
MultiLayer Perceptron (MLP)

(Revised slides from HOU-PLH31)

I. Hatzilygeroudis

Dept of Computer Engineering & Informatics, University of
Patras

MultiLayer Perceptron

❑ Feedforward Network

❑ Neurons organized in layers: Input layer, one or more hidden

layers of nonlinear inner product neurons, output layer.

❑ Full interconnection

between the neurons of

two successive layers.

Connections between

neurons belonging to

non-consecutive layers

are usually not allowed.

επίπεδο

είσοδου

2
ο
 κρυμμένο

επίπεδο
επίπεδο

εξόδου
1

ο
 κρυμμένο

επίπεδο
Input

layer

1st hidden

layer

2nd hidden

layer
output

layer

Notation:

• : neuron i at layer

• : total input in the neuron

• : output of the neuron

• : error of the neuron

• : bias of the neuron (or)

• : activation function of the neurons at layer

• : number of neurons at layer

• : weight of connection from neuron to neuron

i
()

iu
()

iy

()

i0w

()

i
()

ib

g

d
()

ijw i 1j −

MultiLayer Perceptron

❑ Let be an MLP with d inputs, p outputs and H hidden layers. The
input level is the zero level, and the output level is H+1 level. (d0 = d,
dH+1 = p)

❑ Forward pass (given the input vector the output vector is
calculated):

❑ Input layer: ,

❑ Hidden layers and output layer: For h=1,…,H+1

❑ Network output:

(0)

i iy =x (0)

0 0y =x 1=

h-1 h-1d d
(h) (h) (h-1) (h) (h) (h-1) (h)

i ij j i ij j i0 h

j=0 j=1

u = w y <==> u = w y w , i=1,...d+ 

(h) (h) (h)

i h i h 0y =g (u) i=1,...,d , y 1=

(H+1)

i io =y i=1,...,p

MultiLayer Perceptron

❑ The activation function of hidden neurons is non-linear (typically

logistic: σ(u)=1/(1+exp(-u))).

❑ At the output level the activation function is usually linear or

logistic depending on the problem to be solved.

❑ Logistic is preferred for classification problems and linear for

functional approximation problems.

MultiLayer Perceptron

επίπεδο

είσοδου

2
ο
 κρυμμένο

επίπεδο
επίπεδο

εξόδου
1

ο
 κρυμμένο

επίπεδο
Input

layer

1st hidden

layer

2nd

hidden

layer

output

layer

Computational capabilities of MLP

❑ MLP implements functional approximation (mapping) from the input

space to the output space.

❑ The mapping we wish to implement is determined by the training

examples.

❑ MLP is characterized by the property of universal approximation:

an MLP with at least one hidden layer with nonlinear neurons can

approximate any function with any accuracy by sufficiently

increasing the number of hidden neurons.

❑ This property is only theoretically important, but it is not practically

useful.

❑ The existence of non-linear hidden neurons gives MLP the

increased computational capabilities.

❑ MLP can solve classification problems that are nonlinearly

separable.

❑ In theory it can implement any separation surface however

complex it is.

❑ Usually, we put 1 or 2 hidden layers – in recent years more are

used (deep neural networks)

Computational capabilities of MLP

MLP Training

❑ Let training set D={(xn,tn)}, n=1,…,N.

❑ xn=(xn1,…,xnd)T , tn=(tn1,…,tnp)
T (functional approximation problem).

❑ The MLP should have d neurons in the input layer and p neurons

in the output layer.

❑ The rest of the architecture should be user defined: hidden layers,

number of hidden neurons per layer, type of activation functions.

❑ o(xn; w): the output vector of the MLP when the input vector is xn,

and w=(w1,w2,…,wL)T is a vector in which we gather all the

weights and biases.

❑ Training: defining the vector w.

