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MultiLayer Perceptron

❑ Feedforward Network

❑ Neurons organized in layers: Input layer, one or more hidden 

layers of nonlinear inner product neurons, output layer.

❑ Full interconnection 

between the neurons of 

two successive layers. 

Connections between 

neurons belonging to 

non-consecutive layers 

are usually not allowed.
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Notation:

• : neuron i at layer 

•       : total input in the neuron

•       : output of the neuron

•       : error of the neuron

•       : bias of the neuron (or     )

•       : activation function of the neurons at layer 

• : number of neurons at layer 

•       : weight of connection from neuron    to neuron 
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MultiLayer Perceptron



❑ Let be an MLP with d inputs, p outputs and H hidden layers. The 
input level is the zero level, and the output level is H+1 level. (d0 = d, 
dH+1 = p)

❑ Forward pass (given the input vector the output vector is 
calculated):

❑ Input layer:                          , 

❑ Hidden layers and output layer: For h=1,…,H+1

❑ Network output:

(0)

i iy =x (0)

0 0y =x 1=

h-1 h-1d d
(h) (h) (h-1) (h) (h) (h-1) (h)

i ij j i ij j i0 h

j=0 j=1

u = w y  <==> u = w y w ,   i=1,...d+ 

(h) (h) (h)

i h i h 0y =g (u )     i=1,...,d ,    y 1=

(H+1)

i io =y      i=1,...,p

MultiLayer Perceptron



❑ The activation function of hidden neurons is non-linear (typically 

logistic: σ(u)=1/(1+exp(-u))).

❑ At the output level the activation function is usually linear or 

logistic depending on the problem to be solved.

❑ Logistic is preferred for classification problems and linear for 

functional approximation problems.

MultiLayer Perceptron
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Computational capabilities of MLP

❑ MLP implements functional approximation (mapping) from the input 

space to the output space.

❑ The mapping we wish to implement is determined by the training 

examples.

❑ MLP is characterized by the property of universal approximation: 

an MLP with at least one hidden layer with nonlinear neurons can 

approximate any function with any accuracy by sufficiently 

increasing the number of hidden neurons.

❑ This property is only theoretically important, but it is not practically 

useful.



❑ The existence of non-linear hidden neurons gives MLP the 

increased computational capabilities.

❑ MLP can solve classification problems that are nonlinearly 

separable.

❑ In theory it can implement any separation surface however 

complex it is.

❑ Usually, we put 1 or 2 hidden layers – in recent years more are 

used (deep neural networks)

Computational capabilities of MLP



MLP Training

❑ Let training set D={(xn,tn)}, n=1,…,N.

❑  xn=(xn1,…,xnd)T , tn=(tn1,…,tnp)
T (functional approximation problem).

❑ The MLP should have d neurons in the input layer and p neurons 

in the output layer.

❑ The rest of the architecture should be user defined: hidden layers, 

number of hidden neurons per layer, type of activation functions.

❑ o(xn; w): the output vector of the MLP when the input vector is xn, 

and w=(w1,w2,…,wL)T is a vector in which we gather all the 

weights and biases.

❑ Training: defining the vector w.



❑ In the case that for some vector of weights w the training is perfect it 

will be true that (vector equality) :

ο(xn; w)=tn για κάθε n=1,…,N

❑ Or equivalently

οm(xn; w)=tnm for each n=1,…,N, m=1,…,p

❑ By analogy with the single neuron, we define the quadratic error 

function

pN N
n n 2 n 2

nm m

n=1 n=1 m=1

1 1
E(w)= ||t -o(x ;w)|| (t -o (x ;w))

2 2
= 

pN
n n n n 2 n 2

nm m

n=1 m=1

1 1
E(w)= E (w),   E (w) ||t -o(x ;w)|| (t -o (x ;w))

2 2
= = 

MLP Training



❑ E(w) as the sum of squares of the errors per example (xn, tn) has a 

lower bound on the value zero which occurs when we have perfect 

training.

❑ MLP training: updating the vector of weights w in order to 

minimize the squared error E(w).

❑ As in the single neuron, the most widely used minimization method 

is the gradient descent method.

❑ It is necessary to calculate the partial derivatives of the error En 

with respect to the weights wi :

    Error backpropagation rule

pN
n n n n 2 n 2

nm m

n=1 m=1

1 1
E(w)= E (w),   E (w) ||t -o(x ;w)|| (t -o (x ;w))

2 2
= = 

MLP Training



Backpropagation method

❑ A technique for computing the partial derivatives of the error 

for an instance (x,t) with respect to the weights in a feed-forward 

network with inner product neurons and derivable activation 

functions (MLP).

