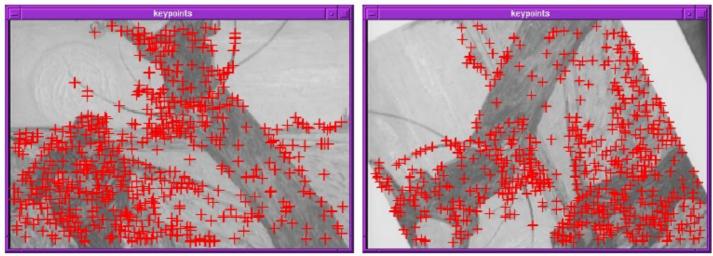
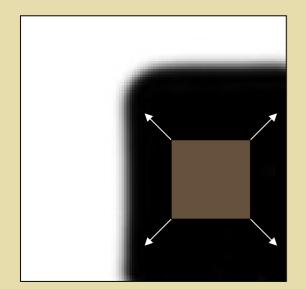
Finding Corners



- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

The Basic Idea

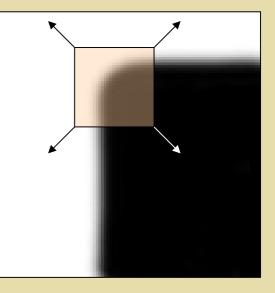
- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity



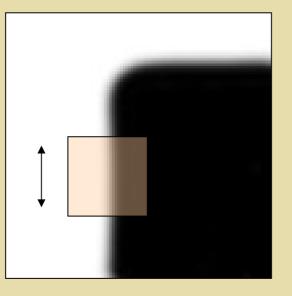
"flat" region: no change in all directions

Source: A. Efros

"edge": no change along the edge direction

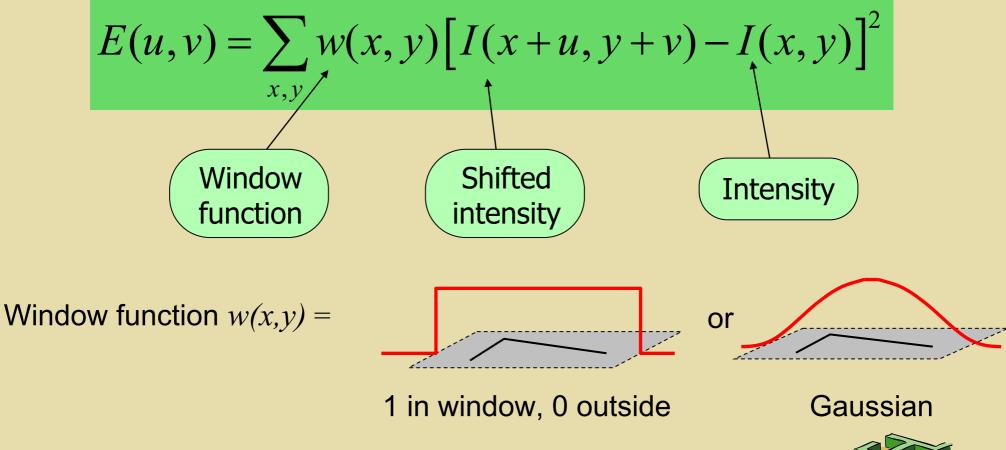


"corner": significant change in all directions



Harris Corner Detector

Change in appearance for the shift [*u*,*v*]:



Harris Corner Detector

Change in appearance for the shift [*u*,*v*]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Second-order Taylor expansion of E(u,v) about (0,0) (bilinear approximation for small shifts):

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Harris Detector: Mathematics

