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gradually shifting from traditional statistical models to computational intelligence, or say machine learning methods (Vlahogianni
et al., 2014). With the exponentially increase in the volume of traffic data and the computational capability, a large amount of deep
learning models, including recurrent neural network (RNN) (Ma et al., 2015), convolutional neural network (CNN) (Ma et al., 2017),
stacked autoencoder (Lv et al., 2015), and their combinations (Li et al., 2017; Yu et al., 2018) were adopted for short-term traffic
forecasting in recent years.

Much previous research focusing on traffic prediction only studied a roadway segment or several consecutive segments on a
corridor. It is proved that using the information of multiple sensors/locations can help prediction models track short-term trends and
enhance prediction performance (Li et al., 2015). Thus, in order to enhance traffic prediction performance and bring the power of
artificial intelligence into real applications in the transportation field, it is inevitable to take large-scale traffic networks as the study
areas. Due to the complex structure of traffic networks, there are several obvious hurdles in the traffic forecasting process.

The first question is how to represent the complex structure of a roadway network accurately? An example of a complex traffic
network is shown in Fig. 1 (a). Previous studies attempted to convert the traffic states of sensing locations in a roadway network into
a 2D spatial-temporal matrix (Ma et al., 2017) or convert the geometrical structure of urban roadway networks as colored images (Yu
et al., 2017) for learning traffic states’ features, where an example is shown in Fig. 1(b). However, in these ways, the topology of a
roadway network cannot be adequately represented and the relationship of the adjacent roadway segments can hardly be compre-
hensively learned. To address this issue, many studies (Cui et al., 2019; Yu et al., 2018; Zhang et al., 2018; Li et al., 2017) have
proposed a more elegant way to consider the traffic network as a graph consisting of vertices and edges denoting roadway segments
and intersections, respectively, as shown in Fig. 1(c). In this way, the topology of a traffic network can be comprehensively re-
presented by a graph.

Second, given considering the traffic network as a graph, designing an effective feature extraction process for the non-linear
structured data is also challenging. Some powerful mathematical tools, such as graph convolution operator (Henaff et al., 2015;
Bruna et al., 2013), have been adopted to integrate graph features into the traffic forecasting problems (Li et al., 2017; Cui et al.,
2019). However, the original form of graph convolution is not well-localized, which means that, with respect to a centered node, the
graph convolution cannot learn features exclusively from its neighboring nodes within a specific scale. Although Defferrard et al.
(2016) proposed a fast localized spectral filter to enable the localization of the graph convolution, the receptive field is still not
flexible. The neighboring field of a centered node is strictly confined by a ball of a designated radius covering a corresponding amount
of hops of neighboring nodes.

Thus, the third issue is the lack of methods to enable the flexible local feature extraction process in a traffic prediction model. As
shown in Li et al. (2015), traffic time series have long-term and short-term trends. Generally, the traffic state of a road is mainly
affected by its neighboring roads. However, some key roadway segments, such as traffic bottlenecks or the ones with critical in-
cidents, can highly affect the operational performance of the entire traffic network. Thus, much attention should be discriminatively
paid to these segments in the feature extraction process. The classical wavelet transform inherently with the localization property can
capture the sudden changes and detect peaks in a signal. Considering the spectral graph convolution is defined based on Fourier
transform (Shuman et al., 2012), analogously, wavelet transform can be extended to the spectral domain as the graph wavelet
(Hammond et al., 2011) to overcome the localization problem in the graph convolution. Graph wavelets are localized in the vertex
domain, reflecting the information diffusion centered at each node. Based on the graph wavelet theory (Hammond et al., 2011), Xu
et al. first proposed the graph wavelet neural network (Xu et al., 2019) to solve semi-supervised classification problems. In the traffic
modeling process, the graph wavelet can also be used to flexibly extract comprehensive features and automatically concentrate more

Fig. 1. Demonstration of model framework. (a) Urban traffic network in downtown Seattle. (b) Speed information of roadway segments illustrated
by various colors. (c) Graph structure converted from the traffic network. (d) Structure of a graph wavelet LSTM unit at time t , in which g is the
kernel function and s is the graph wavelet matrix.
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Fig. 1. Using MEs to simultaneously collect data and charge sensor nodes against 
the traditional routing in a WSN. 
a robot for both collection and energy charging may consume less 
energy than calling for two robots, one for collection and the other 
for charging. This intuition creates a new problem, i.e., joint data 
collection and energy charging by mobile robots, see Fig. 1 . 

