1 + isin1 has infinite order.

26.2 Rule of Exponents

We will now define what we mean by negative exponents on an
element in a multiplicative group. If n is a positive integer, we define
g~" to mean (g~1)". And by ¢°, we mean the identity 1. The reason we
make these definitions is exactly so that the ordinary rule of exponents
works: '
(9")(g°) =g,

for all integers positive, negative, or zero. In ordinary arithmetic, pre-
serving the rule of exponents is exactly the reason why such computa-
tions as 372 = 1/9 and 3° = 1 are defined in the way they are.

Proof of Rule of Exponents: If r and s are both positive, this
is clear, by the definition of positive exponents. If r and s are both
negative, then

g9 =",
where the exponents —r and —s are both positive. This then reduces to
the previous case. What if one exponent is positive and one is negative?
Suppose that r,s > 0; then

r

g9 =g"(g7h)".

We then cancel out terms until we run out of either g’s or g7'’s. In
either case, we obtain ¢"~°, as we require.

> Quick Exercise. There remains the case when r or s (or both) is
0; handle this. <

O
Suppose that g has finite order n; then
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Because the inverse of g is unique, g~! = ¢g"~!. Consequently, any
negative power of g can be expressed as a positive power, if g is a
torsion element.

Example 26.7
Consider the element [3] in
U(Zy4) = {1,3,5,9,11,13}.
The order of this element is 6.
> Quick Exercise. Check that the order of [3] is 6. <
Thus, [3]7! = [3]5. We can check this directly:
[3]° = [243] = [14 - 17 + 5] = [3],

and [3][5] = [15] = [1].
Let’s express [3]7* as a positive power of [3]:

37 = (871" = (3P)* = [3P° = (31°)°3)” = [1)[3]2 = [32

On the other hand, if an element g has infinite order, its inverse
cannot be expressed as a positive power of g. Indeed, all the elements

M) 9—27 g_la 90:17 gl=ga 927 93,

are distinct. The proof of this is a slight variation of the proof regarding
the torsion-free case in Theorem 26.1; we leave it as Exercise 26.4.

> Quick Exercise. What is the complete list of all powers (positive,
negative, or zero) of the element 2 in Q*? List all powers for —4 < n < 4
of the element 1 + /2 in U(Z[\/i]) <

In case an element g has finite order, there is a simple relationship
between o(g) and any integer m for which g™ = 1. We use the Division
Theorem 2.1 for Z to see this:

Theorem 26.2 Suppose that g is an element of a group, with order n.
Suppose also that g™ = 1, where m is some positive integer. Then n
divides m.

Proof: Let g be a group element, and n = o(g). Suppose also that
9™ = 1. Now n is the least positive integer so that ¢ = 1. Thus,
n < m. By the Division Theorem for the integers (Theorem 2.1), we
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can write m = gn + r, where ¢ is a positive integer, and r is an integer
with 0 < r < n. But then

T

(") =4

m qn+r _

l=g"=g
But because n is the least positive integer for which ¢g" = 1, we must

have that r = 0. In other words, n divides m. O

In our discussion in this chapter we have up to now restricted our-
selves to groups written multiplicatively. Of course, all our definitions
and results apply to groups written additively as well, but the notation
looks quite different.

To begin with, consider the positive powers of an element g of a
group G, which is written additively. Our previous experience with
rings supplies us with the appropriate notation:

9 9+9=29,9+g9g+9g=3g, -, g+g+---g=ng, ---.
If the order of g is infinite, then these elements are all distinct.

Example 26.8

The element 2 in the additive group Z has infinite order, because

are all distinct.

> Quick Exercise. What is the order of —1 in the additive group
Z[v/2]? Notice how different this question is than our earlier one about
the order of —1 in the multiplicative group U(Z[v/2]). <

If the order of g is finite, adding g to itself finitely many times yields
the identity, which in this case we denote by 0.

Example 26.9
The element 2 in the additive group Zg has order 3, because the
least n for which n2=0is3: 24+2+2=0.

> Quick Exercise. Determine the orders of all elements in
Zg. <
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Note that if g has finite order in an additive group (say, o(g) =
n), then —g = (n — 1)g. (This, of course, is just the observation we
made in multiplicative groups that g=! = ¢g"~1) That is, —g is an
integer multiple of g. For example, the order of [2] in Zo4 is 12. Then
[(12 — 1)2] = [22] = —[2], the inverse of [2].

> Quick Exercise. What is the order of 3+ 2z in the additive group
Zgz])? Express its inverse as an integer multiple of itself, and check
directly that this works. <

26.3 Cyclic Subgroups

Suppose now that g is an element of order n in the group G (written
multiplicatively). Now consider the subset

{lvgvgza e ,gn—l}

of G. Because all the negative powers of g can be expressed as a
positive power, it is quite clear that this is a subgroup. Furthermore,
it is evidently the smallest subgroup of G that contains g, because by
closure of the operation all powers of g belong to any group containing
g- We call this subgroup the cyclic subgroup generated by g, and
denote it by (g).

Example 26.10
The cyclic subgroup generated by p in Dj is {,p, p?>} and the
cyclic subgroup generated by ¢ in this group is {+, }.
Example 26.11
The cyclic subgroup of Z; generated by 2 is {1,2,4} and that

generated by 3 is the entire group.

Example 26.12
The cyclic subgroup of C* generated by i is
{1,i, -1, —i}.
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Example 26.13

The cyclic subgroup of Z;5 generated by 4 is {0,4,8} and that
generated by 0 is the trivial subgroup {0}.

What if g is an element of infinite order in G? Then the smallest
subgroup of G containing g must at least include all integer powers of
g. In fact, in this case we set

@={92%9"1%94d -}

> Quick Exercise. Show that (g) as just defined is indeed a sub-
group of G. <

Example 26.14

The cyclic subgroup generated by 2 in the group Z is the subgroup
27.

Example 26.15

The cyclic subgroup generated by 7 in the group R* is the infinite

set 11
{"'a_zv_)]-aﬂ-)ﬂjv"'}'
m T

We can subsume these two definitions of cyclic subgroup under a
single expression: For any element g in the group G,

(9 ={g™:mez}.

Of course, if g is torsion-free, we obtain distinct elements for each choice
of integer m. If g has finite order, each element of the cyclic subgroup
is obtained by infinitely many choices of m.

Notice that we have used the same notation for cyclic subgroup that
we have earlier used for principal ideal. This should cause no confusion,
as long as you are certain whether we are working with groups or rings.
This notational coincidence underlies the similarity of the concepts:
The cyclic subgroup generated by an element is the smallest subgroup
containing the element, while the principal ideal for an element is the
smallest ideal containing the element.
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26.4 Cyclic Groups

We say that a group G is itself cyclic if there exists some element
g € G so that (g) = G; that is, the cyclic subgroup of G generated by
g is the entire group. A cyclic group with infinitely many elements is
necessarily generated by an element of infinite order. A cyclic group
with finitely many elements (say, n) is necessarily generated by an
element with order n.

Example 26.16

The integers Z is a cyclic group, because Z = (1).

Example 26.17

The group Z,, is cyclic, for any integer m > 1, because Z,, = (1).

Example 26.18

The group Z7; is cyclic, with generator 2.

Note that in a cyclic group not all non-identity elements serve as
generators.

> Quick Exercise. Give non-identity elements in the groups Z and
in Z, that do not generate the entire group. Can you do this in Z:? <

Example 26.19

The group D3 is not cyclic because it has 6 elements, but it
contains no element of order 6.
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Example 26.20

The group U(Zg) = {1, 3,5, 7} is not cyclic either; all non-identity
elements have order 2. That is, there is no element of order 4.

Except for notational differences, it may by now seem that any cyclic
group of a given order is essentially like any other of the same order
and this is in fact the case. We will make this statement precise when
we introduce the notion of group isomorphism, in the next chapter.

> Quick Exercise. Recall the definition of ring isomorphism. What
do you suppose the definition of group isomorphism should be? <

Chapter Summary

In this chapter we analyzed the important notions of the order of an
element of a group and saw that an element of a group can have either
infinite or finite order. We also discussed the cyclic subgroup generated
by an element.

Warm-up Exercises

a. What are the orders of the following elements?

b. Are the following groups cyclic? Either explain why not or else
specify a generator.

. Explain why the order of ¢~

. Suppose that g~
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)
)

(h) {1,~1,4, 3} C C*.
)

(1) Z2 x Zq.
(k) Zy x Zs. (Be careful.)

. Can a group possess (non-identity) elements of both infinite and

finite order? Explain, or give an example.

. Are all cyclic groups abelian?

. Why do all non-abelian groups have (non-trivial) abelian sub-

groups?

. How many different generators do the following cyclic groups pos-

sess? List all such generators.

(a)
(b)
()
(d)

N N

10-

N

7-

(Zg)-

C:

! is the same as g.

14 = 1. What can you say about the order of g7

i. Suppose that g7 = ¢g'®. What can you say about the order of g?



350

Ezercises

10.

Exercises

. Determine the cyclic subgroups of U(M>(Z)) generated by

(31) = (30)

. Prove that every subgroup of a cyclic group is cyclic.

Find an example to show that the converse of Exercise 2 is false:
That is, give a non-cyclic group, each of whose proper subgroups
is cyclic.

. Suppose that g is an element of infinite order in a group G. Prove

that no two distinct powers of g (with any integer exponent) are
equal.

. If a and b are elements of a group that commute and (a) N (b) =

{1}, what is the order of ab if the order of a is m and the order of b
is n? Prove your assertion. Show by example that your assertion
is false in general, in the case that a and b do not commute.

If @ and b are elements of a group whose orders are relatively
prime, what can you say about (a) N (b)? Prove your assertion.

How many generators does an infinite cyclic group have?

Prove that if G is a finite cyclic group with more than two ele-
ments, then G has more than one generator.

(a) Show that in a cyclic group, the equation z? = 1 has no
more than two solutions. (Of course, the identity is always
one of the solutions.)

(b) Give an example of a non-cyclic group where 2 = 1 has
more than two solutions.

(a) Show that if G is a cyclic group of order m and n divides
m, then G has a subgroup of order n. (This subgroup will
itself be cyclic.)

11.

12.

13.
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(b) If G is an arbitrary group with order m and n divides m,
then G need not have a cyclic subgroup of order n. Find two
such examples, one where n = m, and one where n < m.

Generalizing the group given in Exercise 24.7, let pin be the
rotation of a circle counterclockwise through an angle of 2mi/n,
for i = 1,2,...,n — 1 and all n > 2. Let e be the ‘identity’
rotation. Show that this set of rotations forms a group under
composition. Show that all elements in this group are torsion
(even though the group itself is infinite). Show that each finite
subgroup is cyclic.

Show that all finite subgroups of the group S, given in Example
24.13, are cyclic.

If G is a finite group where every non-identity element is a gen-
erator of G, what can you say about the order of G? Prove your
assertion.



Section V in a Nutshell

This section defines the abstract notion of group, after examining two
important examples: symmetries of regular n-sided polygons (called
the nth dihedral groups) and symmetries of the regular tetrahedron
and the cube in 3-space.

A group G is a set of elements with one binary operation (o) that
satisfies three rules:

1. (goh)ok=go(hok), forall g ,h k € G,

2. There exists an element e € G (called the identity of G) such that
goe=¢eog=gforall g€ G, and

3. For each g € G, there exists an element z (called the inverse of
g) such that gox =zo0g=ce.

In addition to the groups of symmetries mentioned above, other im-
portant examples of a group are the additive group of a ring (that is,
the elements of a ring with only the addition considered) and the group
of units of a ring with unity under multiplication. An abelian group is
one in which the binary operation o is commutative.

Groups enjoy cancellation on both the right and the left, and the
solution of equations. Furthermore, the group identity is unique as is
the inverse of each element. (All this is Theorem 25.1.)

Paralleling the idea of subrings is the idea of subgroup: If G is a
group then a subset H of G is a subgroup if it is itself a group under
the operation induced from G. To determine if H is a subgroup of
a group G, we need only check that hk~! € H for every h,k € H
(Theorem 25.2).

An important class of subgroup of any group G is the cyclic subgroup
generated by g, which we denote by (g). It consists of the powers of g.
The subgroup (g) may be infinite or finite, depending on whether the
order of g is infinite or finite. If G itself is generated by the powers of
a single element, we say that G is a cyclic group.
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Chapter 27

Group Homomorphisms

At the end of the last chapter we were in need of a way to relate one
group to another by a function (to make precise the intuition that all
cyclic groups of a given order are ‘essentially the same’). We now make
the appropriate definition of a group homomorphism. This definition is
exactly what you should expect, given our earlier experience with ring
homomorphisms.

27.1 Homomorphisms

In our definition we wish to be careful about where operations are
taking place, and so we will depart from our usual practice of denoting
the group operation by juxtaposition. Instead, we will denote the group
operation by an explicit symbol. So, let G together with operation o,
and H together with operation %, be groups. A function ¢ : G — H
such that

p(gok) = w(g) * p(k),

for all g,k € G is a group homomorphism. Speaking more col-
loquially, a group homomorphism is a function between groups that
preserves the group operation. Note that because g and k are elements
of G, we are combining them via the operation o in G. But ¢(g) and
(k) are elements of H, and so we are combining them via the operation
*in H.
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27.2 Examples

It is time to look at some examples of group homomorphisms. We will
begin with a general class of examples.

Namely, let R and S be rings, and ¢ : R — S a ring homomorphism.
Now just look at the additive groups of R and S (so the operations on
R and S are both just +). This function preserves addition, and so
is a group homomorphism too. We mention specifically one important
example of this type.

Example 27.1

The residue function ¢ : Z — Z,, is a ring homomorphism, and
therefore a group homomorphism too.

> Quick Exercise. Now look at Examples 16.2, 16.3, and 16.4. Be-
cause they are ring homomorphisms, they are certainly group homo-
morphisms too. <

Example 27.2

Now consider Example 16.5. It is the function p : Z — Z defined
by p(n) = 3n. Here, we are considering Z as an additive group.
This function preserves addition:

p(n+m) =3(n+m)=3n+ 3m = p(n) + p(m).

Thus, p is a group homomorphism. In Example 16.5 we saw that
this is not a ring homomorphism: It preserves addition but not
multiplication.

It’s time to consider some examples further afield from rings:

Example 27.3

Consider the groups R under addition, and R of positive real
numbers, under multiplication. Recall the function log : R* — R,
the natural logarithm function. (That is, log(r) is the exponent
needed on the irrational number e so that €°8(") =)

Group Homomorphisms

The log function

Recall first of all that this function is only defined for positive
real numbers. The most important and useful property of the
logarithm function is this:

log(ab) = log(a) + log(b).

That is, the logarithm turns multiplication into addition. And
this equation is exactly what is required to assert that log is a
homomorphism! This example is well worth thinking about. It
shows us that the group operations in two groups connected by
a homomorphism can be quite different.

Example 27.4

Consider another famous function, this time between the groups
U(M2(R)), the group of units of the 2 x 2 real-valued matri-
ces, and R, the multiplicative group of non-zero reals. Recall
that U(M3(R)) are precisely those matrices in M>(R) with non-
zero determinant. (See Exercise 8.2.) Here, the operation in the
first group is matrix multiplication, while in the second it is ordi-
nary real number multiplication. The function is the determinant

function det:
det (“ b) = ad - be.
cd

Let’s show that this is a homomorphism. For that purpose, we
need to choose two arbitrary matrices,

ab rs
(ea) = (32)

where the entries are all real numbers. The product of these two

matrices is
ar + bt as + bu
cr+dtces+du)’

359
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and the determinant of this matrix is P1, 02, P3, pa; and ®(a) = 2 if « is one of the four symmetries
2 2 2 9
P1: P2, P3; Py-

To see that this is a homomorphism, it is best to return to
the group table we compiled for the symmetry group in Section
23.1. The pattern we observed of F, R, and R? elements behaves
in exactly the same way as addition in Zg!

ardu + btcs — buer — asdt.

> Quick Exercise. Check these computations. <

But the product of the determinants is
> Quick Exercise. Check that the pattern observed in the

(ad — be)(ru —ts), group table in Section 23.1 is the same as addition in Z3. <

Thus, we have a group homomorphism from a group where the
operation is functional composition, to a group where the opera-
tion is addition (modulo 3).

which is the same. Thus, the determinant function preserves
multiplication. To paraphrase, the determinant of a product is
the product of the determinants.

Example 27.5 Example 27.7

Consider the group Consider the function D : Rlz] — R[z] defined by D(f) = f’
(the derivative of the polynomial f). Of course, we know that
the derivative of a polynomial is a polynomial. But we also know
that the derivative of a sum is the sum of the derivatives. That
is,

D3 = {L7 P P2, @, PP, @P}

of symmetries of the equilateral triangle, whose operation is func-
tional composition. Consider also the multiplicative subgroup .
{1, -1} of the integers. Define the function D(f +9) = D(f) + D(9)-
This is exactly what is required to show that this function is a
group homomorphism. Notice, however, that this function does
not preserve multiplication (the product rule is not that simple),
and so this function is not a ring homomorphism. (For more
about the derivative function, see Exercise 4.7.)

$:D3—{1,-1}

given as follows: ®(a) = 1 if « is one of the rotations ¢, p, p?;
®(a) = —1 if « is one of the flips @, pp, pp.

To see that this is a homomorphism, it is best to return to
the group table we compiled for the symmetry group in Section
22.1. The pattern of F' and R we observed there shows us that
a rotation times a rotation is a rotation, a flip times a flip is a
rotation, and a rotation times a flip (in either order) is a flip. Now
replace ‘rotation’ by 1 and ‘flip’ by —1 in the previous sentence.
This is just the way multiplication in the group {1, —1} works!

27.3 Direct Products

Let’s recall a construction we made in rings: Given two groups G and

Example 27.6 H | consider the set

Consider the group G of symmetries of the tetrahedron, discussed
in Section 23.1. Consider also the additive group Zs. Define the
function

GxH={(g,h) :g€G,heH}

5.C7Z of all ordered pairs, with first entry an element of G and second entry
"o T A an element of H. Equip this set with the component-wise operation
given as follows: ®(a) = 0 if « is one of the four symmetries

L1, 2, or w3; ®(a) = 1 if « is one of the four symmetries

(91, h1)(g2, h2) = (9192, h1h2).
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This makes G x H a group, called the direct product of G and H.
> Quick Exercise. Verify that this is a group. <

> Quick Exercise. Review some examples of direct products of
rings. By forgetting the multiplication, they become examples of direct
products of groups. <

We can now use the direct product to construct two important ex-

amples of homomorphisms:

Example 27.8
Let G and H be groups. Consider the function
e:G-GxH
defined by €(g) = (g,1). This is certainly a homomorphism:
(9192) = (9192, 1) =

(91, 1)(g2, 1) = €(g1)e(g2).
Note that this function is one-to-one, but certainly not onto (as

long as H has more than one element).
> Quick Exercise. Check these claims. <

Of course, we could define a similar homomorphism on the
second component. These homomorphisms are called embed-
dings.

Example 27.9

Let G and H be groups. Consider the function
m:GxH—-G

defined by 7n(g,h) = g. This is called the projection onto the
first coordinate.

> Quick Exercise. Check that this is an onto homomorphism.
It is not one-to-one (as long as H has more than one element). <

A group homomorphism certainly need not be an onto function (see
Example 27.2). However, if ¢ : G — H is not onto, the new func-
tion (which we still call @) obtained by restricting the range to ¢(G)
certainly is onto. Thus, ¢ : G — ¢(G) is an onto homomorphism,
assuming that ¢(G) is in fact a subgroup of H. This is the case:
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Theorem 27.1 Let ¢ : G — H be a homomorphism between groups G
and H. Then ¢(G) is a subgroup of H.

Proof:  This is Exercise 27.6. Model your proof on the corresponding
ring theory theorem (Theorem 16.2). |

Chapter Summary

In this chapter we introduced the idea of group homomorphism, a func-
tion between two groups that preserves the group operation, and we
looked at numerous examples. We also introduced the direct prod-
uct of two groups along with the closely connected homomorphisms
embeddings and projections.

Warm-up Exercises

a. If ¢ : G — H is a group homomorphism and G is an additive
group, need H be an additive group?

b. Is a ring homomorphism necessarily a group homomorphism?

¢. Suppose we have a group homomorphism between the additive
groups of two rings. Is this necessarily a ring homomorphism too?

d. Check that the determinant function preserves multiplication for
two interesting matrices of your choice.

e. Does the determinant function preserve addition? Try it, for two
interesting matrices of your choice.

f. We proved that the determinant function preserves multiplication
for any pair of 2 x 2 matrices that are units. Show that this proof
works for any pair of 2 x 2 matrices.

g. Does the observation in Exercise f mean that the determinant
function defined from M>(R) onto R is a ring homomorphism?
Hint: What does Exercise e say?

h. How many polynomials are sent to the polynomial 2 by the deriv-
ative homomorphism? Can you describe them all efficiently?
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. Find a one-to-one group homomorphism ¢ from Zs to Z4. What

is the subgroup ¢(Z2)?

. Let G and H be groups with operations o and *, respectively, and

¢ : G — H a group homomorphism. Explain why ¢(gohok) =
p(g) * p(h) * p(k).

Generalize Exercise j to a product of n terms. Does this mean
that ¢(g") = (¢(9))"?

Exercises

. Show that the function ¢ : Z[i] — Z defined by p(a + bi) = a is a

group homomorphism (although it is not a ring homomorphism).

. Can you find a group homomorphism from Zy x Zs onto the mul-

tiplicative group {1,—1,4, —%}?

. Find three distinct group homomorphisms from Zsy x Zg onto Zs.

How many more homomorphisms exist, if we remove the require-
ment that they be onto?

Let G be an abelian group (written additively). Define
YvV:Gx G- G

by ¥(g,h) = g+ h. Make a two-column chart showing what this
function does to each element of G = Zs. Prove that v is a
homomorphism, for any abelian group G.

Show by example that the corresponding homomorphism 1 de-
fined in Exercise 4 need not be a homomorphism, when the group
is not abelian.

Prove Theorem 27.1: That is, let ¢ : G — H be a homomorphism
between the groups G and H. Prove that ¢(G) is a group.

Suppose that G is an abelian group, and ¢ is a group homomor-
phism whose domain is G. Prove that ¢(G) is abelian.

10.

11.

12.

13.
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. Suppose that R and S are rings with unity, and ¢ : R — S is an

onto ring homomorphism. Consider the function ¢ : U(R) — S
defined by ¥(r) = ¢(r). (That is, ¢ is just ¢ restricted to the
group of units U(R).) Prove that 1 is a group homomorphism
from U(R) into U(S).

. We know that log : Rt — R is a group homomorphism; see

Example 27.3. Find a subgroup G of RT, so that the restricted
logarithm function maps G onto the subgroup Z of R. What
about a subgroup of R* that maps onto the subgroup Q of R?

Consider the set G of all differentiable real-valued functions. Why
is this a group under addition? Is the derivative function D a
group homomorphism from G to G? Warning: That the function
preserves the operation is not the issue.

Consider the homomorphism in Example 27.5. Define the anal-
ogous homomorphism from Dy — {1, -1}, making use of your
work in Exercise 22.1.

In this problem we consider group homomorphisms from Z, to
itself.

(a) Find all homomorphisms from Zs into Zs. Now find all ho-
momorphisms from Zg into Zg.

(b) Suppose G is a cyclic group of order n. How many homo-
morphisms are there from G into G7 Describe them.

In this exercise we generalize the ideas encountered in Exercise
12. A homomorphism from a group into itself is called an endo-
morphism of the group. For an abelian group G, let End(G) be
the set of all its endomorphisms ¢ : G — G.

(a) Let ¢,9 € End(G). Define the sum ¢ + % of these two
homomorphisms by

(e +v¥)(9) = p(g) +¥(g)-

Prove that ¢ 4+ 1 is an endomorphism of G.

(b) Prove that End(G), under the addition defined in part a, is
an abelian group.
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(c) Let ,v € End(G). Define the product ¢ as the ordinary
functional composition:

Show that End(G) is a ring with unity when equipped with
this multiplication. We call End(G) the endomorphism
ring for G.

(d) Let n be a positive integer. Beware: in this problem we will
consider Z, as an abelian group, and as a commutative ring.
Prove that the ring End(Z,) is isomorphic as a ring to Z,.

Chapter 28

Group Isomorphisms

We call a group homomorphism an isomorphism if it is a one-to-one
and onto function. Intuitively, a group isomorphism preserves all essen-
tial group theoretic properties, and so demonstrates that two groups
are ‘essentially the same’. If ¢ : G — H is a group isomorphism be-
tween the groups G and H, the inverse function ¢! : H — G is also
a group isomorphism.

> Quick Exercise. Why is this? Hint: Re-read our discussion of
this situation in the context of ring isomorphisms, in Chapter 19. <

Thus, the relationship of isomorphism is symmetric, and so we can
speak unambiguously of two groups being isomorphic, if there exists
an isomorphism between them.

Which of the examples we looked at in the previous chapter are
isomorphisms?

> Quick Exercise. Check that the homomorphisms in Examples
27.1, 274, 27.5, 27.6, and 27.7 are not one-to-one and consequently
are not isomorphisms. The Quick Exercise following Example 27.9
discusses when that homomorphism is one-to-one. <

The homomorphism in Example 27.2 (multiplication by 3, from Z to
Z) is certainly one-to-one, but it is not onto, and consequently not an
isomorphism. However, the restricted homomorphism from Z onto 3Z
certainly is an isomorphism. Notice that this says that the group Z is
isomorphic to a proper subgroup of itself.

> Quick Exercise. To what other proper subgroups is Z
isomorphic? <

The homomorphism € from Example 27.8 is certainly one-to-one, but
usually not onto. We can assert that the group G is isomorphic to the
subgroup

«(G) ={(g,1) : g € G}

of the full direct product.
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It remains to consider Example 27.3: the logarithm function. Is it
one-to-one? Suppose that log(r) = log(s). But then

r= 6log(r) - elog(s) =g,

which shows that the function is one-to-one. Is it onto? Choose any
real number z. Then log(e®) = z, and so the function is onto as well.

The more elegant way to formulate the proof in the previous para-
graph is this: Of course, log is one-to-one and onto, because it possesses
an inverse function, namely, the ezponential function exp(z) = e®. This
function is the corresponding isomorphism

exp : R — R*.

The group-theoretic conclusion to this discussion is perhaps surpris-
ing. The additive group of all real numbers is algebraically ‘essentially
the same’ as the multiplicative group of all positive real numbers!

28.1 Structure Preserved by Homomorphisms

It appears that in general the only way to see that two groups are
isomorphic is somehow to construct an isomorphism between them.
But it is often easy to see that two groups are not isomorphic. For
one thing, because there exists a one-to-one onto function between
them, they must have the same number of elements: A group with 30
elements could not be isomorphic to a group with 24 elements. But
there are other group properties preserved by isomorphisms (and, for
that matter, homomorphisms). We record some of these properties in
the next theorem:

Theorem 28.1 Let ¢ : G — H be a homomorphism between the
groups G and H, and let 1g and 1y be the identities of G and H,
respectively.

a. o(1g) =1p.

b. w(g™") = (p(9))~", for any g € G.

c. Suppose that g € G, and g has finite order. Then the order. §
of ¢(g) divides the order of g. If ¢ is an isomorphism, then |

o(g) = o(p(g))-
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d. Suppose that G is abelian. Then ¢(G) is abelian.

Proof: Parts (a) and (b) are proved just as in the ring case (Theorem
16.1, parts a and b); we leave these as Exercise 28.6.
(c): Let g € G, and suppose that o(g) = n. Then

L= ¢(g") = (p(g)".

But then by Theorem 26.2, o(¢(g)) divides n = o(g), as claimed. If ¢
is an isomorphism, it possesses an inverse function ¢! which is also
an isomorphism. Applying the homomorphism result we just proved to
¢! tells us that o(g) divides o(p(g)) too, and because these are both
positive integers, o(g) = o(¢(g)).

(d): This is Exercise 27.7. g

Example 28.1

Consider the groups D3 and Zg; they both have the same number
of elements. But they cannot be isomorphic, because the second
group has an element of order 6, while the first doesn’t. But
regardless of the order of the elements in each group, the second
group is abelian, while the first is not, so they can’t be isomorphic.

Example 28.2

The groups Z4 and Zo X Zy are both abelian groups with four
elements. But they are not isomorphic, because the first group
has an element of order 4, while the second does not.

28.2 Uniqueness of Cyclic Groups

We are now ready to clear up the unfinished business of Chapter 26

of showing that all cyclic groups of a given order are ‘essentially the
same’: :

Theorem 28.2 All infinite cyclic groups are isomorphic to the addi-
tive group Z. All cyclic groups of order n (where n is an integer greater
than 1) are isomorphic to the additive group Z,.
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Proof: Suppose that G is an infinite cyclic group (which we may as
well write multiplicatively). Then G has a generator g. That is,

G={¢g":meZ}
where if r # s, then g" # ¢°. Define the function
w:G—-Z

by ¢(¢g™) = m. (This looks like a symbolic version of the logarithm
function because it picks off exponents!) The rule of exponents says
that this function takes the operation in G to addition in Z. It is also
clearly one-to-one and onto.

> Quick Exercise. Why is ¢ one-to-one and onto? <

Suppose now that G is a cyclic group of order n. Then we know that
(G has a generator g, so that

G= {17g’g2a T ,gn—l},
and ¢"™ = 1. Define the function
p:G—Zy

by ©(g™) = [m]. Let’s show that this is a homomorphism. So choose
g",9° € G; here, 0 <r,s <n—1. Then

0(g"9%) = ¢(g"™*).
If r + s < n—1, then the value of the function is

[r+s] = [r] + [s] = (g9") + ¢(g°),

as required. Otherwise, n <r+s < 2n — 2, and so

plg") =
(gmg™H) = (1 g ) = (g ) =
[r+s—n]=[r+s] =[] +s],
again as required. a

This last theorem is a good example of a recurrent theme in alge- §
bra: We have characterized the concrete example Z as the apparently |
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abstract construct ‘infinite cyclic group’. This provides us real insight
into the essence of the group structure of Z.

Let’s return to the examples of cyclic groups with which we ended
Chapter 26.

For example, the cyclic subgroup of the multiplicative group Z% gen-
erated by 2 has three elements. Likewise, so does the cyclic subgroup
of the additive group Z;s generated by 4. Consequently, both these
groups are isomorphic to Zs, and hence to each other.

> Quick Exercise. Write down explicit isomorphisms between each
pair of these three groups. <

The cyclic subgroup of Z generated by 2 is infinite. Likewise, so is
the cyclic subgroup of R* generated by w. Therefore, both of these
groups are isomorphic to Z.

> Quick Exercise. Write down explicit isomorphisms between each
pair of these three groups. <

As a consequence of this isomorphism theorem, when we wish to
discuss a cyclic group in the abstract and wish to use multiplicative
notation, we will tend to denote it by

<a> = { o ,0/_2,04_1, 1,&,(12, . }
(if it is infinite), or
(a) = {1,a,a2,---,an_1}

(if it is finite). We won’t worry concretely about what a is, because
any such cyclic group is essentially the same.

28.3 Symmetry Groups

Another place where the idea of isomorphism can make precise an ear-
lier discussion is in Chapter 22. There we recognized informally that
the group D3 of symmetries of the equilateral triangle could be put in
4 one-to-one correspondence with the set of matrices

10 _1_3 _1 V3
2 2 2 2

01)’ ¥3 1 P _¥3 _1[]
2 2 2 2
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-10 _1 3 1 _ V3
2 2 2 2

01)° ¥3 _1 ) V3 _1 [
2 2 2 2

We observed in Example 24.14 that this set of matrices is a subgroup
of M3(R). We can now say formally and precisely that this group of
matrices is isomorphic to the group of symmetries Dj.

Recall that in Chapter 22 we also placed this group of symmetries in
one-to-one correspondence with a set of permutations of the vertices of
the triangle and noted that there seems to be an algebraic connection
there also. We will make this precise in the next chapter, where we
discuss permutation groups, in an abstract setting.

28.4 Characterizing Direct Products

For another illustration of the concept of isomorphism, we return to
the notion of direct product. Suppose that a group G is isomorphic to
a direct product of the two groups H; and Hs. Let’s suppose that

p:Hy x Hh—> G
is the isomorphism. Consider the two subgroups of the direct product
H; x {1} = {(a,l) a e Hl}

and
{1} x Hy = {(1,b) : b € Hy}.

These subgroups are obviously isomorphic to Hy and Hy, respectively. ]

> Quick Exercise. Give an isomorphism between H; x {1} and Hi

and an isomorphism between {1} x Hy and Hy. <

Because the structure of the group G is ‘essentially the same’ as the
structure of Hy x Ha, G must clearly have two corresponding subgroups: }

They are
G1 = p(Hy x {1})

and
G2 = ({1} x Ha).
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Can we characterize abstractly the fact that G is a direct product, in
terms of the properties of G; and G2? Tt turns out we can, and we do
this in the next theorem. But first, let’s look at an example.

Example 28.3

The group Zg is isomorphic to the direct product Zs x Za (of
course, in this example the group operation is addition). The
isomorphism is

¢([als, [b]2) = [4a + 3b]e.

(We have included the subscripts for emphasis, and will hence-
forth omit them.)

> Quick Exercise. Check that this is a group isomorphism.
<

But then
G, = ‘P(ZB X {[0]}) = {05274}7 and

G = p({[0]} x Z2) = {0,3}.

We’ll return to this example when we have looked at our theorem.

To state our theorem conveniently, we need a little notation. If G;
and G9 are subgroups of a group G, then

G1G2 = {9192 : 91 € G1,92 € Ga}.

That is, G1G2 consists of all possible products, where the first factor
comes from G and the second factor comes from Gs.

Theorem 28.3 The Internal Characterization Theorem
The group G is isomorphic to Hyx Hy if and only if G has two subgroups
G1 and Gy, so that

a. Gy is isomorphic to Hy and Gg is isomorphic to Hs.
b. G = G1G27
c. Gi1NGy = {1}, and

d. every element of G1 commutes with every element of Gs.
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Before we proceed, note that in Example 28.3 the properties a, b, c,
and d hold.

> Quick Exercise. Check that properties a, b, ¢, and d hold. (Re-
member that our operation is addition.) <

Proof: Because this thoerem is ‘if and only if’, we have to prove both
directions. Suppose first that G is isomorphic to the direct product of
Hj and Hj, via the isomorphism ¢, as above. As before, we can define
subgroups G1 and Gy and then part (a) is clearly satisfied.

To check part (b), let ¢ € G. Because the isomorphism ¢ is onto,
there exist h; € Hy and hy € Hy so that ¢(hy, he) = ¢g. But then

g =¢((h1,1)(1, h2)) = w(h1,1)p(1, h2) € G1Gy,

as required.
To check part (c), suppose that g € G1 NGa. Then g = ¢(h1,1), and
g = (1, hy), for some elements hy € Hy, and hy € Hz. But then

1= p(h1,1)((1, h2)) ™! = o(h1, k).

Because ¢ is one-to-one, h; = 1 and hy = 1, and so g = 1 as required.
To check part (d), suppose that g1 € Gy and g2 € G2. Then g1 =
@(h1,1) and ga = (1, he). But such elements clearly commute.

> Quick Exercise. Why do such elements commute? <

For the converse, suppose that G has two subgroups Gi and G2 as
specified in parts (a) to (d) above. We then define

I/J:G1XG2—>G

by setting ¥(g1,92) = g1g2. We claim that this is an isomorphism, thus
proving the theorem. But ¢ is a homomorphism, because of part (d);
1 is onto, because of part (b); and 1 is one-to-one, because of part (c)-
(You will check these three assertions in Exercise 28.4.) 0

&> Quick Exercise. Show that Zjg is isomorphic to Zz X Zs, by us-
ing the two subgroups (5) and (2), and the theorem. Hint: Examine |

Example 28.3. <
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Example 28.4

We work in the additive group of Gaussian integers Z[i]. Consider
the infinite cyclic subgroups G; = (1) and G; = (i). Given
an arbitrary Gaussian integer a + bi, clearly a € G; and bi €
G2, and so part (b) above is satisfied. And because a non-zero
number cannot be both real and imaginary, part (¢) is satisfied
as well. Part (d) holds because the group is abelian. Thus, Z[i]
is isomorphic as a group to G; X G2, and hence to Z x Z. (Of
course, these are by no means isomorphic as rings.)

We call this the Internal Characterization Theorem because it tells
us whether a given group is isomorphic to a direct product, by looking
only inside the group.

Chapter Summary

In this chapter we introduced the notion of group isomorphism, meeting
numerous examples along the way. In addition, we characterized cyclic
groups as essentially Z and Z,,. We also used the notion of group
isomorphism to characterize direct products of groups.

Warm-up Exercises

a. Give examples of the following group homomorphisms:

(a) A one-to-one homomorphism that is not an isomorphism.
(b) An onto homomorphism that is not an isomorphism.

(¢) A homomorphism that is neither one-to-one nor onto.

b. Suppose that ¢ is a group homomorphism with domain Zg. What
are the possible orders of ¢(1)? What about ¢(4)?

c. Suppose that g has infinite order and ¢ is a group homomorphism.
Need ¢(g) have infinite order? What if ¢ is an isomorphism?

d. Explain why none of the following groups are isomorphic (even
though all have eight elements):

Zg, Zy X Lo, Dy.
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. Explain why Z[{] and Z are not isomorphic as additive groups.

That is, why isn’t Z[i] cyclic?

Can a group be isomorphic to a proper subgroup of itself? What
if the group is finite?

Let R be a finite ring, and consider its additive group and its
group of units. Could these two groups be isomorphic?

Exercises

. Consider the set of complex numbers {1,—1,i,—i}. Note this is

a group under multiplication. Show that this group is isomorphic
to Z4.

. Use the Internal Characterization Theorem 28.3 to show that Zaq;

is isomorphic to Z1; X Z3;. Then specify an explicit isomorphism.

. Suppose that G, H, and K are groups. Prove that the direct

products
(GxH)yxK and Gx(HxK)

are isomorphic. For this reason, we usually omit the parentheses
when describing such groups.

. Complete the proof the Internal Characterization Theorem 28.3; 3%
that is, show that the function ¢ defined from G; x G2 to G is |

in fact an isomorphism.

. If G is a group and g is some fixed element of G, show that :f |
the map ¢, defined by pg(z) = gzg™', for all z € G, is an }

isomorphism from G onto itself.

Here you’ll prove parts a and b of Theorem 28.1. Let ¢ : G — H
be a group homomorphism between the groups G and H, where |

1¢ and 1y are their respective identities.

(a) Prove that ¢(1g) = 14.
(b) For g € G, prove that (¢(9))™" = ¢(g7").

Explain why Q and Z are not isomorphic as additive groups. That

is, why isn’t Q a cyclic group?
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8. For group G, consider the map ¢ : G — G given by p(g) = g~ 1.

Show ¢ is an isomorphism if and only if G is abelian.

9. Let a,b,c € R, not all zero.

10.

11.

12.

(a) Show that
P={(z,y,2) €ER3:azx+by+cz =0}

is a subgroup of R3.
(b) Show that

L = {(ak,bk,ck) € R®: k € R}

is a subgroup of R3.

(c) Use the Internal Characterization Theorem to show that R3
is isomorphic to P x L. What does this mean geometrically?

By way of analogy with Example 28.4, show that the additive
group Z[v/2] is isomorphic to a direct product of two non-trivial
groups.

Use the Internal Characterization Theorem to show that U(Zi5)
is isomorphic to a direct product of two non-trivial groups.

Let n be a positive integer, and consider the group G,, described
in Exercise 24.15. We will relabel these elements in such a way
that we can consider G,, as the list of objects

Gn={I,R,R?---,R"} F,FR FR?, ... FR" '},

where I is the label we assign to the identity, and the elements
(1, [k]) are labeled as R¥, and the elements (—1,[k]) are labeled
as FRF.

(a) Show that the elements of G, under this labeling do satisfy
the identities

RF=FR" Y F?=1, and R" = 1.

In fact, it is possible to prove that our list above of the
elements R¥, FRF, together with these identities, abstractly
characterizes the group G,. We will not rigorously prove
this here, however.
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(b) Using the abstract characterization of G, described above,
prove that the dihedral group D, as discussed in Chapter 22,
is isomorphic to G,. (You need only establish a one-to-one
correspondence that preserves the identities.) Henceforth,
when we refer to the dihedral groups Dy, we will often use
the notation of this exercise.

In the group D3, let Hy = {I,F} and Hy = {I,R, R?}. (Note
that we are using the notation of the previous exercise.) Deter-
mine which of the four criteria of the Internal Characterization
Theorem are satisfied by these two subgroups.

In this exercise we introduce a more efficient and compact nota-
tion for the elements of the group Qg of quaternions, discussed
as Example 24.15. We will relabel these elements in such a way
that we can consider Qg as the list of objects

{17 _177;7 _ivja _ja ka _k}7
where 1 is the label we assign to the identity matrix, ¢ is the la-

bel assigned to matrix , j is the label assigned to matrix

01
—-10
¢ . |; further-
10 0—1¢
more, we interpret —1,—i,—7j, —k as the negatives of the cor-
responding matrices. Under this labeling, verify that the group
elements satisfy the following rules: The element 1 is the identity,
and multiplication by —1 (in either order) changes the sign of the
element. Furthermore, i2 = j2 = k? = —1, ij = k,jk = i, and
ki = 4, while ji = —k,kj = —i, and ik = —j. We will henceforth
use the notation of this exercise when we have occasion to use

(0 ! ), and k is the label assigned to matrix

the group of quaternions.

Chapter 29

Permutations and Cayley’s Theorem

In Chapters 22 and 23 we used the idea that a symmetry of a geometric
object like a triangle or tetrahedron must take vertices to vertices.
For example, specifying where the vertices of a tetrahedron are sent
completely determines the symmetry function. We used this reasoning
to determine a complete list of symmetries of the tetrahedron. We
called a specification of how the vertices are moved a permutation of the
vertices. We will now consider the notion of permutations in an abstract
setting. This leads to an important theorem from group theory, which
says that all finite groups can be thought of as groups of permutations.

29.1 Permutations

Consider the list 1,2,3,4,---,n of the first n positive integers. We
wish to rearrange or permute this list. To do this, we must tell our-
selves which slot the integer 1 should be placed in, which slot the in-
teger 2 should be placed in, and so forth. What this means is that a
permutation of this list amounts to a function

a:{17273a"'7n} - {1,2,3,"',“}

that is one-to-one and onto. It is one-to-one, because no two integers
can be placed in the same slot. It is onto, because each slot must be
filled. Formally then, a permutation of the set {1,2,3,---,n} is a
one-to-one and onto function from this set to itself.

> Quick Exercise. It is actually true that if a function from a finite
set to itself is one-to-one, it is automatically onto. Can you explain
why this is true? Give an example to show that this is false in the
infinite case. «
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As we did in Chapters 22 and 23, we will denote such functions by
a 2 x n array: The top row tells the names of the elements of the set
{1,2,---,n}, and the bottom row records the slots to which they are

sent. Thus,
12345
32541

is a permutation of the set {1,2,3,4,5}, which does not move 4 or 2,
sends 1 to 3, 3 to 5, and 5 to 1. We could use functional notation to
express the above facts. For instance, sending 1 to 3 could be written

as
12345
<32541>(1)—3'

We denote the set of all permutations on the set {1,2,---n} by Sp.
This set has n! elements because for 1 there are n slots available, for 2
there are n — 1 slots available (because 1 has taken one of them), for 3
there are n — 2 slots available, and so on. This gives us

n(n—1)(n—2)---(3)(2)(1) = n!

possibilities altogether.

29.2 The Symmetric Groups

We claim that S, is a group, under the operation functional composi-
tion. We denote that operation by o, or by juxtaposition. Note first
that the composition of two one-to-one, onto functions remains one-to-
one and onto.

> Quick Exercise. Prove this. <

This means that the operation is well defined. As we’ve observed
before, functional composition is an associative operation. It thus re-
mains to show that S,, has an identity element, and that every element
has an inverse.

But consider the identity function :, where (k) = k, for k =
1,2,--.,n. We would write this as

_(123...n
“l123...0 )
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using our matrix notation. This clearly serves as the identity element;
if o is any element of S, and 1 < k < n, then

voalk) = dlak)) = alk),

and so toa = q.
> Quick Exercise. Write down the corresponding proof for coe¢. <

What about inverses? If a € S, because it is a one-to-one onto

function, it possesses an inverse function o !:

o Y(n) = m is true exactly if a(m) = n.

This is exactly the function that composes with a to give the identity
function ¢. Informally, the existence of a~! means that we can ‘un-do’
any rearrangement of our list.

We call the group S,, the symmetric group on n. We will also refer
to such a group (or one of its subgroups) as a group of permutations.
Notice that although for convenience’s sake we think of S), as permu-
tations of the set {1,2,---,n}, it really doesn’t matter what finite set
of objects we're permuting (as long as they are distinguishable).

Let’s look at some particular computations in Sy:

Example 29.1

12345

What is the inverse of the permutation ( 39541

12345
52143/

> Quick Exercise. Verify the result in Example 29.1. <

) in 857 It is

Example 29.2
Consider the permutations
1234 1234
@ (3214) and = (4321)'

What is the permutation « o 37 Because we read functional
composition from right to left, we have

aoB(1) = a(f(1)) = a(4) = 4
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By doing the three other necessary computations, we obtain that
1234
aof= (4 12 3> '

> Quick Exercise. Verify the calculation for cvo 8 given in Example
29.2. Then compute 3o «,a?, and 7t «

One of your results from the previous Quick Exercise drives home a
point we had already encountered in Chapters 22 and 23. The sym-
metric groups are highly non-abelian.

> Quick Exercise. Choose two elements at random from Sg and
compute their products in both orders. It is highly likely that your
answers will not be the same. «

Our work in Chapters 22 and 23 (together with our definition of
isomorphism in the last chapter) tells us that Ds, the group of symme-
tries of the equilateral triangle, is isomorphic to the abstract symmetric
group S3. This is the mathematically precise meaning of the correspon-
dence we set up in Chapter 22 between symmetries, and permutations
of vertices. Similarly, the group of symmetries of the cube is isomor-
phic to Sy because we viewed symmetries of the cube as equivalent
to permuting the diagonals. Furthermore, the group of symmetries of
the cube is isomorphic to a subgroup of Sg. (We got only a subgroup
because not all permutations of the eight vertices of the cube can be
accomplished by a rigid motion.)

A nice way to view this situation is this: We have represented these
symmetry groups as abstract groups of permutations. While the sym-

metries, thought of geometrically, are quite concrete, they are rather : |

difficult to compute with (especially if we don’t have a cube or tetrahe-
dron around to handle!). The permutation groups, while more abstract,
provide us with a really easy way to compute explicitly. An important
theme in group theory has been to represent groups (by various means),
in such a way that computation is easier. One way is by means of per-
mutations. Another is by using matrix multiplication. And in fact, we
can now view what we did in Chapter 22 as representing D3 in two
different ways: permutations (of the vertices), and matrix multiplica-
tion (where the matrices accomplished flips and rotations). We also
represented the symmetry groups of the tetrahedron and cube with

permutations, while leaving to the ambitious exercise solver the task of

using 3 x 3 matrices for representing these groups. (See Exercise 23.7.)
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29.3 Cayley’s Theorem

It is a remarkable fact that all finite groups can be realized concretely
as groups of permutations and as groups of matrices. In the remainder
of this chapter we will prove the first of these assertions. We avoid the
second because it requires the use of matrices of large size.

We begin with a simple example, the cyclic group {1, a, a?} of order
three. (Of course, this is isomorphic to the group Z3, but we will find
it more convenient in this discussion to use multiplicative notation.)
We wish to show that this group is a group of permutations of some
set, that is, we claim it is a subgroup of S, for some n. In fact, we
will represent the elements of this group as permutations of the set
{1,a,a?} itself! This can be rather confusing at times because we will
be thinking of the elements of {1,a,a?} as elements of the cyclic group,
on the one hand, and as elements of the set to be permuted, on the
other. Consider the function

va : {1,a,a%} = {1,a,a?}

defined by ¢, (z) = az. That is, ¢, merely multiplies on the left by a.
This means that

¢a(l) =a, ¢a(a)=0a?, wu(a®)=0a’=1.
We could thus denote this function by

1 a a®
a a? )

In a similar fashion we can define 1 and ¢,2, which can be represented

1a a? nd 1 aa?
1a a? a a’la

Notice that the three functions @1, ¢,, @42 are all one-to-one and onto
functions defined on the three-element set {1,a,a2}. Of course, if we
re-label this set as {1,2,3}, we can then identify these three functions
as permutations of {1,2; 3}, that is, as elements of S3. Explicitly, if we
re-label 1 as 1, a as 2, and a? as 3, then

(123 _(r23\ 4., _ (123
P1=1193) ¥Ya= 1231 )P T {312
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We have demonstrated a means of associating with each element
of the group {1,a,a?} an element of S3. More generally, we wish to
associate each element of a group that has n elements with an element
of S,, in such a way that the group operation is preserved.

> Quick Exercise. Multiply two elements of the group
{1,a,a%}.

Does the result correspond to the composition of the corresponding
permutations of the three-element set {1,a,a?}? <

With this example behind us, we are now ready to prove the general
theorem:

Theorem 29.1 Cayley’s Theorem Suppose that G is a finite
group with n elements. Then G is isomorphic to a subgroup of S,.

The idea of the proof that follows is actually very simple, but it is
easy to get lost in the forest of details! This proof is merely a more
general version of the argument just given for the cyclic group {1, a, a?}.

Proof: Our goal is to assign to each element of the group G a
permutation belonging to S,. What we will actually do is assign to
each group element a permutation of the set G itself. We will call the
group of such permutations S¢. But clearly S,, and S¢ are isomorphic
groups, and so this will be enough.

Because G has finitely many elements, we label its elements as

G = {917927"' agn}

In other words, we have listed the elements of G in some fixed order.
For each integer i, we define a function

;1 G- G

by letting ©;(gx) = gigr- That is, ¢; merely multiplies each element of
G on the left by g;, the ith element of G.

We will show that ; is a permutation of the elements of G. That is,
we will show that ¢; is a one-to-one and onto function.

@; is one-to-one: Suppose that ¢;(gx) = ¢i(g;). This means that
9i9x = 9ig;- But if we multiply this equation on the left by g;- 1 we see
that g, = g;. Thus, ¢; is one-to-one.
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©; 18 onto: Actually, because the set in question (namely, G) is finite,
and the function is one-to-one, we could conclude immediately that the
function is onto. However, for clarity we shall verify directly that ¢; is
onto. For that purpose, choose an arbitrary integer j, where 1 < j <n.
The equation g;x = g; has a unique solution in G. Thus, there must
be a k so that g;gx = g;. But this evidently means that ;(gx) = g;,
and so g; is onto.

Let’s denote by ® the assignment g; — ;. That is, ®(g;) = ¢;.
Because ¢; is one-to-one and onto (and hence, a permutation of G), we
have that @ is a function from G to S¢. We claim now that this function
translates the multiplication in G into the functional composition in Sg;
that is, we claim that ® is a homomorphism.

® is a homomorphism: We must show that

®(gigr) = ©(g:) o P(gr)-

Note that both ®(g;gx) and ®(g;) o ®(gx) are functions defined on the
set G. To show that two functions are equal, we should check that
they have the same value at a generic element of their domain. So pick
gm € G and compute:

©(gi9k)(gm) = (9i9k)9m = 9i(Grgm) = 9i(Px(gm)) =

0i(0r(gm)) = (2(gi) o ®{gx))(gm),

which is what we required.

Finally, we require that ® is one-to-one: So suppose that ®(g;) =
®(gy). Because ®(g;) and ®(gx) are functions, they are equal if they
do the same thing to every element of their domain G. In particular,
then, they must give the same element when applied to 1 € G. But
then g; - 1 =g - 1, or g; = gx. Thus, ® is one-to-one.

We have thus proved that G is isomorphic to the subgroup ®(G) of
the group of permutations Sg. Because Sg is isomorphic to Sy, this
completes the proof. a

Cayley’s Theorem is usually not very practical for gaining insight
into a particular group. For example, if we were to apply it to a group
with 8 elements, we would represent it as a subgroup of Sg, which has
8! = 40, 320 elements! Furthermore, if the original group is abelian, we
have then represented it as a subgroup of a highly non-abelian group.
Nonetheless, the theoretical importance of Cayley’s Theorem should
not be minimized.
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We should perhaps remark that exactly the same proof as we gave
above for Cayley’s Theorem can be used for an infinite group. This
shows that any group whatsoever can be represented as a subgroup of
a group of permutations, only this time as permutations of an infinite

set! In general, we will avoid groups of permutations of infinite sets in
this book.

Historical Remarks

Thus, in principle, to study finite groups we need only study groups
of permutations. In the 19th century most group theorists did exactly
that. Although the eminent British mathematician Arthur Cayley had
enunciated an abstract definition of group in 1853, it was a long time
before mathematicians felt comfortable working in an abstract and ax-
iomatic context. The study of finite groups had grown out of work
by Lagrange (in the late 18th century) and Galois (in the early 19th
century) in studying the roots of polynomial equations. Their insight
into such roots was enlarged by thinking about permuting them; we
will pick up this theme in Chapter 47. Afterward, the French mathe-
matician Cauchy studied permutation groups in their own right, and he
introduced our 2 X n matrix notation for permutations. Consequently,
even when group theory had grown beyond the particular problems of
Lagrange and Galois, the thought that it was still about permutations
remained.

Chapter Summary

In this chapter we discussed the symmetric group S,, which consists of
all permutations of a set with n elements. We proved Cagyley’s Theo-
rem, which asserts that all finite groups are isomorphic to a group of
permutations.

Warm-up Exercises

a. Suppose that « is the element of S7 specified by
1234567
3724165 )"

What is a(5)7 What is «(4)? What is the inverse of a?
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. Suppose in addition that 3 is the element of S7 specified by

1234567
4631572/

5 Ba, af, Ba’l, afa

Calculate

. Using the elements o and § from the previous exercises, calculate

(aB)~! twice, once by using your computation of a3 in Exercise
b, and once by computing a~! and 7!, and then composing
them (in the proper order!).

. How many elements are there in S47 S57 Sg?

. When someone says that every finite group is a group of permu-

tations, what does that mean?

. Explain how the group of symmetries of the cube can be described

as isomorphic to a subgroup of Sia, Sg, Sg, and Sy, depending
on which set of objects associated with the cube you consider
permuted.

. Every finite abelian group is isomorphic to a subgroup of a non-

abelian group. Why?

Exercises

. What are the orders of the permutations o, 3, 32, o, a8, a1,

and afa given above in Exercises a and b?

. Suppose that m and n are positive integers, and m < n. Define

I:8S,,— S, as follows: Given o € S, we let I(a)(k) = a(k),
if k < m, and I{a)(k) =k, if n > k > m. Show that I is a one-
to-one homomorphism, which is not onto. Note: You first must
check that I(a) € S,. We can paraphrase the contents of this
exercise by asserting that (up to isomorphism) Sy, is a subgroup
of S,. '

. Following the proof of Cayley’s Theorem 29.1, determine explic-

itly which permutations of Sy each of the elements of the group
{1,-1,4,—i} correspond to.
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. Repeat Exercise 3 for the group of quaternions.

Repeat Exercise 3 for S3. Note that this gives us two representa-
tions of S5 as a group of permutations: the original definition as a
permutation of three elements, and the new one as a permutation
of six elements!

. Let n be a positive integer and let k be a fixed integer, 1 < k < n.

Let
Gy ={a € S, :alk) =k}

Prove that G} is a subgroup of S,. It is called a stabilizer
subgroup of S,,. How many elements belong to G?

. Generalize Exercise 6: Let K be any subset of {1,2,---,n}. Let

Gxg ={a€ Sy:alk) € K,for all k € K}.

Prove that Gk is a subgroup of S,. How many elements belong
to Gg?

Chapter 30

More About Permutations

In Chapter 29 we introduced the symmetric groups S,. These groups
are of theoretical importance because every finite group is isomorphic to
a subgroup of such a group, as Cayley’s Theorem 29.1 shows. They also
provide us with many examples of non-abelian groups. In this chapter
we inquire a bit more into permutations and introduce an efficient and
illuminating notation for them.

We first make a few notational remarks about permutation groups.

Note that if m < n, we can think of S, as a subgroup of S, because
any permutation of {1,2,---,m} can be thought of as a permutation
of the larger set {1,2,---,n}, which leaves the elements m + 1,m +
2,---,n fixed. Technically speaking, we should use the language of
isomorphism to describe this situation, but we will be content to be a
little sloppy here and identify S, as a subgroup of S,. (See Exercise
29.2.) Consequently, in what follows we will not bother to be too
specific about which permutation group a given permutation belongs
to.

Recall that the group operation in S, is functional composition, since
the elements of S, are actually functions from the set {1,2,...,n} to
itself. However, we will for the most part in this (and future chapters)
speak less formally as group theorists about this operation; since it is
written multiplicatively, we will tend to speak of the product of two
permutations.

