
Scalable and Hierarchical Distributed
Data Structures for Efficient Big Data

Management

Spyros Sioutas1, Gerasimos Vonitsanos1, Nikolaos Zacharatos1,
and Christos Zaroliagis1,2(B)

1 Department of Computer Engineering and Informatics,
University of Patras, 26504 Patras, Greece

{sioutas,mvonitsanos,zacharato,zaro}@ceid.upatras.gr
2 Computer Technology Institute and Press “Diophantus”,

Patras University Campus, 26504 Patras, Greece

Abstract. In this work, we survey state of the art hierarchical dis-
tributed data structures for the efficient handling of big data, in sce-
narios where the dominant operation is range queries which have to be
answered in real-time. Our main focus is on structures that exhibit stable
scalability.

1 Introduction

A great challenge faced by most organizations nowadays concerns their data
management. Due to the data endlessly flowing in from sources such as social
media activities, Internet of Things (IoT) [6] devices, online streaming services,
location based web information, mobile phone usage and consumer preferences
expressed on the web, a data-driven revolution is taking place. Analyzing all
that information fast can lead to:

– Better decision making based on data-driven insights
– Increased productivity
– Reduced production cost
– Quick fraud detection
– Better customer service

In order to achieve efficient big data management, several infrastructures have
been developed. The most popular ones are decentralized systems and MapRe-
duce [5] models.

Decentralized systems, although existed for many years, they have become
very popular nowadays and are promoted as the future of Internet network-
ing. They are widely used for sharing resources and store very large data sets,
using systems of small computers instead of large costly servers. Typical exam-
ples include cloud computing environments, peer-to-peer (P2P) systems and the
Internet.
c© Springer Nature Switzerland AG 2020
I. Brandic et al. (Eds.): ALGOCLOUD 2019, LNCS 12041, pp. 122–160, 2020.
https://doi.org/10.1007/978-3-030-58628-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58628-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-58628-7_8

Scalable and Hierarchical Distributed Data Structures for Big Data 123

In decentralized systems, data are stored at the network nodes and the most
crucial operations are data search and data updates. A decentralized network is
represented by a graph, a logical overlay network, where its nodes correspond to
the network nodes, while its arcs may not correspond to existing communication
links, but to communication paths. The complexity (cost) of an operation is
measured in terms of the number of messages issued during its execution (internal
computations at nodes are considered insignificant). A typical assumption is
that messages between nodes are of constant size, they are sent through the
communication links, and that communication is asynchronous. Moreover, there
is an upper bound on the time needed for a node to send a message and receive an
acknowledgement. This facilitates the identification of communication problems
(e.g., when communication links or nodes are down).

With respect to its structure, the overlay supports the operations Join (of a
new node v; v communicates with an existing node u in order to be inserted into
the overlay) and Departure (of an existing node u; u leaves the overlay announc-
ing its intent to other nodes of the overlay). Moreover, the overlay implements
an indexing scheme for the stored data, supporting the operations Insert (a
new element), Delete (an existing element), Search (for an element), and Range
Query (for elements in a specific range). Throughout this paper, we shall denote
by N the number of network nodes and by n the size of data (N � n).

In terms of efficiency, an overlay network should address the following issues:

– Fast queries and updates: updates and queries must be executed in a minimal
number of communication rounds, using a minimal number of messages.

– Ordered data: keeping the data in order facilitates the implementation of
various enumeration queries when compared to a simple dictionary that can
only answer membership queries.

– Size of nodes: the size of a node is the routing information (links and related
data) maintained by this node and it is not related to the number of data
elements stored in it. Keeping the size of a node small allows for more efficient
update operations, but in general reduces the efficiency of access operations
while aggravating fault tolerance.

– Fault tolerance: the structure should be able to discover and heal failures at
nodes or links.

– Load balancing: it refers to the distribution of data elements on the nodes.
The goal of load balancing is to distribute equally the n elements stored in the
N nodes of the network (typically N � n). That is, if there are N nodes and
n data elements, ideally each node should carry approximately k elements,
where �n/N� ≤ k ≤ �n/N� + 1.

MapReduce is a programming model and an associated implementation for
processing and generating big data sets with a decentralized algorithm on a
cluster (collection of compute servers or nodes), with a designated node as master
and the other nodes designated as workers. A MapReduce task consists usually
of the following five-step computation.

124 S. Sioutas et al.

1. Partition: input is being split and assigned to each worker.
2. Map: each worker node applies the map function to its local data, and writes

the output to a temporary storage.
3. Shuffle: worker nodes redistribute data based on the output keys (produced

by the map function), such that all data belonging to one key is located on
the same worker node.

4. Reduce: worker nodes now process each group of output data, per key, in
parallel.

5. Join Results: workers combine their local output data to create the final
output result.

The reason why both decentralized architecture networks and MapReduce
models became so popular is that in order to increase the computing power of
the network/cluster, you can simply add more nodes, so that tasks are divided
to more nodes and therefore executed faster, compared with the client-server
model, where a brand new server machine is required.

Range query processing in decentralized network environments is a notori-
ously difficult problem to solve both efficiently and scalably. In cloud infrastruc-
tures, a most significant and apparent requirement is the monitoring of thousands
of computer nodes, which often requires support for range queries: consider range
queries issued in order to identify under-utilized nodes so as to assign them more
tasks, or to identify overloaded nodes so as to avoid bottlenecks in the cloud.

Fig. 1. Two dimensional range query (Color figure online)

The most fundamental, one-dimensional query (also known as the interval
query) involves retrieving all records x where their value is between an upper
bound b1 and a lower bound b2, that is, b1 ≤ value(x) ≤ b2. Evidently, gen-
eralizations to higher dimensions are derived easily. A multi-dimensional query

Scalable and Hierarchical Distributed Data Structures for Big Data 125

involves retrieving all records x = (x1, . . . , xd) for which bi1 ≤ value(xi) ≤ bi2, ∀
1 ≤ i ≤ d, where d denotes the number of dimensions, bi1 and bi2 denote the lower
and upper bounds on each dimension of the query respectively, and value(xi)
denotes the value of the elements in the i-th dimension. Each query forms a
hyper-rectangle of d dimensions which contains all the elements that satisfy it.
For instance (cf. Fig. 1), the two-dimensional range query forms a rectangle on
the plane. Red points represent those elements that satisfy the query.

The two dimensional query is very popular because it can answer geographical
as well as trajectory queries. Multi-dimensional queries are typically used when
browsing online for products, where every filter that you apply is one more
dimension on the range query. Many applications require the management and
the analysis of massive multi-dimensional datasets.

Overlay structures for decentralized systems can be divided in two big cate-
gories: hash-based structures and hierarchical-based structures. Both have their
pros and cons, therefore choosing one highly depends on the needs of the users
and the applications considered. Hash-based structures (e.g., CAN [15], Chord
[19]) use probabilistic methods to distribute the workload among nodes equally,
have good exact match query times, but slow range query times [22] since hashing
destroys the ordering. On the other hand, hierarchical-based structures support
range queries more naturally and efficiently as well as a wider range of operations,
since they maintain the ordering of data, but lack the simplicity of hash-based
systems.

Due to the importance of the range query problem, we focus in this work
on hierarchical overlay structures that support directly range and more complex
queries. The main goal of this work is to present and review state-of-the-art
structures for efficient big data management that exhibit stable scalability.

Over the last years, many data structures have been implemented to address
the range query problem on decentralized systems as well as to address the afore-
mentioned efficiency issues of overlay structures. In this framework, we review
four important hierarchical structures with their variations, and a ring based
one. In particular, we review the following structures.

1. Hierarchical Structures
(a) BATON [9] and BATON* [8]
(b) D2-Tree [3] and D3-Tree [16]
(c) ART [18] and ART+ [17]
(d) SPIS (SPark-based Interpolation Search Tree) [14]

2. Ring-based structures
(a) P-Ring [4]

The rest of the paper is organized as follows. In Sect. 2 we survey the most
popular hierarchical data structures, while in Sect. 3 we survey the ring-based
structures. In Sect. 4 we provide a comparison of all structures. We conclude in
Sect. 5.