The bilinear approximation simplifies to

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

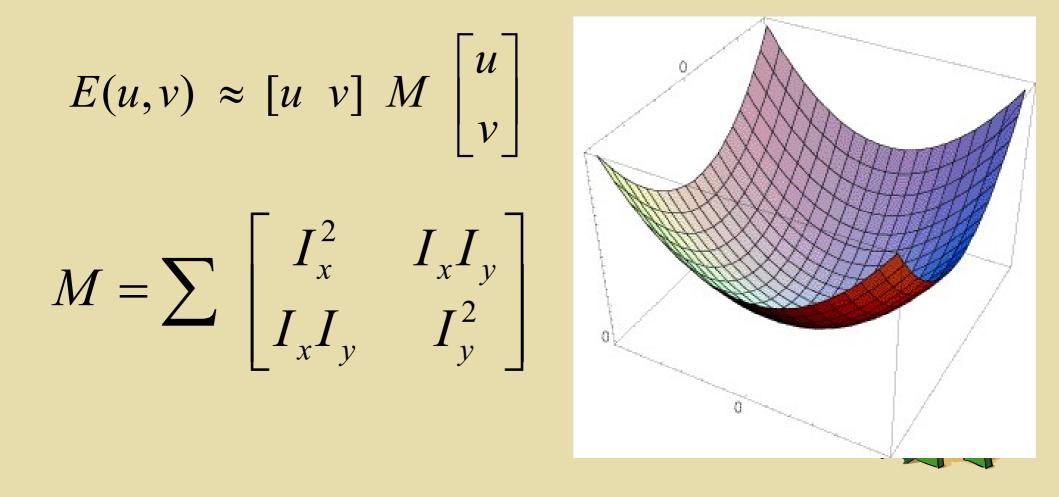
where *M* is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum \nabla I (\nabla I)^T$$

Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.



Interpreting the second moment matrix

First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

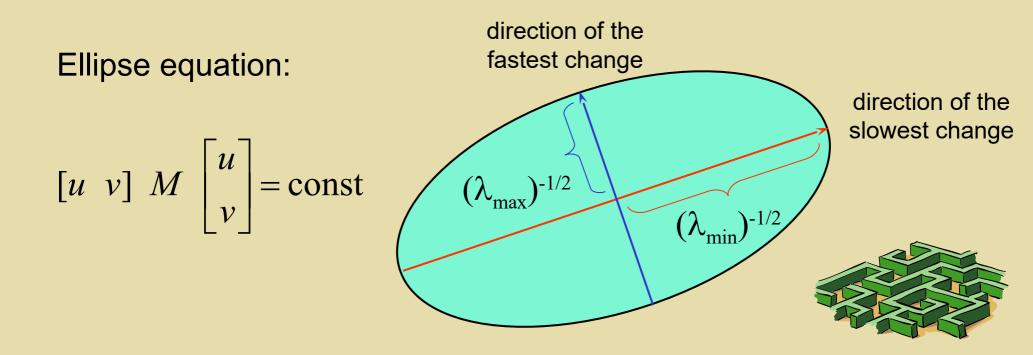
If either λ is close to 0, then this is **not** a corner, so look for locations where both are large.

