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A Bird’s Eye View
BEFORE LOOKING AT SOME DETAILS IN THE NEXT LECTURES



Tasks for Designing a P2P System for 
Managing Ownership

Describing Ownership

Goal 

Protecting Ownership

Storing Transaction Data

Preparing Ledgers for 
being Distributed

Distributing Ledgers

Adding New Transactions

Deciding which Ledger 
Represents the Truth

History of Transaction 
Data

Major Concept

Digital Signature

Blockchain Data Structure

Immutability

Information Forwarding 
in Networks

Blockchain Algorithm

Distributed Consensus



Technical Concepts of the Blockchain and 
their Purpose (1)

Transaction Data

Technical Concept

Transaction History

Cryptographic Hash Value

Asymmetric Cryptography

Digital Signature

Hash Reference

Change-Sensitive Data 
Structures

Describing Transfer of 
Ownership

Purpose

Proving the Current State of 
Ownership

Identifying any kind of Data 
Uniquely

Encrypting and Decrypting 
Data

Stating Agreement with the 
Content of Transaction Data

A Reference that becomes Invalid once 
the Data being Referred are Changed

Storing Data in a way that Makes any 
Manipulation Stand out Immediately



Technical Concepts of the Blockchain and 
their Purpose (2)

Hash Puzzle

Technical Concept

Blockchain Data Structure

Immutability

P2P Network

Message Passing

BlockChain Algorithm

Distributed Consensus

Imposing a Computational 
Expensive Task

Purpose

Storing Transaction Data in a Change-Sensitive 
way and Maintaining their Order

Making it impossible to Change 
the History of Transaction Data

Sharing the Transaction History 
Among all Nodes in Network

Ensure that all Nodes of the System 
Eventually Receive all Information

Ensure that only Valid Transaction Data are 
added to the Blockchain Data Structure

Ensure that all Nodes of the System use 
the Identical History of Transaction Data

Compensation
Giving Nodes an Incentive to Maintain 

Integrity



Purpose of BlockChain

1. Clarifying Ownership

2. Transferring Ownership



Properties of BlockChain
➢ Highly Available

➢ Censorship Proof

➢ Reliable

➢ Open

➢ Pseudoanonymous

➢ Secure

➢ Resilient

➢ Eventually Consistent

➢ Keeping Integrity



Internal Functioning of BlockChain
➢ Ownership Logic

➢ Transaction Security

➢ Transaction Processing Logic

➢ Storage Logic

➢ P2P Architecture

➢ Consensus Logic



Ownership Logic

Ownership Logic

Proof of Ownership Use of Ownership

Upper concepts depend 
on lower concepts

Clarifying Ownership Transfer of Ownership

Whole History of Transaction Data Individual Transaction Data

Storage Logic Consensus Logic
Transaction 

Processing Logic

Transaction 
Security



Transaction Security

Transaction Security

Authorization
Authentication

Upper concepts depend 
on lower concepts

Digital Signature

Private Key Public Key
Cryptographic 
Hash Values

Asymmetric Cryptography

Identification



Transaction Processing Logic

Transaction Processing Logic

Competition

Upper concepts depend 
on lower concepts

Reward

Peer Control

PoW/PoS
P2P 

Architecture
Punishment

Validation of 
Block Headers

Validation of 
Transaction Data



Storage Logic

Storage Logic

Proof of Work BlockChain Data Structure

Upper concepts depend 
on lower concepts

Computationally Expensive 
Tasks

Change-Sensitive Data 
Structures

Hash Puzzles Hash Reference

Immutable Append-Only Data Store

Cryptographic Hash Values



Consensus Logic

Consensus Logic

Upper concepts depend 
on lower concepts

Transaction 
Processign Logic

P2P Architecture Storage Logic Selection Criterion



Abstraction
Application Specific Components

Upper concepts depend 
on lower concepts

BlockChain Technology Suite

Purely Distributed P2P Architecture

Ownership Logic Transaction Data
Transaction 

Validation Logic

Transaction 
Security

Storage Logic Consensus Logic
Data Processing 

Logic

Asymmetric 
Cryptography



Distributed 
Systems Crypto

Economic 
Models

The Three 
Pillars

Decentralization & Blockchains



Secure 
Hash 
Functions



Takes any arbitrarily sized string as input 
◦ Input M: The message

Fixed size output (usually 256 bits are used in Blockchain) 
◦ Output H(M): We call this the message digest 

Efficiently computable

Cryptographic Hash Functions



Deterministic
◦ Always yield identical hash value for identical input data

Collision-Free 
◦ If two messages are different, then their digests also differ (with high 

probability ☺)