30.1 Cycles

Consider first the permutation

(1234
*=\2341/"
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It permutes the elements 1, 2, 3, and 4 cyclically, as the following
picture suggests:

I\,
\4/

In general a permutation a € S, is a cycle of length k, if there
exist integers ap, a9, - -, ax so that

Oé(al) = az, O((CLQ) =4asg, -, a(ak—l) = Ok, a(a’k) = a,

and « leaves fixed the remaining n — k elements in its domain. We will
denote this cycle by the notation

(a1az2a3 - - - a).

Example 30.1

Consider the cycle (125). It is short-hand for the permutation
12345
25341)/°
Notice that we could just as well have represented this cycle by
(251) or (512). It is clear that (125) represents an element in S,

at least. But in a particular situation, we might use the same
notation to denote the corresponding element

1234567
2534167

in S7. Notice that the inverse permutation cycles elements in the
opposite direction, which in this case is (152).

> Quick Exercise. Express the cycle (3251) in our earlier nota-
tion. Write this cycle three other ways in cycle notation. What is its
inverse? <

Of course, not all permutations are cycles: Consider the permutation

g (12345
~\25431)°
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While it behaves as a cycle on the set {1, 2,5}, it also behaves cyclically
on the set {3,4}. What this really means is that we can factor 38 as a
composition of two cycles:

8 = (125)(34) = (34)(125).

> Quick Exercise. Convince yourself that 3 really equals the com-
position of the two-cycle permutations (125) and (34), composed in
either order. What is the inverse of 37 <

30.2 Cycle Factorization of Permutations

This suggests that perhaps we could factor any permutation into a
product of cycles. To describe this, we need some terminology. The
support of a permutation « is the set of all integers & so that a(k) # k.
Speaking more colloquially, the support of a permutation is the set of
elements in its domain that it moves. If a(k) = k, then k is not in the
support of a; we say that o fixes k.

Example 30.2

The permutation (125)(34) has support {1,2,3,4,5}. The per-
mutation (3251) has support {1,2,3,5}; it leaves 4 fixed, and so
4 does not belong to the support of this permutation.

Let’s make a technical observation about the support of a permu-
tation, which we will repeatedly find of use in the arguments which
follow.

Lemma 30.1 Suppose that « is a permutation, and k is in the support
of a. Then a(k) is in the support of a too.

Proof:  Because k is in the support of o, a(k) # k. Now apply the
function o to these two distinct integers. Because a is a one-to-one
function, we must get distinct integers:

a(a(k)) # alk).
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But this means exactly that a(k) is in the support of a. O

Two permutations are disjoint if their supports contain no element
in common. In the previous Quick Exercise it was the disjointness
of (125) and (34) that allowed them to commute. Let’s prove this in
general:

Theorem 30.2 Suppose that o and B are disjoint permutations. Then
aff = Ba.

Proof:  Suppose that a and 3 are disjoint. We must show that the
two functions a8 and B are the same: So we show they do the same
thing to typical elements of their domain.

If we choose an integer k belonging to neither the support of « nor
the support of 3, then clearly

af(k) = alk) = k = B(k) = Bo(k).

Any other integer belongs to the support of exactly one of a and (3,
because they are disjoint. Without loss of generality, let’s suppose that
integer k belongs to the support of & (but not that of 5). Now by the
previous lemma, a(k) also belongs to the support of «, and hence not
to that of 3. Thus, we have

ap(k) = a(k)
and
Ba(k) = a(k).
Hence, the two functions a8 and (o are the same, as claimed. |

We’re now ready to state and prove the factorization theorem for
permutations. Note that this theorem is very similar in flavor to the
Fundamental Theorem of Arithmetic 2.8 and 2.9: It asserts that every
permutation can be factored uniquely into simpler pieces (cycles), just
as the Fundamental Theorem of Arithmetic asserts that integers can
be factored uniquely into simpler pieces (primes).

Theorem 30.3 Cycle Factorization Theorem for Permuta-
tions Every non-identity permutation is either a cycle or can be
uniquely factored (up to order) as a product of pairwise disjoint cycles.
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Proof: We first prove the existence of the required factorization by
using induction on the size of the support of the permutation. Note
first that if the size of the support is zero, the permutation moves no
element, and is consequently the identity permutation. No permutation
can have exactly one element in its support.

> Quick Exercise. Why can no permutation have exactly one ele-
ment in its support? <

Thus, the base case for the induction is support size two. Suppose
that the support of permutation o has two elements. If k is an element
of this support, by Lemma 30.1 (k) must be the other element in the
support. But a(k) # o?(k), and so the only choice is that a?(k) = k.
That is, @ must be a cycle of length two.

Now suppose that « is a permutation with n elements in its support.
Our induction hypothesis says that all non-identity permutations with
support size less than n are either cycles, or products of disjoint cycles.
Pick a1, an element of the support of . Then

ai, as = afay), ag = a(ag), -+

are all elements of the support. Because the support is finite, sooner or
later we will have a duplication in this list. Suppose the first duplication
in the list occurs at axy; = a(ax). Then because a is one-to-one, the
only duplication possible is if a(ax) = a1 (any other duplication would
give different elements with the same « value). Now consider the cycle
B = (a1azas3 - - ag). If k = n, then a = 3, which is a cycle, as required.
Otherwise, consider the element 3~ 1. This function equals o on any
integer other than ay,as, -, ak, but does not move the a;’s. Thus, the
support of 31« is disjoint from {ai, as, - -, ax} and has n—k elements,
which is fewer than n. Consequently, by the induction hypothesis, we
can factor 3 'a as a product of disjoint cycles. Then « is the product
of these cycles, times 8. This completes the proof, by the Principle of
Mathematical Induction.

It remains to prove that the factorization we have obtained is unique.
This is a similar induction proof, left as Exercise 30.2. O

Henceforth, when we compute with permutations, we will invariably
use the disjoint cycle representation guaranteed by this theorem.

Example 30.3
Suppose that
o = (154)(23)(689) and B = (14895)(27)
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are two permutations, written as products of disjoint cycles. Let’s
compute the product 8. This is an entirely straightforward mat-
ter, if we remember that the operation here is functional composi-
tion, and so we operate from right to left. Start with any element
of the domain (say, 1):

af(l) =a(d) =1.
Thus, the product fixes 1. Let’s try 2:
afB(2) =a(7) =T,
af(7) = a(2) = 3;
af(3) = a(3) = 2.
Thus, (273) is one of the cycle factors of the product af. We

leave it to you to complete the computation to obtain:

af = (273)(49)(68).

> Quick Exercise. Complete this computation. Then com-
pute Bo and F%a~! in the same way. <

Once a permutation has been factored as a product of disjoint cycles,
we call the set of elements moved by each of its constituent cycle factors
its orbits. Thus, the permutation

(157)(2389)

has orbits {1,5,7} and {2,3,8,9}. In addition, it has the trivial orbits
{4} and {6}. Thus, every element of the domain of the permutation
belongs to exactly one orbit, and the other elements of the orbit it
belongs to are exactly the locations we can move the element to, by
repeatedly applying the permutation.

> Quick Exercise. Give examples in S7 of an element with one
orbit of seven elements and also an element with 3 orbits, one orbit of
4 elements, one orbit of 2 elements, and a trivial orbit. <

30.3 Orders of Permutations

As an application of the Factorization Theorem, let’s compute the or-
ders of cycles, and then of arbitrary permutations. For example, the
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cycle (1234) has order 4:
(1234), (1234)% = (13)(24),

(1234)% = (1234)(13)(24) = (1432), (1234)* =..

In general this is true. A cycle of length k£ has order k. For if o is
such an element, obviously we must apply it to itself exactly &k times
to bring any element of its support back around the cycle to itself.
Now suppose that « is an arbitrary permutation. By our Factoriza-
tion Theorem 30.3, we can factor it as a product of k disjoint cycles

a=B162- - Bk

Because these cycles are disjoint (and so commute with one another),
it is easy to compute the compositions of o with itself:

™ = (B)™(B)™ - (Br)™-

To make such a product the identity, we must guarantee that simulta-
neously all the terms (3;)™ are the identity (for otherwise, the element
a™ would not be the identity on elements in the orbit corresponding
to ;). To accomplish this, we need m to be a common multiple of the
orders of all the 3;’s. The least common multiple will do the job. In
fact, the least common multiple of the orders of all the 3;’s is the order
of a. (See Exercise 30.7.)

Example 30.4

What is the order of the element (1234)(567)(89)? The least
common multiple of 4, 3, and 2 is 12, so this must be the order
of this permutation.

Chapter Summary

In this chapter we provéd that every permutation is a cycle or can be
factored uniquely as a product of disjoint cycles. This makes it much
easier notationally and computationally to deal with permutations.
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Warm-up Exercises

Compute the following products (you should end up with a dis-
joint cycle representation):

(134)(2457),  (12)(13)(14), (1567)%(213)7".

Factor the following permutation as a product of disjoint cycles:
123456789
591437862/

What is the order of this permutation?

. Give a permutation with three non-trivial orbits, one with 3 el-

ements and two with 4 elements each. What is the order of the
permutation you have constructed?

. Two non-identity permutations with disjoint supports necessarily

commute, but the converse of this statement is false; give an
example. Hint: All groups have non-trivial abelian subgroups!

Does the set of 2-cycles in Sy (together with the identity) form a
subgroup? What about 3-cycles, or 4-cycles?

. In what ways are the Factorization Theorem for Permutations

30.3 and the Fundamental Theorem of Arithmetic 2.8 and 2.9
similar? In what ways are they different? (For the latter, consider
whether cycles are irreducible.)

Exercises

Compute explicitly the cyclic subgroups of S7 generated by the
following permutations:

(357), (14)(256), (123)(456).

. Prove the uniqueness part of Factorization Theorem 30.3: The

factorization of a permutation into disjoint cycles is unique, up
to order.

10.

.Ifa €S, is acycle is a
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2 a cycle also? Give an example when

this is true and an example when this is false. Now characterize
cycles where this is true and cycles where this is false.

Give the order of each of the following permutations: (123)(456),
(123)(4567), (123)(45).

. Determine all possible orders of a product of two 3-cycles.

Repeat Exercise 5 for the product of two 4-cycles.

Suppose the permutation o = (3102 - - - B, the product of disjoint
cycles where the order of cycle 8; is m;. Show that the order of
« is the least common multiple of the m;.

(a) There are four distinct disjoint cycle structures for non-
identity elements of S4. Name them.

(b) The group of symmetries of the cube is isomorphic to Sy,
since it can be viewed as the group of permutations of the
diagonals of the cube. Describe what the four disjoint cycle
structures of part a mean geometrically.

Let n be a positive integer, and k, j fixed integers with 1 <k, 7 <
n. Let G and G; be the stabilizer subgroups of S, considered in
Exercise 29.6. Given « € G, define

®: Gy — Gj

by setting ®(«) = (kj)a(kj) (where here (kj) is a 2-cycle). Prove
that @ is a group isomorphism. (Note that an important verifi-
cation is to check that ®(a) € G;.)

We generalize Exercise 9. Let K and J be subsets of N =
{1,2,3,---,n}, with the same number of elements. Let Gx and
(G5 be the stabilizer subgroups of 5,,, discussed in Exercise 29.7.
Since K and J have the same number of elements, there exists
a one-to-one and onto function 3 : K — J, and similarly there
exists a one-to-one and onto function v : N\K — N\J.

(a) Define a function p by setting u(m) = G(m) if m € K, and
u(m) =~(m) if m € N\K. Argue that p € S,.

(b) Given a € Gk, define ® : Gx — G; by setting ®(a) =
pap~ . Prove that this is a group isomorphism.



Chapter 31

Cosets and Lagrange’s Theorem

In Chapter 27 we introduced the idea of group homomorphism. Let’s re-
call the corresponding development that we followed, after introducing
the idea of ring homomorphism. We obtained the Fundamental Iso-
morphism Theorem for Rings 19.1, which asserts that knowing about
homomorphisms is equivalent to knowing about ideals: Each homo-
morphism gives rise to an ideal (its kernel) and each ideal in turn gives
rise to a homomorphism (of which it is the kernel) to a ring of cosets.
We would like to emulate this powerful and useful theory in the theory
of groups, so that we can better understand group homomorphisms.
This will be the goal of the next three chapters.

31.1 Cosets

We begin this development by considering the notion of coset in the
group context. In rings, we started with an ideal and formed its cosets.
In groups, we begin with a subgroup and form its cosets.

Let G be a group (written multiplicatively), and suppose that H is
a subgroup. For each g € (G, we form the set

Hg={hg:he€ H}.

We call such sets right cosets of H in G. We use the term right coset,
because we are multiplying by g on the right. In a non-abelian group, it
might make a difference whether we consider right cosets or left cosets.
(We'll come back to this topic in the next chapter.) Note that if G is
an additive group, we would write such a coset as

H+g={h+g:he H}.

This is exactly the definition of coset we used, in case G were a ring,
and H an ideal.
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Let’s look at some examples, before we go any further:
Example 31.1

Consider the additive group Z, and its cyclic subgroup (4). Then
the sets
(4)+0,(4) +1,(4) +2,{4) +3

are the distinct (right) cosets of (4) in Z, just as in the ring
context.

Of course, we can generate a long list of examples by referring back
to ring theory, by our customary means: Forget the multiplication, and
look at the additive group. But let’s consider a purely group-theoretic
example.

Example 31.2

Consider the subgroup H = {1, (12)} of the symmetric group Ss.
We then obtain three distinct right cosets, as follows:

He=H(12) = {1,(12)} = H,
H(123) = H(23) = {(123), (23)},

and
H(132) = H(13) = {(132),(13)}.

The subgroup H is obviously a coset of itself; we obtained this
by choosing the two elements in H itself. The other two cosets
also have two elements each.

> Quick Exercise. Verify that the cosets given above do in-
deed consist of the elements listed. <

Example 31.3

Let’s compute the right cosets of the subgroup
K = {1,(123), (132)}
in the same group S3. This time we obtain
K= K(123) = K(132) = {1, (123), (132)}

and
K(12) = K(13) = K(23) = {(12), (13), (23)}.
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Once again K is a coset of itself and there is one other coset,
which also has three elements.

> Quick Exercise. Verify that the cosets listed are correct. <

Example 31.4
Consider the group
U(Zn) = {1,2,4,5,8,10,11, 13,16, 17, 19, 20}.

Let’s compute the right cosets of the subgroup H = {1,4,16}:

We obtain
H1=H4=H16 = {1,4,16},
H2 = H8 = H11 = {2,8,11},
H10 = H13 = H19 = {10,13,19},
and

H5= H20 = H17 = {5,20,17}.

> Quick Exercise. Verify that the cosets listed are correct. <

31.2 Lagrange’s Theorem

The examples from finite group theory that we have looked at are very
suggestive. In each case, all the cosets of a given subgroup are the
same size and this allows us to decompose the group into finitely many
pairwise disjoint pieces of the same size. This observation, when made
Precise, is a very valuable tool for counting in finite groups; it is called
Lagrange’s Theorem. Before obtaining Lagrange’s Theorem, we need
to make precise the observations we’ve made about cosets. We here
prove the Coset Theorem for groups, which is directly analogous to the
Coset Theorem 18.1 for rings.

Theorem 31.1 The Coset Theorem Let H be a subgroup of
a group G, and a,b € G. Then

a. If Hao C Hb, then Ha = Hb.

M
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b. If HoNn Hb# 0, then Ha = Hb.
c. Ha = Hb if and only if ab™! € H.

d. There exists a one-to-one and onto function between any two right
cosets Ha and Hb. Thus, if H has finitely many elements, every
right coset has that same number of elements.

Proof:  (a): Suppose that H is a subgroup of the group G, and a
and b are elements of the group for which Ha C Hb. Then

a=1la€ Ha C Hb,

and so there exists h € H such that a = hb. But then b = h~'a € Ha.
Now, if k € H, kb = kh™'a € Ha, and so Hb C Ha. That is, Ha = Hb.

(b): Suppose that Ha N Hb # B. Choose c in this intersection. Then
¢ € Ha, and so Hc C Ha. But then by part (a), Hc = Ha. But
similarly, Hc = Hb, and so Ha = Hb.

(c): If Ha = Hb, then a = la € Ha = Hb, and so there exists h € H
such that a = hb. But then ab~! = h € H, as required. Conversely, if
ab=' € H, then a = ab™'b € Hb. But then a € Ha N Hb, and so by
part (b) Ha = Hb.

(d): Define the function ¢ : Ha — Hb by ¢(z) = za=1b. First, note
that if z € Ha, then © = ha, for h € H. But then ¢(z) = p(ha) =
(ha)(a='b) = hb € Hb. Thus, our function is well defined. It is one-to-
one, because if p(z) = ¢(y), then za='b = ya~1bh, and multiplying on
the right by b~ 'a gives us that z = y. It is onto, because if we choose
the arbitrary element hb € Hb, then ¢(ha) = ha(a=tb) = hb.

For finite sets, a one-to-one and onto function establishes that two
sets have the same number of elements. And because H = H1 is itself
a right coset, all right cosets have the same size as H. O

We now introduce some notation, which allows us to state Lagrange’s
Theorem conveniently. If X is a finite set, let |X| be the number of
elements in X. For a group G, we call |G| its order. If G is a finite
group with subgroup H, we let [G : H| denote the number of distinct
cosets of H in G, called the index of H in G.

Example 31.5

Let’s consider the group G = U(Z21) and the subgroup H =
{1,4,16} as in Example 31.4. Then |H|=3. Note that part (d)
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of Theorem 31.1 tells us that |Ha| = 3 for any right coset Ha.
Of course, we computed the right cosets explicitly above and
saw that this is so. Finally, those computations show us that
(G : H] = 4. Note that there are 12 elements in G altogether
(that is, |G| = 12), and we can arrive at this number by counting
4 cosets, each with 3 elements.

> Quick Exercise. Repeat this reasoning for Examples 31.2 and
31.3 above. <

Let’s now state the general theorem reflected in these examples:

Theorem 31.2 Lagrange’s Theorem Let G be a finite group
with subgroup H. Then

G =[G+ H]|H].
In particular, this means that |H| divides |G)|.
Proof:  Suppose that [G : H] = m. Every element of G is in a coset

of H, and part (b) of Theorem 31.1 tells us we can decompose G into
a union of m pairwise disjoint cosets:

G=H U Hay U Hag U --- U Hay 1.

But each of these cosets has |H| elements. Thus, there must be
[G : H]|H| elements in G altogether. O

This is illustrated in the following picture.

H Ha1 Ha2 Ham_1
[ ] L L L]

* L ] * L )

|H| e e e i e
elements

* - [ ) L )

[ * *® *

« |G : H] cosets —

Lagrange did his work well before the notion of group had been de-
fined. But he is honored for the theorem named after him because he
applied a concrete version of this theorem in his arguments regarding
bermutations of the roots of a polynomial equation.
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31.3 Applications of Lagrange’s Theorem

Lagrange’s Theorem is a very important one in the theory of finite
groups. It places great restrictions on the sort of elements and the
sort of subgroups a finite group can have. We make one such inference
immediately:

Corollary 31.3 Let G be a finite group, and g € G. Then the order
of g divides the order of G.

Proof:  Consider the cyclic subgroup {(g) of G generated by g. If
the order of g is n, then this subgroup has n elements. By Lagrange’s
Theorem, n must divide |G|. O

Thus, no group of order 15 could possibly have elements of order 2
or 6.

> Quick Exercise. What are the orders of the elements of the group
of symmetries of the cube? Do all these orders divide 247 (Refer to
Chapter 23.) <

Let’s apply this reasoning in the case where the number of elements
in a group is a prime p. Now the only positive divisors of the prime p
are 1 and p itself. Of course, every group has exactly one element of
order 1: namely, the identity. Thus, every other element of the group
has order p. But this means that in a group with prime order, every
non-identity element has that prime order. And so, the group must be
cyclic! (In fact, it is cyclic where every non-identity element generates
the group.)

Corollary 31.4 Every group of prime order is cyclic.

It is important to note that the converse of Lagrange’s Theorem 31.2
is false. That is, suppose that G is a finite group with n elements, and
m is a divisor of n. We cannot infer that G has a subgroup with exactly
m elements. (This statement is true for abelian groups; we will meet
this as Corollary 35.2.) Here is an example that shows this is true;
we prove that the example works, as another application of Lagrange’s
Theorem 31.2:
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Example 31.6

Consider the subgroup of S4 isomorphic to the symmetric group
of the regular tetrahedron. This group has twelve elements, as
we discovered in Chapter 23; we will denote this group by Ajs.
Using the disjoint cycle notation of Chapter 30, the elements of
this group are

., (123), (132), (124), (142), (134), (143),
(234), (243), (12)(34), (13)(24), (14)(23).

If the converse of Lagrange’s Theorem were true, then A4
would have a subgroup H with six elements. By Lagrange’s The-
orem, this subgroup would have only two distinct cosets. Now
pick any element « of A4 with order 3. Because H has only two
distinct cosets, at least two of the cosets Ht, Ho, and Ho? must
be the same. But then, by Theorem 31.1, « € H.

> Quick Exercise. Why? <

So all the elements of A4 with order 3 belong to the subgroup
H. But there are eight such elements, which must all belong to a
subgroup with six elements. This contradiction implies that A4
has no subgroup with six elements. (This elegant argument is
due to Joseph Gallian.)

We can however prove a very limited converse to Lagrange’s Theo-
rem, which asserts that prime divisors of the order of a finite group do
lead to subgroups of that order. This theorem is the first of several
known as the Sylow theorems. The proof we offer here is a clever one
due to James McKay, based on counting a set in two different ways.

Theorem 31.5 Suppose that p is a prime integer, G is a group, and
p divides |G|. Then G has an element of order p (and so a subgroup of
order p).

Proof: Consider the set S of all lists a1, as,---,ap, where each
a; € G, and ajay---ap = 1. Note that we are allowing for repetitions
in the a;’s, and in fact, we are hoping exactly to find an element (other
than the identity) of S for which all the entries are the same; this will
give us the required element of G with order p.

We are going to count the number of elements in S. For each entry
in the list (until the last one), we can choose any element of the group;
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but the last entry in the list is required to be (a1az - ap_l)_l. This
means that S has exactly |GP~" elements.

We will now recount this set. Given a list a1,as9,- - ,ap, consider
what happens when we cyclicly permute it. That is, we consider lists
of the form ag, @41, qp, @1, " "5 Bk—1- First of all, note that these

permuted lists remain in S.
> Quick Exercise. Why must these permuted lists remain in S?7 <

Second, if at least two of the a;’s are distinct, we obtain a total of p
lists from the original one (counting the original when we perform the
“trivial” cyclic permutation). However, if all of the a;’s are the same,
we do not obtain any new lists. We can thus partition the elements of
the set S into the subsets consisting of a given element and the other
lists resulting from its cyclic permutations. Some of these subsets have
p elements in them, while some have only 1 element in them, depending
on whether any of the elements in one of the lists are distinct, or not.
Those are the only two possibilities.

We now count the elements in S, by counting the number of elements
in each of these subsets, and adding them up. So, let m be the number
of these subsets with 1 element in them, and let n be the number of
these subsets with p elements. This means that a complete count of all
elements in § is given by m -1+ n - p. Thus |GIP~ = m + np.

Notice that m > 0, because there is at least one element (namely, 1)
that when multiplied by itself p times gives 1. We will have completed
the proof of the theorem if we can conclude that m > 1.

We now finally use the hypothesis of the theorem (that p divides |G|)
to conclude that p divides m. Since m > 0, this means that m > p > 1.
This proves the theorem. O

We shall now use Lagrange’s Theorem to determine the number of
distinct groups of small size. Notice first that because all cyclic groups
of a given order are isomorphic, there is essentially only one group of
order 2, 3, 5, etc.: namely, the cyclic groups

227 Z37 an'” .

Let’s take the smallest non-prime integer 4: What sort of groups of
order 4 are there? Of course, there is Z4, the cyclic group of order 4.
Are there any others?

If a group G has order 4 and is not cyclic, then every non-identity
element in the group must be of order 2 (because only 1, 2, and 4 divide
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4). Choose two of these elements, and call them a and b. Each is its
own inverse (that’s what being of order 2 means). So ab has to be the
third non-identity element; but so does ba, and so ab = ba. (Note that
Exercise 24.8 also implies that ab = ba.) Thus, we conjecture that the
multiplication table for G must look like this:

| 1 a b ab

1 1 a b ab
a a 1 ab b
b b ab 1 a
ab ab b a 1

To show this is a group, we need to verify that it satisfies all the group
axioms. The most tedious of these is associativity. But, more easily.
we see that this is just a multiplicative version of the (additive) grou;;
Zo X Zo. This group is often called the Klein Four Group.

> Qﬁuif:k Exercise. Establish an explicit isomorphism between the
multiplicative and the additive representations we have given for the
Klein Four Group. <

So we have concluded that there are essentially only two groups of order
4: the cyclic group and the Klein Four Group.

There’s only one group of order 5 (because 5 is prime). But what
about groups of order 67 If such a group had an element of order 6, it
would be cyclic. So in a non-cyclic group of order 6, all non—ident,ity
elements must be of order 2 or 3. By Theorem 31.5 we know that any
such group must have at least one element a with order 3, and at least
one element b of order 2. Then 1,a,a?,b are all distinct elements of
the group; note that a? # b, because a? also has order 3. We now
claim that if we add the elements ab and a2b to this list, we will have a
complete list of all elements in the group. To show all of these elements
are distinct, let’s examine a couple of typical cases. If we suppose that
ab = 1, then a? = b, which we have already concluded is impossible.
And if ab = a?, then b = a, which is clearly impossible.

l>‘ Quick Exercise. Finish checking that each of these elements is
distinct from each of the others. <

5 We th}ls have that our group consists of the set {1,a,a?,b,ab, a?b}.
ut obviously ba must be an element too. It is easy to check that the
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only possibilities for this element are ab and a’b. If ba = ab, then the
group is abelian, and the element ab is an element of order 6.

> Quick Exercise. Check that ab is a generator in this case, either
by direct calculation or else by using Exercise 26.5. <

So the only remaining case is if ba = a?b. Tt follows from this that
ba? = a%ba = a*b = ab. Is there such a group? Of course! This is
exactly S5 (where (123) could play the role of a, and (12) could play
the role of b).

We have thus concluded that there are essentially only two groups
of order 6: Zg and S3. Note that this makes S3 the non-abelian group
with smallest order.

You will inquire in Exercises 31.8 and 31.9 into the groups of order
8. Tt turns out that there are five of them.

Chapter Summary

In this chapter we defined the notion of right coset for a subgroup of a
group. We determined that the set of right cosets of a subgroup divides
the group into pairwise disjoint pieces, each of the same size. In the
context of finite groups, this leads to the counting theorem known as
Lagrange’s Theorem. Lagrange’s Theorem allows us to prove that the
order of an element divides the order of the group, and that all groups
of prime order are cyclic.

Warm-up Exercises

a. Determine the set of right cosets of the subgroup (6) in Zzg. Check
that Lagrange’s Theorem 31.2 holds in this case.

b. Determine the set of right cosets of the subgroup (7) in U(Zao).
Check that Lagrange’s Theorem holds in this case.

¢. Determine the set of right cosets of the subgroup {1, —1} in the
group of quaternions Qg. Check that Lagrange’s Theorem holds
in this case. (Note that we are here using the shorthand notation
of Exercise 28.14 for the quaternions.)

d. If H is a subgroup of G and two cosets of H share an element,
then what can you say?
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. Is a coset ever a subgroup?
. If a € Hb, how are the two cosets Ha and Hb related?

. Suppose that G is an infinite group, and H is a subgroup of G

with finitely many elements. How many distinct cosets does H
have?

. Suppose that G is an infinite group, and H is a subgroup of G

with finitely many cosets. How many elements does H have?

Exercises

. Determine explicitly the right cosets of the subgroup ((124)) in

the group A4 (see Example 31.6).

. Determine explicitly the right cosets of the subgroup ((124)) in

the whole group Sj.

. Find the left cosets of the subgroup H = {¢,(12)} of S5. How do

these cosets compare with the right cosets of H found in Example
31.27

. How do the left cosets of K compare with the right cosets found

in Example 31.37

. If G is a group of order 8 and G is not cyclic, why must z* = 1

for all x in G?7 What similar statement can you make about a
group of order 277 Generalize this further.

. Let G be a group of order p?, where p is prime. Show that every

proper subgroup of G is cyclic.

. Replicate the argument about the number of groups of order 6 for

groups of order 10. You should conclude that there are essentially
only two such groups; namely, Z,¢ and the dihedral group Ds.

(a) What are the possible orders for a subgroup of a group of
order 87

(b) Prove that any group of order 8 must have a subgroup of
order 2. (This is easy, and does not require that you use
either Theorem 31.5 or the results of Exercise 9.)
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Ezercises

9. In this problem we analyze how many groups there are of order

10.

11.

8. Consider the following cases (with hints):
Case 1: There is an element of order 8.

Case 2: If there is no element of order 8, but there is an element
a of order 4, choose an element b outside (a). Now, either you
can find such a b of order 2 or else all such b have order 4. If you
can find such a b of order 2, then, depending on whether a and b
commute, argue that we must obtain either Zo x Z4 or Dy. Now
assume that all such b have order 4. Argue that you must obtain
the quaternions (g.

Case 3: Now suppose that there are no elements of order 4. So, all
non-identity elements have order 2. First, argue that the group
must be abelian. Then, pick three elements of order 2 and argue
that you must obtain Zs X Zg X Zg.

Show that every non-identity element of a group generates the
group if and only if the group is cyclic of prime order.

Let n be a positive integer and 1 < k < n. Consider the stabilizer
subgroup Gy of S,. (See Exercise 29.6.) What does Lagrange’s
Theorem say about [S, : Gg]? Demonstrate this explicitly, by
placing the set of right cosets of Gy into a natural one-to-one
correspondence with {1,2,---,n}.

12. (a) Suppose G is a finite group and a € G. Show that a/Gl = 1.

(b) Now prove Fermat’s Little Theorem 8.7: If p is prime and
0< z<p, then ™1 =1 (mod p).

(¢) For any positive integer n, ¢(n) is defined to be the number
of positive integers less than n that are also relatively prime
to n. (This is called Euler’s phi function.) So, ¢(6) = 2
because only 1 and 5 are less than 6 and also relatively prime
to 6. Note that if p is prime, ¢(p) = p— 1. Show that if a is
relatively prime to n, then

a®™ =1 (mod n).

This generalization of Fermat’s Little Theorem 8.7 is called
Euler’s Theorem.

13. Refer to the definition in Exercise 12 of Euler’s phi function.

Cosets and Lagrange’s Theorem 411

(a) Compute ¢(7), ¢(20), and ¢(100).
(b) Use Euler’s Theorem to efficiently compute

2%(mod 7),  17®(mod 20),  7*2(mod 100).

14. Prove that the set of (right) cosets of the subgroup Z in R can

15.

be placed in a one-to-one correspondence with the set of real
numbers z, with 0 < z < 1.

Consider the group S, the unit circle, a multiplicative subgroup
of C*. Provide a simple condition on complex numbers o, 3 char-

acterizing when the cosets Sa and Sg are equal, and prove that
it works.



Chapter 32

Groups of Cosets

Our goal now is to place a group structure on the set of right cosets of
a subgroup of a given group, just as we did for the cosets of an ideal
in a given ring. Given a group G with a subgroup H, our experience
with ring theory would suggest that the group operation on the set of
cosets should be defined like this:

(Ha)(Hb) = Hab.

That is, to multiply two cosets, pick a representative of each, multiply
them together, and then form its coset. It is clear that we must prove
that this operation is well defined. (That is, it should be independent
of the coset representative chosen.)

Before proceeding, let’s look at an example of this; we return to
Example 31.2. Let’s try multiplying the cosets

H(123) = H(23) = {(123), (23)},

and
H(132) = H(13) = {(132), (13)},

using our provisional definition. If our definition is to work, and we
compute the product of any element from the first coset, times any
element of the second coset, we should always land in the same coset.
In this case there are four possible products:

(123)(132) =, (23)(132) = (12),

(123)(13) = (23), and (23)(13) = (123).

These elements do not all belong to the same coset! (Because, among
other reasons, there are four distinct elements obtained and a coset of
H must have only two elements.) Consequently, it does not seem that
here we can make a group out of the set of right cosets of H in G.
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32.1 Left Cosets

Let’s beat a strategic retreat and return to a notion that we left behind
in the previous chapter: there we defined right cosets. But it makes
perfectly good sense to also speak of left cosets. Given a subgroup H
of a group G, a left coset of H in G is a set of the form

gH ={gh:h e H}.

Let’s compute the left cosets for the subgroups H and K of Ss; we
computed their right cosets in Examples 31.2 and 31.3.

Example 32.1

(See Example 31.2.) We still obtain exactly 3 distinct cosets; this
time they are
(H = (12)H = {1, (12)},

(123)H = (13)H = {(123), (13)},

and
(132)H = (23)H = {(132), (23)}.

Example 32.2

(See Example 31.3.) We still obtain exactly 2 distinct cosets; this
time they are

K = (123)K = (132)K = {1, (123),(132)}

and
(12)K = (13)K = (23)K = {(12),(13), (23)}.

A comparison of these two examples reveals a real difference! For K|
each of its left cosets is equal to the corresponding right coset, while
this is false for H. Of course, if the group had been abelian, then the
left and right cosets would obviously be equal, because multiplying on
the left, or on the right, amounts to the same thing in an abelian group.
And we know that coset addition works for rings. This suggests that
this property might be of importance. In fact, it turns out to be ezactly
what we need to build a group of cosets.
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32.2 Normal Subgroups

Let H be a subgroup of the group G. We say that H is a normal
subgroup if gH = Hg, for all ¢ € G. If H is a normal subgroup, we
can safely talk about its cosets (without an adjective). We denote the
set of all these cosets by G/H.

Example 32.3

The subgroup ((123)} is a normal subgroup of Ss3, while the sub-
group {(12)) isn’t.

Example 32.4

Every subgroup of an abelian group is normal.

In the next two chapters we will eventually obtain a host of examples
of normal subgroups, but it’s now time for the theorem we have been
building up to. This is the group analogue of Theorem 18.2, where the
idea of normal subgroups plays the role analogous to ideal in a ring.

Theorem 32.1 Let H be a normal subgroup of G. Then the set G/H
of cosets of H in G is a group, under the operation

(Ha)(Hb) = Hab.

Proof: We must first check that the operation specified in the state-
ment of the theorem is well defined; that is, it should be independent of
coset representatives. This verification is the crucial part of the proof,
and will depend in an essential way on the fact that H is normal.

Suppose then that Ha = Hc and Hb = Hd. We claim that Hab =
Hed. By Theorem 31.1c, this amounts to checking that ab(cd)™! € H.
Because Hb = Hd, we know that bd™! € H. Now H is a normal
subgroup, and so aH = Ha. This means that

a(bd™!) = ha
for some h € H. Thus,

ab(cd)™! = abd el = hac™!.
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But Ha = Hc means exactly that ac™' € H, and so therefore hac™! €
H too. This completes the proof that the operation is well defined.
The operation is clearly associative:

(HaHb)(Hc) = HabHc = H(ab)c =

Ha(bc) = HaHbc = Ha(HbHc).
The element H1 serves as the identity for G/H:

HlHa=Hla=Ha=Hal = HaH1.
And the element Ha has an inverse; namely, Ha™1:
HaHa ' = Haa™' = H1 = Ha 'a = Ha 'Ha.

Thus, G/H is a group, as we claim. m

The proof of this theorem is more complicated than that for the
corresponding ring theorem, because the group need not be abelian.
The crucial point in the proof is showing that the operation on G/H is
well defined. Loosely speaking, the normality of H says that elements
of G commute with H, and this is just enough to make the argument
work.

We call G/H the group of cosets of G modulo H; we also call
G/H a quotient group.

We have encountered many examples of this construction already:
Merely take a ring of cosets as we discussed in Chapter 18 and there-
after, and forget the multiplicative structure. However, these examples
do not call sufficient attention to the importance of the normality of
the subgroup, because, as we’ve pointed out before, all subgroups of
an abelian group are normal. Consequently, we must examine some
purely group-theoretic examples, involving some non-abelian groups.

Before we do this, however, we will provide a characterization of nor-
mality that is slightly easier to work with. We will inquire further into
this version of normality in the exercises, and in future chapters. For
the moment, we view the following proposition only as a computational
aid to checking normality.

Theorem 32.2 Let H be a subgroup of the group G. Then H is normal
in G if and only if g7'Ha = H, for all g € G. In fact, this is true if
and only if g-'Hg C H, for all g € G.
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Proof:  Suppose that H is normal in G and g € G; then Hg = gH.
So for any h € H, there exists hy € H such that hg = gh;. But then
g thg=hy € H. Thus, g"'Hg C H. A very similar argument, which
we save for Exercise 32.1, shows that the reverse inclusion also holds.

Conversely, suppose that g"'Hg = H for all g € G. Given any
element h € H, this means that h = g~'h;g, for some h; € H. But
then gh = hig; that is, gH C Hg. You will prove the reverse inclusion
in Exercise 32.2.

If g1 Hg C H for all g, this applies to g~ as well: that is, gHg™! C
H. But this latter statement means that H C g~ !Hg, and so these
two sets are actually equal. a

32.3 Examples of Groups of Cosets

Example 32.5

Consider the group A4 in Example 31.6:
Ag= {Lv (234)7 (243)7 (143)a (134)7 (124)5 (142)7

(132),(123), (12)(34), (13)(24), (14)(23)}.
Consider the subgroup

H = {1, (12)(34), (13)(24), (14)(23)}.

Notice that H is a group with four elements that is not cyclic; that
is, H is isomorphic to the Klein Four Group (see the discussion
in Section 31.3). We claim that H is normal. Let’s perform a few
of the computations necessary to check this:

(132)~1(12)(34)(132) = (123)(12)(34)(132) = (14)(23),

(243)71(12)(34)(243) = (234)(12)(34)(243) = (13)(24),
(124)71(13)(24)(124) = (142)(13)(24)(124) = (12)(34).

In each case, we see that an element of the form 8~ 'ag8, where
B € Ay and o € H, remains in H. It would be tedious indeed to
check all the other cases!

> Quick Exercise. Perform two more of the required calculations. <
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In Exercise 32.16 you will provide a complete proof that H is
normal in Ay, cleverer than just verifying all the cases. We will
also return to considering the normality of H in Example 33.5.
For the moment, we shall accept that this is true.

We can thus construct the group A4/H. Let’s use Lagrange’s
Theorem 31.2 to determine the size of this group. The order of
Ay is 12, while the order of H is 4. Thus, the order of A4/ H must
be 12/4 = 3. But there is essentially only one group of order 3,
the cyclic group. Let’s write out the elements of this group of
cosets, and see why it should be isomorphic to Zg:

Au/H = {1, H(123), H(132)}.

> Quick Exercise. Check that these three cosets are distinct,
and so this list is really a complete list of the elements of A4/H. <

But now it is clear that A4/H is a cyclic group generated by
H(123).

Example 32.6

Consider now the group § = U(M2(R)) of 2 x 2 invertible ma-
trices. Recall that this consists of those matrices with non-zero
determinant. (See Exercise 8.2.) Now consider the set

H={AcG:det(4) =1}

First note that this is a subgroup. (You actually showed this in
Exercise 25.18.) Given A, B € H, we need to check that AB™' €
‘H. But

det(AB™') = det(A)(det(B)) "' =1-1=1.

This shows that H is a subgroup.
Furthermore, we claim that H is a normal subgroup. Because,
given A € H and C € G, we claim that C"*AC € H. But

det(C~1AC) = (det(C)) " det(A) det(C) = det(A) = 1.

This shows that H is normal.

We thus know that G/H is a group. Let’s see if we can deter-
mine the nature of this group. Let’s look at a particular coset HA.
A typical element of this coset looks like BA, where det(B) = 1.
But

det(BA) = det(B) det(A) = det(A).
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Thus, all elements of HA have the same determinant. In fact,
we claim that HA consists exactly of all those matrices with
determinant equal to the non-zero real number det A. To see
this, suppose that C € G, and det(C) = det{A); we claim that
CeHA ButC=CA'4 anddet(CA™1) = 1,and so C € HA.
We thus have established a one-to-one correspondence be-
tween the elements of the group G/H and the non-zero real num-
bers. This suggests the possibility that G/H is isomorphic to
R*, the multiplicative group of non-zero real numbers. We could
prove this now but will instead wait until the next chapter, when
we can prove this carefully, and easily, using the Fundamental
Isomorphism Theorem for Groups 33.4; see Example 33.8.

We can much enlarge our fund of examples, by showing that in the
special case when a subgroup has index 2 in the group, it is automati-
cally normal:

Theorem 32.3 Index 2 Theorem Suppose that G is a group
with subgroup H, and [G : H) = 2. Then H is a normal subgroup of
G, and G/H is isomorphic to Zs.

Proof:  Suppose that H is a subgroup of G and [G : H] = 2. This
means that there are only two right cosets of H in GG: We can write
these two cosets as H1 and Hg, where g is any element of G that does
not belong to H. But by Lagrange’s Theorem 31.2, there can also be
only two left cosets of H, and they must be of the form 1H and gH.
But because H1 = H = 1H, this means that Hg = gH, for all g ¢ H.
In other words, H is normal in G.

Because [G : H] = 2, we know that G/H is a group with two elements
and there is only one such group (up to isomorphism), namely, Zy. O

Example 32.7

Consider the subgroup A4 of S; (see Example 31.6). This sub-
group has 12 elements, and so its index in Sy is 2. Theorem
32.3 then implies that G is a normal subgroup of S4. We will
generalize this example in Chapter 34.
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Example 32.8

Consider the dihedral group D,,, where we will here use the no-
tation introduced in Exercise 28.12. The cyclic subgroup (R) is
clearly the subgroup of rotations in D,, and has n elements. But
because D,, has 2n elements, (R) is a normal subgroup of D,.

Chapter Summary

In this chapter we defined a normal subgroup and proved that if a
subgroup is normal, then a group structure can be given to the set of
cosets, which we then call a quotient group.

Warm-up Exercises

a. Given a subgroup H of a group G, at least one left coset of H
always equals its corresponding right coset. Why?

b. Why is every subgroup normal, if the group is abelian? (The
converse is false; see Exercise 10 below.)

c. If H is a normal subgroup of the group G, and [G : H] = 7, to
what group is G/H necessarily isomorphic?

d. The ring Z is a subring of R but is not an ideal. (Why?) We thus
were unable to form the ring of cosets R/Z. But Z is clearly a
normal subgroup, and so we are able to form the group of cosets
R/Z. Explain this. (For more information about the group R/Z,
see Exercise 33.1.)

e. Show that {1} is a normal subgroup of any multiplicative group

G.
f. Consider the set
K ={A € U(M3(R)) : det(A) = 3}.

By using an argument just like that in Example 32.6, it is easy
to see that if A € K, then C"1AC € K, for all matrices C €
U(M>(R)). Does this make K a normal subgroup of U(Ma(R))?
(Be careful!)
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Exercises

. Suppose that H is a normal subgroup of the group G. Prove that

H C g~'Hg. Note: This is an omitted verification in the proof
of Theorem 32.2.

. Suppose that H is a subgroup of the group G, and g~'Hg = H,

for all g € G. Prove that Hg C gH. Note: This is another
omitted verification in the proof of Theorem 32.2.

. Are ((124)) and {(12)) a normal subgroups of S;? (Consider

Exercise 31.2.) Is ((124)) a normal subgroup of A47 (Consider
Exercise 31.1.)

. Is {¢,(123), (132)} a normal subgroup of S3? (Consider Example

31.3.)

. Suppose that n > 2 is a positive integer and 1 < k < n. Show

that the stabilizer subgroup Gy is not normal in S,,. (See Exercise
29.6.)

. Let H be a (not necessarily normal) subgroup of the group G,

and g € G. Prove that g~!Hg is always a subgroup of G. What
group is it, if H is normal? The subgroup g 'Hg is called a
conjugate of the subgroup H. Argue that if H; is a conjugate of
the subgroup Hs, then Hs is a conjugate of H; (that is, conjugacy
is a symmetric relation).

. Suppose that n is a positive integer, and d is a positive integer

that (properly) divides n. Prove that

Zn/{d)

is isomorphic to Zyz. Note: This exercise foreshadows develop-
ments in the next chapter and will be easy to do with the main
theorem of that chapter; your experience with rings should sug-
gest the appropriate approach. See Exercise 33.4.

. Suppose that H and K are normal subgroups of the group G.

Prove that H N K is a normal subgroup. Note: In Exercise 25.5
you have already shown that H N K is a subgroup.
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10.

11.

12.

13.

14.

15.

16.

17.
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. Consider the direct product G x H of the groups G and H. Prove

that the subgroups G x {1} and {1} x H are normal subgroups
of G x H.

Show that every subgroup of the group Qs of quaternions is nor-
mal, even though the group is not abelian. (See Warm-up Exer-
cise b.)

Consider the subgroup H = {1, -1} of Qg. In the previous ex-
ercise, you showed that H is a normal subgroup of Qg. Give the
group table for Qs/H. To what group is this group of cosets
isomorphic?

Consider the group of cosets R*/Q*. Exhibit an element of this
group with order 2. What about an element of order n, for any
positive integer n? Do you believe that there are elements of
infinite order in this group? (You should be able to conjecture
an element that works, but you will not be able to prove this
rigorously.)

Suppose that H and K are subgroups of the group G, and K is
a normal subgroup. Let HK = {hk: h€ H, k € K}.
(a) Prove that HK is a subgroup of G.

(b) Suppose in addition that H is normal. Prove that HK is a
normal subgroup of G.

Suppose that G is a group with subgroups H, K. Suppose further
that H is a normal subgroup and H C K C G. Prove that H is
a normal subgroup of the group K.

Suppose G is a group, and that g,h € G. Furthermore, assume
that the order of h is n. Prove that the order of g~'hg is n. The
element ¢~ 1hg is called a group conjugate of the element h; an
element of group shares many properties with its conjugates.

Consider the groups A4 and H described in Example 32.5. Use
Exercise 15 to provide a complete proof that H is normal in Ag.

Let G be an abelian group, and let
t(G) = {g € G : o(g) is finite}.
We call t(G) the torsion subgroup of G.

18.

19.
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(a) Prove that ¢(G) is a subgroup of G.

(b) Prove that G/¢(G) is torsion-free. (Recall that this means
that G' has no non-identity elements of finite order.)

Suppose that H is a normal subgroup of the group G. Prove
that G/H is an abelian group if and only if g 'h~'gh € H, for
all g,h € G. Note: Elements of the form g~ 'h~lgh are called
commutators in the group G.

We generalize Exercise 18 slightly. Given a group G, define H to
be the smallest subgroup of G that contains all the commutators.
The subgroup H is called the commutator subgroup. Argue
that H consists of all finite products of commutators. For a
normal subgroup K of G, prove that G/K is abelian if and only
if KO H. '
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Chapter 33

The Isomorphism Theorem for
Groups

In this chapter we prove the Isomorphism Theorem for Groups, the
important theorem analogous to the ring theory result we obtained
in Chapter 19. The ring theory theorem asserts that knowing about
ideals is essentially the same as knowing about ring homomorphisms.
We will establish a similar connection between normal subgroups and
group homomorphisms.

33.1 The Kernel

Let’s begin with a homomorphism ¢ : G — H between the groups G
and H. By way of analogy with ring theory, we define the kernel of ¢
to be

ker(p) = {9 € G: p(g9) =1}.

We can express this colloquially: The kernel of ¢ is the set of elements
in G that are sent to the identity in H by ¢. We can use a slightly
different notation to emphasize the definition of the kernel. It is the
pre-image of the identity; that is,

ker(ip) = ¢~ (1).
The following theorem should not be a surprise:

Theorem 33.1 Let ¢ : G — H be a homomorphism between the
groups G and H. Then ker(p) is a normal subgroup of G.

Proof: To show that ker(yp) is a subgroup, choose two elements
a,b € ker(¢p); we must show that ab~! is in the kernel (by the Subgroup
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Theorem 25.2). To show this, we compute:

o (ab™) = pla)(p(d) ! = 1.

That is, ab™! € ker(y).
To show that ker(ip) is normal, we must choose an arbitrary element
g € G, and check that

g~ ker(i)g C ker{yp)

(by Theorem 32.2). For that purpose, choose a € ker(y), and compute
again:

¢ (97 ag) = (¢(9)) " w(@)plg) = ((9) " 10(g) = 1.

That is, g"'ag € ker(¢), as required. |
Let’s look at some examples of kernels of homomorphisms.

> Quick Exercise. Review several of the examples of kernels of ring
homomorphisms, discussed in Chapter 17. <

Next, let’s compute the kernels of a number of the homomorphisms
in the examples in Chapter 27.

Example 33.1

(Example 27.2) Consider the function p : Z — Z that multiplies
elements by 3. The equation p(n) = 3n = 0 has only one solution,
and so the kernel is {0}, which is evidently a normal subgroup.

Example 33.2

(Example 27.3) Consider the logarithm function log : R* — R.
The equation log(r) = 0 has a unique solution, and so again the
kernel here is the trivial subgroup, this time written multiplica-
tively: {1}.
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Example 33.3

(Example 27.4) Consider the determinant function
det : U(M2(R)) — R*.
Here, the kernel is the subgroup
H={A € U(M(R)) : det(A4) = 1}.

It is difficult to describe more succinctly the subgroup H. But
note that it has infinitely many elements.

> Quick Exercise. Provide 4 distinct matrices belonging to
H. «

By Theorem 33.1, H is normal; in Example 32.6 we showed di-
rectly that this is the case. We will return to this example yet
again, later in this chapter.

Example 33.4

(Example 27.5) Consider the homomorphism ¢ : D3 — {1,—1}
that takes the rotations {1, p, p?} to 1, and the remaining ele-
ments (the flips) to —1. Obviously, the kernel is the subgroup
{(p). According to Theorem 33.1, this is a normal subgroup.

Example 33.5

(Example 27.6) Consider the homomorphism ® : G — Z3, where
G is the group of symmetries of the tetrahedron. (We've seen in
Examples 31.6 and 32.5 that G is (isomorphic to) the group Ay.)
If you check the discussion in Example 27.6, it is obvious that
the kernel is

{La w1, P2, <103}

In Example 32.5 we started to verify that this subgroup (or
rather, the corresponding subgroup of the corresponding group
of permutations) is normal, by brute force. It follows easily here,
now that we note that it is the kernel of a homomorphism. (If you
did Exercise 32.16, you obtained another proof that this subgroup
is normal.) '

427



428 A First Course in Abstract Algebra: Rings, Groups, and Fields

Example 33.6

(Example 27.7) Consider the differentiation function D : R[z] —
R[z]. The kernel consists of exactly those polynomials whose
derivative is the zero polynomial. That is, the kernel consists of
the constant polynomials:

ker(D) =R C R[z].

Example 33.7

(Examples 27.8 and 27.9) The kernel of the embedding homo-
morphism € : G — G x H defined by €(g) = (g,1) is the triv-
ial subgroup of G. The kernel of the projection homomorphism
m: G x H — G defined by w(g, h) = g is the subgroup

{1} xH={(1,h) : h€ H}.
> Quick Exercise. Verify that the kernels of Example 33.7 are

what is claimed. Check directly that these are normal subgroups
(or see Exercise 32.9). <

33.2 Cosets of the Kernel

The kernel contains indirectly more information than just the pre-image
of the identity. Just as for rings, we have:

Theorem 33.2 Let ¢ : G — H be a homomorphism between the
groups G and H. Then ¢~ '(h) equals the coset ker(y)g, where g is
any given element of ! (h).

Proof: This is left for you to prove, using the proof of the cor-
responding ring result (Theorem 17.2) as a model; see Exercise 33.6.
a

An important special consequence of this theorem follows in the case
when the kernel is the trivial subgroup. In that case, every inverse
image of the homomorphism consists of a single element. In other
words, the homomorphism in question is one-to-one. This is directly
analogous to the results for rings (Corrollary 17.4).
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Corollary 33.3 A group homomorphism is one-to-one if and only if
its kernel is the trivial subgroup.

> Quick Exercise. Check this corollary for each of the examples
above. <

We now know that each group homomorphism leads to a normal
subgroup, namely, its kernel. But each normal subgroup likewise leads
to a homomorphism (of which it is the kernel). This requires another
definition, again analogous to the ring case:

Let H be a normal subgroup of the group . Then form the group
of cosets G/H. Consider the function

v:G—G/H

defined by v(g) = Hg. It is quite evident (from the definition of the
group operation on G/H) that this is a homomorphism, that its kernel
is exactly H, and that it is onto. (See Exercise 33.3.)

We call v the natural homomorphism from G onto G/H.

33.3 The Fundamental Theorem

It remains to show that any onto group homomorphism is ‘essentially
the same’ as the natural homomorphism from the domain group onto
the group of cosets formed from the kernel. This is the next theorem.

Theorem 33.4 Fundamental Isomorphism Theorem for
Groups Let ¢ : G — H be an onto homomorphism between groups,
and let v : G — G/ ker(yp) be the usual natural homomorphism. Then
there exists an isomorphism u: G/ker(p) — H such that pov = .

We exhibit this situation in the following diagram:
4

G H

\

n
G/ker(¢)
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Proof:  Suppose that G and H are groups, ¢ : G — H is an onto
group homomorphism, and v : G — G/ ker(yp) is the natural homomor-
phism. Clearly, what we need to do is define a function y, and prove
that it has the desired properties. In this proof (unlike the ring case),
you will be doing the required verifications.

Choose an arbitrary element of G/ker(¢). Such an element is a
coset of the form ker(yp)g, where g € G. What element of H should it
correspond to? If the composition of functions required in the theorem
is to work as we wish, we must have that

u(ker(p)g) = p(g)-

And so, this is how we define the map u : G/ ker(yp) — H.

There is an immediate problem we must solve: This definition appar-
ently depends on the particular representative g. That is, our function
does not appear to be unambiguously defined. But it is well defined;
you will check this in Exercise 33.5.

After showing that p is well defined, we must next show that y is a
group isomorphism. This requires showing that:

1 preserves the group operation,

{4 is onto,
and that

1t is one-to-one.

You check these things in Exercise 33.5. a

We now look at a couple of examples of this theorem.
> Quick Exercise. Review the ring theory examples in Chapter
19. «

Example 33.8

Consider again the determinant homomorphism
det : U{M2(R)) — R*.
This homomorphism is onto.

> Quick Exercise. Why? «

We have calculated its kernel in Example 33.3: It is ‘H, the
set of all matrices with determinant 1. The Fundamental Iso-
morphism Theorem for Groups 33.4 now allows us to conclude

The Isomorphism Theorem for Groups 431

that the groups U(M2(R))/H and R™ are isomorphic, as we con-
jectured in Example 32.6. In fact, from the proof of the Funda-
mental Isomorphism Theorem we can extract the function that
establishes the isomorphism; namely, u(HA) = det(A4).

The inverse function, which is also necessarily an isomor-
phism, should assign to each non-zero number r the coset of a
matrix whose determinant is r. In the previous chapter we labo-
riously determined that each coset of H consists of those matrices
with a certain determinant. We proved this again in this chapter,
in a more general context, because we proved that the cosets of
'H = ker(ip) are exactly the inverse images of real numbers under
the function det. Because of this, to define the inverse function of
1, any choice of such a matrix with the appropriate determinant
will work as a representative for the coset. Here is a particularly
understandable version:

pN ) =H (g?) .

Example 33.9
Let’s return to the derivative function of Example 33.6. It is
evidently onto R[z].

> Quick Exercise. Prove that the derivative function is onto.
(Use a little calculus!) <

Thus, the Fundamental Isomorphism Theorem 33.4 says that the
groups R[z]/R and R[z] are isomorphic. (Isn’t this strange?)

Chapter Summary

In this chapter we introduced the notion of the kernel of a group ho-
momorphism. It is a normal subgroup, and every normal subgroup is
the kernel of some homomorphism. Furthermore, we proved the Fun-
damental Isomorphism Theorem for Groups, which asserts that every
onto homomorphism can be viewed as a natural homomorphism onto
the group modulo its kernel.
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Warm-up Exercises
a. Explain why every normal subgroup is the kernel of some homo-
morphism.
b. Explain why knowing the kernel of a homomorphism tells us es-
sentially everything about the homomorphism.
c. Can you tell if a homomorphism is onto, by just looking at its
kernel?
d. Can you tell if a homomorphism is one-to-one, by just looking at
its kernel?
Exercises
1. Consider the function ¢ : R — S defined by
o(r) = e¥™™ = cos(2nr) + isin(27r),
where S is the unit circle of Example 24.13. Show that ¢ is an onto
homomorphism. What is the kernel of ¢? What two groups are
isomorphic, according to the Fundamental Isomorphism Theorem
33.47
2. Consider the subgroup G of U(M3(R)) given by

G={<g§):a¢o}.

(See Exercise 25.19.) Define ¢ : G — R* by letting

aO_a
Plo1) —%

(a) Prove that this is an onto group homomorphism.
(b) What is the kernel of this homomorphism?

(c) What two groups does the Fundamental Isomorphism The-
orem assert are isomorphic?
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(d) What is the relationship between this exercise and Example
33.87

. Suppose H is a normal subgroup of G. Show that the natural

homomorphism v : G — G/H is indeed a homomorphism, is
onto, and has kernel equal to H, as claimed in Section 33.2.