General Case

Since M is symmetric, we have

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R



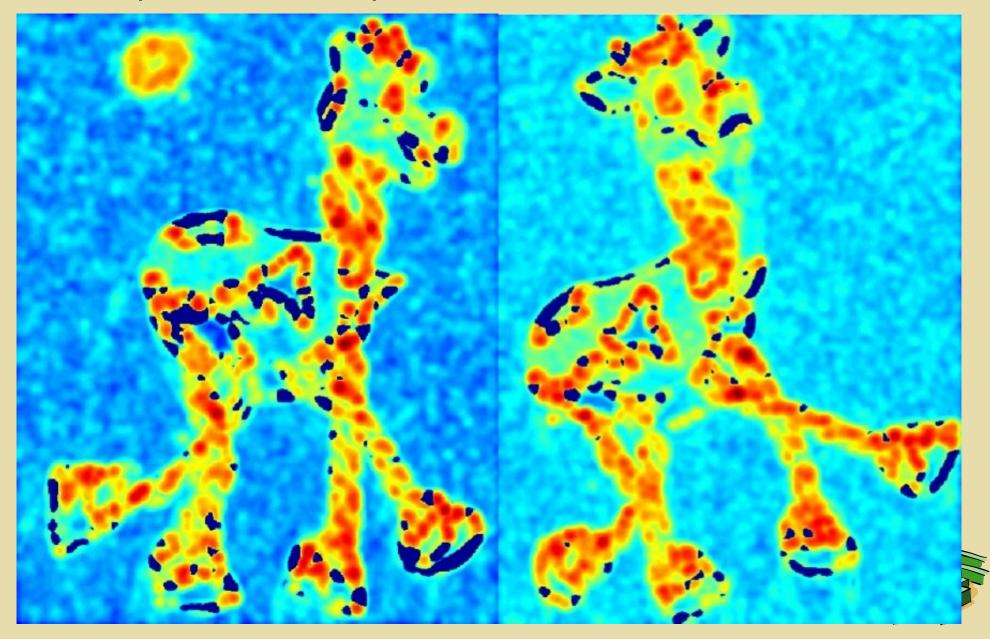
Harris detector: Steps

- 1. Compute Gaussian derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function R
- 4. Threshold R
- 5. Find local maxima of response function

Harris Detector: Steps

Harris Detector: Steps

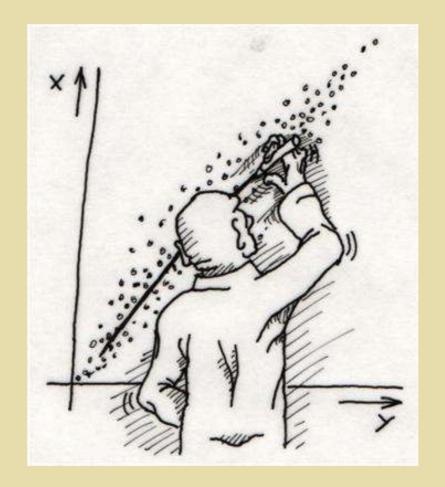
Compute corner response R



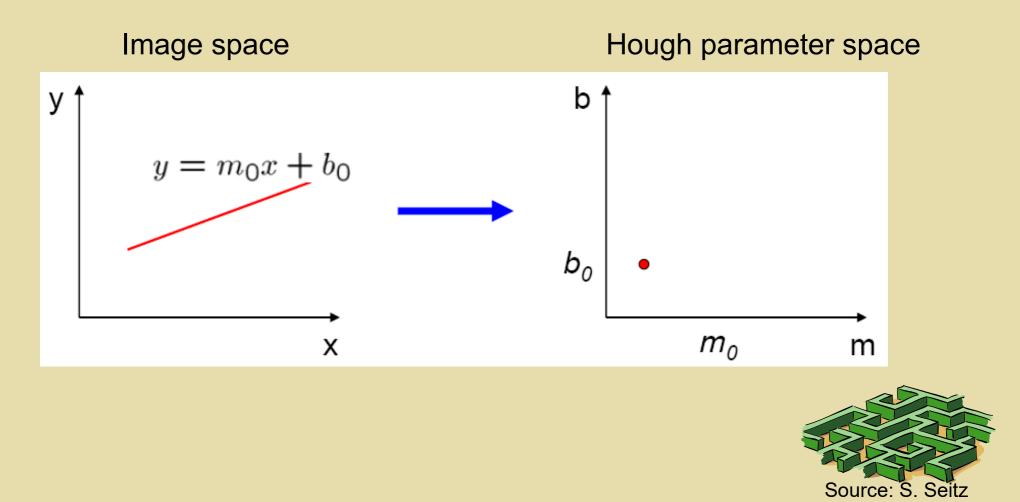
Harris Detector: Steps Find points with large corner response: *R*>threshold