Hiding
◦ Hide the original message (the avalanche effect)

Puzzle-friendly
◦ Given X and Y, find out k such that 𝑌 = 𝐻(𝑋| 𝑘  - used to solve the 

mining puzzle in Bitcoin Proof of Work (PoW)

Cryptographic Hash Function: Properties



Hash functions are one-way; Given a 𝑥, it is easy to find 𝐻(𝑥). However, given an 
𝐻(𝑥), no efficient deterministic/probabilistic algorithm can find 𝑥

It is difficult to find 𝑥 and 𝑦, where 𝑥 ≠ 𝑦, but 𝐻 𝑥 = 𝐻(𝑦)

Note the phrase difficult to find, collision is not impossible 

Try with randomly chosen inputs to find out a collision – but it takes too long

Collision Free



It may be relatively easy to find collision for some hash functions

Birthday Paradox: Find the probability that in a set of 𝑛 randomly chosen persons, some of them will have 

the same birthday 
◦ By Pigeonhole Principle, the probability reaches 1 when number of people reaches 366 (not a leap year) or 367 (a 

leap year)

◦ 0.999 probability is reached with just ~70 people, and 0.5 probability is reached with only ~23 people 

If a hash function produces 𝑁 bits of output, an attacker need to compute only 2
𝑁

2  hash operations on a 

random input to find two matching outputs with probability > 0.98 

For a 256-bit hash function, the attacker needs to compute 2128 hash operations – this is significantly time 

consuming 
◦ If every hash computation takes only 1μsec, it will need ~1025 years

Collision Free – How Do We Guarantee?



If we observe 𝐻 𝑥 = 𝐻(𝑦), it is safe to assume 𝑥 = 𝑦

We need to remember just the hash value rather than the entire 
message – we call this the message digest

To check if two messages 𝑥 and 𝑦 are same, i. e. , whether 𝑥 = y, 
simply check if 𝐻 𝑥 = 𝐻(𝑦) 
◦ This is efficient because the size of the digest is significantly less than the size 

of the original messages

Hash as A Message Digest



➢ Given an 𝐻(𝑥), it is “computationally difficult” to find 𝑥

➢ The difficulty depends on the size of the message digests 

➢ Hiding helps to commit a value and then check it later
➢ Compute the message digest and store it in a digest store – commit 

➢ To check whether a message has been committed, match the message digest at the digest store 

Information Hiding through Hash



SHA256 is used in Bitcoin mining – to construct the Bitcoin 
blockchain

Secure Hash Algorithm (SHA) that generates 256 bit message digest

A part of SHA-2, a set of cryptographic hash functions designed by 
United States National Security Agency (NSA)

Hash Function – SHA256



SHA-256 Algorithm from afar 

256-bit 
Initialization 

Vector
C C C

M(0) M(1) M(N)

Message 
Digest



Say 𝑀 is chosen from a widely spread distribution; it is computationally difficult 
to compute 𝑘, such that 𝑍 = 𝐻(𝑀||𝑘), where 𝑀 and 𝑍 are known a priori. 

A Search Puzzle (Used in Bitcoin Mining)
◦ 𝑀 and 𝑍 are given, 𝑘 is the search solution

◦ Note: It might be not exactly a particular value Z, but some properties that Z satisfies, i.e., Z 
could be a set of possible values

Puzzle friendly property implies that random searching is the best strategy to 
solve the above puzzle

Puzzle Friendly



On Computational Puzzles

Elements of a hash puzzle:

1. Data that must be kept unchanged

2. Data that can be freely changed (nonce)

3. The hash function

4. Restrictions on the hash value of the 
combined hashing (1) and (2) – the difficulty 
level



Causing Time Consuming Computations

Hash puzzles can be only solved by trial 
and error:

1. Guess a nonce

2. Calculate the hash value of data+nonce

3. If the hash value satisfy restrictions (solution) 
end, else repeat from 1

The solution is easy to check given the nonce.



Basic Cryptography



Asymmetric vs Symmetric Cryptography

Encryption Decryption

CypherText

Symmetric: Key for 
Encryption and Decryption 
is the same.

Encryption Decryption

CypherText

Asymmetric: Key for 
Encryption and Decryption 
are different.

