

#### MSc on DATA DRIVEN COMPUTING AND DECISION MAKING (DDCDM)

### **Ontology Reasoners**

#### I. Hatzilygeroudis-Isid. Perikos

## **Description Logic Systems**

**Knowledge Base** 



## TBox & ABox

#### A man

that is married to a doctor, and

has at least 5 children,

all of whom are professors.

Human 🗖 🥆 Female 🗖

 $\exists$  married-to . Doctor  $\sqcap$ 

(≥ 5 has-child) ⊓

 $\forall$  has-child . Professor

#### TBox

definition of concepts Happy-man = Human  $\sqcap$  ... statement of constraints  $\exists$  married-to. Doctor  $\sqsubseteq$  Doctor



properties of individuals Happy-Man(Franz) has-child(Franz,Luisa) has-child(Franz,Julian)

## TBox & ABox

- TBox sentences describe a conceptualization, i.e., a set of concepts and their properties pertaining to a domain.
- An Abox describes named individuals and their relationships with possible reference to Tbox concept descriptions.

## Reasoning

- Reasoner is a program that extracts logical consequences from a set of explicitly stated facts or axioms.
- Typically provides automated support for inference functions such as sorting, debugging, and querying.

## **Reasoning-prerequisites**

- Soundness guarantees that any proposition that is provable in a deductive system is also true in all interpretations or syructures of the semantic theory of the language which it is based on.
- Completeness guarantees that every valid (true) proposition is also provable.
- Taken together they ensure that all and only valid (true) propositions are provable.

## Reasoning

- A Reasoner must:
  - Handle atoms (Provide reasoning in ABox)
  - Do not support the unique name assumption
  - Support implication checks
  - Answer conjunctive questions in Abox
  - Work with XML schema databases

# Protégé

- He is an editor of ontologies and knowledge bases (http://protege.stanford.edu).
- It is also an open source Java tool that provides an extensible architecture for building custom knowledge-based applications.
- OWL Plug-in of Protégé provides support for editing semantic web ontologies

# Protégé

- Three reasoners ahave been embedded in protégé:
  - Pellet
  - Hermit
  - Fact++ (since protégé 4.0 alpha)

## PELLET

- It is based on tableaux algorithms developed for expressive Description Logics (DLs).
- It supports all OWL DL constructors, including owl:oneOf and owl:value
- It is implemented in pure Java and is available under the MIT & DuLi:AGPL license.

## PELLET

- It uses a combination of existing sound and complete algorithms.
- It provides inferences that are sound and complete for OWL DL without nominals (ie SHIN(D)) and without inverse properties (ie SHON(D)).

## PELLET - Architecture



## HERMIT

- It is a DL reasoner that implements a hypertableau calculus, which greatly reduces the number of possible models to consider.
- It incorporates the "anywhere blocking" technique, which limits the sizes of the created models.
- HermiT, given an OWL file, can determine whether the ontology is consistent or not, detect subsumption relationships between classes, and much more.

## HERMIT

- It supports reasoning with ontologies containing description graphs.
- Description graphs allow the representation of structured objects, i.e. objects composed of many interconnected parts in arbitrary ways.
- It is available as an open source Java library and includes both a Java API and a simple command-line interface.

## HERMIT

- It can process ontologies in any format that is manageable by the OWL API, including RDF/XML, OWL Functional Syntax, KRSS, and OBO
- It supports OWL 2 DL, which corresponds to SROIQ DL.

### FACT ++

- It is a reasoner based on the tableaux method for expressive DLs.
- Covers OWL and OWL 2 (lacks support for key constraints and some data types) based on DL ontologies.
- Open source software distributed under the LGPL license.

## RacerPro

- The first OWL Reasoner on the Market.
- It appeared in 2002
- One of the fastest reasoning systems.
- Based on the tableau method.
- It is used as the back-end inference system with Protégé
- Supports OWL DL.