Harris Detector: Steps

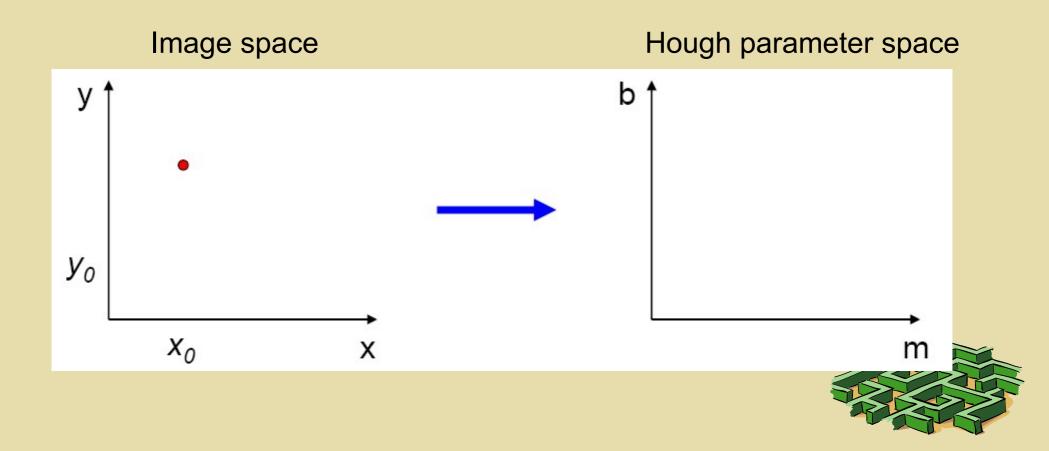
The Hough transform



• A line in the image corresponds to a point in Hough space



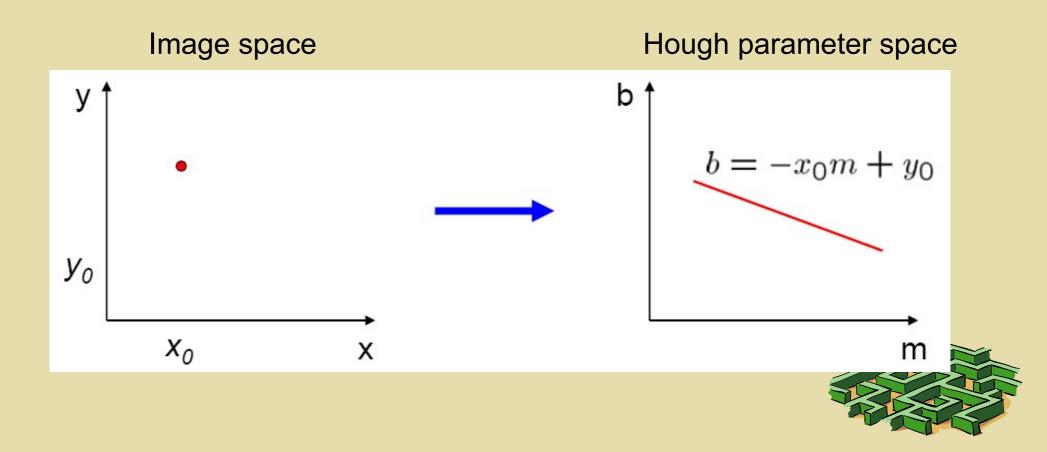
 What does a point (x₀, y₀) in the image space map to in the Hough space?



 What does a point (x₀, y₀) in the image space map to in the Hough space?

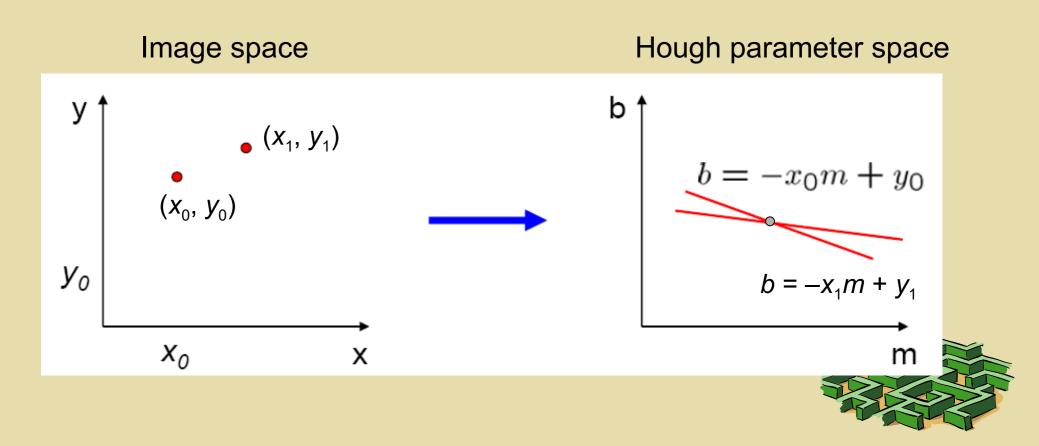
- Answer: the solutions of $b = -x_0m + y_0$

