
MapReduce Implementations for
Privacy Preserving Record Linkage

Dimitris Boussis
Computer Engineering and

Informatics Department
University of Patras, Greece
bousis@ceid.upatras.gr

Elias Dritsas
Computer Engineering and

Informatics Department
University of Patras, Greece
eldritsas@gmail.com

Andreas Kanavos
Computer Engineering and
Informatics Department &
Hellenic Open University

kanavos@ceid.upatras.gr
Spyros Sioutas

Department of Informatics
Ionian University, Corfu,

Greece
sioutas@ionio.gr

Giannis Tzimas
Computer & Informatics
Engineering Department
TEI of Western Greece
tzimas@teimes.gr

Vassilios S. Verykios
Hellenic Open University,

Patras, Greece
verykios@eap.gr

ABSTRACT
Over the last decade, the vast explosion of Internet data has
fueled the development of Big Data management systems
and technologies. The huge amount of data in combination
with the need for records linkage under privacy perspective,
has led us to current study. To this direction, we describe
Privacy Preserving Record Linkage problem based on Bloom
Filter encoding techniques which both maintain users’ secu-
rity and permit similarity control. Moreover, we extended
our study to the HLSH/FPS private indexing technique
and briefly describe four implementations in the MapRe-
duce distributed environment that is capable of processing
large scale data. We also conducted experimental evaluation
of these four versions in order to evaluate them in terms of
job execution time, memory and disk usage 1.

Keywords
Privacy Preserving Record Linkage; Hadoop; MapReduce;
Bloom Filters

1. INTRODUCTION
The rapid evolution of technology and Internet has cre-

ated huge volume of data at very high rate, deriving from
commercial transactions, social networks, scientific research.
The mining and analysis of this volume of data may be ben-
eficial for the humans in crucial areas such as health, econ-
omy, national security, leading to more qualitative results.

A common problem in data analysis is the record linkage
process (RL) which finds records in a dataset that refer to

1This work was supported in part by Hellenic Foundation
for Public Scholarships and in part by University of Patras.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SETN ’18, July 9–15, 2018, Rio Patras, Greece
c© 2018 ACM. ISBN 978-1-4503-6433-1/18/07. . .15.00

DOI: https://doi.org/10.1145/3200947.3201043

the same entity across different data sources (e.g., data files,
books, websites, and databases) [1],[3],[7],[11].

The purpose of RL is to categorize all possible combina-
tions of records from different databases as similar or dissim-
ilar by using attributes that are not necessarily identifying
fields. The RL model requires at least two members that
will provide their data in form of tables. A table row corre-
sponds to an entity that is described by the columns. Often,
the model of the RL is simplified by having only two mem-
bers that provide the data to be combined (Alice & Bob)
with or without the presence of a third member (Carol).
The third member undertakes the interconnection process
and communicates process results to participant members.

Privacy-preserving policies often prevent research into per-
sonal data. Thus, organizations are legally and ethically
bounded to exchange sensitive personal data, leading to
datasets that are either free of sensitive personal data or
encrypted to greatly enhance privacy protection. The pri-
vacy requirement during the RL process paved the way to
Privacy-Preserving Record Linkage (PPRL) [4],[12],[13]. As
in the case of RL, the PPRL process find pairs of records
referred to the same entity from multiple data sources where
the classification, as similar or dissimilar, is conducted based
on encoded data to avoid disclosure of confidential data
about the entities presented in the problem.

An efficient blocking scheme for PPRL is theHLSH/FPS
when combined with Bloom-Filter based encoding. It uti-
lizes Locality Sensitive Hashing and frequent collision ta-
bles to Hamming distances between Bloom Filter based en-
coded pairs of records in order to reduce the number of
pairs when a more rigid similarity comparison is performed.
PPRL blocking techniques fall into the batch processing
category and in the Big-Data world one of the most used sys-
tem for batch processing applications is MapReduce which
is distributed and fault-tolerant. In this paper, we evalu-
ate the performance of four MapReduce work-flows of the
LSH/FPS blocking scheme for the PPRL framework.

The rest of this paper is organized as follows: Section2
analyzes background knowledge around the encoding tech-
niques based on Bloom Filter and private indexing. Also,
Section 3 briefly describes the MapReduce framework of the
HLSH/FPS implementations. Finally, Section 4 presents
experimental evaluation and Section 5 presents conclusions.

https://doi.org/10.1145/3200947.3201043

2. RELATED WORK

2.1 PPRL encoding techniques
In this section we describe some Bloom filter based encod-

ing techniques that are necessary for the PPRL process.