❑ In the case that for some vector of weights w the training is perfect it

will be true that (vector equality) :

ο(xn; w)=tn για κάθε n=1,…,N

❑ Or equivalently

οm(xn; w)=tnm for each n=1,…,N, m=1,…,p

❑ By analogy with the single neuron, we define the quadratic error

function

pN N
n n 2 n 2

nm m

n=1 n=1 m=1

1 1
E(w)= ||t -o(x ;w)|| (t -o (x ;w))

2 2
= 

pN
n n n n 2 n 2

nm m

n=1 m=1

1 1
E(w)= E (w), E (w) ||t -o(x ;w)|| (t -o (x ;w))

2 2
= = 

MLP Training

❑ E(w) as the sum of squares of the errors per example (xn, tn) has a

lower bound on the value zero which occurs when we have perfect

training.

❑ MLP training: updating the vector of weights w in order to

minimize the squared error E(w).

❑ As in the single neuron, the most widely used minimization method

is the gradient descent method.

❑ It is necessary to calculate the partial derivatives of the error En

with respect to the weights wi :

 Error backpropagation rule

pN
n n n n 2 n 2

nm m

n=1 m=1

1 1
E(w)= E (w), E (w) ||t -o(x ;w)|| (t -o (x ;w))

2 2
= = 

MLP Training

Backpropagation method

❑ A technique for computing the partial derivatives of the error

for an instance (x,t) with respect to the weights in a feed-forward

network with inner product neurons and derivable activation

functions (MLP).

❑ It gets its name from the fact that it is based on the backward

propagation through the network of errors that occur at the

network outputs.

❑ For the calculation of errors, the flow of calculations is from the

output to the input.

❑ Individual error values are calculated for the hidden neurons of the

network.

❑ Let the example be (xn, tn) and we want to calculate the partial

derivatives of the error En with respect to the weights of the MLP.

❑ Back-propagation algorithm does two passes when performing the

calculations: forward pass, and reverse pass.

Backpropagation method

επίπεδο

είσοδου

2
ο
 κρυμμένο

επίπεδο
επίπεδο

εξόδου
1

ο
 κρυμμένο

επίπεδο
Input

layer

1st hidden

layer

2nd

hidden

layer

output

layer

❑ Forward pass: For an input vector xn the output y of each neuron of the

network is calculated.

❑ Reverse pass (calculate error δ of each neuron)

✓ starts from the output level (H+1), where the final outputs oi of the network

are compared with the desired tni producing the error in the outputs of the

MLP.

✓ Then the error signals are propagated backwards through the network and

the error is calculated incrementally for the neurons of each layer from the

last hidden layer to the first hidden layer.

❑ Partial derivative of connection weight:

✓ destination error * source output

Backpropagation method

❑ Error calculation (reverse pass)

Output neurons (layer Η+1) (activation function gH+1)

Hidden layers neurons: for layers h=H,…,1 (activation function gh)

(Η+1) (Η+1)

i H+1 i i niδ g (u)(o t), i=1,...,p= −

h+1d
(h) (h) (h+1) (h+1)

i h i ji j

j=1

δ g (u) w δ , i=1,...,dh
= 

(Η+1)

i i i i niδ o (1-o)(o t), i=1,...,p (λογιστική συν. ενεργοποίησης)= −

(Η+1)

i i niδ (o t), i=1,...,p (γραμμική συν. ενεργοποίησης)= −

h+1d
(h) (h) (h) (h+1) (h+1)

i i i ji j

j=1

δ y (1 y) w δ , i=1,...,d (λογιστική συν. ενεργοποίησης)h= − 

Backpropagation method

(linear activation function)

(logistic activation function)

(logistic activation function)

❑ Partial derivative of connection weight:

❑ Partial derivative of bias = neuron error

n
(h) (h-1)

i j(h)

ij

E
δ y

w


=



n
(h)

i(h)

i0

E
δ

w


=



Backpropagation method

MLP training with gradient descent

(batch update)

1. Initialization: We set t:=0, initialize weights w(0) (random values in

the interval (-1,1)) and learning rate η.