126 S. Sioutas et al.

2 Hierarchical Tree-Based Structures

In this section, we present the hierarchical tree-based structures BATON [9],
BATON* [8], D2-Tree [3], D3-Tree [16], ART [18], ART+ [17], and SPIS [14].

2.1 BATON

2.1.1 Structure
The Balance Tree Structure for P2P Networks (BATON) [9] is the first overlay
network based on a balanced tree structure that can support both exact match
and range queries. It is based on a binary balanced tree structure in which each
node of the tree is maintained by a node. Each node in the network (cf. Fig. 2)
stores a link to its parent, a link to its left child, a link to its right child, a link
to its left adjacent node, a link to its right adjacent node, a left routing table to
selected nodes on its left hand side at the same level, and a right routing table to
selected nodes on its right hand side at the same level. While the tree structure
is binary, it has scalability and robustness similar to that of the B-tree.

Fig. 2. A node of the BATON structure

Each node of the BATON structure is associated with a level and a number.
The level of the root node is 0, its immediate children are at level 1 and so
on. The level of any node is one greater than the level of its parent. Hence the
maximum level number in the tree is one less than the height of the tree (which
can not be greater than 1.44 log N [11]).

At level L there are at most 2L nodes in a binary tree. The nodes are num-
bered from 1 to 2L (from left to right) within each level, regardless of whether
there is a node currently instantiated at that position. The pair of level and
number precisely determine the location of a node in the binary tree.

Every physical compute node has an IP address or some other network ID,
which can be used to locate the node and communicate with it. Thus every node

Scalable and Hierarchical Distributed Data Structures for Big Data 127

has a logical ID, which consists of number and level, and a physical ID which
consists of its IP address.

The links that each node maintains are the physical IDs of each node. Links
to selected neighbors are maintained by means of two special sideway routing
tables: a left routing table and a right routing table. Each of these routing tables
contains links to nodes at the same level with numbers that are less (respectively
greater) than the number of the source node by a power of 2. The j-th element
in the left (right) routing table at node numbered m contains a link to the node
at number m − 2j−1 (respectively m + 2j−1) at the same level in the tree. If
there is no such node, an entry is still made in the routing table, but marked as
null. A routing table is considered full if all valid links are not null.

Adjacency links are based on an in-order traversal of the tree. Given a node
x, the node immediately prior to it in the traversal is left adjacent to it, and the
node immediately after x is right adjacent to it. Note that adjacent nodes may
be at different levels of the tree.

2.1.2 Node Join/Departure
A new node that wants to join the network, must know at least one node inside
the network. The former sends to the latter a JOIN request which is being carried
out in two phases. The first phase is to determine where the new node should
join. The second phase is to insert the new node at a specific place and update
all the necessary links of the network. The complexity of this action is log N
steps for finding a place for the joining node and O(log N) cost for updating the
routing tables (which is more efficient than other P2P systems, which usually
require O(log2 N) for updating the routing tables).

Only leaf nodes can voluntarily leave the network, and only if their departure
will not affect the tree balance. In any other case, any node that wishes to leave
the network must find a replacement for itself, which can only be a leaf whose
absence does not affect the tree balance. If the leaf node can leave without
disrupting the tree balance, it sends a LEAVE message to is neighbor nodes, so
they can update their routing tables. If a leaf node (that can not leave because
it will disrupt the tree balance) or a inner node wishes to leave, then it sends a
FIND REPLACEMENT message to the network starting from the same level
and moving down in order to find a leaf node that will take their place. This
process takes at most as many steps as the height of the tree which is O(log N).
The BATON needs log N steps to find a replacement node and O(log N) cost
for updating the routing tables.

2.1.3 Fault Tolerance
In case of a node failure, the node’s IP will become unreachable. The first node
to discover an unreachable IP must report it to its father which takes care to
manage the node failure and update the routing tables.

It has already been described how a node failure is handled. Fault tolerance
denotes the ability of the BATON structure to continue its operation, by routing
the messages around the missing node. There are two axes in which messages

128 S. Sioutas et al.

can travel in BATON, vertical and horizontal. The horizontal axis uses the left
and right routing tables links of the nodes, while the vertical axis uses the par-
ent/children and adjacency links. The horizontal axis is naturally fault tolerant,
since there is a logarithmic expansion of links and therefore a larger number of
paths. The vertical axis is rendered fault tolerant because it can create paths that
include different levels of the tree. These additional links that BATON stores
suffice to provide efficient recovery even with a large number of node failures.

2.1.4 Load Balancing
The BATON is also equipped with a load balancing mechanism. Its goal is to
adjust the range of values in the nodes in order to achieve an equal computational
load across the network. This is accomplished through data migrations between
adjacent nodes (for internal and leaf nodes), and node re-position in the tree
(only for leaf nodes).

Fig. 3. Range of values for each node of BATON

2.1.5 Queries
In order to answer exact and range queries, a range (or interval) of values is
assigned to each node (both leaf and internal). The range of values managed by
a node is required to be to the right of the range managed by its left subtree
and less than the range managed by its right subtree. Figure 3 shows an instance
of BATON for range values 0 − 100. It is similar to the B+-tree indexing, but
internal nodes also manage a range of data values directly. The queries do not
start from the root, but from a random node of the structure.

Scalable and Hierarchical Distributed Data Structures for Big Data 129

The search operation in BATON first checks the horizontal axis (using right
and left routing tables’ links) then the vertical axis (using parent/children &
adjacency links) to locate the correct node. A search operation for key k issued
at node x works as follows. First, node x checks its own range. If k is within its
range, the local index is searched and the search is stopped. Otherwise, it checks
its right (left) routing table, if k is greater (less) than its own range to find the
rightmost (leftmost) node y that its lower (upper) bound is less (greater) than
k. Node x forwards the request to y. This step is performed until no node in the
routing tables satisfies the condition. The last node that completed the process
now forwards the request to its right (left) child if it exists or its right (left)
adjacent node until the correct node is found. The complexity of this process is
O(log N).

Range query works in the same manner. It follows the same steps, until it
finds an intersection of the node range value (interval) with the searched range.
Once the intersection is found, partial answers for the range query have always
been answered. It then continues to the left and/or to the right, following the
adjacency links to cover the remainder search range. Its complexity is O(log N)
to find the intersection and O(1) to cover each of the remainder nodes. An answer
to a range query that its range is spread across M nodes, requires O(log N +M)
steps.

2.1.6 Experimental Evaluation
In [9], an experimental evaluation was carried out in a network containing 1000 to
10000 nodes. For a network of size N , 1000 ·N values were inserted in batches in
the domain of [1, 100000000). For each test, 1000 exact queries and 1000 range
queries are executed and the average cost is taken. For comparison purposes,
CHORD [19] and a Multiway-tree proposed in [12] (which is a simplified version
of BATON) were used.

Fig. 4. Updating routing tables in BATON, CHORD and Multiway trees

130 S. Sioutas et al.

Fig. 5. BATON, CHORD and multiway trees: (a) exact match query; (b) range query

Figures 4 and 5 compare the number of nodes (x-axis) with the number of
messages exchanged (y-axis) for routing table updating, exact match and range
queries on BATON, CHORD and Multiway-tree structures. We observe that the
exchange of messages in BATON remain almost stable, regardless of the number
of the network size.

2.2 BATON*

2.2.1 Structure
BATON* [8] is very similar to the BATON structure, but with some core differ-
ences.

Each node in BATON* can have up to m children (also called fanout) instead
of two as in the original structure. In addition to maintaining links to children,
the parent node also has to keep track of the ranges of values managed by their
children.

Neighbor routing tables at a node maintain links to selected neighbor nodes
at the same level which have a distance equal to d · mi, where d = 1, ..,m − 1
and i ≥ 0, from the node itself. For example, in Fig. 6, the left routing table of
node o maintains links to n,m, l, k, g (shown as purple), which have a distance
equal to 1 ·40, 2 ·40, 3 ·40, 1 ·41 and 2 ·41, respectively. Similarly, the right routing
table of o maintains links to nodes p, q, r, s. The maximum number of links in
routing tables of a node at level L is bounded by (m − 1) · L.