In this paper, we focus on the various tasks executed by the 
mobile nodes. We use the terminology of Mobile Entity (ME) 
to denote a mobile sink in the approaches for data collection 
( Section 4 ); a mobile relay in the approaches where mobile robots 
serve as relays ( Section 4.3.2 ); a mobile charger in the approaches 
for energy charging ( Sections 5.1 and 5.2 ), and both a sink and 
charger in the approaches for data collection and energy charg- 
ing ( Section 5.3 ). Note that data gathering and recharging are just 
examples of collection and delivery, respectively. The technologies 
discussed through the paper can be applied to, e.g., detection of 
malevolent nodes (collection), software update (delivery), dynamic 
generation of security keys (both collection and delivery), etc. 

The main contributions of this paper are as follows: 
• We provide a comprehensive summary of the tasks of MEs in 

WSNs. 
• We present a novel view of the literature, i.e., from the point of 

tasks executed by MEs, and provide updates on recent research 
progresses. 

• We summarize the common objectives and constraints consid- 
ered by the existing approaches in the literature and the dis- 
cussed approaches are under such a framework. 

• By analyzing the advantages/drawbacks of current solutions and 
the relationship among, we point out potential extensions of 
the current research; some similarities shared by the available 
schemes; and several open issues that receive little attention so 
far. 
The remainder of the paper is organized as follows. 

Section 2 briefly states the motivation of this survey. Section 3 dis- 
cusses the tasks of MEs in WSNs and various features of sensor 
nodes and MEs in different applications, together with the 
common objectives and constraints considered in the litera- 
ture. Section 4 describes the Collection function. Sections 5.1 and 
5.2 review the approaches for the Delivery function. Section 5.3 re- 
views schemes for the Combination of Collection and Delivery. 
Section 6 provides an outlook on future research directions. Finally, 
Section 7 concludes the paper. 
2. Motivation 

Extensive research has been conducted on MEs in WSNs. There 
are already some surveys addressing certain ME-related topics in 

Fig. 2. Applications of MEs in WSNs. 
WSNs. To clarify the position of our work, we compare the existing 
survey papers with ours in Table 1 . 

In [7] , an extensive review is presented which covers various is- 
sues in data collection with MEs including discovery, data transfer, 
and routing. Dong and Dargie [9] provides a comparative study of 
several mobility-aware MAC protocols. Yu et al. [10] classify exist- 
ing protocols based on different design criteria and presents a sur- 
vey on mobility-aware routing protocols. Tunca et al. [11] further 
review distributed mobility-aware routing protocols. Khan et al. 
[12] classify the available approaches using MEs to collect data in 
WSNs into three categories: path constrained, path unconstrained, 
and controlled mobility. Gu et al. [13] further propose a taxonomy: 
uncontrollable mobility, path-restricted mobility, location restricted 
mobility and unrestricted mobility. Rashid and Rehmani [14] sur- 
vey various applications of WSNs in urban environment and dis- 
cusses some technical solutions. Yetgin et al. [15] review network 
lifetime maximization techniques. The schemes using mobility only 
occupy a small part of the survey. The authors of [8] present vari- 
ous advantages the fully controllable mobility can bring to the net- 
work. Also, some of the limitations that a self-organizing network 
design should take into account when controlled mobility is used 
are discussed. 

Clearly, the existing surveys all focus on using MEs to collect 
and/or relay data. Different from them, this survey broadly docu- 
ments the existing studies under a new taxonomy: Collection, De- 
livery and Combination, which covers various tasks executed by 
MEs in WSNs. We will propose our taxonomy in the next section 
and discuss the typical approaches in the following sections. 
3. Taxonomy 

In this section, we propose our taxonomy together with the 
features of sensor nodes as well as MEs in devise applications. 
We also discuss the common objectives of existing approaches re- 
lated to using MEs in WSNs, and various constraints they con- 
sider. These discussions will help us to distinguish the key differ- 
ences/similarities of available approaches in the following sections. 
3.1. The proposed taxonomy 

In this survey, we classify the existing approaches by the task 
executed by MEs, see Fig. 2 . Generally, three main tasks of MEs in 
WSNs have been widely studied, including Collection, Delivery and 
Combination, which are defined as follows: 
• Collection: MEs collect something from sensor nodes. 
• Delivery: MEs deliver something to sensor nodes. 