## Comparison (1)

|                    | FaCT++   | HermiT       | Pellet   |
|--------------------|----------|--------------|----------|
| Methodology        | tableau- | hypertableau | tableau- |
|                    | based    |              | based    |
| Soundness          | +        | +            | +        |
| Completeness       | +        | +            | +        |
| Expressivity       | SROIQ(D) | SROIQ(D)     | SROIQ(D) |
|                    |          |              |          |
| Incremental        | -/-      | -/-          | +/+      |
| Classification     |          |              |          |
| (addition/removal) |          |              |          |
| Rule Support       | -        | +            | +        |
|                    |          | (SWRL)       | (SWRL)   |
| Justifications     | -        | -            | +        |
| ABox               | +        | +            | +        |
| Reasoning          |          |              | (SPARQL) |
|                    |          |              |          |

# Comparison (2)

|                | FaCT++ | HermiT | Pellet     |
|----------------|--------|--------|------------|
| OWL API        | +      | +      | +          |
| OWLlink API    | +      | +      | +          |
| Protégé Plugin | +      | +      | +          |
| License        | GLGPL  | GLGPL  | DuLi: AGPL |
| Open Source    | +      | +      | +          |
| Language       | C++    | Java   | Java       |
| Platforms      | all    | all    | all        |
| Jena           | -      | -      | +          |
| Institution    | a      | a      | с          |

|                                   |         | Pellet           | RACER             | FACT++           | Snorocket            | SWRL-         | HermiT                 | CEL                  | TrOWL                | ELK                      |
|-----------------------------------|---------|------------------|-------------------|------------------|----------------------|---------------|------------------------|----------------------|----------------------|--------------------------|
| Methodology                       |         | Tableau<br>based | Tableaux<br>based | tableau<br>based | Completio<br>n rules | SWRL<br>rules | Hypertablea<br>u based | Completio<br>n rules | Completio<br>n rules | Consequenc<br>e based    |
| Soundness                         |         | Yes              | Yes               | Yes              | Yes                  | Yes           | Yes                    | Yes                  | Yes                  | Yes                      |
| Completeness                      |         | Yes              | Yes               | Yes              | Yes                  | No            | Yes                    | Yes                  | Yes                  | Yes                      |
| Expressivity                      |         | SROIQ(D          | SHIQ              | SROIQ(D          | EL+                  | -             | SROIQ(D)               | EL+                  | SROIQ                | EL                       |
| Native Profile                    |         | DL, EL           | DL                | DL               | EL                   | -             | DL                     | EL                   | DL, EL               | EL                       |
| Incremental<br>Classificatio<br>n | Additio | Yes              | No                | No               | Yes                  | Y/N           | No                     | Yes                  | No                   | Yes                      |
|                                   | Remova  | Yes              | No                | No               | No                   | Y/N           | No                     | No                   | No                   | Yes                      |
| Rule Support                      |         | Yes<br>(SWRL)    | Yes<br>(SWRL)     | No               | No                   | Yes<br>(SWRL) | Yes<br>(SWRL)          | No                   | No                   | Yes (Own<br>rule format) |
| Platforms                         |         | all              | all               | all              | all                  | all           | all                    | Linux                | all                  | all                      |
| Justifications                    |         | Yes              | Yes               | No               | No                   | Yes           | No                     | Yes                  | No                   | No                       |
| ABOX Reason                       | ing     | Yes              | Yes               | Yes              | No                   | Yes           | Yes                    | Yes                  | Yes                  | No                       |
| OWL API                           |         | Yes              | Yes               | Yes              | Yes                  | No            | Yes                    | Yes                  | Yes                  | Yes                      |
| OWL Link AP                       | I       | Yes              | Yes               | Yes              | No                   | No            | Yes                    | Yes                  | No                   | Y/N                      |
| Protégé Suppo                     | rt      | Yes              | Yes               | Yes              | Yes                  | Yes           | Yes                    | Yes                  | Yes                  | Yes                      |
| NeOn Support                      |         | Yes              | No                | No               | No                   | No            | Yes                    | No                   | No                   | No                       |
| License                           |         | DULI:<br>AGPL    | own               | GLGPL            | own                  | Y/N           | GLGPL                  | Apache<br>License    | DULI:<br>AGPL        | Apache<br>License 2.0    |
| Jena Support                      |         | Yes              | No                | No               | No                   | No            | No                     | No                   | Yes                  | Y/N                      |
| Impl. Languag                     | e       | Java             | LISP              | C++              | Java                 | Prolog        | Java                   | LISP                 | Java                 | Java                     |
| Availability                      |         | Open<br>source   | Commercia<br>l    | Open<br>Source   | Commercia<br>1       | Y/N           | Open source            | Open<br>source       | Commercia<br>l       | Open source              |

Table 3. Comparison of reasoners (V represents supported feature N represents pap supported feature V/N represents peed