For a BATON* structure of fanout m, a range of values managed by a node
is greater than the ranges of values managed by the first �m/2� children nodes
while less than ranges of values managed by the last �m/2	 children nodes. For
instance, in Fig. 6, the range of values managed by o is greater than those of
y, x, n, but smaller than those of z, d, p, q.

The cost of search in BATON* becomes O(logm N), as expected. Moreover,
the cost of updating routing tables becomes O(m · logm N). It is clear that by
increasing the fanout of a node to reduce the cost of the search, the size of the
routing tables is increased, and hence the cost of table updating.

Scalable and Hierarchical Distributed Data Structures for Big Data 131

Fig. 6. BATON* structure

2.2.2 Node Join/Departure
A node of the BATON* can only accept a new joining node as a child if it has
full neighbor routing tables but does not have m children. Otherwise, it has to
forward the join request to either its parent, its lower level adjacent node, or
a neighbor node that does not have enough children. In a similar manner, a
node can only leave its current position if it does not cause the tree to become
unbalanced. Otherwise, it has to find a replacement node by sending a leave
request to its lower level adjacent node.

The cost of finding a place for a new joining node or finding a replacement
node is O(logm N) since the height of the tree is O(logm N). The cost of updating
the routing table is O(m · logm N) for their neighbor routing tables since the
maximum number of neighbor nodes a node can have is O(m · logm N), and
each of these has to add or remove an entry. Also a newly inserted node has
to construct its own routing tables, with up to O(m · logm N) entries, each of
which can be obtained in constant time through its parent. In addition, there is
a parent link and two adjacency links to create/delete. There can be no children
links for a node being joined or departed. Summing these up, the total cost of
node join or departure is O(m · logm N).

2.2.3 Fault Tolerance
Fault tolerance in BATON* is very similar to that of its predecessor (BATON).
Having even more links on the vertical axis, routing around missing nodes
becomes much easier and cheaper, thus making BATON* highly fault tolerant.

2.2.4 Load Balancing
Load balancing in BATON* has two forms. Exchanging data with adjacent
nodes, or remove underloaded nodes and place them in overloaded regions of
the tree. The former is the easiest and cheapest form of load balancing, however
it will not suffice when there are global imbalances. In occasions like these, the
latter form of load balancing is used.

132 S. Sioutas et al.

Since BATON* employs the tree structure, internal nodes cannot be easily
removed, and hence the latter form of load balancing is only possible for leaf
nodes. In general, if a node is overloaded, it first tries to do load balancing with
its adjacent nodes. If there is no lightly loaded adjacent nodes, it then tries to
find a lightly loaded leaf node to do load balancing. Once such a node is found,
that node has to perform a forced leave from its current position and a forced
join to the new position to share the workload of the overloaded node.

2.2.5 Queries
Searching in BATON* is very similar to BATON. The sole difference is that
when the search request has to be forwarded to a suitable child node, there are
m/2 options instead of two.

A node u receiving a search request checks to see if there is a neighbor node
it knows about which is more appropriate to handle the search. If the searched
value is greater than u’s upper bound, while there is no right hand side neighbor
node of u whose lower bound is less than the searched value, then u checks to find
the most suitable child to forward the request. That is the rightmost child whose
lower bound is less than the searched value. Similarly, if the searched value is
less than the node’s lower bound while there is no left hand side neighbor node
whose upper bound is greater than the searched value, then the node has to try
to find the leftmost child whose upper bound is greater than the searched value,
to forward the search request.

The range query algorithm is modified in an analogous way.

Fig. 7. Effect of varying fanout values in BATON*

2.2.6 Experimental Evaluation
In [8], an experimental evaluation was carried out in networks consisted of 1000
to 10000 nodes and the fanout m used was from 2 to 10. For a network of size
N , 1000 · N values were inserted in batches in the domain of [1, 1000000000).
For each test, 1000 exact queries and 1000 range queries are executed and the
average cost is taken.

Figure 7 shows the effect of the different fanouts on an exact match query,
on a range query and on the cost of updating routing tables. It is clear that by

Scalable and Hierarchical Distributed Data Structures for Big Data 133

increasing the fanout, exact match queries and range queries become faster at
the expense of slower routing table updating. In order for BATON* to become
really efficient, one has to tune the fanout to his own needs to get the best
results.

Figure 8 shows how much node failure BATON and BATON* can withstand
before they are unable to complete a lookup operation. It is obvious that the
larger the fanout, the more fault tolerant the structure is.

Fig. 8. Lookup operations with node failures in BATON and BATON*

2.3 D2-Tree

2.3.1 Structure
The Deterministic Decentralized tree (D2-Tree) [3] is a hierarchical overlay con-
sisting of two levels as shown in Fig. 9. The upper level of the overlay is a perfect
binary tree (PBT). The leaves of the tree are representatives of the buckets that
constitute the lower level of the overlay. Each bucket is a set of O(log N) nodes
and it is structured as a doubly linked list. Each node of the bucket points to the
node which is a leaf of the PBT and is called the representative of the bucket.
Additionally it maintains its routing table w.r.t the nodes of all buckets.

Each node in the upper binary tree, maintains an additional set of links to
other nodes apart from the standard links which form the tree. More specifically
each node v in the tree maintains the following links (cf. Fig. 10):

– Links to its father (if there is one) and its children.
– Links to its adjacent nodes based on an in-order traversal of the tree.
– Links to its leftmost and rightmost leaves of its subtree.
– Links to nodes at the same level as v. These links facilitate an exponential

search on the nodes of the same level. Assume that node v lies at level l. In
a binary tree, the maximum number of nodes at level l is equal to 2l. Node v
maintains at most 2l links: l links to nodes to the right and l links to nodes
to the left. The links are distributed in exponential steps, that is the first link

134 S. Sioutas et al.

Fig. 9. The D2-Tree structure

Fig. 10. A D2-Tree node

points to a node (if there is one) 20 positions to the left (right), the second 21

positions to the left (right), and the i-th link 2i−1 positions to the left (right).
These links constitute the routing table of v.

Regarding the complexity bounds, the D2-Tree:

– uses O(log N) space per node;
– achieves a deterministic O(log N) query bound;
– achieves a deterministic (amortized) O(log N) update bound for elements as

well as for node joins and departures;
– exhibits a deterministic (amortized) O(log N) bound for load-balancing;
– supports ordered data queries optimally, and tolerates node failures.

Scalable and Hierarchical Distributed Data Structures for Big Data 135

2.3.2 Node Join/Departure
When a node z makes a join request to v, then this node is forwarded to its left
adjacent leaf u. Then, node z is added to the doubly linked list representing the
bucket of u by manipulating a constant number of links. The routing table of z
is updated.

When a node v leaves (departs from) the network, then it is replaced by
its left adjacent node u (if there is no left adjacent node, then the right one is
chosen), which in turn is replaced by its first node z in its bucket as shown in
Fig. 11. Link and data information are copied from v to u and from u to z.

When a node v is discovered to be unreachable, its left adjacent node u is
first located. This is accomplished by traversing the path to the rightmost leaf
starting from the left child of v. Node u fills the gap of v and the first child z
in the bucket of u fills the gap left by u. The data contents of u are not moved
to another node, but the navigation data (routing tables and other links) are
moved to node z that takes its place. Node u has its routing tables recomputed,
its links to adjacent nodes set, and the links to the rightmost and leftmost leaves
of its subtree are copied from its left and right child respectively.

The join and departure of nodes may cause the size of the buckets to be
uneven, which in the long run renders the structure unbalanced. To control the
size of the buckets, a weight-based approach is used.

2.3.3 Fault Tolerance
If a node v discovers that node u is unreachable, then it contacts a sibling of
u through the routing tables of the siblings of v. This sibling of u is able to
reconstruct all links of node u and a node departure of u is initiated, which
resolves this failure.

Fig. 11. D2-tree: To the left (right), the join of z (departure of u) is depicted. The
dotted labeled arrows represent the movement of the nodes denoted by the label.

136 S. Sioutas et al.

Due to the way the search operation is implemented, near to root nodes are
not crucial, and their failure will not cause more problems that the failure of any
other node.