2. At each iteration t (epoch), let w(t) be the vector of weights

 2.1 We initialize:

 2.2 For n=1,…,N

 2.2.1 application of the backpropagation rule for (xn,tn) and

 calculation of

 2.2.2 update the subtotal:

 2.3 Updating weights:

 2.4 Termination check. If not, t:=t+1, goto 2

i

E
0, i=1,...,L

w


=



i

E
, i=1,...,L

w

n

 n

i i i

E E E
:

w w w

  
= +

  

i i

i

E
w (t+1)=w (t)- , i=1,..,L

w





1. We set t:=0, initialize weights w(0) (random values in the interval (-

1,1)) and learning rate η. Initialize the iteration counter (τ:=0) and the

epoch counter (t:=0).

2. At the beginning of each iteration t (epoch), let w(τ) be the vector of

weights

 2.1 Start epoch t, save the current vector of weights wold=w(τ). For

 n=1,…,N

 2.1.1 apply the backpropagation rule for (xn,tn) and calculate

 2.1.2 Update weights:

 2.1.3 τ:=τ+1

 2.2 End of epoch t, termination check. If not, t:=t+1, goto 2

i

E
, i=1,...,L

w

n



i i

i

E
w (τ+1)=w (τ)-n , i=1,..,L

w

n



MLP training with gradient descent

(sequential update)

MLP training with gradient descent

❑ Training termination criteria (check at the end of each epoch)

✓ Little difference in the value of the weights vector between two

epochs.

✓ Small difference in the value of the total error E(w) between

two epochs.

✓ Reducing the value of the total error E(w) below a desired

value.

✓ Early stopping: use of validation set.

MLP for classification problems

(coding classes)

❑ Encoding classes: converting the classification problem into a

functional approximation problem, by mapping each class/category to

some output vector (or value).

❑ The initial training set with pairs of the form (data, class) is

transformed to contain pairs of the form (data, target vector).

❑ 1-out-of-p encoding for a problem of p classes C1,…,Cp

 Each target vector has p components (t1,…,tp) and the class Ck is

 encoded by setting tk=1 and ti=0 for i≠k

.

❑ Example: in a problem with three categories, the corresponding

three output vectors are (1,0,0), (0,1,0), (0,0,1)

✓ An MLP with three outputs is required.

❑ Classification of a pattern is done by applying the pattern as an

input to the network and selecting the class corresponding to

the output with the highest value.

✓ The closer this output is to 1 and the closer to zero the rest outputs,

the more reliable the classification.

MLP for classification problems

(coding classes)

❑ Especially for the two-classes case, one-output encoding can

also be used:

✓ assign the output t=1 to a category (C1)

✓ and the output t=0 to the other category (C2).

❑ In this case, the classification of an input data is as follows:

✓ if the output is greater than 0.5 then the pattern/input is classified

in class C1, otherwise in class C2.

MLP for classification problems

(coding classes)

MLP Training Example

MLP Training example (1)

w11
(1) = w21

(1)=1 w12
(1)= w22

(1)=-4 w10
(1)= w20

(1)=0

w11
(2) = w12

(2)=2 w21
(2)=w22

(2)= -2 w10
(2)= w20

(2)=0

w11
(3)=0.5 w21

(3)=-0.5 w12
(3)= w22

(3)=-0.5 w10
(3)= w20

(3)=0

Επιπ. 1 Επιπ. 2 Επιπ. 3

w11
(1

)

w12
(1

)

1 1
1

2 2
2

w11
(2

)

w12
(2

)

Είσοδος Έξοδος

x1 = 1 t1 = 0.5

x2 = 0.25 t2 = -0.5

η = 0.2

Calculate the updated weights of the red path after one

cycle of backpropagation (forward and reverse pass).