❑  It gets its name from the fact that it is based on the backward 

propagation through the network of errors that occur at the 

network outputs.

❑ For the calculation of errors, the flow of calculations is from the 

output to the input.

❑ Individual error values are calculated for the hidden neurons of the 

network.



❑ Let the example be (xn, tn) and we want to calculate the partial 

derivatives of the error En with respect to the weights of the MLP.

❑ Back-propagation algorithm does two passes when performing the 

calculations: forward pass, and reverse pass.

Backpropagation method
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❑ Forward pass: For an input vector xn the output y of each neuron of the 

network is calculated.

❑ Reverse pass (calculate error δ of each neuron)

✓ starts from the output level (H+1), where the final outputs oi of the network 

are compared with the desired tni producing the error in the outputs of the 

MLP.

✓ Then the error signals are propagated backwards through the network and 

the error is calculated incrementally for the neurons of each layer from the 

last hidden layer to the first hidden layer.

❑ Partial derivative of connection weight:

✓ destination error * source output

Backpropagation method



❑ Error calculation (reverse pass)

Output neurons (layer Η+1) (activation function gH+1 )

Hidden layers neurons: for layers h=H,…,1 (activation function gh)

(Η+1) (Η+1)

i H+1 i i niδ g (u )(o t ), i=1,...,p= −

h+1d
(h) (h) (h+1) (h+1)

i h i ji j

j=1

δ g (u ) w δ ,   i=1,...,dh
= 

(Η+1)

i i i i niδ o (1-o )(o t ), i=1,...,p (λογιστική συν. ενεργοποίησης)= −

(Η+1)

i i niδ (o t ), i=1,...,p (γραμμική συν. ενεργοποίησης)= −

h+1d
(h) (h) (h) (h+1) (h+1)

i i i ji j

j=1

δ y (1 y ) w δ ,   i=1,...,d  (λογιστική συν. ενεργοποίησης)h= − 

Backpropagation method

(linear activation function)

(logistic activation function)

(logistic activation function)



❑ Partial derivative of connection weight:

❑ Partial derivative of bias = neuron error
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Backpropagation method



MLP training with gradient descent 

(batch update)

1. Initialization: We set t:=0, initialize weights w(0) (random values in 

the interval (-1,1)) and learning rate η.

2. At each iteration t (epoch), let w(t) be the vector of weights

 2.1 We initialize:

 2.2 For n=1,…,N

  2.2.1 application of the backpropagation rule for (xn,tn) and

      calculation of

  2.2.2 update the subtotal:

 2.3 Updating weights:

 2.4 Termination check. If not, t:=t+1, goto 2
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1. We set t:=0, initialize weights w(0) (random values in the interval (-

1,1)) and learning rate η. Initialize the iteration counter (τ:=0) and the 

epoch counter (t:=0).

2. At the beginning of each iteration t (epoch), let w(τ) be the vector of 

weights

 2.1 Start epoch t, save the current vector of weights wold=w(τ). For

  n=1,…,N

  2.1.1 apply the backpropagation rule for (xn,tn) and calculate

  2.1.2 Update weights:

  2.1.3 τ:=τ+1

 2.2 End of epoch t, termination check. If not, t:=t+1, goto 2

i

E
,  i=1,...,L

w

n



i i

i

E
w (τ+1)=w (τ)-n ,  i=1,..,L

w

n



MLP training with gradient descent 

(sequential update)



MLP training with gradient descent

❑ Training termination criteria (check at the end of each epoch)

✓ Little difference in the value of the weights vector between two 

epochs.

✓ Small difference in the value of the total error E(w) between 

two epochs.

✓ Reducing the value of the total error E(w) below a desired 

value.

✓ Early stopping: use of validation set.



MLP for classification problems

(coding classes)

❑ Encoding classes: converting the classification problem into a 

functional approximation problem, by mapping each class/category to 

some output vector (or value).

❑ The initial training set with pairs of the form (data, class) is 

transformed to contain pairs of the form (data, target vector).

❑ 1-out-of-p encoding for a problem of p classes C1,…,Cp

 Each target vector has p components (t1,…,tp) and the class Ck is

 encoded by setting tk=1 and ti=0 for i≠k

.



❑ Example: in a problem with three categories, the corresponding 

three output vectors are (1,0,0), (0,1,0), (0,0,1)

✓ An MLP with three outputs is required.

❑ Classification of a pattern is done by applying the pattern as an 

input to the network and selecting the class corresponding to 

the output with the highest value.

✓ The closer this output is to 1 and the closer to zero the rest outputs, 

the more reliable the classification. 