Public Key Private Key



Symmetric vs Asymmetric

Differences Symmetric Cryptography Asymμetric Cryptography

Data Size Use for Sending Large Data Use for Sending Small Data

Resources Low High

Key Size 128-256 bits RSA key: ≥2048 bits 

Number of Keys One Key for Encryption/Decryption Two Keys: One for Encryption and one for Decryption

Security Less because of One Key More because of Two Keys

History Old Technique Newer Technique

Dangers The Use of One Key The Loss of the Private Key

Speed Fast Slow



Also known as asymmetrical cryptography or asymmetric key cryptography

Key: A parameter that determines the functional output of a cryptography algorithm 
◦ Encryption: The key is used to convert a plain-text to a cypher-text; 𝑀′ = 𝐸 𝑀, 𝑘

◦ Decryption: The key is used to convert the cypher-text to the original plain text; 𝑀 = 𝐷 𝑀′, 𝑘

Properties of a cryptographic key (you need to prevent it from being guessed)
◦ Generate the key truly randomly so that the attacker cannot guess it 

◦ The key should be of sufficient length – increasing the length makes the key difficult to guess

◦ The key should contain sufficient entropy, all the bits in the key should be equally random 

Public Key Cryptography



Two keys are used 
◦ Private key: Only Alice has her private key 

◦ Public key: “Public” to everyone – everyone knows Alice’s public key

Public Key Cryptography

Encrypt the 
message with 
Bob’s public key

𝑴′ = 𝑬(𝑴, 𝑲𝒑𝒖𝒃
𝑩 )

Decrypt the 
message with his 
private key

𝑴 = 𝑬(𝑴′, 𝑲𝒑𝒓𝒊
𝑩 )

M΄



Named over (Ron) Rivest – (Adi) Shamir – (Leonard) Adleman – inventors of the public key 
cryptosystem 

The encryption key is public and decryption key is kept secret (private key)
◦ Anyone can encrypt the data

◦ Only the intended receiver can decrypt the data

Public Key Encryption - RSA



Digital 
Signatures



A digital code, which can be included with an electronically transmitted 
document to
◦ Verify the identity of the sender 

◦ Authenticate the content of the document

◦ Prevent non-repudiation – sender will not be able to deny about the origin of the 
document 

Purpose of Digital Signature:
◦ Only the signing authority can sign a document, but everyone can verify the signature 

◦ Signature is associated with the particular document 
◦ Signature of one document cannot be transferred to another document

Digital Signature



Sign the message using the Private key 
◦ Only Alice can know her private key 

Verify the signature using the Public key
◦ Everyone has Alice’s public key and they can verify the signature

Digital Signature using Public Key 
Cryptography

Sign the message 
with her private 
key

𝑴′ = 𝑬(𝑴, 𝑲𝒑𝒓𝒊
𝑨 )

Verify the 
signature using 
Alice’s public key

𝑴 = 𝑬(𝑴′, 𝑲𝒑𝒖𝒃
𝑨 )

M, M’



Use the message digest to sign, instead of the original message 

Reduce the Signature Size

Sign the message 
with her private key

𝑺 = 𝑬(𝑯(𝑴), 𝑲𝒑𝒓𝒊
𝑨 )

Verify the signature 
using Alice’s public key

𝑯(𝑴) = 𝑬(𝑺, 𝑲𝒑𝒖𝒃
𝑨 )

M, S



In a Figure…

Signer: Alice Document
Hash 10011101001 Encryption

Private Key

Digitally Signed 
Document

Network

Digitally Signed 
Document

01110011111

Hash 10011101001

Decryption

Public Key

10011101001

Signature is valid when 
hash values match

Verifier: Bob

01110011111



Importance of User Keys
➢ Get a blockchain address

➢ Make transactions sending or receiving in her address

➢ Sign transactions to prove that she is the owner of the transferred goods

Private Key Public Key BlockChain 
Address

ECC Hash



Used to validate the origin of a transaction 
◦ Prevent non-repudiation 

◦ Alice cannot deny her own transactions

◦ No one else can claim Alice’s transaction as his/her own transaction 

Bitcoin uses Elliptic Curve Digital Signature Algorithm (ECDSA) 
◦ Based on elliptic curve cryptography 

◦ Supports good randomness in key generation 

Digital Signature in Blockchain



Immutable 
Linked 
Structures



A Cryptographic Hash Pointer (Often called Hash Reference) is a 
pointer to a location:
◦ The location stores some information

◦ Hash of this information is stored in the pointer

With the hash pointer, we can 
◦ Retrieve the information

◦ Check that the information has not been modified (by computing the 
message digest and then matching the digest with the stored hash value)

Hash Pointer



Hash Pointer 

DATA

H(DATA)

Hash Pointer

Reminds you of a linked list??



