
Finding Corners

• Key property: in the region around a corner, 
image gradient has two or more dominant 
directions

• Corners are repeatable and distinctive



The Basic Idea

• We should easily recognize the point by 
looking through a small window

• Shifting a window in any direction should 
give a large change in intensity

“edge”:
no change along 
the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Source: A. Efros



Harris Corner Detector
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Change in appearance for the shift [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski



Harris Corner Detector
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Change in appearance for the shift [u,v]:

Second-order Taylor expansion of E(u,v) about (0,0)
(bilinear approximation for small shifts):
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Harris Detector: Mathematics
The bilinear approximation simplifies to
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where M is a 22 matrix computed from image derivatives:
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The surface E(u,v) is locally approximated by a quadratic form. 
Let’s try to understand its shape.

Interpreting the second moment 
matrix
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First, consider the axis-aligned case (gradients are 
either horizontal or vertical)

If either λ is close to 0, then this is not a corner, so look for 
locations where both are large.

Interpreting the second moment 
matrix



General Case

Since M is symmetric, we have RRM 
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We can visualize M as an ellipse with axis lengths 
determined by the eigenvalues and orientation determined 
by R

direction of the 
slowest change

direction of the 
fastest change

(max)-1/2

(min)-1/2

const][ 
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Ellipse equation:



Harris detector: Steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel 
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function



Harris Detector: Steps



Harris Detector: Steps
Compute corner response R



Harris Detector: Steps
Find points with large corner response: R>threshold



Harris Detector: Steps



The Hough transform



Parameter space representation

• A line in the image corresponds to a point in 
Hough space

Image space Hough parameter space

Source: S. Seitz



Parameter space representation
• What does a point (x0, y0) in the image space 

map to in the Hough space?

Image space Hough parameter space



Parameter space representation
• What does a point (x0, y0) in the image space 

map to in the Hough space?
– Answer: the solutions of b = –x0m + y0

– This is a line in Hough space

Image space Hough parameter space



Parameter space representation
• Where is the line that contains both (x0, y0) 

and (x1, y1)?
– It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1 

Image space Hough parameter space

(x0, y0)

(x1, y1)

b = –x1m + y1



• Problems with the (m,b) space:
– Unbounded parameter domain
– Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

  sincos yx

Each point will add a sinusoid in the (,) parameter space  



Algorithm outline
• Initialize accumulator H 

to all zeros
• For each edge point (x,y) 

in the image
For θ = 0 to 180
    ρ = x cos θ + y sin θ
    H(θ, ρ) = H(θ, ρ) + 1

    end
end

• Find the value(s) of (θ, ρ) where H(θ, ρ) is a 
local maximum
– The detected line in the image is given by 

 ρ = x cos θ + y sin θ

ρ

θ



features votes

Basic illustration



? ? 

Other shapes



Square Circle 

Other shapes



Several lines



features votes

Effect of noise

• Peak gets fuzzy and hard to locate



Random points

• Uniform noise can lead to spurious peaks in the array
features votes



Practical details

• Try to get rid of irrelevant features 
– Take only edge points with significant gradient 

magnitude
• Choose a good grid / discretization

– Too coarse: large votes obtained when too many 
different lines correspond to a single bucket

– Too fine: miss lines because some points that are not 
exactly collinear cast votes for different buckets

• Increment neighboring bins (smoothing in 
accumulator array)

• Who belongs to which line?
– Tag the votes



Hough transform: Pros

• Can deal with non-locality and occlusion
• Can detect multiple instances of a model in a 

single pass
• Some robustness to noise: noise points 

unlikely to contribute consistently to any 
single bin



Hough transform: Cons

• Complexity of search time increases 
exponentially with the number of model 
parameters

• Non-target shapes can produce spurious 
peaks in parameter space

• It’s hard to pick a good grid size



Hough Extension:
Using image gradients

• When an edge point is detected, 
the gradient direction is known

• But this means that the line 
is uniquely determined!

• Modified Hough transform:

 For each edge point (x,y) 
θ = gradient orientation at (x,y)
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end



Extension: Cascaded Hough 
transform

• Let’s go back to the original (m,b) parametrization
• A line in the image maps to a pencil of lines in the Hough 

space
• What do we get with parallel lines or a pencil of lines?

– Collinear peaks in the Hough space!
• So we can apply a Hough transform to the output of the 

first Hough transform to find vanishing points
• Issue: dealing with unbounded parameter space



Hough transform for circles 
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image space Hough parameter space



Hough transform for circles

• Conceptually equivalent procedure: for each 
(x,y,r), draw the corresponding circle in the 
image and compute its “support”

x

y

r



Generalized Hough transform
• We want to find a shape defined by its 

boundary points and a reference point

a



p

Generalized Hough transform
• We want to find a shape defined by its 

boundary points and a reference point
• For every boundary point p, we can compute 

the displacement vector r = a – p as a function 
of gradient orientation θ

a

θ r(θ)
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