• data collection 
• detection of malevolent nodes
• software update 
• energy charging 
• dynamic generation of security keys
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For the Cartesian graph product, denoted as G = G1 ×G2,
the adjacency matrix is

A× = A1 ⊗ IN2 + IN1 ⊗A2. (25)

Finally, for the strong product, denoted as G = G1 !G2, the
adjacency matrix is

A! = A1 ⊗A2 +A1 ⊗ IN2 + IN1 ⊗A2. (26)

The strong product can be seen as a combination of the Kro-
necker and Cartesian products. Since the products (23), (25),
and (26) are associative, Kronecker, Cartesian, and strong graph
products can be defined for an arbitrary number of graphs.
Product graphs arise in different applications, including

signal and image processing [32], computational sciences
and data mining [33], and computational biology [34]. Their
probabilistic counterparts are used in network modeling and
generation [35], [36], [37]. Multiple approaches have been
proposed for the decomposition and approximation of graphs
with product graphs [38], [30], [31], [39].
Product graphs offer a versatile graph model for the represen-

tation of complex datasets in multi-level and multi-parameter
ways. In traditional DSP, multi-dimensional signals, such as
digital images and video, reside on rectangular lattices that
are Cartesian products of line graphs. Fig. 2(a) shows a two-
dimensional lattice formed by the Cartesian product of two
one-dimensional lattices.
Another example of graph signals residing on product graphs

is data collected by a sensor network over a period of time.
In this case, the graph signal formed by measurements of all
sensors at all time steps resides on the product of the sensor
network graph with the time series graph. As the example in
Fig. 2(b) illustrates, the kth measurement of the nth sensor is
indexed by the nth node of the kth copy of the sensor graph
(or, equivalently, the kth node of the nth copy of the time series
graph). Depending on the choice of product, a measurement of
a sensor is related to the measurements collected by this sensor
and its neighbors at the same time and previous and following
time steps. For instance, the strong product in Fig. 2(b) relates
the measurement of the nth sensor at time step k to its
measurements at time steps k − 1 and k + 1, as well as to
measurements of its neighbors at times k − 1, k, and k + 1.
A social network with multiple communities also may be

representable by a graph product. Fig. 2(c) shows an example
of a social network that has three communities with similar
structures, where individuals from different communities also
interact with each other. This social graph may be seen as
an approximation of the Cartesian product of the graph that
captures the community structure and the graph that captures
the interaction between communities.
Other examples where product graphs are potentially useful

for data representation include multi-way data arrays that
contain elements described by multiple features, parameters,
or characteristics, such as publications in citation databases
described by their topics, authors, and venues; or internet
connections described by their time, location, IP address, port
accesses, and other parameters. In this case, the graph factors
in (22) represent similarities or dependencies between subsets
of characteristics.
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Fig. 2. Examples of product graphs indexing various data: a) Digital images
reside on rectangular lattices that are Cartesian products of line graphs for rows
and columns; b) Measurements of a sensor network are indexed by the strong
product of the sensor network graph with the time series graph (edges of the
Cartesian product are shown in blue and green, and edges of the Kronecker
product are shown in grey; the strong product contains all edges); c) A social
network with three similar communities is approximated by a Cartesian product
of the community structure graph with the intercommunity communication
graph.

Graph products are also used for modeling entire graph
families. Kronecker products of scale-free graphs with the
same degree distribution are also scale-free and have the same
distribution [40], [35].K- and ε-nearest neighbor graphs, which
are used in signal processing, communications and machine
learning to represent spatial and temporal location of data,
such as sensor networks and image pixels, or data similarity
structure, can be approximated with graph products, as the
examples in Figs. 2(a) and 2(b) suggest. Other graph families,
such as trees, are constructed using rooted graph products [41],
which are not discussed in this article.

V. SIGNAL PROCESSING ON PRODUCT GRAPHS

In this Section, we discuss how product graphs help “mod-
ularize” the computation of filtering and Fourier transform on
graphs and improve algorithms, data storage and memory ac-
cess for large datasets. They lead to graph filtering and Fourier
transform implementations suitable for multi-core and clustered
platforms with distributed storage by taking advantage of
such performance optimization techniques as parallelization
and vectorization. The presented results illustrate how product
graphs offer a suitable and practical model for constructing
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Το Βασικό Ερώτημα που γεννάται και που θα προσπαθήσουμε να απαντήσουμε είναι:

Πώς μπορούμε να γενικεύσουμε τεχνικές:
• της κλασσικής και 
• της στατιστικής επεξεργασίας σημάτων 
σε δεδομένα που είναι πιο γενικά δομημένα;
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1. Ολίσθηση Σήματος σε Γράφημα
2. Ενέργεια ολισθημένου Σήματος σε Γράφημα (κανονικοποίηση)
3. Σήματα & Συστήματα σε Γραφήματα
4. Μετασχηματισμός Fourier Σήματος σε Γράφημα
5. Απόκριση Συχνότητας
6. Φασματική Κατάταξη ιδιοδιανυσμάτων
7. Φιλτράρισμα στο φασματικό χώρο & στο χώρο των ακμών
8. Δειγματοληψία
9. Τυχαιότητα και Στοχαστικές Διαδικασίες σε Γραφήματα



ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ & ΓΡΑΦΗΜΑΤΩΝ

Introduction to Graph Signal Processing 29

Fig. 17 The Minnesota road-map graph with new thee-dimensional vertex positions de-
fined by the Laplacian eigenvectors {u2,u3,u4} as the vertex coordinates (the 3D Laplacian
eigenmap)
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Fig. 18 Graph representation of a classical time-domain signal.

The graph is considered as a generalized signal domain.
In general, any linear processing of a graph signal at a vertex n can be

defined as a linear combination of the signal value x(n) at this vertex and the
signal samples x(m) at vertices around this vertex

y(n) = x(n)h(n, n) +
X

m2Vn

x(m)h(n,m),

where Vn is the set of vertices in the neighborhood of vertex n. This form
is highly vertex-varying. Only in a specific case of regular graphs can it be
vertex invariant. Then Vn is a K-neighborhood of the vertex n with h(n,m) =
h(n�m).

Αναπαράσταση ενός σήματος διακριτού χρόνου σε μορφή γραφήματος
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Fig. 19 (a) A circular graph. (b) A periodic signal on a graph. Signal values are presented
as vertical lines starting from the corresponding vertex.
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Fig. 20 (a) A signal on an undirected circular graph. (b) Undirected arbitrary graph. Signal
values are presented as vertical lines starting from the corresponding vertex.

For a general graph we can define a vertex-invariant filtering function, using
shifts on a graph. Various forms of signal shifts on a graph will be introduced in
the next sections. They are used to introduce e�cient graph signal processing
methods [24–38].

3.1 Adjacency Matrix and Graph Signal Shift

Consider a graph signal x. Its sample at a vertex n is x(n). The signal shift on
a graph can be defined as the movement of the signal sample from the vertex
n along all walks, with the length equal to one. The movement is done for
all vertices. The signal shifted in this way is denoted by x1. Its values can be
defined using the graph adjacency matrix as

x1 = Ax (14)

As an illustration of a signal and its shifted version, consider classical signal
processing, where the adjacency matrix is defined by graph Fig. 19(a). The

(α): Κυκλικό Γράφημα και
(β): η αναπαράσταση ενός περιοδικού σήματος διακριτού χρόνου πάνω στο
γράφημα

(α) (β)
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(α): Περιοδικό Σήμα Διακριτού Χρόνου τοποθετημένο σε ένα μη κατευθυνόμενο
Κυκλικό Γράφημα
(β): Μη κατευθυνόμενο Γράφημα και η αναπαράσταση ενός Περιοδικού
σήματος διακριτού χρόνου πάνω του
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Fig. 19 (a) A circular graph. (b) A periodic signal on a graph. Signal values are presented
as vertical lines starting from the corresponding vertex.
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Fig. 20 (a) A signal on an undirected circular graph. (b) Undirected arbitrary graph. Signal
values are presented as vertical lines starting from the corresponding vertex.

For a general graph we can define a vertex-invariant filtering function, using
shifts on a graph. Various forms of signal shifts on a graph will be introduced in
the next sections. They are used to introduce e�cient graph signal processing
methods [24–38].

3.1 Adjacency Matrix and Graph Signal Shift

Consider a graph signal x. Its sample at a vertex n is x(n). The signal shift on
a graph can be defined as the movement of the signal sample from the vertex
n along all walks, with the length equal to one. The movement is done for
all vertices. The signal shifted in this way is denoted by x1. Its values can be
defined using the graph adjacency matrix as

x1 = Ax (14)

As an illustration of a signal and its shifted version, consider classical signal
processing, where the adjacency matrix is defined by graph Fig. 19(a). The

(β)(α)
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.