Tamper Detection using Hash Pointer 



Detect Tampering from Hash Pointers
Hashchain: A Change-Sensitive Linked List

D(i)

H(D(i-1))

D(i+1)

H(D(i))

D(i+2)

H(D(i+1))



Organization of Hash Pointers in a Tree
Merkle Tree: A Change-Sensitive Tree

Root Hash
Hroot=Hash(H0+H1)

L1 Hash
H0= Hash(H00+H01)

L1 Hash
H1=Hash(H10+H11)

L2 Hash
H00=Hash(T1)

L2 Hash
H01=Hash(T2)

L2 Hash
H10=Hash(T3)

L2 Hash
H11=Hash(T4)

T1
T2 T3 T4

Merkle Root



Efficient Verification of a Transaction

Verify efficiently 
transaction TD



Blockchain is a Hashchain
(a bird’s eye view)

Block Header

T11 T12 T1k
.       .       .

Merkle Root

Merkle Tree 
on 

Transactions

Timestamp

Prev. Hash

Nonce

Diff. Target

Version

Block Header

T21 T22 T2k
.       .       .

Merkle Root

Merkle Tree 
on 

Transactions

Timestamp

Prev. Hash

Nonce

Diff. Target

Version

Block Header

T31 T32 T3k
.       .       .

Merkle Root

Merkle Tree 
on 

Transactions

Timestamp

Prev. Hash

Nonce

Diff. Target

Version



The BlockChain Data Structure



Adding New Transactions



Detecting Changes
Changing the Content of a Transaction



Detecting Changes
Changing a Reference in the Merkle Tree



Detecting Changes
Replacing a Transaction



Detecting Changes
Changing the Merkle Root



Changing the Hash Pointer to Previous 
Block



Detecting Changes
Making a Correct Change



TRANSACTIONS IN BLOCKCHAIN

Public key 0xa8fc93875a972ea

Signature 0xa87g14632d452cd

Public key 0xc7b2f68...



Unspent Transaction Output (UTXO)
(Example: Bitcoin)



Verification of a Transaction
(Before Broadcast – this is for Bitcoin)

1. Transaction Format and Structure Check

2. Duplicate Transactions Check (check whether you have already acquired this 
transaction)

3. Digital Signature Verification

4. Inputs Existence (looking up that the UTXOs exist)

5. No Double-Spending (look whether a UTXO has been already spent)

6. Transaction Outputs Validity (the sum of the outputs must not exceed inputs)

7. Sufficient Transaction Fees (fees=Outputs-Inputs)

8. Script Executions, Locktime and Sequence Numbers



Bitcoin Network
Each P2P node runs the following algorithm:
◦ New transactions are broadcast to all nodes.

◦ Each node (miners) collects new transactions into a block.

◦ Each node works on finding a proof-of-work for its block. (Hard to do. 
Probabilistic. The one to finish early will probably win.)

◦ When a node finds a proof-of-work, it broadcasts the block to all nodes.

◦ Nodes accept the block only if all transactions in it are valid (e.g., digital 
signature checking) and not already spent (check all the transactions).

◦ Nodes express their acceptance by working on creating the next block in the 
chain, using the hash of the accepted block as the previous hash. 



Simplified Transaction Verification
Any user can verify a transaction easily by 
asking a node. 

First, get the longest proof-of-work chain

Query the block that the transaction to be 
verified (tx3) is in.

Only need Hash01 and Hash2 to verify; not the 
entire Tx’s.



Account-Based
(Example: Ethereum)

State n:

Alice’s Account 10ETH

Contract’s Account 1ETH

Vader’s Account 10000 ETH

State n+1:

Alice’s Account 9 ETH

Contract’s Account 1 ETH

Vader’s Account 10001 ETH

From: Alice’s Address

Value: 1 ETH

To: Vader’s Address



Verification of a Transaction
(Before Broadcast – for Ethereum)

The validator:

1. Checks transaction format and structure

2. Verifies signature

3. Checks for sufficient balance

4. Checks gas price and gas limit

5. Executes the transaction (even if it is a smart contract)

6. Applies state transition if successful execution

7. Packages the transaction(s) in a block. 



Ethereum 2.0
The validator:

1. Broadcast the block to other validators

2. The block is checked by other validators and signal about its correctness 
(attestation – vote)

3. Aggregation of votes (by aggregators – special validators)

4. The aggregated votes are included in the blockchain

5. Finalization of a block (through consensus)

6. Validators get rewards or penalties for their work

7. Epoch processing



On Simple 
CryptoCurrency
GOOFY AND SCROOGE



The GoofyCoin



Creation of Coins
Goofy can create coins whenever he wants.