. Let’s redo Exercise 32.7, in light of the Fundamental Isomorphism

Theorem. Suppose that n is a positive integer and d is a positive
integer which (properly) divides n. Prove that

Zn/{(d)

is isomorphic to Zg4.

. Complete the proof of the Fundamental Isomorphism Theorem

33.4, relying if necessary on the corresponding proofs for the Fun-
damental Isomorphism Theorem for Commutative Rings 19.1:

(a) Show that the function p is well defined (that is, it does not
depend on the coset representative chosen).

(b) Show that the function u is a group isomorphism (that is,
that it preserves the group operation and is one-to-one and
onto).

. Prove Theorem 33.2, using Theorem 17.2 as a model, if necessary:

Suppose that ¢ : G — H is an onto group homomorphism, and
h € H. Prove that ¢~ (h) is a coset of ker(¢p).

. Let G be a group and fix some g € G. Consider the map ¢ : Z —

G defined by p(n) = g". Show that ¢ is a group homomorphism.
What are the possible kernels for ¢? Describe the image of ¢ in
G.

. Consider the function ¢ : C* — R* defined by ¢(a) = |a|. Prove

that ¢ is an onto homomorphism. What two groups are isomor-
phic, according to the Fundamental Isomorphism Theorem?

. Suppose that G is a group with normal subgroups H, K. Con-

sider the normal subgroups H N K and HK. (See Exercises 32.8,
32.13, 32.14.) Prove that the groups H/(H N K) and HK/K
are isomorphic. (You should compare this to the corresponding
result in ring theory, in Exercise 19.23.)
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10. Consider the group R3, and suppose that a,b, ¢ € R, not all zero.
Define p : R® — R by o(z,y,2) = ax + by + cz. Show that ¢
is a group homomorphism. What is the kernel of ¢ (considered
geometrically)? What does the Fundamental Isomorphism Theo-
rem say in this context? What is the geometric meaning of this
assertion? (Compare this exercise to Exercise 28.9.)

11. Consider the dihedral group Ds. Every element of D4 can be
written in the form F'R’, where i = 0,1, and j = 0,1,2, 3, where
F is the ‘flip’ about the vertical axis (12)(34), and R is the coun-
terclockwise rotation (1432). (See Exercise 28.12.). Define

1/):D4—>Z2XZQ

by setting Y(F*R) = ([ilz, []2)-
(a) Prove that this is an onto homomorphism.

(b) What is the kernel of this homomorphism?

(¢} The subgroup you obtained in part b is necessarily normal.
(Why?) Prove this directly.

(d) What two groups does the Fundamental Isomorphism The-
orem assert are isomorphic?

12. Suppose that G is a group with normal subgroup H.

(a) Define a correspondence between the subgroups of G con-
taining H, and the subgroups of G/H, by assigning K —
K/H. Why is Exercise 32.14 relevant to this definition?

(b) Show that the correspondence from part a is one-to-one and
onto.

(¢) Furthermore, show that this correspondence also establishes
a one-to-one correspondence between normal subgroups of
G containing H and normal subgroups of G/H.

13. Suppose that H and K are normal subgroups of the group G,
and that K C H. Then the group G/H is isomorphic to

(G/K)/(H/K).

(You should compare this to the corresponding result in ring the-
ory, in Exercise 19.21.)

Chapter 34

The Alternating Groups

In this chapter we inquire further into the symmetry groups S,. In the
process we gain further insight into the importance and significance of
normal subgroups.

34.1 Transpositions

For obvious reasons, we call a cycle of length 2 a transposition.
We now show that any permutation can be factored as a product of
transpositions.

Theorem 34.1 Any permutation can be factored as a product of trans-
positions.

Proof: Because every permutation is a product of cycles (Theo-
rem 30.3), it clearly suffices to show that each cycle can be factored
as a product of transpositions. But this is easy: Consider the cycle
(a1ag - - - ay) of length n. Clearly,

(araz -+ ap) = (a10,)(@1an-1) - - - (a103)(@102).
O

Notice that the method of factorization suggested by the proof of the
theorem provides n — 1 transpositions for each cycle of length n. So
the 5-cycle (12345) can be factored into a product of 4 transpositions:

(12345) = (15)(14)(13)(12).

The product of cycles can then also be factored into a product of trans-
Positions:
(1345)(267) = (15)(14)(13)(27)(26).



436 A First Course in Abstract Algebra: Rings, Groups, and Fields

However, this method of factoring into transpositions does not give us
a factorization which is unique (unlike the factorization into disjoint
cycles in Theorem 30.3).

Example 34.1

Here’s a different factorization of the last permutation into trans-
positions:

(1345)(267) = (25)(67)(57)(25)(45)(35)(15).

(Don’t worry about where this factorization came from.)

&> Quick Exercise. Check that this factorization works. Can
you come up with another essentially different factorization of
this permutation into transpositions? <

Example 34.2

A surprising place where permutations and transpositions occur
is in the theory of bell ringing. A bell ringer rings n bells. Ringing
the changes means ringing each of the n! orders of the n bells ex-
actly once. The n bells are typically arranged in a row on a table
and the ringer starts on the left and rings each bell in sequence.
According to bell ringing practice, after a certain permutation is
rung, the next permutation to be rung must be the same, except
for one transposition. This is true because the bell ringer has
ounly two hands with which to interchange two bells! Our theo-
rem in essence asserts that we can get from any one order of the
bells to any other, by repeated transpositions.

> Quick Exercise. Suppose that a bell ringer has six bells, in
order 1,2, 3,4, 5,6. Give a list of transpositions, which when done
one after another, results in the bells in order 6,1,4,3,5,2. <

34.2 The Parity of a Permutation

Our earlier example revealed that two distinct factorizations of a given
permutation into transpositions need not even have the same number

The Alternating Groups 437

of factors. For example, our first factorization of (1345)(267) had five
factors, while our second had seven factors. In fact, any given permu-
tation can be expressed as a product of transpositions in an infinite
number of ways. To see this, we need only notice that ¢ = (12)(12) and

that (ab) = (ca)(cb)(ca).

> Quick Exercise. Why does this mean that any permutation can
be expressed as a product of transpositions in infinitely many ways? <

However, it does turn out that any factorization for the permutation
(1345)(267) will have an odd number of factors. In fact, for any per-
mutation, all the factorizations of that permutation into transpositions
involve an even number of transpositions, or they all involve an odd
number of transpositions. To see that the number of factors is always
even or always odd, consider the polynomial

gn = (1 — 22)(x1 — 23) -+ (T1 — Zn) (T2 — T3) - -+ (Tn—1 — Tn)

Notice that this polynomial consists of the product of all terms of the
form z; — x;, where i < j, and so each pair z;,z; appears together
in a factor of this product exactly once. Now consider a permutation
of the n terms x1,...,%,. Any such permutation will either map g,
to gn or g, to —g,. Now clearly a single transposition maps g, to
—0n- So, the product of an even number of transpositions will map
gn to g, and the product of an odd number of transpositions will map
gn to —g,. Thus, if a particular permutation of n elements leaves
gn unchanged, then clearly any representation of this permutation as a
product of transpositions must do the same, and so such a product must
have an even number of tranpositions. Similarly, if the permutation
changes g,, to —gy,, any representation of this permutation as a product
of transpositions must contain an odd number of transpositions.

So, we can now call a permutation even if it can be expressed as
a product of an even number of transpositions, and odd if it can be
expressed as a product of an odd number of tranpositions. Saying
whether a permutation’is even or odd is to specify its parity.

B> Quick Exercise. Determine whether the following permutations
are even or odd: ¢, (123)(4789), (123)(342). «
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34.3 The Alternating Groups

Let A, be the set of even permutations. Take two such permutations,

and multiply them together. Any representation of this product as a
product of transpositions will have an even number of transpositions.
Thus, the product of two even permutations is even. That is, A,
is closed under multiplication. But what about inverses? Given a
permutation represented as a product of transpositions, its inverse can
be computed as the product of the same transpositions, in the opposite
order!

> Quick Exercise. Why is the inverse of a product of transpositions
the same product in the opposite order? <«

Thus, the inverse of an even transposition is still even. This all means
that A, is a subgroup of S,,. We call A, the alternating group.

Note that the argument we have just given does not mean that the
set of odd permutations forms a subgroup: The sum of two odd integers
is even, and so the product of two odd permutations is an even permu-
tation. And there’s an even simpler reason why the odd permutations
cannot form a subgroup: Any subgroup must contain the identity, and
the identity is an even permutation (because 0 is even).

Note that cycles of odd length are the even permutations!

> Quick Exercise. Why are cycles of odd length even permutations? <

Example 34.3

We have looked at the group A4 before (see Example 32.5). Tt
is isomorphic to the group of symmetries of the tetrahedron and
consists of the twelve permutations

6, (123), (132), (124), (142), (234), (243),

(134), (143), (12)(34), (13)(24), (14)(23).

> Quick Exercise. List the elements in the group As. <

In the examples we've looked at, it certainly appears that exactly
half the permutations are even, which would mean that the group A,
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has exactly n!/2 elements (where n > 1, to avoid the trivial case A;).
This is quite easy to prove. Consider the function

A Ap — Su\An

defined by A(a) = (12)a. That is, A merely multiplies each element by
the transposition (12). If « is even, quite evidently (12)«a is odd, and
so this function is well defined. But A is also one-to-one and onto. (See
Exercise 34.2.) Thus, there are as many even permutations as odd.

34.4 The Alternating Subgroup is Normal

It is now easy to see that the alternating group A, is a normal subgroup
of Sp; the argument we've just done shows that [S, : A,] = 2, and so
the result follows from the Index 2 Theorem 32.3. We will however
provide here another proof, which will give us added insight into the
arithmetic of permutations.

By Theorem 32.2, to show that A,, is normal, we must check that for
any permutation «,

o TA,a C A,.

In other words, we must show that if 3 is even, then a~!8a is too.

We introduce some general terminology and notation to deal with
this. Let G be a group and g,h € G. We call the element g~ 'hg the
conjugate of h by g. Our goal then can be rephrased as this: We must
show that conjugation preserves the parity of permutations. (Note that
in Exercise 32.15 you proved that conjugates have the same order.) But
in fact, much more is true:

Theorem 34.2 Conjugation Theorem Conjugation in S, pre-
serves disjoint cycle structure. That is, if we express an element « as
a product of m disjoint cycles of lengths ki, ka, -, km, then any conju-
gate of o can be expressed as a product of m disjoint cycles, of lengths
kl,kz,"‘,km.

Before proceeding to the proof of this theorem, let’s look at a couple
of examples.
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Example 34.4

Consider the element o« = (12)(3456)(789), the product of a 2-
cycle, a 3-cycle and a 4-cycle. Consider some other permutation,
like 8 = (14567)(239). Then 8~! = (76541)(932), and

B 'ap = B1(153724689) = (1452)(368)(79).

This new element has exactly the same disjoint cycle structure
as a.

> Quick Exercise. Now pick some other permutation 3 at
random, and use it to conjugate «. Is the disjoint cycle structure
preserved? <

Example 34.5

In Chapter 22 we looked at S3 as the set of symmetries of the
equilateral triangle. Let’s consider what conjugation might mean
geometrically in this context, and thus understand why we should
expect it to preserve disjoint cycle structure.

In particular, consider the symmetry ¢, which is represented
by the permutation (12). Recall that ¢ is the reflection of the
triangle through the vertical line £. Let’s see what the conjugate
p~Ypp of ¢ by p means, where p rotates the triangle 120° coun-
terclockwise. The rotation p re-orients the triangle, so that the
flip ¢ will permute the vertices at original positions 1 and 2. We
then rotate back via p~!. We have in effect accomplished the flip
pp through the line m. (See the diagram below.) In other words,

p~lpp = (13).

3 2 2 L1
VANEIVANE - IVANESIVAN
1 2 3 1 1 3 3 2
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A metaphor for the interpretation of conjugation in this example
might be illustrative. Suppose you, an English-speaking mathematics
student, are asked to solve a mathematical problem written in French!
Your thought process would probably be this: Translate the problem
into English (operation 3), solve the problem (operation «), and then
translate back into French (37!). The general message is this: if a
group element can be thought of an operation or process, then any
conjugate of it will be an operation or process of a similar type: the
conjugate of a 3-cycle is a 3-cycle; the conjugate of a flip is a flip. (See
Exercise 34.g.)

This discussion suggests the general method of proof for our theorem:

Proof of the Conjugation Theorem: We prove the theorem
first in the case where « is a cycle of length k. So suppose that o =

(a1a2---ag), and 3 is an arbitrary permutation. Then we claim that
B~ 'af is the k-cycle

x=(8"'a1 B ay - B7lay).

By direct computation it is easy to see that the conjugate 3 'a83 and
the k-cycle x behave in the same way on the set

{ﬂ_lalvﬂ_laaa s ,,B_l(lk}.

> Quick Exercise. Check this. <

Now suppose m is some integer not belonging to this set; that is,
x(m) = m. Then Bm is not in the set {ai,---,ax}. That is, Bm is not
in the support of o. Thus,

B~lap(m) = 71B(m) = m = x(m).

We have just shown that x = 7 1ag, and so S~'af is also a cycle of
length k.

Now suppose that « has been factored as a product
X1X2* " Xn
of disjoint cycles. Note that
7 af =
Bx1B87 x2B - B xnB,
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and so the conjugate of « is evidently a product of cycles of the same
length as the corresponding cycles making up «. It remains only to
show that these cycles are disjoint. But if 3~ 1x;3 and ﬂ_lxjﬁ both
move 7, then x; and x; would both move B7(r), which is impossible,
since x; and Xx; are disjoint. O

> Quick Exercise. Check this theorem for three distinct conjugates
of the permutation (13)(54789). <

Now it is easy to see (again) that A, is a normal subgroup of Sy:

Corollary 34.3 The alternating group is a normal subgroup of the
symmetric group.

Proof: A conjugate of an even permutation has the same disjoint
cycle structure. But this means that the conjugate is even, too. O

Example 34.6

As another example of the conjugation theorem, consider again
the subgroup

{1, (12)(34), (13)(24), (14)(23)}

of the alternating group As. (See Example 34.3 for the elements
in A4.) Any conjugate of a non-identity element of this group has
the same disjoint cycle structure (a product of two disjoint trans-
positions). But the subgroup consists of the complete collection
of elements of this form (together with ¢). We first looked at this
in Example 32.5 where we found it difficult to prove completely
the normality of this subgroup. In Example 33.5 you showed
that it is normal by exhibiting a homomorphism, of which it is
the kernel.

34.5 Simple Groups

As we've seen already, A, is always normal in S,, for all positive inte-
gers n. Does A, have any normal subgroups? The answer for n = 4 is
certainly yes (as we’ve seen Example 34.6). But it is possible to prove
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that for n > 5, A, itself has no proper normal subgroups (except the
trivial subgroup). This proof is quite a bit more technical, but simi-
lar in flavor, to the proof of the Conjugation Theorem 34.2. Note that
these groups A, have many non-trivial proper subgroups (just consider
any cyclic subgroup). However, no such subgroup is normal.

This situation merits a definition: We call a group with no proper
normal subgroups (except the trivial subgroup) a simple group. The
following theorem gives a large collection of simple groups.

Theorem 34.4 The groups A, are simple, for n # 4.

Proof: For n < 4, showing that A, is simple is left as Exercise 34.4.
We will now prove that A, is simple, for n > 5. For that purpose,
suppose that N is a non-trivial normal subgroup of A;. Choose a non-
identity element oo € N whose support is of minimal size. We wish to
show that « is a 3-cycle.

Note first that in its disjoint cycle representation, all factors of «
must be cycles of the same size. For if @ = (a3 ---ag)(by---by) -,
where k < m, then o € N, but o leaves the integers a; fixed, and so
has a smaller support than a.

Suppose next that « is a product of disjoint 2-cycles (that is, transpo-
sitions). So, we may suppose (without loss of generality)
that o = (12)(34) - - -, where the remainder of o consists of further dis-
joint transpositions. Because N is normal, we then have that
B = (123)a(123)"ta~! € N. But 3 = (13)(24), and so because a has
a support on minimum size in N, we must have that o = (12)(34). Now
n > 4, and so (125) € A,. But then (125)(12)(34)(125)~1((12)(34))~! ¢
N. But this latter element is (152), and this contradicts the minimality
of the support of a.

We now may suppose that « is a product of disjoint k-cycles, where
k > 3. Without loss of generality we then have that

a=(123---)(456---)---.

But then (12534) = (124)a(124)"'a~! € N, which again contradicts
the minimality of the support of c.

At this point we have concluded that o must be a single odd & cycle,
with k > 3. Now if £ > 3, we may suppose that o = (12345---). But
then (124) = (123)a(123)"'a~! € N. This yet again contradicts the
minimality of the support of , and so we conclude that o itself must
be a 3-cycle.
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We may as well suppose that o = (123). But for any other 3-
cycle (abe), We can construct a permutation 7 by first setting 7(a) =
1,7(b) = 2,7(c) = 3, and then filling in the other values of 7 in such
a way that we have a permutation. It is then clear that 771(123)7 =
(abc). By normality, this would say that (abc) € N, if 7 € A,. How-
ever, as we have constructed it 7 may not be an even permutation.
However, if the permutation 7 we have first constructed is odd, the
permutation 7(45) will certainly belong to A,, and still take (123) to
(abc) by conjugation. Of course, this last step is permissible only be-
cause n > 5.

We have thus shown that if N is a non-trivial normal subgroup of
A, it contains all 3-cycles. But by Exercise 34.12, the set of 3-cycles
generates A,, and so N = A, as we claimed. a

It turns out that this theorem will be of considerable importance
to us in Chapter 49, when we prove that polynomial equations with
degree greater than 4 cannot always be solved by ordinary arithmetic
and root extractions.

There are other simple groups that are very familiar to us:

Example 34.7

Consider the cyclic group Zs. This group has no non-trivial
proper subgroups. If H is any non-trivial subgroup, choose a
non-identity element h € H. By Lagrange’s Theorem 31.2, this
non-identity element has order 5, and so (h} = Zs. Thus, Zs is
simple.

The argument of this example can clearly be extended, and so we
have:

Theorem 34.5 The groups Z, are simple, for all primes p.

> Quick Exercise. Prove this by repeating the argument above for
Zyp, p prime. <

Historical Remarks

In the theory of finite groups that has been developed in the 20th
century, simple groups can be viewed as the building blocks out of which
more complicated groups can be constructed. Thus, to understand all
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finite groups, we need to understand simple groups, and how they can
be put together to form more complicated groups. Both questions are
very difficult.

One of the triumphs of 20th-century mathematics has been the com-
plete classification of all finite simple groups. Dozens of mathematicians
have contributed to the solution of this problem, and a full proof would
require many hundreds of pages of technical mathematics. We have met
two families of finite simple groups—namely, the cyclic groups of prime
order, and the alternating groups—and there are other such families.
But part of the difficulty in the classification theorem lies in the fact
that there are some finite simple groups that do not belong to such nat-
urally defined families. These simple groups are called sporadic, and
the last of these 26 groups was finally constructed in the 1980s.

The problem of putting together simple groups (called the extension
problem) is far from solved. The easiest way to put together smaller
groups to build more complicated ones is the idea of direct product,
which we understand well. But there are much more complicated ways.
We will turn our attention to how abelian groups can be put together

in certain ways to form a much larger class called solvable groups, in
Chapter 36.

The general program for understanding finite groups is typical in
much of algebra. We wish to prove a structure theorem: All objects
of a given type can be built in a specified way, from well-understood
pieces. In the next chapter we will discuss such a program for finite
abelian groups. In this case, the well-understood pieces turn out to be
cyclic groups, and the method of putting them together is the idea of
direct product. In Chapter 46, we will provide a structure theorem for
finite fields.

Chapter Summary

In this chapter we proved that the set of even permutations forms a sub-
group of the symmetric group, called the alternating group. We proved
the Conjugation Theorem, which says that conjugation preserves dis-
Joint cycle structure. It follows that A, is normal in S,,.
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Warm-up Exercises
a. Compute explicitly three conjugates of the permutation
(145)(96)(237),
checking that its disjoint cycle structure is preserved.

b. How many elements are in A5? Ag?

c. Because conjugation preserves parity, the conjugate of an odd
permutation is odd. Why doesn’t that make the set of odd per-
mutations a normal subgroup?

d. Why can’t a simple group have a non-trivial subgroup of index
27

e. Give an example of a non-normal subgroup, whose index is 3.
(Thus, Theorem 32.3 is false if 2 is replaced by 3.)

f. Is the identity permutation even or odd?

g. Suppose the operation 3 means “paint the north wall of your
room”, and the operation o means “move to your sister’s room”.
What is the meaning of the conjugate a~1Ba? Remember that
functional composition is read from right to left.

Exercises

1. Is the product of an even permutation and an odd permutation
always an odd permutation? Prove this, or give a counterexam-
ple.

2. Show that the map A : A, — Sp\A, defined by A(a) = (12)c
is one-to-one and onto, completing the argument of Section 34.3
that there are as many even as odd permutations. (The notation
S\ Ay, means the elements of S,, that are not in Anl)

3. (a) List the elements of As. (See Exercise b.)

(b) List all cyclic subgroups of As.

10.

11.

12.

13.
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(c) Let o € As. Show (a) is not a normal subgroup of As.

. Show that A, is simple for n < 4, proving part of Theorem 34.4.

. By following the proof of the Conjugation Theorem 34.2, demon-

strate explicitly that
(1456)(29) and (7895)(13)

are conjugates in Sg.

. Let n > 5. Prove that A, is the only non-trivial normal subgroup

of S,.

Prove that any permutation can be expressed as a product of the
transpositions (12), (13), (14),- - -, (1n).

. Prove that any permutation can be expressed as a product of the

transpositions (12), (23), (34),---,(n — 1 n).

. Prove that S, is generated by the two elements (1234 --n) and

(12).

In Example 31.6 we showed that A4 has no subgroup with 6
elements. Provide a different proof for this fact: Assume that H
is such a subgroup; then H must be normal. (Why?) Now count
the three cycles. Show that at least one of the three cycles must
be in H. Then argue that H must contain all the three cycles,
which is absurd.

Let n > 2 and let H be a subgroup of S,,. Prove either that all
elements of H are even, or else exactly half of the elements of H
are even.

Let n be a positive integer, n > 3. Prove that A, is generated
by its 3-cycles. That is, prove that every element of A,, can be
expressed as a product of 3-cycles.

Suppose that H is a subgroup of the permutation group S,. We
say that H is a transitive subgroup if for any integers k, j with
1 <k,j <n,wecan find @ € H so that a(k) = j.

(a) Determine all transitive subgroups of Sy.

(b) Argue that A, is a transitive subgroup of S,,, for any n > 2.
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FEzxercises

(¢) Suppose that H is a transitive subgroup of S,, and o €
S,. Prove that the conjugate subgroup a !Ha is also a
transitive subgroup of S,,. (See Exercise 32.6 for more about
conjugate subgroups.)

Chapter 35

Fundamental Theorem for Finite
Abelian Groups

In this chapter we state the Fundamental Theorem for Finite Abelian
Groups, which completely describes the structure of such groups. This
powerful theorem provides an easy-to-understand recipe by which all
such groups can be constructed, using the two familiar notions of cyclic
group and direct product. The theorem is relatively difficult to prove,
and so we will not prove it here. The interested reader can refer to
any introductory text in group theory. However, we will look more
closely at a very special type of finite group called a p-group and prove
a couple of important facts regarding them.

35.1 The Fundamental Theorem

Theorem 35.1 The Fundamental Theorem for Finite Abelian
Groups Every finite abelian group is isomorphic to a direct product of
cyclic groups; each cyclic group in this decomposition is of order p",
where p is prime. That is, each finite abelian group is isomorphic to a
group of the form

Zp/lcl X ZPSQ X oo X Zpﬁ"

where the p;’s are primes (not necessarily distinct), and the k;’s are
positive integers (not necessarily distinct).

Note that the group

Z ky XZ ky X -+ XZ k
pll p22 PR

has order p’flpgz A pchLn



450 A First Course in Abstract Algebra: Rings, Groups, and Fields
Example 35.1

What finite abelian groups of order 8 are possible? Clearly, the
cyclic groups used to build such groups can only have order 2, 4,
or 8, and the product of the orders of the cyclic groups must be
8. So the only possible abelian groups of order 8 are

Zg, Z4 X Zz, ZQ X Zz X ZQ.

> Quick Exercise. We did not include Zy x Zs4, because it is
isomorphic to Z4 X Zg. Give an isomorphism. <

Are these three groups really non-isomorphic? We can answer
this affirmatively by looking at the orders of elements in these
groups. Of them, only Zg has any elements of order 8; Z4xZs has
elements of order 4, while all non-identity elements of Zo x Zy X Z
are of order 2.

> Quick Exercise. Verify our assertions in the last sentence,
thus checking that these groups are not isomorphic. <

Note that in Exercise 31.9 you actually determined a complete
list of non-isomorphic groups of order 8, whether abelian or not.

Example 35.2

What finite abelian groups of order 10 are possible? By the
Fundamental Theorem for Finite Abelian Groups 35.1, since 10 =
2-5 (a product of primes), there is only one possibility: Zz X Zs.
However, you might notice that Zo is also abelian and of order
10. But these two groups are isomorphic. This is easy to see,
because the element (1,1) € Z2 X Zs has order 10, and so this
group is cyclic of order 10.

More generally, these two groups are necessarily isomorphic,
on account of Theorem 21.2. Of course, that theorem is phrased
as a theorem about rings, but any cyclic group of the form Z,
can be equipped with a ring structure, and so we can use it here.

> Quick Exercise. Review Theorem 21.2. <

Thus, there is (up to isomorphism) only one abelian group of
order 10.

> Quick Exercise. How many distinct abelian groups of order 9 are
there? How about order 127 <
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By Theorem 21.2, if p and ¢ are two distinct primes, then Zpk X L
is isomorphic to Zpk,. (See Exercise 35.1.)

As a bonus, the Fundamental Theorem for Finite Abelian Groups
shows that a finite abelian group has many subgroups. In fact, it has
as many subgroups as it possibly could have:

Corollary 35.2 If G is a finite abelian group of order v and m divides
r, then G has a subgroup of order m.

Lagrange’s Theorem 31.2 asserts that the order of a subgroup of a
finite group divides the order of the group; this corollary is the converse
of this, for the abelian case. However, this converse is not true in
general, as we saw in Example 31.6.

Proof: By the Fundamental Theorem,

G=7k XZ 4y, X+ XZx
Py Py P’

where p’f1p§2-~pﬁ" = r. Because m divides r, m = p{lp?---p%”,
where j; < k;, for all i. We need only show that each Zpk:i has a cyclic

subgroup of order p{’ and then

H=ijl-1 X ZP%Q X ee X Zpi}"’
is the desired subgroup. But this follows from Exercise 26.10. a
Example 35.3

Consider the group G = Zg X Z1g X Zg, which is of order 1152. To
find a subgroup of order 24, we must combine cyclic subgroups of
the three groups Zs, Z16, and Zg whose orders multiply together
to give 24. For example, we could find a subgroup isomorphic to
Zg x {0} x Zs, or else Zy x Zo X Z3, together with some other
possibilities. Note that the two subgroups just given are not
isomorphic.

> Quick Exercise. Why are the two subgroups above not
isomorphic? <
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Example 35.4

The method suggested still works, even if the direct product of
cyclic groups is not that given by the Fundamental Theorem. For
example, consider the group G = Zj2 X Z10, which is of order 120.
If we wish to find a subgroup of G of order 8, we can still simply
piece together subgroups of the cyclic groups. Clearly, Zy x Zs is
such a subgroup.

35.2 p-groups

Now let’s look more closely at a particular type of finite group called a
p-group. A p-group is a group, each of whose elements has order some
power of the prime number p.

Example 35.5

Consider the group Zo7. By Lagrange’s Theorem 31.2, the order
of every element divides 27, and so must be a power of 3. Thus,
Zot is a 3-group.

Example 35.6

Consider the group Zs x Zg. This is a 2-group.

The concept of p-group makes sense for non-abelian groups. Al-
though we will have no more use for such examples in the rest of this
chapter, we do provide one such example here:

Example 35.7

The group of symmetries of the square is a 2-group.

Theorem 31.5 tells us that if p is a positive prime integer where p
divides the order of G, then G has an element of order p. (This is true
whether G is abelian or not.)

It is important to note that we cannot omit the hypothesis that p is
prime. For if G is any non-cyclic group with n elements, then n divides
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|G|, while G has no element of order n. For example, Zs X Zs has no
element of order 8.
We now use this theorem to prove the following easy corollary about

p-groups:

Corollary 35.3 Let G be a finite abelian p-group. Then |G| = p", for
some positive integer n.

Proof:  Suppose instead that |G| is divisible by some prime ¢ other
than p. But by Theorem 31.5, G must have an element of order gq,
which is impossible, if G is to be a p-group. O

Chapter Summary

In this chapter we stated the Fundamental Theorem for Finite Abelian
Groups. This theorem completely describes the structure of such groups,
as direct products of cyclic p-groups. As a corollary, we showed that
a finite abelian group has a subgroup of order m for all m that divide
the order of the group. We also showed that the order of every p-group
is a power of p.

Warm-up Exercises

a. How many distinct abelian groups are there of the following or-
ders: 14, 18, 25, 297

b. Describe the following finite abelian groups as direct products as
specified by the Fundamental Theorem for Finite Abelian Groups
35.1:

Zs X L, Ziso, U(Zy), U(Zig), U(Zn).

¢. Determine whether the following groups are p-groups; if so, for
which p?
QS) A4a Z277 Ra A37 D8'

d. A finite abelian group has 50 elements. Why do we know it is
not a p-group?



454

Ezercises

. Give examples where the converse of Lagrange’s Theorem 31.2

fails. That is, give a group G and an integer n, where n divides
|G|, but G does not possess an element of order n. Find examples
other than those mentioned in the text.

Up to isomorphism, how many abelian groups are there of order
pg where p and ¢ are distinct primes?

Up to isomorphism, how many abelian groups are there of order
p?, for prime p?

Exercises

. Show that if p and q are distinct primes, that Zx X Zg; is iso-

morphic to Zyk,; by finding an element of Zx X Z; of order pF¢J.
(Of course, this result follows from Theorem 21.2, but we want
you to actually find a generator.)

Show that Zi2 x Zip has no element of order 8 and, hence, no
subgroup isomorphic to Zg.

. Suppose G is a finite abelian group of order m, where m is square-

free. (That is, if p divides m, then p? does not.) Show that G is
cyclic.

If there are k abelian groups of order m and j abelian groups of
order n, how many abelian groups are there of order mn if m and
n are relatively prime?

Suppose that G, H, and K are finite abelian groups. Suppose
that the direct products G x K and H x K are isomorphic as
groups. Prove that G and H are isomorphic.

The conclusion of Exercise 5 seems so plausible that you might
conjecture that it is true for all groups (or at least for all abelian

groups). Construct a counterexample to this, using abelian groups.

Chapter 36

Solvable Groups

In this chapter we will introduce solvable groups, as a natural gener-
alization of abelian groups. Solvable groups can be viewed as groups
built out of finitely many abelian pieces. This gives us a chance to see
a bit of how the extension problem in groups is approached; we dis-
cussed these ideas briefly in the historical note at the end of Chapter
34. We will use the notion of solvability in Chapter 49, when we discuss
whether a polynomial equation can be solved using ordinary arithmetic
and the extraction of roots.

36.1 Solvability

The symmetry group Ss is not abelian, but we can think of it as
consisting of two abelian pieces, put together in the appropriate way.
Namely, S5 has an abelian subroup As, and the homomorphic image
S3/As is also abelian. We generalize this idea to finitely many steps
in our definition. We say that a group G is solvable if it has a finite
collection of subgroups Gy, G1,--- Gy, so that

Gn={1}CGr1CGr2C---CG1 CGy=G,

and furthermore each G;y; is normal in G;, and the group of cosets
G/Gi;1 is abelian. We shall call such a finite sequence of subgroups
satisfying the definition of solvability a subnormal series with
abelian quotients for the group G.

The terminology we have chosen for the series required for a solv-
able group is cumbersome, but it is consistent with the mathematical
literature. In general, a subnormal series requires only that each G;4q
is normal in G;, without any requirement on the group G; /Git1. The
word ‘subnormal’ places emphasis on the fact that we require only that
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(311 is normal in the next larger subgroup G;; it is not necessarily
normal in the entire group G.

Example 36.1

We note first that any abelian group G is of course solvable be-
cause {1} C G is a subnormal series with abelian quotients.

Example 36.2

The group Ss is solvable because {¢} C A3 C S3, and S3/A3
and As/{t} = As are abelian. Now we can also think of S3 as
the symmetries of an equilateral triangle, that is, as the dihedral
group D3. We can now generalize this example to see that any
of the dihedral groups D,, are solvable, because the subgroup of
rotations is abelian, and of index two in D,,.

> Quick Exercise. Check this. <

Example 36.3

The group Sy is solvable, although it will require more than two
subgroups to build a subnormal series with abelian quotients. We
will use the notation from Example 32.5, where we denote by H
a subgroup of Sy isomorphic to the Klein Four Group:

{L}QHQA4QS4

Each of these subgroups is normal in the next bigger subgroup.
The quotient groups are abelian because they are isomorphic to
H,Z3 and Z, respectively.

> Quick Exercise. Check these assertions. <

Example 36.4

The group Sy is not solvable. By Exercise 34.6 we know that As is
the only non-trivial normal subgroup of Ss. But by Theorem 34.4,
As is a non-abelian group with no non-trivial normal subgroups,
and so S5 cannot have a solvable series. The fact that Ss is not
solvable will be important for us in Chapter 49.
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36.2 New Solvable Groups from Old

In this section we will present some natural ways to get from solvable
groups from a given solvable group. '

Theorem 36.1 Every homomorphic image of a solvable group is solv-
able.

Proof:  Suppose that G is a solvable group with normal subgroup
H. We shall assume that G has the following subnormal series with
abelian quotients:

Gn:{l}an—lan-—QQQGIQGOZG

Consider each of the sets HG; = {hg : h € H,g € G;}. By Exercise
32.13a we know that HG; is a subgroup of HG,;_1. We claim that HG;
is normal in HG;_1. To prove this, choose h € H and a € G;_1. The
right coset HG;ha = HG;a, because H C HG;. But then

HGzha = HGia = H(Gza) = H(an) = (HCL)GZ = (CLH)GZ = aHGi,

because G; is normal in G;_1 and H is normal in G. But aHG; =
aa ' haHG; = haHG;, because a 'ha € H. This equality of right and
left cosets means that HG; is normal in HG;_q.

By Exercise 33.12 we have for each ¢ that HG;/H is a normal sub-
group of HG;_1/H, and so we have a subnormal series for G/H:

H/HC HG,_y/HC HG,_2/HC---C HG,/H C G/H.
Now by Exercise 33.13
(HG;—1/H)/(HG:/H)

is isomorphic to HG;_1/HG,;.

It remains only to show that the latter group is abelian to conclude
that G/H is solvable. For that purpose, suppose that h,k € H and
a,b € G;_;. Then we can use normality and the fact that G;_,/G; is
abelian to conclude the following:

HG;(ha)(kb) = HG;akb = HG;(aka™")ab = HG;ab
= H(Glab) ES H(sza) = HGiba
= HG;(bhb™1)ba = HG;bha = HG;(kb)(ha).
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|
A similar proof shows the following:
Theorem 36.2 Every subgroup of a solvable group is solvable.
Proof: We leave this as Exercise 36.2. O

We can also build larger solvable groups, by putting together a nor-
mal subgroup and the corresponding homomorphic image:

Theorem 36.3 Suppose that G is a group with normal subgroup H.
Then G is solvable if and only if G/H is solvable and H 1is solvable.

Proof: If G is solvable, the conclusions about H and G/H are just
the previous two theorems.

Now suppose that H and G/H are solvable. Then we have subnormal
series with abelian quotients for both these groups. By Exercise 33.12,
we can write the subgroups of G/H in the form G;/H:

Hy,={1}CHp1C---CHICHy=H
and
Gn/H = H/H C Gy /HC --- CG1/H C Go/H = G/H.

But then we can put together these subgroups to obtain a subnormal
series with abelian quotients for G:

Hmz{l}gHm—lgnggHOZH
CGr1C---CG1 CGy=aG.

> Quick Exercise. Check that the above series is subnormal with
abelian quotients. Why is Exercise 33.12 relevant? < O

We can informally paraphrase this theorem by asserting that a solv-
able extension of a solvable group is solvable. It is easy to extend this
inductively to obtain the following:

Theorem 36.4 A group G is solvable if and only if it has a subnormal
series

Gn:{l}an—lan—Qg"'gGlgGO:Gy

where each quotient group G;/G;+1 is solvable.
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Proof: If G is solvable, it has a subnormal series with abelian quo-
tients, which are of course solvable.

For the converse, suppose that GG has such a subnormal series. We
will proceed by induction on n. If n = 1, then G = Gy is obviously
solvable. We now suppose that if G has such a subnormal series with
length » — 1, it is in fact solvable. Given the series above of length n,
we can now conclude by induction that the group G is in fact solvable.
But then Gj is a solvable normal subgroup of G, and by assumption
(/G is solvable. By Theorem 36.3 G is then solvable. a

Historical Remarks

We have barely scratched the surface here regarding the study of group
extensions. The general project of understanding groups in terms of
extensions built of simpler pieces is a large one that we cannot develop
fully here. In the general theory, the ‘simpler pieces’ to use are precisely
the simple groups, whose classification was such a major part of 20th
century group theory — for more information you should consult the
Historical Remarks following Chapter 34. This idea leads to subnormal
series whose quotients are simple; these are called composition series.
(In Exercise 36.3 you look at this in the specific context of finite solvable
groups.) Any finite group has such a composition series (see Exercise
36.7). That the factor groups in such a series are unique (up to order)
is an important theorem proved by Camille Jordan in the context of
permutation groups, and in the general case by Otto Holder.

One of the most important steps in the classification problem for
finite simple groups was the difficult theorem of John Thompson and
Walter Feit that all finite groups of odd order are in fact solvable!
Consequently, we need look only to groups with even order in our search
for finite simple groups. The Feit-Thompson theorem took up an entire
issue of the Pacific Journal of Mathematics, when the theorem was first
published in 1963.

'Chapter Summary

In this chapter we explored the notion of solvable group. Such groups
can be built as finitely many abelian extensions of an abelian group,
and as such are a natural generalization of the abelian groups. We then



460 Fzrercises

saw how the class of solvable groups is closed under taking subgroups,
homomorphic images, and building group extensions.

Warm-up Exercises
a. Is every abelian group solvable? If not, give an example of a
non-solvable abelian group.

b. Is every solvable group abelian? If not, give an example of a
non-abelian solvable group.

c¢. Show that the group of quaternions (Jg is solvable. That is, give
an appropriate subnormal series for this group.

Exercises

1. Suppose that G and H are solvable groups. Prove that G x H is
solvable.

2. Prove Theorem 36.2.

3. Suppose the G is a finite abelian group. Prove that G has a com-
position series; that is, show that G has a collection of subgroups
G,‘ so that Gn = {1} g Gn—l g ree Q G1 g GO == G, and Gz’—l/Gi
is a simple group.

4. Suppose that G is a finite solvable group. Prove that GG has a
composition series.

5. Prove that Z does not have a composition series.

6. Let G be a group and H a proper normal subgroup. Prove that
G/H is a simple group if and only if H is a maximal normal
subgroup.

7. Generalize Exercise 36.4. That is, prove that every finite group
has a composition series.

Section VI in a Nutshell

This section starts by considering group homomorphisms, by way of
analogy with ring homomorphisms: A function between groups ¢ :
G — S is a group homomorphism if p(gh) = ¢(g)¢(h) for every g, h €
G. A group homomorphism preserves the group identity and inverses,
the image of G is a subgroup of S, and if G is abelian then so is ¢(G)
(Theorem 28.1). If ¢ is one-to-one and onto, then we say ¢ is an
isomorphism, in which case ker(p) = 1g.

A subgroup H of G is normal if gH = Hg for all g € G; that is, if
the left and right cosets of H are the same for each element of G. This
is equivalent to saying that g 'Hg C H for all ¢ € G. If H is normal
in G, then the collection of cosets of H in G, denoted G/H, forms a
group under the operation (Ha)(Hb) = Hab (Theorem 32.1). G/H is
then called the group of cosets of G mod H or the quotient group of G
mod H. Normal subgroups are to groups what ideals are to rings. The
kernel ker(y) of any group homomorphism is a normal subgroup of G.

Paralleling rings, there is the Fundamental Isomorphism Theorem
for Groups (Theorem 33.4) which says that if ¢ : G — S is an onto
homomorphism, then G/ ker(y) is isomorphic to S.

Whether the subgroup H is normal in G or not, the number of left
cosets of H is the same as the number of right cosets. Assuming G is
finite, this number is called the inder of H in G and denoted by [G : H].
Lagrange’s Theorem (Theorem 31.2) says that |G| = [G : H]|H|. Thus
the order of a subgroup must divide the order of the group and so the
order of any element must divide the order of the group. Thus, any
group of prime order is cyclic.

An important group is the group of permutations on the set
{1,2,...,n}, also called the nth symmetric group and denoted by S,,.
Clearly |S,| = n!. Cayley’s theorem (Theorem 29.1) says that every
group of order n is isomorphic to a subgroup of S,.

A transposition is a cycle of length two. Any permutation can be
factored as a product of transpositions (Theorem 34.1), and, while this
factorization is not unique, all factorizations of a given permutation
have the same parity. Thus we can classify a permutation as either
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even or odd. The set A, of even permutations is a group called the nth
alternating group. The alternating group A, is a normal subgroup of
the symmetric group S, and [S, : A,,] = 2. Furthermore, A, is simple
for n # 4.

All finite abelian groups can be completely described by the Fun-
damental Theorem for Finite Abelian Groups (Theorem 35.1): Every
finite abelian group is isomorphic to a direct product of cyclic groups;
each cyclic group in this decomposition is of order p™, where p is prime.
That is, each finite abelian group is isomorphic to a group of the form

Z ey XZ kg X o+ XL &
pll LD22 Dn"

where the p;’s are primes (not necessarily distinct), and the k;’s are
positive integers (not necessarily distinct).

It follows from this theorem that if G is a finite abelian group of
order r and m divides r, then G has a subgroup of order m (Corollary
35.2). That is, G has subgroups of every possible order.

A p-group is a group where each of its elements has order a power of
the prime p. If G is a finite abelian p-group, then |G| = p", for some n
(Corollary 35.3).

Finally, the idea of abelian group is generalized by the idea of solvable
groups. A group is solvable if it has a finite collection of subgroups
Gg,Gh,- - - Gy, so that

Gpn={1}CGr-1CGr2C---C G CGy=G,

and furthermore each G;11 is normal in G;, and the group of cosets
Gi/Git1 is abelian. Such a sequence of subgroups is called a subnor-
mal series with abelian quotients for G. An important group that is
not solvable is S5 (Example 36.4). This important fact we will use in
Section IX.

Every homomorphic image of a solvable group is also solvable (The-
orem 36.1) as is every subgroup of a solvable group (Theorem 36.2). In
fact, if G has a normal subgroup H, then G is solvable if and only if
both H and G/H are solvable (Theorem 36.3).

VII

Constructibility Problems



Chapter 37

Constructions with Compass and
Straightedge

You probably recall doing various constructions with a compass and a
straightedge in high school geometry. We will imagine idealized tools.
Thus, the straightedge is an unmarked ruler, which in principle can be
as long as necessary. With it we can draw line segments of arbitrary
length, perhaps passing through a particular point or connecting two
given points. Likewise, the compass is as large as necessary; with it we
can draw arcs and circles and duplicate distances. For instance, if A
and B are marked on one line and point C is marked on another, the
compass allows us to mark a point D on the second line so that the
distance between C and D is the same as the distance between A and
B. Of course, in actually carrying out these constructions with real
rulers and compasses, there is always error involved. However, we are
concerned with idealized constructions—perfect constructions with no
error.

37.1 Construction Problems

From around the fifth century B.C. Greek mathematicians wondered
what constructions could be carried out using only a compass and a
straightedge. In the axioms that begin Euclid’s Elements we discover
the postulation of an idealized compass and straightedge. The theorems
about plane geometry that follow show how successful the Greeks were
at doing plane geometry with compass and straightedge. You should
recall some of the constructions possible:

¢ find the midpoint of a line segment;

® construct a line perpendicular to a given line through a given
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point on the line;

e construct a line perpendicular to a given line through a point off
the line;

e construct a line parallel to a given line through a point off the
given line;

e given an angle, bisect it.

> Quick Exercise. How are these constructions done? Better yet,
get out your compass and straightedge and do them. <

There were, however, three famous constructions that ancient Greek
mathematicians could not accomplish with compass and straightedge:

¢ Doubling the cube: Given a line segment, which represents the
edge of a cube, construct another line segment representing the
edge of another cube, whose volume is twice that of the original
cube.

e Trisecting an angle: Given an arbitrary angle, divide it into
three equal parts.

e Squaring the circle: Construct a square that has the same area
as a given circle.

The question of whether such constructions are possible bedeviled math-
ematicians for over 2000 years.

It is important to note that in each case we desire a general method
that works for all instances of the given problem. For example, the

angle trisection problem is to find a method of trisection that works f

for all angles. Certain angles can be easily trisected, but this does not
mean that the general problem has been solved. For example, a 90°

angle can be trisected, because this is equivalent to constructing a 30° |
angle, which is easy to do. In fact, there are a number of ways to i
do this. For instance, you could construct an equilateral triangle and _'
then bisect one of the angles. Or, you could directly construct a right

triangle with angles of 60° and 30°.

> Quick Exercise. Construct an equilateral triangle. Also, directly ;
construct a 30°-60°—90° triangle, by starting with a shorter leg of length

1. «
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In the 19th century all three of the famous constructions above were
shown to be impossible; the proofs were largely algebraic, rather than
geometric. Think for a moment about what a proof of impossibility
means. It is not at all clear how it is possible to show that a construc-
tion is #mpossible—we certainly can’t try all possibilities! Proving the
impossibility of these three classical construction problems was one of
the great triumphs of mathematics in general and algebra in particular.

37.2 Constructible Lengths and Numbers

We start the attack on these problems by first deciding which lengths
can be constructed. Specifically, we want to answer the following ques-
tion: Given a line segment in the plane, which we say is of length 1,
for what values o can we construct a line segment of length «?

Note that if we talk about lengths, we must start with some unit
of measure; hence, we designate some particular line segment as the
unit line segment. Our goal is to give a complete algebraic description
of which numbers we can construct, when starting with a unit line
segment. Our modest beginning is the observation that all the natural
numbers can be constructed:

Lemma 37.1 Given a line segment of length 1 and a natural number
n, it is possible to construct a line segment of length n.

Proof:  Merely use the compass to lay off n copies of the unit line
segment, next to one another on a line (which can be made as long as
necessary, using the straightedge). |

Hence, we say that the natural numbers are constructible. In general,
Wwe say that the real number « is constructible if, given a line segment
of length 1, it is possible to construct a line segment of length |a|. Thus,
the integers are constructible because the natural numbers are.

Theorem 37.2 Given line segments of length 1, a, and b, it is possible
to construct segments of lengths a +b, a —b (if a > b), ab, and a/b.

Proof: The constructibility of a + b and a — b are obvious. To
Construct ab, consider the figure below. Start by constructing two rays
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with vertex V. On one ray mark A so that the length of the line
segment from V to A is a. (We will write |V A] for the length of the
line segment from V to A.) Then on the other ray mark points P and
B so that [VP| =1 and |VB| = b. Now draw the line segment from P
to A. Finally, construct a line parallel to this line segment and through
the point B, as shown in the figure. Label the point where this line
intersects the other ray as Q.

B
P
\%4 " 0
Now, AVAP is similar to AVQB; thus,

Al
VP| |VBJ

a _|[VQ

1= 3 and so

ab=|VQ)|.

A similar construction can be made for a/b. This is left as Exercise
37.1. O

The previous theorem asserts that the sum, difference, product, and
quotient of two constructible numbers is constructible. This makes the
next corollary obvious:

Corollary 37.3 Given a line segment of length 1, the set of all con-
structible numbers is a field.

We will therefore refer to this set as the field of constructible
numbers and denote it by K (the German word for ‘construct’ is ‘kon-
struieren’, and for ‘field’ is ‘Kérper’). Our lemma tells us that Z is a
subring of K. But K is closed under division, and so K contains all quo-

tients of integers; that is, the field Q of rational numbers is a subfield of |
K. Furthermore, by definition all constructible numbers must be real |

numbers. That is, K is a subfield of R.
Are there constructible numbers other than the rationals? To answer

this, construct a square with side one. Then draw the diagonal; this |
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means that v/2 is a constructible number! And we’ve seen before (Exer-
cise 2.14) that V/2 is an irrational number, and so not all constructible
numbers are rational. We shall see, however, that not all real numbers
are constructible. Indeed, the highlight of the next chapter is to exactly
describe the field of constructible numbers. There, we shall see that
constructing the square root is of utmost importance.

Accordingly, we generalize the fact that v/2 is constructible, in the
next theorem:

Theorem 37.4 If o is constructible, then so is \/|a].

Proof: We assume that « is positive. Here is one way of constructing
Vva. Refer to the figure below. First mark points P, O, and Q on a
line so that |[PO| = a and |OQ| = 1. Now find the midpoint of the line
segment from P to @ and using that as the center, draw a semicircle of
radius (o + 1)/2, as shown. Draw a perpendicular to the line through
the point O. Label the point where this perpendicular intersects the
semicircle as X.

Note that AXOQ is similar to APOX. Hence,

|PO| _ |OX]
_— = ===, or
0X] 0@
a  |OX|
OX| = and so
o= |O_X|2
That is, [OX] = va. O

By repeatedly applying the last theorem, we can construct /o if
@ is a positive constructible number and k is a power of two. So,
for instance, v/5, ¥/5, and /5 are all constructible. Thus, there are
infinitely many constructible numbers in addition to the rationals. Our
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goal in the next chapter is to characterize algebraically all elements of
the field K.

Although the constructions we have discussed in this chapter would
have been familiar and understandable to an ancient Greek geome-
ter, our emphasis on constructing numbers, rather than line segments,
would have seemed strange. But we must change our point of view to
bring to bear our modern algebraic tools.

Chapter Summary

We introduced the three famous construction problems of the ancient
Greeks: Is it possible, using only a compass and a straightedge, to

e double the cube,
e trisect an angle, or
e square the circle?

We defined a constructible number and showed that the rationals are
constructible. Indeed, we showed that the set K of constructible num-
bers is a field. We also showed that +/|a| is constructible if « is.

Warm-up Exercises

a. Can you trisect the angle 45°7

b. Suppose you could square a particular circle. Could you then
square any circle?

c. Did we discuss a real number in this chapter that is not con-
structible?

d. Is
2 -5

constructible? (Be careful!)

e. Suppose that /7 were a constructible number. Why would this

mean that we could square a circle of radius 1?7 (We'll see in

Chapter 39 that /7 is not constructible.)

Compass and Straightedge 471

. Suppose that /2 were a constructible number. Why would this

mean that we could double a cube with edge length 17 (We'll see
in Chapter 39 that ¥/2 is not constructible.)

. Euclid’s first postulate states: “Let the following be postulated:

to draw a straight line from any point to any point.” His second
postulate says: “To produce a finite straight line continuously in
a straight line.” With what tool do these postulates equip us?
Why is the tool ‘idealized’?

. Euclid’s third postulate states: “To describe a circle with any

center and any distance.” With what tool does this postulate
equip us? Why is the tool ‘idealized’?

Exercises

. Give the construction for a/b required in the Theorem 37.2.

(a) Construct /5, using the method described in the proof of
the last theorem.

(b) Now provide an easier construction of v/5, by constructing
the diagonal of an appropriately chosen rectangle.

. Explain the steps necessary to construct v/3 + 1 and \/g + 7,

when starting with a line segment of length 1.

. Explain the steps necessary to construct /5 + 2v/6 and v/2++/3.

Then show that these two numbers are the same.

. Show that 1/3 + 2v/2 is of the form a + bv/2, for some integers a

and b. This exercise reinforces the lesson of Exercise 4: A given
element of K may be constructible by quite a distinct list of steps!

(a) Perform the following construction with compass and straight-
edge, justifying each step: Take a line segment AB, and con-
struct on it a square ABDC'. Then find the midpoint E of
AC. Extend line segment AC so that A is between E and
H,and BE = EH. (See diagram below.)
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C D
E\\\

A —ip
H

(b) Now apply the Pythagorean Theorem to the right triangle
EAB to show that

—_— JR— —_9

B(AB — AH) = AH".

(c) If |AB| = 1, what quadratic equation in p = |AH| do we
obtain from part b?

(d) Show that 1/p=p+ 1.

(e) What is the value of the constructible number p? This num-
ber (or its reciprocal) is called the Golden Section, and the
construction we have given for it appears as Proposition 11
in Book 2 of Euclid’s Elements.

7. In this exercise you will show that the regular pentagon is con-
structible.

(a) In the diagram below, show that /ZBAC = 36° and /ABC =
LACB = T2°.
A
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(b) Let E be the point where the bisector of /ABC intersects
the opposite side.

A

B C

Note that AABC is similar to ABCE. If BC = 1 and
EC = z, show that 22+ 2z — 1 = 0.

(c) From Exercise 6c, you should have noted that the positive
solution to this quadratic is the golden section, p = %
Now argue that the regular pentagon is constructible.

8. Technically speaking, the compass given by Euclid’s third pos-
tulate (see Exercise h) is collapsible: it cannot be used directly
to transfer distances from one line segment to another. Prove
that distances can be transferred, with a collapsible compass and
a straightedge, and so the modern compass is mathematically
equivalent to the Greek collapsible compass.
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Constructibility and Quadratic Field
Extensions

In the previous chapter we saw that constructible numbers can be ob-
tained from the unit segment by addition, subtraction, multiplication,
division (the field operations), and by taking square roots of positive
numbers. We may, of course, perform any number of these operations
in any order we please. Note that being closed under taking square
roots of positive elements is a property that K does not share with all
fields. For example, 2 € Q (the smallest field of constructible numbers,
as we have seen) but v/2 ¢ Q.

38.1 Quadratic Field Extensions

Let’s build a bigger field than Q that does contain v/2. Consider the
set

Q(V2) = {a+bV2:a,b € Q}.
It is straightforward to show that Q(+/2) satisfies all the field axioms.

> Quick Exercise. Check that Q(v/2) is a subring of R, and then
verify that it is in fact a field. <

In fact, Q(\/i) is the smallest field containing both Q and v/2; that is,
Q(v'2) is contained in every subfield of C containing both Q and v/2. For
if /2 is an element of a field F C C because Q necessarily is contained
in F, then so is a + byv/2 for all @ in Q. Hence, Q(\/i) C F. Because F
Was arbitrary, Q(v/2) is contained in all subfields of C containing both
V2 and Q.

We say that Q(\/i) is a field extension of Q, because Q is a subfield
of Q(v/2); since Q(v/2) is a strictly larger field, we call this a proper
field extension. More specifically, Q(+/2) is a quadratic field exten-
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sion of Q. In general, a field H C C is a quadratic field extension of a
field F' if
H= {a+b\/E:a,b,€ F}

for some k € F such that vk ¢ F. (If Vk € F, then H = F, and so H
would not be a proper extension.) We will return to this definition of
quadratic field extension in Chapter 42, when we will put it in a more
general context. Note also that when talking about field extensions,
we will often omit the word ‘field’ if the context is clear.

> Quick Exercise. Show that if FF C C is a field and &k € F, then
H={a+Wk:abe F}

is a field. If V& ¢ F, then H properly contains F. That is, H is
a quadratic field extension of F. (This is simply a generalization of
Q(v/2) being a quadratic field extension of Q.) <

Example 38.1

Consider the field Q(7); it is a quadratic extension of @@ because
i = v/—1. This is the field of all complex numbers whose real and
imaginary parts are rational. Of course, Q(¢) does not consist
entirely of constructible numbers, because K C R.

Example 38.2

Let’s build a quadratic extension of the field Q(v/2). To do so, we
need an element belonging to this field whose square root does
not. Does v/3 € Q(v/2)? If so, then for some a and b in Q,

V3 =a+bv2,
and thus
3= (a+bv2)? = (a? + 20%) + (2ab)V2.

But then 2ab = 0, and so at least one of a and b must be zero.
Hence, there is no solution to the equation 3 = a? + 2b%. Thus,
we can consider the quadratic extension field Q(v/2)(1/3), which
we usually write as Q(v/2,v/3).

But what are the elements of this field? A typical element
should look like

(a+bV2) + (c+ dV2)V3 = a + bV2 + ¢V3 + dV.
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> Quick Exercise. Check that the quadratic extension
Q(v/3)(V2) consists of the same elements as Q(v/2)(v/3). Thus,
the notation Q(v/2,+/3) is not ambiguous about the order in
which the elements v/2 and /3 are adjoined to Q. <

In this second example (unlike the first) we obtain a field of con-
structible numbers. This is more generally true: If F is a field of
constructible numbers—that is, F' is a subfield of K—and % is an ele-
ment of F, then F(y/]k|) is also a field of constructible numbers. We
state this in the following lemma.