2.1.1 String encoding
The basic idea of this approach is the hashing of q-grams

in string fields of records based on Bloom Filters [10]. Bloom
Filters [2] consist of a set of K hash functions. Their result
puts the position of a bit in a bit vector of size S. Their
objective is to give us a quick answer for the membership
of an element to a set, by controlling K-positions in the bit
vector. The computation of K hash functions Hi(x) may be
done through two independent hash functions as:

Hi(x) = (h1(x) + i · h2(x)) mod S (1)

For the h1(x) and h2(x) functions, we choose the cryp-
tographic methods HMAC − SHA1 and HMAC −MD5
respectively due to their widespread and efficient implemen-
tations on cryptographic platforms.

2.1.2 Record encoding
This method is used for records encoding instead of string,

as previous method is used for. Each record consists of fields
such as name, username, age, address, etc. As the PPRL
process aims at the protection of such data, it is necessary
to encode the values of the selected fields from all table’s
records. To this direction, we suggest an encoding method
based on a Bloom Filter for which it is necessary to pre-select
values for the involved elements and Bloom Filters, such as
the average number q-grams. Three different approaches for
records encoding using Bloom Filter are described below.

FBF (Field-level-Bloom-Filters) encoding [5],[6],[10] is
considered as the simplest extension of string data encod-
ing with Bloom Filter. The field values of a record are
encoded on separate Bloom Filters, which then compose a
larger Bloom Filter that will be used for encoding the entire
record. In brief, the encoding steps are:

1. For a selected Q value (the number of q grams), we cal-
culate the average number of q-grams g of each record
for fields that will participate in the PPRL process
and calculate Bloom filter’s appropriate size SFBF .

2. From each string field, q-grams are extracted for a se-
lected Q value.

3. Exported q-grams are encoded by SFBF size Bloom
Filters using Fragmentation Components.

4. Bloom Filters produced from each field are combined
into a larger one with predetermined series of joins.

The FBF encoding is distinguished in FBF/Static and
FBF/dynamic. The first one requires the definition of Q,
K and SFBF to encode the records, while the second one,
for given Q values, imposes an initial preconditioning step to
calculate the average number of q-grams g so as to calculate
the appropriate Bloom Filter size SFBF .

The basic idea of CLK (Cryptographically Long Keys)
encoding [11] is the use of large size S Bloom Filter to
encode all fields of the record by using the produced q-grams
of each field for a selected Q value and K hash functions.
The encoding steps are:

1. Export q-grams from each field for a selected Q value.

2. Union of all produced sets of q-grams of the values to
be encoded.

3. Extracted q-grams are placed on a S-size Bloom Filter
using K hash functions.

Since CLK encoding places common q-grams from differ-
ent fields to the same K locations in the Bloom Filter, it is
difficult for the attacker to perceive either the encoding pa-
rameters or the original field values. Also, this particularity
of CLK encoding, i.e. common q-grams between fields, can
lead to incorrect results in the similarity control. As an ex-
ample, regarding names “James Johnson” and “John Jame-
son”, while being dissimilar, similarity control over CLK
encodings may decide that these entries are similar.

The RBF (Record-level-Bloom-Filter) encoding is based
on FBF and attempts to enhance privacy protection in the
PPRL process introducing additional parameters and infor-
mation into the encoding steps [5],[6]. Initially, it encodes
the values of the fields based on separate Bloom Filters and
in following creates a random set of bits from each one so as
to compose a larger Bloom Filter. Finally, it applies a ran-
dom bit permutation of the larger Bloom Filter with RBF
encoding being the result of this rearrangement.

With regard to the number of bits required to be selected
for the encoding of each field, we consider two ways of calcu-
lating it, uniform and weighted. The first way uses uniform
bit selection from the FBF encoding of the record while the
second one uses weighted. Uniform selection of bits requires
equal or approximately equal number of bits for each field,
i.e. Sf . Weighted way uses a weighted selection of the field
encoding bits which leads to selecting more or fewer bits for
some of the fields. More to the point, in [5],[6], it is men-
tioned that the weighted choice is based on the importance of
each field in the interconnection process. In order to discover
the significance of the fields in the process, the probabilities
m and u of the Fellegi-Sunter probability model are used.
The weights of agreement and disagreement as well as the
range of these two weights are calculated and the normal-
ized percentage of the range of each field is then calculated.
In this way, each field contributes a percentage of wi to the
final Bloom Filter. The size of the final Bloom Filter SRBF
is derived from the wi percentage that maximizes that size.

2.2 Private Indexing
The goal of indexing in PPRL is to substantially reduce

the pairs of encoded records to be tested through similarity
control. In this case, the third member (Carol) has little
information about data encoding of Alice and Bob. To this
direction, we are going to discuss HLSH indexing.