2.3.4 Load Balancing
In the D2-Tree, the index from the overlay structure is separated using the
load balancing mechanism. The number of elements per node is dynamic w.r.t.
node joins and departures and it is controlled by the load-balancing mechanism.
Moreover, the number of nodes of the perfect binary tree is not connected by any
means to the number of elements stored in the structure. The overlay structure
supports the operations of node join and node departure, while at the same time
it tackles failures of nodes whenever these are discovered.

The load balancing technique of D2-Tree distributes almost equally the ele-
ments among nodes by making use of weights. Weights are used to define a metric
of load balance, which shows how uneven the load is between nodes. When the
load is uneven, then a data migration process is initiated to equally distribute
elements.

The load balancing technique can be described in two steps. The first step
is a mechanism that allows efficient local updates of weight information when
elements are added or removed at the leaves, which is necessary to avoid hotspots,
and the next step is the load-balancing scheme in the tree overlay.

Assume that the overlay structure is denoted by T . When an element is
added/removed to/from a leaf u in T , the weights on the path from u to the
root must be updated. Assume that node v lies at height h and its children
v1, v2, ..., vs are at height h−1. The variable virtual weight b(v) of v is defined as
the weight stored in node v. In particular, for a node v the algorithm maintains
the virtual weight invariant that b(v) is approximately equal to e(v)+

∑s
i=1 b(vi),

where e(v) denotes the number of elements residing in a node v.
Assume that an update takes place at leaf u. The path from u to the root is

traversed until a node z is found, for the virtual weight invariant holds. Let v be
the child of z, for which the virtual weight invariant does not hold. The weights
are then recomputed in the path from u to v. Node’s z weight information is
updated by taking the sum of the weights written in its children plus the number
of elements residing at z.

The load balancing mechanism redistributes the elements among nodes when
the load between nodes is not distributed equally enough, but it does not tam-
per with the structure of T . For ease of exposition, assume that T is binary
(the algorithm generalizes easily for trees whose nodes have a O(1) number of
children).

Let node v at height h have two children p and q at height h − 1. The
density d(v) of v denotes the mean number of elements per node in the subtree
of v. Let c(p, q) = d(p)

d(q) denotes the criticality of the two brother nodes p and
q, representing their difference in densities. The algorithm maintains also the
criticality invariant, namely that 1

c ≤ c(p, q) ≤ c, for some 1 < c ≤ 2. That is,

Scalable and Hierarchical Distributed Data Structures for Big Data 137

there are no large differences between densities. For instance, choosing c = 2
implies that the density of any node can be at most half of that of its brother.

Combining the two steps, each time an update takes place at leaf u, weights
in the path from u to the root are updated until a node z is found for which
the virtual weight invariant holds. Weights from u to z’s child are recomputed.
Then, the highest ancestor w of u is located where the criticality invariant is
violated, and a node redistribution between w and his brother takes place.

2.3.5 Queries
The search for an element a in the overlay may be initiated from any node v at
level l that has range of values [xv, x

′
v]. Let z be the node with range of values

containing a. Assume without loss of generality that x′
v < a. Then, by using the

routing tables of v, level � is searched for a node u with right sibling w (if there
is such a sibling) such that x′

u < a and xw > a unless a is in the range of u
and the search terminates. This step has O(�) cost, since it simulates a binary
search.

If the search continues, then node z will either be an ancestor of u or w or in
the subtree rooted at the right child r(u) of u or in the subtree rooted at the left
child l(w) of w. First, the rightmost leaf r of u and the leftmost leaf l of w are
located. If x′

r ≥ a then a is in the subtree of r(u) and symmetrically if xl ≤ a
then a is in the subtree of l(w). Note that at most one of these cases may hold
for a. For instance, if x′

r ≥ a then an ordinary top down search from node r(u)
suffices to find z in O(log N) steps (or in its bucket). Symmetrically, this is true
also for l(u). However, if both cases do not hold, then z is an ancestor of u or w.
In this case a bottom-up search is initiated from u towards the root. This step
can be carried out in O(log N) steps as well.

A range query [a, b] initiated at a node v, invokes a search operation for
element a. Node u that contains a returns to v all elements in this range. If
all elements of u are reported, then the range query is forwarded to the right
adjacent node (based on the in-order traversal) and continues until an element
larger than b is reached for the first time.

2.4 D3-Tree

The Dynamic Deterministic Decentralized Tree (D3-Tree) [16] is an extension of
D2-Tree that adopts all of its strengths and extends it in two respects: it intro-
duces an enhanced fault tolerant mechanism and it is able to answer efficiently
search queries when massive node failures occur. D3-Tree achieves the same
deterministic (worst-case or amortized) bounds as D2-Tree for search, update
and load-balancing operations, and answers search queries in O(log N) amor-
tized cost under massive node failures.

The D3-Tree has a significantly small redistribution rate (structure redistri-
butions after node joins or departures), while element load-balancing is rarely
necessary. It also achieves a significant success rate in element queries, even
under massive node failures.

138 S. Sioutas et al.

2.4.1 Structure
Similar to the D2-Tree, the D3-Tree consists of two levels. The upper level is
a Perfect Binary Tree (PBT) of height O(log N). The leaves of this tree are
representatives of the buckets that constitute the lower level of the D3-Tree.
Each bucket is a set of O(log N) nodes which are structured as a doubly linked
list as shown in Fig. 9. Each node v of the D3-Tree maintains an additional set of
links (described below) to other nodes apart from the standard links which form
the tree. The first four sets are inherited from the D2-Tree, while the fifth set is
a new one that contributes in establishing a better fault-tolerance mechanism.

– Links to its father and its children.
– Links to its adjacent nodes based on an in-order traversal of the tree.
– Links to nodes at the same level as v. The links are distributed in exponential

steps; the first link points to a node (if there is one) 20 positions to the left
(right), the second 21 positions to the left (right), and the i-th link 2i−1

positions to the left (right). These links constitute the routing table of v and
require O(log N) space per node.

– Links to leftmost and rightmost leaf of its subtree. These links accelerate
the search process and contribute to the structure’s fault tolerance when a
considerable number of nodes fail.

– For leaf nodes only, links to the buckets of the nodes in their routing tables.
The first link points to a bucket 20 positions left (right), the second 21 posi-
tions to the left (right) and the i-th link 2i−1 positions to the left (right).
These links require O(log N) space per node and keep the structure fault
tolerant, since each bucket has multiple links to the PBT.

2.4.2 Node Joins/Departures
When a node z makes a join request to v, v forwards the request to an adjacent
leaf u. If u is a PBT node, the request is forwarded to the left adjacent node,
w.r.t. the in-order traversal, which is definitely a leaf (unless v is a leaf itself).
In case v is a bucket node, the request is forwarded to the bucket representative,
which is a leaf. Then, node z is added to the doubly linked list of the bucket
represented by u. In node joins, a simplification is made, that the new node is
clear of elements and it is placed after the most loaded node of the bucket. Thus
the load is shared and the new node stores half of the elements of the most
loaded one.

When a node v leaves the network, it is replaced by an existing node, so
as to preserve the in-order adjacency. All navigation data are copied from the
departing node v to the replacement node, along with the elements of v. If v is
an internal PBT node, then it is replaced by the first node z in its bucket. If v
is a leaf, then it is directly replaced by z. Then v is free to depart.

2.4.3 Node Redistribution
Node redistribution guarantees that if there are z nodes in total in the y buckets
of the subtree of v, then after the redistribution each bucket maintains either
�z/y� or �z/y� + 1 nodes. The redistribution in the subtree v works as follows.

Scalable and Hierarchical Distributed Data Structures for Big Data 139

Assume that the subtree v at height h has K buckets. A traversal of all the
buckets is carried out to determine the exact value |v|, which denotes the number
of nodes in the buckets of the subtree of v. The redistribution starts from the
rightmost bucket b and it is performed in an in-order fashion so that elements
in the nodes remain unaffected. Assume that b has q extra nodes that must be
transferred to other buckets. Since bucket b maintains a link to the next bucket
on the left, b′, the extra nodes q are transferred there, while the internal nodes of
PBT are also updated (because the in-order traversal must remain untouched).
Finally, bucket b informs b′ to take over, and the same procedure applies again
with b′ as the source bucket. The case where q nodes must be transferred to
bucket b from b′ is symmetric. In the case that b′ does not have the q nodes that
b needs, b′ has to find them on the remaining buckets on the left, so it travels
towards the leftmost bucket of the subtree until q ≤ ∑s

i=1 |bi|, where |bi| is the
size of the i-th bucket on the left. Then, nodes of bs move towards b′ one bucket
at a time, until it goes to b′ and finally into b.