◦ These coins belong to him

How?

1. Creates a unique coin ID [uniqueCoidID] constructing the string: 
s=“CreateCoin [uniqueCoinID]”

2. Computation of digital signature d of string s

3. d+s is a valid digital coin, and anyone can validate it through the public 
key of Goofy



Transfer of Coins
Whoever owns a coin can transfer it to someone else.

• To transfer a coin, cryptographic operations must be used

s=“Pay [this] 
to [Alice]” Digitally sign 

s

public key of 
Alice

hash pointer 
to the coin

s+d
Send to Alice (and 
anyone else) s+d

I own the coin 
[this] because 

there is the 
statement s+d

Now I will pay 
Bob with [this]



The Goofy Coin has a Critical Security 
Problem: Double Spending Attack

• The witch sends the coin to Alice but 
does not tell it anyone else. 

• She sends the same coin at almost the 
same time to the dwarf as well. 

• She has used the same coin twice. Who 
owns the coin?



The ScroogeCoin
SOLVING THE DOUBLE SPENDING ATTACK IN THE GOOFYCOIN

MORE COMPLICATED DATA STRUCTURES ☺  



Using the BlockChain
• Scrooge create coins like Goofy BUT

• he publishes an append-only ledger with the history of transactions that have happened.

• Append-only: the transaction cannot change/be deleted.

• All transactions are written to the ledger before accepted.

Use a BlockChain:



Two Types of Transactions
PayCoins is valid if:

• The consumed coins are 
valid

• not already consumed

• total value out = total 
value in

• Signed by all owners of 
spent coins



Coins are Immutable
Coins cannot be transferred, subdivided or combined

Solution: Use Transactions!!!

To Subdivide: 
1. Create a new transaction

1. Consume your coin

2. Pay out two new coins to yourself (of same total value)



The Double-Spending Attack
• A transaction is valid if in a block in the blockchain signed by Scrooge

• Scrooge makes sure that no double-spending transactions are registered

• All can check the validity of the blocks digitally signed by Scrooge



ScroogeCoin Problems
Can Scrooge change a transaction in the history (already registered)?

• No, the others will understand it because the hash pointers will be invalid

• Of course, one can say: “Who cares? He is Scrooge. He is doing whatever he likes”

Don’t worry. I am 
an honest guy ☺

Question: 

Can we descroogify the currency? 
Can we operate without a central trusted party? 

➢ Highly Available 
➢ Censorship Proof
➢ Reliable
➢ Open
➢ Pseudoanonymous
➢ Secure
➢ Resilient
➢ Eventually Consistent
➢ Keeping Integrity



Smart 
Contracts



➢ Executable code

➢ Turing Complete

➢ Function like an external account
➢ Hold funds

➢ Can interact with other accounts and smart contracts

➢ Contain code

➢ Can be called through transactions

Smart Contracts 
(in the case of Ethereum)



➢ Every node contains a virtual machine (similar to Java)

➢ Called the Ethereum Virtual Machine (EVM)

➢ Compiles code from high-level language to bytecode

➢ Executes smart contract code and broadcasts state

➢ Every full-node on the blockchain processes 

every transaction and stores the entire state

Code Execution
(in the case of Ethereum)



➢ Halting problem (infinite loop) – reason for Gas
➢ Problem: Cannot tell whether or not a program will run infinitely from 

compiled code

➢ Solution: charge fee per computational step to limit  infinite loops and 
stop flawed code from executing

➢ Every transaction needs to specify an estimate of the  
amount of gas it will spend

➢ Essentially a measure of how much one is willing to spend 
on a transaction, even if buggy

Gas
(in the case of Ethereum)



Advantages Disadvantages

Agent neutrality in signing deals Difficult to make changes

Automation in signing deals, time saving: excludes 
human participation in transactions, everything is 
done by the prescribed program code

The third party agents do not disappear but starts playing a 
different role. The need for lawyers experienced in IT increases in 
the future because the programmers of smart contracts will need 
consultations for making new kinds of contracts

Safety: data in the decentralized registry cannot be 
lost and cyber attacked

The consumers are quite suspicious because it is a new 
technology and they do not understand it yet

Precision: no mistakes can be made due to the 
absence of hand-filled forms

One can keep and save data in smart contracts safely and it is 
void of any distortions, only if the code is written perfectly and 
precisely

Summary of Advantages and Disadvantages
of Smart Contracts
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