Binocular stereo

- Given a calibrated binocular stereo pair, produce a depth image
image 1

image 2

Dense depth map

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then, epipolar lines fall along the horizontal scan lines of the images

Essential matrix for parallel images

Epipolar constraint:

$$
\begin{gathered}
x^{T} E x^{\prime}=0, \quad E=\left[t_{\times}\right] R \\
R=I \quad t=(T, 0,0)
\end{gathered}
$$

$$
E=\left[t_{\times}\right] R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

Essential matrix for parallel images

Epipolar constraint:

$$
\begin{gathered}
x^{T} E x^{\prime}=0, \quad E=\left[t_{\times}\right] R \\
R=I \quad t=(T, 0,0)
\end{gathered}
$$

$$
E=\left[t_{\times}\right] R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

$\left(\begin{array}{lll}u & v & 1\end{array}\right)\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0\end{array}\right]\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0$
$\left(\begin{array}{lll}u & v & 1\end{array}\right)\left(\begin{array}{c}0 \\ -T \\ T v^{\prime}\end{array}\right)=0$
The y-coordinates of corresponding points are the same!

Depth from disparity

$$
\text { disparity }=x-x^{\prime}=\frac{B \cdot f}{z}
$$

Disparity is inversely proportional to depth!

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the bests match x
- Compute disparity $x-x^{\prime}$ and set depth $(x)=1 /\left(x-x^{\prime}\right)$

Correspondence problem

- Multiple matching hypotheses satisfy the epipolar constraint, but which one is compen

Correspondence problem

- Let's make some assumptions to simplify the matching problem
- The baseline is relatively small (compared to the depth of scene points)
- Then most scene points are visible in both views
- Also, matching regions are similar in appearance

Correspondence problem

- Let's make some assumptions to simplify the matching problem
- The baseline is relatively small (compared to the depth of scene points)
- Then most scene points are visible in both views
- Also, matching regions are similar in appearance

Correspondence search with similarity constraint

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized corretationn

Correspondence search with similarity constraint

Correspondence search with similarity constraint

Effect of window size

- Smaller window
+ More detail
- More noise
- Larger window
+ Smoother disparity maps
- Less detail

The similarity constraint

- Corresponding regions in two images should be similar in appearance
- ...and non-corresponding regions should be different
-When will the similarity constraint fail?

Limitations of similarity constraint

Textureless surfaces

Occlusions, repetition

Results with window search
 Data

Window-based matching
Ground truth

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image

