Finding Corners

- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

The Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge":
no change along the edge direction

"corner":
significant change directions

Harris Corner Detector

Change in appearance for the shift $[u, v]$:

Window function $w(x, y)=$

1 in window, 0 outside

Gaussian

Harris Corner Detector

Change in appearance for the shift $[u, v]$:

$$
E(u, v)=\sum_{x, y} w(x, y)[I(x+u, y+v)-I(x, y)]^{2}
$$

Second-order Taylor expansion of $E(u, v)$ about $(0,0)$ (bilinear approximation for small shifts):

$$
E(u, v) \approx E(0,0)+\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{l}
E_{u}(0,0) \\
E_{v}(0,0)
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
u & v
\end{array}\right]\left[\begin{array}{ll}
E_{u u}(0,0) & E_{u v}(0,0) \\
E_{u v}(0,0) & E_{v v}(0,0)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

Harris Detector: Mathematics

The bilinear approximation simplifies to

$$
E(u, v) \approx\left[\begin{array}{ll}
u & v
\end{array}\right] M\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where M is a 2×2 matrix computed from image derivatives:

$$
M=\sum_{x, y} w(x, y)\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

$$
M=\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]=\sum\left[\begin{array}{c}
I_{x} \\
I_{y}
\end{array}\right]\left[I_{x} I_{y}\right]=\sum \nabla I(\nabla I)^{T}
$$

Interpreting the second moment matrix

The surface $E(u, v)$ is locally approximated by a quadratic form. Let's try to understand its shape.

Interpreting the second moment matrix

First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$
M=\sum\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

If either λ is close to 0 , then this is not a corner, so look for locations where both are large.

General Case

Since M is symmetric, we have

$$
M=R^{-1}\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] R
$$

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:
direction of the
$\left[\begin{array}{ll}u & v\end{array}\right] M\left[\begin{array}{l}u \\ v\end{array}\right]=$ const

Harris detector: Steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix M in a Gaussian window around each pixel
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function

Harris Detector: Steps

Harris Detector: Steps

Compute corner response R

Harris Detector: Steps

Find points with large corner response: $R>$ threshold

Harris Detector: Steps

The Hough transform

Parameter space representation

- A line in the image corresponds to a point in Hough space

Image space

Hough parameter space

Parameter space representation

- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to in the Hough space?

Image space

Hough parameter space

Parameter space representation

- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to in the Hough space?
- Answer: the solutions of $b=-x_{0} m+y_{0}$
- This is a line in Hough space

Image space

Hough parameter space

Parameter space representation

-Where is the line that contains both $\left(x_{0}, y_{0}\right)$ and ($\mathrm{x}_{1}, \mathrm{y}_{1}$)?

- It is the intersection of the lines $b=-x_{0} m+y_{0}$ and $b=-x_{1} m+y_{1}$

Image space

Hough parameter space

Parameter space representation

- Problems with the (m, b) space:
- Unbounded parameter domain
- Vertical lines require infinite m
- Alternative: polar representation

Each point will add a sinusoid in the (θ, ρ) parameterspace

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x, y) in the image

For $\theta=0$ to 180
$\rho=x \cos \theta+y \sin \theta$
$H(\theta, \rho)=H(\theta, \rho)+1$
H : accumulator array (votes)

end
end

- Find the value(s) of (θ, ρ) where $H(\theta, \rho)$ is a local maximum
- The detected line in the image is given by
$\rho=x \cos \theta+y \sin \theta$

Basic illustration

Other shapes

?

Other shapes

Square
Circle

Several lines

Effect of noise

- Peak gets fuzzy and hard to locate

Random points

Practical details

- Try to get rid of irrelevant features
- Take only edge points with significant gradient magnitude
- Choose a good grid / discretization
- Too coarse: large votes obtained when too many different lines correspond to a single bucket
- Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Who belongs to which line?
- Tag the votes

Hough transform: Pros

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model in a single pass
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Hough transform: Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- It's hard to pick a good grid size

Hough Extension: Using image gradients

- When an edge point is detected, the gradient direction is known
- But this means that the line is uniquely determined!
- Modified Hough transform:

For each edge point (x, y)

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]
$$

$\theta=$ gradient orientation at (x, y)
$\rho=x \cos \theta+y \sin \theta$
$H(\theta, \rho)=H(\theta, \rho)+1$
end

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

Extension: Cascaded Hough transform

- Let's go back to the original (m, b) parametrization
- A line in the image maps to a pencil of lines in the Hough space
-What do we get with parallel lines or a pencil of lines?
- Collinear peaks in the Hough space!
- So we can apply a Hough transform to the output of the first Hough transform to find vanishing points
- Issue: dealing with unbounded parameter space

Hough transform for circles

image space

Hough parameter space

Hough transform for circles

- Conceptually equivalent procedure: for each (x, y, r), draw the corresponding circle in the image and compute its "support"

Generalized Hough transform

- We want to find a shape defined by its boundary points and a reference point

Generalized Hough transform

- We want to find a shape defined by its boundary points and a reference point
- For every boundary point p, we can compute the displacement vector $r=a-p$ as a function of gradient orientation θ