2.4.4 Load Balancing
The load balancing technique in a subtree v (with |v| nodes in the subtree) is
carried out as follows. A bottom-up calculation of the weights in all nodes of v
is performed, to find w(v) of v. The algorithm starts from the right most node
w of the rightmost bucket b and it is performed in an in-order fashion. Assume
that w has m extra elements which must be transferred to node w′.

– If w is a bucket node, w′ is its left node, unless w is the first node of the
bucket and then w′ is the bucket representative.

– If w is a leaf node, then w′ is the left in-order adjacent of w.
– If w is an internal binary node, then its left in-order adjacent is a leaf and w′

is the last node of its bucket.

The first m elements removed from w and are added to end of the element queue
of w′, in order to preserve the indexing structure of the tree. The ranges of both
w and w′ nodes are updated respectively. The case where m elements must be
transferred from w′ to w is symmetric. When w′ contains less elements than
the m elements that w needs, it travels towards the leftmost node of the subtree
following the in-order traversal, until m ≤ ∑s

i=1 e(ui), where e(ui) is the number
of elements of the i-th node on the left. Then the elements of us are transferred
to us−1, from us−1 to us−2 and so on, until the m elements are moved from w′

to w.

2.4.5 Fault Tolerance
When a node w discovers that v is unreachable, the network initiates a node
withdrawal procedure by reconstructing the routing tables of v, in order for v
to be removed smoothly, as if v was departing. If v belongs to a bucket, it is
removed from the structure and the links of its adjacent nodes are updated. In
case v is an internal binary node, its right adjacent node u is first located, in
order to replace v.

140 S. Sioutas et al.

If v is a leaf, then it should be replaced by the first node u in its bucket.
In the D2-Tree, if a leaf was found unreachable, contacting its bucket would be
infeasible, since the only link between v and its bucket would have been lost. This
weakness was eliminated in the D3-Tree, by maintaining multiple links towards
each bucket, distributed in exponential steps (in the same way as the horizontal
adjacency links). This way, when w is unable to contact v, it contacts directly
the first node of its bucket u and u replaces v. Regardless of node’s v position
in the structure, the elements stored in v are lost.

2.4.6 Queries
The search for an element a may be initiated from any node v at level l. If v
is a bucket node, then if its range contains a the search terminates, otherwise
the search is forwarded to the bucket representative, which is a binary node.
If v is a PBT node, then let z be the node with range of values containing a,
a ∈ [xz, x

′
z] and assume without loss of generality that x′

v < a. The opposite case
is completely symmetric. A horizontal binary search is performed at level l using
the routing tables of v. More specifically, the rightmost links of the routing tables
are followed until a node q is found, such that xq > a, or until the rightmost
node qr of level l is reached. If the first case holds, a is between q and the last
visited node in the left of q. The search continues to the left, decreasing the
travelling step by one. The algorithm continues travelling left and right while
gradually decreasing the travelling step until it finds a node u with sibling w (if
there is such sibling) such that x′

u < a and xw > a. If the second case holds,
then x′

qr < a and according to the in-order traversal, the search continues to the
right subtree of qr. If a is in the range of any of the visited nodes of level l, the
search terminates.

Having located nodes u and w, the horizontal search is terminated and a
vertical search is initiated. Node z will either be the common ancestor of u and
w, or it will be in the right subtree rooted at u, or in the left subtree rooted
at w. Node u contacts the rightmost leaf y of its subtree. If xy > a then an
ordinary top down search from node u will suffice to find z. Otherwise node z is
in the bucket of y, or in its right in-order adjacent node (this is also the common
ancestor of u and w), or in the subtree of w.

Overall, the search for an element a is carried out in O(log N) steps.
A range query [a, b] initiated at a node v, invokes a search operation for

element a. Node z that contains a returns to v all elements in its range. If
all elements of u are reported, then the range query is forwarded to the right
adjacent node (based on the in-order traversal) and continues until an element
larger than b is reached for the first time.

2.4.7 Queries with Node Failures
In a network with node failures, an unsuccessful search for element a refers to the
cases where either z (the node with range of values containing a, i.e., a ∈ [xz, x

′
z])

is unreachable, or there is a path to z but the search algorithm can not follow it
to locate z due to failures of intermediate nodes. D2-Tree provides a preliminary

Scalable and Hierarchical Distributed Data Structures for Big Data 141

fault-tolerant mechanism that succeeds only in the case of a few node failures.
That mechanism cannot deal with massive node failures (also known as churn)
i.e., its search algorithm may fail to locate a. The difference in D3-Tree is that
during the horizontal search, if the most distant right adjacent of v located in
position 2j is unreachable, v keeps contacting its right adjacent nodes by checking
positions 2j−1, 2j−2, . . . (i.e., by decreasing repeatedly the exponent by 1), until
it finds a node q which is reachable.

Fig. 12. Example of vertical search between u and unreachable w

In case x′
q < a the search continues to the right using the most distant right

adjacent of q. Otherwise, the search continues to the left and q contacts its most
distant left adjacent p which is in the right of v. If p is unreachable, q does
not decrease the exponent by 1, but contacts directly its nearest left adjacent
(at position 20) and asks it to search to the left. This improvement reduces the
number of messages that are meant to fail, because of the exponential positions
of nodes in routing tables and the nature of binary horizontal search.

A vertical search to locate z is always initiated between two siblings u and
w, which are either both active, or one of them is unreachable, as shown in
Fig. 12 where the left sibling u is active and w, the right one, is unreachable. In
both cases, the subtree of the active sibling is searched first, then the common
ancestor is contacted and then, if the other sibling is unreachable, the active
sibling tries to contact its corresponding child (right child for left sibling and
left child for right sibling). When the child is found the search is forwarded to
its subtree.

In general, when node u wants to contact the left (right) child of unreachable
node w, the contact is accomplished through the routing table of its own left
(right) child. If its child is unreachable (Fig. 12), then u contacts its father uf

and uf contacts the father of w, wf . Then wf contacts its grandchild through
its left and right adjacents and their grandchildren.

In the case where the initial node v is a bucket node, then if its range contains
a the search terminates, otherwise the search is forwarded to the bucket represen-
tative. If the bucket representative has failed, the bucket contacts its other repre-

142 S. Sioutas et al.

sentatives right or left, until it finds a representative that is reachable. Then the
procedure continues as described above for the case of a binary node.

2.4.8 Experimental Evaluation
In [16], an experimental evaluation was carried out in networks consisting from
1000 to 10000 nodes. For a size of network N , 1000 × N elements were inserted.
The number of passing messages between the nodes was used to measure the
performance of the system.

For Node Join/Departures. 2 × N nodes were updated. Figure 13 shows that
the D3-Tree update and redistribution mechanism achieves a better amortized
redistribution cost, compared to those of BATON, BATON* and P-Ring.

Cost of Queries with/without Node Failures. To measure the network perfor-
mance for the operation of single queries, experiments were conducted for each
N (1000 to 10000), performing 2M (M is the number of binary nodes) searches.
The search cost is shown in Fig. 14.

To measure the network performance for the operation of element search
with node failures, experiments were conducted for different percentages of node
failures: 10%, 20%, 30%, 40%, 50%, 75%. For each value of N considered (in
the range from 1000 to 10000) and node failure percentage, 2M searches were
performed. In order to get a better estimation of the search cost, a different set
of nodes was forced to fail each time. Figure 15 depicts the increase in search cost
when massive node failures take place in D3-Tree, BATON, different fanouts of
BATON* and P-Ring. The graph is irrelevant to N .