MLP Training example (2)

Forward pass

Neurons of first hidden layer:

ui
(1)= 1*1 + (-4)*0.25+0=0 yi

(1)=σ(0)=0.5

i=1,2

Neurons of second hidden layer :

u1
(2)= 2*0.5 +2*0.5 + 0 =2 y1

(2)=relu(2)=2

u2
(2)= (-2) *0.5 + (-2)* 0.5 + 0 =-2 y2

(2)=relu(-2)=0

Είσοδος Έξοδος

x1 = 1 t1 = 0.5

x2 = 0.25 t2 = -0.5

MLP Training example (3)

Output neurons:

u1
(3)=0.5*2 +(-0.5)*0 + 0 =1 y1

(3)=linear(1)=1

u2
(3)=(-0.5)*2+(-0.5)*0 + 0 =-1 y2

(3)=linear(-1)=-1

So, for input x=(1,0.25) the outputs of the network are

ο=(1,-1)

Squared training error is

e(x,t)= ((0.5-1)2 + ((-0.5)-(-1))2) / 2= 0.25.

MLP Training example (4)

Reverse pass

The partial derivative of the error with respect

to some connection weight wij (from node j to

node i) is equal to the product:

(output of j) * (error of i)

We calculate the errors δ2(3), δ1(2) and δ1(1) of

interest (red links)

Output neurons: Because of the linear

activation function (derivative = 1):

δ1
(3)= (o1 – t1)=0.5, δ2

(3)= (o2 – t2)=-0.5

MLP Training example (5)

Neurons of the second hidden layer: From the

definition of relu(u), for the first neuron of this level

relu'(2)=1 while for the second neuron relu'(-2)=0.

Therefore

δ1
(2)=1*[0.5*0.5+ (-0.5)*(-0.5)] =0.5, δ2

(2)=0

First hidden layer neurons: The neurons of this layer

have a logistic activation function. Therefore :

δ1
(1)= 0.5*(1-0.5)*[2*0.5 + (-2)*0] =0.25

MLP Training example (6)

The asked partial derivatives are:

∂e/∂w21
(3)=(-0.5)*2 = -1

∂e/∂w11
(2)= 0.5*0.5=0.25

∂e/∂w11
(1)= 0.25*1 = 0.25

MLP Training example (7)

For learning rate η=0.2, the new weight values ​​(for the

red connections) resulting from the gradient descent

update equation are:

w21
(3)=-0.5-0.2*(-1)=-0.3

w11
(2)= 2-0.2*0.25=1.95

w11
(1)=1-0.2*0.25=0.95

The rest weights and biases do not change.

MLP Training example (8)

Applying x=(1, 0.25) as input to the new network, we find output
o=(0.9753, -0.5852) and new squared error e=0.1166. So, we
notice that even if only some of the weights are updated, the
squared error decreases (from 0.25 to ~0.12).

MLP Training example (9)

Learning and Generalization

(Revised slides from HOU-PLH31)

I. Hatzilygeroudis

Dept of Computer Engineering & Informatics, University of
Patras

MultiLayer Perceptron-MLP

❑ Let be the training set D={(xn,tn)}, n=1,…,N.

❑ xn=(xn1,…,xnd)
T , tn=(tn1,…,tnp)

T

❑ The MLP should have d neurons in the input layer and p neurons in

the output layer.

❑ User defines: hidden layers, number of hidden neurons per layer,

type of activation functions.

επίπεδο

είσοδου

2
ο
 κρυμμένο

επίπεδο
επίπεδο

εξόδου
1

ο
 κρυμμένο

επίπεδο
Input

layer

1st hidden

layer

2nd

hidden

layer

output

layer

Generalization ability

❑ The ultimate goal of training is to build systems that provide correct

decisions for examples that have not been used during training:

generalization ability.

❑ Architecture choice in MLP: with a large number of hidden

neurons, an MLP can be trained to accurately represent all

examples in the training set.

❑ 'Big' MLP → usually low generalization ability: it 'remembers' the

training data and does not perform well on new data because, due

to its high 'flexibility', it creates representations that are usually more

'complex' than necessary

❑ .