Ολίσθηση του Περιοδικού Σήματος
σε Κυκλικό Γράφημα    
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Μητρώο Κυκλικής Ολίσθησης: Κυκλική Ολίσθηση Σημάτων 

Αν 𝒙!= [𝑥" 𝑥# … 𝑥!$% 𝑥!$#]& , τότε:

𝑈!𝑥! =

𝑥!$#
𝑥"
𝑥#.
.
.

𝑥!$%
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.

Ολίσθηση του Περιοδικού
Σήματος σε Κυκλικό Γράφημα
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Μητρώο Κυκλικής Συνέλιξης 𝛨'
Αν 𝒉!= [ℎ" ℎ# … ℎ!$% ℎ!$#]& , τότε	το µητρώο
Κυκλικής Συνέλιξης µπορεί να γραφεί ως ακολούθως :

𝐻! = [𝑈!"𝒉! 𝑈!# 𝒉! … 𝑈!!$%𝒉! 𝑈!!$#𝒉!]
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Κυκλική Συνέλιξη
Αν 𝒙!= [𝑥" 𝑥# … 𝑥!$% 𝑥!$#]& ένα σήµα και

𝒚 = 𝒉!❂𝒙! = 𝐻!𝒙! = *
&'"

!$#

𝑈!&𝒉! 𝑥&

𝛨'το µητρώο Κυκλικής Συνέλιξης, τότε :
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Κυκλική Συνέλιξη:
Όμως:

𝒚 = 𝒉!❂𝒙! = 𝐻! 	𝒙!= 𝒙!❂𝒉! = 𝑿!𝒉!= 𝒚

όπου:

𝐻! = [𝑈!"𝒉! 𝑈!# 𝒉! … 𝑈!!$%𝒉! 𝑈!!$#𝒉!]

𝑋! = [𝑈!" 𝒙! 𝑈!# 𝒙! 	… 𝑈!!$%𝒙! 𝑈!!$#𝒙!]
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Κυκλική Συνέλιξη:
ή ισοδύναμα:

𝒉!❂𝒙! = *
&'"

!$#

𝑈!&𝒉! 𝑥& = *
&'"

!$#

𝑈!&𝒙! ℎ& = 𝒙!❂𝒉!

𝑈!𝒉! 	 𝒙! = …𝑈! … =	𝒙!	 𝒉!
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Αποσύνθεση Μητρώου Κυκλικής Ολίσθησης όπου 𝑈!=W𝛬'𝑊(

…
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Αποσύνθεση Μητρώου Κυκλικής Ολίσθησης: 

𝑈!" 𝒙!
 𝑈!# 𝒙! 
	 𝑈!% 𝒙! 
      .
      .
      .
	 𝑈!!$# 
𝒙!

𝛪'𝒙!
 𝑊𝛬!# 𝑊(𝒙!
	 𝑊𝛬!% 𝑊(𝒙! 
          .
          .
          .
	 𝑊𝛬!!$#𝑊(𝒙!

𝑈!=W𝛬'𝑊(

Το Μητρώο είναι 
ΔΙΑΓΩΝΟΠΟΙΗΣΙΜΟ:
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.
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Το μητρώο γειτνίασης  A έχει διαστάσεις Μ × Μ (6x6 στο παράδειγμά μας) και η τιμή  του 
στοιχείου 𝛼"# του μητρώου υποδηλώνει την ύπαρξη ή όχι της κατευθυνόμενης ακμής (i, j) , 
δηλαδή:

𝛼)* = N1, αν υπάρχει η ακµή0, αν δεν υπάρχει

     Γράφημα Μητρώο Γειτνίασης
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Μητρώο Ολίσθησης Γραφημάτων:

A𝒙+=                               

𝑥"
𝑥#
𝑥%
𝑥,
𝑥-
𝑥.

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'
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Μητρώο “Ολίσθησης” Γραφημάτων:

A𝒙+=                     

𝑥"
𝑥#
𝑥%
𝑥,
𝑥-
𝑥.

=

𝑥" + 𝑥# + 𝑥-
𝑥" + 𝑥% + 𝑥-
𝑥# + 𝑥,

𝑥% + 𝑥- + 𝑥.
𝑥" + 𝑥# + 𝑥,

𝑥,
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).

0

1

2 3

4

5

6

7

0

1

2 3

4

5

6

7

0

1

2 3

4

5

6

7

(a)

0

1

2 3

4

5

6

7

(b)

Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.
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Συνέλιξη Γειτνίασης:
ή ισοδύναμα:

𝒉!❂𝒙! = *
&'"

!$#

Α!&𝒉! 𝑥& = *
&'"

!$#

Α!&𝒙! ℎ& = 𝒙!❂𝒉!