– This is a line in Hough space

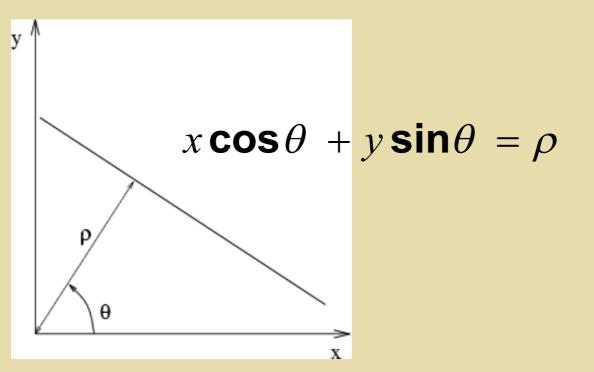


- Where is the line that contains both (x₀, y₀) and (x₁, y₁)?
 - It is the intersection of the lines $b = -x_0m + y_0$ and

 $b = -x_1m + y_1$



- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m
- Alternative: polar representation



Each point will add a sinusoid in the (θ, ρ) parameter

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x,y) in the image
 For θ = 0 to 180
 ρ = x cos θ + y sin θ

 $H(\theta, \rho) = H(\theta, \rho) + 1$

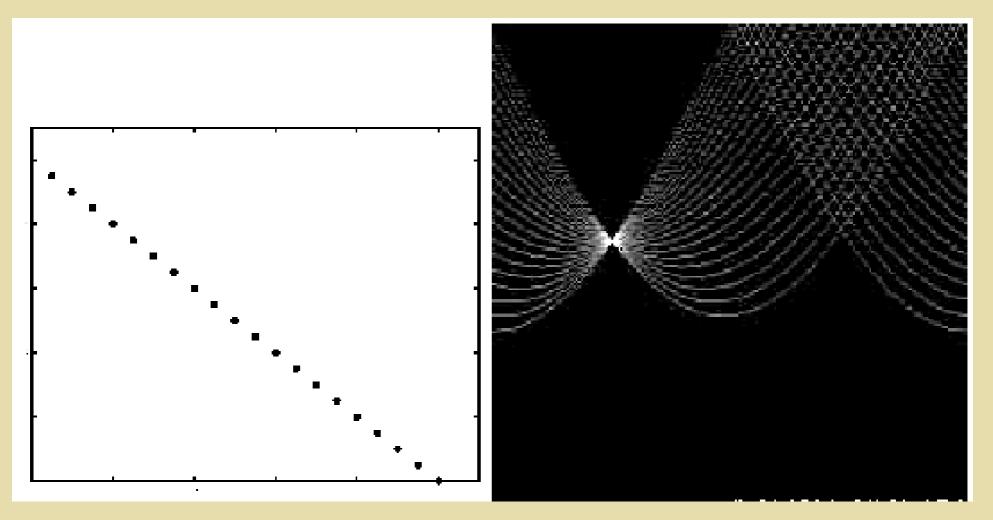
 $\rho = \frac{1}{\theta}$

end

end

- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