❑ One-dimensional visualization problem: the training data is

represented by the black dots.

❑ The function represented by a continuous line, although it has zero

training error, is more complex than necessary (overfitting).

❑ The function represented by the dashed line is smoother and

preferable as a solution.

x

t

Generalization ability (example)

❑ The actual solution from which the training data was

derived could also be the complex function. If this were

the case, the examples of training available to us are not

representative.

❑ For this example, since both functions fit the data

adequately, the smoother function (dashed line) is the

preferred solution.

x

t

Generalization ability (example)

Occam’s razor

❑ An MLP network with few hidden neurons may not have

the required 'flexibility' to be able to define complex

decision regions or approximate functions with a complex

graph (underfitting).

❑ In case the MLP architecture is larger than required (more

flexible network) overfitting may occur.

❑ Basic empirical principle of machine learning (occam's

razor)

✓ We prefer the simplest network that can adequately learn

the training examples.

✓ Key question: How do we find the right network?

Evaluation of generalization ability

❑ It has not been adequately addressed using mathematical

methods. We resort to empirical approaches: use of a test

set.

❑ Test set: subset of examples available to us, which we do not

use during ANN training, which is done using the remaining

examples.

❑ After training, we apply the test set examples as inputs to the

ANN and calculate the corresponding errors on its outputs.

❑ Generalization error: The average value (or percentage) of the

errors of an ANN for the test set examples.

❑ Low generalization error implies high generalization ability and vice

versa.

❑ In order to evaluate the ability to generalize, it is necessary to

divide the set of available examples into two (unrelated to each

other) subsets:

✓ the training set that we use to determine the ANN weights

✓ the test set used to calculate the generalization error of the network

resulting from training.

❑ How will the separation take place? Which examples will be

used for training and which for testing?

Evaluation of generalization ability

Hold-out

❑ If the examples are many we do not have a particular problem

(e.g. we randomly divide them into a percentage of 70-30% or

similar) (hold-out method).

❑ If the examples are not many, more complex approaches are

needed.

❑ Multiple hold-out:

✓ We can repeat the hold-out process several times: randomly split into

training and control sets, train the ANN, and calculate the

generalization error.

✓ The final estimate for the generalization error is obtained as the

average of the individual errors we calculated

✓ .

Cross-Validation

❑ k-fold cross-validation (k-CV):

❑divide the set of examples D into k different subsets (folds)

D1 ,..., Dk (usually k=10).

❑For each subset Di (i=1 ,…, k), we train a ANN considering

as the training set the examples of the remaining k-1

subsets (D-Di) and calculate the generalization error gei

using the examples of the subset Di as the control set.

❑We estimate the generalization error (ge) as the average of

the individual errors gei

❑ It is more systematic and used very often.

Leave-one-out

❑ A leave-one-out example (LOT). Special case of k-fold

cross-validation when we set k=N, where N is the number of

all examples of set D at our disposal.

❑ For each (xi,ti) of the set D we construct a ANN considering

as a training set the whole D except for the specific example.

We then estimate the generalization error gei by computing

the ANN error for the particular example we ignored during

training.

❑ Repeating the process for all (xi,ti), (i=1,…,Ν) we estimate the

generalization error as the average of gei.

❑ More reliable (has no randomness), but increased

complexity.

Selecting MLP with cross-validation (k-CV)

(one hidden layer, Μ neurons)

1. Specify initial M (e.g. M=2), Mmax, number of folds k (e.g. k=10) and

training parameters (e.g. learning rate).

2. Partition the set of examples D into subsets D1, ..., Dk for the

application of the k-CV technique.

3. Calculate with (k-CV) the generalization error ge(M) for M hidden

neurons.

4. Increase the number of hidden neurons, e.g. M:=M+1 and return to

step 3 if M≤Mmax.

5. Choose as optimal architecture the one with the smallest

generalization error: ge(M*)≤ge(M)

6. Training the MLP with M* hidden neurons on the entire set of examples

and finding the final solution.