Α!𝒉! 	 𝒙! = …Α! … =	𝒙!	 𝒉!



*
&'"

!$#

𝑈!&𝒉! 𝑥& = *
&'"

!$#

𝑈!&𝒙! ℎ& = 𝒙!	 𝒉!𝒉! 	 𝒙! =𝑈! 𝑈!
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Κυκλική Συνέλιξη:

Συνέλιξη Γειτνίασης:

*
&'"

!$#

Α!&𝒉! 𝑥& = *
&'"

!$#

Α!&𝒙! ℎ& = 𝒙!	 𝒉!Α!𝒉! 	 𝒙! = Α!
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.
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Μητρώο Ολίσθησης Γραφημάτων: 

𝐴!" 𝒙!
 𝐴!# 𝒙! 
. 	𝐴!% 𝒙! 
      .
      .
      .
	 𝐴!!$# 𝒙!

𝛪'𝒙!
 𝑉𝛬!# 𝑉/𝒙!
	 𝑉𝛬!% 𝑉/𝒙! 
          .
          .
          .
	 𝑉𝛬!!$#𝑉/𝒙!

𝐴!=V𝛬'𝑉/

Αν το Μητρώο Γειτνίασης 
είναι ΔΙΑΓΩΝΟΠΟΙΗΣΙΜΟ:
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n and m means that (m,n) 2 B. The graph from Fig. 2(b) is described by

V = {0, 1, 2, 3, 4, 5, 6, 7}

B ⇢ {0, 1, 2, 3, 4, 5, 6, 7}⇥ {0, 1, 2, 3, 4, 5, 6, 7}

B = {(0,1),(1,3),(1,7),(2,0),(2,1),(3,2),(3,5),(4,6),(4,7),(5,3),(5,4),(6,5),(7,0),(7,1),(7,3)}.
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Fig. 2 Examples of: (a) Undirected graph and (b) Directed graph.

A graph can be undirected and directed. In the case of undirected graphs,
as in Fig. 2(a), it is assumed that the edge connecting the vertex n to the vertex
m also connects the vertex m to the vertex n. This means that if (n,m) 2 B

then (m,n) 2 B.
In general, this property does not hold for directed graphs. An example of a

directed graph is shown in Fig. 2(b). The undirected graphs can be considered
as a special case of directed graphs.

For a given set of vertices and edges, the graph can be represented by an
adjacency matrix A. This matrix describes the vertices connectivity. If there
are N vertices then A is an N⇥N matrix. The elements Amn of the adjacency
matrix A assume values Amn 2 {0, 1}. The value Amn = 0 is assigned if the
vertices m and n are not connected with an edge, and Amn = 1 if these vertices
are connected,

Amn =

(
1 if (m,n) 2 B

0 if (m,n) /2 B.

The adjacency matrices for the graphs from Fig. 2(a) and (b) are

A =

0

1

2

3

4

5

6

7

2

66666666664

0 1 1 0 0 0 0 1
1 0 1 1 1 0 0 1
1 1 0 1 0 0 0 0
0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
1 1 0 1 1 0 0 0

3

77777777775

0 1 2 3 4 5 6 7

, A =

2

66666666664

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1
1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0

3

77777777775

, (1)
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Fig. 10 Eigenvalues �k and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).
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Αποσύνθεση Μητρώου Γειτνίασης: Οι ιδιοτιμές 𝜆0 , 𝑚 = 0,1, … ,𝑀 − 1

m

m
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Fig. 10 Eigenvalues �k and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).
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1. Ολίσθηση Σήματος σε Γράφημα
2. Ενέργεια ολισθημένου Σήματος σε Γράφημα (κανονικοποίηση)
3. Μετασχηματισμός Fourier Γραφο-Σήματος (GFT)
4. Απόκριση Συχνότητας(;) - Συνάρτηση Μεταφοράς (;)
5. Σήματα & Συστήματα σε Γραφήματα
6. Φασματική Κατάταξη ιδιοδιανυσμάτων
7. Φιλτράρισμα στο φασματικό χώρο & στο χώρο των ακμών
8. Δειγματοληψία
9. Τυχαιότητα και Στοχαστικές Διαδικασίες σε Γραφήματα