Lemma 38.1 Suppose that F is a field of constructible numbers and
k € F with k> 0. Then F(Vk) CK.

Proof: If Vk € F, then F(vVk) = F, and we are done. So assume
that vk ¢ F. By Theorem 37.4, vk is constructible. If o € F(Vk),
then a = a+ bk for some a and b in F, and so « is also constructible,
because K is a field. O

38.2 Sequences of Quadratic Field Extensions

We can thus start with the rational numbers and repeatedly take
quadratic extensions by square roots of positive elements, in the process
building larger and larger fields, always contained within the field of
constructible numbers. We formally state this in the following theorem.

Theorem 38.2 Suppose that
Q=K CcHkhC---CF,

is a sequence of fields such that Fi,1 = Fy(\'k;) for some k; € F;, with
ki >0 fori=0,1,...,n—1. Then F, C K.

Proof: Use induction and the previous lemma. O

Are there any constructible numbers that cannot be obtained by
this process of repeatedly extending our field by taking square roots of
Positive elements? The surprising answer is ‘No’! Proving this is our
next task.
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Before we do, let’s consider an example of a constructible number,

say,
[ 4
6 §\/2 +2V7.

This number could be constructed by successively constructing the
following sequence of numbers:
X1=1,
Xo =17,
X5 =VT+V7=2VT,

X4=2,
X5 =2+ 2V7,
Xe=V2+2V7,
X7=§',

XBZ% 2+ 2V/7,
Xo =6,

4
X10=6+§\/2+2\/?,
4
X11=\/6+§\/2+2\/7.

The fields corresponding to the above sequence of numbers would be

F,=Q, Fh, = F(VW7), Fs = Fy = F3 = F, Fg = F; <\/2+2ﬁ),
F10 == Fg = Fg = F7 = FG, and

Fi1 = Fio (\/6+ 3\/2+2\f7>.

So, compressing this sequence, we see that the sequence of quadratic |

field extensions given in the above theorem would be
QCH CFC Fy,
where F; = Q(ﬁ), F=FRH/2+ 2V7),

and F3:F2(\/g 3\/2+2f7).
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(We've abbreviated the original sequence of points somewhat. For
instance, to construct 7 we might have constructed 2 (= 1 + 1), 3
(=241),4 (=2+2), and finally 7 (= 3+4). Likewise, 6 and & would
take some intermediate steps. All those ‘missing’ numbers are in Q,
however.)

Note that there may be different paths to reach a given number and
hence a different sequence of fields reflecting the order in which the
numbers are constructed. (For examples illustrating this, look at Exer-
cises 37.4 and 37.5.) The important point is that each field extension is
a quadratic extension and only a finite sequence of extensions is needed.

38.3 The Rational Plane

We now return to using the compass and straightedge. This discussion
will clarify what is actually meant by constructing with these tools.
In constructing numbers with a compass and a straightedge, we start
with a given unit segment somewhere in the plane and start construct-
ing lengths. We can impose a Cartesian coordinate system on the plane
5o that the left-hand endpoint of the given unit segment is at the ori-
gin, and the right-hand endpoint is on the z-axis at location (1,0). All
rational numbers on the z-axis can be located by applying only the
constructions necessary to carry out field operations (addition, sub-
traction, multiplication, division). Note that a rational number being
constructible means that a line segment of the appropriate length can
be constructed somewhere in the plane. But we can easily transfer this
length to the z-axis so that one end of the line segment is at the origin.
Thus, on the z-axis we can locate +q for any ¢ € Q. We can easily
transfer these points to the y-axis with the compass, and so we can
locate any point (p,q) in the plane where p and q are in Q.

> Quick Exercise. How do you locate (p,q) in the plane once p has
been located on the z-axis and ¢ has been located on the y-axis? <

We have thus located all points in the plane that we can construct
by means of only the field operations: We call this the rational plane,
or the plane of Q.
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38.4 Planes of Constructible Numbers

Suppose now that somewhere in the plane we construct the length VE,
where k is some positive rational number, and vk ¢ Q. By applying
only the field operations to Vk and elements from Q, we can locate
points on the z and y axes that are in the quadratic extension Q(vk).
Thus, we can locate all points in the plane with coordinates (p,q),
where p and ¢ are in Q(+v/k); we call this set of points the plane of
Q(Vk).

More generally, suppose that F' is any subfield of K—that is, a field
of constructible numbers. Then the plane of F consists of the set of
points (p, q) for which p and ¢ are in F.

We now wish to consider what further points can be reached using
compass and straightedge alone, when working in the plane of F', where
F is some field of constructible numbers. Let’s consider the compass

first. To use the compass we need to know two points at which to

place our compass: one for the center, and one for some point on the
circumference. In the case we're describing, these two points must
belong to the plane of F. We will call such a circle a circle in the
plane of F. Likewise, with a straightedge we can draw a line that
passes through two points in the plane of F'. We will call such a line
a line in the plane of F'. Other constructions are a combination of
these two simple constructions.

At this point you might object and say that a constructed circle
could have center at any point in the entire plane with any radius—
simply close your eyes and put the compass down. Or, a line drawn

with the straightedge need not pass through two points in the plane of §

F—again, lay the straightedge down arbitrarily. But steps like these
are not permitted by the axioms of Greek geometry. Instead, we re-
quire step-by-step procedures that can be replicated. For example, a
successful solution to the angle trisection problem should be an unam-

biguous list of constructions that when carried out by anyone leads to ~:
the same solution. This means that when we draw lines or circles with §

the straightedge or compass, we must have unambiguous information:

A circle is determined by its center and a point on its circumference, a {

line by two points.

Let’s be explicit algebraically about what equations for lines and

circles in the plane of a field F' look like.
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The equation for a line in the plane of F is of the form
ar+by+c=0

where a, b, and ¢ are in F', and a and b are not both zero. For if the line
passes through the points (z1,y1) and (z2,y2), then any point (z,y) on
this line must satisfy

Y=  Y2—y

T—2T1 Xo—x

provided z1 # z2. If (x1,y1) and (x2,y2) are both in the plane of F,
then putting the above equation into the form ax + by + ¢ = 0 will
give us a, b, and c in the field F'. The case where x1 = z3 is an easily
handled special case.

> Quick Exercise. Show that we can obtain an equation of the form
ax + by + ¢ = 0 with a,b,¢ € F for the line through two points in the
plane of F' with equal z-coordinates. <

> Quick Exercise. Determine the equation of the line passing through

2+ /5, ——\/5) and (4 + 3v5,2+ 7v/5), and check that the coefficients
a, b, and ¢ do belong to Q(+/5). <

The equation for a circle in the plane of F' is of the form
2+ +de+ey+ f=0,

where d, e, and f are in F. For if the circle has center at (z1,y;) and
a point on the circumference is (z3,y2), then the radius is

\/($2 —z1)% 4+ (y2 — y1)?
and so if (z,y) is any point on the circle, it must satisfy
(z — 301)2 +y—m) = (22— 21) + (¥2 — )

This can be put into the desired form where d, e, and f are in the field
F'if (z1,y) and (z2,y2) are in the plane of F.

> Quick Exercise. Put this equation into the form
2 +y?+dr+ey+f=0

and note that d, e, and f are elements of F. <
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> Quick Exercise. Determine the equation of the circle with center
(24 /5, —+/5) and (4 +3+v/5,2+ 7v/5) on the circumference, and check
that the coefficients d, e, and f are in Q(v/5). <

So, given the circle and line constructions we can make in the plane
of F, what new points can we locate? New points can be located in
one of three ways:

1. The intersection of two lines in the plane of F.

2. The intersection of a circle in the plane of F with a line in the
plane of F.

3. The intersection of two circles in the plane of F'.

We can easily locate points found by method (1) by solving the sys-
tem of two linear equations. Notice that the solution, if the lines are
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not parallel, is a point (p1, p2) with p; and ps in the field F, because our
method of solving two equations in two unknowns involves only field
operations. In other words, method (1) can locate no points outside of
the plane of F.

> Quick Exercise. Find the simultaneous solution to the equations
a1z +b1y+c1 =0 and azx + by + ¢o = 0. Under what conditions will
these two equations have no simultaneous solution and thus represent
parallel lines? <

Method (2) involves the simultaneous solution of an equation for a
circle and an equation for a line. Method (3) involves the simultaneous
solution of two equations for circles. Notice that method (3) reduces
to method (2), for if

P+ +diztey+fi=0
is subtracted from
? +y? + doz + ey + fo =0,

we get
(do —di)z+ (e —e)y + (fa— f1) =0,

and so the simultaneous solution of this linear equation (which gives
the equation for the common chord; see Exercise 38.8) with either of
the two circle equations is the desired solution. Thus, what remains is
to find which points can be obtained from method (2).

So, suppose we wish to solve simultaneously

22+ +dr+ey+ f=0, and
ar+by+c=0,

where all the coefficients belong to the field F. Because a and b can’t
both be zero we will assume that b # 0 (the case where a # 0 is similar).
We solve for y in terms of z:

V=%

Substituting this into the circle equation yields:

2
2, (%, ¢ _e, € —
x +( 7% b) +da:+e< A b>+f 0
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which is a quadratic equation in z. We could use the quadratic formula
to solve it; we will not carry out the calculations explicitly.

> Quick Exercise. Apply the quadratic formula to this quadratic
equation, and obtain the solutions in terms of the coefficients. <

The solution you just obtained has the form A+ B Vk, with A, B,k €
F. If k < 0, then there are no real solutions, and this means geomet-
rically that there is no intersection. If k = 0, then there is a unique
solution; this means geometrically that the line is tangent to the circle.
Finally, if k£ > 0, we have two distinct intersections.

In case we have solutions, we can determine y by substitution: This
yields an expression of the form A’ + B'Vk, with A’, B’ € F.

> Quick Exercise. Show that if there are solutions for = of the
form A+ Bk, with A, B,k € F, then y has the form A’ + B'Vk, with
A,B' eF. <«

So, notice that both z and y are in the field F(vk); if vk € F, then
of course F(vk) = F, and so x and y are in F. That is, the point (z,)
is in the plane of F(Vk).

38.5 The Constructible Number Theorem

We are now ready to prove the main result of this chapter.

Theorem 38.3 Constructible Number Theorem The fol- .

lowing two statements are equivalent:
a. The number « is constructible.

b. There exists a finite sequence of fields

Q=FRCcFRC---CFxn

with o € Fy and Fi.1 = F;(Vk;) for some k; € F;, with k; > 0 :

fori=0,...,N —1.

Proof: That (b) implies (a) is the previous theorem.

To show that (a) implies (b), suppose « is constructible. Then we can ‘
construct the point (a, 0), which we will label P, starting only with the ,
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segment of length 1 along the positive z-axis. To construct P, we must
construct a finite sequence of points, Py, P,..., Py = P. Because
the points (0,0) and (1,0) are the first two points constructed, we set
Py = (0,0) and P, = (1,0). Of course, Py and P; are both elements
of the plane of Q. Now P, is constructed using only Py, P; and one of
the three constructions for locating new points in the plane. Hence, by
the above discussion, P; € Q(vk) for some positive k € Q. (This field
may be equal to Q if vk € Q.) Then Fy = F; = Q and F, = Q(Vk).

We now proceed inductively. Let F; be the smallest field contain-
ing the points Fy, ..., ;. By the induction hypothesis, for each i =
3,4,..., M, P, was constructed using only the points constructed be-
fore it and one of the three constructions for locating points in the
plane. Hence, P; € F;_1(y/k;—1) for some positive k;_1 € F;_1.

Noting only those times the field F; is a proper extension of F;_1, we
thus have that « is in the field Fy where

Q=K Ckh C---CFy

and Fj11 = F;(vk;) where k; € F; with k; >0, for i =0,1,...,N — 1.
(Notice that N, the number of different fields needed in the construc-
tion of ¢, is probably smaller than M, the number of points actually
constructed.) 0

Thus, for any constructible number, there is a finite sequence of
quadratic extension fields, the last of which will contain the given num-
ber. Of course, this was exactly what we discovered for the particular

constructible number
4
\/ 6 -+ 3 V2+2V7.

In Chapters 42-44 we will provide a more general theory of field
extensions (including degrees other than 2); but this will require some
new concepts, which we introduce in Chapters 40 and 41. See Exercise
38.5 for an example of a non-quadratic extension.

Chapter Summary

We defined quadratic field extension. We examined what new points
could be constructed from points previously constructed and found
that a new point was always in a quadratic field extension of the field
determined by the old points.
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Finally, we proved the main result of this section, the Constructible
Number Theorem, which completely describes in algebraic terms which
numbers are constructible.

3. Generalize Exercise 2: Suppose that p and ¢ are distinct positive
prime integers; prove that

Warm-up Exercises

. Explain why the Constructible Number Theorem 38.3 guarantees
that the following numbers are constructible:

V6, V6, 2+ V5.

. What is the quadratic field extension R(7) usually known as?
. Does C admit any proper quadratic field extensions?

. Does K admit any proper quadratic field extensions? Does it
admit any proper quadratic field extensions that are subfields of
R?

. Did we discuss a real number in this chapter that is not con-
structible?

. Suppose that ¢; and ¢5 are lines in the plane of a field F of
constructible numbers. What can you say about the intersection
of 61 and 62?

. Suppose that a, b, and ¢ are constructible numbers, and az? +
bx + ¢ has real roots. Are these roots constructible numbers?

Exercises
. Show that v/5 ¢ Q(v/3) by showing that 5 cannot be the square
of a number of the form a + bv/3 where a and b are in Q.

. If F = Q(v/3), describe the set of elements of the field F(v/5).
Show that this field is the same as the quadratic extension

QV5)(V3).

and describe the elements of the field.

. Give a sequence of numbers necessary to construct the number

V2 4+ 4v/3.

Give the corresponding sequence of fields.

. We've been able to give a nice description of the smallest field

containing both v/2 and Q; namely, {a + bv/2 : a,b € Q}. In
this problem we try to give a description of the smallest field
containing ¥/2 and Q. Why is {a + b¥/2 : a,b € Q} not the
answer? Now consider {a + bv/2 + ¢V/4 : a,b,c € Q}. When
proving this is a field, the difficult part is showing that a typical
element a + bv/2 + cV/4, with a,b,c € Q and not all zero, has a
multiplicative inverse. You might not be successful in this part,
and we will give an explicit hint below. But do at least verify
that this set is indeed a commutative ring with unity.

Here is a hint for how to show that a typical element indeed
has a multiplicative inverse. In fact, the multiplicative inverse of

a+b\3/§+cx3/1isd+e€/§+f\3/4_1where

de —2bc + a2
203 + 4¢3 + a3 — 6bea
o= 2¢2 — ba and
T 2B + 4¢3 + a3 — 6bca’
ca — b?
f

DTS + 4¢3 + a3 — 6bca’

You can verify this by computing (a+b+/2+cV/4)(d+eV/2+ fV/4)
and seeing that it simplifies to 1. (This is obviously a non-trivial
calculation!)

We will show (in a less grubby manner) that this set is a field in
Theorem 43.3. Note also that we have by no means claimed that
/2 is a constructible number (see Section 39.1).
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FEzxercises

Describe the elements of the quadratic extension field F(v/2),
where F = Q(v/2).

Suppose that a, b, and ¢ are constructible numbers. Consider the
polynomial az? 4+ bx? + c: Are its real roots constructible? (See
Warm-up Exercise g above.)

Argue that the linear equation that results when two circles are
intersected algebraically gives the equation of the common chord
of the two circles. (See the figure below.)

Find the equation of tangent line to the circle
(z-12+4y*=5

at the point (3,1) by algebra: This is the only line that intersects
this circle in exactly this point. Note: This was Rene Descartes’
method for determining a tangent line. Doing this problem should
make you appreciate the geometric approach to finding the tan-
gent (it is perpendicular to a radial line) and the calculus ap-
proach (calculate dy/dz).

Chapter 39

The Impossibility of Certain
Constructions

The Constructible Number Theorem 38.3 is the most important piece
of machinery necessary to show that the three construction problems
of the Greeks are indeed impossible with a compass and a straightedge.

39.1 Doubling the Cube
We first tackle the problem of doubling the cube. Recall the problem:

Given a line segment representing the edge of a cube, construct an-
other line segment representing the edge of a cube with twice the volume
of the original cube.

We start with a line segment of length 1, and consider the cube with
this segment as one edge. A cube of twice the volume would have edges
of length ¢/2. So, doubling the cube then amounts to constructing the
number /2. We will show that /2 is not constructible by using the
Constructible Number Theorem. We must prove that 2 cannot be
an element of a field at the end of a finite sequence of quadratic field
extensions that starts with the rational numbers. The next lemma is
the key to showing this.

Lemma 39.1 Let F(Vk) be a real quadratic field extension of a field
F. If 2 € F(Vk), then /2 € F.

Proof: Suppose that /2 € F(vk), a proper quadratic extension of
the field F. Then ¥/2 = a + bvk, with a,b € F and vk ¢ F. We want
to show that b = 0. But,

2 = (a + bVk)®
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= a® + 3a?bVk + 3ab%k + bPkVE
= (a® + 3ab’k) + (3a%b + B*k)VE.

If 3a®b+ b3k # 0, then we could solve the above equation for vk; the
resulting equation would show that vk € F. Hence, 3a2b + b3k = 0.
But then,

(a — bVE)® = (a® + 3ab’k) — (3a%b + b°k)Vk
= a® + 3ab’k
= 2,

and so a — bvk is also a cube root of 2. Thus, a + bvk and a — bWk
are both real roots of 2% — 2. But

2 —2=(z— V2)(2? + V2z + V4),

and the quadratic factor is irreducible in R[z].

> Quick Exercise. Use the quadratic formula to check that this
quadratic factor is irreducible in R[z]. <

Hence, a + bv'k = a — bvk which implies that b = 0, as we wished.O

It now follows from Lemma 39.1 that:

Theorem 39.2 [t is impossible to double the cube.

Proof:  As noted, doubling the cube is equivalent to constructing +/2.
But if /2 were constructible, by the Constructible Number Theorem
38.3, there would exist a finite sequence of quadratic field extensions,
Q=F,CF, C---C Fy, with /2 € Fy.

But Lemma 39.1 says that if V2 € Fy = FN_I(\/E), then V2 €
Fn_1. Repeating this argument inductively implies that ¥/2 € Q, which
is false. (See Exercise 5.13.) O

39.2 Trisecting the Angle

A similar approach is used to show that trisecting an angle is impossi-
ble. Again, recall the problem:
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Given an arbitrary angle, divide it into three equal parts.

The problem calls for a method to trisect all angles. If we can exhibit
just one angle that can’t be trisected, then such a method does not
exist. The angle we will use is the 60° angle. As we’ve noted before,
the 60° angle is constructible—as an angle of an equilateral triangle,
for instance. Trisecting a 60° angle implies the construction of a 20°
angle. But if we can construct an angle a, we can construct the cosine
of «, as the figure below shows.

COos ¢

So being able to trisect a 60° angle implies that cos 20° is a constructible
number; this is what we will show is impossible, using the Constructible
Number Theorem 38.3.

We use the formulas for the sine and cosine of the sum of angles to
perform the following derivation:

cos 36 = cos(26 + 0)
= cos 20 cos § — sin 20 sin 0
= (cos? § — sin? 0) cos § — (2sin 0 cos ) sin §
= cos® 0 — 3sin?f cos 6
= cos® 6 — 3(1 — cos® §) cos 8
=4cos®0 — 3cos b

Setting 6 = 20°, cos 30 = cos 60° = 1/2, and so cos 20° is a solution to
423 — 3z — 1/2 = 0 or 8z — 6z — 1 = 0; thus, 2 cos 20° is a solution to
3 -3z-1=0. So, if cos 20° were constructible then so would 2 cos 20°,
which is a root of 23 — 3z — 1. Thus, if cos20° were constructible, it
would be possible to construct a real root of 3 — 3z — 1. We will show
that this is impossible, using the next lemma, which has the same flavor
as Lemma 39.1 above.

Lemma 39.3 Let F(V'k) be a quadratic field extension of a field F. If
the equation z3 — 3z — 1 = 0 has a solution in F(vVk), then it has a
solution in F.
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Proof:  Let a + bvk be a root of 22 — 3z — 1 in F(\/E), a proper
quadratic extension of the field F. If b = 0, then the root is a, which

isin F. If b 3£ 0, we will show that —2a is a root; this will still mean
that 2° — 3z — 1 has a root in F. So, if b # 0,

0=(a+bVE)?® —3(a+bVk)—1
= a® + 3a%0VE + 3ab%k + b3 kVE — 3a — 30VE — 1
= (a® + 3ab®k — 3a — 1) + (3a%b + b3k — 3b)VE.

But 3a?b+ b3k — 3b = 0, for otherwise, vk € F. But then a3+ 3ab?k —
3a — 1 = 0. After dividing the first equation by b (we know b # 0}, we
have 3a? + b%k — 3 = 0, and so b%k = 3 — 3a%. Substituting this into
the second equation we have,

0=a%43a(3-3a%)-3a -1
=a®+9 —9%°%—3a—1
= —8a% +6a—1
= (—2a)® — 3(—2a) — 1.

In other words, —2a is a root of 2® — 3z — 1. O

Theorem 39.4 It is not possible to trisect an arbitrary angle.

Proof: As noted before, if we could trisect a 60° angle, we could
construct a 20° angle. This means we could construct the number
cos 20°, and this implies that we can construct a root of z3 — 3z — 1.
Using Lemma 39.3 and the Constructible Number Theorem 38.3 and
arguing as in the previous theorem, we see that this implies that there
is a rational root of 3 — 3z — 1. But, by the Root Theorem 4.3, this
implies that x> — 3z — 1 factors in Q[z]. However, we can see that this
polynomial is irreducible in Z[z] and so, by Gauss’s Lemma 5.5, is also
irreducible in Q[z].

> Quick Exercise. Why is 23 — 3z — 1 irreducible in Z[z]? <

Hence, 23 — 3z — 1 has no rational root, and so we cannot trisect a
60° angle. 0
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39.3 Squaring the Circle

Finally, we turn our attention to squaring the circle. Let’s state the
problem carefully:

Given a circle, construct a square with the same area.

We are unable to give the full proof here of the impossibility of squaring
the circle, because one step is quite difficult. Given a circle with radius
1, its area is 7, and so to square the circle we must be able to construct
the number /7 (to be the side of the required square). Obviously,
this is possible, if we could construct the number 7 itself. (This is the
argument for Exercise 37.e.)

In the 18th century the German mathematician Johann Heinrich
Lambert managed to prove that 7 is not a rational number, by showing
that if = is rational, then tanz cannot be; because tan(w/4) = 1,
Lambert’s theorem means that 7/4 (and hence 7) cannot be rational.
Lambert conjectured that 7 is a transcendental number; that is, a
number that is not the root of any polynomial in Q[z]. This was finally
proved by another German mathematician, Ferdinand Lindemann, in
1882; he made heavy use of the work of the Frenchman Charles Hermite,
who had proved the transcendence of e a decade earlier. As we shall see
shortly, Lindemann’s theorem finally laid to rest the last of the great
constructibility problems of the ancient Greeks.

Theorem 39.5 Lindemann’s Theorem 7 is transcendental.

Proof: The proof is long, difficult, and analytic, rather than al-
gebraic. For an accessible version, see Field Theory and its Classical
Problems, by Charles Hadlock. a

To use Lindemann’s Theorem to prove the impossibility of squaring
the circle, we first need a little more machinery.

Lemma 39.6 Suppose F(V'k) is a quadratic field extension of F. If «
is a root of a polynomial in F(Vk)[z] of degree n, then it is the root of
a polynomial in F[z] of degree 2n.

Proof: Assume that « is a solution to an equation of the form

(an + b VE)Z™ + -+ (2o + boVE) = 0



494 A First Course in Abstract Algebra: Rings, Groups, and Fields

where all the a;’s and b;’s are in the field F and a,, and b, are not both
zero. Moving the terms with Vk to the right side of the equation, we
get

anz™ + -+ + ag = —Vk(bpz™ + - - - + bo).

Squaring both sides and moving all terms to the left gives a polynomial
in F[z] that also has a as a root. Now the leading term of this poly-
nomial is (a2 — kb2)z?". This coefficient is not zero, because otherwise
k = a2 /b2, contradicting the fact that vk & F. 0

Theorem 39.7 If o is constructible, then o is the root of a polynomial
in Q[z] of degree 27, for some r € N.

Proof: By the Constructible Number Theorem 38.3, a € Fiv, where
Q= FyCc F, C --- C Fy is a sequence of quadratic field extensions.
But « is the root of a linear equation in Fx, namely, x — a. By
repeated application of Lemma 39.6, a is the root of a polynomial in
Q[z] of degree 2V. 0

So, if m were constructible, it would have to be the root of some
polynomial in Q[z]; Lindemann’s Theorem says this is not true, and so
we have:

Theorem 39.8 It is not possible to square the circle.

Historical Remarks

Our proofs that it is impossible to duplicate the cube and to trisect an
arbitrary angle are similar in flavor to the first such proofs, by Pierre
Wantzel, which appeared in 1837. His version of the Constructible
Number Theorem asserted that any constructible number is the root
of an irreducible polynomial with degree a power of two, and hence
numbers like /2 and cos(20°) are not constructible.

Another important impossibility result had been obtained a decade
earlier by the Norwegian mathematician Niels Abel, who showed that
it is impossible to solve an arbitrary fifth-degree equation, using only
elementary algebra and the extraction of roots. We made reference to
this result in the Historical Remarks following Chapter 9.

It turns out that both these achievements can be viewed most el-
egantly as part of a general theory of field extensions of the rational
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numbers, and it was the French mathematician Evariste Galois who
laid the important groundwork for this theory. In the remainder of
this book we will look into this important area of algebra.

Chapter Summary

We proved that it is impossible to double the cube, trisect an angle,
or square the circle using only a compass and a straightedge. The
outline of the proofs are the same: If the construction were possible,
then we could construct a certain number. (For us, the numbers are
#/2 for doubling the cube, cos20° for trisecting an angle, and = for
squaring the circle.) But the Constructible Number Theorem or its
corollaries show that each number is not constructible; therefore, the
three constructions are impossible.

Warm-up Exercises
a. We have finally discussed some real numbers that are not con-
structible! Give some examples.

b. During our discussion of trisecting the angle, we proved that if
an angle 6 is constructible, then cos# is constructible. Explain
why the converse of this statement is true too.

c. Lambert proved in the 18th century that 7 is not rational; why
is this not sufficient to show that the circle cannot be squared?

d. Explain why it is possible to double the square.

e. Explain why it is possible to ‘octuple’ the cube.

Exercises

1. (a) The number V2 + /3 is constructible. It is an element of
F(\/§) where I' = Q(\/ﬁ) In fact, v/2 + /3 is the root of
the polynomial x — (v/2+ v/3) in F(+/3). Find a polynomial
in Q[z] for which v/2 4+ /3 is a root.

(b) Find a polynomial in Q[z] for which /4 + /7 is a root.
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FEzxercises
Show that ¥/2 4+ 1/2 is a root of the polynomial
23— 3v22% + 62 — (2+2V2)

in Q(v/2)[z]. Then obtain a sixth-degree polynomial in Q[z] that
has this number as a root.

While it is impossible to square the circle, it is possible to square
the rectangle. That is, given a rectangle, it is possible to construct
a square of the same area. Do this.

Hint: Consider the diagram below. Show that ¢? = ab. Thus, if
one constructed a square with sides of length ¢, it would have the
same area as the given rectangle with sides a and b.

(a) Show how to square an arbitrary triangle.

(b) Consider a polygon in the plane (by this, we mean just
a bounded figure with edges that are line segments). How
could you use part a to square such a figure?

. Suppose that p and q are elements of F', a subfield of the field of

real numbers. Let F(vk) be a proper quadratic field extension
of the field F. Prove that if the equation

B4 pr+qg=0

has a solution in F(v/k), then it has a solution in F.

. Use the trig identity

cos 30 = 4cos® @ — 3cos b,

and the previous exercise to prove that the angle 27/9 is not
constructible.
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7. Suppose that n is a positive integer, with no integer cube root.

Let F(Vk) be a quadratic field extension of a field F. Prove that
if ¢/n € F(Vk), then ¢/n € F.

. Let n be a positive integer, with no integer cube root. Use the

previous exercise to prove that we cannot construct a cube with
volume equal to n times that of a given cube. (Thus, we cannot
triple or quadruple the cube with compass and straightedge.)

. Consider a parabola (by analytic geometry, we may consider a

curve of the form f(z) = az? + bz + ¢). Pick two points

Pi(zy, f(z1)) and Pa(x2, f(z2))

on the parabola, and consider the region bounded by the parabola
and the line segment between the two points. This is called a
segment of the parabola.

——

P,

P

(a) Prove (using calculus) that the area of the segment is equal
to % times the area of the triangle P, P, P3, where Ps is the
point on the parabola with z coordinate (z1 + z2)/2.

(b) Explain why this means that we can square the segment of
the parabola. This result was known to Archimedes (ca.
250 B.C.); he proved it using the geometry of the parabola,
rather than calculus.

10. In the proof of Lemma 39.1 we needed to show that 3 — 2 has

only one real root; we did this using algebra. Prove this result
using calculus.
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11. Suppose that # is any fixed angle with positive radian measure.
In this problem you will show that it is possible to construct an
angle arbitrarily close in size to 6.

(a) Suppose that € is an arbitrary positive number. Describe
how to construct an angle 1 whose angle measure is smaller
than e.

(b) Explain why an integer multiple n1y of the angle constructed
in part a must be larger than 6.

(¢) Consider the smallest positive integer n so that niy is larger
than 6 (why must n exist?). Use n to find an angle within €
radians of 6.

(d) Why does part ¢ mean that we can come arbitrarily close to
constructing the trisection of any given angle?

(e) What is the philosophical difference between the construc-
tion in part d and the sought-for (impossible) trisection con-
struction?

Section VII in a Nutshell

This section presents three famous compass and straightedge construc-
tion problems of the ancient Greeks: doubling the cube, trisecting an
angle, and squaring the circle. These problems were unsolved by the
Greeks. We show that it is not in principle possible to make these
constructions, using modern algebraic (and not geometric) techniques.

When starting with a line segment of length 1, we call the length of
any line segment we can construct after a finite number of compass and
straightedge construction steps to be a constructible number. First, we
show that the set of constructible numbers is a field (Corollary 37.3).
We can construct all rational numbers (Lemma 37.1 and Theorem 37.2)
and all square roots of constructible numbers (Theorem 37.4). This
development leads to the Constructible Number Theorem (Theorem
38.3), which asserts that a number « is constructible exactly if the
following condition holds:

There exists a finite sequence of fields

Q=FCckhC---CFy

with o € Fy and Fyy1 = F;(v/k;) for some k; € F;, with k; > 0 for
t=0,...,N—-1.

We show that it is impossible to double the cube by showing that
V2 is not constructible (Lemmas 39.1 and Theorem 39.2). We show
that it is impossible to trisect a 60° angle (that is, construct a 20°
angle) by showing that to do so would imply being able to construct a
solution to 2 — 3z — 1 = 0, which we show is impossible (Lemma 39.3
and Theorem 39.4). Finally, we consider the problem of squaring the
circle. If this were possible, then = would be a constructible number.
Lindemann’s Theorem (Theorem 39.5 — which we do not prove) says
that 7 is transcendental: that is, 7 is not the root of any polynomial
with rational coefficients. But we show that any constructible number
1 the root of a polynomial in Q[z] of degree 2" (Theorem 39.7) and so
1s not transcendental. Thus it is impossible to square the circle.
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Vector Spaces and Field
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Chapter 40

Vector Spaces I

The three previous chapters showed the impossibility of the three fa-
mous Greek constructibility problems. Some of the grubbier parts of
the proofs in the previous chapters can be replaced by more elegant
arguments—provided we know more about the algebraic structures in-
volved. The next five chapters will develop the machinery needed for
these more sophisticated arguments. The proofs we presented in Chap-
ters 37-39 are correct and have the advantage of not needing a great
deal of sophistication in order to understand them. However, the ar-
guments to be presented next have the advantage of being much more
elegant and concise (at the expense of being less accessible). This is
not very surprising as the more we know, the easier it is to express our-
selves. As an added bonus, our additional machinery will enable us to
prove another impossibility result, regarding the solution of polynomial
equations using arithmetic and root extraction.

Putting our applications aside, the topics covered in these next few
chapters are important in their own right. The first such topic we
need to discuss is the notion of vector space; this will allow us to better
understand the ideas of field extensions. As we shall see, a vector space
(like a ring, group, or field) is just a set, equipped with operations
satisfying certain nice rules.

The study of vector spaces is a subject in its own right, called linear
algebra, and you may have the opportunity to take an entire course
about this topic, if you haven’t already. In the next two chapters we
will develop only enough of the theory from this subject in order to
better understand fields. There is much more (both computational
and theoretical) to linear algebra than we will be able to present here.
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40.1 Vectors

In calculus you studied vectors in two and three dimensions. Such
vectors provide a very useful way of looking at the geometry of the plane
and three-dimensional space. In this chapter, we wish to generalize
the properties of such vectors, to cases that are not quite so easily
visualized. We will emphasize a more abstract and algebraic approach
to vectors, but you should keep in mind that the familiar vectors from
calculus are important motivating examples.

Let’s start by examining some of the algebraic properties of the fa-
miliar three-dimensional vectors. We denote this set of vectors by R3.
Recall that R = {(r1,72,73) : 7 € R}. Two of these vectors may be
added coordinate-wise to get another vector. Addition of two vectors
has a nice geometric interpretation, as illustrated below.

You may not have given much thought to it at the time, but this
vector addition has the following properties: for v,w and u € R3,

i.v+w=w+v,
il. v+ (w+u)=(v+w)+u,

iii. there exists a zero vector 0, with the property that v+ 0 = v,
and

iv. every vector v has an additive inverse —v, with the property
that v+ (—v) = 0.

You should recognize these as the same defining properties possessed
by addition in a ring (see Chapter 6) or the properties of the operation
in an abelian group (see Chapter 24). Here, the additive identity is
the zero vector 0. In R?, 0 = (0,0,0) and if v = (v, vs,v3), then
—V = (—’Ul, —Vg, —’U3).
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The other arithmetic operation in the algebra of vectors is scalar
multiplication, in which vectors are multiplied by scalars to give other
vectors. Here, our scalars come from the field R. Scalar multiplication
has the following properties: for r,s € R and v,w € R3,

v. (r+s)v=rv+sv,

vi. (rs)v =r(sv),
vii. r(v+w)=rv+rw, and
viii. 1v =wv.

Note that the 1 in property (viii) is the scalar 1. You can easily show
that these eight properties hold in R? as well as R?. Note that when we
considered R? as a ring we also defined coordinate-wise multiplication.
However, when thinking of elements of R? as vectors, we will consider no
such operation, because coordinate-wise multiplication of two vectors
has no simple geometric interpretation.

40.2 Vector Spaces

There are other algebraic objects for which the above eight properties
hold. A vector space V over a field F' is a set with a binary operation
called addition that satisfies properties (i) through (iv) above, together
with a scalar multiplication of vectors from V by scalars from F' so that
if r,s € F and v,w € V, then properties (v) through (viii) listed above
hold.

Note that scalar multiplication is not a binary operation in the sense
we've discussed before. Instead, scalar multiplication by the field ele-
ment r maps each vector in V to another vector in V. We write rv to
denote the vector that v gets mapped to and speak of ‘multiplying v
by r’.

It is important to think carefully about the meaning of the axioms
(v) through (viii) and in particular where the operations are taking
place. For example, the + in axiom (v) denotes the addition in the
field F, while the + in axiom (vii) denotes the addition of vectors in V.
The juxtaposition of r with s in (vi) denotes multiplication in the field,
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while the juxtaposition of (rs) with v denotes the scalar multiplication. Example 40.3
You should be careful to keep track of which operation is which.
The set F™ of n-tuples with coordinates from the arbitrary field
F is a vector space over F. Here, a typical vector is of the form
(a1,as9,...,a,) where a; € F and scalars are elements of F. The
addition is coordinate-wise, and multiplication by a scalar merely
multiplies each coordinate by that scalar. In Exercise 40.3, you
will verify the details of this.

To be more concrete, the set Z3 x Zjz of ordered pairs with
coordinates from the field Z3 is a vector space, over the field Zs.

> Quick Exercise. Look at the other axioms, and make sure you
understand which of the operations are meant in each case. <

We now examine some examples of vector spaces:

Example 40.1

The field C of complex numbers is a vector space over R, the field
of real numbers. Here, the vectors are complex numbers and the
scalars are real numbers.

To show that this is a vector space, we first note that the set
of vectors is closed with respect to addition (because C is a field,
which is closed under addition) and that properties (i) through
(iv) are properties of addition in all fields. Now, let’s look at
property (v). Let r and s be real numbers and v = a + bi € C.
Then

> Quick Exercise. List all the elements of this vector space. <

Example 40.4

The set of polynomials Q[z] is a vector space over Q. The vec-
tors are polynomials and the scalars are rational numbers. (See
Exercise 40.1.)

(r+s)v = (r+s)(a+bi) = r(a+ bi) + s(a + bi),
Example 40.5
because multiplication in a field enjoys the distributive property.
Thus, we have shown that (r + s)v = rv + sv, as desired. The
remaining properties are just as straightforward to show.

Let Q,[z] be the set of polynomials of degree no more than n
with coefficients from Q. This is a vector space over Q. Here,
vectors are polynomials of degree no more than n and scalars
are rational numbers. This example illustrates the fact that in
a vector space, there need be no multiplication of vectors, but
only addition of vectors: Q,[z] is closed under addition but not
multiplication. (See Exercise 40.2.)

> Quick Exercise. Show that properties (vi) through (viii)
hold here. «

We will generalize the idea of this example in Exercise 40.9.

Example 40.2 Example 40.6
Q(+?2) = {a+bV2 : a,b € Q}, is a vector space over Q. Here,

i !
The set of complex numbers C forms a vector space over itself! vectors are elements from Q(v/2) and scalars are from Q.

Here, the vector space axioms are just properties that hold for

addition and multiplication in a field. > Quick Exercise. This example bears certain similarities with

Example 40.1; explain this. Hint: What kind of ring is Q(v/2)? <
> Quick Exercise. What does axiom vi mean in this context? <

The point we’ve made above in Example 40.5 bears repeating: In
many of these examples of vector spaces it is natural also to define
multiplication of vectors, as in our first example R3. Indeed, in many
cases the vector space is a ring or field in its own right. But when

In the next example we provide a natural generalization of the vector
space R? (over the field R).
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we look at these as vector spaces over some field, we look at their
structure in a different way and multiplication of vectors is not one of
the operations considered. This change of point of view is important
to keep in mind.

We now prove some basic properties of vector spaces. These prop-
erties should seem familiar, both from your previous experience with
ring and group theory, and also any previous experience you have had
with vectors, either in calculus or linear algebra.

Theorem 40.1 Let V be a vector space over F withv € V andr € F.
Then, the additive inverse —v of v is unique. Also, Ov = 0, r0 = 0,
and

Proof: Because (V,+) is a group, the uniqueness of the additive
inverse follows from Theorem 25.1.d.

Note the difference between the scalar 0 and the zero vector 0. The

first identity says that multiplying any vector by the zero scalar yields
the zero vector. But,

Ov = (04 0)v = 0v + Ov,

and so adding —(0v), the additive inverse of Ov, to both sides, we get
that 0 = Ov, as desired.

Note that in proving that Ov = 0, we used the fact that 0 was the
additive identity of F' and one of the distributive laws (v). To prove
the next identity, we will use the fact that 0 is the additive identity of
V and the other distributive law (vii). So,

r0=7(0+0)=r0+r0,

and so 0 = r0, as before.

To show that (—r)v = —(rv), we will show that (—r)v is the additive
inverse of rv. That is, it must be equal to —(rv). We do this by adding
(—7)v to rv and showing that the sum is 0. Doing so, we have

(=r)v+rv=(-r+r)v=0v=0,

as desired. You can show in a similar manner that r(—v) = —(rv).

> Quick Exercise. Show that r(—v) = —(rv). < d
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The proofs of the results of Theorem 40.1 might seem familar, and
should indeed be compared to the solutions to Exercises 6.1 and 6.2.

Chapter Summary

In this chapter we defined vector space, looked at a number of examples
of vector spaces, and examined some elementary properties.

Warm-up Exercises

a. Consider the vectors v = (2, —1) and w = (2,3) in R2. Compute
the following, and draw diagrams to interpret these computations
geometrically:

b. Explain the difference between 0 and 0.

c. Let V = {f € Zs[z] : deg(f) < 2}; explain why this is a vector
space over Zg. List all vectors and all scalars in this case.

d. Let V. ={a+br:a,b € Q}. Is this a vector space over Q? Over
R?

e. Let V be a vector space over R, and let v € V. Explain what
—v and (—1)v mean, according to the definitions of our notation,
why are they equal?

f. Is C a vector space over Q7 Is Q a vector space over C?

g. Is Z[z] a vector space over Z?

Exercises
1. Check Example 40.4: That is, prove that Q[z] is a vector space
over Q.

2. Check Example 40.5: That is, prove that Q,[z] is a vector space
over Q, although it is not a subring of Q[x].
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10.

11.

12.

13.

Ezercises

. Check Example 40.3: That is, let F' be a field, and let F™ be the

set of n-tuples with entries from F. Prove that F™ is a vector
space over F.

. Let V be a vector space over the field F. Suppose that r,s € F

and 0 # v € V. Prove that if rv = sv, then r = s.

Let V be a vector space over the field F'. Suppose that 0 # r € F.
Define the function
er: VoV

by ¢r(v) = rv. Prove that ¢, is a one-to-one onto function that
preserves addition. That is, ¢, is an additive group isomorphism
from (V,+) onto itself.

. Let V' be a vector space over the field F. Suppose that r,s € F

and v € V. Prove that r(sv) = s(rv).

. Show that M5(R), the two-by-two matrices with entries from R,

is a vector space over R.

Show that My, ,(F'), the m-by-n matrices with entries from the
field F, is a vector space over F.

If F and E are fields with F C E, show that E is a vector
space over F'. This is an important example of a vector space in
subsequent chapters.

Let Q(v2) = {a+ b2+ c¥/4: a,b,c e Q}. (In Exercise 38.5 you
showed this is a field.) Show that Q(4/2) is a vector space over
Q.

Let V be the set of real-valued functions with addition defined
by

(f +g)x = f(z) + g(z).
For ¢ € R and f € V, the scalar multiple of f by ¢ is cf(z) =
c(f(x)). Show V is a vector space over R.

Prove that Z is not a vector space over Z,, where p is a positive
prime integer.

Prove that Z is not a vector space over Q.

Chapter 41

Vector Spaces 11

In the previous chapter we defined vector spaces. In this chapter we
examine subsets of vector spaces that in some way generate the entire
vector space. This idea gives rise to a way of measuring the size of a
vector space.

41.1 Spanning Sets
If V is a vector space over F' and
{vi,ve,...,vp} CV,
then a linear combination of vy, vy, ..., v, is the vector
ai1vy + agva + -+ apVvp,

where the a; are scalars. The collection of vectors that can be written
as linear combinations of a given set of vectors V is the set spanned
by V.

Example 41.1
Consider the vectors v = (1,0,0) and w = (0,1,0) in R®. The

vector 1 1
<§’ ““’) EEMA

and so is a linear combination of v and w. Evidently, the set of all
vectors in R® spanned by v and w is exactly {(z,y,0) : z,y € R}.

> Quick Exercise. Why is the set of vectors spanned by v
and w equal to {(z,9,0) : z,y e R}? <«

Note that if we include the vector (0,0, 1), we then obtain all
vectors in R® as linear combinations of these three vectors.
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Example 41.2 Note that this spanning set contains more vectors than necessary.
Furthermore, there may be more than one way of expressing a
given vector as a linear combination of vectors in the spanning
set. For instance, we can express (—2,—2,—5) as

It is not so evident which vectors in R? are spanned by (1,0, —1)
and (3,2,1). We can certainly conclude that the set spanned by
them consists of all vectors of the form

-2(1,0,0) + 0(2,3,0) — 2(0,1,0) + 0(-1,0,—1) — 5(0,0,1),
(x+3y,2y,—z+y), where z,y€R,
or as
but what vectors are these? For example, does the vector (1,1,1)
belong to this set? If it did, there would be a simultaneous solu-
tion to the three equations

2(1,0,0) — 1(2,3,0) + 1(0,1,0) + 2(—1,0, —1) — 3(0,0, 1).

z+3y=1 Example 41.5
2y=1
_ Now let’s consider the set
—zrz4+y=1

It’s pretty easy to see that there is no such solution. {(1,0,0),(2,3,0),(=1,0,~1)}.

It is not so obvious that this also spans R®. To show this, we
consider a arbitrary vector (z,y,z) from R*® and show that we
can express it as a linear combination of the three vectors in the
set. That is, we wish to find scalars a;, a2, and a3 such that

> Quick Exercise. Verify that there is no solution to this sys-
tem of equations. <

Thus, (1,1, 1) is not a linear combination of (1,0, —1) and (3,2, 1).
If every vector of V can be written as a linear combination of vectors (x,y,2) = a1(1,0,0) + a2(2,3,0) + a3(—1,0,—1).
from a subset V of V, we say that V spans (or generates) V. Note
that V may be infinite or finite, but any given linear combination of
vectors from V involves only a finite number of vectors.

This vector equation is equivalent to the following three linear
equations, which we must solve simultaneously:

T =a1+ 2a92 — a3
y= 3ag
z = — as

Example 41.3

For instance, from our discussion above it is clear that

By the usual techniques we find the solutions for a1, a2, and as
{(1,0,0),(0,1,0),(0,0,1)}

are
3
spans R”. alzw—zy—z
3
1
as = =
Example 41.4 =3
az = —z2.
Similarly,
{(17 07 0)’ (27 37 0)’ (07 17 0)7 (_17 07 _1)’ (0’0’ 1)} SO’ for instance,
3 13 1
spans R” because (3,1,-2) = ?(1, 0,0) + g(2,3,0) +2(-1,0,-1).

(z,y,2) = x(1,0,0) + 0(2,3,0) + y(0,1,0) +
0(=1,0,—1) + 2(0,0,1).
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Example 41.6

Consider the vector space Q[z] over Q. Note that {1,z, 22,23, ...}
spans Q[z].
> Quick Exercise. Show that {1,z,22,z3,...} spans Q[z]. <

In this case, we have an infinite spanning set.

A vector space is said to be finite dimensional if there is a finite
set of vectors that spans the vector space. So, R? is finite dimensional
over R.

The vector space C over R is finite dimensional because {1,i} spans
C.

> Quick Exercise. Verify that the vector space C over R is finite
dimensional. <

Likewise, Q(v/2) over Q is finite dimensional because {1,+/2} spans
QV2).

> Quick Exercise. Verify that Q(v/2) over Q is finite dimensional. <

However, Q[z] is not finite dimensional over Q. In Example 41.6
we gave an infinite spanning set for Q[z]; this alone does not suffice in
showing that Q[z] is not finite dimensional—it may be that there exists
some finite set of vectors that does indeed span Q[z]. To show that Q[z]
is not finite dimensional, we must show that every finite subset of Q[z]
fails to span Q[z]. This is Exercise 41.7. For the most part, we will
confine our study here to finite dimensional vector spaces.

41.2 A Basis for a Vector Space

In the remainder of this chapter we will examine spanning sets that are

minimal in the sense that removing any one vector from the set will

result in a set that does not span the entire vector space.
The following is an important definition for us. A set of vectors

{Vl,Vg, ce ,Vn}
is linearly independent if

a1vy+agvo + -+ apvy, =0
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implies that ¢y = a3 = --- = a, = 0. A set of vectors that is not
linearly independent is linearly dependent.

Example 41.7

We can easily see that {(1,0,0),(0,1,0),(0,0,1)} is linearly in-
dependent in R? because if

a1(1,0,0) + a2(0, 1,0) + a3(0,0,1) = (0,0,0), then
(a1,az2,a3) = (0,0,0), or a1 = az = a3 = 0. The set
{(1,0,0), (2,3,0), (-1,0,-1)}

is also linearly independent, which we can verify by showing that
the resulting system of equations has a unique solution of a; =
a2 = as = 0.

> Quick Exercise. Show that the above sysytem of equations
has a unique solution of a1 =as = a3 =0. <

Example 41.8
By contrast,
{(1,0,0), (2,3,0),(0,1,0), (-1,0,-1), (0,0,1)}
is linearly dependent because

(0,0,0) = —2(1,0,0) + 1(2,3,0) — 3(0,1,0) +
0(—1,0,—1) +0(0,0,1).

(There are other possible values here for the a;.)

> Quick Exercise. Find a different set of values for the a;. <

Example 41.9
The set of vectors {1++/2, 2—1/2} is linearly independent in the

vector space Q(v/2) over @. But if we include the third vector
6+/2 in this set, it becomes dependent, because

214 V2) + (—1)(2 — V2) — %(6\/5) =0.
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The following theorem conveniently characterizes linearly indepen-
dent sets of vectors:

Theorem 41.1 {vi,vy,..., vy} is a set of linearly dependent vectors
in the vector space V if and only if one of the vectors from this set can
be written as a linear combination of the others.

Proof: If {vy,va,...,v,} is linearly dependent then we can write
ai1vi +agve + -+ ap vy =0,

where the a;’s are not all 0. By renumbering the vectors, if necessary,
let’s assume that aq is not zero. But then,

as as Ay,

V1= ——V2— —V3—::— —Vp,

ay a ai
as desired. Note that division by scalars is permissible, because they
come from a field.

Conversely, suppose one of the vectors (say, vi1) can be expressed as

a linear combination of the others:

Vi =a2V2 +a3vz+ -+ apVp.

But then,
0=—-1vy +agva+asvs+---+apvy.

And so the set {vi,vg,...,v,} is linearly dependent. a

Looking at this another way, this theorem says that a set of vectors is
linearly independent if and only if no vector in the set can be expressed
as a linear combination of the others. Thus, if a set of vectors V is
linearly independent and spans the vector space V, no proper subset
of V can span V. In particular, any vector removed from V cannot
be written as a linear combination of the remaining vectors. In other
words, V is a minimal spanning set for V. We have a name for such a
spanning set: A basis for a vector space V is a linearly independent
set of vectors that spans V.

> Quick Exercise. We have thus argued above that any basis is a
minimal spanning set. The converse is also true: any minimal spanning
set is linearly independent, and so a basis. What is the argument for
this? <«
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Example 41.10
{(1,0,0),(0,1,0),(0,0,1)} is a basis for R?, as is

{(1,0,0),(2,3,0),(-1,0,-1)}.

Example 41.11

{1,%} is a basis for C over R. Note in this case, where our basis has
two elements, linear independence is particularly easy to check:
By Theorem 41.1 we need only verify that neither of the vectors is
a scalar (in this case, real) multiple of the other. This is certainly
true for 1 and 1.

Example 41.12

{1 +14,v/2+ 44} is a basis for C over R. To check this requires
a solution of two equations in two unknowns that we leave as
Exercise 41.12. This example should make evident the fact that
there are infinitely many distinct bases for C over R.

Example 41.13

{1,1/2} is a basis for Q(+/2) over Q.

In the Quick Exercise above, we emphasized the fact that being a
linearly independent spanning set (that is, a basis) is actually equiv-
alent to being a minimal spanning set. We can change perspective a
bit, and also prove that being a basis is equivalent to being a mazimal
independent set; you will pursue this in Exercises 41.16 and 41.17.

The following is another important equivalent characterization of a
basis, which you will prove in Exercise 41.8.

Theorem 41.2 V = {vy,vs,...,v,} is a basis for a vector space V
if and only if every element of V can be uniquely written as a linear
combination of the v;.

The last important goal of this chapter is to show that for a finite
dimensional vector space, all bases have the same number of vectors.
(This is also true for infinite dimensional vector spaces, but the proof
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requires more sophisticated set theory than we wish to use here.) The
number of elements in a basis for a vector space will then become an
invariant of the space; that is, the number of elements in a basis is
independent of the particular basis determined. The number of basis
vectors consequently provides us with a good measure of the ‘size’ of
the space. It is exactly this measure of size that we will need when we
return to the theory of field extensions.

But first, we make a simple observation about linear combinations:

If v is a linear combination of vq,vs,...,v,, and each v; is a lin-
ear combination of wi,ws,...,w,,, then v is a linear combination of
Wi, Wa,...,W,. 10 show this, simply write v as a linear combination

of the v; and substitute for each v; the appropriate linear combination
of the w;. (This is Exercise 41.15.)

41.3 Finding a Basis

Now suppose V is a finite dimensional vector space spanned by V =
{v1,va,...,vy}. Then we will argue below that we can find a subset
of V that is a basis for V. That is, any finite spanning set for a vector
space contains a linearly independent set, which is then necessarily a
basis.

We build this set in the following way. We may as well assume that
V' does not have zero dimension and none of the v; is the zero vector.
First, we start with vi. We add each v; in succession until we find a
v; that is a linear combination of the previous v;, j < i. We discard
this v;. We continue in this manner, adding or discarding vectors until
we've run through the vectors in V. Call the set of vectors that remains
B. This set also spans V because we have removed only those vectors
that can be expressed as linear combinations of the vectors in V that
come before it, and so, by Exercise 41.15, B also spans V. It remains
to show that B is linearly independent.

By way of contradiction, suppose B = {v;;,Vi,,..., Vs, } is linearly
dependent where i1, i9,...,1; are indices of the vectors in V with ¢; <
19 < +++ < ip. Then

0=ayvy +agvy, + -+ agvy,,

where not all the ay are zero. Pick the largest j with a; # 0. Then,
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solving the above for v;,, we can express v;; as a linear combination of
vectors in V with smaller indices, which is a contradiction. Therefore,
B C V is linearly independent, and thus a basis for V. We summarize
this in the following theorem.

Theorem 41.3 Every finite spanning set of a vector space contains a
subset that is a basis for the vector space.

We demonstrate this technique by finding a subset of
{(1,0,0),(2,3,0),(0,1,0),(-1,0,-1),(0,0,1)}

that is a basis for R3. We have already shown in Examples 41.4 and
41.8 that this set is linearly dependent and spans R3.

We start with the set {(1,0,0)}. Now we add the vector (2,3,0), if
(2,3,0) is not a linear combination of {(1,0,0)}. Because this is clearly
not the case (a linear combination of a single vector is a scalar multiple
of that vector), we add it to our set, which is now {(1,0,0),(2,3,0)}.

The next vector is (0,1,0). To see if (0,1,0) is a linear combination
of (1,0,0) and (2, 3,0), we attempt to solve

(0,1,0) = a(1,0,0) + b(2,3,0),

and find that there is a solution of ¢ = —2/3 and b = 1/3. Thus,
(0,1,0) is discarded and our set remains {(1,0,0),(2,3,0)}.

We next see if the vector (—1,0, —1) is a linear combination of (1,0, 0)
and (2, 3,0) by attempting to solve

(—1,0,—1) = a(1,0,0) + b(2, 3,0).

But we easily see that there is no solution to this equation. (There is
no way to make the third coordinate of the right-hand side non-zero.)
Hence, we add this vector, making our set

{(1,0,0),(2,3,0),(-1,0,—1)}.
Finally, we consider the last vector and try to solve
(0,0,1) = a(1,0,0) + b(2,3,0) + ¢(—1,0,—1).

We find that there is a solution of a = ¢ = —1 and b = 0. Thus,
(0,0,1) is discarded, leaving the set {(1,0,0),(2,3,0),(-1,0,—1)} as a
basis for R3. Note that a reordering of the vectors in our original set
might produce a different basis for R. You will see this explicitly in
Exercise 41.14.
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41.4 Dimension of a Vector Space

We are now ready to prove that any two bases for a finite dimensional
vector space have the same number of vectors.

Theorem 41.4 Suppose that V is a finite dimensional vector space
with basis W = {w1,Wa,..., Wy} and V = {v1,Va,...,Vy,...} is an-
other linearly independent spanning set. Then V has no more than m
elements. Thus every basis for V has ezactly m elements.

Proof: We start by considering the spanning set
{Vla Wi, W2, ... 1wm}'

This set is linearly dependent, because v; is a linear combination of
the w;. So, it contains a subset that is a basis. (Of course, W is such
a subset, but we’re going to force vy into a basis.) We proceed to find
this subset using the method described above. Here, we first include
vy and then proceed through the w; and will discard at least one of
the w;. We claim that only one is discarded. Suppose that w; and w;
are both discarded, where i < j. Then,

w; =agvi + a@1w1 + -+ Q-1 Wi—1.

Now ag # 0, else we've expressed w; as a linear combination of the
vectors wi, Wa, ..., W;_1, contradicting the linear independence of W.
So we can write

ai as ai—1

vlz__wl__w2._..._
ag ag ap

1
Wi_1 + —Ww;. (41.1)
ag

Likewise, we can write w; as
W, = bovi +biwi + -+ + bj_1Wj_1. (41.2)

But if we substitute expression (41.1) for v; into equation (41.2), we
will have expressed w; as a linear combination of the other vectors in
W, again contradicting the linear independence of W.