The HLSH (Hamming Locality Sensitive Hashing) In-
dexing [5],[8] is used for partitioning private records en-
coded in binary form of length S. Let Tl be a set of l =
1, . . . , L independent hash tables consisting of dynamic sets
of key-values. Each hash table Tl uses a set of K hash func-
tions hkl that return the value of a randomly selected bit
from the binary hashed rows in the table. The values of K
functions are a key to the encoded records and can gather
from Alice’s and Bob’s encoded sets A′ and B′. Entries from
two sets are stacked in the same key for a Tl hash table thus
recommending a possibly identical pair if they match in K
bits. Id fields’ values of encoded records can be in following
used in order to finally form possibly identical pairs.

Figure 1: HLSH under FPS

Let encoded records rA ∈ A′ and rB ∈ B′ consist of an Id
and the fields BfA and BfB respectively. In addition, let i
be a selected value as a limit for the Hamming metric cal-
culated from the equation dH = |BfA ⊗BfB |. We consider
a family H of hash functions having the following property:

if dH ≤ θ then Pr[hlk(BfA) = hlk(BfB)] ≤ pθ (2)

k = 1, 2, . . . ,K l = 1, 2, . . . , L pθ = 1− θ

S
(3)

The suitable value for the number of hash functions K can
be empirically computed, as the accuracy of the method is
mainly based on the number of tables, Lopt. Generally, this
value should form enough buckets so that the number of
interconnected lists for the pairs of records is low; for bigger
values, more identical entries appear in pairs of records. The
formation of a pair of identifiers or encoded entries {rA, rB}
during HLSH in one of the Tl tables, is called collision. The
method is redundant so a pair can occur at C = 1, . . . , Lopt
hash tables. The pair {rA, rB} with collisions C = Lopt is
with high probability similar and intuitively one can argue
that as the number of conflicts increases, then it is more
likely for the records to be the same.

3. MAPREDUCE FRAMEWORK
HLSH along with use of Frequent Pair Schema (FPS)

[9] can lead to fast and efficient record sharing by check-
ing similarity of frequent collision pairs. We present four
MapReduce implementations of the HLSH/FPS method
for different size of encoded records of Alice A′, Bob B′,
hash tables T l as well as set of candidate IDs RIds. We con-
sider that set B′ is smaller than set A′, so that it is chosen
for the initial creation of the hash table Tl (Figure 1).

The use of HLSH/FPS allows the implementation of an
effective system with a relative low memory footprint. Our
investigation focuses on memory saving and suggest four dif-
ferent versions of the HLSH methodology, namely v0, v1,
v2 and v3. Each version is based on assumptions for almost
all sizes of the problem and progressively “transfers” these
sizes from the slow disk to the faster memory of the Map-
per/Reducer. We assume that every Mapper or Reducer in

a MapReduce task has a fixed memory limit mtask that can
be committed by YARN. Each of the four versions consists
of 2 or 3 different MapReduce Jobs, which in following con-
sist of a number of tasks (Mappers or Reducers) depending
on the HDFS size of the problem and user settings.

Version v0 is characterized by memory saving when per-
forming the job, but is very expensive in disk use and is es-
pecially suitable for Apache YARN environments with low
memory availability for the tasks of a MapReduce job. It
assumes that Alice’s and Bob’s encoded records and Tl are
so large that cannot be available in the limited task memory.
All pairs of identifiers from the HLSH process are formed
and in following, the ones that appear at least Cf times are
stored again in HDFS to be loaded into memory of the last
job that undertakes the interconnection of the proposed IDs
based on the identifiers. This approach, in addition to mul-
tiple MapReduce tasks, can be considered as the most naive
as it forms all pairs of identifiers that can be derived from
the HLSH process. On the contrary, it is the version that
uses the least memory in Mapper/Reducer tasks according
to experimental results.

Version v1 allows more relaxed conditions for the commit-
ted memory of the tasks to be performed. We assume that
the set of Tl tables is able to fit into memory of each task
in a MapReduce job. Having this important information
in mind, we can perform the HLSH/FPS by exclusively
storing the often conflicting pairs in HDFS.

In the last two versions, we also assume that the records
of the smaller set B′ are capable of being stored as a whole
in the mtask memory of Mappers and Reducers. In both
versions, the first job resembles the creation and storage in
HDFS of the hash table Tl of the set of records. In the
second work, the two versions are differentiated in terms of
use or non-use of the Reduce phase.

4. PERFORMANCE EVALUATION
The evaluation of four schemas is conducted by consider-

ing CLK encoding for PPRL process for S = 4096 under
the following settings for the parameters δ2, Cf , LCf , K.