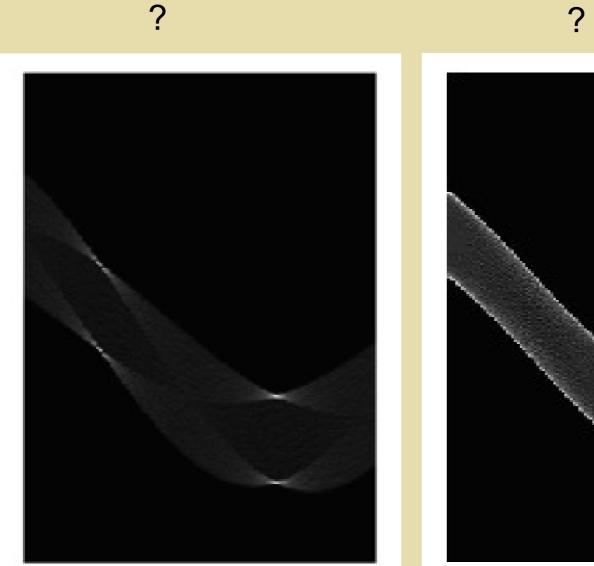
Basic illustration

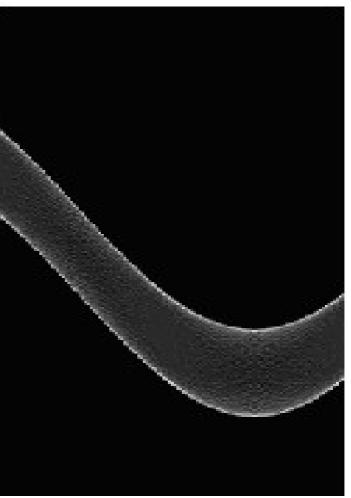


features

votes

Other shapes

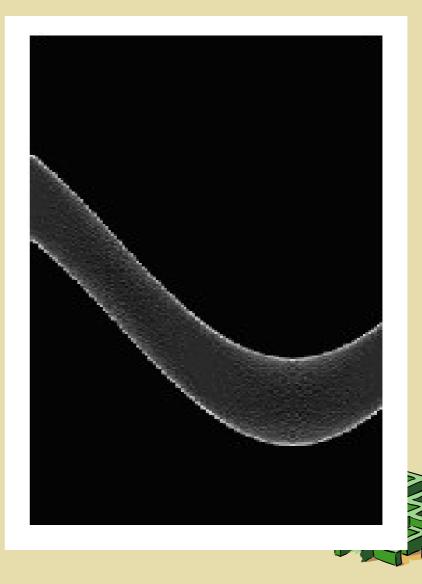




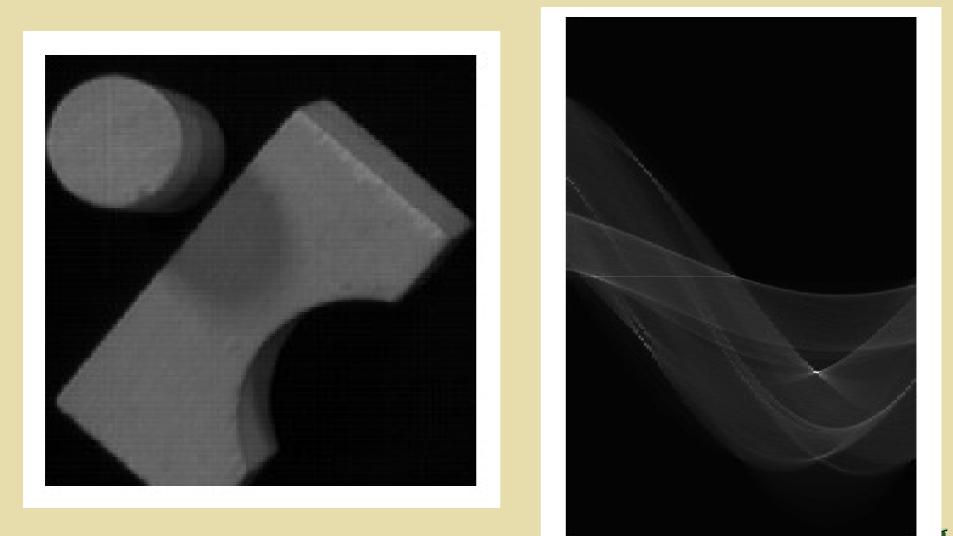
Other shapes

Square

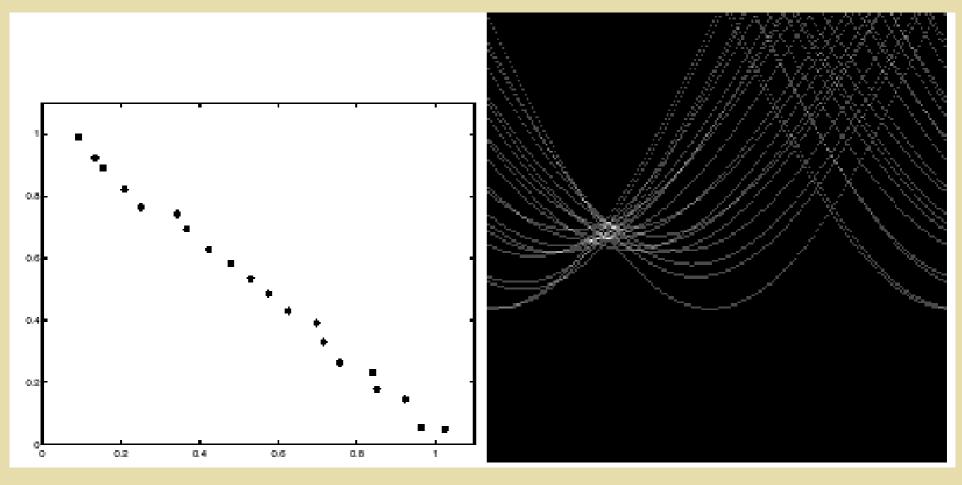
Circle



Several lines



Effect of noise

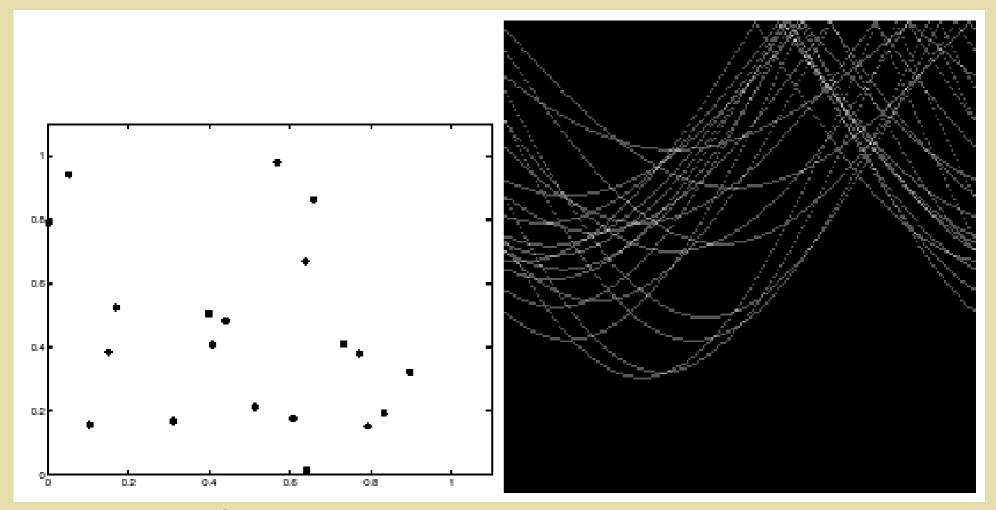


features

votes

Peak gets fuzzy and hard to locate

Random points



features votes
 Uniform noise can lead to spurious peaks in the array

Practical details

- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Who belongs to which line?
 - Tag the votes

Hough transform: Pros

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model in a single pass
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Hough transform: Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- It's hard to pick a good grid size

Hough Extension: Using image gradients

- When an edge point is detected, the gradient direction is known
- But this means that the line is uniquely determined!
- Modified Hough transform:

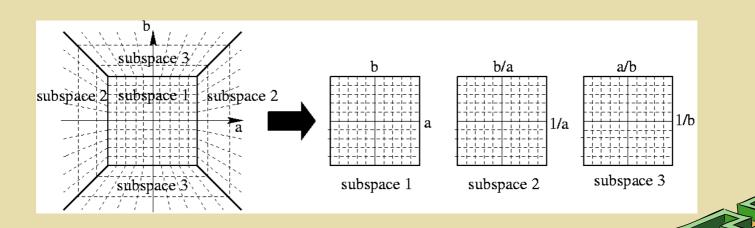
For each edge point (x,y) θ = gradient orientation at (x,y) ρ = x cos θ + y sin θ H(θ , ρ) = H(θ , ρ) + 1 end

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Extension: Cascaded Hough transform