Αποσύνθεση Μητρώου Γειτνίασης: Το δεύτερο ιδιοδιάνυσμα 𝒗𝟏

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ & ΓΡΑΦΗΜΑΤΩΝ

Introduction to Graph Signal Processing 19

0 1 2 3

4 5 6 7

0

1 2

3 4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5 6 7

0

1

2

3

4

5

6

7

0 1

2 3

4 5

6 7

0

1

2

3

4

5

6

7

0

1 2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1 2 3 4 5

6

7

0

1

2

3

4

5

6

7

0

1

2 3

4

5 6

7

0

1

2

3

4

5

6

7

0 1 2

3 4 5 6

7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 10 Eigenvalues �k and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).



Αποσύνθεση Μητρώου Γειτνίασης: Το τρίτο ιδιοδιάνυσμα 𝒗𝟐

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ & ΓΡΑΦΗΜΑΤΩΝ

Introduction to Graph Signal Processing 19

0 1 2 3

4 5 6 7

0

1 2

3 4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5 6 7

0

1

2

3

4

5

6

7

0 1

2 3

4 5

6 7

0

1

2

3

4

5

6

7

0

1 2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1 2 3 4 5

6

7

0

1

2

3

4

5

6

7

0

1

2 3

4

5 6

7

0

1

2

3

4

5

6

7

0 1 2

3 4 5 6

7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 10 Eigenvalues �k and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).
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Fig. 10 Eigenvalues �k and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).
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Fig. 10 Eigenvalues �k and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).
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the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
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Fig. 10 Eigenvalues �k and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).
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Fig. 10 Eigenvalues �k and corresponding eigenvectors uk(n) for the adjacency matrix of
the graph presented in Fig. 2(a). The eigenvectors are shown on the vertex index line (left)
and on the graph (right).



Φασματική Κατάταξη: Spectral Ordering Χαμηλοπερατό & Υψηπερατό
Σήματα
Έστω x(n) ένα σήμα διακριτού χρόνου διάρκειας Ν δειγμάτων,
δηλαδή:

Τότε, η ενέργεια:
είναι το κριτήριο κατάταξης των σημάτων σε αυτά των αργών και
γρήγορων αλλαγών 

𝒙𝑵 = [𝑥(0) 𝑥(1) ⋯ 𝑥(𝑁 − 1)]&

ΕΔ𝑥!=||Δ𝑥:||%
% = 𝒙𝑵(I−U	);(I−U	)𝒙𝑵

              Δ𝑥:=𝒙𝑵 − 𝑈𝒙𝑵=(I-U) 𝒙𝑵

ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ &ΓΡΑΦΗΜΑΤΩΝ
ΒΑΣΙΣΜΕΝΗ ΣΤΟ ΜΗΤΡΩΟ ΓΕΙΤΝΙΑΣΗΣ



ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ & ΓΡΑΦΗΜΑΤΩΝ
1. Ολίσθηση Σήματος σε Γράφημα
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n and m means that (m,n) 2 B. The graph from Fig. 2(b) is described by

V = {0, 1, 2, 3, 4, 5, 6, 7}

B ⇢ {0, 1, 2, 3, 4, 5, 6, 7}⇥ {0, 1, 2, 3, 4, 5, 6, 7}

B = {(0,1),(1,3),(1,7),(2,0),(2,1),(3,2),(3,5),(4,6),(4,7),(5,3),(5,4),(6,5),(7,0),(7,1),(7,3)}.
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Fig. 2 Examples of: (a) Undirected graph and (b) Directed graph.

A graph can be undirected and directed. In the case of undirected graphs,
as in Fig. 2(a), it is assumed that the edge connecting the vertex n to the vertex
m also connects the vertex m to the vertex n. This means that if (n,m) 2 B

then (m,n) 2 B.
In general, this property does not hold for directed graphs. An example of a

directed graph is shown in Fig. 2(b). The undirected graphs can be considered
as a special case of directed graphs.

For a given set of vertices and edges, the graph can be represented by an
adjacency matrix A. This matrix describes the vertices connectivity. If there
are N vertices then A is an N⇥N matrix. The elements Amn of the adjacency
matrix A assume values Amn 2 {0, 1}. The value Amn = 0 is assigned if the
vertices m and n are not connected with an edge, and Amn = 1 if these vertices
are connected,

Amn =

(
1 if (m,n) 2 B

0 if (m,n) /2 B.