MLP for classification problems

(coding classes)



❑ Especially for the two-classes case, one-output encoding can 

also be used:

✓ assign the output t=1 to a category (C1)

✓ and the output t=0 to the other category (C2).

❑ In this case, the classification of an input data is as follows:

✓ if the output is greater than 0.5 then the pattern/input is classified 

in class C1, otherwise in class C2.

MLP for classification problems

(coding classes)



MLP Training Example



MLP Training example (1)

w11
(1)    =    w21

(1)=1 w12
(1)= w22

(1)=-4  w10
(1)= w20

(1)=0

w11
(2)    =    w12

(2)=2 w21
(2)=w22

(2)= -2 w10
(2)= w20

(2)=0

w11
(3)=0.5  w21

(3)=-0.5 w12
(3)= w22

(3)=-0.5 w10
(3)= w20

(3)=0

Επιπ. 1 Επιπ. 2 Επιπ. 3

w11
(1

)

w12
(1

)

1 1
1

2 2
2

w11
(2

)

w12
(2

)



Είσοδος Έξοδος

x1 = 1 t1 = 0.5

x2 = 0.25 t2 = -0.5

η = 0.2

Calculate the updated weights of the red path after one 

cycle of backpropagation (forward and reverse pass).

MLP Training example (2)



Forward pass

Neurons of first hidden layer:

ui
(1)= 1*1 + (-4)*0.25+0=0 yi

(1)=σ(0)=0.5

i=1,2

Neurons of second hidden layer :

u1
(2)= 2*0.5 +2*0.5 + 0 =2  y1

(2)=relu(2)=2

u2
(2)= (-2) *0.5 + (-2)* 0.5 + 0 =-2 y2

(2)=relu(-2)=0

Είσοδος Έξοδος

x1 = 1 t1 = 0.5

x2 = 0.25 t2 = -0.5

MLP Training example (3)



Output neurons:

u1
(3)=0.5*2 +(-0.5)*0 + 0 =1    y1

(3)=linear(1)=1 

u2
(3)=(-0.5)*2+(-0.5)*0 + 0 =-1 y2

(3)=linear(-1)=-1

So, for input x=(1,0.25) the outputs of the network are

ο=(1,-1)

Squared training error is

e(x,t)= ((0.5-1)2 + ((-0.5)-(-1))2) / 2= 0.25.

MLP Training example (4)



Reverse pass

The partial derivative of the error with respect 

to some connection weight wij (from node j to 

node i) is equal to the product:

(output of j) * (error of i)

We calculate the errors δ2(3), δ1(2) and δ1(1) of 

interest (red links )

Output neurons: Because of the linear 

activation function (derivative = 1):

δ1
(3)= (o1 – t1)=0.5, δ2

(3)= (o2 – t2)=-0.5

MLP Training example (5)



Neurons of the second hidden layer: From the 

definition of relu(u), for the first neuron of this level 

relu'(2)=1 while for the second neuron relu'(-2)=0. 

Therefore

δ1
(2)=1*[0.5*0.5+ (-0.5)*(-0.5)] =0.5, δ2

(2)=0

First hidden layer neurons: The neurons of this layer 

have a logistic activation function. Therefore :

δ1
(1)= 0.5*(1-0.5)*[2*0.5 + (-2)*0] =0.25

MLP Training example (6)



The asked partial derivatives are:

∂e/∂w21
(3)=(-0.5)*2 = -1

∂e/∂w11
(2)= 0.5*0.5=0.25

∂e/∂w11
(1)= 0.25*1 = 0.25

MLP Training example (7)



For learning rate η=0.2, the new weight values (for the 

red connections) resulting from the gradient descent 

update equation are:

w21
(3)=-0.5-0.2*(-1)=-0.3

w11
(2)= 2-0.2*0.25=1.95

w11
(1)=1-0.2*0.25=0.95

The rest weights and biases do not change.

MLP Training example (8)



Applying x=(1, 0.25) as input to the new network, we find output 
o=(0.9753, -0.5852) and new squared error e=0.1166. So, we 
notice that even if only some of the weights are updated, the 
squared error decreases (from 0.25 to ~0.12).

MLP Training example (9)



Learning and Generalization
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MultiLayer Perceptron-MLP

❑ Let be the training set D={(xn,tn)}, n=1,…,N.

❑ xn=(xn1,…,xnd)
T , tn=(tn1,…,tnp)

T

❑ The MLP should have d neurons in the input layer and p neurons in 

the output layer. 

❑ User defines: hidden layers, number of hidden neurons per layer, 

type of activation functions. 
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Generalization ability

❑ The ultimate goal of training is to build systems that provide correct 

decisions for examples that have not been used during training: 

generalization ability.

