Study sources on Deep Learning GRADIENT DESCENT METHODS S. Ruder. An overview of gradient descent optimization algorithms. https://arxiv.org/abs/1609.04747 INTRODUCTION TO DEEP LEARNING (CNN, RNN) Yann LeCun, Yoshua Bengio & Geoffrey Hinton. Deep Learning. https://www.nature.com/articles/nature14539 CNN Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. https://arxiv.org/pdf/1603.07285 https://www.v7labs.com/blog/convolutional-neural-networks-guide https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks https://www.educative.io/answers/what-is-a-neural-network-flatten-layer https://www.tensorflow.org/tutorials/images/cnn RNN (LSTM, GRU) https://colah.github.io/posts/2015-08-Understanding-LSTMs/ https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks AUTOENCODERS https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368 https://www.v7labs.com/blog/autoencoders-guide http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders/ https://blog.keras.io/building-autoencoders-in-keras.html