Thus, the linearly independent subset of

{VlawlaWQa"'awm}

Vector Spaces 11 521

has precisely one fewer vector in it, and that discarded vector was one of

the w;. By renumbering, if necessary, let’s suppose that the discarded

vector was w1. So, the new basis we obtained is {vi,wa,w3,..., Wy }.
Now add vs to this basis so that our set is now

{v15v2)w27 R ’Wm}'

Again, this is a spanning set that is linearly dependent and so contains a
linearly independent subset which we find by the now familiar method.
Note that neither v; nor vg will be discarded in the process, because
v1, va is a linearly independent set. So, the discarded vector will be one
of the w;. (There will be only one discarded by an argument similar
to the one above.) Again, by renumbering if necessary, we assume that

woy was the one discarded, leaving the set {vi, vy, w3, wy,..., W, } as
the basis.
We repeat this process, successively adding vs,vy,..., and v, and

each time discarding one of the w; to get yet another basis for V. We
will never run out of the w;’s before exhausting the v;’s, because then
we would have a basis for V' consisting of a proper subset of V. (This
can’t be, because by the Quick Exercise in Section 41.2 a basis is a
minimal spanning set.) This means that V must actually be a finite
set, with no more than m elements.

By interchanging the roles of V and W, and repeating the above
argument, we obtain that these two sets have the same (finite) number
of elements. a

The dimension of a given vector space is the number of vectors
in any basis (this definition for our purposes applies only for finite-
dimensional vector spaces, although it can be extended to the infinite
case).

Example 41.14

The dimension of the vector space R? over R is 3.

Example 41.15

The vector space C over R has dimension 2, and the vector space
Q(+/2) over Q has dimension 2.
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Example 41.16

Consider the vector space

V = {f € Zs[z] : deg(f) <2}

over Zs, which we considered in Exercise 40.c. This vector space
has dimension 3, because {1, z, z?} is a basis.

> Quick Exercise. Check this. <«

We can easily obtain two important corollaries from Theorem 41.4:

Corollary 41.5 Suppose that V is a finite dimensional vector space,
and U is a linearly independent subset of V. Then U has finitely many
elements, and there is a basis W for V. withU CW.

Proof:  Choose a basis V = {vy,vy,...,v,} for V with n elements.
Now if U is already a spanning set, then it is a basis, and by the
previous theorem it has exactly n elements.

If I/ is not a spanning set, we run through the vectors of V one at
a time as follows, to build the basis W containing /: Begin by letting
W = U. For step i, check whether v; is spanned by W. If it is, we
add nothing to W. If, however, v; is not in the span of W, we add
it to W; the set W remains linearly independent. After n steps, we
will have augmented U, building a larger set W that remains linearly
independent but now must span V' (because V does). But the previous
theorem asserts that this set is finite, with exactly n elements. Thus
the original set U must have been finite, and it is indeed a subset of a
basis for V. ]

Corollary 41.6 Every set in an n-dimensional vector space with more
than n elements is linearly dependent.

Proof:  Any linearly independent set can by the previous corollary
be augmented to obtain a basis for the vector space. But any basis for
the vector space has no more than n elements. a

Chapter Summary

In this chapter we defined linear combination, spanning set, linear in-

dependence, linear dependence, and basis.
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We showed that any spanning set contains a subset that is a basis
and that all bases for a given finite dimensional vector space have the
gsame number of vectors. The number of vectors in a basis for a vector
space is the dimension of the vector space.

Warm-up Exercises

a. Give examples of the following, or explain why such an example
cannot exist. Be sure to specify explicitly the vector space, the
field of scalars, and the vectors required:

(a) A spanning set that isn’t a basis.

(b) A basis that isn’t a spanning set.

(c) Two distinct bases for the same vector space.
)

(d) Two distinct bases for the same vector space, one of which
is a proper subset of the other.

(e) A set of three linearly dependent vectors, any two of which
are independent.

(f) A set of four linearly dependent vectors, any three of which
are independent.

b. Why could the zero vector never belong to a basis (for a vector
space with more than one element)?

c. What is the dimension of C as a vector space over R? What is
the dimension of C as a vector space over C?

Exercises

1. Prove that v/2 and /3 are linearly independent elements of the
vector space R, over Q.

2. (Here, we extend Exercise 1.) Prove that {1,v/2,1/3} is an in-
dependent subset of the vector space R over Q. Is it a basis for
R?



524 Ezxercises

3. Consider the set V, consisting of all polynomials of degree 0 or 1,
with coefficients from C. Prove that this is both a vector space
over C, and over R. Find a basis in each case. Does its dimension
stay the same, when we change the scalar field?

4. Find a basis for the vector space given in Exercise 40.7.
5. Find a basis for the vector space given in Exercise 40.8.
6. Give a basis for the vector space given in Exercise 40.10.

7. Show that Q[z] over Q is not finite dimensional by showing that
no finite subset of Q[z] is a spanning set.

8. Prove Theorem 41.2.

9. (a) Define a subspace of a vector space.

(b) Let S be a subset of the vector space V. Show that the set
of linear combinations of vectors from § is a subspace of V.

(Note that this subspace is all of V if and only if S spans
V)

10. Determine which of the following are subspaces of the vector space
M (R) discussed in Exercise 40.7.

(a) Matrices with determinant 1.
(b) Matrices with determinant O.
(c) The diagonal matrices.
(d)
)

(e) Matrices of the form

Matrices with integer entries.

aa+b
b 0 )

(f) Matrices with first row, first column entry of 0.

11. Determine which of the following are subspaces of the vector space
of all real-valued functions discussed in Exercise 40.11.

(a) All differentiable functions.
(b) All functions f with f(2) = 0.

12.

13.

14.

15.

16.

17.

18.
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(c) All linear functions. (That is, functions of the form f(z) =
a+ bz.)

(d) All polynomial functions.

Check Example 41.12: that is, prove that {1 + i,v/2 + 4i} is a
spanning set for C over R.

Find a subset of the set
{(1,1,0),(2,3,-1),(0,1,-1),(1,4,2),(0,0,3)}

that is a basis for R? using the technique described in this chapter.

Find a subset of the set
{(-1,0,-1),(0,0,1),(1,0,0),(2,3,0),(0,1,0)}

that is a basis for R® using the technique in this chapter; this is the
same set we used in Section 41.3 to demonstrate this technique.
Take the vectors in the order given here, to see explicitly that we
obtain a different subset than in the text.

Let V' be a vector space. Show that if v is a linear combination

of the vectors vq,vo,...,v, € V and each v; is in turn a linear
combination of wy,ws, ..., W,,, then v is a linear combination of
Wi, Wo,...,Wp,.

Prove that a basis for a vector space V is a mazximal independent
set: That is, it is a set B C V of independent vectors, so that
BU {w} is a dependent set, whenever w € V\B.

Prove that a maximal independent set of vectors of a vector space
is necessarily a basis (that is, prove the converse of Exercise 16).

Use the technique in the proof of Corollary 41.5 to build a basis
for R* that contains the linearly independent set

{(1,0,-1,0), (=2,1,2,0)}.




Chapter 42

Field Extensions and Kronecker’s
Theorem

Consider the polynomial z? + 1 € R[z]. This polynomial clearly has no
roots in R, but we know that there exists a larger field—namely, C—in
which this polynomial does have roots. In this chapter we develop a
general method for constructing bigger fields, with the aim of being
able to further factor polynomials.

42.1 Field Extensions

A field E is an extension field of a field F' if £ D F. That is, F'is an
extension field of F' exactly if F is a subfield of E; in this situation, we
call the field F the base field. For example, R is an extension field of
Q, C is an extension field of both R and Q, and Q(v/2) is an extension
field of Q.

If E is an extension field of a field F and o« € E is a root of a
polynomial in F[z], we say « is algebraic over F. Otherwise, o is
transcendental over F'.

Example 42.1

Note first that if F is an extension field of a field F and « € F,
then trivially « is algebraic over F' because we can easily find a
polynomial p € F[z] such that p(a) = 0.

> Quick Exercise. Find such a polynomial. <

Example 42.2

The complex field C is an extension field of @, and because V2
is a root of 2 — 2 € Q[z], V2 is algebraic over Q. Also, i is
algebraic over Q because i is a root of z2 + 1 € Q[z].
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Example 42.3

The real field R is an extension field of Q. As we mentioned in
Chapter 39 (see Theorem 39.5), the numbers e and 7 are tran-
scendental over Q; that is, neither e nor 7 are roots of any poly-
nomial in Q[z]. These famous and difficult results are due to
Hermite and Lindemann, respectively.

42.2 Kronecker’s Theorem

We now prove an extremely important theorem due to Leopold Kro-
necker, an eminent German mathematician of the latter part of the
19th century. Given a polynomial f in F[z], is there a field extension
of the field F' that contains a root of f7 Kronecker’s Theorem provides
us with an affirmative answer to this question.

Note that this theorem will apply to any polynomial over any field.
Furthermore, while the description of the extension field will seem
somewhat abstract—we will find that it is a ring of cosets of F'[x]—later
theorems will allow us to explicitly describe some of these extension
fields in a way that is more palatable.

Theorem 42.1 Kronecker’s Theorem Let F be a field and f
a polynomial in F|x] of degree at least 1. Then there exists an extension
field E of F and an « € E such that f(a) = 0.

Proof: If f has a root in the field F, then F itself is the required
extension field. So we may as well assume that f has no roots in
F. From Chapter 9 we know that f can be factored into irreducible
polynomials in F'[z]; note that each of these polynomials has degree at
least two. Let p be one of these irreducible factors. We will show that
there is an extension field E of F' and an o € F with p(a) = 0.

From Theorem 13.3 we know that because p is irreducible in Fz],

the principal ideal (p) is maximal in F[z]. Hence, from Theorem 20.1, |

Flz]/(p) is a field. This is our field E.

We now need to show two things. First, we must show that £ can be ]
viewed as an extension field of F'; that is, we will obtain an isomorphism §
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from F into E. Second, we need to find an element of E that is a root
of p.

We show that there is an isomorphism from F into F[z]/(p) by con-
sidering the function ¢ : F' — F|[z]/(p) defined by ¥(a) = (p)+a, where
a € F. That is, an element in F' is mapped to its coset in F[z]/(p).
(Note this function makes a subtle shift in viewing a. First, we think
of a as an element of F' while the image of a treats a as a polynomial
in F[z].) It is evident that 1 is a ring homomorphism, because of the
way the ring operations are defined on the ring of cosets.

> Quick Exercise. Check that ¢ is a ring homomorphism. <

We now claim that v is one-to-one; to show this, we will verify that
its kernel is {0}. For that purpose, suppose that

¥(a) = (p) +a=(p)+0.

Then a € (p). But the ideal (p) is precisely the set of multiples of p and
because p has degree at least 1, so do all the non-zero elements of (p).
But a (viewed as a polynomial in F[z], of course) has degree 0, and so
a must be the zero polynomial. That is, the kernel of 1 is trivial, and
so 1 is one-to-one. We consequently may as well assume that F is a
subfield of the field F[z]/(p).

Finally, we must find an element of F[z]/(p) that is a root of our
polynomial p. Consider the element o = (p) + z. Suppose p = ag +
a1+ -+ -+ a,z™. Then

p(@) = ao + a1 ({p) + ) + - + an((p) + 2)" € F[z]/(p).

But we do arithmetic in F[z]/(p) by choosing any coset representative
we wish. If we pick z as the coset representative of (p) + z, then

pla) =) +ao+ a1z +--- +anz™ = (p) +p = (p) +0.

But (p) 4 0 is the zero element of the field F[z]/(p), and so we have
found our desired element of F[z]/(p). O

Let’s perform the construction of the theorem in two specific cases.
Example 42.4

Consider the polynomial f = 2% — 5 € Q[z]; it has no roots in Q.

> Quick Exercise. Verfiy that f = 23 — 5 has no roots in

Q? «
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Thus, f is irreducible in Q[z], and so (f) is a maximal ideal.
This makes E = Q[z]/(f) a field. Furthermore, we may identify
Q with the subfield

{(z®-5)+q:qeQ}

of E. The element (f) + z of E is then the required root for the
polynomial f, because

fy+a) =N +aP=5=(f)+® =5=(f+f=(+0.

Example 42.5

Consider the polynomial p = 2 +2+1 in Zz[z]. It has no roots in
Zs, because the only possibilities are 0 and 1, and neither works.
Thus, p is irreducible in Zs[z], and so (p) is a maximal ideal.
This makes E = Z[z]/{p) a field. Furthermore, we may identify
Zo with the subfield

{(p+0,(p) +1}

of E. The element (p) + x of E is then the required root for the
polynomial p.

In the next chapter, we prove a theorem that gives a much more
explicit description of F[z]/{p). For example, z? + 1 is irreducible in
R(z], and so 22 + 1 has a root in the field R[z]/(z* 4 1). But we also
know that

R(i) = {a+bi:a,beR} =C,
is a field in which ¢ is a root of 22 4+ 1. We will see that these two fields
are in fact isomorphic.

42.3 The Characteristic of a Field

It turns out that every field has a unique smallest subfield, which we
call the prime subfield. This fact provides us with many nice examples
of field extensions.

To show that this is true, suppose that K is an arbitrary field, with
multiplicative identity 1. Consider what happens when we repeatedly
add 1 to itself: We get the elements

1, 1+41=2, 1+2=3
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In the case of a field like R, this process goes on forever, and we obtain
in this way all the positive integers. But in the case of a field like
Z13, we obtain 0, once we have added 1 to itself thirteen times. The
characteristic of the field K is the least positive integer n so that
n-1 =0 (if such exists). If no such n exists, we set the characteristic to
0. (If you did Exercise 8.11, you have already encountered this concept,
in a more general context.)

Example 42.6

The characteristic of such fields as Q, R, C, and Q(v/2) is zero,
while the characteristic of the field Z, is p.

Example 42.7

Consider now the field E constructed in Example 42.5. What is
the characteristic of this field? The multiplicative identity in E
is the coset (p) + 1, and clearly

({p) +1)+ ({p) +1) = (p) + 0.

This means that the characteristic of E is 2.

Although we defined the characteristic in terms of the number of
times 1 could be added to itself, notice that the properties of arithmetic
in a field means that we can in fact define characteristic in terms of
any non-zero element. For if n-1 = 0, then

nr=(r+r+---+r)=r(l+1+---+1)=r(n-1),

andson-1=0if and only if n-r = 0.

> Quick Exercise. Why is the fact that a field has no zero divisors
relevant to this remark? <

. Notice that the only values for the characteristic we have obtained
In our examples are 0 and positive prime integers. It is easy to prove
that these are the only possible cases:

Theorem 42.2 The characteristic of any field is either 0 or a positive
prime integer.
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Proof: Suppose that a field F has characteristic n > 0, and that n
has a non-trivial factorization n = rs. Then

(ri)(s) = (L4 + DI+ +1) =1 +1++1)=(rs)l =0

(where we have added 1 to itself r times, s times, and then rs times,
in the previous computation). But because a field has no zero divi-
sors, this means that either r1 or sl is zero, and this contradicts the
minimality of n. O

Suppose now that F' is a field with characteristic zero. We define
a function ¢ : Q — F as follows: Given a/b € Q (where a and b are
integers, with b # 0), let «(a/b) = (a-1)/(b- 1). Notice first that the
quotient makes sense, because in a field of characteristic zero, b-1 # 0.
It is now easy to prove that this function preserves both addition and
multiplication, and so is a ring homomorphism.

> Quick Exercise. Check these two facts. <

But the kernel of ¢ is evidently {0}, because if a € Z and a # 0, then
a-1# 0 (because the field is characteristic zero).

Thus, any field of characteristic zero contains (an isomorphic copy
of) the field Q. And so, such a field is necessarily a vector space over
the rational numbers. This copy of Q is the unique smallest subfield of
F. (You will prove this fact in Exercise 42.7a.) This copy of Q is called
the prime subfield of F.

Example 42.8

In Example 42.4, we identified the prime subfield of the field £
as the set {{f) +¢:¢q € Q}.

What about fields with non-zero characteristic? If a field F has
characteristic p, where p is a positive prime integer, then we define
v: Zy — F Dby setting ¢([1]) = 1, and extending this function additively.
That is, we set ¢([2]) = 1+ 1, and so forth. This function is also a one-
to-one ring homomorphism (see Exercise 42.6), and so any field with
characteristic p contains (an isomorphic copy of) the field Z,. This copy
of Zy, is the unique smallest subfield of F'. (Again: You will prove this

fact in Exercise 42.7b.) This copy of Z, is called the prime subfield

of F.
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Example 42.9

In Example 42.5, we identified the prime subfield of the field £
as the set {{p) + 0, (p) + 1}.

> Quick Exercise. What can you say about a field which has di-
mension 1 as a vector space over its prime field? <

We can view the prime subfield of a field as the result of applying
all the field operations to the multiplicative identity 1. If the field has
characteristic zero, this gives (an isomorphic copy of ) Q; if the field has
characteristic p, this gives (an isomorphic copy of) Z,. Note that if we
know the characteristic of a field F' and E O F is any extension field,
then F will automatically have the same characteristic as F, because
its prime subfield will be the same.

Alternatively, we could do the following: Given a field K, consider
the set of all subfields £ C K this set is non-empty, because K itself
is such a subfield. Now consider the intersection of all such subfields.
The result is certainly non-empty, because it necessarily contains the
element 1. It is also a field (as you prove in Exercise 42.8). It is
necessarily the smallest subfield of K, which is then the prime subfield.

Chapter Summary

In this chapter we defined the phrase E is an extension field of a field
F. In this case we also defined what it means for an element of E to be
algebraic over F and transcendental over F.

Next, we proved Kronecker’s Theorem which says that for a field F,
if f € F[z], then there exists an extension field of F that contains a
root of f.

Finally, we defined the characteristic of a field and showed that all
fields have characteristic 0, or p, where p is a positive prime integer.

Warm-up Exercises

a. In each of the following cases, show that the given element is al-
gebraic over the given base field, by finding an appropriate poly-
nomial with the element as a root.
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Ezercises

(a) V2 is algebraic over Q.

(b) /2 is algebraic over R.

(¢) 1+ /2 is algebraic over Q.
)
)

(d) Vy1+ V2 is algebraic over Q.
(e

(f) m + 1 is algebraic over R.

1 4 2¢ is algebraic over Q.

If F is a field, is F an extension field of F'? If so, does F' have
any transcendental elements over F'?

. What extension field do we get if we apply Kronecker’s Theorem

42.1 to a degree 1 polynomial?

Recall the Fundamental Theorem of Algebra 9.1, which asserts
that all non-constant polynomials in C[z] can be factored com-
pletely into linear factors. What does this say about finding ele-
ments outside C that are algebraic over C?

Give examples of the following, or else explain why no such ex-
ample exists:

(a) An element in C transcendental over R.

(b) An element in C transcendental over Q.

(¢) An element in R, but not in Q(v/2), which is algebraic over

Q(V2).

. For each of the following fields, identify its characteristic, and

determine its prime subfield:
C, Q Q(2), Zu, Qul/@®-2), Zal/{a®+z+2).

“Every polynomial of degree at least 1 has a root.” Discuss the
truth of this statement.

Why is cos20° algebraic over Q7 Hint: Find the appropriate
result in Chapter 39.

i. Give some examples of real numbers that are algebraic over Q,

but not constructible.
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7.

Exercises

. Let F be a field and f € F|[z] a polynomial of degree at least 1.

Prove that there exists a field extension E of F' in which f can
be factored into linear factors. Such a field extension is called a
splitting extension for f.

In the proof of Kronecker’s Theorem 42.1, we prove that the
function ¢ : F' — F[z]/(p) is a one-to-one ring homomorphism.
Show that 1 is onto if and only if the irreducible polynomial p is
linear.

If R is a commutative ring with unity, and R is a subring of a field
F, we can speak of the elements in F' that are algebraic over
R, meaning simply those elements of the field which are roots of
polynomials from R[z].

(a) Explain why all rational numbers are algebraic over Z.

(b) Prove that the set of elements of R that are algebraic over Z
is the same as the set of elements of R which are algebraic
over Q.

. Suppose that a € C is an algebraic number over Q, and r € Q.

Prove that a+r and ra are also algebraic over Q. (Actually, this
exercise is a special case of Exercise 44.10, where you will show
that the set A of complex numbers algebraic over Q is a field,
called the field of algebraic numbers. Why is our exercise a
special case?)

. Prove that sin 1° is algebraic over Q.

Let F be a field with characteristic p. Prove that the function
t: Zp — F discussed in Section 42.3 is a one-to-one ring homo-
morphism.

(a) For a field F' with characteristic zero, we defined in Section
42.3 a one-to-one ring homomorphism ¢ : Q — F. Prove
that +(Q) is the smallest subfield of F'.




536 Ezxercises

(b) For a field F' with characteristic p, we defined in Section
42.3 a one-to-one ring homomorphism ¢ : Z, — F. (You
completed the proof of this in Exercise 6.) Prove that ((Z,)
is the smallest subfield of F.

8. Let K be a field, and consider the set of all subfields of K (this
set may well have infinitely many elements). Consider the inter-
section of all these subfields. Prove that the result is a field, by
checking explicitly the field axioms.

Chapter 43

Algebraic Field Extensions

In this chapter we give a nicer description for certain field extensions.
This will in particular allow us to exhibit some new finite fields. We will
focus our attention on field extensions in which the additional elements
are algebraic over the base field.

43.1 The Minimal Polynomial for an Element

As we’ve seen, R is an extension field of Q and v/2 is algebraic over Q
because /2 is a root of 2 — 2 € Q[z]. Of course, v/2 is a root of many
other polynomials in Q[z]; for instance, 3z% — 6, (2 — 2)(x + 1), and
(22 — 2)(2® + 2z — 3). But every polynomial listed is a multiple of the
irreducible polynomial z? — 2. This is in fact true in general, as the
next important theorem shows.

Theorem 43.1 If F is an extension field of a field F and a € E is
algebraic over F', then there exists an irreducible polynomial p € F|x]
such that p(a) = 0. Furthermore, if f € Flx] and f(a) = 0, then p
divides f.

Proof: Because « is algebraic over F, there is at least one polynomial
in Flz] with @ as a root. Let p € F[z] be a non-zero polynomial of
minimal degree such that p(a) = 0. We claim that p is irreducible
in F[z]. For if p = tq where t and g are polynomials in Fz], then
0 = p(a) = t(a)g(a), and so a would be a root of at least one of t
and g. Let’s assume t(c) = 0. But p is of minimal degree among those
polynomials with « as a root. Hence, deg(t) = deg(p), and so ¢ is a
constant polynomial, as required.

It remains to show that p divides every polynomial f € F[xz], where
f(a) = 0. By the Division Theorem we can write f = pq + r where
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g,r € Flz] and deg(r) < deg(p). But
0= f(a) = pla)gq(a) + r(a) = 0¢(a) + r(a) = r(a).

Therefore, « is a root of r. But because deg(r) < deg(p) and p was of
minimal degree among those polynomials with « as a root, r must be
the zero polynomial. Thus, p divides f. a

Note that the above proof shows that the irreducible polynomial in
Flz] with « as a root is unique up to constant multiple. So, there exists
a unique monic polynomial in F[z] that is irreducible with « as a root.
(Recall that a monic polynomial is one whose leading coefficient is 1.)
We call this polynomial the minimal polynomial of o over F, and
the degree of this polynomial the degree of o over F.

Example 43.1

The minimal polynomial for v/2 over Q is z? — 2. Thus, v/2 is of
degree 2 over Q.

Example 43.2

The minimal polynomial for i over R is 22 +1. Thus, 3 is of degree
2 over R. (The same can be said if R is replaced by Q, because
z?2+1€Qlz].)

Example 43.3

The minimal polynomial for ¥/2 over Q is z3 — 2. Thus, ¥/2 is of
degree 3 over Q.

Example 43.4

We claim that /2 + v/2 has minimal polynomial z* — 422 + 2
over Q and so is of degree 4 over Q.

> Quick Exercise. Check that /2 + V2 is indeed a root of
2t — 422+ 2. «

But z* — 422 + 2 is clearly irreducible over Z[z], by Eisenstein’s
criterion 5.7, and so is irreducible over Q[z], by Gauss’s Lemma
5.5.
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43.2 Simple Extensions

Suppose E is an extension field of the field F and o € E. We wish
to obtain the smallest subfield of E that contains both a and all the
elements of F'. To do this, we consider the set of all such subfields of
E. There is at least one such subfield—namely, F itself; there may be
infinitely many others. We now consider

Flo) =n{fields K: FC K CE,a € K}.

This set clearly contains the elements of F' and also «. But is it a
subfield? To show that this set is closed under subtraction, choose
a,b € F(a). Then a,b € K, for each of the subfields K containing F'
and a. But then because K is a subfield, a — b € K, for every such K.
Thus, a — b must be an element of the intersection of all such K.

> Quick Exercise. The rest of the proof that F(a) is a subfield
follows the same lines; complete this proof. Note that this argument is
essentially the same as that for Exercise 42.8. <

Because F(«) is contained in all subfields of F that contain both F'
and a, it is certainly the smallest such subfield. If E = F(«), we then
say E is a simple extension of F. If « is algebraic over F, we say
that F'(«) is an algebraic simple extension of F.

Example 43.5

One example of an algebraic simple extension we’ve seen before
is Q(v2) = {a+bv2 : a,b € Q}. In Section 38.1 we argued
directly that every element of this field belongs to any subfield
of C that contains the rational numbers and v/2; furthermore,
the set of such elements forms a field. This was a more concrete
way of seeing that this field is the smallest field extension of Q
containing v/2.

In the previous example we have an explicit description of the el-
ements of a simple extension; of course, this explicit description de-
pended on knowing the specific arithmetic properties of v/2. Our goal
now is to find such a description for the general simple algebraic exten-
sion F'(a) of a field F. We get the answer in the next two theorems.
Here, the minimal polynomial of « over F will provide us with the
arithmetic information we need about a.
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Theorem 43.2 Let F be a subfield of a field E and o an element of
E that is algebraic over F; let p € Fx] be the minimal polynomial for
a. Then the simple extension F(a) is isomorphic to the field F[x]/(p).
Consequently, any two simple algebraic extensions of F' by a root of p
are isomorphic.

Proof:  Consider the evaluation homomorphism ¢ : F[z] — E de-
fined by ¥(f) = f(«). It is now evident that the image of 4 is contained
in F(a). From the proof of Kronecker’s Theorem 42.1 it is clear that p
divides every polynomial in the kernel of v; it follows that the kernel
of the homomorphism ¢ is exactly (p). The Fundamental Isomorphism
Theorem for Rings 19.1 then tells us that F[z]/(p) is isomorphic to the
image of ¢ in F'. Because p is irreducible, F[z]/(p) is a field (Theorems
13.3c and 20.1.). The isomorphic image of this field in E contains both
F and o. Hence, the image of ¢ is exactly F(«), the smallest subfield
of E containing F' and a.

Because this is true regardless of the field F, this means that any two
simple algebraic extensions of this form are isomorphic to F[z|/(p), and
hence to each other. O

Apparently the simple algebraic extension F(a) depends heavily on
the nature of the larger field £ in which we are doing our computations.
However, this is not actually the case: The theorem (and its proof)
asserts that F(«) is entirely determined by F, and by the minimal
polynomial for a.

The previous theorem now allows us to describe the elements of an
algebraic simple extension quite explicitly.

Theorem 43.3 Consider the simple extension F(a) of F' where o is
algebraic over F'. Let n > 1 be the degree of a over F. Then every
element B8 of F(a) can be uniquely written as

B=by+bia+bya?+ - +byp_1a™ L

where b; € F.

Proof: Consider the evaluation homomorphism %, from F[z] to
F(a): If f € F[z], then ¥o(f) = f(a). (The previous theorem shows

us that this is onto.) So, if f =ag+ a1z + -+ + apz™, then Yo (f) = §
ag + a1 + aza® + -+ + ama™, an element of F(a). Let p = co +
c1z + ca2? 4+ - -+ + o™ be the minimal polynomial of o over F. (Recall
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that the minimal polynomial is monic.) Because p(a) = 0, we have
a" = —¢p — cla — a0t — -0 — cn_1a"" 1. Note that we can use this
equation to write every a™ for m > n in terms of powers of « less than
n. For example,

1
" =aad" = —¢ga — c1® — - — 1™

2 _
=—co—cia°— - —cp_1{—cp—cra— - — cp_1a” 1).

Higher powers of o are whittled down in this manner. So, every element
8 of F(a) can be written

B="bo+bia+bya’+ - +by_a" L.
We need only show that this expression is unique. So, suppose
B=by+ba+ - +b_1a" P =dy+dia+- - +dp_1a"!
for b;,d; € F. Consider the polynomial
f=(o—do)+ b1 —di)z+ -+ (bp_1 — dp_y1)z™ L.

Then f € F[z] and f(c) = 0. Furthermore, the degree of f is less than
the degree of p. But we know that p is of minimal degree among those
polynomials with « as a root. Thus, f must be the zero polynomial.
In other words, b; =d; for i =0,1,...,n — 1, as desired. O

Example 43.6

Consider the real number o = v/2 + /2. It turns out that this
element has degree 6 over Q, with minimal polynomial 2% —6z* —
4z + 1222 — 24z — 4. (See Exercise 43.3.) This means that

Qo) ={bo + ha+ boa? + b3a® + byat +bsa® eR: b; € Q}.

That is, every element of Q(«) can be expressed as a fifth-degree
(or smaller) polynomial from Q[z], evaluated at a.

But consider the real number é This is obviously an element
of the field Q(a), and so we must be able to express it in terms
of a fifth degree polynomial evaluated at . But we know that
ab — 6a* — 40 + 1202 — 24a = 4. If we divide by «, we then
have that

4
= =-24+ 120 — 40* — 6a° + °.
o
Division by the integer 4 gives us the required expression for é

In Exercise 43.5 you will do some more computations of this sort
in this field.
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Example 43.7 Example 43.9

Let’s return to Example 42.5: the polynomial p = 2 + 2 + 1 is
irreducible in Zq[z]. Kronecker’s Theorem 42.1 says that there is
an extension field E of Zs that contains a root a of p. But p is
degree 2, and so Theorem 43.3 says that Zs(a) = {a+ b : a,b €
Zs}. That is,

Za(a) = {0+ 0a,0 4+ 1o, 1 + 0cr, 1 + 1t}

Thus, Zs(e) is a field with four elements—something we have not
seen before (unless you did Exercise 8.12). It is easy to give the
addition and multiplication tables for this field. The critical fact
when computing these tables is that o? + a + 1 = 0. We leave
the actual computations as Exercise 43.1.

Example 43.8

As another example, we return to R[z]/(z* + 1), a field extension
of R that contains a root for z2 + 1. Specifically, the root is the
coset @ = (2 + 1) + z. Then

R(a) = Rlz]/(z® + 1)

and
R(a) = {a+ba:a,be R},

where a? + 1 = 0. Of course,

C={a+bi:a,beR},
where 2 +1 = 0. It is easy to show that these two fields are
isomorphic via the function ¢ : R(a) — C given by ¢{a + ba) =
a + bi. (This is because o and i play the same roles in their

respective fields. Specifically, o® = —1 and i? = —~1.)

> Quick Exercise. Show that the map ¢ given above is an
isomorphism. <

Consider the irreducible polynomial 23 — 2 € Q[z]. This poly-
nomial has three distinct roots in C, namely ¥/2, ¥/2¢, ¥/2¢2,

where

L, V3i
2 2
is the primitive cube root of unity (see Exercise 9.25).

(=eF =—

> Quick Exercise. Verify that ¢ and ¢? are cube roots of 1,
and so the three given numbers are in fact roots of 22 — 2. <

Now consider the three simple extensions
Q(V2), Q(V2), Q(V2¢%)

of Q. According to Theorem 43.2, all three of these fields are
isomorphic, even though the first is a subfield of the real numbers
R, while the latter two fields obviously include complex numbers.

It is clear that \3/5(, \3/§C2 ¢ Q(\‘Vﬁ), but we claim that it is
also the case that /2 ¢ Q(%/2¢). If it were, then by Theorem

43.3,
V2 = a+b(V20) + ¢(V2¢)?,

for some rational numbers a, b, c. By setting real and imaginary
parts of this equation equal, we obtain

1 1
\3/5‘—‘(1—5\3/51)—5\3/‘10

and
0= ?\3/51)— \/73\3/410

The second equation implies that b = ¢ = 0, because otherwise
we could infer that /2 is rational. But then the first equation
implies that ¥/2 is rational. By similar arguments, you can check
(see Exercise 43.9) that none of the three simple extensions

Q(V2), Q(V2¢), Q(V2¢?)

of @ contain either of the other two roots for 2% — 2.

Let’s actually find an explicit isomorphism ¢ between Q(4/2)
and Q(¥/2¢). Since 1 must be sent to 1, it is easy to see that
©(q) = q for all rational numbers ¢g. Now if « is a root of z3 — 2,
then o® — 2 = 0, and so ¢(a)® — p(2) = »(0), or in other words,
¢(a) must also be a root of z3 — 2. But because we have argued
that </2¢ is the only root of z3 — 2 belonging to Q(v/2¢), it
then follows that ¢(+/2) = v/2¢. Thus, the isomorphism is easily
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described in terms of the unique representation of Theorem 43.3
as follows: Suppose that 8 = a + b¥/2 + (¥/2)? is an arbitrary
element of Q(¥/2); then () = a + bv/2¢ + c(v/2()2.

In Chapters 45 and 47 we will return to this example and ex-
amine this isomorphism (and others), from a more sophisticated
point of view.

43.3 Simple Transcendental Extensions

Notice that Theorem 43.3 describing simple extensions applies only to
algebraic extensions. To see how nice this description is, let’s examine
a transcendental simple extension:

Example 43.10

Consider the simple extension Q(7) of Q by the transcendental
element m. The general intersection argument we gave above for
obtaining the simple extension still applies in this case, and so
we do have the smallest subfield Q(7) of R, which contains the
rational numbers and the transcendental 7 as well. Thus, such
real numbers as

1 1/2 + 3n?
— and
™ 2+ 37+ (5/4)n?

must belong to this field because they are obtained just by field

operations. But in this case we cannot express such elements as
a rational polynomial in 7. Indeed,

U n o
am = {LD er: g eam, g0}

In Exercise 43.6 you will prove that this set of real numbers is
actually a field and consequently is the simple extension required.

For our purposes, algebraic simple extensions are much more im-

portant than transcendental ones, which is fortunate, considering how §

much nicer our description is in the algebraic case.
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43.4 Dimension of Simple Algebraic Extensions

Notice that the description of the elements of algebraic simple exten-
sions in Theorem 43.3 has a distinctive vector space flavor. Indeed, the
theorem says that when the simple algebraic extension F'(«) is viewed
as a vector space over F', the set

{1,0,02,...,0" 1}

is a basis for this vector space. Let us restate this important fact: If
the degree of the algebraic element o over a field F is n, then n is the
dimension of F(a) as a vector space over F.

Example 43.11

We now rephrase Example 43.6: Q(/2 4 v/2) is a vector space of
dimension 6 over Q. A basis consists of

1, V2+ V2, (V2+V2)?, -, (V24 V2)°

Example 43.12

The field with four elements described in Example 43.7 is a vector
space of dimension 2 over Zs. A basis consists of 1 and a.

The following is an interesting corollary to the fact just stated.

Corollary 43.4 If a is algebraic over F' and F(a) has dimension n
over F' and # € F(a), then 3 is also algebraic over F. Furthermore,
the degree of 3 over F is at most n.

Proof: Because F(«) has dimension n over F, any collection of
more than n elements of F(«) is linearly dependent (Corollary 41.6).
Specifically, consider the n + 1 elements

17ﬁ7ﬁ27"'716n'

Because this set is linearly dependent, there exist bg,b1,...,b, € F,
such that

bo +b13+ baB%+ -+ b, 8" = 0.
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That is, 3 is a root of the polynomial bg+byz+box?+- - - +b,z™ € Fz].
So, (3 is algebraic over F' of degree no more than n. O

To rephrase: Every element of an algebraic simple extension is alge-
braic over the base field.

What about transcendental simple extensions? The reason we have
no nice element-wise description for such a field is exactly this: The
vector space dimension of such a field over its base field is infinite! You
will prove this fact in Exercise 43.8.

Chapter Summary

For an element that is algebraic over a field we defined the minimal
polynomial for that element over the field. The degree of this polyno-
mial is the degree of the element over the field. We showed that such a
polynomial always exists.

We also examined simple extensions and showed that in the case of
a simple extension of a field by an algebraic element, the extension
is in fact a vector space over the base field with dimension equal to
the degree of the element. We showed this by explicitly displaying a
basis for this vector space. Using this theorem, we were then able to
construct a field with four elements.

Warm-up Exercises

a. Return to Exercise a in the previous chapter. In each case, deter-
mine a basis for the simple extension obtained by adjoining the
element to the field in question.

b. Express the following field elements as a linear combination of
the basis elements you determined in Exercise a.

(a) € Q(1+v72).

1

2+2
\3/_

14292

¢. Explain why the following statements are true, or else give a

(b) € Q(V2).

counterexample. In each case F' is a subfield of the field F, and

a € E\F:
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(a) F() is finite dimensional over F'.

(b) Let « be algebraic over F. Then F(a) is finite dimensional
over F.

(c) Every element of F(«) is algebraic over F.

(d) Every element of F(«) is algebraic over E.

(e) Suppose that « is algebraic over F'. Then every element of
F(a) is algebraic over F'.

d. Explain why the minimal polynomial is unique.

Exercises

1. (a) Compute the addition and multiplication tables for the field
Zs(ar) described in Example 43.7. Use your table to deter-
mine explicitly the multiplicative inverse of each non-zero
element of this field. (This exercise is essentially a repeat of
Exercise 8.12.)

(b) In Exercise 17.18, you considered the Frobenius isomorphism,

defined on any finite field. Compute this homomorphism ex-
plicitly in this case.

2. Consider the polynomial
f=14224+2° € Zo(a)[a)],
where Zy(a) is the field considered in the previous exercise.

(a) Use the Root Theorem to show that this polynomial is irre-
ducible.

(b) By Kronecker’s Theorem 42.1 we can construct an extension
field of Zs(a) so that f has a root 3. How many elements
does this field have?

(c) If you're not doing anything this weekend, construct a mul-
tiplication table for this field.

3. In this problem you will prove that
f=a%— 62" — 423 + 1222 — 242 — 4

is the minimal polynomial for & = v/2+ /2, as stated in Example
43.6. (We will return to this example in Example 44.3.)
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(a) Check that f(a) =0.

(b) Show that f is irreducible in Q[z], by using Eisenstein’s Cri-
terion 5.7, after the linear change of variables z = y +2 (see
Exercise 5.14).

(c) Show that f can be factored into irreducibles in R[] as
follows:

(2~ v2-V2) (2 = (2V2+ ¥V2)z + 2+ V2V2 + V4))

(x—k\/_—\a/i) (w2+(2\/§—\3/§)m+(2—\/§\2/§+\3/1)>.

(d) How would you factor f into irreducibles in C[z]? (You need
not feel obliged to actually carry this out!)

4. Determine the minimal polynomial of v/2+ v/3 over the following
three fields: Q, Q(v2), R.

5. Let & = V2 + V/2, and f be its minimal polynomial, as in Ex-
ample 43.6, and in Exercise 3. Show explicitly that the following
elements of Q(«) are linear combinations of

1,a,a2,- ,a5
1
(@) 7
o
(b) 1+ a?
6. Let I
T
K—{EER'fngQ[ILg#O}v

as given in Example 43.10.
(a) Why do the quotients defined above always make sense?
(That is, why are the denominators always non-zero?)
(b) Show that K is a subfield of R.
(c) Argue that K = Q(n).

(d) Are the elements in K uniquely represented, as we’ve pre-
sented them in the definition of K7
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7. Let F be a subfield of the field E, and suppose that o € F is
transcendental over F. Using Exercise 6 as a model, formulate
an explicit description of the members of the simple extension
F(a), and prove that your formulation works.

8. Let F' be a subfield of the field E, and suppose that o € FE is
transcendental over F.

(a) Show that
{1a «, a2a a3a e }
is a linearly independent set of the vector space F(«) (over

(b) Why does part a mean that the dimension of F(«a) over F
is infinite?

(c) Show that the set in part a is not a basis for F(a) over F.

9. In this exercise we perform some additional verifications related

to Example 43.9. Show that /2, V/2¢ ¢ Q(v/2¢?) and /2¢? ¢
Q(¥/2¢). Thus, in each case the field isomorphisms between
the three simple extensions of Example 43.9 are very simply de-
scribed. How?



Chapter 44

Finite Extensions and
Constructibility Revisited

In the last chapter we obtained a good description for a simple extension
of a field by an algebraic element. Specifically, if « is algebraic over
F, we showed that F(«a) is a vector space over F' with dimension equal
to the degree of a over F. Furthermore, every element of F(a) is
algebraic over F. In this chapter we are interested in field extensions
that are not necessarily simple, but in which every element is algebraic.
We’ll then use our further results to provide more elegant proofs of the
impossibility of two of the classical construction problems of the ancient
Greeks.

44.1 Finite Extensions

We say that a field extension F of a field F is an algebraic extension
if every element of E is algebraic over F. That is, every element of E
is a root of some polynomial in F[z]. We proved in the last chapter
that every element of a simple extension by an algebraic element is in
fact an algebraic element itself; using this new terminology, this means
that every such extension is algebraic.

We say F is a finite extension of the field F' if it has finite dimension
as a vector space over F. We shall use [E : F] to stand for the dimension
of E over F, also called the degree of E over F.

Example 44.1

We know that Q(¥/3) is a finite extension of Q and [Q(+/3) : Q] =
3. Likewise, C is a finite extension of R, and [C: R] = 2.

We showed in the last chapter that any simple extension by an alge-
braic element is a finite extension (Section 43.4). The following theorem
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asserts that every finite extension is algebraic; its proof uses an argu-
ment similar to that we used in Corollary 43.4 when we proved that
clements of algebraic simple extensions are algebraic.

Theorem 44.1 A finite extension of a field is an algebraic extension.

Proof:  Suppose that F is a finite extension of F' and [F : F] = n.
Let a € E. Then the n 4 1 elements

cannot be linearly independent, by Corollary 41.6. Therefore, there
exist
ag,a1,...,an € F

such that
ag + a1 + asa® + -« + apa”™ = 0.

In other words, « is a root of the polynomial ag+a1z+agz?+- - - +a,z"
in Flz]. O

What about the converse of this theorem? In Exercise 44.5 you will
explore an example of a field extension that is algebraic but not finite,
thus showing that the converse is false.

The next theorem is the most important result of this chapter; it is
this theorem that will make our new approach to the constructibility
problems quite easy. It is a counting theorem, relating the dimensions
of field extensions to one another. Counting theorems are always im-
portant. Despite the theorem’s importance, its proof is easy. In fact,
before reading the proof, you might attempt it yourself.

Theorem 44.2 If K is a finite extension of a field E and E is a finite
extension of a field F, then K is a finite extension of the field F.

Furthermore,
[K: F|=[K:E|E:F].

Proof: Let {a;:i=1,...,n} be a basis for E over F and {3; : j =
1,...,m} be a basis for K over E. We will show that

{aifBji=1,...,n, j=1,...,m}

is a basis for K over F. Note that there are mn distinct elements in |

this set.

Finite FExtensions and Constructibility Revisited 553

First, we show that the mn elements o;3; span K. Accordingly, let
k € K. Because the 3; span K as a vector space over E, there exist
elements aq,...,a,, of E such that

k= Z CLJ‘,BJ'.
7=1

Likewise, because the «; span E as a vector space over F', for each q;
there exist elements by;, ..., b,; of F such that

n
aj = Z bijai.
i=1

Substituting these into the sum for k, we get

k=) (Z bz‘a’“") Bi = bij(cify)-
j=1 1 Y]

i=

Thus, the mn elements «;0; span K. (This argument is really a repeat
of Exercise 42.15.)

We now show that the «a;3; are linearly independent. So, suppose
that

Zcij(alﬂj) =0, Cij € F.
4,J

We will show that ¢;; = 0 for all 7 and j. But,

n

0= Zcij(aiﬂj) = Z ( cijai> ,Bj.
7=1 \i=1

,L'?j

The §; form a basis for K over E; therefore,

n
Z CijQy = 0
i=1

for each j. But the a; form a basis for E over F, so ¢;; = 0 for each
t and j. Thus, the mn elements o;0; are linearly independent, and so
form a basis for K as a vector space over F. O

A rough paraphrase of this theorem is this: A finite extension of a
finite extension is a finite extension. Notice that we have explicitly
constructed a basis for K over F from the bases given for K over E
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and F over F. We will explore some specific examples of this procedure
below. The theorem is pictured in the following diagram:

NE
mnE%
L

Before looking at examples, we will sharpen our result for the case
of simple algebraic extensions. Suppose that F is an extension field of
F and a € E is algebraic over F. Let 8 € F(a). Thus, F(8) C F(c).
We have seen from Corollary 43.4 that 3 is algebraic over F', and so it
follows from the last theorem that [F(8) : F] must divide [F(a) : FJ.
That is, the degree of 3 over F must divide the degree of o over F'. We
restate this in the following corollary.

Corollary 44.3 Suppose E is an extension field of the field F and
o € E is algebraic over F. If 8 € F(a), then the degree of 3 over F
divides the degree of o over F'.

We now illustrate the theorem with a couple of examples.

Example 44.2

Consider Q(v/2, v/3), the smallest subfield of R containing Q, V2,
and /3, as a vector space over Q. Now, v/3 ¢ Q(v/2) (see Exercise
44.1 or Example 38.2), and so ? — 3 is the minimal polynomial
for v/3 over Q(v/2). Therefore, [Q(v/2,v3) : Q(v/2)] = 2 and
{1,v/3} is a basis for Q(v/2,v/3) over Q(v/2). Because [Q(v/2) :
Q] = 2 and {1,v2} is a basis for Q(v/2) over Q, we have that
[Q(v?2,v3) : Q] = 4 and {1,v/2,/3,V6} is a basis for Q(v/2,/3)
over Q. Notice that here we are thinking of Q(v/2, \/§) as a simple
extension of Q(ﬂ), which in turn is a simple extension of Q.

Alternatively, we could think of Q(v/2,+/3) as an extension
of Q(v/3). Then, [Q(v2,v3) : Q(v3)] = 2 and [Q(v3) : Q] = 2.
These are two ways of stepping up from Q to Q(+/2,v/3): First,
we adjoin v2 to @ and then adjoin /3, or first adjoin V3toQ
and then adjoin v/2.

The following diagram illustrates this situation.
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Q(v2,V3)

You should refer to Example 38.2 for an account of this ex-
ample that does not use the theory of vector spaces.

Example 44.3

Now consider Q(v/2, ¥/2). Because [Q(v/2) : Q] = 3 and [Q(v/2) :

Q] = 2, it follows from Corollary 44.3 that v/2 ¢ Q(v/2). Thus,

[Q(v2,¥2) : Q(v2)] = 3. So,

[Q(v2,V2): Q] = [Q(v2,V2) : Q(v2)|[Q(v2) : Q] = 3-2 =6.
Again, we could build Q(v/2, ¥/2) another way. Because v/2 ¢

Q({/2) (from Corollary 44.3), we have that [Q(v/2, v/2) : Q(¥/2)] =

2, and so
[Q(V2,V2) : Q] = [Q(V2, V2) : Q(V2)][Q(V2) : Q] =2 -3 =6.

The following diagram illustrates this.

Q(V2, V/3)
2
3
Q(V3) ;
Q(v2)
3
2
Q

But now consider the simple algebraic extension Q(a), where
o =2+ /2. 1t is evident that a € Q(+v/2, ¥/2), and so Q(a) C
Q(v/2, ¥/2); we claim that this last field extension is trivial. In
Exercise 43.3 we proved that Q(«) is of degree 6 over Q. So by
the theorem, we have that [Q(v/2, ¥/2) : Q(a)] = 1, as we require.

But let’s prove that Q(v/2, ¥/2) = Q(a) again, without mak-
ing use of Exercise 43.3. We know that ¥/2 = o — v/2. Cubing
both sides of this equation gives

2 = a® ~ 3v2a? + 6a — 2V2.

555
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Solving this equation for v/2 gives us

ad +6a —2
2= — —— —
V2 3a2+2

> Quick Exercise. Check this. <

But this means that v/2 € Q(«); but then V2 = o — v/2 € Q(a)
too, and so Q(v/2, v/2) € Q(c). Because we’ve already noted the
reverse inclusion, we have proved again that Q(a) = Q(v/2, ¥/2).
This means of course that the minimal polynomial for & must be
of degree 6. We thus arrive at the result of Exercise 43.3 again,
but by vector space considerations.

Note furthermore that the finite extension Q(v/2, ¥/2) over
Q is actually simple. It turns out that all finite extensions over

the rational field are simple; we will prove this important fact in
Theorem 45.5.

It is clear that an induction argument extends Theorem 44.2 to any
number of steps. For completeness, we include this as a corollary. (The
proof of this is left as Exercise 44.2.)

Corollary 44.4 If F;, i = 1,...,n are fields with F;11 a finite exten-
ston of Fy, fori = 1,...,n — 1, then F, is a finite extension of Fy
and

[Fn : Fl] = [Fn . Fn—lHFn—l . Fn_g] s [Fg : Fl].

44.2 Constructibility Problems

Let’s start by recalling the three Greek construction problems: dou-
bling the cube, trisecting an arbitrary angle, and squaring the circle.
The proofs that these constructions are impossible depend in an essen-
tial way on the Constructible Number Theorem 38.3, which we re-state
here:

Constructible Number Theorem The number « is constructible
if and only if there exists a finite sequence of fields

Q=FyCF,C---C Fn,

with a € Fn and Fyy 1 = F;(Vk;) for some k; € F;, with k; > 0 for
i=0,...,N—1.
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Let’s re-consider this theorem, in light of our theory of field exten-
sions. We now know that the degree of each of the extensions in the
Constructible Number Theorem is 2. Thus, [Fy : Q] must be a power
of 2. Now clearly the extension Q(«) C Fy, and so by Theorem 44.2,
we must have that [Q(«) : Q] is also a power of 2. We thus obtain the
following corollary of the Constructible Number Theorem:

Corollary 44.5 If a number « is constructible, then [Q(«a) : Q] = 27,
for some positive integer n.

Note that the converse to this corollary is false; [Q(i) : Q] = 2 is
a counterexample, because constructible numbers are necessarily real.
But the converse is also false for real numbers. In Exercise 49.7 we will
present an irreducible fourth degree polynomial in Q[z] with a real root
« that is not constructible, even though [Q(a) : Q] = 4.

Let’s now return to the impossibility proofs of the construction prob-
lems. Recall that to double the cube, we are to construct an edge of
a cube whose volume is twice that of a given cube. (Actually, we are
given the edge of the original cube.) If we consider the edge of the
original cube to be length 1, then we are required to construct a line
segment of length /2. But [Q(+/2) : Q] = 3, and so Corollary 44.5 tells
us that /2 is not constructible. Thus, it is impossible to double the
cube with only a compass and straightedge.

In our impossibility proof for the trisection problem, we showed that
it is in fact impossible to trisect a 60° angle. If we could do so, we could
construct an angle of 20° which in turn implies the construction of a
root of the polynomial 23 — 3z — 1, which is irreducible in Q[x]. But
any root of this polynomial has degree 3 over Q; once again, Corollary
44.5 shows that this is not constructible.

We are not able to use the theory of this chapter to more easily
prove the impossibility of squaring the circle, because this problem
involves considering the transcendental simple extension Q(y/7). We
must still rely on Lindemann’s difficult Theorem 39.5 asserting that =
is transcendental over Q.

Chapter Summary

In this chapter we showed that every finite extension is an algebraic
extension. If K is a finite extension of E, which is a finite extension of
F, then K is a finite extension of F with [K : F| = [K : E][E : F].



558 Exercises Finite Ertensions 559

We then used this theorem to give alternate proofs for the impossi-
bility of doubling the cube and trisecting an arbitrary angle.

Exercises

Warm-up Exercises

. If [K : F] =1, what can you say about the fields K and F'?

. If [K : F) is prime and E is a field where F C E C K, what can
you say about the field E7

. If F C E C K is a sequence of finite field extensions and [K :
F] = [E : F], what can you say about the fields K and E?

. Explain why the following statements are true, or else give a
counterexample.

a

(
(b

Every finite extension is algebraic.

Every simple extension is algebraic.

)
)

(c) Every simple extension is finite.

(d) Every algebraic extension is simple.
)

(e) Every algebraic extension is finite.

. How many elements belong to a field that is a degree 2 extension
of a degree 3 extension of Z7?

. Give examples of the following, or else explain why the example
does not exist:

(a) A degree 2 extension of Q(v/2).

(b) A degree 3 extension of R.

(¢) A degree 3 extension of Zs.

. Show that v/2 ¢ Q(+/3), using Theorem 43.2. (See Example 38.2

for a more elementary solution of this exercise.)

. Prove Corollary 44.4. That is, suppose that each F; is a field, and

Fy C F, C--- C F, is a sequence of finite extensions. Show that

[Fn . Fl] = [Fn . Fn—l][Fn—l : Fn_Q] ce [F2 : Fl]

. Prove that Q(v2 4+ v/3) = Q(v/2,V3).

(a) Determine [Q(+/2,1) : Q]; include a proof of your result.
(b) Find a € C so that Q(a) = Q(V/2,1).

. In this exercise you will show that not every algebraic extension

is a finite extension by considering the field F', constructed as
follows. Let

FL =Q(V2), F, = Fi(¥2), F3 = F2(V2), Fy = F3(V2), ---,

and continue inductively. Then let

F=|]|F,

1 Cs

Argue that F is field. Then prove that F' is not a finite extension,
thus showing that the converse of Theorem 44.1 is false.

. Give an example to show that if [F(a) : F] =n and [F(b) : F] =

m, it does not necessarily follow that [F(a,b) : F| = mn.

. Prove that an algebraic extension of an algebraic extension is an

algebraic extension.

. Consider the primitive cube root of unity

T 2 2
C:—%+i§=e&— ———cos<—§-r—) +isin(?7r).

Compute [Q(¢) : Q)-
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9. Consider the field F' = Zy(a, 8) constructed in Exercise 43.2.

(a) Use Theorem 44.2 to determine the possible degrees [F : K],
where K is a subfield of . Find a subfield with each of these
degrees, and draw a field extension diagram similar to that
in Examples 44.2 and 44.3.

(b) Prove that Zy(a + ) = Za(a, §).

10. Prove that A, the set of all complex numbers algebraic over Q, is
a field.

Section VIII in a Nutshell

This section presents some more sophisticated mathematical ideas that
allow us to prove more elegantly the impossibility of the constructibility
problems of the previous section. This more powerful approach to field
theory is interesting in its own right and also plays a vital role in Section
IX.

First, we define a vector space V over a field F. This is a set of
objects (called vectors) equipped with a binary operation called ad-
dition, making the set an additive group. In addition a vector space
has a scalar multiplication whereby vectors are multipied by elements
(scalars) from the field F. The complete set of axioms follows, where
v,w,u€V and r,s € F:

1. v+w=w+v,
2. v+ (wHu)=(v+w)+u,

3. there exists a zero vector 0, with the property that v+ 0 = v,
and

4. every vector v has an additive inverse —v, with the property
that v + (—v) = 0.

5. (r+s)v=rv+sv,
6. (rs)v =r(sv),
7. r(v+w)=rv+rw, and

8. 1lv=wv.

Classic examples of vector spaces are the set F™ of n-tuples from the
field F, and the polynomial ring F[z]. If F and E are fields and F' C E,
then the field E is actually a vector space over F. (In this case we say
E is an extension field of the field F.) This eventually allows us to
apply vector space theory to field theory.
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A basis for a vector space V is a linearly independent set of vectors
that spans V. The number of vectors in a basis is the dimension of the
vector space. (See Theorem 41.4.) Thus F™ has dimension n and Fz]
has infinite dimension over F. If B is a basis for vector space V then
every element of V' can be uniquely written as a linear combination of
elements in B (Theorem 41.2). Every spanning set contains a subset
that is a basis (Theorem 41.3).

Kronecker’s Theorem 42.1 says that if F is a field and f € F|[z] of
degree at least 1, we can always construct an extension field E of F
such that f(a) = 0 for some « € E. The proof of this theorem reveals
that F[z]/(p) is the desired field, where p is an irreducible factor of f
in Flxz].

If F is an extension field of F and o € E is a root of a polynomial
in F[z], then « is algebraic over F. The smallest subfield F(a) of E
containing F and « is essentially unique, and isomorphic to the field
F[z]/{p), where p is an irreducible polynomial p € F|[z] with p(a) =0
(Theorem 43.2). Then p divides all f € F[z] where f(a) = 0 (Theorem
43.1), and if we further require that p be monic, it is unique and called
the minimal polynomial of o over F.

Fields of the form F(a), are called simple extensions of F. If «
happens to be algebraic over F, then F'(«) is called an algebraic simple
extension of F. Furthermore, if deg(p) = n, the F(«) is a vector space
over F of dimension n with basis {1,a,0?,...,a" 1}. It follows that
every element in F'(a) is algebraic over F' (Corollary 43.4).