Training example
Training set (artificial data with noise)

(blue line: real decision boundary)

We trained an ΜLP with one hidden layer and M neurons

Μ

Generalization

error (10-CV)

Generalization

ability (10-CV)

2 28% 72%

3 18% 82%

4 13% 87%

5 12% 88%

6 15% 85%

7 15% 85%

Training example

Red line: MLP decision boundary

Training example

Training example

Training example

❑ Two questions: if we train many ANNs (e.g. 10-fold CV) to

estimate the generalization ability and choose the optimal

network architecture:

✓ a) how will we build the final ANN that will be the solution to our

problem?

✓ b) what will be the generalization ability of this final network?

❑ Answers: a) we build the final ANN using the optimal architecture

we have found and all available training examples.

❑ b) The generalization ability of the final ANN has already been

calculated by the generalization ability estimation method for the

optimal architecture.

Evaluation of generalization ability

Avoiding overtraining: the method of

weights decay

❑ The obvious way to limit the 'flexibility' of an MLP is by

limiting its architecture, i.e. essentially the number of network

weights.

❑ An alternative way of limiting the flexibility of an MLP is by

limiting the values that the weights can take during training.

This idea is called regularization.

❑ The simplest way to achieve regularization is based on

adding a penalty term to the squared error function that we

minimize during network training.

Method of weights decay

❑ More specifically, a regularization term that is most often used is the

sum of the squares of the weight values (where L is the number of

weights).

❑ The function minimized during training becomes:

❑ E(w) is the squared training error function.

❑ The parameter r determines the relative weight of the two training

goals: on the one hand minimizing E(w), on the other hand

maintaining small absolute values of the network weights.

❑ .

L
2

i

i=1

R(w)= w

L
2

R i

i=1

E (w)=E(w)+rR(w)=E(w)+r w

❑ Adding the regularization term essentially prevents the weights from

getting high (in absolute value) values during training.

❑ Sometimes it leads some values of the weights to become almost

zero, that is, in essence, it is as if the corresponding connections are

removed from the network.

❑ In other words, we can consider that the values of the weights "wear

out" during the training, for this reason the method is called weight

decay training.

❑ Update weights :
R

i i

i

E
w (t+1)=w (t)-η

w





i i i

i

E
w (t+1)=w (t)-η 2rw (t)

w

 
+ 

 

Method of weights decay

❑ If the parameter r is properly specified and the network size is

larger than required, networks with better generalization

capabilities usually result at the end of training.

❑ If the parameter r is large then the adaptation of the network

to the training examples is hindered.

❑ If the parameter r tends to zero then it is as if we are training

the network without regularization.

❑ The correct setting of the parameter r is the main problem of

this method.

Method of weights decay

❑ MLP with 1 hidden layer with 20 neurons

Method of weights decay

Avoiding overfitting: early stopping

❑ We train the MLP (update its weights) by minimizing the training

error.

❑ At regular intervals (e.g. every 10 epochs) we 'freeze' the

training process and with the current values of the weights

calculate an estimate of the generalization error on an

independent set of examples (different from the training set and

the control set).

❑ This third set of examples we use is called the validation set and

the corresponding error is called the validation error.

❑ We then continue the process of training and updating the weights

until the next validation error calculation time point.

Early stopping

❑ In the initial training iterations and as training

progresses, the training error is reduced and the

validation error is also reduced at the same time.

❑ There is usually a point in time (especially in the case

of large networks) beyond which further reduction of

the training error leads to an increase in the

validation error, because the overfitting effect starts to

appear.

❑ At this point we can stop training the network (early

stopping).

Early stopping

Σφάλμα

εκπαίδευσης

Σφάλμα

επικύρωσης

Πρόωρο

σταμάτημα

επικύρωσης

Ολικό ελάχιστο

σφάλματος

επικύρωσης

εποχές

Early stopping

❑ Alternatively, instead of stopping early, we can run the training

algorithm until we terminate at a local minimum, but making

sure each time to save the vector of weights wval that

provides the smallest validation error we have calculated

so far during training.