Fig. 13. Average messages for node updates

Scalable and Hierarchical Distributed Data Structures for Big Data 143

Fig. 14. Cost of queries without node failures

We observe that D3-Tree can withstand up to 50% node failure while keeping
the search cost low. P-Ring and BATON* (both of fanout/order 10) can with-
stand the same percentage of node failure, but the cost of search operation rises
above that of the D3-Tree after 30%. BATON can not handle the search oper-
ations after 20% of node failure, while BATON* (with fanout 6) can withstand
up to 40%.

Fig. 15. Cost of queries under node failure

144 S. Sioutas et al.

2.5 ART

The Autonomous Range Tree (ART) [18] is an exponential tree structure, which
remains unchanged with high probability (w.h.p.), and organizes a number of
fully dynamic buckets of nodes. The communication cost of query and update
operations is O(log2 b log N) hops, where b = 22

i

, i = 1, 2, 3... Moreover, ART is
a fully dynamic and fault-tolerant structure, which supports the join/leave node
operations in O(log log N) expected number of hops w.h.p.

2.5.1 Structure
One of the basic components of the ART structure is the Level Range Tree
(LRT). LRT will be called upon to organize collections of nodes at each level of
ART. LRT is built by grouping nodes having the same ancestor and organizing
them in a tree structure recursively. The innermost level of nesting (recursion)
will be characterized by having a tree in which no more than b nodes share
the same direct ancestor, where b is a double-exponentially power of two. Thus,
multiple independent trees are imposed on the collection of nodes. Figure 16
shows the LRT structure for b = 2.

The degree of the nodes at level i > 0 is d(i) = t(i), where t(i) indicates
the number of nodes at level i. It holds that d(0) = b and t(0) = 1. Let n be
w-bit keys. Each node with label i (where 1 ≤ i ≤ N) stores ordered keys that
belong in the range [(i − 1) ln n, i ln n − 1], where N = n/lnn is the number of
nodes. Each node is also equipped with a table named Left Spine Index (LSI),
which stores pointers to the nodes of the left-most spine. Furthermore, each
node of the left-most spine is equipped with a table named Collection Index
(CI), which stores pointers to the collections of nodes presented at the same
level (see pointers directed to collections of last level). Nodes having the same
father belong to the same collection.

Fig. 16. The LRT structure for b = 2

Scalable and Hierarchical Distributed Data Structures for Big Data 145

ART stores cluster of nodes only, each of which is structured as an inde-
pendent decentralized architecture (it can be BATON*, Chord, Skip-Graphs,
etc). The backbone-structure of ART is exactly the same with LRT. Moreover
instead of LSI, which reduces the robustness of the whole system, a Random
Spine Index routing table is introduced, which stores pointers to randomly cho-
sen cluster nodes.

2.5.2 Node Joins/Departures
The operation of join/leave of nodes inside a cluster-node is modelled as the
combinatorial game of balls in bins presented in [10]. In this way, for a random
sequence of join/leave node operations drawn from a distribution of density μ(·),
the expected load w.h.p. of each cluster-node never exceeds Θ(log N) in size and
never becomes zero. In skew sequences, though, the load of each cluster-node
may become Θ(N) in the worst case.

When a node wants to join the network, it is assumed that this node is
accompanied by a key, and that key designates the exact position in which
the new node must be inserted. If an empty node u makes a join request at a
particular node v (which is called entrance node) then there is no need to get to
a different cluster node than the one in which u belongs. Similarly, the algorithm
for the departure of a node u assumes that the departure can be made from any
node in the ART structure. This may not be desirable, and in many applications
it is assumed that the choice for departure of node u can be made only from this
node.

2.5.3 Fault Tolerance
In the ART structure, the overlay of cluster nodes remains unchanged in the
expected case w.h.p., so in each cluster node the algorithms for node failure and
restructuring are those inherited by the decentralized architecture used.

2.5.4 Queries
The search algorithm gets as input a node in which the query is initiated, and a
key to search. The first step of the algorithm is to locate the levels of the ART
where the desired cluster nodes are located. This is achieved by using the RSI
index. The next step is to locate the correct cluster node in the right level. The
first position of RSI (notated as RSI[1]) always points to the next cluster node
at the same level. Following RSI[1], the correct cluster node can be found at
the right level. The final step is to search inside the decentralized structure that
each cluster node holds to locate the key.

The Range search algorithm gets as input a node in which the query is
initiated and a range of keys [kl, kr]. It then calls the search algorithm on the
same node with key kl and by exploiting the order of the keys on each node it
performs a right linear scan until it finds a key K > kr.

146 S. Sioutas et al.

2.5.5 Experimental Evaluation
In [18] an experimental evaluation was carried out, including a detailed per-
formance comparison with BATON*. In particular, each cluster-node is imple-
mented as a BATON*. The network was tested with different number of nodes
ranging up to 500000. The data inserted was 2000 times the size of the network,
with numbers in the universe [1, ..., 1000000000] inserted in batches, following
beta, uniform and power law distributions. For each test, 1000 exact match
queries and 1000 range queries were executed, and the average costs of opera-
tions are calculated.

Fig. 17. Exact and range query times of BATON* and ART with b = 2, 16 for normal,
beta, uniform and power-law input distributions

We observe in Fig. 17 that except for the case where b = 2 (right part of
Fig. 17), the ART structure outperforms BATON* structure in both exact and
range queries by a wide margin.

2.6 ART+

ART+ [17] is similar to its predecessor ART, regarding the structure’s outer
level. Their difference, which introduces performance enhancements, lies in the
fact that each cluster-node of ART+ is structured as a D3-Tree.

2.6.1 Structure
The backbone structure of ART+ (cf. Fig. 18) is similar to the Level Range Tree
(LRT), in which some interventions have been made to improve its performance
and increase the robustness of the whole system. ART+ is built by grouping
cluster-nodes having the same ancestor and organizing them in a tree structure
recursively. A cluster-node is defined as a bucket of ordered nodes. The inner-
most level of nesting (recursion) will be characterized by having a tree in which

Scalable and Hierarchical Distributed Data Structures for Big Data 147

Fig. 18. ART+ structure

no more than b cluster-nodes share the same direct ancestor (where b = 22
i

,
i = 1, 2, 3..). Thus, multiple independent trees are imposed on the collection of
cluster-nodes. The height of ART+ is O(log logb N) in the worst case. The ART+

structure remains unchanged w.h.p.
Similarly to ART, the degree of the cluster-nodes at level i > 0 is d(i) = t(i),

where t(i) indicates the number of cluster-nodes at level i. It holds that d(0) = b
and t(0) = 1. At initialization step, the first node, the (lnn + 1)-th node, the
(2 · ln n + 1)-th node and so on are chosen as bucket representatives.

Let n be w-bit keys, N be the total number of nodes and N ′ be the total
number of cluster-nodes. Each node with label i (where 1 ≤ i′ ≤ N) of a random
cluster stores ordered keys that belong in the range [(i′ − 1) ln2 n, i′ ln2 n − 1],
where N ′ = n/ ln n. Each cluster-node with label i′ (where 1 ≤ i′ ≤ N ′) stores
ordered nodes with sorted keys belonging in the range [(i′ − 1) ln2 n, i′ ln2 n− 1],
where N ′ = n/ ln2 n or N ′ = N/ ln n is the number of cluster-nodes.

ART+ stores cluster-nodes only, each of which is structured as an indepen-
dent decentralized architecture, which changes dynamically after node join/leave
and element insert/delete operations inside it.

In contrast to its predecessor, ART, whose inner level was structured as a
BATON*, each cluster-node of ART+ is structured as a D3-Tree. Each cluster-
node is equipped with a routing table named Random Spine Index (RSI), which
stores pointers to cluster-nodes belonging to a random spine of the tree (instead
of the LSI of LRT which stores pointers to the nodes of the left-most spine,
decreasing this way the robustness of the structure). Moreover, instead of using
fat Collection Index (CI) tables, which store pointers to the collections of nodes
presented at the same level, the appropriate collection of cluster-nodes is accessed
by using a 2-level LRT structure.

148 S. Sioutas et al.

2.6.2 Node Joins/Departures
In ART+, the overlay of cluster-nodes remains unaffected in the expected case
w.h.p., when nodes join or leave the network.