The adjacency matrices for the graphs from Fig. 2(a) and (b) are

A =

0
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66666666664

0 1 1 0 0 0 0 1
1 0 1 1 1 0 0 1
1 1 0 1 0 0 0 0
0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
1 1 0 1 1 0 0 0

3

77777777775

0 1 2 3 4 5 6 7

, A =

2

66666666664

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1
1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0

3

77777777775

, (1)
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Fig. 7 A disconnected graph.

As an example, let us consider a graph derived form Fig. 2(a) by removing
some edges. This graph is presented in Fig. 7.
The adjacency matrix for this graph is

A =

2

66666666664

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0

3

77777777775

(9)

with the corresponding Laplacian

L =

2

66666666664

2 �1 �1 0 0 0 0 0
�1 2 �1 0 0 0 0 0
�1 �1 2 0 0 0 0 0
0 0 0 3 �1 �1 0 �1
0 0 0 �1 4 �1 �1 �1
0 0 0 �1 �1 3 �1 0
0 0 0 0 �1 �1 2 0
0 0 0 �1 �1 0 0 2

3

77777777775

. (10)

These matrices are in a block-diagonal form with two blocks.
If there is an isolated vertex in a graph, then the corresponding row and
column of the matrices A and L will be zero-valued.

16. If we have two graphs defined on the same vertices, with adjacency matrices
A1 and A2, we can define a sum of the graphs as a new graph with the
adjacency matrix

A = A1 +A2.

If we want to keep binary values 0, 1 in the adjacency matrix then the
logical (Boolean) summation rule 1 + 1 = 1 should be used in the matrix
addition. In this chapter we will use the arithmetic summation rule only.

Μη Συνδεδεμένο Γράφημα Μητρώο Γειτνίασης
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Λαπλασιανό Μητρώο Γειτνίασης
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Μητρώο Γειτνίασης: A

Συνδυαστικό Λαπλασιανό Μητρώο Γειτνίασης: LC=D-A

Συμμετρικό Λαπλασιανό Μητρώο (Κανονικοποιημένο): LS=I-D-1/2AD-1/2

Μη συμμετρικό Λαπλασιανό Μητρώο (Random walk): LNS=I-D-1A
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Ο στόχος  η δειγματοληψία και η ανάκτηση σημάτων που 
ορίζονται σε γραφήματα. 
• Συνθήκες για τέλεια ανάκτηση σημάτων γραφήματος

περιορισμένης ζώνης από δείγματα που συλλέχθηκαν από
ένα σύνολο κορυφών.
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Fig. 21 (a) A signal on the directed circular graph. (b) A shifted version of the graph signal
from (a).
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Fig. 22 (a) Two simple signals on an undirected graph. (b) Shifted versions of the graph
signals from (a).

original signal x is presented in Fig. 21(a). The shifted version of this signal
x1 is shown in Fig. 21(b). Two simple signals on an undirected graph are
presented on the left of Fig. 22(a). The corresponding shifted signals with
x1 = Ax are presented on the right of Fig. 22(b).

A signal shifted by two is obtained by a shift for one of the shifted signals.
The resulting, twice shifted, signal is

x2 = A(Ax) = A2 x.

In general, a graph signal shifted for m is obtained as a shift by one of the
graph signal already shifted for m� 1

xm = Axm�1 = Am x.
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Figure 13: ORL dataset, single in-painting experiment. Top left: Original image. Top center: Noisy
image (SNR 12.43 dB). Top right: Measurements 50% of the noisy image. Bottom left: Reconstruction
using Tikhonov prior (SNR 12.12 dB). Bottom center: Reconstruction using classic TV prior (SNR 13.53
dB). Bottom right: Reconstruction using Wiener optimization (SNR 14.42 dB).

Figure 14: Inpainting experiment on ORL dataset. Left: some images of the dataset. Right: reconstruc-
tion error.

8 Conclusion
In this contribution, we have extended the common concept of stationarity to graph signals. Using this
statistical model, we proposed a new regularization framework that leverages the stationarity hypothesis
by using the Power Spectral Density (PSD) of the signal. Since the PSD can be efficiently estimated, even
for large graphs, the proposed Wiener regularization framework offers a compelling way to solve traditional
problems such as denoising, regression or semi-supervised learning. We believe that stationarity is a
natural hypothesis for many signals on graphs and showed experimentally that it is deeply connected
with the popular nearest neighbor graph construction. As future work, it would be very interesting to
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Αποθορυβοποίηση

Ενδοσυμπλήρωση