❑ Architecture choice in MLP: with a large number of hidden 

neurons, an MLP can be trained to accurately represent all 

examples in the training set.

❑ 'Big' MLP → usually low generalization ability: it 'remembers' the 

training data and does not perform well on new data because, due 

to its high 'flexibility', it creates representations that are usually more 

'complex' than necessary

❑ .



❑ One-dimensional visualization problem: the training data is 

represented by the black dots.

❑ The function represented by a continuous line, although it has zero 

training error, is more complex than necessary (overfitting).

❑ The function represented by the dashed line is smoother and 

preferable as a solution.

x

t

Generalization ability (example)



❑ The actual solution from which the training data was 

derived could also be the complex function. If this were 

the case, the examples of training available to us are not 

representative.

❑ For this example, since both functions fit the data 

adequately, the smoother function (dashed line) is the 

preferred solution.

x

t

Generalization ability (example)



Occam’s razor

❑ An MLP network with few hidden neurons may not have 

the required 'flexibility' to be able to define complex 

decision regions or approximate functions with a complex 

graph (underfitting).

❑ In case the MLP architecture is larger than required (more 

flexible network) overfitting may occur.

❑ Basic empirical principle of machine learning (occam's 

razor)

✓ We prefer the simplest network that can adequately learn 

the training examples.

✓ Key question: How do we find the right network?



Evaluation of generalization ability

❑ It has not been adequately addressed using mathematical 

methods. We resort to empirical approaches: use of a test 

set.

❑ Test set: subset of examples available to us, which we do not 

use during ANN training, which is done using the remaining 

examples.

❑ After training, we apply the test set examples as inputs to the 

ANN and calculate the corresponding errors on its outputs.

❑ Generalization error: The average value (or percentage) of the 

errors of an ANN for the test set examples.



❑ Low generalization error implies high generalization ability and vice 

versa.

❑ In order to evaluate the ability to generalize, it is necessary to 

divide the set of available examples into two (unrelated to each 

other) subsets:

✓ the training set that we use to determine the ANN weights

✓ the test set used to calculate the generalization error of the network 

resulting from training.

❑ How will the separation take place? Which examples will be 

used for training and which for testing?

Evaluation of generalization ability



Hold-out

❑ If the examples are many we do not have a particular problem 

(e.g. we randomly divide them into a percentage of 70-30% or 

similar) (hold-out method).

❑ If the examples are not many, more complex approaches are 

needed.

❑ Multiple hold-out:

✓ We can repeat the hold-out process several times: randomly split into 

training and control sets, train the ANN, and calculate the 

generalization error.

✓ The final estimate for the generalization error is obtained as the 

average of the individual errors we calculated

✓ .



Cross-Validation

❑ k-fold cross-validation (k-CV):

❑divide the set of examples D into k different subsets (folds) 

D1 ,..., Dk (usually k=10).

❑For each subset Di (i=1 ,…, k), we train a ANN considering 

as the training set the examples of the remaining k-1 

subsets (D-Di) and calculate the generalization error gei 

using the examples of the subset Di as the control set.

❑We estimate the generalization error (ge) as the average of 

the individual errors gei

❑ It is more systematic and used very often.



Leave-one-out

❑ A leave-one-out example (LOT). Special case of k-fold 

cross-validation when we set k=N, where N is the number of 

all examples of set D at our disposal.

❑ For each (xi,ti) of the set D we construct a ANN considering 

as a training set the whole D except for the specific example. 

We then estimate the generalization error gei by computing 

the ANN error for the particular example we ignored during 

training.

❑ Repeating the process for all (xi,ti), (i=1,…,Ν) we estimate the 

generalization error as the average of gei.

❑ More reliable (has no randomness), but increased 

complexity. 



Selecting MLP with cross-validation (k-CV)

(one hidden layer, Μ neurons)

1. Specify initial M (e.g. M=2), Mmax, number of folds k (e.g. k=10) and 

training parameters (e.g. learning rate).

2. Partition the set of examples D into subsets D1, ..., Dk for the 

application of the k-CV technique.

3. Calculate with (k-CV) the generalization error ge(M) for M hidden 

neurons.

4.  Increase the number of hidden neurons, e.g. M:=M+1 and return to 

step 3 if M≤Mmax.

5. Choose as optimal architecture the one with the smallest 

generalization error: ge(M*)≤ge(M)

6. Training the MLP with M* hidden neurons on the entire set of examples 

and finding the final solution.