A node u can make a join/leave request to a node v, which is located at
cluster node W . Since the expected size of W is w.h.p. O(logk N), for some
k = O(1), the node join/leave can be carried out in O(log log N) hops. The outer
structure of ART+ remains unchanged w.h.p. as mentioned before, but each D3-
Tree structure changes dynamically after node join/leave operations. According
to D3-Tree performance evaluation, the node join/leave can be carried out in
O(log log N) hops.

Similarly to ART, the operation of join/leave of nodes inside a cluster-node
is modelled as the combinatorial game of balls in bins presented in [10]. In
this way, for a random sequence of join/leave node operations drawn from a
distribution of density μ(·), the expected load w.h.p. of each cluster-node never
exceeds Θ(log N) in size and never becomes zero. In skew sequences, though, the
load of each cluster-node may become Θ(N) in worst case.

2.6.3 Fault Tolerance
In the ART+ structure, similarly to ART, the overlay of cluster-nodes remains
unchanged in the expected case w.h.p., so in each cluster-node the algorithms for
node failure and restructuring are those of the decentralized architecture used.
D3-Tree is a highly fault-tolerant structure, since it supports procedures for node
withdrawal and handles massive node failures efficiently.

2.6.4 Queries
Since the structure’s maximum number of nesting levels is O(logb log N) and
at each nesting level i the standard LRT structure has to be applied in N1/2i

collections, the whole searching process requires O(log2b log N) hops. Then, the
target node has to be located by searching the respective decentralized struc-
ture. Since there is a polylogarithmic load in each cluster node, the total query
complexity of O(log2b log N) follows.

By exploiting the order of the keys on each node, it turns out that a range
query requires O(log2b log N + |A|) hops, where |A| is the answer size.

2.6.5 Experimental Evaluation
In [17], the performance of ART+ was evaluated by experiments that ran on
different number of nodes N from 50000 to 500000. Each cluster node stores no
more than 0.75 log2 N nodes in smooth distributions (as proved in [18]) and no
more than 2.5 log2 N nodes in non-smooth distributions. Moreover, the elements
inserted were 2000 ·N which are numbers from the universe [1, .., 1.000.000.000].
The number of passing messages was used to measure the performance.

Scalable and Hierarchical Distributed Data Structures for Big Data 149

Fig. 19. Lookup Operations with Node Failures in ART and ART+

Cost of Queries under massive node failures. In case of massive node failures,
the search algorithm has to find alternative paths to overcome the unreachable
nodes. Thus, an increase in node failures results in an increase in search costs.
To evaluate the system in case of massive failures, the system was initiated with
10000 nodes and they were let to randomly fail without recovering. Since the
backbone of ART+ remains unaffected w.h.p., the search cost is restricted inside
a cluster-node (D3-Tree), meaning that parameter b does not affect the overall
expected cost. Figure 19 illustrates the effect of massive failures of ART and
ART+.

Cost of Load-Balancing Operations. To evaluate the cost of load-balancing, the
network was tested with a variety of distributions. For a network of N total
nodes, 2N node updates were performed. Both ART and ART+ remain unaf-
fected w.h.p., when nodes join or leave the network, thus the load-balancing
performance is restricted inside a cluster-node (BATON* for ART, and D3-Tree
for ART+), meaning that parameter b does not affect the overall cost. The load-
balancing cost is depicted in Fig. 20a. Both expected and worst case values are
depicted in the same graph.

Experiments confirm that ART+ has an O(log log N) load-balancing perfor-
mance, instead of the ART performance of O(m · logm log N). Thus, even in
the worst case scenario, the ART+ outperforms ART, since D3-Tree has a more
efficient load-balancing mechanism than BATON*; cf. Fig. 20b.

150 S. Sioutas et al.

Fig. 20. Cost of load-balancing operation.

2.7 SPark-based Interpolation Search Tree (SPIS)

Spark [21] is the successor of Hadoop [20], which is the open source implementa-
tion of the MapReduce model. In [14], the classic Interpolation Search Tree [13]
was integrated into Spark’s [21] distributed environment. Spark uses Resilient
Distributed Datasets (RDDs) as its fundamental data organization scheme. An
RDD is an immutable (i.e., read-only) distributed collection of objects. The
datasets are divided into partitions, which are further computed on different
nodes of the cluster. However, Data Frames (DFs) are also supported that pro-
vide more rich semantics and also provide additional optimizations for running
SQL queries over distributed data.

The classic Interpolation Search Tree (IST) has the following properties:

– It requires space O(n) for a data set of cardinality n.
– The amortized insertion and deletion cost is O(log log n)
– The expected search time on data sets with smooth probability density is

O(log log n)
– The worst case search time is O((log n)2).
– The data structure supports sequential access in linear time and operations

Predecessor, Successor, and Min in time O(1). In particular, it can be used
as a priority queue.

In [14], the Spark’s RDD API was used since the focus was in providing faster
search capabilities at the partition level. Since RDDs are immutable, insert-
ing (deleting) elements in (from) the tree (even though the tree supports such
actions) were not a concern, and the focus was on search and range queries.
Range search queries turned out to be faster than Spark’s built-in functions.
Figure 21 shows how the sorting and partitioning is done in Spark’s distributed
environment.

Scalable and Hierarchical Distributed Data Structures for Big Data 151

Fig. 21. Spark’s sorting procedure

2.7.1 Structure
The Interpolation Search Tree (IST) is a multi-way tree, where the degree of
a node depends on the cardinality of the set stored below it. It requires O(n)
space for an element set of cardinality n. More precisely, the degree of the root is
Θ(na), for some constant 0 < a < 1. The root splits the set into Θ(n1−a) subsets.
The children of the root have degree equal to Θ(n(1−a)a). An illustration of an
IST can be found in Fig. 22.

Fig. 22. Interpolation Search Tree

Each node u in the IST is associated with (i) a REPu array, which contains a
sample of the subset of elements that is stored below u; (ii) a variable Su, which
denotes the size of the subset; and (iii) a variable Cu, which counts how many
insertions/deletions have been performed since the last rebuilding (of the IST)
that involved u; cf. Fig. 22.

The idea is that on every partition of the RDD an IST is created that manages
the elements of that same partition. The Spark’s sorting function was used to
sort and partition the elements to the worker nodes. After sorting is completed,
each partition holds roughly the same number of sorted elements.

152 S. Sioutas et al.

The next step is to create an IST on each partition. Instead of using the
insertion algorithm to add the elements one by one in the tree, a bulk-insertion
is used to insert all sorted elements in the tree, and globally rebuild it from the
root.

This way, only one rebuilding is needed to create an ideal IST for each parti-
tion. Note that the IST object for the specific partition has to fit in the memory
of each worker. However, this issue can be resolved since the input dataset can
be split in a larger number of partitions if necessary.

2.7.2 Fault Tolerance
Spark operates on top of fault tolerant systems, like Hadoop Distributed File
System (HDFS), making all the RDDs fault tolerant. Since RDDs are immutable,
Spark keeps the lineage of the deterministic operations that were used on the
input dataset to create it. If due to a worker node failure any partition is lost,
then that partition can be recomputed to another worker node from the original
dataset using the lineage of operations.

2.7.3 Queries
The classic search algorithm performs interpolation search in the REP array of
every node of the tree, starting from the root, in order to locate the subset in
which the search should be continued. The expected search time is O(log log (n)).

In Spark, the search algorithm works as follows. Each partition is queried with
they key that has to be searched. If the key is inside the partition’s interval, the
search algorithm is performed on the IST of the same partition returning true
or false depending on whether the key exists in the structure or not. If the key is
not inside the partition’s interval, nothing is returned. Thus only one partition
executes the search algorithm for each key that is queried.

The algorithm for a range query in the interval [min,max] works in a similar
manner. Each partition is queried with min and max, and all elements with keys
between those values have to be returned.

Let xF
i denote the first item of the i-th partition and let xL

i denote the last
item of the i-th partition. The following algorithm is concurrently executed in
each partition i.

– If min is inside the i-th partition’s interval [xF
i ,xL

i], then the search algorithm
is performed and the corresponding element B is found.