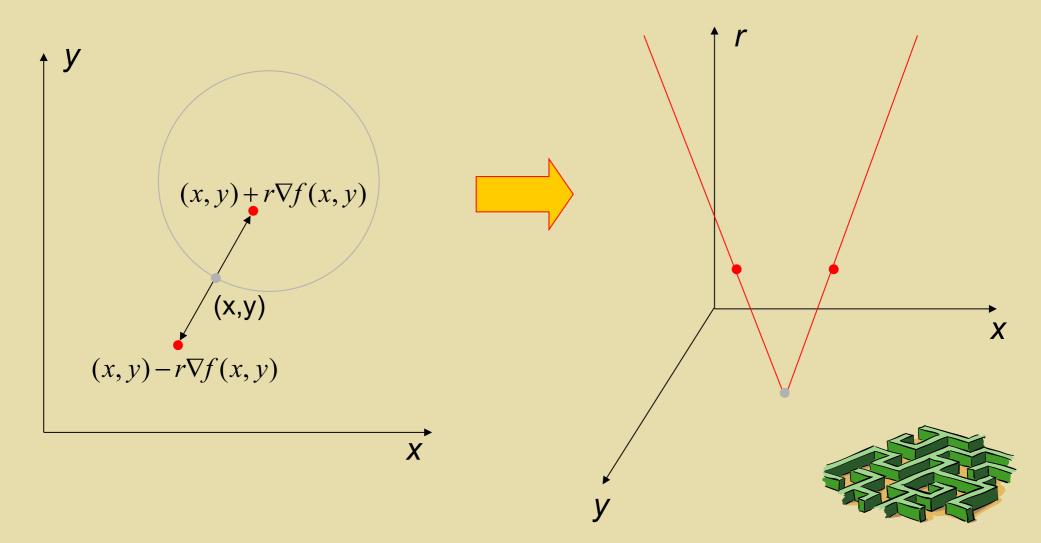
- Let's go back to the original (m,b) parametrization
- A line in the image maps to a pencil of lines in the Hough space
- What do we get with parallel lines or a pencil of lines? – Collinear peaks in the Hough space!
- So we can apply a Hough transform to the output of the first Hough transform to find vanishing points
- Issue: dealing with unbounded parameter space



Hough transform for circles

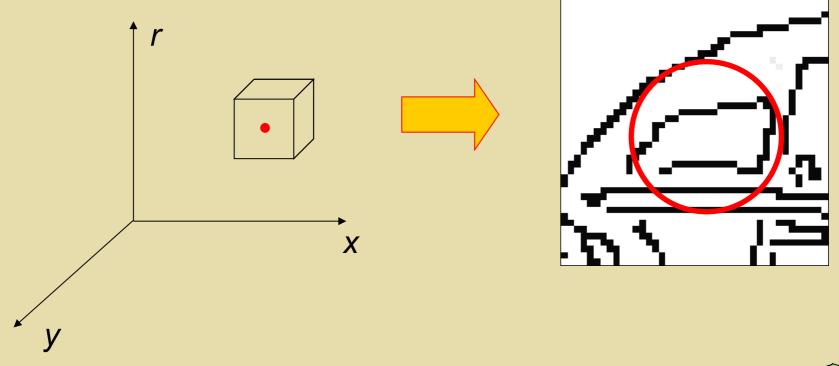
image space

Hough parameter space



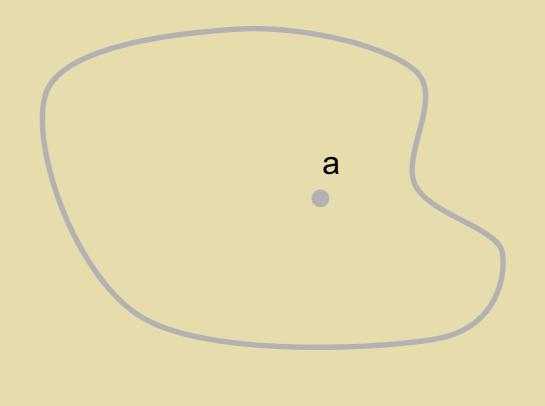
Hough transform for circles

 Conceptually equivalent procedure: for each (x,y,r), draw the corresponding circle in the image and compute its "support"



Generalized Hough transform

• We want to find a shape defined by its boundary points and a reference point



Generalized Hough transform

- We want to find a shape defined by its boundary points and a reference point
- For every boundary point p, we can compute the displacement vector r = a – p as a function of gradient orientation θ