Training example
Training set (artificial data with noise)

(blue line: real decision boundary)



We trained an ΜLP with one hidden layer and M neurons

Μ

Generalization 

error (10-CV)

Generalization 

ability (10-CV)

2 28% 72%

3 18% 82%

4 13% 87%

5 12% 88%

6 15% 85%

7 15% 85%

Training example



Red line: MLP decision boundary

Training example



Training example



Training example



❑ Two questions: if we train many ANNs (e.g. 10-fold CV) to 

estimate the generalization ability and choose the optimal 

network architecture:

✓ a) how will we build the final ANN that will be the solution to our 

problem?

✓ b) what will be the generalization ability of this final network?

❑ Answers: a) we build the final ANN using the optimal architecture 

we have found and all available training examples.

❑ b) The generalization ability of the final ANN has already been 

calculated by the generalization ability estimation method for the 

optimal architecture.

Evaluation of generalization ability



Avoiding overtraining: the method of 

weights decay

❑ The obvious way to limit the 'flexibility' of an MLP is by 

limiting its architecture, i.e. essentially the number of network 

weights.

❑ An alternative way of limiting the flexibility of an MLP is by 

limiting the values that the weights can take during training. 

This idea is called regularization.

❑ The simplest way to achieve regularization is based on 

adding a penalty term to the squared error function that we 

minimize during network training. 



Method of weights decay

❑ More specifically, a regularization term that is most often used is the 

sum of the squares of the weight values (where L is the number of 

weights).

❑ The function minimized during training becomes:

❑ E(w) is the squared training error function.

❑ The parameter r determines the relative weight of the two training 

goals: on the one hand minimizing E(w), on the other hand 

maintaining small absolute values of the network weights.

❑ .

L
2

i

i=1

R(w)= w

L
2

R i

i=1

E (w)=E(w)+rR(w)=E(w)+r w



❑ Adding the regularization term essentially prevents the weights from 

getting high (in absolute value) values during training.

❑ Sometimes it leads some values of the weights to become almost 

zero, that is, in essence, it is as if the corresponding connections are 

removed from the network.

❑ In other words, we can consider that the values of the weights "wear 

out" during the training, for this reason the method is called weight 

decay training.

❑ Update weights :
R

i i

i

E
w (t+1)=w (t)-η

w





i i i

i

E
w (t+1)=w (t)-η 2rw (t)

w

 
+ 

 

Method of weights decay



❑ If the parameter r is properly specified and the network size is 

larger than required, networks with better generalization 

capabilities usually result at the end of training.

❑ If the parameter r is large then the adaptation of the network 

to the training examples is hindered.

❑ If the parameter r tends to zero then it is as if we are training 

the network without regularization.

❑ The correct setting of the parameter r is the main problem of 

this method.

Method of weights decay



❑ MLP with 1 hidden layer with 20 neurons

Method of weights decay



Avoiding overfitting: early stopping

❑ We train the MLP (update its weights) by minimizing the training 

error.

❑ At regular intervals (e.g. every 10 epochs) we 'freeze' the 

training process and with the current values of the weights 

calculate an estimate of the generalization error on an 

independent set of examples (different from the training set and 

the control set).

❑ This third set of examples we use is called the validation set and 

the corresponding error is called the validation error.

❑ We then continue the process of training and updating the weights 

until the next validation error calculation time point.



Early stopping

❑ In the initial training iterations and as training 

progresses, the training error is reduced and the 

validation error is also reduced at the same time.

❑ There is usually a point in time (especially in the case 

of large networks) beyond which further reduction of 

the training error leads to an increase in the 

validation error, because the overfitting effect starts to 

appear.

❑ At this point we can stop training the network (early 

stopping).



Early stopping

Σφάλμα 

εκπαίδευσης

Σφάλμα 

επικύρωσης

Πρόωρο 

σταμάτημα 

επικύρωσης

Ολικό ελάχιστο 

σφάλματος 

επικύρωσης

εποχές



Early stopping

❑ Alternatively, instead of stopping early, we can run the training 

algorithm until we terminate at a local minimum, but making 

sure each time to save the vector of weights wval that 

provides the smallest validation error we have calculated 

so far during training.

❑The value of the wval weights at the end of training is also the 

final weight vector for the MLP, because it provides the 

minimum value of the validation error. 



Early stopping

❑ In summary, in the early stopping method:

✓ a) The MLP must be relatively large.

✓ b) we update the weights using the examples in the training set

✓ c) we choose as the final solution for the weights the one with the 

smallest value of the error that we calculate using the examples of 

the validation set.

❑ Price we pay: we should remove a percentage of the examples 

from the training set and put them in the validation set. Problem if 

the examples are few. Partition dependency.

❑ Training, validation, and test sets are not allowed to share 

examples.  
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