Binocular stereo

 Given a calibrated binocular stereo pair, produce a depth image

image 1

image 2

Dense depth map

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then, epipolar lines fall along the horizontal scan lines of the images

Essential matrix for parallel images

Epipolar constraint: $x^{T} E x' = 0, \quad E = [t_{\times}]R$

$$R = I \qquad t = (T, 0, 0)$$

$$E = [t_{\times}]R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

Essential matrix for parallel images

The y-coordinates of corresponding points are the same!

Depth from disparity

Disparity is inversely proportional to depth!

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the bes match x'
 - Compute disparity x-x' and set depth(x) = 1/(x-x')

Correspondence problem

 Multiple matching hypotheses satisfy the epipolar constraint, but which one is correct?

Correspondence problem

- Let's make some assumptions to simplify the matching problem
 - The baseline is relatively small (compared to the depth of scene points)
 - Then most scene points are visible in both views
 - Also, matching regions are similar in appearance

Correspondence problem

- Let's make some assumptions to simplify the matching problem
 - The baseline is relatively small (compared to the depth of scene points)
 - Then most scene points are visible in both views
 - Also, matching regions are similar in appearance

Correspondence search with similarity constraint

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search with similarity constraint

Correspondence search with similarity constraint

Effect of window size

W = 3

W = 20

- Smaller window
 - + More detail
 - More noise
- Larger window
 - + Smoother disparity maps
 - Less detail

The similarity constraint

- Corresponding regions in two images should be similar in appearance
- ...and non-corresponding regions should be different
- When will the similarity constraint fail?

Limitations of similarity constraint

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search Data

Window-based matching

Ground truth

Non-local constraints

Uniqueness

 For any point in one image, there should be at most one matching point in the other image