If £ is an extension field of F' and has finite dimension as a vector
space over F', we call E a finite extension of F' and denote the degree of
the extension by [E : F]. Every finite extension is algebraic (Theorem

44.1). Degrees multiply: if Fy C Fp C F3 form a sequence of finite '

extensions, then [F3 : Fy] = [F3 : Fy][Fy : F1]. This extends to any
finite sequence of finite extensions. If F is an extension field of F' and
o € E is algebraic over F and 3 € F(«), then the degree of 3 over F
divides the degree of a over F (Corollary 44.3).

It follows from the Constructible Number Theorem that if « is con-
structible, then [Q(c) : Q] = 2". This allows us to show that it is
impossible to double the cube (because [Q(+/2) : Q] = 3), it is impossi-

ble to trisect a 60° angle (because to do so means we could construct
a root of z3 — 3z — 1, which is irreducible in Q[z] of degree 3), and it }
is impossible to square the circle (because Q(1/7) is a transcendental §

simple extension of Q).

IX

Galois Theory




Chapter 45

The Splitting Field

We are all familiar with the way in which the quadratic formula gives us
an explicit formula for the roots of any degree two polynomial in Q[x]
(and, this formula works in C[z] too — see Exercises 9.1 and 9.2). In Ex-
ercises 9.12-9.19, you can explore the cubic formula that performs the
same task as the quadratic formula; it is a good bit more complicated.
In the case of the quadratic formula, we need to perform the field oper-
ations from Q, and in addition extract a square root. In the case of the
cubic formula, we need to perform the field operations from Q, extract
cube roots, and also have to extract one or more square roots. Can
this process be extended to higher and higher degree polynomials from
Q[z]? The answer for quartic (that is, fourth degree) equations is yes;
it is a nightmare of a formula, which involves not only the extraction
of a fourth root, but also cube and square roots as well. In essence,
the cubic problem reduces finally to a quadratic, and the quartic in
turn finally reduces to a cubic! You can explore the quartic formula in
Exercise 9.20.

It seems natural to suppose that this project could be carried on
indefinitely (at the cost of more and more complicated calculations),
to obtain formulas solving fifth, sixth and higher degree polynomial
equations over C. This supposition is false: It was one of the triumphs
of nineteenth century abstract algebra to prove that such formulas for
degree 5 and higher are impossible. This result can and should be
compared to the results we have encountered in Chapters 39 and 44,
showing that the classical construction problems are impossible.

In order to prove the impossibility of solving all polynomial equa-
tions by radicals, we will need some more field theory, which we will
begin exploring in this chapter. To complete our project, we will even-
tually make use of the group theory we encountered in Chapter 36.
The exciting interplay between groups and fields makes this subject an
outstanding example of the power of abstract algebra.
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45.1 The Splitting Field

In Chapter 42 we encountered Kronecker’s Theorem 42.1: Given a
field F' and a non-constant polynomial f € F[z], we can always build
a (potentially) bigger field than F' in which f has at least one root.
By an easy inductive argument (Exercise 42.1) on the degree of f, we
can then build a (potentially) larger field than F, in which f can be
completely factored into linear polynomials; such a field is called a
splitting extension over F for f. In this chapter we will show that
this can be done minimally in essentially only one way.

We make a definition to capture this idea. Suppose that F is a field
and f € F[z], with deg(f) > 0. Then the field K is a splitting field
for f over F,if F C K, f factors into linear polynomials in K|z],
and if L is any other field with FF C L C K, then f cannot be factored
into linear polynomials in L[z]. Any field containing K is a splitting
extension of f over F. The splitting field of f over F is a minimal
splitting extension. When the polynomial f does factor into linear
polynomials in a field K, we say f splits in K.

Example 45.1

If the polynomial f € F[z] can already be factored into linear
polynomials in F'[z], then F itself is a splitting field for f.

Example 45.2

The field C is a splitting field for the polynomial z2 + 1 € R[z]
over R.

Example 45.3

Let f € Q[z] be any quadratic polynomial that is irreducible in
Q[z], and & € C be a root of f given by the quadratic formula.
Then the quadratic extension Q(«) is a splitting field for f over
Q. This is true because the second root for f in C is the complex
conjugate &, and @ € Q(a).

> Quick Exercise. Why is a@ € Q(q)?
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Example 45.4

Consider the polynomial f = z® — 2 € Q[z] that we looked at in
Example 43.9. The field Q (¥/2) certainly contains a root for f,
namely +/2. But it is not a splitting field, because there are two
other cube roots of 2 not belonging to this field, namely ¥/2¢ and
/22, where ¢ = F = —% + 3% is the primitive cube root of
unity. Thus, a splitting field for f is

Q(V2) () = (¥2) (v3i).

Example 45.5

Consider the polynomial f = z3+z+1 € Zg[z]. It is evident that
f is an irreducible polynomial. By Kronecker’s Theorem 42.1 we
can build the extension field

Lo[z]/{f) = Z2()
={0, 1, o, 140q, o®, 1+0? a+d? 1+a+a?}

where a = (f) + z. This is a splitting field for f, because
f=@E+a)(z+®) (z+a+a?).

You will check this factorization in Exercise 45.1 and also show
that
Zo() = Zy(a?) = Za(a + a?).

We will now prove that a non-constant polynomial over a field always
has a splitting field; furthermore, such a field is unique (up to isomor-
phism, of course). We will prove existence (and more) in Theorem 45.1
and uniqueness in Theorem 45.2.

Theorem 45.1 Let F be a field and f € F[x] a non-constant polyno-
mial. Then there exists a splitting field K for f over F'. Furthermore,
if the linear factorization of f in K|z} is given by

f=B8&—o1)(z —0)- (z— an),

Then K is equal to the finite extension F(ay,ag, -+, 0n).
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Proof: Let F bea field and f € F[z] a non-constant polynomial. We |
know by Exercise 42.1 that we can construct a splitting extension M of :

F for f. Now consider the finite field extension K = F(aj,ag, -+, ay),
where the elements o; are the roots of f in M. It is then evident that
K is a splitting extension of F' for f. But if L is any other splitting
extension of F' contained in M, then L must contain the roots of f,
and so must contain K. This means that K is minimal among such
extensions, and so is a splitting field. O

We now prove that splitting fields are unique, up to isomorphism.
The following theorem carefully sets up what we mean by this unique-
ness:

Theorem 45.2 Suppose that F is a field and f € F[z] is a non-
constant polynomial. Suppose that K and K are two splitting fields

of F' for f. Then there exists an isomorphism ¢ : K — K that leaves
F fized.

Proof:  Assume that F, f, K, and K are as in the hypotheses of the
theorem. We know from Theorem 45.1 that K = F(ay,ag,a3, -+, o),
where the o; are the (not necessarily distinct) roots of f in K. Fur-
thermore, K = F (B, 52, - -, Bn), where the 3; are the (not necessarily
distinct) roots of f in K. We will proceed by induction on the degree n.
To facilitate this, define the fields K} inductively, by letting Ko = F,
and Kii1 = Ki(agy1). We will define the fields K}, in the same man-
ner; we will let Ky = F and define the subfields of K at each inductive
step, by reordering the roots f, - -, 3,, which we will describe below.
We will extend the field isomorphism ¢ from each of the extension fields
K}, onto the extension fields Kj, one step at a time.

We start with ¢ : Ko — Kj being the identity isomorphism (since
Ko = Ko = F). We now assume by induction that ¢ has in fact been
defined and is an isomorphism from K} onto Kj. Furthermore, this
isomorphism leaves F' fixed and has been constructed so that p(a;) =
G;, fori=1,2,--- k.

Now consider the root ai41 of the polynomial f € Flz] C Ki[z].
If apy1 € Ky, then f € Flz] C Ki[z] must have a root in K} other
than 31,52, --, 0k, and, by renumbering, we may assume that this is
the root Br+1. We consequently have ¢ already defined on the field
Ky11 = Ky onto the field K, = K.

We thus may assume that the root axi; ¢ Ki. We then know ‘
by Theorem 43.2 that Kj(og41) is isomorphic to the field Ki[z]/(p), }
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where p is the irreducible factor of f in Kj[z] for which a4 is a
root. Now because the fields K} and K} are isomorphic, we know
that the polynomial rings Ki[z] and K}[z] are isomorphic and there is
an irreducible factor p of f in K[z corresponding to p. (See Exercise
19.17.) Since p divides f in K[z], the roots of p are also roots of f in K.
So choose any root of p in K, which we can (by renumbering)_call Bra1
and let Kyi1 = Kip(Brs1). Then Ky, is isomorphic to K [z]/ (D).
But by Exercise 19.20, it is clear that K[z]/(p) and K[z]/(p) are
isomorphic, and the isomorphism between them extends the assumed
isomorphism for Ki to Kj, and it takes (p) + z to (p) + z. This
means that we have an isomorphism from Ky = Kg(og41) to Kgy1 =
Ki(Br+1), which takes agy1 to Bgt1.

Thus, by induction, we have that there is an isomorphism from K to
K that extends the isomorphism ¢ from F to F, as required. ad

Example 45.6

Suppose that f € Q[z] C Cz]. Recall the Fundamental Theorem
of Algebra 9.1, which implies that every polynomial with complex
coefficients can be factored completely into linear factors. That
is, we have in this case that all of the roots a1, - - -, a, of f belong
to C. Consequently, C contains a splitting field for f over Q
(that is, C is a splitting extension for f over Q), and it consists
precisely of Q(ay, -+, ay). By Theorem 45.2, we know that this
is essentially the only splitting field.

The next theorem will give us some insight into just how nice splitting
fields are. It says that if K is a splitting field over F' for f and K
contains any root for an irreducible polynomial g € Fz], then K will
contain all roots for g. That is, g will also split in K[z]. The proof of
this theorem relies heavily on the uniqueness of splitting fields.

Theorem 45.3 Let K be the splitting field over the field F for the
polynomial f. Suppose that g € F[z] is an irreducible polynomial over
F and v € K\F is a root for g. Then g factors completely into linear
factors in K|z].

Proof: Suppose that K is the splitting field over the field F' for
the polynomial f. We know that K = F(a1,ag,- -, ay), where the o
are the roots of f in K. Consider an irreducible polynomial g € F'(z],
and suppose that v € K\F with g(y) = 0. Let’s assume by way
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of contradiction that g does not completely factor into linear factors
inside K[z]. But then by Kronecker’s Theorem 42.1 we can construct
a strictly larger extension field K(3) of K, for which 3 is a root of g.
Now because v and 3 are both roots of the irreducible polynomial g, we
know by Theorem 43.2 that there is an isomorphism between the fields
F(v) and F(() that leaves F fixed. Now K(8) = F(ay, - -,a,)(8) =
Floa, -, an,0) = F(8)(a1,---,a,), and this is the splitting field of
f over F(3). But because F() and F(v) are isomorphic, there is an
isomorphism between K(f3) and K = K(v) = F(v,01, -+, ay), since
the latter field is the splitting field for f over F(v).

But now we count degrees. By our isomorphism between K and
K (3) as splitting fields over the isomorphic fields F(y) and F(3) we
have that [K : F(v)] = [K(8) : F(v)]. But then by Theorem 44.2

[K: Fl=[K: FOIFQO) : FI = [K(8): F(I[F() : F] = [K(8) : F],

and this means that [K () : K] = 1, and so 8 € K(8) = K, which is
as we wish. a

Suppose that K is an extension field of the field F', and that whenever
an irreducible polynomial f € F[z] has one root in K, then it splits
in K. In this case we say that K is a normal extension of F'. With
this terminology, we can rephrase Theorem 45.3 by saying that if K is
a splitting field over the field F for the polynomial f, then K is in fact
a normal extension. Later in this chapter we will encounter Theorem
45.6, which asserts that for a field with characteristic zero, being a
splitting field is equivalent to being a finite normal extension.

In Chapter 48 we will discover that the concept of normal extension
is actually closely related to the concept of normal subgroup!

45.2 Fields with Characteristic Zero

Theorems 45.1 and 45.2 together say that given any field F' and a non-
constant polynomial f, we can always build a unique minimal extension
field, in which f completely factors into linear factors. So, for any
polynomial over a field, we obtain the unique (up to isomorphism)
splitting field for the polynomial merely by adjoining the roots of the

polynomial, by repeated application of Kronecker’s Theorem 42.1. In ]
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general, some of these roots may already belong to the base field, and
some of the roots may be repeated. However, if the polynomial is
irreducible, the situation is particularly nice (for fields of characteristic
Z€ro).

Theorem 45.4 Let F be a field of characteristic zero and f an irre-
ducible polynomial in F(z]. Then the roots of f in its splitting field are
all distinct.

Proof:  Suppose that f has a repeated root a in its splitting field
K. This means that f = (z — @)*g, where k is an integer greater
than one, and g is a polynomial over K. We will now make use of the
formal derivative of this polynomial. We first encountered this idea
in Exercise 4.7 in the polynomial ring Q[z], and in Exercise 45.3 you
will check that the appropriate results hold, for any field (and in fact
for any commutative ring). In particular, the product rule like you
encountered in calculus works here, and so the formal derivative f’ can
be computed thus:

f=k(@—a) g+ (- )y

Now because K has characteristic zero, this is necessarily a non-zero
polynomial. We then have that z — « is a factor of both f and f’. But
if we use term-by-term differentiation instead, it is clear that f’ € F[z].
Since f is irreducible, we know that in F[z] we have ged(f, f') = 1, and
so by the GCD identity for F'[z] we can find polynomials a,b € F[z] for
which 1 = af + bf’. But if we evaluate this polynomial at & we obtain
the following:

1 =1(a) = a(@)f(a) + b(a)f'(a) =0+ 0 =0,

a contradiction. Thus f must not have any repeated roots in the split-
ting field K. a

Theorem 45.4 remains true for all finite fields, and you will prove
this fact in Exercise 46.8. The theorem is false, however, for infinite
fields with characteristic p (although we will not pursue this topic in
this book). We will find Theorem 45.4 of considerable use when we
return to the problem of determining when polynomial equations can
be solved with radicals.

We close this section by proving another important result about fields
with characteristic zero. It is surprisingly the case that for such fields
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any finite algebraic extension is simple. That is, if we adjoin finitely
many algebraic numbers to a field with characteristic zero, we only
need to adjoin a single element. In particular, over such a field the
splitting field is always a simple extension.

Example 45.7

An interesting example of this is Example 44.3, where we rather
laboriously proved that Q(v/2, ¥/2) is a simple extension Q(a)
of Q, where a = V2 + 2. As we shall see in the proof of the
theorem, it is no accident that « is a linear combination of the

elements \/5 , 2.

Theorem 45.5 Let F' be a field with characteristic zero, and K a finite
algebraic extension of F. Then K is a simple algebraic extension of F'.

Proof: Suppose that « and (3 are algebraic elements over a field F,
which has characteristic zero. We will show that F(a, 8) = F(u), for
some algebraic element y. This reduction from two generators to one
is clearly the induction step needed to show that any finite algebraic
extension is simple (See Exercise 45.4).

Now « and 8 are roots of irreducible polynomials f,g € F|z] of
degrees n and m, respectively. We may as well do all of our compu-
tations in a field K in which both f and g split into linear factors.
Because F' has characteristic zero, Theorem 45.4 tells us that the roots
a=ay,- - ,opof fin K are all distinct from one another, and that the
roots 8= B1,- -+, Bm of g in K are also all distinct from one another.

Consider the finite set of elements in the field K:

(5=2)
B-6:1°
where i > 1 and j > 1. Since F is of characteristic zero, it is an infinite

field, and so we can choose a non-zero element a € F' not equal to any
of these quotients.

We will now define 4 = o + aB. It is quite evident that F(u) C
F(a,3). We must show the reverse inclusion is true, by arguing that
o, € F(u). For that purpose, consider the polynomial h € F ()],
defined by h(x) = f(u — az). Notice that

h(B) = f(u —aB) = f(a) = 0.
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Thus h and g share the root 3.

However, h and g can share no other root. For if they did, it would
be some §3;, with 7 > 1. But then

0="h(3)=f(u—aB) = fla+aB—aB).

This would mean that a + a(8 — ;) = «;, for some j, and we chose a
precisely so that this cannot be true.

Because g factors into linear factors in K, it is now evident that the
ged of h and g in Kz] is « — 8. But h,g € F(u)[z], and so when
we perform Euclid’s algorithm to compute ged(h,g), we will remain
in the ring F(u)[x]. This means that ¢ — 8 € F(u)[z], or in other
words, 8 € F(u). But because o = p — af, o € F(u), too. Thus,
F(a, B) = F(p). o

Examples of this theorem appear in Example 44.3, and Exercises 44.3
and 44.4.

We can now use this theorem to show that for fields of characteristic
zero, a finite extension is normal exactly if it is the splitting field for
some irreducible polynomial.

Thgorem 45.6 Suppose that F is a field of characteristic zero, with
finite extension K. Then K is the splitting field for some irreducible
f € Flz] if and only if K is a normal extension of F'.

Proof: Suppose that K is a normal extension of F, a field with
characteristic zero. Then by Theorem 45.5 K = F(a), where a is
algebraic over F. Let f € F[z] be the minimal polynomial for . Since
K is normal, f splits in K. But clearly no smaller subfield of K contains
all the roots of f, because K = F(c). Thus K is the splitting field for
f over F.

The converse is just Theorem 45.3. |

Theorems 47.2 and 48.2 will give other conditions equivalent to being
a finite normal extension.

Chapter Summary

In this chapter we proved that every polynomial over a base field admits
a unique minimal field extension of that field, in which the polynomial
factors into linear factors; this is called its splitting field. A splitting
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field for a polynomial actually has the stronger property that if an
irreducible polynomial over the base field has even one root in the
splitting field, it has all of its roots. We call such field extensions
normal. We also showed that for a field of characteristic zero, finite
extensions are necessarily simple extensions.

Warm-up Exercises

a. Answer the following true or false; if your answer is false, give a
counterexample. Assume that F, K and L are fields.

(a) A splitting field for f over F is an algebraic extension of F.

(b) All finite extensions of Q are simple.

(c) A normal extension of Q is the splitting field for some f €
Qlz].

(d) A splitting field for f over F is a normal extension.

(e) If f € Q[z] is irreducible, then all of the roots of f in C are
distinct.

(f) Suppose that f € F[z] is irreducible and has degree bigger
than 1. To construct the splitting field for f over F, it
is always possible to use the field F[z]/(f) constructed by
Kronecker’s Theorem 42.1.

(g) Suppose that f € F[z] is irreducible and has degree bigger
than 1. To construct the splitting field for f over F|, it
is never possible to use the field F[z]/(f) constructed by
Kronecker’s Theorem 42.1.

(h) All splitting fields are finite extensions.

(i) If F C L C K, and K is the splitting field for f over F’, then
K is the splitting field for f over L.

(j) Suppose K is a proper finite extension of F. Then K is the
splitting field for some polynomial f over F.

b. Consider the polynomial 2® — 2. Describe its splitting field over
the following fields:

Q R, Q), C

c. Let F be a field, and suppose that f € Fz] has degree 1. What
is the splitting ficld of f over F?
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Exercises

1. In this problem we check the claims made in Example 45.5.

(a) Show that the polynomial f factors as
f=(@=+a) (x+a2) (w+a+a2).

(b) Prove that Zs(a) = Za(a?).
(c) Prove that Zs(a) = Za(a + a?).

2. In this problem you will follow the proof of Theorem 45.5 in the
particular case where o = V2, 3=+/7and F=Q.

(a) Make a complete list of the elements of Q(v/2,+/7) that are
not allowed to be the element a. Choose your own value of
a (there are many choices) and find an appropriate value for
L.

(b) Determine the polynomial h € Q(u)[z] and check that 3 is
a root.

(c) Compute the ged of h and g in Q(u)[z] using Euclid’s al-
gorithm, and thus verify the claim about this ged in the
proof.

3. Suppose that R is a commutative ring, and f € R[z]. Then
we can write f as f = apz™ + Un-12"" + a1z + a9, where the
coefficients a; are elements of R. Define the formal derivative of
f as

' =napz™ 1 4+ (n — 1)an_1aU"_2 4 -+ aq,
which is just the formula we expect from calculus. (Note that we
explored this notion for R = Q in Exercise 4.7.)

(a) Suppose that a € R and f € R[z]. Prove that (af)’ = af’.
(The constant multiple rule.)

(b) Suppose that f,g € Rlz]. Prove that (f+g)' = f'+¢'. (The
sum rule.)

(c) Suppose that f,g € R[z]. Then (fg) = f'g + fg'. (The
product rule.)




576 FEzercises

(d) Suppose that a € R and n is a positive integer. Prove that
if f=(xz—a)" then f/ =n(z —a)" L. (The power rule.)

4. Complete the inductive proof for Theorem 45.5: Suppose K =
F(ay,- -, ap), for algebraic elements a;. Show that there is an
algebraic element p so that K = F(u).

5. Consider the polynomial f = z* — 422 + 2 € Q[z].
(a) Argue that f is irreducible over Q.
(b)
(c) Describe the splitting field of f over Q in C.
)

(d) This splitting field can actually be described in the form
Q(a), where a is one of the roots of f. Do so if you haven’t
done so already, justifying your assertion rigorously.

b) Factor f completely into linear factors in C[z].

6. Consider the polynomial f = 2% — 2 € Q[z].

(a) Argue that f is irreducible over Q.
(b) Factor f completely into linear factors in C[z].
(c) Describe the splitting field of f over Q in C. (The easiest

such description is of the form Q(a, 3), where «, 3 are ap-
propriately chosen elements of C.)

(d) This splitting field cannot be described in the form Q(a),
where « is one of the roots of f. Prove that this is true.

(e) Why does Theorem 45.5 imply that this splitting field is a
simple extension of Q? Give such a description, justifying
your assertion rigorously.

7. Suppose that F is a field, and K is a field extension of F' that is

algebraically closed (see Exercise 9.26 for a definition). Suppose 2

that f € F[x]. Argue that K contains a copy of the splitting field
of f over F. Describe this splitting field more explicitly.

Chapter 46

Finite Fields

In the previous chapter we proved that any irreducible polynomial f
over a field F has a unique splitting field: a minimal field extension
of F' in which f can be factored into linear factors. This provides a
field inside of which we can explore whether or not the roots of f are
obtainable by elementary algebraic operations. We will pursue this
goal in the remaining chapters in this book.

But a wonderful bonus flows from the existence and uniqueness of
splitting fields, and we will take a small detour from our goal to explore
this bonus in the present chapter. We are now able to completely de-
scribe all finite fields. We have for a long time been familiar with the
finite fields Z,, where p is a prime integer. We have also encountered
various finite fields as finite extensions of such fields; for example, con-
sider Example 42.5, Exercise 43.2 and Example 45.5. In this chapter
we will be able to place these examples in a beautiful general context.

46.1 Existence and Uniqueness

Theorem 42.2 says that every field has characteristic zero or p, where
p is a prime integer. Fields with characteristic zero have a subfield
isomorphic to Q and so are infinite. Thus, any finite field has charac-
teristic p, for some prime p. This means that every finite field contains
(an isomorphic copy of) one of the fields Zp as a subfield (recall that
this is called the prime subfield). We use these considerations to prove
our first result about arbitrary finite fields.

Theorem 46.1 A finite field of characteristic p has p™ elements, for
some positive integer n.

Proof: With our knowledge of group theory, this becomes quite an
easy theorem. Let F' be a finite field, and consider its additive group
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structure. Saying that its characteristic is p means exactly that every
non-zero element has (additive) order p. But then Theorem 31.5 says
that p must be the only prime integer dividing the order of F. That
is, every finite field has p™ elements, for some positive integer n. O

But do such fields exist, for every prime p, and every positive integer
n? The next theorem says that they do. Here, field theory comes to
the rescue.

Theorem 46.2 For every prime integer p and every positive integer
n, there exists a field with p™ elements.

Proof: Consider the polynomial f = zP" — x € Z,[z]. By Theorem
45.1 we know that there exists a splitting field F' of Z, for f. Because
F is a field extension of Z,, it must be a field of characteristic p. We
will show that F is exactly the required field of p" elements.

Pick two roots 7, s € F of the polynomial f. We claim that r—s is also
a root of f. To check this, we must evaluate f(r—s) = (r—s)P" —n(r—s)n.
But in a field of characteristic p, we know that (r — s)P" = rP" — s?
(see Exercise 46.1c). Thus,

f(r_s):TP"_SP"_T+s:(rpn—'r')—(spn—.s):()—():o,

and so r — s is a root of f, as claimed. That is, the set of roots of f is
an (additive) group. .

Now pick two roots 7,5 € F of the polynomial f, with s # 0. We
claim that rs~! is also a root of f. But

f(rs™!) = PPl s P —pgTl=rs  —rsl = 0.

Thus, the set of roots of f actually forms a subfield of F. But because
a splitting field is minimal among all fields containing the roots, F
consists exactly of the roots of f.

To show that F contains exactly p" elements, it remains to check
that f has no repeated roots. Pick any root 7 of f. Then

fla—r)=(@-rF —(z-7)
_—_q:pn——m—(’r‘pn—7”)=f(1')—0=f(x)'

Thus, .
f=@—-r)(@-r1-1)
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But clearly = — r is not a factor of (z — 7)P"~1 — 1 (because z — r does
not divide 1). Thus, r is not a repeated root. Consequently, f has p"
roots, and so the set of roots of f is equal to the splitting field F and
is the required field with p™ elements. O

We shall now use Theorem 45.2 (the uniqueness of splitting fields) to
show that any two finite fields with p" elements are isomorphic:

Theorem 46.3 All fields with p™ elements are isomorphic.

Proof: Any finite field F' with p™ elements has characteristic p,
and so is a finite extension of Z,. Consider again the polynomial f =
zP" — z € Zy[z]. We will now show that the elements of F are exactly
the distinct roots of f, and so is exactly the splitting field of f over Zp.

We know that the multiplicative group F* has p" — 1 elements. Now
pick a € F*. By Lagrange’s Theorem we know that the order of a
divides p™ — 1; thus, a?"~! = 1. But then o*" = q, and so a is a root of
of #P" — x. Thus, every element of F' is a root of zP" — z. The field F
has p™ elements and " —  can have no more than p" roots. Hence,
F' consists of exactly those roots.

But then the uniqueness of splitting fields (Theorem 45.2) means that
all fields with p™ elements are isomorphic. O

Because the field with p™ elements is unique (up to isomorphism), we
can unambiguously denote it by GF(p™). This stands for Galois field
of order p", after the Frenchman Evariste Galois who was the first
mathematician to consider finite fields. Of course, GF(p) is merely a
different notation for the familiar field Z,.

The uniqueness of finite fields was proved in 1893 by the American
mathematician E. H. Moore, who was by that time at the University
of Chicago. Moore played a crucial part in bringing American math-
ematics to the level of European mathematics. He was the founder
of the mathematics department at the University of Chicago and was
one of the founders of the American Mathematical Society. But most
important was his work as an admired mathematician and as a teacher
and mentor for the next generation of American mathematicians.
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46.2 Examples

Example 46.1

Consider the polynomial z?+1 € Zs[z]. It is easy to see that this
polynomial has no roots in Zs, by checking the three possibilities
0, 1, and 2. Thus, by the Root Theorem, z? + 1 is irreducible,
and so the ideal (x? + 1) is maximal (Theorem 13.3). Thus,
Zs[z]/(xz? + 1) is a field. This field has degree 2 over Z3 and
so has 9 elements. It is consequently the Galois field GF(9).
We should really write these elements as (additive) cosets. For
simplicity’s sake, we will replace (2 + 1) + z by a. With this
convention, the elements of this field are

{0, 1, 2, @, a4+ 1, a+2, 20, 200+ 1, 20+ 2},

where the multiplication is determined by the law a? +1=0;
that is, o? = 2.

Let’s look at the multiplicative structure of this field. That
is, what sort of group is GF(9)*? It is certainly an abelian group
with 8 elements, and up to isomorphism there are three such
groups. It turns out that this group is cyclic, and o + 1 is a
generator. Let’s verify this, by brute calculation:

(a+1D)i=a+1, (a+1)?=0a’>+2a+1=2q,
(a+1)® =2a(a+1) =20+ 20 =22+ 1,
(a+ 1) =(a+1)(2a+1)=2a*+3a+1=2,
(@+1)°=2(a+1)=2a+2,

(a+ 1) =(a+1)(20+2) =20 +4a+2 =0,
(a+1) =(a+a=c*+a=a+2,
(a+1)8=(a+1)(a+2)=c®+3a+2=1

It turns out that the group of units of any finite field is cyclic!
This is called the Primitive Root Theorem; we will not prove this
theorem in this book.
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Example 46.2

In order to construct the field GF(8), we need only find an
irreducible polynomial f in Zs[x] of degree three; then form
Zs[x]/(f). We actually performed this calculation in Example
45.5 (see also Exercise 45.1), using the polynomial f = z3+z+1.
In Exercise 46.9 you will use the polynomial z® + z2 + 1 instead,
and show explicitly that the resulting field is isomorphic to the
field constructed in Example 45.5.

Now consider the polynomial g = z2 +z + 1 € GF(8)[z]. We
claim that this is an irreducible polynomial in GF(8)[z]. To show
this, let’s try by brute force to see whether any of the 8 elements
of GF(8) are roots of the polynomial. For example,

gl +a)=(a*+a) +(@®+a)+1=
attal+a’ta+l=0t+a+1=
ala+1)+a+1=0?+1+#0.
Thus, o? + « is not a root.

> Quick Exercise. Try the other seven elements of the field,
and thus see that this polynomial is irreducible. <«

But then we can construct the field
GF(8)/(z* +x +1).

This is a degree 2 extension of GF(8), which has 8 elements,
and so is a field with 64 elements altogether. Thus we have con-
structed the essentially unique field with 64 elements GF(2°) =
GF(64). Note of course that we could have also constructed this
field, had we been able to find an irreducible polynomial in Z[z]
of degree 6. You will find such a polynomial in Exercise 46.10.

The previous example shows that the unique field with 23 elements
can be considered a subfield of the unique field with 26 elements. The

full story is given by the following theorem, which you prove in Exercise
46.5.

Theorem 46.4 The field GF(p™) is a subfield of GF(p™) if and only
if m divides n.
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Chapter Summary

In this chapter we prove that for every positive prime integer p and
positive integer n, there exists a unique finite field with exactly p"
elements. This is a nice consequence of the uniqueness of splitting
fields.

Warm-up Exercises

a. Describe how you would construct the field GF(25); specify a
polynomial p € Zs[z] that you could use. :

b. Consider the multiplicative group GF(32)*. Why is this group
obviously cyclic? (You need not refer to the Primitive Root The-
orem.)

c. Give three non-isomorphic commutative rings with nine elements.
How many are fields? Are they isomorphic as abelian groups, or
not?

Exercises

1. Suppose that F' is a field with characteristic p, and a,b € F.

(a) Prove that (a4 b)P = a? + bP. Hint: Use Exercise 2.19 and
the binomial theorem Exercise 6.17.
(b) For any positive integer n, prove that (a + b)P" = aP" + be".

7

(¢) For any positive integer n, prove that (a — b)P" = aP" —b?".

2. Explicitly write out the elements of GF(25), as constructed along
the lines of Exercise ¢ above. Find a generator for the cyclic
multiplicative group GF(25)*.

3. Define the function
¢ :GF@") - GF(p")

by ¢(a) = aP. Prove that this is a ring isomorphism, called the i§
Frobenius isomorphism (this is actually a repeat of Exercise

17.18).
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. Describe how to construct GF'(81) by using a specific polynomial

p € GF(9)[z].

. Prove Theorem 46.4. That is, show that GF(p™) is a subfield of

GF(p") if and only if m divides n.

. Prove that every element in a finite field with characteristic p has

a pth root.

. Suppose that f € GF(p")[z] is a non-constant polynomial and

suppose that its formal derivative is zero. Prove that f is not
irreducible.

. Suppose that F is a finite field and f is an irreducible polynomial

in Flz]. Prove that the roots of f in its splitting field are all
distinct. (That is, prove Theorem 45.4, replacing the hypothesis
that the field is characteristic zero, with the hypothesis that it is
finite.)

. In this exercise we follow up on Example 46.2, where we con-

structed GF(8) as Zs[z]/(f), with f = 23 +2+1. Then GF(8) =
Zy(cx), where o = (f) + .

(a) We know from the proof of Theorem 46.2 that GF(8) con-
sists exactly of the 8 distinct roots of the polynomial 28—z €
Zs[x). Explain why f is a factor of this polynomial.

(b) Factor z® — x completely in Zy[z] as a product of irreducible
polynomials. (You should obtain a cubic irreducible poly-
nomial g other than f as a factor.)

(¢) Factor g into linear factors in Za(a)[z].

(d) Why are Zy[z]/(f) and Z3[x]/(g) isomorphic as fields? (Your
answer should just involve a citation of the appropriate the-
orem(s).)

(e) Let 8 = (¢9) + z. Construct an explicit isomorphism be-
tween the flelds Zs(a) and Zo(8). You should specify a func-
tion from one of these fields to the other, including precisely
where each of the eight elements goes.

10. In Example 46.2 we constructed GF(64) by building GF'(8) first,

and then constructing a degree two extension of that field. The
alternative is to find a degree six irreducible polynomial h € Z3[z],
and then construct the field Zy[z]/(h).
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Exercises
(a) Give a complete list (with justification) of all degree 1, 2 or
3 irreducible polynomials in Zs[z].
(b) Determine all fourth degree irreducible polynomials in Zs[z].

(c) Determine all sixth degree irreducible polynomials in Zs[x].

Chapter 47

Galois Groups

We now return to our goal of understanding whether the roots of an
irreducible polynomial over a field can be obtained by elementary alge-
braic computations. In Chapter 45 we constructed the unique splitting
field for such a polynomial, inside of which such computations must
occur. In the present chapter we will look closely at what sort of field
extension the splitting field must be. We will use group theory to do
this.

In Chapters 22 and 23 we saw how geometry could be illuminated
by considering functions leaving geometric properties fixed; we thus
obtained groups of symmetries. Here we will illuminate field extensions
(and splitting fields in particular) by considering functions leaving field
properties fixed; we will thus obtain groups of automorphisms called
Galois groups.

47.1 The Galois Group

To better understand a field F, it is useful to consider all functions
that preserve essential algebraic structure. Such functions are one-to-
one and onto ring homomorphisms from the field to itself; such homo-
morphisms are called automorphisms. We have denoted the set of
all such automorphisms Aut(F); this set is a group under functional
composition (see Example 24.18).

Suppose that E and F are fields, and £ O F. We may now consider
the following subset of Aut(F):

Gal(E|F) = {p € Aut(E) : o(f) = f,for all f € F}.

That is, we are considering only those automorphisms of the field F
that leave all elements of the subfield F fized. It is easy to check that
Gal(E|F) is a subgroup of Aut(E), using the Subgroup Theorem 25.2.
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> Quick Exercise. Show that Gal(E|F) is a subgroup of Aut(E). <

We call Gal(E|F) the Galois Group of the field E over F. Let’s
consider some examples.

Example 47.1

Gal(R|Q) is the trivial group, because Aut(R) itself is the group
with only one element (see Exercise 24.13).

Example 47.2

Let K be any field, with prime subfield F. The prime subfield
is the field generated from 1 by field operations, and so any au-

tomorphism must leave it fixed. This means that Gal(K|F) =
Aut(K).

Example 47.3

Gal(C|R) is the two element group {t, ¢}, where ¢ is the identity
automorphism, and ¢ is the complex conjugation map. This
is true because Aut(C) has only these two elements (Exercise
24.14), and both such automorphisms leave the real subfield fixed.

Example 47.4

Let’s compute the Galois group Gal(Q(v/2)|Q). Because Q is the
prime subfield of Q(v/2), it is left fixed by any automorphism
(Example 47.2). Since any element of Q(v/2) is of the form a +
bv/2, where a,b € Q, it is clear than any automorphism @ of this
field is determined by ¢(+/2). But

2=(2) =y (x/§2) = (p(V2))?,

and so ¢(v/2) must be a square root of 2. There are only two
choices: ¢(v/2) = V2 and ¢(v2) = —v2. The first of these
choices leads to the identity automorphism. The second leads to
¢(a+ bv/2) = a — by/2. You can check that this is an automor-
phism of Q(v/2) leaving Q fixed, and so Gal(Q(v/2)|Q) is a two

element group.

> Quick Exercise. Check explicitly that the set of these two
automorphisms forms a group. <

We will generalize this example in Theorem 47.1 below.
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Example 47.5

Consider the field Q(v/2, v/3). Now every element of this field can
be expressed as a + bv/2 + ¢v/3 + dV/6 (see Example 44.2). Thus
every automorphism ¢ of Q(v/2,+/3) is determined by what it
does to p(v2), p(v/3), p(v/6). Since V6 = (v/2)(V3), we actually
need only know ¢(v/2) and ¢(v/3). By an argument similar to
that in Example 47.4, we have two choices for each of these.
These lead to exactly four possibilities:

L, p1{a+bvV2+ V3 +dvVe) = a— bv2 + V3 — dV6,

pa(a+bvV2+cV3+dv6) = a—bV2 — cV3 + dVE,
p3(a+bv2+cv3+dv6) =a+bvV2 - cvV3 - dVb.

You can check directly that these are all automorphisms. We
thus have a group with four elements. It is easy to check that
each of these elements has order 2, and so this group is (up to
isomorphism) the Klein Four Group (see the discussion in Section
31.3).

> Quick Exercise. Check that each ; is in fact an automor-
phism, and that each such has order 2. «

We will now obtain a theorem generalizing the arguments made in
Examples 47.3 and 47.4:

Theorem 47.1 Let F C K be fields, and f € Flz] an irreducible
polynomial, and o € K\F a root of f. Suppose that ¢ € Gal(F(a)|F).
Then ¢ is entirely determined by p(a). Furthermore, o(a) must be a
root of f in K, and so

Gal(F(a)|F)| < deg(f) = [F(a) : F].

Proof:  Let deg(f) = n. We know from Theorem 43.3 that every
element of F(a) can be written (uniquely) in the form

8 =by+bia+-+ bn_lan—l’
where b; € F. But then
w(B) = p(bo) + @(br)p(a) + - - - + @(bp_1)p (an—l) _

bo + brp(a) + -+ + bn_10(a)™ 1
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this follows because ¢ is a ring homomorphism, and (b;) = b; since
b; € F. It then follows that ¢ is entirely determined by what it does
to «.

But « is a root of f = ag + a1 + -+ + apx™, and so by a similar
argument

f(p(@)) = a0 + arp(a) + - + anp(@)” = ¢(f(a)) = 0.

This means that ¢(a) is also a root of f. Since deg(f) = n, there are at
most n choices for ¢(a). It then follows that |Gal(F(a)|F)| < deg(f).
The irreducibility of f implies that deg(f) = [F(«a) : F]. O

This theorem provides us with a practical approach for computing
Galois groups of simple algebraic extensions. Because each element
of the Galois group takes each root of f to a root of f, and since
an automorphism is of course a one-to-one function, we can (up to
isomorphism) view the Galois group as a subgroup of the group of
permutations of the roots of f. In the examples that follow, we shall
usually take this point of view.

> Quick Exercise. Review the previous two examples in light of
this theorem and the observations that follow it. <

Example 47.6

Let’s reconsider Example 45.4 in light of this theorem. Consider
the irreducible polynomial 3 — 2 € Q[z] and the field extension
Q (\3/5) C R of the rational numbers Q. Theorem 47.1 says that
Gal(Q(7/2)|Q) has at most three elements. But in this case the
Galois group is trivial, because only one of the three roots of
2% — 2 is a real number, and so is the only root in Q(v/2) C R.

47.2 Galois Groups of Splitting Fields

In light of the previous example and theorem, it seems natural to ask

when the Galois group of an algebraic simple field extension is as large 4
as possible (namely, is equal to the degree of the field extension). It }
turns out that we already have the appropriate concept at hand: this _
takes place exactly when the extension is normal (at least for fields of }

characteristic zero). This is the content of the next theorem:
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Theorem 47.2 Let K be a finite extension of the field F, which is of
characteristic zero. Then |Gal(K|F)| = [K : F] if and only if K is a
normal extension of F.

Proof: Suppose first that K is a normal extension of the field F
with characteristic zero. We know from Theorem 45.5 that there exists
an algebraic element 3 so that K = F(f3). Because K is a normal
extension, K is the splitting field for the minimal polynomial g for 3
over F'; let’s suppose that the degree of g is m. We know from Theorem
43.3 that [K : F] = m. Suppose that

ﬁ:ﬂlv ﬁ?a ) ﬁm

are the roots of g in K; these roots are distinct, because F' has charac-
teristic zero (Theorem 45.4).

Consider now an element ¢ € Gal(K|F). By Theorem 47.1 it is
entirely determined by ¢(5), and we have only m distinct choices 3; to
consider. Now by the proof of Exercise 19.20, the function

ag+ a1+ +am1B™ > agtaiBi+ -+ a1 B

is an isomorphism between F(3) and F((;) that leaves F fixed. Fur-
thermore, F(3) = F(0;) = K, since K is the unique splitting field for
g and a normal extension of F. This means that each choice 3; leads
to a distinct element of Gal(K|F), and so |Gal(K|F)| =m = [K : F].

Conversely, suppose that [K : F| = |Gal(K|F)|. Since our fields are
of characteristic zero, K = F(a), a simple extension of F, where « is
a root of an irreducible polynomial f € F[z] and deg(f) = [K : F].
But any ¢ € Gal(K|F') is determined by its value ¢(a), and ¢(a) is
a root of f. Since there are by assumption [K : F| distinct elements
of Gal(K|F'), this means that all of the roots of f already belong to
K. That is, K is the splitting field for f over F' and so is a normal
extension, by Theorem 45.3. d

Example 47.7

As we saw in Example 45.4, the splitting field for 23 — 2 over Q
is Q(V/2,¢). We note that [Q(v/2) : Q] = 3 and [Q(¢) : Q] = 2.
This means that [Q(v/2,¢) : Q] = 6, and so by Theorem 47.2
the Galois group G = Gal(Q(+/2,¢)|Q) has six elements. Since
each element of the group G permutes the roots of 3 — 2, we can
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(and should) think of G as a group of permutations. But since
3! = 6, G consists of all such permutations. We shall thus label
the three roots v/2, ¥/2¢, ¥/2¢2 by the three integers 1,2, 3 when
thinking of the elements of the Galois group as permutations. It
is actually easiest to determine the elements ¢ of G by choosing
both ¢(3/2) and ¢(¢), since ¢ must also permute the two roots

¢,¢? of the polynomial 22 + 7 + 1 = £=1

z—1"

p(V2) ¢(¢) perm

¢

V2 o ¢t (3)
Y2 ¢ (123)
B¢ ()
2 ¢ (32)
e ¢ (1)

> Quick Exercise. Check that these six permutations make
sense. <

Example 47.8

The argument in Example 47.7 can be made more generally. Sup-
pose that f € Qlz] is any irreducible cubic polynomial with one
real root and two complex roots. Let K be the splitting field for
this polynomial over the rational field. Then K contains a de-
gree 3 field extension of QQ, and so 3 divides [K : Q]. But complex
conjugation is a non-trivial element of Gal(K|Q). Since this has
order two as a group element, 2 divides |Gal(K|Q)| = [K : Q].
But then the Galois group consists of all 6 permutations of the
three roots of f in K and so is isomorphic to S3.

Example 47.9

In Exercise 45.5 you factored the polynomial ¢ — 2 € Q over the
complex numbers as follows:

2= (22— v2) (+* + Vv2)
= (z—\‘ﬁ) <x+{‘/§) (:c—\4/§z> (a:+<7§z)

S
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You then argued that the splitting field of this polynomial is
Q(~/2,4). Let’s compute the Galois group G = Gal(Q(v/2,1)|Q)
of this splitting field. Now

[Q(V2,1): Q] = [Q(V2,1) : Q(V2)][Q(V2) : Q] =2-4 =8,

and so the Galois group has eight elements. We can view the
elements of G as permutations of the four roots

\4/57 _\4/57 \4/57:7 _\4/_2-23

we will label these roots by the integers 1 through 4. Notice
that in this case we will not obtain the entire permutation group,
which has 24 elements. As in the previous example, in practice
the elements ¢ of this Galois group are determined by ¢(v/2),
which is equal to one of the four roots, and (%), which is equal
to one of the two roots of 22 + 1, namely +i. We thus obtain the
following elements of the Galois group G.

@(V2) (i)  perm
\4/5 7 )
V2 —i (34)

-2 i (12)(34)
-2 - (12)

V20 i (1324)
V2% —i (13)(24)
-2 i (1423)
—¥2% - (14)(23)

We recognize this group of order 8 as Dy, the group of symmetries
of a square.

Example 47.10

We consider next the Galois group for the splitting field of z7 — 1
over Q. Now 27 — 1 = (z — )®7(2) = (x — D)@ +--- + z + 1),
where ®7(z) is the cyclotomic polynomial, which is irreducible by
Exercise 5.17. Furthermore, its six distinct roots are exactly ¢ =
e ,¢2,---,¢5. So in this case the splitting field is exactly Q(¢),
and [Q(¢) : Q] = 6. There are thus 6 elements in Gal(Q(¢)|Q),
and they are determined by which seventh root of unity ¢* that
¢ is sent to. We thus obtain the following elements of the Galois

group:

591
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v(¢) perm

¢ L

¢? (124)(365)
¢3 (132645)
¢t (142)(356)
¢? (154623)
(o (16)(25)(34)

We recognize this group as a cyclic group of order 6.

The previous example admits a natural generalization that we will
later find quite useful.

Theorem 47.3 Let p be a prime integer. Suppose that F is a subfield
of the complex numbers C. Then the splitting field for the polynomial
®,(z) = 2P L+ 2P~ 2+ ... + x4+ 1 is the field F(¢), where ( = e is
the primitive pth root of unity. Furthermore, Gal(F({)|F) is abelian.

Proof: We know that the splitting field for ®, can be considered a
subfield of C, and its roots are exactly the powers ¢, ¢2, ¢3, ... (P71
of the primitive pth root of unity (. Consequently, given an element
@ € Gal(F(C)|F), it is certainly determined by its value applied to (,
and that value must be a root of ®,, namely, one of the powers ¢*. So
if p(¢) = ¢*, we will denote ¢ by wi. Let’s compute ¢k, and p;px.
We have

ori () = wr(¢?) = prl(¢Y = ¢M.

Since we clearly get the same result in the other order of composition,
we must then have that the Galois group is abelian, as claimed. a

Let’s summarize what we have learned from our previous examples.
Suppose that K is a splitting field over the field F' for an irreducible
polynomial f € Flz]. Then [K : F] = |Gal(K|F)| must at least
be n = deg(f), because K contains an isomorphic copy of the field
F[z]/{f) constructed by Kronecker’s theorem, and this field has degree
n over F. And since Gal(K|F') can and should be viewed as a group of
permutations of the roots of f, it can never have more than |S,| = n!
elements. In Example 47.10, the Galois group is as small as possible;
it has n elements. In Example 47.7, the Galois group is as large as

possible; it has n! elements. And in Example 47.9, the Galois group

has a number of elements intermediate between n and n!.
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Example 47.11

The splitting field of the polynomial 7 — 2 € Q[z] is quite evi-
dently Q(V/2, ¢), where ¢ is the seventh root of unity with smallest
positive argument, which we considered in Example 47.10.

> Quick Exercise. What are the roots of this polynomial, in
terms of ¢ and V/2? <«

Let’s now compute G = Gal(Q(V/2,¢)|Q(¢)). Any element
@ € G clearly leaves ( fixed and is determined by what it does to
v/2. There are thus seven possible choices, and since our extension
is normal, all lead to automorphisms. Thus G is a group of order
seven, and so is necessarily isomorphic to a cyclic group of order
severn.

We can again generalize this example:

Theorem 47.4 Suppose that p is a positive prime integer, and F a
subfield of C. Suppose that r € F, but r has no pth root in F while

a € C and o = r. Suppose that { = 7 € F. Then F(a) is the
splitting field of P —r € Flx] over F, and Gal(F(a)|F) is a cyclic
group of order p.

Proof: We may again suppose that the splitting field of 2z — r is a
subfield of C. But the roots of zP — r in C are evidently the elements
a, af, a?, --- a¢P~!. Because we are assuming that ¢ € F, all these
elements belong to the field F(a), and so the latter field is evidently
the splitting field, as required.

Given an element ¢ € Gal(F'(«)|F), it is clearly determined by what
it does to «, and obviously ¢(a) = al¥, for some integer k, with
0 <k < p—1. Because F(a) is normal over F, each such choice
leads to a distinct automorphism. So the Galois group has exactly p
elements. The only group with p elements is a cyclic group of that
order. o

Example 47.12

Consider now the polynomial z° — 6z + 3 € Q[z]. This is clearly
irreducible, by Eisenstein’s Criterion 5.7. We will now calculate
the Galois group of its splitting field over the rational field. We
will do this rather less directly than in our previous examples.
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Let’s consider the polynomial function f(z) = z® — 6z + 3
and use some calculus. Now f'(z) = 5z* — 6, which has ex-

actly two real roots i{‘/é . The negative root corresponds to a

local maximum for f and the positive root corresponds to a local
maximum. Furthermore, f takes on a positive value at the lo-
cal maximum and a negative value at the local minimum. Since
limz— 400 f(x) = Fo00, f has exactly three real roots. It must
consequently have two complex roots, and these form a complex
conjugate pair. The graph of f in the picture below illustrates
its properties.

20

—
o
T

> Quick Exercise. Verify the details regarding the graph of
this function. <«

Now let K be the splitting field for f over Q[z]. We shall as
usual view the Galois group Gal(K|Q) as a group of permutations
of the 5 distinct roots a1, ag, a3, a4, as of f in K. We may as well
label our roots so that the first two are the complex roots. Since f
is irreducible and of degree 5 and its Kronecker field is a subfield of
the splitting field, 5 divides [K : Q] = |Gal(K|Q)|. Now Theorem
31.5 implies that the group Gal(K|Q) has an element of order 5,
and as a permutation of a set of five elements, the element must
be a 5-cycle. As usual, we will think of the elements of our Galois
group as permutations on the root subscripts. So we may suppose
that this 5-cycle is a = (labed), where a,b, ¢, d are the integers
2.3,4,5 in some order. But some power of « is then of the form
(12abc), and we may as well relabel the three real roots so that
the permutation (12345) belongs to the Galois group.

But complex conjugation is clearly a field automorphism of
K leaving Q fixed and so belongs to this Galois group. Complex
conjugation leaves the three real roots fixed and interchanges the
two conjugate rcots, and so as a permutation of the roots it is
simply (12).
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But now Exercise 34.9 says that (12) and (12345) together
generate the entire group Ss. Consequently, we have shown that
the Galois group of the splitting field K of the polynomial z® —
6z + 3 € Q[z] is the full permutation group Ss.

This example will be of considerable importance in Chapter 49, where
we will show that the Galois group being S5 will imply that it is impos-
sible to solve for the roots of the polynomial x° — 62 + 3 using ordinary
field arithmetic, and the extraction of roots!

Chapter Summary

For any finite field extension K O F' we defined the Galois group
Gal(K|F) as the group of all automorphisms of the field K that leave
F fixed. When K is the splitting field for some polynomial f € F([z],
then the Galois group can be viewed as a group of permutations of the
roots of f in K, whose size is equal to the degree of the field extension
K over F. This size is always at least n = deg(f) and can in principle
be as large as n!.

Warm-up Exercises

a. Answer the following true or false; if your answer is false, give a
counterexample. Assume that F' C K are fields.
(a) Gal(F'|F) is the trivial group.
(b) Let a € K\F and « is algebraic over F. Then Gal(F(«a)|F)
is a finite group.
(¢) Gal(Q(+v/5)|Q) is a two element group.

(d) An automorphism preserves addition but need not preserve
multiplication.

(e) The group Gal(Q(v/2)|Q) has at least five elements.

b. Suppose that ¢ is the primitive 11th root of unity. What is the
Galois group Gal(Q( V2, ¢)|Q( V2))?

c. Give examples of the following, or else argue that such an example
does not exist:
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Ezxercises

(a) A Galois group with exactly 4 elements.

(b) A field F' and an element « that is algebraic over F, where
Gal(F(«)|F) has infinitely many elements.

(c) A non-cyclic Galois group.

Exercises

. Compute the Galois group Gal(Q(+/2,%)|Q). Compute the Galois

group Gal(Q(v'2,4)|Q(v/2)).

. Consider the splitting field Za(a) of the polynomial 23+ z +1 €

Zy[x] that we looked at in Example 45.5. Explicitly describe the
elements of the Galois group Gal(Zy(a)|Z2) as permutations of
the three roots o, a2, a + a2.

Compute the Galois group Gal(K|Q), where K is the splitting
field for the polynomial z* — 422+ 2. You computed this splitting
field in Exercise 45.5. Now compute Gal(K|Q(v/2)).

. Suppose that ¢ is the primitive cube root of unity. Let K be the

splitting field of 2% — 1 € Q[z]. Compute Gal(K|Q(¢)).

Consider the polynomial f = 23 — 3z — 1 € Q[z]. This is the
polynomial we considered in Section 39.2 (and Section 44.2) when
we proved that it is impossible to trisect a 60° angle with ruler
and compass. In this exercise we will compute the Galois group
of the splitting field for f over the rational field.

(a) Show that f is irreducible over Q.

(b) In Section 39.2 we used a trigonometric identity to show
that o = 2cos 20° is a root of this polynomial. Use similar
arguments to show that 8 = —2c0s40° and v = —2sin 10°
are the other two roots of f.

(c) Use elementary trigonometry to show that Q(/5) is the split-
ting field for f over Q. (That is, show that a,v € Q(8).)

(d) We can think of Gal(Q(8)|Q) as a group of permutations
of the roots «, 3,7. Argue that in this case this group is a
cyclic group of order three.
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(e) In this problem we solved for the roots of f by taking ad-
vantage of trigonometry. Instead, use the Cardano-Tartaglia
formula to obtain a root of f. Show that the root you obtain
is one of the roots given above.

. Apply the same reasoning as in Example 47.12 to conclude that

the Galois group of the splitting field for 2° — 1422 + 7 over the
rational numbers is the permutation group Ss.

. Repeat the previous exercise for the polynomial z® —4z*+2z+2 €

Q[z].

. Generalize the reasoning from Example 47.12 to prove the follow-

ing: Consider the irreducible f € Q[z] with deg(f) = p, where
p is a prime integer. Suppose that f has exactly two non-real
roots. Prove that the Galois group of the splitting field of f is
the permutation group S,.

. Prove the following modest variation on Theorem 47.2: Let K be

a simple algebraic extension of the field F' (of any characteristic).
Then |Gal(K|F)| = [K : F] if and only if K is a normal extension
of F.




Chapter 48

The Fundamental Theorem of Galois
Theory

We saw in the last chapter that the Galois group of a finite extension
of a field provides a lot of information about the structure of the ex-
tension field. In fact, if the extension is normal, then the degree of the
extension is equal to the number of automorphisms belonging to the
Galois group. In this chapter we encounter the Fundamental Theorem
of Galois Theory, which shows that this connection between field exten-
sions and groups carries even more information than that. In Chapter
49 we will be able to exploit this connection between field theory and
group theory to address our goal of better understanding the solution
of polynomial equations by field arithmetic and the extraction of roots.

48.1 Subgroups and Subfields

Suppose that we have fields F* C F C K. Then it is easy to see that
Gal(K|E) is a subgroup of Gal(K|F), because automorphisms of K
that fix E clearly also fix F C E.

> Quick Exercise. Check that Gal(K|E) is not only a subset of
Gal(K|F) but also a subgroup. <

Example 48.1
Referring to Example 47.7, we have that
Gal(Q(V2,0)|Q) = {1, (23), (123), (12), (132), (13)},

viewed as a group of permutations of the roots of 2 — 2. But
Gal(Q(¥/2, 0)|Q(¢)) is quite evidently the subgroup {¢, (123), (132)}.

> Quick Exercise. What subgroup is Gal(Q(+/2, {)|Q(V/2))?
<
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Example 48.2

Referring back to Example 47.5, we have that

Gal(Q(v2,v3)Q) = {1, ¢1, 2, 3}

Note that Gal(Q(+v/2, v/3)|Q(v/3)) is quite evidently the subgroup
{L7 ¢1 }

> Quick Exercise. What subgroup is Gal(Q(v/2, v3)|Q(v/2))?
How about Gal(Q(v/2,v/3)|Q(v6))? «

So for a field E between the fields F C K we always obtain a subgroup
Gal(K|E) of the Galois group Gal(K|F). But we can also proceed in
the reverse direction and obtain fields from subgroups. Suppose that
H is a subgroup of the Galois group Gal(K|F). We define

Fix(H) ={k € K :n(k) =k, foralln € H}.

It is obvious that F' C Fix(H) C K, because all elements of H C
Gal(K|F) fix elements from F', by definition. But more is true:

Theorem 48.1 Suppose that F C K are fields, and H is a subgroup

of Gal(K|F). Then Fix(H) is a subfield of K containing F.

Proof:  We leave the straightforward details to Exercise 48.5. O
We thus call Fix(H) the fixed field of the subgroup H.