❑The value of the wval weights at the end of training is also the

final weight vector for the MLP, because it provides the

minimum value of the validation error.

Early stopping

❑ In summary, in the early stopping method:

✓ a) The MLP must be relatively large.

✓ b) we update the weights using the examples in the training set

✓ c) we choose as the final solution for the weights the one with the

smallest value of the error that we calculate using the examples of

the validation set.

❑ Price we pay: we should remove a percentage of the examples

from the training set and put them in the validation set. Problem if

the examples are few. Partition dependency.

❑ Training, validation, and test sets are not allowed to share

examples.

	Διαφάνεια 1
	Διαφάνεια 2: MultiLayer Perceptron
	Διαφάνεια 3: MultiLayer Perceptron
	Διαφάνεια 4: MultiLayer Perceptron
	Διαφάνεια 5: MultiLayer Perceptron
	Διαφάνεια 6: Computational capabilities of MLP
	Διαφάνεια 7: Computational capabilities of MLP
	Διαφάνεια 8: MLP Training
	Διαφάνεια 9: MLP Training
	Διαφάνεια 10: MLP Training
	Διαφάνεια 11: Backpropagation method
	Διαφάνεια 12: Backpropagation method
	Διαφάνεια 13: Backpropagation method
	Διαφάνεια 14: Backpropagation method
	Διαφάνεια 15: Backpropagation method
	Διαφάνεια 16: MLP training with gradient descent (batch update)
	Διαφάνεια 17: MLP training with gradient descent (sequential update)
	Διαφάνεια 18: MLP training with gradient descent
	Διαφάνεια 19: MLP for classification problems (coding classes)
	Διαφάνεια 20: MLP for classification problems (coding classes)
	Διαφάνεια 21: MLP for classification problems (coding classes)
	Διαφάνεια 22: MLP Training Example
	Διαφάνεια 23: MLP Training example (1)
	Διαφάνεια 24: MLP Training example (2)
	Διαφάνεια 25: MLP Training example (3)
	Διαφάνεια 26: MLP Training example (4)
	Διαφάνεια 27: MLP Training example (5)
	Διαφάνεια 28: MLP Training example (6)
	Διαφάνεια 29: MLP Training example (7)
	Διαφάνεια 30: MLP Training example (8)
	Διαφάνεια 31: MLP Training example (9)
	Διαφάνεια 32
	Διαφάνεια 33: MultiLayer Perceptron-MLP
	Διαφάνεια 34: Generalization ability
	Διαφάνεια 35: Generalization ability (example)
	Διαφάνεια 36: Generalization ability (example)
	Διαφάνεια 37: Occam’s razor
	Διαφάνεια 38: Evaluation of generalization ability
	Διαφάνεια 39: Evaluation of generalization ability
	Διαφάνεια 40: Hold-out
	Διαφάνεια 41: Cross-Validation
	Διαφάνεια 42: Leave-one-out
	Διαφάνεια 43: Selecting MLP with cross-validation (k-CV) (one hidden layer, Μ neurons)
	Διαφάνεια 44: Training example
	Διαφάνεια 45: Training example
	Διαφάνεια 46: Training example
	Διαφάνεια 47: Training example
	Διαφάνεια 48: Training example
	Διαφάνεια 49: Evaluation of generalization ability
	Διαφάνεια 50: Avoiding overtraining: the method of weights decay
	Διαφάνεια 51: Method of weights decay
	Διαφάνεια 52: Method of weights decay
	Διαφάνεια 53: Method of weights decay
	Διαφάνεια 54: Method of weights decay
	Διαφάνεια 55: Avoiding overfitting: early stopping
	Διαφάνεια 56: Early stopping
	Διαφάνεια 57: Early stopping
	Διαφάνεια 58: Early stopping
	Διαφάνεια 59: Early stopping