δ Cf LCf K

0.001 4 52 30
0.0001 6 74 30
0.00001 7 91 30
0.000001 9 114 30

In the first screen of Figure 2, the simulation results of
four versions of HLSH/FPS are shown. The fastest in
all cases is v3, while v0 has the largest footprint on disk
since it writes to HDFS all pairs of identifiers derived from
HLSH. We also observe that for the highest value of δ, the
footprint of jobs total memory is also large, but as δ de-
creases and simultaneously HLSH parameters change, then
memory consumption decreases as the number of candidate
records for comparison increases. Regarding other versions,
as the philosophy of FPS strategy is utilzed, execution times
are slightly affected by the change. The disk footprint for
v1 is slightly affected; the same stands for v2 and v3. How-
ever, it is evident that as LCf increases, while the number

2δ is the confidence parameter defining the likelihood that
pairs which are actually the same, are not matched in the
tables. This value is usually low, indicatively δ = 0.01.

(a) (b)

Figure 2: PPRL evaluation

of candidate records to be compared is reduced, the memory
footprint for all operations, except for v0, grows faster. As
the number of records of B′ remains constant, this increase
corresponds to the increase of the hash table Tl.

We then conduct the same procedure for the two largest
sets of records, without the v0 version. In this case, we show
measurements for δ = 0.0001 as well as Cf = 6, LCf = 74
and K = 30. The second screen of Figure 2 presents the
prevalence of versions v3 and v2 on v1 on all metrics.

5. CONCLUSIONS
The four versions that are presented give Carol member

the capability to choose between the slow, but memory eco-
nomical, and the fastest, but demanding, task MapReduce
executions. It also shows the need for implementing tech-
niques that help users to decide (in terms of resource use, rel-
ative costs and problem size) which of the four versions is ap-
propriate. The experimental evaluation shows that versions
v1, v2, v3, which make progressively smarter memory us-
age, have the advantage of quick execution of HLSH/FPS
compared to v0. But as the number of records grows, the de-
manded size to be put into its memory also increases. With
the prospect of slow but integrated HLSH/FPS process,
v0 may be the best proposal for Hadoop environments with
limited memory resources.

6. REFERENCES
[1] R. Baxter, P. Christen, T. Churches, et al. A

comparison of fast blocking methods for record
linkage. In ACM SIGKDD, volume 3, pages 25–27,
2003.

[2] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[3] P. Christen. Data matching: concepts and techniques
for record linkage, entity resolution, and duplicate
detection. Springer Science & Business Media, 2012.

[4] C. Clifton, M. Kantarcioglu, A. Doan, G. Schadow,
J. Vaidya, A. K. Elmagarmid, and D. Suciu.
Privacy-preserving data integration and sharing. In
SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD), pages
19–26, 2004.

[5] E. A. Durham. A framework for accurate, efficient
private record linkage. PhD thesis, University of Texas
at Dallas, 2012.

[6] E. A. Durham, M. Kantarcioglu, Y. Xue, C. Toth,
M. Kuzu, and B. Malin. Composite bloom filters for
secure record linkage. IEEE transactions on knowledge
and data engineering, 26(12):2956–2968, 2014.

[7] I. P. Fellegi. A theory for record linkage. Journal of
the American Statistical Association,
64(328):1183–1210, 1969.

[8] D. Karapiperis and V. S. Verykios. An lsh-based
blocking approach with a homomorphic matching
technique for privacy-preserving record linkage. IEEE
Transactions on Knowledge and Data Engineering,
27(4):909–921, 2015.

[9] D. Karapiperis and V. S. Verykios. A fast and efficient
hamming lsh-based scheme for accurate linkage.
Knowledge and Information Systems, 49(3):861–884,
2016.

[10] R. Schnell, T. Bachteler, and J. Reiher.
Privacy-preserving record linkage using bloom filters.
BMC medical informatics and decision making,
9(1):41, 2009.

[11] R. Schnell, T. Bachteler, and J. Reiher. A novel
error-tolerant anonymous linking code. German
Record Linkage Center, 2011.

[12] S. Trepetin. Privacy-preserving string comparisons in
record linkage systems: a review. Information Security
Journal: A Global Perspective, 17(5-6):253–266, 2008.

[13] D. Vatsalan, P. Christen, and V. S. Verykios. A
taxonomy of privacy-preserving record linkage
techniques. Information Systems, 38(6):946–969, 2013.

	Introduction
	Related Work
	PPRL encoding techniques
	String encoding
	Record encoding

	Private Indexing

	MapReduce Framework
	Performance Evaluation
	Conclusions
	References