Example 48.3

Returning again to Example 47.7, we have that Gal(Q(+/2, ¢)|Q)
is (up to isomorphism) the permutation group S3. This group
has the following subgroups:

{t}, G1={,(23)}, Go = {1,(13)}, G3 = {1, (12)}, 43, S3
It is easy to compute the fixed fields:
Fix({t}) =Q

Fix(G1) = @(\3/5)

Fix(Gz) = Q(V2()

Fix(Gy) = Q(V2¢?)

Fix(As) = Q(C)

Fix(83) = Q(V2,()

> Quick Exercise. Check these fixed fields. <«
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Notice that in Example 48.3 we actually have a one-to-one correspon-
dence between all subgroups of S3 and all fields intermediate between
Q and Q(v¥/2,¢). It turns out that this is the case precisely because we
have a normal extension. We shall discover that this (and more) is the
content of the Fundamental Theorem of Galois Theory 48.3 that we
prove below.

48.2 Symmetric Polynomials

Before we can tackle the problem of understanding the correspon-
dence we have begun establishing between intermediate fields and sub-
groups of the Galois group, we have a technical matter we need to
discuss, regarding the coefficients of a polynomial that splits in a given
field.

Suppose that f € F[z] is a monic polynomial with roots oy, a2, -, an
that exist in the splitting field for f over F'. We then have that

f=—a)(z—a) - (x—an).

If we multiply this out by using the distributive law, we will obtain
f= ZZ:O(—l)”_kan_kmk, where the coefficient aj consists of the sum
of all products of exactly k of the a; with distinct subscripts. (We set
ag = 1). For example, if n = 4, then

CLO:1

ap =a1+ a4+ a3+ oy
as = ajag + aras + arog + aoog + ooy + 3y
a3 = Q00 + a1y + apasog + +ooasoy
g = 1 Qax3ey

Notice that for convenience of description we have reversed the usual
subscript convention: ay is (up to plus or minus) the coefficient on the
™k term.

We can justify these formulas with a combinatorial argument. After
all multiplications have been distributed out, there will be 2" terms
obtained by making all possible choices, taking one of the two terms
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in each binomial factor z — ;. To obtain a contributor to the z*
term, we need to choose exactly k z-terms, and n — k «; terms, each
with a distinct subscript j. When we add up each of these terms, we
get exactly the a,_j terms described above. Note also that each Q;
term selected contributes a factor of —1 as well. It is also possible
to construct a careful proof by induction; such a proof is tedious but
straightforward, and we will leave it as Exercise 48.7.

We call these coefficients the symmetric polynomials in the con-
stants aq, - - -, a,. What is important for our purposes to observe is that
these symmetric polynomials are symmetric in the a;’s. This means
that if we have any field automorphism that permutes the roots of f,
it will leave these coefficients fixed. This observation will be important
in our proof of the Fundamental Theorem of Galois Theory 48.3 below.

48.3 The Fixed Field and Normal Extensions

Given fields F' C K, we have a way to obtain a subgroup Gal(K|E)
of Gal(K|F), for each intermediate field E. And for each subgroup H
of Gal(K|F), we have a way to obtain an intermediate field Fix(H).
When K is a finite normal extension of F, it turns out that these two
processes are inverses of one another: group theory will perfectly mirror
field theory, and vice versa.

If E is a field with field extension K, then it is clear from the definition
of the fixed field and the Galois group that Fix(Gal(K|E)) D E.

> Quick Exercise. Check this. <«

The following theorem asserts that the reverse inclusion holds only in
case that K is normal over E:

Theorem 48.2 Suppose that E C K are fields of characteristic zero,
and K is a finite extension of E. Then Fix(Gal(K|E)) = E if and only
if K is a normal extension of E.

Proof:  Suppose first that K is normal extension of E; we may as
well assume that K is strictly larger than E. Since K is finite over
E and of characteristic zero, this means by Theorem 45.5 that K =
E(ca), for some algebraic a € K\E. We shall assume that the minimal
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polynomial for « over F is f, and deg(f) = n. Then 1,a,0?,---,a""!
is a basis for K over E. Furthermore, because K is normal over E, K
contains all n roots a = ay,- -, 0, of f; these roots are distinct, by
Theorem 45.4.

Let 8 € K, and suppose that 3 is fixed by all elements of Gal(K|E).
We will complete the proof if we can conclude that 3 € E. (As we
observed above, the reverse inclusion is always true.)

Now we can express (3 in terms of our basis as 3 = Q;é apce®. But
3 is left fixed by all n elements of Gal(K|E), and for each i there is
such a Galois group element ; that takes a to a;. We thus have

n—1 n—1
B =i(B) = s (Z aw’“) =" araf.
k=0 k=0
But now consider the polynomial g € K|z] defined by

g=an 12" 1+ Faz+ (ag — B).

By the previous equation, we see that g has n distinct roots «;. But
this is too many roots for a polynomial with degree no more than
n — 1. Thus, g must be the identically zero polynomial. This means
that 8 =ag € E.

For the converse, suppose that Fix(Gal(K|E)) = E. We again may
assume that K is strictly larger than E, and furthermore that it is a
simple extension K = FE(«a) with minimal polynomial f, with deg(f) =
n. We will show that K contains all n of the roots of f and thus is the
splitting field for f over E, and so is normal, by Theorem 45.3.

Since o € K\F and Fix(Gal(K|E)) = E, there must be some ¢ €
Gal(K|E) so that ¢(a) = az # a. Now ag is clearly a root of f, and
ap € K. If deg(f) = n = 2, then f splits in K as required.

If n > 2 we must continue by induction. So we will suppose that
o= @y,09,- -0 are all roots of f belonging to K. Let

g=(r—a1)(z—a2) - (z — ox).

This is clearly a factor of f in K[z]. If k < n then g is a non-trivial
factor of f. Since f is irreducible in E[z], this means that g ¢ E[z].
But the coefficients of g are precisely the symmetric polynomials in
ap, g, -+, ag. So if each element of Gal(K|E) merely permutes these
k roots, the coefficients must belong to the fixed field of the Galois
group, which is by assumption E. Thus it must be the case that at
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least one of the a; is moved by an element of Gal(K|FE) to a root of f
not on our current list. This provides us with another root of f that
belongs to K. By induction, we then obtain all the roots of f in K.
Thus K is normal extension of E. O

Example 48.4

We return to Example 47.6. Since Gal(Q(+/2)|Q) is trivial, the
fixed field is Q(¥/2). Because this is strictly larger than the ratio-
nal field, it is not a normal extension. (Of course, it is easy to see
that this extension is not normal, directly from the definition.)

48.4 The Fundamental Theorem

We are now ready to state and prove the Fundamental Theorem of
Galois Theory.

Theorem 48.3 The Fundamental Theorem of Galois Theory,
Part One Suppose that K is a finite normal extension of the field
F, which is of characteristic zero. There is a one-to-one order reversing
correspondence between fields E with FF C E C K and the subgroups H
of Gal(K|F). We can describe this correspondence by two maps that
are inverses of one another; namely, we have

E > Gal(K|E)

and
H — Fix(H).

Proof: It is clear from the definition of the Galois group and the fixed
field that if we have fields with E; C Fj then Gal(K|E) 2 Gal(K|Ey).
Also, if Hy C H, are subgroups of the Galois group, then Fix(H;) 2

Fix(Hz). These two maps are thus order-reversing. We need only show &
that the maps are inverses of one another. To do this, we will compose | :

them in both directions.

Since K is normal over F, it is clearly normal over E (see Exerc1se .

45.a(i)). But then Fix(Gal(K|E)) = E, as required.
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We’d now like to show that for any subgroup H of Gal(K|F), we
have that H = Gal(K|Fix(H)). Because our fields are of characteristic
zero, we have that K = Fix(H)(a), where « is algebraic over Fix(H).

Suppose that the subgroup H has h elements, which we may specify
as t=1mn,n2, - ,N,. We can now consider the polynomial

f=@-m(a)(z—-mna) - (z-n(a) € K[z].

The coefficients for the polynomial f are then the symmetric polyno-
mials in the constants

m(a), me(a), -, mr(a).

But if we apply any element of H to the elements of this set, we will

just permute them. Consequently, the coefficients for the polynomial

f belong to Fix(H). Thus « is a root of a polynomial with degree h in

Fix(H)[z]. This means that [K : Fix(H)] = [Fix(H)(«) : Fix(H)] < h.
But K is normal over Fix(H), and so

[K : Fix(H)] = |Gal(K|Fix(H))| > |H| = h.
Putting these inequalities together, we have that
h <|Gal(K|Fix(H))| < h,

and so |Gal(K|Fix(H))| = h and thus Gal(K|Fix(H)) = H, as re-
quired. O

We will at the end of this chapter give numerous examples of the Fun-
damental Theorem in action, but we will first provide some important
additional information about the correspondence between subfields and
subgroups.

We first make a few observations about counting. On the group side,
we can count by making use of Lagrange’s Theorem 31.2, while on the
field side our primary counting tool is Theorem 44.2 (a finite extension
of a finite extension is finite). So if K is a (characteristic zero) normal

field extension of the field F, and E is an intermediate field, we have
that |Gal(K|F)| = [K : F] and |Gal(K|E)| = [K : E], and

[K:F|=[K:E|[E:F.
But on the group side we have that

Gal(K|F)| = |Gal(K|E)|[Gal(K|F) : Gal(K|E)).
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This means that the degree [E : F| of the field extension E over F is
precisely equal to the index [Gal(K|F) : Gal(K|FE)] of the subgroup
Gal(K|E) in the Galois group Gal(K|F). In the examples in the next
section this will be useful for us, because in practice it is often eas-
ier to count group elements than it is to calculate the degree of field
extensions.

There is another more profound refinement we can add to the one-to-
one correspondence we have between intermediate fields and subgroups
of the Galois group. It turns out that normal subgroups correspond
exactly to normal extensions. This is the reason why such extensions
are called normal! This is important enough that we will call this result
the second part of the Fundamental Theorem:

Theorem 48.4 Fundamental Theorem of Galois Theory, Part
Two Suppose that K is a finite normal extension of the field F,
with characteristic zero. An intermediate field E is a normal extension
of F' if and only if the Galois group Gal(K|FE) is a normal subgroup of
Gal(K|F). Furthermore, the Galois group Gal(E|F) is isomorphic to

Gal(K|F)/Gal(K|E).

Proof: Suppose that F is field intermediate between K and F. Then
Gal(K|E) is normal in Gal(K|F) if and only if p~1¢¢ € Gal(K|E),
for all ¢ € Gal(K|F) and ¢ € Gal(K|E). But because K is a normal
extension of FE, this is equivalent to asserting that ¢ ~!¢p(e) = e, for
all e € E. But this is true exactly if ¥p(e) = ¢(e), for all e € E. But
this means precisely that ¢(e) € Fix(Gal(K|F)) = E. And this says
that all roots of the minimal polynomial for e over F' actually belong
to E. This means exactly that FE is a normal extension of F.

To show the group isomorphism, we shall define a group homomor-
phism I' from Gal(K|F) onto Gal(E|F) with the appropriate kernel.
Given ¢ € Gal(K|F), we shall define T'(¢) = ¢|g, the restriction of ¢
to the subfield E. Because F is a normal extension of F', we have that
@(e) € E, for all e € E. This means that this map is well defined.

> Quick Exercise. Why is the map well defined? <

It clearly preserves the group operation (functional composition).
Now suppose that I'(¢) = ¢, the identity automorphism. This means

exactly that ¢ leaves all elements of E fixed. In other words, ¢ €

Gal(K|E). So the Fundamental Isomorphism Theorem for Groups 33.4

asserts the isomorphisin we require. o
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48.5 Examples

We shall conclude this chapter by looking at a number of examples
illustrating the full strength of the Fundamental Theorem of Galois
Theory.

Example 48.5

Let’s examine the normal field extension Q(v/2, v/3) of Q that we
considered in Examples 47.5 and 48.2. The Galois group G =
{t; 01,92, 03} is (isomorphic to) the Klein Four Group, which
clearly has three two element subgroups (p1), {¢2) and (p3).
These subgroups correspond exactly to the three intermediate
fields

Q(v2), Q(V3), Q(V6),

respectively. Since these are the only proper, nontrivial sub-
groups, the Fundamental Theorem guarantees that these are the
only proper intermediate subfields. The index of each of these
subgroups in G is two, which corresponds precisely to the fact
that each of these extensions is of degree two over Q. The group
G is abelian, and so each of these subgroups is normal. This
corresponds to the fact that the three quadratic extensions are of
course normal. Pictured below is the order-reversing correspon-
dence between subgroups and intermediate fields:

Qy2,v3)

\/

Qv2) Q 3) QW) (e1)

\/\

Example 48.6

2)  (p3

In Example 48.3 we had already computed the fixed fields cor-
responding to all of the subgroups of Gal(Q(V/2,¢)|Q) (see also
Example 47.7, where we actually computed the Galois group).
Only one of the subgroups is normal, namely As. Its fixed field
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is Q(¢) which is a quadratic normal extension; this is the only L5
intermediate field that is normal over Q. Here is the picture of 5
the subgroups and corresponding intermediate fields: ¢ ¢
¢ L

/

QY2.0) D
// \ / \ 15 | | L5
Q) Q(V2¢) Q(V2¢) Q(v2) ((123)) ((12)) ((13)) ((23)) .

Q S3

5

5 ¢

—-15%

Example 48.7 . ) )
It is now quite evident that ¢ = ¢®, (2 = ¢® and (3 = ¢*

> Quick Exercise. Check the above example by examining !

Let’s return to Example 47.9, where we considered the splitting these complex numbers in trigonometic form. <

extension of 7 — 1 over Q. We know that the splitting extension 5: Consequently, ¢ + (8, ¢%2+¢5, ¢34 (% are real numbers, and ]
) 2r . . ‘
is Q(¢), where ¢ = ™7 . The Galois group G = Gal(Q(¢)|Q) is a we can in fact express them trigonometrically (we will freely use
cyclic group of order six represented as a permutation group as the double angle and sum formulas for the cosine function in the ;V

calculations below):

{1, (132645), (124)(365), (16)(25)(34), (142)(356), (154623)}. o |
¢+¢%=2cos — |

A cyclic group of order six has exactly two proper, nontrivial sub-

groups, which in this case are G1 = {i, (16)(25)(34)} and Gy = %+ ¢% =2cos dm _ 4 cog2 2r _ 9
{t,(124)(365), (142)(356)}. We thus have exactly two proper in- E 7 7
termediate fields, Fix(G1) and Fix(Gz). The first must be a cubic 3 4 3 2
: , =2c0os — = = —6cos —
extension of Q, while the second is a quadratic extension. It is . e o8 8co 7 6 cos 7

evident that such field elements as ¢ +¢®, (2 +(¢%, ¢3+(* are left
fixed by G1, while elements ¢+¢?4¢* and ¢3+¢5+(° are left fixed
by G>. These are consequently candidates for field elements that
might produce the appropriate intermediate fields. However, we

cannot immediately rule out the possibility that these elements
might belong to Fix(G) = Q.

To rigorously determine the fixed fields for these subgroups
requires us to inquire more carefully into the arithmetic in Q(¢).
We first should remember that ¢ (and its powers) are the roots
of the irreducible cyclotomic polynomial 1 + z + z? + - -+ + .
For more insight into this field, it is helpful to look at the picture
of the seventh roots of unity as complex numbers.

> Quick Exercise. Verify these trigonometric calculations. <

We can now show that ¢ + ¢® actually satisfies an irreducible
cubic polynomial in Q[z]. We begin with the cyclotomic polyno-
mial (with terms reordered):

0=1+(C+®)+(C+P)+(G+¢Y) =

2w 27 27 2w
1+ 2c0os — +4cos? =& — 2 3 Geos T,
+ 2cos - + 4 cos - + 8cos Z 6 cos -
This means that ¢ + ¢% is a root of z® + 22 — 22 — 1 € Q[z],

which is clearly irreducible by the Rational Root Theorem 5.6.
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Consequently, Q (C +C 6) is a cubic extension of QQ and is thus
necessarily the fixed field of G;. In Exercise 48.6 you will check
that the other two roots of 23 + 22 — 2z — 1 are precisely ¢? + ¢°
and 3 + ¢4,

Now ¢ + (2 + ¢* is clearly not a real number, and so

Q(¢+¢*+¢Y

must be the other intermediate field. To actually show that it is
a quadratic extension, we square it by brute force:

(CH+ ) =¢F 20 +2C0 + " +20 4+ ¢

=(C+ 4+ +2(B+E+¢°).

But 3+ ¢+ =-1-(¢C+¢*+¢*),andso (+¢>+(¢*isa
root of the polynomial 2 4 z + 2, and its conjugate ¢ + ¢5 + (8
is the other root. By the quadratic formula we obtain these roots
as —s i ‘F’

We thus have the following diagram of the fields and sub-

groups:

{e}
N\ N
QC+¢®) QEC+¢+¢Y) G G,
N\

N4
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S4, and so has 24 elements. It is evident that the fixed field of
G, is precisely Q(ax). These five fields are necessarily distinct,
because the subgroups are. Furthermore, they are all isomorphic
as field extensions of Q, by Kronecker’s Theorem. Kronecker’s
theorem says these are degree 5 field extensions; equivalently we
can see this because [S5 : Gx] = 120/24 = 5. These are of course
not normal subgroups, and the corresponding fields Q(ax) are
not normal extensions.

We can generalize to other stabilizer subgroups, as in Exercise
29.7. For example, if K = {3,4}, then the stabilizer subgroup
Gk is isomorphic to S3 and its fixed field is Q(as3, a4), which is
necessarily a field extension of degreee S5 : Gx] = 120/6 = 20.

An obvious element of the Galois group to consider is complex
conjugation. It leaves the three real roots as,ay,as fixed, and
interchanges the conjugate pair oy and @; = a3. The 2 element
subgroup {¢, (12)} has as its fixed field RN K, which is necessarily
a field extension of Q of degree 60.

We have left out an obvious subgroup of S5 to consider. What
about its unique non-trivial normal subgroup As? Its fixed field
is necessarily a quadratic extension of Q (which will be a normal
extension, of course). It turns out that this intermediate field
can be found — our polynomial has an invariant integer d called
its discriminant, and the appropriate field extension of Q inside
K is Q(v/d). We will not pursue this topic here.
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Chapter Summary

For a finite normal extension of a field of characteristic zero, we prove
the Fundamental Theorem of Galois Theory. This theorem provides
a one-to-one order-reversing correspondence between the subgroups of
the Galois group and the intermediate fields. Normal subgroups corre-
spond to normal extensions in this correspondence.

Example 48.8

In Example 47.12 we showed that the Galois group of the splitting
field K of the irreducible quintic z° — 6z + 3 € Q[z] consists of
the full permutation group Ss. As before, we will denote the
roots by ai, g, a3, &y, a5, where a1 and a9 are the two complex
conjugate roots.

Now S5 has a large number of subgroups, and we will be
unable to analyze all of them! However, it will be useful to look
at a couple of examples that are easy to handle.

Consider first the five stabilizer subgroups Gy (for k =1, 2,
3, 4, 5). The subgroup Gy, is precisely the set of elements of S5
that leave the root «y fixed (see Exercise 29.6 for information
about these subgroups). Each of these groups is isomorphic to

Warm-up Exercises

a. Suppose that f = (x —a1)--- (z — a5). Calculate the coefficient
on the 2 term that results when we multiply f out.

b. Suppose that we have fields FF C E C K. Which of the following
groups is a subgroup of which?

Gal(K|E) Gal(K|F) Gal(E|F)
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FEzercises

. What further relationship holds among the groups in Exercise b,

if K is a finite normal extension of F', and F is a nomal extension
of F'?

. Suppose that we have the following containments among groups:

H, C H, C Gal(K|F). What containment relationship always
holds for the fixed fields Fix(H;) and Fix(H2)?

Suppose that K is a finite normal extension of the field F', and
|Gal(K|F')| = p, where p is a positive prime integer. What can
you say about intermediate fields E, where FF C E C K?

Exercises

. Consider the splitting field K of z° — 3 over Q(¢), where ( is

the primitive fifth root of unity. Compute the Galois group
Gal(K|Q(¢)). Then illustrate the correspondence between sub-
fields and subgroups given by the Fundamental Theorem of Ga-
lois Theory, by drawing a diagram illustrating all of the subgroups
of the Galois group of this splitting field and the corresponding
order-reversed picture of all the fields between Q(¢) and the split-
ting field.

. Consider the cyclotomic polynomial ®5 = z* + 23+ 2?2 +x+1¢€

Qlz]. Then we know that the splitting field for @5 is just Q((),
where ( is the primitive fifth root of unity, and the Galois group
of this splitting field is a cyclic group of order 4 (see Theorem
47.3 and Example 47.10). Draw a diagram illustrating all of the
subgroups of the Galois group of this splitting field and the cor-
responding order-reversed picture of all the fields between Q and
the splitting field.

. Consider again the splitting field of z* — 2 € Q|z], as in Exer-

cise 45.6 and Example 47.9. As in the previous exercise, draw a
diagram illustrating all of the subgroups of the Galois group of
this splitting field and the corresponding order-reversed picture
of all the fields between Q and the splitting field. You should

explicitly verify that each intermediate field is the fixed field of

the appropriate subgroup.
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. Which of the subgroups of the Galois group in the previous exer-

cise are normal in the Galois group of the splitting field? What
property do the corresponding fields have?

. Prove Theorem 48.1.

. In this exercise you check a computation from Example 48.7. In

that example we showed that ¢ + ¢% is a root of the polynomial
73 + 2% — 22 — 1, where ( is the primitive seventh root of unity.
Show that ¢? + ¢ and ¢3 + ¢* are the other two roots.

. In this exercise you provide an inductive proof for the formula for

the symmetric polynomials, as discussed in Section 48.2. Suppose
that f = (z —a1)(z — ag) -+~ (z — an) € Flz], where F is a field.
Let (—1)"*a,_j be the coefficient on z* when we multiply f out
using the distributive law. Use induction on n to prove that

Ap—k = Z{ajlajfz o ajk}a

where the sum is over all possible choices of k distinct «;.

. Suppose that f € F|z] is irreducible polynomial of degree n over

the field F', where F' is a field of characteristic zero. Let K be the
splitting field of f over F. Then we can think of G = Gal(K|F)
as a subgroup of the permutation group S,. Prove that G is a
transitive subgroup of this permutation group (see Exercise 34.13
for a definition).




Chapter 49

Solving Polynomials by Radicals

We are now ready to focus our attention on the problem of whether it is
possible to solve all polynomial equations over a subfield of the complex
numbers, by ordinary field arithmetic, together with the extraction of
roots. We are able to do this in the quadratic case (using the quadratic
formula Exercise 9.1), in the cubic case (using the Cardano-Tartaglia
approach, Exercise 9.12), and in the quartic case (using the Ferrari
approach, Exercise 9.20).

In this chapter we will recast this problem in terms of field extensions,
just as we did for the notion of constructible numbers, in Chapter
38. In that context we simplified matters considerably, by focusing
our attention on the sequence of ever larger fields necessary to obtain
the constructible number. In that case the larger fields were built as
quadratic extensions. In our present case, we will need to build larger
and larger fields, but allow extensions by higher power roots instead.

49.1 Field Extensions by Radicals

Let’s consider a single step in the process of building larger fields by
extraction of roots. Given a field F' and an integer n > 2, a radical
extension of F' is a simple algebraic field extension of the form F'(3),
where 3" € F. Thus every element of the radical extension can be
expressed in terms of field arithmetic on elements of F and 3. But we
can view (3 as the result of an extraction of an nth root of " € F.
That is, every element of F'(3) can be obtained by a formula involving
only ordinary field arithmetic, together with a root extraction.

We then generalize this inductively, supposing that we have a finite
sequence of radical extensions

F=F CF =F/)CF=F(3)C--CFy=Fy-1(0n),
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where at each stage 3" € F;_;. We call the field Fy an extension
of F by radicals; for every element in Fy there is a (perhaps very
complicated!) formula, involving only field operations and extractions
of roots, applied iteratively to the elements of the field F. We'll call
the finite sequence of fields a root tower over F'.

Now, if f € F[z] is a polynomial, and its splitting field K is contained
in an extension of F by radicals, we say that f is solvable by radicals.

This description of solvability by radicals can and should be com-
pared to our description of constructible numbers in Theorem 38.3.

Let’s look at some examples.

Example 49.1

Any quadratic polynomial f = az® + bz + ¢ € Q[z] is solvable
by radicals over Q, because the splitting field for f is contained
in (and is in this case equal to) the field extension Q (Vb2 — 4ac).
Here the root tower consists of just two fields: Q € Q (\/ b2 — 4ac).
Obviously the quadratic formula expression is our explicit solu-
tion by radicals.

Example 49.2

Consider the polynomial f = z° —22%—1 € Q[z]. Since this is
a quadratic equation in 3, it is evident by the quadratic formula
that it factors as

f=@E"—1+V2)(E® - (1-V2).

But the roots in C of these two factors are in turn just cube roots.
If as usual we let { = —% + @z be the primitive cube root of
unity, we then have f completely factored as

(= (= ) (- ) (45
(a:-— \/1——\/5) <:c— \/1——75<> (w— MR)

So each of these six roots can be expressed in terms of a for-
mula involving only field operations, together with both cube
and square roots. But we can also look at this in terms of the
corresponding root tower:
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0 c QW3 c ava) (Y1+2) <
Q(v2) (W) () = Fs.

It may not be immediately obvious that all six roots belong to
the field F3, but we can conclude this if we note that

() () =er=1-,

and so
3 -1
m_ﬁz——_ewﬁ(m+ﬂy
V1+ 2
In this case F3 is again equal to the splitting field for f over Q,
and [F3 : Q] =12.

> Quick Exercise. Why are the assertions in the last state-
ment true? Note that by Theorem 47.2 the Galois group Gal(F3|Q)
is a group of 12 elements — you will determine which group in
Exercise 49.1. <«

Example 49.3

Let’s now consider the irreducible cubic polynomial f = 2% +3z+
1 € Q[z]. We can use the Cardano-Tartaglia formula to obtain
a real root for this polynomial. In Exercise 9.16 you do this to

obtain
i/—1+\/5 \3/1+\/5
ay = 5 5

Furthermore in that exercise you verify that if ¢ is the primitive
cube root of unity, then the other two roots for f in C are a
conjugate pair of complex numbers:

—-1+V5 1 )
a3:</T\/_42_3 +2\/-

and

¢.
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It is now quite evident that the splitting field K for f can be
reached by the following root tower:

~14++5

QC Q) QU VE) cQ VB —

= F3.

That is, we have that K is a subfield of F3.

> Quick Exercise. Why does {/ # cF? «

In Exercise 49.2 you will check that each of these field exten-
sions is in fact proper, and so [F3 : Q] = 12. But from Example
47.8 we know that [K : Q] = |Gal(K|Q)| = 6. Consequently,
in this example our root tower reaches a field extension strictly
larger than the splitting field. We will have to account for this
possibility in the general theory we develop later in this chapter.

49.2 Refining the Root Tower

Suppose again that we have a field F, a polynomial f € F[z], and a root
tower over F' that enables us to solve f by radicals. Our eventual goal
is to show that the existence of such a root tower places restrictions on
the sort of group we can get as the Galois group of the splitting field for
f. To accomplish this, we will first modify our root tower in a couple

of ways. We’d like each step along the tower to be small enough that

it can be well understood, and we’d also like to have enough normal
extensions along the way in the root tower, so that we can apply the
Fundamental Theorem of Galois Theory 48.3 and 48.4 to them. We will
accomplish these goals by inserting a number of extra radical extensions
into the root tower; we will eventually be able to show that this new
‘refined’ root tower has the properties we desire.

Consider now a single step in our root tower. We suppose that we
have the field extension E C F(3), where 8" € E, and E is one of the
fields reached at some stage of our root tower for F. We now claim that
we can assume that n is a prime integer. For if n = pyps - - - pp, is the
prime factorization of n into (not necessarily distinct) prime factors, we
can replace the single radical extension from F to E(3) by a sequence
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of extensions as follows:
E C E(gPP3Pm) C E(BP*Pm) C ... C E(8).

We obviously arrive at the same spot in our root tower, at the expense
of taking finitely many extra steps in the construction. When we pass
to the group side later, it will be more convenient for us to assume we
need only extract roots of prime order.

At this point we will impose a serious restriction on our arguments
that follow. We will assume not only that our field F is of charac-
teristic zero, but that it is actually a subfield of the complex numbers
C. The examples of fields of characteristic zero that we have explored
in this and earlier chapters have all satisfied this criterion, although
there certainly do exist fields of characteristic zero that do not. Our
desire in this chapter is to recover Abel’s result that there exist fifth
degree polynomials over Q that are not solvable by radicals, and so this
restrictive assumption does not effect that goal. The advantage of this
restriction is that we then have a very concrete understanding of the
splitting field of the polynomial 2P — 1 € Q[z] obtained as Q((), where
¢ is the primitive pth root of unity (see Theorem 47.3).

With this restriction in place, we are now ready to return to our
project of refining our root tower. Let’s suppose that the root tower
we now have looks like this:

F:F()CFl=F(ﬂ1)CF2=F(,32)C--~CFm= m_l(ﬂm),

where for each ¢ there is a prime integer p; with 8 € F,_;. Now
consider the set of all these primes p; appearing as the degrees of the
radical extensions in our root tower (of course, some of these primes
may occur more than once in this list). We shall next refine our root
tower, by first adjoining each of the p;th primitive roots of unity (;, one
at a time. The first terms of our root tower will then look like this:

FCE =F(Q1)CE=E(Q)C - CEy=F(,C &m)

We note that by Theorem 47.3 it is evident that each of these fields F;
is normal over F', because evidently FE; is the splitting field over F' for
the polynomial

(Pt = 1)(2P2 — 1) --- (2P — 1).

Note that in case we have repetitions in our list of primes, some of
these extensions may be trivial; this is harmless for what follows.
We record our progress so far in refining our root tower:
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Lemma 49.1 Suppose that F is a subfield of the complex numbers,
and f € Flz] is solvable by radicals over F. Then there exists a root
tower of the following form:

FQEIZF(CI)QEQZEI(CQ)(_:gEm:K(]:F(ClaCQa7Cm)

CF =F(6)CFh=F(f)C - CF,=Fu1(8n),

where p; are prime integers, (; is the primitive p;th root of unity, and
B e Fiy.

We will now modify our root tower further. Our goal now is to include
enough elements in addition to the elements (;, so that we will obtain
normal extensions of F. We can do this inductively, one step at a
time. Our starting point for the induction is the normal field extension

FC KO = F(ClaC27"'7Cm)-
So suppose that we have already constructed a new sequence of fields

FCKyCKi CKy---CK;,

so that for every 1 < j < ¢, we have that 3; € Kj, and each Kj is
an extension of K;_; by radicals, and is a normal extension of F'; in
fact, we will assume that Kj is the splitting field of g; € F[z]. Note
that because F; = F(01, 32, --,0:), it is evident that F; C Kj, for all
I<j<u

We shall now provide the inductive argument to construct Kjyi.
We know that 8};' € F; C Kj; for notational convenience, let’s call
this element e, and set p = p;11. We can enumerate the elements
of the Galois group Gal(K;|F) as {t = ¢1,92, -+, ¢r}. Consider the
polynomial

h = (2P = p1(e)) (@ — pa(e)) - - (2" — pr(e)) € Ki[z].

We will now build the splitting field of h over K; by radical extensions,

one factor at a time. Notice that the coefficients of the polynomial b

are symmetric polynomials in the coefficients

(pl(e)7 e a‘ph(e)a

which are permuted by the elements of Gal(K;|F'). Because by the in- |
duction hypothesis K is normal over F', we know that these coefficients

belong to F, the fixed field of Gal(K;|F). That is, h € F[z].
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Now we know that the primitive pth root of unity ¢ is an element
of the field K;. Consequently, in order to assure that the factor zP —
wi(e) splits, we need only adjoin a single root p; to the previous field
(Theorem 47.4); here p; is a root of the polynomial 2P — ;(e). We thus
have

K; C Ki(p1) C Ki(p1,p2) C -+ C Ki(p1,-- -, px)-

Note that at each stage in this sequence we have a splitting field for
a polynomial (2?7 — p1(e))(xP — pa(e)) - -- (zP — j(e)) € K;[z], and so
each of these fields is normal over K;. (They may not be normal over
F, because these intermediate polynomials need not belong to F|z].)
We shall now let K;41 = K;(p1,---,pn); evidently K;.1 is the splitting
field over F' of the polynomial g;+1 = g;h € F|[z].

Let’s summarize the situation we now have.

Lemma 49.2 Suppose that F' C C is a field, and f € F[z] is a polyno-
mial that can be solved by radicals over F. Then there exists a sequence
of field extensions

Fg El :F(Cl) - E2 :El(CQ) C.. gEm ZKO:F(CI,@»‘“,Cm)
CKiCKyC--CKp,
so that the following conditions hold:

1. For each i, {; is the p;th primitive root for unity, for the prime
integer p;.

2. Fach K; is normal over F.

3. Each K1 is obtained from K; by finitely many radical extensions
of degree p;; these extensions are all normal over K.

4. K contains the splitting field of f over F.

We have now put all the technical details in place and are now ready
to apply Galois theory to this lemma, which we shall do in the next
section.
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49.3 Solvable Galois Groups

In the last section we showed that whenever a polynomial f € Fz] C
Clz] is solvable by radicals, we can construct a root tower of a particular
type, as specified in Lemma 49.2. This gives us the information we need
to prove the following:

Theorem 49.3 Suppose that f € F[x] C Clxz] is solvable by radicals.
Then the Galois group of the splitting field for f is solvable.

Proof: We will now apply the Fundamental Theorem of Galois
Theory to the field extensions guaranteed by Lemma 49.2. Let

G = Gy = Gal(K|F), Gy = Gal(K|Ey), -+, G = Gal(Kpp|En)

Gm+1 = Ga‘l(Klel)v Tty G2m = Gal(Km‘Km)
It is evident that

G2m:{[/}gG2m—1ggGmggG1gG

and each of these subgroups is normal in G, because each of the fields
E; and K; are normal extensions of F'.

We would like to conclude that G is a solvable group; we will use
Theorem 36.4. For 0 < 4 < m, we have that

Gi—l/Gi = Gal(Km|Ei_1)/Gal(Km|Ei) ~ Gal(EiﬂllEi).

The isomorphism follows from the Fundamental Theorem of Galois
Theory. But by Theorem 47.3 we know that this is an abelian group,
and hence solvable, of course.

For 0 < i < m, we have that

Gm+i—1/Gm+i = Gal(Km|Ki_1)/Gal(Km|K,-) ~ Gal(Ki_1|Ki).

We would like to argue that this last group is a solvable group.
But note that we obtain K; from K; ; by finitely many radical ex-
tensions of degree p = p;, a prime integer. That is, we have that

K, 1 CLi CLy---CLyCKy,
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where each of the fields L, is obtained from its predecessor by adjoining
a pth root of an element from the previous field. Furthermore, we
know by construction that the primitive pth root of unity ¢ € K,_;.
Consequently, each of these extensions is normal over K;_y, because it
is the splitting field over K;_; for a polynomial of the form z? — ¢ (see
Lemma 49.2 above).

We thus have the subnormal series

{1} g Gal(KALh) g Gal(K,-|Lh_1) g s g Gal(Kz-]Ll) g Gal(Ki]Ki_l).

When we compute the quotient group of two of these groups we have
Gal(Ki|L;—1)/Gal(Ki|Lj) ~ Gal(L;_|L;).

But this last group is cyclic by Theorem 47.4. This means that our
subnormal series actually makes Gal(K;|K;_1) a solvable group.

Putting this all together, we have now concluded by Theorem 36.4
that G = Gal(K,|F) is also a solvable group.

This is almost the conclusion that we want. However, K, is in
practice probably much larger than the splitting field for f over F.
But if we let K be that splitting field, then K is a normal extension of
F'| and so another application of the Fundamental Theorem of Galois
Theory gives us that

Gal(K|F) ~ Gal(Ky|F)/Gal (Ko |K).

But this means that Gal(K|F') is a homomorphic image of the solvable
group Gal(Kp,|F) and so is itself solvable, by Theorem 36.1. O

It is actually the case that the converse of Theorem 49.4 is true
— that is, if the Galois group for the splitting field of a polynomial
f € Flz] C Q[z] is solvable, then f is actually solvable by radicals over
F. To prove this, we would have to start with the subnormal series
with abelian quotients for the Galois group, and build a sequence of
radical field extensions that eventually contain the splitting field. We
will not actually carry out this project here.

The next example is what we’ve been looking for! It is a polynomial
of degree five that is not solvable by radicals.
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Example 49.4

Consider again the polynomial f = 25 — 6z + 3 € Q[z]. In
Example 47.12 we showed that the Galois group of the splitting
field for f over Q is S5. In Example 36.4 we asserted that Ss
is not a solvable group. Theorem 49.3 now means that f is not
solvable by radicals!

Example 49.5

In Example 49.2 we considered the polynomial f = 25 —223—1 ¢
Q[x] and showed explicitly that it is solvable by radicals. In
Exercise 49.1 you computed the Galois group for the splitting
field of this polynomial and showed that it is a solvable group.

We have thus solved (in the negative) a problem that bedeviled Euro-
pean mathematicians for several centuries. It is in principle impossible
to extend the progressively more complicated algebraic formulas we
have for second, third and fourth degree equations to the fifth degree
or higher. The mathematics involved is more complicated, but the sit-
uation is the same as for the classical constructibility problems: field
theory (in this case with an important assist from the theory of groups)
has solved an important mathematical problem that at first blush does
not seem to require the abstract approach.

The abstract algebraic approach was successful in settling the con-
struction problems of classical antiquity and in solving the solution by
radicals problems of the Italian renaissance; this is only the beginning
of the story. Powerful algebraic techniques have played an important
role in bringing profound insights into many difficult and important
problems, over the course of the nineteenth, twentieth and twenty-first
centuries. You are invited to learn more about the successes and beauty
of modern mathematics.

Chapter Summary

In this chapter we prove that if a polynomial over a subfield of the
complex numbers can be solved by radicals, then the Galois group of
its splitting field over the base field is necessarily a solvable group.
We can then easily exhibit a fifth degree polynomial over the rational
numbers that cannot be solved by radicals.
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Warm-up Exercises

. Give a root tower whose last field contains the splitting field for

z* — 2 over the rational numbers. (This is Example 47.9.)

. Give a root tower whose last field contains the splitting field for

2% — 2 over the rational numbers. (This is Example 47.7.)

. Give an example of a root tower whose last field is not normal

over the base field.

. Suppose that ¢ is the primitive pth root of unity, F is a subfield

of the complex numbers, ( € F, but F' contains no pth root of
a € F. Let a be a pth root of a in C. Give as much information
as you can about the field extension F'(a) over F.

. Is the sequence of fields given by the Constructible Number The-

orem 38.3 a root tower?

. Give an example of an irreducible polynomial f € Q[z] that can

be solved by radicals, none of whose roots are constructible num-
bers. Give such an example where all the roots are real numbers.

. Suppose that K is the splitting field for f € Q|[z], and Gal(K|Q) ~

S7. What can you say about this situation?

Exercises

. Consider the polynomial 7% — 223 — 1 € Q[z] from Example 49.2

and 49.5. Compute the Galois group for the splitting field of
this polynomial over @, and show explicitly that this is a solvable
group. Draw the containment diagrams for the subgroups of the
Galois group, and the corresponding diagram of fields intermedi-
ate between the rational field and the splitting field.

. Consider the root tower obtained in Example 49.3 to obtain a

field containing the splitting field K for 23+ 3z +1 € Q[z]. Show
that each each field extension in the root tower is proper, and so
the field F3 is a proper extension of K.
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Ezercises

3. In this problem and its successor we will describe a method that

helps determine the Galois group of the splitting field for a quartic
polynomial. Let F' be a subfield of the complex numbers, and
suppose that f € Fl[z] is an irreducible polynomial of degree
four. We may as well assume that f is monic, and so

f=(z—a)(x— o)z —a3)(z - ag),

where the «; are distinct elements of C. Let K = F(a1, a9, s, ayq)
be the splitting field for f. We will consider G = Gal(K|F') as a
subgroup of the group S4 of permutations of these roots, in this
order. By Section 48.2 we know that f = z? — a123 + as2? —
asxz' + a4, where the a; are the symmetric polynomials in the
roots «;.

(a) Let
B = a0 +azay, B2 = ajaz + azay,
B3 = aay + a0z,

Form the polynomial

g= (.73 — ﬁl)(CIJ — ﬁg)(.’l’f — ﬂ3) = :I,‘3 — b1.2'2 + box — bs.

By making use of what we know about symmetric polyno-
mials, prove that

by = ag, by =ajaz —4ag, b3 = a%a4 -+ a% — 4aqay.
Thus, g € F[z]. Note: The polynomial g is called the re-

solvent polynomial for f.

(b) Let E = F (1, B2, 33) be the splitting field for g over F'. Let
H = Gn{,(12)(34),(13)(24), (14)(23)}. Prove that £ =
Fix(H).

(¢) Why is H normal in G?

(d) Prove that Gal(E|F') is isomorphic to G/H.

4. In this exercise we use the same notation and terminology as in

the previous exercise. By Exercise 48.8 the Galois group G is
necessarily a transitive subgroup of S4. In Exercise 34.13 you
compiled a list of all the transitive subgroups of S4. We will in
what follows think of H = Gal(FE|F) as a subgroup of the group
of permutations S3 of the roots of g. We now look at all possible
cases for G:
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(a) Suppose that G = Sy. Then show that H = Sj.
(b) Suppose that G = A4. Then show that H = Aj.

(c) Suppose that G = {¢,(12)(34),(13)(24), (14)(23)}. Then
show that H is the trivial group.

(d) Suppose that G is a cyclic group of order 4. Then show that
H is a cyclic group of order 2.

(e) Suppose that
G = {1,(12)(34), (13)(24), (14)(23), (12), (34), (1423), (1324)},

the subgroup of Sy of order 8 (isomorphic to D4). Then
show that H is a cyclic group of order 2.

Note: Since H is the Galois group of the splitting field of a cubic
polynomial, it is presumably easier to compute than is G. But
the results above say that in most cases knowing H actually de-
termines G. We will illustrate this principle in the exercises that
follow. The ambiguous case that remains (when H is a cyclic
group of order 2) can actually also be resolved by a refinement of
the argument given here. For information about that case you can
consult Nathan Jacobson’s Basic Algebra I (W. H. Freeman and
Company, 1974), from which these exercises have been adapted.

. From Example 47.9 we know that the Galois group of the splitting

field for z* — 2 is isomorphic to D4. Thus if we form the resolvent
polynomial g, we know from Exercise 4 that its Galois group is
a cyclic group of order two. Compute g and the Galois group
explicitly, to check this computation.

. Consider the polynomial f = z% + 2z — 2 € Q[z].

(a) Why is f irreducible over Q[z]?

(b) Show that the resolvent polynomial g obtained as in Exercise
3is g=a3+ 8z +4.

(¢) Why is g irreducible over Q[z]?

(d) Use Example 47.8 to argue that the Galois group for the
splitting field for g over the rational field is S3.

(e) What is the Galois group of the splitting field for f over Q7

7. Consider the polynomial f = z* + 2z + 2 € Q[z].
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(a) Why is f irreducible over Q[z]?

(b) Show that the resolvent polynomial g obtained as in Exercise
3is g =a° — 8z + 4.

(c) Why is g irreducible over Q[z]?

(d) Use calculus to argue that g has three real roots.

(e) Argue that the Galois group of g over the rational field must

contain an element of order 3. What does this mean about
the Galois group of the splitting field for f7?

(f) Conclude from part e that at least one of the real roots of
f is not constructible, even though it is of degree 4 over Q.
This is the promised example that shows that the converse
of Corollary 44.5 is false.

Section IX in a Nutshell

This section applies field theory and group theory to prove that there
is no general method to solve fifth degree equations using only field
operations and extractions of roots.

We start by defining a splitting field for a polynomial f over a field
F, which is a minimal field extension of F' where f factors into linear
polynomials. There is always a splitting field and a splitting field is a
finite extension of F' (Theorem 45.1). Furthermore, any two splitting
fields for a given f € Fz] are isomorphic (Theorem 45.2). Splitting
fields have the surprising property that if K is a splitting field over ¥
for f, and g € F[z] is irreducible over F' with a root in K, then g also
factors into linear polynomials in K (Theorem 45.3).

An extension field K of F is a normal extension of F if whenever
an irreducible f € F[z] has one root in K, then it splits in K. If F
has characteristic zero, then K is a finite normal extension of F' if and
only if K is a splitting field for some irreducible polynomial in F[z]
(Theorem 45.6). Furthermore, the roots of an irreducible polynomial
over F are all distinct in its splitting field (Theorem 45.4), as long as
the field is of characteristic zero. Another important property of fields
of characteristic zero is this: any finite extension is actually simple
(Theorem 45.5).

The section digresses a bit with a chapter on finite fields where we use
the idea of splitting field to prove that every finite field of characteristic
p (prime) has p™ elements (Theorem 46.1), and, indeed, a unique such
field exists of order p™, for every p and n. We denote this Galois field
by GF(p"). Also, GF(p™) is a subfield of GF(p") if and only if m
divides n.

If E is an extension field of F, then the set of automorphisms of
E that fix elements in F forms a group, denoted by Gal(E|F) and
called the Galois group of the field E over F. We then explore the
relationship between the order of these Galois groups and the degrees
of the field extensions and discover that these counts are equal in the
case of normal extensions:
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e (Theorem 47.1) Let FF C K be fields, and f € F[z] an irre-
ducible polynomial, and a € K\F a root of f. Suppose that
¢ € Gal(F(a)|F). Then ¢ is entirely determined by ¢(a). Fur-
thermore, ¢(a) must be a root of f in K, and so

|Gal(F(a)|F)| < deg(f) = [F(a) : F].

e (Theorem 47.2) Let K be a finite extension of the field F', which
is of characteristic zero. Then |Gal(K|F)| = [K : F] if and only
if K is a normal extension of F.

If H is a subgroup of Gal(K|F), then the elements of K fixed by
H (called the fized field of H and denoted Fix(H)) is a subfield of
K containing F' (Theorem 48.1). Once again, in the case of normal
extensions, the situation is particularly nice: Fix(Gal(K|F)) = F' if
and only if K is a normal extension of F' (Theorem 48.2).

The theory culminates in the Fundamental Theorem of Galois The-
ory, which we presented in two parts (Theorems 48.3 and 48.4) but
consolidate here. Tt shows how group theory and field theory mirror
one another:

Suppose that K is a finite normal extension of the field F, which
is of characteristic zero. There is a one-to-one order reversing corre-
spondence between fields E with F C E C K and the subgroups H of
Gal(K|F). We can describe this correspondence by two maps that are
inverses of one another; namely, we have

E — Gal(K|E)
and
H — Fix(H).

Furthermore, an intermediate field E is a normal extension of F' if and
only if the Galois group Gal(K|E) is a normal subgroup of Gal(K|F ).
Furthermore, the Galois group Gal(E|F) is isomorphic to

Gal(K|F)/Gal(K|E).

We now have the theory in place to prove that the general fifth degree
polynomial equation cannot be solved by radicals. A radical extension
of a field F is a simple algebraic extension F(3) where " € F, for
some integer n > 2. A sequence of radical extensions

F=FyCF =Fy(6)CF,=F(8)C: - CFy=Fy-1(0N),
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where at each stage ﬂi"i € F;_; is called a root tower over F' and the last
field Fiv is an extension of F' by radicals. If f € F[z] has a splitting field
contained in an extension of F' by radicals, we say that f is solvable by
radicals. Notice how this is similar to our description of constructible
numbers in Section VII. After some delicate adjustments to this root
tower, we obtain a careful refinement fully described in Lemma 49.2.
We then translate this lemma into group theory using the Fundamental
Theorem, thus obtaining the theorem we need (Theorem 49.3):

Suppose that f € F[z] C C|z] is solvable by radicals. Then the
Galois group of the splitting field for f is solvable.

Example 49.4 considers the polynomial z° — 6z + 3 € Q[z], which
has Galois group S5 (as we showed in Example 47.12). But Sy is

not solvable (Example 36.4) and so this polynomial is not solvable by
radicals.




Hints and Solutions

We provide here various short answers asked for in the exercises and
also provide hints for many of the longer problems and proofs. Please
note that if an exercise asks for an example we provide one, although
there are usually many other possibilities.

Chapter 1 — The Natural Numbers

b. Z and Q don’t have a least element. The subset {z : 0 < z < 1}
does not have a least element.

d. Any finite subset of an ordered set has a least element.

3. Use mathematical induction and the triangle inequality.

5. Note that here your base case for induction is when n = 4. You
can easily check that this statement is false for n = 1,2 and 3.

9. 4 (see Theorem 2.4).

16. Suppose that S is a subset of N that does not have a least
element. Prove that S is empty, by using induction on the set N\S.

17. It’s probably easier to prove that the Strong Principle is equiv-
alent to the Well-ordering Principle. This works because of Theorem
1.1 and Exercise 16.

Chapter 2 — The Integers

a.
—120 = 13(—10) + 10;

120 = (—13)(=9) + 3;
—120 = (—13)(10) + 10.
b. 0,1,2. {--,=5,-2,1,4,7,---}.

c. 1 and |p|.
d. The multiples of m.
e.
92 = 22.23;100 = 2252;101;102 = 2- 3 - 17;
502 =2-251;1002 = 2 - 3 - 167.
f. 1/30.
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1. (13)(21) + (—8)(34) = 1,(157)(772) + (—50)(2424) = 4.

3. There are two things to prove here: each linear combination of
a and b is a multiple of ged(a,b) and each multiple of ged(a,b) can
be written as a linear combination of a and b. The latter part is easy
to show. For the former, note that a common divisor of @ and b also
divides ax + by.

4. Use Exercise 3.

7. Consider (n+ 1! +2,(n+ 1)1 +3,---,(n+ 1)1 + (n+1).

8. Use induction.

19. We know from Exercise 1.14 that (g) is an integer.

Chapter 3 — Modular Arithmetic

a. [0)3={--,-6,-3,0,3,- -}, [l ={,-5,-2,1,4,---},
25 ={,—4,-1,2,5--}.
b. No. Yes. Yes.
[15].
. Arithmetic modulo 12.
. 7 o’clock. Wednesday.
[1]. No solution. [8]. [3].
- [1], 2], (41, [7], 18], [11], [13]; B]X = [2].
You need to have 13z = 1 + 28y; what has this to do with the
GCD identity?
4. [2]3] = [0}(3].
6. Recall that ged(a,m) is the smallest positive integer that can be
expressed as a linear combination of a and m.
7. [11,15], 7], [11], [13], [17], [19], [23]. Each is its own inverse.
8. (1], [3], (7). [9]-
11. To show that two sets are equal, show that each is a subset of
the other.
12. Let m = 12. 12 € [4][6], but 12 ¢ {zy : = € [4],y € [6]}.
13. [0, [1], [4], [2]. [0], (1], 4] [o], (1], [4] [7]-

g0

[“VI I B}

Chapter 4 — Polynomials with Rational Coefficients

a. The sum is 3 — 2z + 222 — (1/2)2% — (2/3)z*. The difference is
—1 — 2z — 222 4 (5/2)2® — (2/3)z*. The product is 2 — 4z + 222 —
(7/2)a® + (5/3)x* + 22° — (17/6)2® + 7.

b. The quotient is (3/2)z% —(5/4)x?+(5/8)x+(27/16); the remainder
is 5/16.
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c.l4+z,1—=z.

d. No. Yes. Yes. No.

1. 28(z* —z) = (5 —z)(328 + 42° — 32% — 42?) + (3z — 14)(zb +
5 — 2zt — 23 — 2% + 22).

2. 22 -3z +2 = (2z+ 1)((1/2)x — (7/4)) + (15/4). That there is no
Division Theorem for Z[z] follows easily from the uniqueness statement
in the Division Theorem for Q[z].

3. 232, (z—1)3, (z — 1)%z, (z — 1)(z — 2)(z — 3).

4. Use the Root Theorem 4.3.

10. Consider the degree of pg.

11. Argue that the degree of g must be zero.

12. For example, 2(z® + z) and .

13. For example, z? + 223 + 322 + 2z.

Chapter 5 — Factorization of Polynomials

a. In any factorization, one factor must be of degree 0.
b. No roots.

c. (x—-2)(z—1(z+1)(z+2).

d. For example, (22 — 4)(z — 1)((1/2)z + (1/2))(z + 2).
e. No.

f. kf, forall0#k € Q.

g 2z —1)(z? +4x+1).

4. Yes. No. Yes.

5. First show that this polynomial can have no linear factors, and
hence no cubic factors. Then consider what a quadratic factor could
look like.

6. Write out f(p/q) = 0, and cross-multiply to eliminate denomina-
tors.

7. 223 — 1722 — 102 + 9 = (z — 9)(z + 1)(2x — 1).

10. Choose a polynomial m in the set that does have minimal degree,
and use the Division Theorem 4.2 to divide p by m.

11. Use Exercise 10 and the Division Theorem.

12. z2" + 1.

15a. Use p = 2 and p = 5, respectively.

16. Suppose that a polynomial satisfies the criterion but has a non-
trivial factorization in Z[z]. Look at the divisibility by p of the co-
efficients of these factors, starting with the highest and lowest degree
terms.
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Chapter 6 — Rings 25a. In Zg, 4% = 4.
a. It is defined to be a function on all ordered pairs. Chapter 8 — Integral Domains and Fields
b. Yes. No. No.
c. Matrix multiplication; subtraction. a. Z x Z: units: {(1,1),(1,-1),(-1,1),(=1,-1)}; zero divisors:
d. Zg, M>(Z). {(a,0) : a #0} U{(0,b) : b # 0}. Zoo: units: {1,3,7,9,11,13,17,19};
e. Yes. No. No. Yes. Yes. Yes. zero divisors:{2,4, 5, 6,8,10,12,14, 15,16, 18}.
f. 2,1/16;0,0;8,0;2,1;4 + 1222, 8128 + 1082° + 54a* + 1222 + 1; Za X Zy: units: {(1,1),(3,1)};
—3148 zero divisors: {(0,1),(1,0),(2,0),(3,0),(2,1)}. Zq1: units: (Z11)*; no
( 4 12) —94 17 zero divisors. Z[z]: units {1, —1}; no zero divisors.
3. Show that you get 0 when (—a)b or a(—b) is added to ab. f. argument —tan™'(4/3) ~ —.927; modulus 5; inverse (3/25) +
4. Use Exercise 3. (4/25)
16. (a + b)? = a® + ab + ba + b* in an arbitrary ring. (a + b)? = i g 0ifr>0;mifr <0.
a? + 2ab + b? in a commutative ring. 3 i [af] = |al|8] = 1.
17. The same proof you used in Exercise 1.14 will work. jo 1+ V/3i: argument —7/3, modulus 2. 2 + 2i: argument 7 /4,
18a. See Exercise 6.4. modulus 2\/'
18b. Apply the hypothesis to the element a + b, where a,b are k. —1; f \/— 5403 + .8415i; —1 + /3s.
arbitrary elements of R. 1. Zs; does not exist; does not exist; Q; Z
23. See Exercises 21 and 22. m. No. All finite domains are fields.
n.9=4-241-1=(-4)2)+9—- 1] =[-4]2] - 2] = [-4] =
Chapter 7 — Subrings and Unity [5].
3 _ -1
a. 7Z in R; Q* in Q. o. 2] = [8] 3] =127
b. Yes. No. No. No. No. No. { 4. O b a#0,b#0
c. {0},25{0},{0,2,4},{0,3}, Zs; {0}, Z7; 5 Th .
0},{0,2,4.6,8,10}, {0,3,6,9},{0,4,8}, {0, 6}, Z12. . e modulus of all powers is 1.
({i}D{Q(Z) in My (Z)} l{)oes not}eiist. 2% iitl Z.}Z5. | 6. 6]~ =[6]'" = [6 ”36]8 [6][17)° = [6](289]* = [6][4]* = [6][256] =
e X. i [6][9] = [54] = [16].
£ (1,1). . 71-{ 10(11 =2 ?16 +5291,(f)36 =(1 . 2)9 + 7, 29d = 4[1 ]-l-} S[OlVil]lg t[hes]e
7. The relationship is this: let f = x. ackwards gives 1 = 5101 + (—14) - 36, and so [36]" = [-14] = [87].
10. 27U 3Z. b d 8. 5 = {[3],[6], 9], [12], [15], [18] = 1], [21] = [4],[24] = [7],[27] =
11a. 1/2 ¢ Z). [10],[30] = [13],[33] = [16],[36] = [2],[39] = [5],[42] = [8],[45] =
11c. Not closed under subtraction. [11], [48] = [14]} = T~
00 11b. 0,0,17.
13. Z(MQ(Z)): 0a ta€Z;. : 13. (1_a)—1:1+a+a2+_“+an—1-
15b. {0}. 15. In the prpduct [1][2] - - - [p — 1], consider multiplicative inverses.
15¢. {0,2,4,6}. 16. In Exercise 14 we have rings with unity where every element is

either 0, a zero divisor, or a unit. (This is false in Z.)

20. Pick two arbitrary elements a and b, and use the distributive .
17a. The functions that never take on value zero.

law from different directions on the product

(a+1)o(b+1).
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Chapter 9 — Polynomials over a Field 22. 3.55411(cos(.5819) + isin(.5819)),
3.55411(cos(—2.5597) + i sin(—2.5597)).
a. 22432 +3;0. 3z2 + 2+ 4;2. —iz? + (=24 2i)z + (2+ 20); 7 + 2. 24. Use Exercise 23:
(1/m)z® — (2/m+1/72)a? + (2/n2 +1/73) 2 — (2/m* +1/7%); 1/342/m3 + j
1/7%, cos(2rk/5) + isin(27k/5),k = 0,1,2,3,4.

lc).. 1(3:‘; is)(;zl?t)(x F ) V2(cos(mk/20) + isin(rk/20)), k = 0,1,2, 3, 4.

d. 222+ 3z + 3,422 +z + 1,22 + 4z + 4 = (z + 2)%,322 + 22 + 2. 26. For p = 2 consider the polynomial 22+ z + 1; for p > 2 consider
e. No roots. polynomials of the form z% — a for some a € Zp.

f. In Q[z]: * — 2. InR[z]: (z — ¥2)(22 + V2 + V4). In Clz]: (z — 28. Consider the roots of the polynomial f — g.

V2)(x — (—V2/2+ /82 — ¥4/20))(z — (—V/2/2 — /82 — V4/2i)).
g. The modulus of this number is v/12 and its argument is 57 /6. ‘
Thus its square roots are ++v/12 (cos(57/12) + i sin(57/12)). |
h. Never. z can’t have a multiplicative inverse.
2a. If « is a square root, so is —o.
2c. 144241 141424
B 4+2+1,1. 2% +4x+1,1.
Roots are 0,1,2,3,4,5. Zg is not a field.
1; 1; 1.
2?2+ x4+ 1. :c2—|—:c+1. 24+ x4+ 1.
1= (1/54)( —z-9)(z%+2—-2)+ (1/54)(—m+4)(:133+4a:2—|—4x+9).
. 225 — 9zt +16x — 1422 + 142 -5
10. (z 4 1)(x® + 22 + 1).
Moz + 122 +z+ 1,25 +22+ 1,28 + o+ 1,z + 2% + 22 +
c+ 1,24+ 23+ 1,22 + 2+ 1. Notethat (22 +z +1)2 =2+ 2% + 1.
14. v = —1 or —2. Root is 3. The other two roots are —3/24+/3/2i.
16. v3 = ﬂ = p; p is a famous number called the Golden Section,
which we dlscuss in Exercise 37.5. Then u® = 1/p. Thus the root given

Chapter 10 — Associates and Irreducibles

. Yes, No, Yes, No, Yes, Yes, No, Yes.

. 0;1,2,4,7,811,13,14; 3,6,9,12; 5,10.

22+ 32+ 4,222+ + 3,32% + 4o + 2,422 + 2z + 1.

{(a,b) e Q@ xQ:a#0,b+#0} Al the units. {(a,0) : a # 0}.
. (34 2v2)(1 + v2)%, (3 +2v2)(1 — v2)*, any integer k.
5—{—1,—5 1,—1+4 57,1 — 5i.

N

3+\/§,5+\/§,5+2\/§,1+3\/§, etc.
No (3 in Z[v2]).
Yes, No, No, Yes, Yes, Yes, No, No, No.

2v/3 =12 € Z[/3] N Z[/12].

(8 4+ 3vVT)™. V7(8 4+ 2V/7)".

Think about the norm of these units.
2=4-2,3=3-3,4=4-4.

2 and 6 are irreducible and 4 = 2- 2.

. {(p,£1) : p is irreducible in Z} U {(:!:1 q) : q is irreducible in Z}.

AR
@9071959!90%".""::%{@ NI ~ PRSI =

by Exercise 12 is &/p — {/1/p. By Exercise 15 the other two roots are 12 2=(3B+V7(B-V7),2=(4+V14)(4 - V14).
then 16. Suppose by way of contradiction that \/n = ¢. Square both
Yo — 3/1 / PC2 sides, clear the denominator, and then use the Fundamental Theorem

of Arithmetic.
and
¢t — Y1/pC. ; Chapter 11 — Factorization and Ideals

18.a. 23+ 22 — 8z — 6. y° — (25/3)y — (88/27). v = ¥/—44 + 117i/3,
uw= 44+ 117i/3. (4 + 3i)3 = —44 + 1174

19. Use the fact that if (¢4 di)® = a + bi, then (—c+di)® = —a + bi.

21. The cubic you get is 2b3 — b? + 6b — 7 = 0; this has an integer
root you can find by inspection.

No. In the second factorization 5 is not irreducible.
No. 3 and 3 + 3v/2 are associates.

No, Yes, No, No, No, Yes, Yes, No.

No, Yes, No, Yes.

I=R.

°pp Ty
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{a+b/7 € Z[\V/7]: 7 divides a}.
No.
. (2) in Zg. None. (1 +1). (z).
No, Yes, No, No, Yes, Yes, Yes, Yes, No, No.

) .
8=2.2-2= (14— )(1—\/—)
(a) = {a + ba + ca? : 5 divides a}. (2) = {a + ba + ca?
2 divides a, b, c}.

® NS RETR D
)
|
-

. 01
9b. Consider (for example) multiplication on the right by <1 0).

15d. It helps to think about part ¢ and Exercise 11.

17. I = (a).

21. If r # 0,5 # 0, A((r,8)) = ((0,0)). If r # 0, A((r,0)) = {0} x S.
If s # 0, A((0,s)) = R x {0}. A((0,0)) =R x S.

Chapter 12 — Principal Ideal Domains

35,15) = (5). (12,20, 15>
b. (4 }—{a0+a1x+
(4,22) = {ap + 1z + -

c. (z—1).

d. Both are Z x Z.

e. The only ideals of a field are (0), (1).

f. z[z]. 2%, —2% g=2 4z, f ==

1. To say that it is the smallest such ideal merely means that (a, b)
should be a subset of every ideal containing a and b.

6. Check that if z and y are integers and x + y is even, then z — y
is even too. Also, note that 2 = (1 +v/3)(—1 + V/3).

10b. If n = 2 and I = (v/2), then I = I. Example 12.3 gives an
ideal where I # I.

12a. The ideal consists of all polynomials with zero constant term.

12b. Consider the degrees in x and y for any possible generator.

z" : 4 divides ap}.
zn 4 divides ag, a1 }.

Chapter 13 — Primes and Unique Factorization

a. None. 2 € Z[/-5]. 6 € Z.
b. (3) C Z. (3) C Z[V/=5]. (3,1 ++/=5) C Zv/-5]. (4,x) C Z[z].
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c. (12) C(3). 2+V3)=2[V3]. 2+i) = (-1+2i). 2z+1)isa
maximal ideal. (2z + 1) is maximal among principal ideals.

d. Maximal ideals must be proper.

e. We care about unique factorization!

f. PID implies UFD.

g. 1 =ged(9,50) = 9z + 50y € (9, 50).

1. The proof for Z will work.

2. The proof for Q[z] will work.

3. 4" =4. (1,0)" = (1,0).

7. 2 is not prime in Z[v/=5] or Z[v/~=7).

8. (3,z) = {ag + a1z + - - - apx™ : 3 divides ag}.

11b. I = (\/2).

14a. What are its factors in C[xz]?

15. Show that 2 is an irreducible in this domain, using a norm
argument. Then show that 2 is not prime.

Chapter 14 — Polynomials with Integer Coefficients

a. GCD identity, PID.

b. 6,7,42.

d. 2:3-(z—1)(z?+z+1), no. 3z(z%—2), no. (z+1)%(52—1)(z—2),
yes.

e. None. Z[z].

f. 2* + 1, none, 3, —1, none, z2 — 2, 2z + 2.

1b. 3z + 1.

2c. 3z + 1.

Chapter 15 — Euclidean Domains

a.¢q=16,r=4. ¢=(1/2)z? -2z (1/4),r =
r=-1.q=7/m,r=0.

b. Find a non-unit in the ideal with smallest valuation.

2. q=—-14-7V2,r=3-3V2.

3. Let 3=2+2, a=2.

4. The greatest common divisor will be greatest in what sense?

6b.

—(13/4). ¢ =4—1,

54 133i = (3+4)(17 + 344) + (—12 + 144)
17 4+ 345 = (1 — 24)(—12 + 143d) + (1 — 44)
=12+ 14i = (1 — 4i)(—4 — 2i) + 0.
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ged =1 —4i = (6 —57)(17 + 347) + (—1 + 2¢)(5 + 1330).

8. Find another element in Z[v/2] with the same norm as 3 + V2,
and show that it is not an associate by doing direct division (in R).

9. For the Gaussian integers, we chose the quotient by looking at
ordinary distance in the complex plane. For Z[v/2], the ‘distance’ will
involve hyperbolas!

Chapter 16 — Ring Homomorphisms

a. f(x) is neither, g(z) is both, h(z) is one-to-one, but not onto,
k(z) is onto but not one-to-one.
b. Y has at least n elements.
c. Y has no more than n elements.
d. Example 16.1, 16.10, 16.4, 16.6, 16.10, none, 16.3 (7(1,0) = 1),
16.10, 16.1 (©(2)), 16.3 (7(1,0)).
No.
Does not preserve addition.
No, Yes.
Not unless m = 1.
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22, Yes.

23. No.

24. Yes.

25b. Consider ¢ : C — C given by ¢(a + bi) = a — bi, as in Example
16.4.

30b. You will need some theorems from calculus.

31b. Let R =Z and S = Zz], and consider the inclusion map.

Chapter 17 — The Kernel

a. {0,2,4}.

b. {0,2,4},{1,3,5}.

c. 1,2. All preimages for a homomorphism have the same number of
elements.

d. Identity map. ¢ : Z — Z4,p(n) = [n]. Any one-to-one ring
homomorphism. Impossible.
. ZCQ.

None.

. {0}.
00
o)}
LAbe P(X):xz ¢ b} = (X\b).
. {{%1,0,0,---}} C S.
- {([0], [0D)}-
-{feCo,1]: f(0) = f(1) =0}
10. No. Example 16.10.
11. {(0,s) : s € S}. When they have the same first component. R.
13. {ap + a1z + - + apz™ : a9 = a1 = 0} = (z?).
14. Consider f =1 —e.
16. Use Theorem 17.3.
18a. To do this, you must use Exercises 2.19 and 6.17.

NN O W N =m0

Chapter 18 — Rings of Cosets

a. 4,(4) + 0, Yes, Yes.
c. (z—2)+ (—2%+2).
d. (x —2)+(1/2).

f. I.

g. Yes.

h. No.
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i. Yes.

2. Consult Chapter 11 for a complete description of the ideals of Z.

5. (I+(3,1))({ +(1,4)) =1+(0,0).

7a. Treat these elements as polynomials in ¢, and divide.

8. Note that Z + (3/2) = Z + (1/2). But (Z + (1/2))? = Z + (1/4),
while (Z+ (1/2))(Z + (3/2)) = Z + (3/4) # Z + (1/4).

9a. ¥+ (1,1,1,...) consists of those sequences all but finitely many
of whose terms are 1.

10c. ZQ.

Chapter 19 — The Isomorphism Theorem for Rings

. Different number of elements.
. Yes.
Yes.
. What ideals does every ring have?
Only if ¢ is onto.
No.
. Does not preserve multiplication.
(a + bl) = [(l + b]Q
- olf) = F(1/2).
(a, b) == [4@ + 9b]12.
o(f,n) = (f(O), [n])-
. plag + a1z + - - - apz™) = (ag, a1).
Build an isomorphism between these rings (with domain P(X))
by maklng use of the homomorphisms considered in Exercise 16.10.
10. A function of the form ¢(a + baca?) = [az + by cz]s will work,
where z, ¥, z are fixed elements of Z.
11. R and C/I, where I is the ideal consisting of all sequences that
converge to 0.
13. (1) = 15 p(=1) = =1; =1 = p(i*) = (p(2))*.
14. (p(V2))? = 2.
21b. Use the Isomorphism Theorem. Define a ring homomorphism
from R/I onto R/A, and show that it has the appropriate kernel.
23. Define a homomorphism from I to (I+J)/J with the appropriate
kernel.

coqg».oung.o:rqqgoa.p o e

Chapter 20 — Maximal and Prime Ideals

a. (z) in Z[z]. Impossible. {0} X Z in Z x Z.

b. (22 —2) C (z — V?2).
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e

Z[z]/{x — 2) is isomorphic to the domain Z.
d. Every field is a domain.

. {(0,n) : n # 0} U{(m,0) : m # 0}.
{(0,n) :n# 0} U{(2,n) : n# 0} U {(m,0) : m # 0}

o]

f. R a domain; R a field.

3. Use the GCD identity.

4. {0} and (p), p a prime integer. Prime = maximal.

5. (2), (5). Prime = maximal.

6. Prime, not maximal: {0} x Z,Z x {0}. Maximal: Z x (p}, (p) X Z,
where p is prime.

7. Prime = maximal: Zy x {0}, {0} x Z3. Prime = maximal: Zy x
{0,2},{0} x Z4.

8. Q: {0}, prime = maximal. Q X Q: Q x {0},{0} x @, prime =
maximal.

9b. ker(p) = (y) C (z,y).

9c. ker(p) = (z — y) C (z,y).

10. The homomorphism is not onto.

11lc. (z? —2).

12. ker(p) = (3).

13. An argument very similar to that we used in the text for (z?+1)
in R[z] will work.

14a. You need to use Gauss’s Lemma.

17. Consider R = Q and its maximal ideal I = {0}.

23. Given r € R, consider the product r(1 —r).

Chapter 21 — The Chinese Remainder Theorem

. Zg X L3, 24 X Zg X Zs,Z11,2Z9.
n divides m.
= 5 (mod 6).

o a0 p

z = 2 (mod 3)
z = 3 (mod 5)
z = 2(mod 7).

et

w(la]) = ([al3, [ala)-
Prime = maximal; (4), (2).
5. z = 201(mod 252).

il
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6. = = 83(mod 4158).

7. a=2,b=3.

11b. (0,1) ¢ R.

11d. Use the ideals P, and Ps.

11e. Note that (3,0)(0,3) = (0,0) € P.

Chapter 22 — Symmetry of Figures in the Plane

. (\/5/2 —\/5/2> <\/§/2 ~1/2 )
"\V2/2 V2/2 1/2 V3/2

e. Two.

f. One.

3. You should have 4 elements in your group.

4. You should have 4 elements in your group.

S5a. (zo — .’L‘1)2 + (y2 — y1)2.

7. There are an infinite number of rotations, one for each angle
rotated, and an infinite number of flips, one about each line through
the center.

8. Specify one original vertex position as the ‘home’ position. How
many different vertices can be assigned to the home position? Now
for each one of these assignments, in how many different ways can we
visit the vertices as we travel around the polygon in, say, a clockwise
direction?

Chapter 23 — Symmetry of Figures in Space

This works as long as faces are not on opposite sides of the cube.
. 03,1, P3.
43, ui, 3.
There are four, all rotations of the base.
Flatlanders cannot understand flips.
001
100
0-10

wrEpaoTe

a

Chapter 24 — Abstract Groups

a. Z,Zy, M2(R), symmetries of the square.

b. [2], 12, ("45 ‘34> op, (~2,4), (1/2,-1/4),3/5 — 4/5i,
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c. [4] in ZZ; let a = p,b = p in Ds; any answer to c.a will do, but
also [1] in Z4.

d. R with operation addition and U(R) with operation multiplica-
tion.

f. No, No, Yes, No, Yes, No, No, No, No, Yes.

g. No identity. Also, operation is not associative.
1. nd.
2. {1,2,4,7,8,11,13,14}, Q*, {-1,1}, {-1,1} x Q*.

4. You must first verify that this set is closed under the operation.

5a. You must first check that this is a binary operation on this set.

8. Apply the hypothesis to the element x o y.

12. Argue first that if ¢ is an automorphism of Q, then p(n) = n,
for all integers n € Z. (We say that ¢ is fixed on the integers.)

14. Argue that for any automorphism ¢, we must have that (i) =
—land ¥(r) =r,if r e R.

Chapter 25 — Subgroups

. Yes, No, No, Yes, No, No.

Yes.

No.

. One identity, one inverse per element.
P}y, 8, 14.

1.

= O Qe TP

U(Zsg),{1},{1,3},{1,5},{1,7}.
z5,{1},{1,2,4},{1,6}.
U(zis),{1},{1,4},{1,11},{1,14},{1,2,4,8},{1,7,4,13}.
13. Only the trivial subgroup is finite. There are infinitely many —

consider elements of the form €27/,

14. You may wish to refer back to Exercise 22.8.

15a. C(p) = {1, p,p*}.
15b. C(4) = Z;.

16a. The center contains the two elements (1 O) , ( 0 1) .

01 -~10
16b. Zs.
16d. The group is abelian.
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Chapter 26 — Cyclic Groups

¥

. 3,4, 2, 00,00, 4, 4, 8.

. Yes, No, No, Yes, No, No, No, Yes, No, No, Yes.
Yes, Z X Zs.

Yes.

Consider (g).

2(1,-1),4(1,3,7,9),6 (1,2, 3,4, 5, 6), 2 (2, 5).
. 14,7, 2, or 1.

It divides 8.

Aot ez {(15) (1))

2. An element of the subgroup with ‘smallest exponent’ will serve as
the generator, you’ll need to use the Division Theorem 2.1 for Z.

3. Any of several small finite groups we have considered will do the
job. Provide more than one example if you can.

5. It must divide the lem of m and n.

6. The intersection includes only the identity.

7. Two. If a is a generator, then so is —a.

9b. Consider the quaternions.

12. Consider the rotation in the subgroup of smallest angle.

13. The order is prime.

Eme Al T

[y

Chapter 27 — Group Homomorphisms

{2z +a:a€eR}
[0]2p = [0]4, [1]2p = [2]4.
. Yes.
. There isn’t one.
. There are 4 homomorphisms, altogether.
. Try a ‘small’ non-abelian group.
. Model your proof on the corresponding ring theory theorem, The-
orem 16.2.
8. You will need an appropriate theorem from Chapter 16.
10. Consider a function that has a derivative, but no second deriva-
tive.

SULUNFTTER OO T

. A
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12. A homomorphism from a cyclic group with generator g is entirely
determined by the image of g.

13d. Define a homomorphism from End(Z,) to Z, with trivial kernel;
by all means look at your work in Exercise 12b.

Chapter 28 — Group Isomorphisms

a. ¢ : Ly — Z4 where p(0) = 0,9(1) = 2; ¢ : Zy — Zo where
0(0) = p(2) = 0,0(1) = ¢(3) = 1;  : Zy — Z4 where (0) = p(2) =
0,¢(1) = ¢(3) = 1.

b. Order of (1) can be 1, 2, 4, or 8. Order of ¢(4) can be 1 or 2.

c. No, Yes.

d. D, is not abelian but the other two groups are. Zg has an element
of order 8 while Z4 x Zy does not.

e. Consider the elements 1 and ;.

f. Yes, No.

g. No.

1. Let (i) = 1.

13. Not all criteria are satisfied; Ds is not isomorphic to a direct
product of these groups.

Chapter 29 — Permutations and Cayley’s Theorem

(1234567
“ 5314762/

1234567 1234567
2 __ -
b. 5 _'<1734526>’ﬁa_'(3261475)’

a.ad)=1,a(4) =4, a™!

op= (1284567 5 1 (1234567) o (1234567
~\4623157) T \5341276 )" T 12763451 )

1 (1234567
c- (@)™ = 5341627)

d. 24, 120, 720.

e. Every finite group is isomorphic to a subgroup of S,, for some 7.

f. Isomorphic to a subgroup of Sio if considered as permuting the
edges, to a subgroup of Sg if considered as permuting the vertices, to
a subgroup of Sg if permuting the sides, and to a subgroup of Sy if
permuting the diagonals.

g. Can always embed in S,, for sufficiently large n.

1. 5, 6, 3, 6, 6, 10, 12.
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1234 1234

3. 1 corresponds to 1234 ] -1 corresponds to 9143 ) 10

ds t 1234 1 corresponds to 1234
responds to 2491 , -1 corresp 1312

6. G has (n — 1)! elements.
7. Gk has (n — |K|)! elements.

Chapter 30 — More about Permutations

a. (134572), (1432), (123765).

b. (153)(29)(678) of order 6.

c. (123)(4567)(891011) of order 12.

d. If both permutations are the same.

e. No, No, No.

1. {(357),(375),:}, {(14)(256), (265), (14), (256), (14)(265), ¢},

{(123)(456), (132)(465), ¢}

2. Do an induction on the number of cyclic factors.

3. (123)? is a cycle, but (1234)2 is not.

4. 3,12, 6.

5. 3, 5, 2. To obtain this, carefully consider all possible cases for the
way their supports overlap.

8a. One 2-cycle, one 3-cycle, one 4-cycle, product of 2-cycles.

Chapter 31 — Cosets and Lagrange’s Theorem

a. (6) = {6,12,18,4,10,16,2,8,14,0},
(6) +1=1{7,13,19,5,11,17,3,9,15,1}.

b. U(Zyp) = {1,3,7,9,11,13,17,19}, (7) = {7,9,3,1}, (7) - 11 =
{17,19,13,11}, [U(Zg) : ()] =2, {7)| = 4.

c. {1,-1}-i= {i,—i}, {1, -1} -j = {, -3t {17 _1} k= {k, —k},
{1,-1}.

d. Those two cosets are in fact identical.

e. Yes, if Ho = H.

f. Ha = Hb.

g. Infinite.

h. Infinite.

1. ((124)) = {(124), (142),}, ((124))(123) = {(14)(23), (234), (123)},

((124))(132) = {(134), (13)(24), (132)},
((124))(143) = {(243),(12)(34), (143)}.
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3. H ={,012)}, (13)H = {(13),(123)}, (23)H = {(23),(132)}.
These are not the same as the right cosets.

4. K = {,(123),(132)}, (12)K = {(12),(23),(13)}. These are the
same as the right cosets of K.

12a. Corollary 31.3 says that the order of a divides |G|.

12b. Apply part a to the group Z; of units of Z,.

12c. Use the same idea as in part b, by applying part a to the group
U(Zy,) of units of Z,.

13a. 6, 8, 40.

13b. 4, 9, 49.

Chapter 32 — Groups of Cosets

a. Hi=.H.

b. Because ab = ba for all a,b € G, then aH = Ha for all a € G.

C. Z7.

d. Z does not have the absorption property and so is not an ideal
of R. But the group Z (under addition) is a normal subgroup in the
abelian group R.

e. {1} is certainly a subgroup. Also, a{l} = {a} = {1}a for all
a €.

f. No, K is not closed under the group operation.

3. No, No.

4. Yes.

7. Define a function

Y1 Zn/(d) — Za,

and prove that it works.
10. Use the Index 2 Theorem 32.3.

Chapter 33 — The Isomorphism Theorem for Groups

c. No.
d. Yes.
1. The kernel is Z. The groups R/Z and S are isomorphic.
4. First define a homomorphism from Z,, to Z4 and use the Funda-
mental Isomorphism Theorem.

9. Define a homomorphism from H to HK/K with the appropriate
kernel.
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10. The kernel is a plane through the origin. Geometrically, when
we mod a plane out of three dimensional space, we get a line.

13. Note that H/K is actually a normal subgroup of G/K, by Ex-
ercise 13. Find a homomorphism from G onto (G/K)/(H/K) with the
correct kernel.

Chapter 34 — Alternating Groups

b. 60, 360.

c. The identity permutation is not odd.

d. The subgroup would then be normal.

e. The subgroup {¢,(12)} in Ss.

f. Even.

1. Yes.

3a. The identity; 20 3-cycles; 24 5-cycles; 15 products of two disjoint
2-cycles.

3b. The trivial subgroup; 10 distinct order 3 subgroups; 15 distinct
order 2 subgroups; 6 distinct order 5 subgroups.

3c. Use Theorem 34.2.

5. (1456)(29) = [(712)(3956)(48)](7895)(13)[(217)(6593)(84)].

6. You must use Theorem 34.4.

8. Use Exercise 7.

9. Look at repeated conjugation of the transposition by the n-cycle;
use Exercise 8.

11. Let K = HN A,. What is [H : K]?

12. We claim that you need only show that any product of two
transpositions is a product of 3-cycles (justify this).

Chapter 35 — Fundamental Theorem for Finite Abelian
Groups

a. 1,2, 2, 1.

b. Z4 X Zo X L3, Zg X Lz X Loy, Ly X Ly, Za X Zg, L3 X Z4.
c.p=2,No,p=27,No,p=3,p=2.

d. 50 is not a power of a prime.

e. Zo X Zg X Zg has no element of order 4.

f. 1

g 2.

1. Show that the element (1,1) does the job.

4. kj.

5. Use the Fundamental Theorem for Finite Abelian Groups 35.1.
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6. Use the group S of infinite sequences of real numbers, under
addition (see Exercise 6.19).

Chapter 36 — Solvable Groups

a. Yes.

b. No. 53.

c. Pick any proper subgroup H of Q3. Then H and Qg/H are
abelian. (Check these assertions.)

2. If H is a subgroup of a solvable group G with the usual subnormal
series, let H; = HNG;.

3. An easy proof uses the Fundamental Theorem for Finite Abelian
Groups 35.1.

4. Consider Exercise 3.

7. Proceed by induction on the order of the group. Use Exercise 6.

Chapter 37 — Constructions with Compass and Straight-
edge

. Yes.
. No.
d. No; it is imaginary.
e. Because we could the construct a square with area .
f. Because v/2 is the length of the edge of a cube with volume 2.
g. An arbitrarily long straightedge.
h. An arbitrarily large compass.
2b. Construct a right triangle with legs of lengths 1 and 2.
3. To construct v/3 + 1, construct 3, \/?;, \4/5, then v/3 + 1.
4. Show that both numbers are the positive square root of the same
number.

a. Yes; construct a 30° angle (how?) and bisect it.
c

Chapter 38 — Constructible Numbers and Quadratic Field
Extensions

' V6 € Q(vB).
V6 € Q(V6, V6, V6) 2 Q(V6, v6) 2 Q(V6) 2 Q.
V2+V5€Q (\/2+ \/5> D Q(v5) 2Q(V5) 2 Q.
b. C
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c. No.

d. Yes: K(4); No.

e. No.

f. If (a,b) is the point of intersection, then both a and b are elements
of the field F.

g. Yes.

4. 2,3, 4, V3,43, 2+4V3, \/2 +4v/3, {‘/5 +4V3; Q, Q, Q, Q(V3),
Q(v3), @(V3), @V3) (V2 + 4v3), Q(VE) (/2 + 4V3)(V/2 + 4V3).

9. The line in question has equation y = mz + b and passes through
the point (3,1). Perform this intersection algebraically. When does a
quadratic equation have a unique root?

Chapter 39 — The Impossibility of Certain Constructions

a. v2, .

b. We could construct a right triangle with hypotenuse 1 and one
side of length cosf. The adjacent angle would be 6.

c. Some irrational numbers are constructible, such as V2.

d. Double the length of a side of the original square, then construct
the square root of this. Use this length for the sides of a new square.

e. Simply construct an edge of twice the original length.

la. Consider the proof of the appropriate lemma in this chapter.

4a. Use Exercise 3.

5. This is a slight generalization of Lemma 39.3; the same proof will
work.

7. This is a slight generalization of Lemma 39.1; the same proof will
work.

10. What does the derivative of this function tell you?

Chapter 40 — Vector Spaces I

a. (4,2), (0,-4), (4,6), (1,-1/2), (—2,1).

b. 0 is a scalar, Q is the zero vector.

c. Scalars are 0, 1, 2. Vectors are the polynomials 0,1,2,z,z+1,x+
2,22.20 + 1,20+ 2,22, 22 + 1,22 + 2,222,222 + 1,222 + 2, 2% 4+, 2% +
z+1L,22+e+2,22+2x, 22 +22+ 1,22 + 20 +2,22% + ¢, 222 + = +
1,222 + » + 2,222 + 22,22% + 2z + 1, 22% + 22 + 2.

d. Yes, No.
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e. —vV is the vector added to v to get 0. (—1)v is the vector v
multiplied by the scalar —1.

f. Yes, No.

g. No.

12. In Z,, we know that [0] = [1] + [1] + --- +[1].

13. Consider the scalar product (1/2)1.

Chapter 41 — Vector Spaces II

a. {(1,0),(0,1),(1,1)} in R? can’t happen; {(1,0),(0,1)} and
{(1,0),(1,1)} in R?; can’t happen; {(1,0), (0,1), (1,1)} in R,
{(1,0,0),(0,0,1),(0,1,0),(1,1,1)} in R3.

b. The set of vectors would not be linearly independent.

c. 2, 1.

7. If S is a finite subset of Q[z], give a limit on the degree of a
polynomial expressible as a linear combination of vectors from S.

10. No, No, Yes, No, Yes, Yes.

11. Yes, Yes, Yes, Yes.

Chapter 42 — Field Extensions and Kronecker’s Theorem

a. 22 -2 2% —20rz— V2 220 —1; 24— 222 —1; 22 — 22 + 5;
z? - 212 4+ w? + 1.

b. Yes, No.

c. The original field.

d. There are none.

e. None, 7, 2.

£.0,Q;0,Q;0,Q; 11, Zy1; 0, Q; 3, Zs.

g. See Kronecker’s Theorem.

h. Yes, cos20° is a root of 823 — 6x — 1.

i. V2, cos20°.

1. Use Kronecker’s Theorem 42.1, together with induction on the
degree of f.

2. If p is linear, let f € F[z] and use the Division Theorem to divide
f by p. Now consider the degree of the remainder. Conversely, what
property does F'[z]/(p) have that F does not?

3b. Think Gauss’s Lemma 5.5.

4. You know « is a root of a polynomial in Q[z]; find the correspond-
ing polynomials for the given elements.
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5. Think trig identities.
7a. What elements must belong to any subfield of F'?

Chapter 43 — Algebraic Field Extensions

a1, 92, ¥4 1,1, 1+v2 1, V1+v2, 1 +V2, (1+v2)¥2 1,
1424 1, m+414.

b. 3/2-1~1/2(1 +v/2),8/17 -1 + 1/17/2 — 2/17/4.

c. No, Q(n) over Q; Yes; No, 7 in Q(7) over Q; Yes; Yes.

d. It divides every polynomial with that root, and it is monic.

2b. 64.

4. 24— 1022 +1, 22 —2V2z — 1, z — V2 — /3.

5. You will need to solve for the six rational number unknowns that
will serve as coefficients on the powers of @. Cross-multiply to eliminate
the denominator, and then use the minimal polynomial to eliminate
powers of o higher than five, as we did in the proof of Theorem 43.3.

8c. Consider the element 1/c.

Chapter 44 — Finite Extensions and Constructibility Re-
visited

a. They are equal.

b. E is either I' or K.

c. They are equal.

d. See Theorem 44.1; Q C Q(w) is not algebraic; Q C Q(w) is not
finite; Consider the field of all constructible numbers as an extension
field of Q; See the previous field.

e. 7°.

f. Q(v/2)(v/3); There are none; Zs(a) where « is a root of 22 + 2+ 1.

1. First show that v/2 + /3 is a root of 24— 1022 +1 € Q[z], and that
this polynomial is irreducible in Q[x]. Therefore, [Q(v/2+/3) : Q] = 4,
and consequently v2 + v/3 ¢ Q(v/3). Conclude that v/2 ¢ Q(V/3).

3. For a computational proof, compute (v/2++/3)% and then subtract
an appropriate multiple of v/2 + v/3 from your result to get a multiple
of v/2. From this, argue that

V2 € Q(V2+V3).
Then conclude that v/3 € Q(v/2++/3). Thus, Q(v/2,v3) C Q(vV2+/3).

To show containment the other way is easy. A proof along the lines of
Exercise 1 using Theorem 43.2 is also possible.
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4b. Use an argument similar to the one found in Example 44.3.

5. Suppose by way of contradiction that [F : Q] = n.

7. Use Theorem 44.2, but be careful.

8. Use DeMoivre’s Theorem 8.4 to find the minimal polynomial of ¢
over Q. (Or refer to Exercise 5.17.)

9b. In this finite case you can actually write down all possible ir-
reducible polynomials in Zz[z]| of degree 2 or 3. Show by direct cal-
culation that o + § is not a root of any of these. Conclude that
Zo(o + B) = Za(a, ).

10. Show that if o, 3 € A, then Q(a + 3) and Q(a3) are finite
extensions. This exercise generalizes Exercise 42.4.

Chapter 45 — The Splitting Field

a. True; True; False (C is a normal extension of Q); True; True; False
(let F =Q and f = z® — 2); False (let F = Q and f = 22 — 2); True;
True; False (consider Q C Q(v/2)).

b. Let ¢ be the primitive cube root of unity. Then the answers are:
Q(V2,¢); R(¢) = R(i) = C; Q(i)(V2, V3); C.

c. F

3c. Use induction on the degree of g.

3d. Use induction on n.

5b. Let @ = {/2++v2 and 8 = 1/2 — /2. Then f = (z — a)(z +
a)(z - B)(z + ).

5¢.Q(a, B).

5d. Show that 3 can be expressed in terms of «, and so the splitting
field is Q().

6b. Let o = /2. Then f = (z — a)(z + a)(z — ai)(zx + o).

6¢c. Q(av,1).

6e. Since Q(«,1) is a finite algebraic extension of Q.

Chapter 46 — Finite Fields

a. p= 2 + 2 would work, among others.

b. It has prime order.

C. Zg; Zs X Z3; GF(Q)

1c. There are two cases, depending on whether p is even or odd.

3. Use Exercise 46.1a.

5. You will need to show that the polynomial ™ 1 — 1 divides

2™ 1 — 1 if and only if m divides n.
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6. Any element of such a field is a root of a polynomial of the form
" — .

7. Look at the polynomial term by term. Use Exercise 46.1a and
Exercise 46.6.

8. Use the proof of Theorem 45.4, together with Exercise 46.7.

10b. Eliminate all reducible polynomials. First eliminate those with
a linear factor. What fourth degree polynomials are a product of two
degree two irreducibles?

10c. Use a similar analysis to part b.

Chapter 47 — Galois Groups

True; True; True; False; False (it is the trivial group).
. Cyclic group of order eleven.

Example 47.5; None; Examples 47.7, 47.8, 47.9.

. Klein Four group; cyclic group of order two.

. Cyclic group of order 3.

. Cyclic group of order four; cyclic group of order two.
. Use Theorem 47.4.

. Exercise 34.9 still applies.

W WNR O T

Chapter 48 — The Fundamental Theorem of Galois
Theory

a.
19 +aias+ a1aq + 1o + o + o0 + o s + 03y + 30 + g Qs

b. Gal(K|E) is a subgroup of Gal(K|F').

Gal(E|F) is isomorphic to Gal(K|F)/Gal(K|E).

. Fix(H,) C Fix(Hy).

There are none.

. For the Galois group, see Theorem 47.4.

. This will involve an easier version of the arguments in Example
48.7.

3. It is not easy to find all of these fields. Keep in mind that the
splitting field includes such elements as V2,i,4/2i, etc., and that every
distinct subgroup must correspond to a distinct intermediate field.

8. Assume by way of contradiction that G is not transitive. Then
there is a proper subset K of the set of roots of f in K, for which
p(a) € K, whenever ¢ € G and a € K. Form the product g of the

PO Ao
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linear terms z — «, for each o € K. Argue that g € Fl[z|, using a
symmetric polynomial argument.

Chapter 49 — Solving Polynomials by Radicals

a. Q C Q(v/2) C Q(v/2,i).

b. Q C Q(V2) C Q(V2,¢).

- QCQ(V2).

d. See Theorem 47.4.

e. Yes.

f. Find an irreducible cubic with three real roots.
g. f is not solvable by radicals.

¢]

1. Make a chart as in Example 47.9, considering that o = /1 + /2
can be mapped only to a, a,a¢?, ¢ can be mapped only to ¢, (2, and
v/2 can be mapped only to +/2.

3b. You know that the «; are distinct (why?). Use this to argue
that the 3; are distinct. Then show that the permutations in H are
the only elements of Sy that leave the §; fixed.

5. g = 2348z = z(22+8). Clearly the splitting field for g is Q(2v/2¢),
which as a quadratic extension has Galois group over Q isomorphic to
Zs.
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(Guide to Notation

In this appendix we provide a guide to the mathematical notation we
use in this book. In many cases we provide a reference in the text where
the given notation first occurs. Rather than attempting an alphabetical
listing, we have grouped this list of notations conceptually.

Set Theory

Modern mathematics is expressed in terms of set theory, and we use
standard notation for these concepts. In what follows, assume that A
and B are sets:

If a is an element of A, then we write a € A. If it isn’t, we write
a¢ A

The intersection of A and B is

ANB={z:z€ Aand z € B}.
The union of A and B is

AUB={zr:z€ Aorz € B}.
The set difference is

A\B={z:2€ Aand z ¢ B}.

If Ais a subset of B, we write A C B. If it is a proper subset we
write A C B. We can change emphasis and write these two as B D A
and B D A, respectively.

If the set A is finite we denote by |A| the number of elements in A.

The set product is the set of all ordered pairs, with first entry from
A and second entry from B:

Ax B={(a,b):a€ A, be B}.

If A and B are rings or groups, we can place a ring (Example 6.10) or
group (Section 27.3) structure on A x B.
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Numbers

N is the set of positive integers (or counting numbers), Z is the set of
all integers, and Q is the set of rational numbers (Chapter 1).

For integers a, b and positive integer n, a = b(mod n) means that a
and b are congruent modulo n (Chapter 3).

R is the set of real numbers (Chapter 6), and C is the set of complex
numbers (Exercise 6.11).

K is the set of constructible numbers (Section 37.2), and A is the set
of algebraic numbers (Exercise 42.4).

Functions

det(A) is the determinant, which is a real-valued function defined on
matrices (Example 27.4).

deg(f) is the degree of the polynomial f (Section 4.1). cont (f) is
the content of a polynomial f € Z[z] (Section 14.3).

@(n) is Euler’s phi function (Exercise 31.12).

ged(a, b) is the greatest common divisor, for integers, polynomials or
Euclidean domains (Section 2.2, Section 4.6, Exercise 15.4). Likewise,
lem(a, b) is the least common multiple (Exercise 2.11).

la| is the ordinary absolute value, if o is a real number; it is the
modulus if o is complex (Section 8.4). arg(w) is the argument of the
complex number (Section 8.4).

We use several important functions from calculus: the natural loga-
rithm log(z), the exponential function exp(z) = e® and the trigonomet-
ric functions sin(z), cos(x), etc.

Rings

In what follows, assume that R is a ring and F' is a field.

Zn is the ring of integers, modulo n (Chapter 3 and Example 6.4).
Of course, we also can consider it as a cyclic group (Example 24.3 and
Example 26.17). R[z] is the ring of polynomials in indeterminate x and
coefficients from the ring R (see Exercise 6.23); particularly important
are Q[z] and Z[z] (Chapters 4 and 5), and F[z], where F is a field
(Chapter 9).

Z[i] is the ring of Gaussian integers (Exercise 6.12); more generally,
Z[\/n] is a quadratic extension of the integers (Section 10.3). These
rings are equipped with a norm function N(a) (Section 10.4).

M, (R) is the ring of 2 x 2 matrices, with entries from the ring R; see
Example 6.13 and Exercise 6.8.
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For any set X, P(X) is the set of all subsets of X; it is called the
power set and can be made into a ring (Example 6.20).

C10,1] is the ring of all real-valued continuous functions on the unit
interval (Example 6.20).

If I is an ideal of the ring R, then R/I is the ring of cosets, modulo
I (see Section 18.1).

U(R) is the group of units of the ring R (Section 8.2 and Section
24.3). For a field F, we denote U(F) by F* = F\{0} (Section 24.3).

If ¢ is a (ring or group) homomorphism, then ker(yp) is its kernel
(Section 17.2 and Section 33.1).

Given a € R, (a) is the principal ideal generated by a (Section 11.4
or Section 17.3). More generally, (a1, -, ay) is the ideal generated by
the a; (Exercise 12.2).

N(R) is the nilradical of R (Exercise 7.15).

Z(R) is the center of R (Exercise 7.12).

Groups

In what follows, assume that G is a group.

Dy, is the nth dihedral group, the group of symmetries of the regular
n-gon (Section 22.4). See Exercise 28.12 for our usual notation.

Sy, is the nth symmetric group, the group of permutations of a set of
n elements (Section 29.2). A, is the alternating group, the subgroup of
Sy, consisting of the even permutations (Section 34.3).

Qs is the group of quaternions (Example 24.15). See Exercise 28.14
for our usual notation.

Ha and aH are right and left cosets of the subgroup H of the multi-
plicative group G (Section 31.1 and Section 32.1). Additive cosets look
like H+aora+ H.

G/H is the group of cosets for G with normal subgroup H (Section
32.2).

(G : H] is the indez of the subgroup H in G; that is, it is the number
of distinct cosets H has (Section 31.2).

(a) is the cyclic subgroup of G generated by g (Section 26.3).

For g € G, o(g) is the order of the element g (Section 26.2).

End(G) is the endomorphism ring for the group G (Exercise 27.13).

Z(Q) is the center of G (Exercise 25.16).
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Fields

If Fis a field, F(a) is a simple extension — the smallest field con-
taining F' and o (Sections 43.2 and 43.3).

For fields FF C E, [E : F] is the degree of the field extension: the
dimension of the F' as an E-vector space (Section 44.1).

Aut(R) is the automorphism group of the ring R (Example 24.18).
Gal(E|F) is the Galois group of E over F (Section 47.1).

GF(p") is the Galois field with p™ elements (Section 46.1).

Index

In this index, boldfaced page
numbers (e.g., 123) indicate a
definition and italicized page
numbers (e.g., 123) indicate ref-
erences in an exercise. We have
not included references to the
Nutshells at the end of each sec-
tion, or the Chapter Summaries
at the end of each chapter.

Abel, Niels, 127, 316, 494, 619
abelian, 316
absolute value, 107
addition, 3, 34, 43, 74

closed under, 3

coordinate-wise, 504

in a ring of cosets, 238

matrix, 79, 85
additive translation, 225
algebraic

over a field, 527

over a ring, 535
algebraic geometry, 83
algebraic numbers, 535, 560
alternating group, see group
annihilator, 167
Archimedes, 497
arithmetic, 34

clock, 39

in a ring, 80
ascending chain condition, 173
associate, 120

in a ring, 141, 162

polynomials, 58
associative, 75, 314
automorphism

field, 585

group, 322
Axiom of Arithmetic, 82
axiomatic method, 9, 82

bell ringing, 436

binary operation, 73, 83, 314
closed, 74

binomial coefficient, 13, 30

Binomial Theorem, 13, 87

cancellation, 329

additive, 80

multiplicative, 40, 102
Cardano-Tartaglia formula, 150,

132, 597, 615

irreducible case, 132
Cauchy, Augustin-Louis, 386
Cayley, Arthur, 386
Cayley’s Theorem, 384
center

of a group, 337

of a ring, 97, 222
centralizer, 336
characteristic, 117

of a field, 235, 531
Chinese Remainder Theorem, 275
Classification Theorem

for Finite Simple Groups, 445,

459

closure of an operation, 3, 74
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coefficient, 42
common divisor, 49
commutative, 75, 316
commutator subgroup, see sub-
group
commutators, 423
compass, 465
collapsible, 473
complete graph, 12
completing the square, 122, 129
complex conjugate, 105, 213, 227
complex numbers, 86, 105, 253,
257, 298, 327, 506, 542
argument, 107
exponential form, 109
imaginary part, 106
length, 106
modulus, 106
real part, 106
complex plane, 106, 145
composite, 27
composition

functional, see functional com-

position
composition series, 459, 460
congruent, 31, 275
conjugate
of a group element, 422, 439,
446
Conjugation Theorem, 439
Constructible Number Theorem,
484, 489, 556
constructible numbers, 467, 615,
628
continuous, 86, 218
contradiction, 9
coordinate-wise, 86
coset, 230
left, 409, 414

Index

right, 399
Coset Theorem
for groups, 401
for rings, 238, 401
counting numbers, 3
cows, 14
cube
symmetries of, 306
cubic formula, 127, 130, 565
cycle, see permutation
Cycle Factorization Theorem, 393
cyclic group, see group
cyclic subgroup, see subgroup
cyclotomic polynomial, see poly-
nomial

Dedekind, Richard, 83, 184
degree

of an algebraic element, 538

of field extension, 551
DeMoivre’s Theorem, 109, 320
depressing

the conic, 130

the quartic, 132
derivative, 54, 1531, 220, 361, 365,

428, 571, 575

rules for, 576
Descartes, Rene, 64, 113, 488
determinant, 116, 220, 297, 318,

359

diagonal, see matrices
differentiable, 86
dimension

of a vector space, 545
Diophantine equation, 145, 152
direct product

of groups, 362, 372

of rings, 77, 87, 272
discriminant

of the conic, 130

Index

of the quadratic, 122, 142
of the quintic, 611
Disquisitiones Arithmeticae, 38
distributes, 75
divides, 17, 47
division, 4, 105
Division Theorem, 197
for Q[z], 45
for F[z], 120
for Euclidean domains, 197
for Integers, 15
domain, see integral domain
doubling the cube, 466, 489, 557

Eisenstein’s Criterion, 62, 66
The Elements, 10, 18, 22, 197,
465, 472
embedding, 362, 428
endomorphism, 365
equivalence relation, 235
Euclid, 10, 25
Euclid’s Algorithm, 18, 19, 25,
50, 110, 117, 277
for Flz], 120
for Euclidean domains, 206
recursive version, 30
Euclidean domain, 197
Euclidean valuation, 197
Euler, Leonhard, 26, 38
Euler’s phi function, 410
Euler’s Theorem, 410
existence and uniqueness theo-
rem, 15
exponential function, 368
exponents
negative, 342
positive, 339
rule of, 342
extension problem for groups, 445
455, 459

¥
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factor, 17, 47

factorial, 12

Factorization Theorem for Per-
mutations, 392

Factorization Theorem for PIDs
171

b

Factorization Theorem for Quadratic

Extensions, 155
Feit, Walter, 459
Feit-Thompson Theorem, 459
Fermat, Pierre de, 38, 111, 113
Fermat’s Last Theorem, 113
Fermat’s Little Theorem, 111,
116, 410
Ferrari formula, 132, 615
Fibonacci sequence, 7, 13, 28
field, 105, 260
algebraically closed, 133, 576
base, 527
finite, 110, 117, 235, 530,
542, 578
fixed, 600
Galois, 579
of algebraic numbers, 535
of constructible numbers, 468
splitting, 566, 573, 579
field extension, 475, 527
algebraic, 551
algebraic simple, 539, 554,
572
by radicals, 616
degree of, 551
finite, 551
normal, 570, 573, 589, 602,
606
proper, 475
quadratic, 475
radical, 615
simple, 539
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splitting, 535, 566
transcendental simple, 544,
557
finite subdirect product, 279
fix, 391
fixed, 647
flatlanders, 309
flip, 288, 427
floor function, 30
Frobenius isomorphism, 235, 547,
582
function
domain of, 211
identity, 380
inverse, see inverse function
one-to-one, 214, 231
onto, 214, 231
range of, 211
functional composition, 288, 314,
331, 380
Fundamental Isomorphism The-
orem
for Groups, 419, 429
for Rings, 250, 399
Fundamental Theorem for Finite
Abelian Groups, 449
Fundamental Theorem of Alge-
bra, 123, 127, 534, 569
Fundamental Theorem of Arith-
metic, 22, 23, 25, 185,
392
Fundamental Theorem of Galois
Theory, 601, 604, 606

Gallian, Joseph, 405

Galois field, see field

Galois group, see group
Galois, Evariste, 386, 495, 579
Gauss’s Lemma, 60, 143, 655
Gauss, Karl, 26, 38, 64, 123, 127

Index

Gaussian integers, 86, 90, 144,
152, 195, 199, 202, 315
gcd, see greatest common divi-

sor
GCD identity, 184
for Fz], 120

for Euclidean domains, 205
for integers, 20, 182
for polynomials, 52
geometric progression, 12
Golden Section, 472, 473
greatest common divisor, 17, 21,
49, 50, 205
group, 314
p-group, 452
abelian, 316
additive, 331, 358
alternating, 438, 442
cyclic, 347, 369
dihedral, 291, 327, 336, 378,
420, 484
Galois, 586
generators of, 309
Klein Four, 407
multiplicative, 331
of automorphisms, 322
of cosets, 416
of symmetries, 291, 300, 371,
438
of units, 317
permutation, 381, 588
quotient, 416
simple, 443, 459, 460
solvable, 445, 455, 622
sporadic, 445
symmetric, 381, 442
table, 291

Hoélder, Otto, 459
Hadlock, Charles, 493

Indezx

Hermite, Charles, 493, 528
Hilbert, David, 83
homomorphism
group, 357
identity, 216, 247
inclusion, 216, 248
natural, 241, 429
projection, 213, 227
ring, 212, 358
zero, 216, 227
Huygens, Christiaan, 113

ideal, 158, 226
as kernel, 228
finitely generated, 174
generators of, 160, 174
improper, 159
maximal, 180, 259, 260, 268
not principal, 169, 174
prime, 262, 263
principal, 160, 181, 228, 346
proper, 159
trivial, 159
zero, 159
ideals
ascending chain, 172, 176
intersection of, 166
product of, 167, 269
sum of, 167
idempotent, 87, 99, 168, 235,
244
identity
additive, 36, 75, 78
group, 314
multiplicative, 37, 93
uniqueness, 80, 329
imaginary numbers, 118, 127, 335
implication, 7
inclusive or, 22
Index 2 Theorem, 419, 439
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index of a subgroup, see sub-
group
induction, see mathematical in-
duction
induction hypothesis, 7
inductive definition, 8
inductive reasoning, 7
infinite
countably, 257
uncountably, 257
injective, 214

- integers, 3, 75

Gaussian, see Gaussian in-
tegers
integral domain, 102, 105, 112,
162, 263
Internal Characterization The-
orem, 373
invariant, 518
inverse
additive, 36, 75
group, 314
matrix, 116
multiplicative, 37, 103
left, 117
right, 117
uniqueness, 80, 329, 508
inverse function, 249, 314, 322,
367, 381
irrational numbers, 28, 56, 64,
66
irreducible, 141, 149
in a ring, 142, 178, 184
integer, 22
polynomial, 55, 57, 120, 124,
193
isomorphism
for groups, 367
for rings, 247
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Jacobson, Nathan, 627
Jordan, Camille, 254, 459
journals

mathematical, 113, 459

kernel, 226, 228, 241, 425
trivial, 232, 429

Klein Four group, see group

Klein, Felix, 219

Kronecker, Leopold, 528

Kronecker’s Theorem, 528

Kummer, Ernst, 83, 183

Lagrange, Joseph, 386, 403

Lagrange’s Theorem, 235, 403,
451

Lambert, Johann, 127, 493

Lambert’s Theorem, 342

lem, see least common multiple

least common multiple, 28

Legendre, Adrien-Marie, 26, 127

Lindemann, Ferdinand, 493, 528

Lindemann’s Theorem, 493, 557

linear algebra, 79, 503

linear combination, 20, 169, 174,
511

logarithm, 109, 359, 365, 368

mathematical induction, 5, 198
base case, 5
bootstrap, 5
matrices, 79
diagonal, 92
matrix
addition, see addition
multiplication, see multipli-
cation
maximal independent set, 517,
525
McKay, James, 405

Index

measures, 25
minimal spanning set, 516
mirror reflection, 310
modulo, 31, 237
modulus, 31
Moore, E.H., 579
multiplication, 3, 34, 43, 74
in a ring of cosets, 238
matrix, 79, 85, 293
scalar, 505
table, 289, 291
multiplicative absorption prop-
erty, 159, 226

natural numbers, 3, 78

nilpotent, 98, 115, 118

nilradical, 98, 167, 222, 244

Noether, Emmy, 172

Noetherian ring, see ring

norm, 146

numbers, see complex, constructible,
counting, irrational, nat-
ural, rational, real, tran-
scendental

orbit, 394
trivial, 394
order
of a group, 402, 404
of an element, 340, 404
torsion, 340
torsion-free, 340, 423
orientation
left-hand, 299
right-hand, 299

painting, 304, 446
parabola

segment of, 497
partition, 33, 230, 234, 406

Index

Pell’s equations, 147
pentagon, 296, 472
permutation, 290, 325, 372, 379
cycle, 390
disjoint, 392
even, 437
odd, 437
order-preserving, 325
parity of, 437
transposition, 435
pid, see principal ideal domain
plane of F', 480
circle in, 480
line in, 480
point-wise, 79
point-wise operation, 77
polygon, 297, 496
polynomial
content of, 191
cyclotomic, 54, 67, 133, 591,
612
degree of, 43
equality of, 42
function, 43, 129
in Q[z], 42, 76
in Flz|, 119
irreducible, see irreducible
minimal, 538
monic, 195, 538
over an arbitrary ring, 88
prime, 57
primitive, 143, 191
reducible, 56
resolvent, 626
symmetric, 602
power set, 88, 95, 167, 174, 221,
234, 256, 268
powers
of a group element, 339
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pre-image, 225, 425
preserves addition, 212
preserves multiplication, 145, 212
prime
in a ring, 177, 184
integer, 22, 23
polynomial, 57, 120, 193
prime subfield, 532, 577
Primitive Root Theorem, 580
principal ideal domain, 171, 176,
184, 202
Principle of Mathematical Induc-
tion, 5, 9
Strong, 14
projection, 220, 234, 264, 362,
428
Pythagorean Theorem, 472

Qin Jiushao, 277

quadratic extension of the inte-
gers, 144, 155, 175

quadratic formula, 121, 125, 129,
484, 565, 615

quartic formula, 127, 152, 565

quaternions, 321, 325, 378, 388,
408, 410, 422

quotient, 15, 197

rational numbers, 4, 25, 75, 257,
326

rational plane, 479

Rational Root Theorem, 62, 65

real numbers, 257, 326

recursive definition, 8

reductio ad absurdum, 9

reflection, 288

reflexivity, 81

relatively prime, 27

remainder, 15, 197
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representation theory for groups,

382
residue, 31
residue class, 31
rhombus, 296
rigid motion, 287, 299
ring, 74
additive group of, 315
Boolean, 269
commutative, 78
endomorphism, 366
Noetherian, 173, 17/
of cosets, 240
quotient, 240
zero, 76, 94, 322
root, 48
repeated, 53
root of unity, 133, 619
primitive, 131, 133
Root Theorem, 48
for F[z], 120
root tower, 616, 618
Royal Society, 113

scalar, 43
sequences, 87, 99, 175, 221, 223,
244
bounded, 175
convergent, 223
series
MacLaurin, 118
Taylor, 118
socks and shoes, 104, 329
solution of equations, 80
in a group, 329
solvable by radicals, 616, 622,
624
solvable group, see group
splits, 566

Index

splitting extension, see field ex-
tension
splitting field, see field
square, 294
symmetries of, 295
square root, 125, 469
square-free integer, 144, 454
squaring the circle, 466, 493, 557
straightedge, 465
structure theorem, 445
subgroup, 331
commutator, 423
conjugate, 421, 448
cyclic, 345
improper, 332
index of, 402
normal, 415, 425, 439
proper, 332
stabilizer, 388, 397, 410
torsion, 422
transitive, 447, 613
trivial, 332
Subgroup Theorem, 333
subgroups
intersection of, 335, 421
product of, 422
subnormal series, 455
subring, 89, see ideal
improper, 90
proper, 90
trivial, 90
Subring Theorem, 90
subrings
intersection of, 97
Substitution Rule for Equality,
81
subtraction, 3, 43, 81, 85, 331
Sun Tsu, 275, 277
support, 391

Indezx

surjective, 214

Sylow theorems, 405
symmetric, 367
symmetric difference, 88
symmetry, 81, 287, 371

tangent line to a circle, 484, /88
Taylor, Richard, 114
tetrahedron symmetries of, 303
Thompson, John, 459
torsion, see order
torsion-free, see order
transcendental numbers, 493, 544
transcendental over a field, 527
transitivity, 81
transposition, see permutation
triangle

equilateral, 287

isosceles, 296

scalene, 296

symmetries of, 288
triangle inequality, 11
trisecting the angle, 466, 490,

557

UFD, see unique factorization
domain
unique factorization
for integers, 24
for polynomials, 58, 120
unique factorization domain, 179,
185, 189, 193, 202
Unique Factorization Theorem
for Integers, 24
Unique Factorization Theorem
for Polynomials, 58, 185
unit, 103, 141, 317
unit circle, 115, 319, 332, 411,
432
unit line segment, 467
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unity, 93, 98

vector, 504
addition, 504
additive inverse, 504
linear combination, 511
linearly dependent set, 515,
516
linearly independent set, 514
spanning set, 511
spans, 512
zero, 504
vector space, 505
basis, 516, 517
dimension, 521
finite dimensional, 514
subspace, 524
Viete, Francois, 64

Wantzel, Pierre, 494

well defined, 35, 237, 239, 251,
413, 430

well ordered, 4

Well-ordering Principle, 4, 9, 198

Wiles, Andrew, 114

Wilson’s Theorem, 118

zero, 36, 75
zero divisor, 101, 105
Zero ring, see ring
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