• If max is inside the partition’s interval, then the search algorithm is
performed again and the corresponding element E is found. All elements
in-between B and E are returned.
• Else if max isn’t inside the partition’s interval, then E is assigned to
the last element of the partition (xL

i). All elements in-between B and E
are returned.

– Else if max is inside the i-th partition’s interval, then the search algorithm is
performed and the corresponding element E is found. B is assigned to the first
element of the partition (xF

i). All elements in-between B and E are returned.

Scalable and Hierarchical Distributed Data Structures for Big Data 153

– Else if min < xF
i and max > xL

i , the whole partition is returned.
– Else if none of the above happens, zero is returned.

Fig. 23. Dataset distribution for SPIS

2.7.4 Experimental Evaluation
In [14], an experimental evaluation was conducted on a cluster with 32 physical
computing machines running Hadoop 2.7 and Spark 2.1.0. Synthetic datasets
were used for the experimentation with different cardinalities. The dataset con-
tained one-dimensional values that were produced by a mixture of Gaussian
distributions. The selection of this dataset was based in the fact that many real-
world datasets contain clusters and are frequently modeled as Gaussian mixtures.
Figure 23 presents such a distribution in the two-dimensional space. In the exper-
iments, the projection in the x and y axis were used, in order to construct the
one-dimensional dataset for the performance evaluation.

Two kinds of experiments were performed. First a runtime performance test,
comparing three different algorithmic techniques, one using IST (A), and two
using Spark’s built-in features (F and M).

Technique A consists of the following steps.

– Create an RDD by referencing the dataset file. Map its contents to Float
numbers. Sort and partition the RDD to the workers.

– Generate an array of 5000 random float pairs in the interval [0, 1] to perform
range search queries. The array is created at the Driver node and broadcasted
to all workers in the cluster.

– Create an IST on each partition.
– Execute 5000 Range Queries on the IST of each partition using the pairs of

the array as input parameters, and monitor the total runtime.

154 S. Sioutas et al.

Technique M consists of the following steps.

– Create an RDD by referencing the dataset file. Map its contents to Float
numbers. Sort and partition the RDD to the Workers.

– Generate an array of 5000 random float pairs in the interval [0, 1] (to perform
range search queries).

– Using mapPartition and find functions, perform 5000 range queries on the
elements of each partition.

Technique F consists of the following steps.

– Create an RDD by referencing the dataset file. Map its content to Float
numbers.

– Generate an array of 100 random float pairs in the interval [0, 1] (to perform
range search queries).

– Filter the input RDD using the elements of the array as bounds.

Since the number of queries is different, it is only logical to compare the
elapsed time per query for all algorithmic techniques. The corresponding results
are given in Table 1. The runtime results correspond to 32 Spark Workers.

Table 1. Runtime performance comparison.

Input size ×106 Number of partitions A (ms) M (ms) F (s)

10 64 7.88 13.46 2.58

20 64 8.74 19.58 5.22

100 128 12.2 83.12 2.46

200 128 14.5 125.04 4.28

1000 512 56.54 507.14 15.10

We observe that algorithmic technique A is significantly faster than Spark’s
built-in techniques F and M . The difference is more evident for bigger datasets.

The second set of experiments was carried out in order to test the scalability
of the proposed organization scheme. Using an input dataset of ten million float
numbers, 5000 range queries were performed on the IST while gradually adding
more Workers to the cluster.

The total runtime also includes sorting time. Sorting is performed by three
Workers (note that the file is stored in three partitions in the HDFS) before being
split across the cluster. This is the reason behind the significant improvement
in the first three tests. After that, the runtime is steadily decreases which shows
the good scalability of the proposed approach; see Fig. 24.

3 Decentralized Ring-Based Structures

3.1 P-Ring

P-Ring [4] is implemented in the context of a modular framework that identifies
and separates the different functional components of an overlay index structure.

Scalable and Hierarchical Distributed Data Structures for Big Data 155

Fig. 24. Scalability performance

3.1.1 Structure
The P-Ring consists of the following four levels.

Fault Tolerant Ring: The Fault Tolerant Ring connects the nodes in the sys-
tem along a ring, and provides reliable connectivity among these nodes even in
the case of failures. For a node p, succ(p) (respectively, pred(p)) denotes the
node adjacent to p in a clockwise (resp., counter-clockwise) traversal of the ring.
The Ring provides methods to get the address of the successor or predecessor,
insert a new successor, join the ring or leave the ring (of course, a node can just
fail). The Ring also generates events such as newSuccessor, and newPredecessor-
Value that can be caught by higher layers and processed either synchronously
or asynchronously.

Data Store: The Data Store, built on top of the Fault Tolerant Ring, is respon-
sible for distributing the items to nodes. Ideally, the distribution should be uni-
form so that each node stores about the same number of items. The Data Store
provides API methods to insert and delete items into and from the system.

Content Router: The Content Router, built on top of the Data Store, is respon-
sible for efficiently routing messages to nodes that have items satisfying a given
predicate.

Replication Manager: The Replication Manager, built on top of the Data Store,
ensures that items assigned to a node are not lost if that node fails. The Repli-
cation Manager algorithms were used, where the items stored at a node are
replicated by its successors in the ring.

156 S. Sioutas et al.

P-Ring nodes are divided in owner nodes and helper nodes. Helper nodes are
not assigned any items. The rest are called owner nodes. The helpers change
over time and help with node joins/departures.

3.1.2 Load Balancing
The search key space is ordered on a ring, wrapping around the highest value.
The Data Store partitions this ring space into ranges and assigns each of these
ranges to a different node. The system is initiated with one owner node that owns
the entire indexing domain. All other nodes join the system as helper nodes, and
become owner nodes during load balancing.

Whenever the number of items in a node’s p Data Store becomes larger than
a bound u, an overflow occurs. Then, node p tries to split its assigned range and
its items with a helper node.

Whenever the number of items in p’s Data Store becomes smaller than a
bound l, an underflow occurs. Then, p tries to acquire a larger range and more
items from its successor in the ring. In this case, the successor either redistributes
its items with p, or gives up its entire range to p and becomes a helper node.

Let now discuss in detail the basic operations when an overflow or an under-
flow occurs.

A node p that overflows executes a split operation. During a split, node p tries
to find a helper p′ and transfer half of its items, and the corresponding range to p′,
After p′ is found, half of the items are removed from p and its range is split accord-
ingly. Then, p invites p′ to join the ring as its successor. Using the information
received from p, p′ initializes its index components and joins the ring.

If there is an underflow at node p, then a merge and redistribution is executed.
Node p invokes the merge function on its successor in the ring. The successor sends
back the action decided, merge or redistribute, a new range, and the list of items
that are to be re-assigned to p. Then, p appends the new range and the new items to
its own. The invoked node p′ = succ(p), checks whether a redistribution of items
is possible between the two “siblings”. If indeed, then it sends some of its items
and the corresponding range to p. If a redistribution is not possible, then p′ gives
up all its items and its range to p, and becomes a helper node.

3.1.3 Fault Tolerance
Node failures and insertions as well as splits and merges at the Data Store level,
disrupt the consistency of the Content Router. A simple Stabilization Process
is executed on each node periodically that repairs the inconsistencies of Content
Router. This process guarantees that the Content Router structure eventually
becomes fully consistent as long as the nodes remain connected at the ring level.

3.1.4 Experimental Evaluation
To evaluate the load balancing of the system and show that the P-Ring achieves
good load balance at low cost, a simulated environment and a real implementa-
tion were tested in [4].

Scalable and Hierarchical Distributed Data Structures for Big Data 157

Initially, 256 nodes were inserted, and no items. Then, items were randomly
inserted/deleted in three phases: insert only, insert and delete, and delete only.
In each phase 50000 operations are executed at the rate of 1 operation/second.
Three different distributions for the items inserted were tested: uniform, Zipf
0.5, and Zipf 1. The domain is [1, 65536]. The items to be deleted are chosen
uniformly at random from the existing items.

Fig. 25. P-Ring Imbalance (a) uniform, (b) Zipf 0.5, (c) Zipf 1

Figure 25 shows the imbalance measured every 60 simulated operations. The
three subfigures are very similar, showing that regardless of the data skew, the
system maintains its load balance. Next, the performance of the P-Ring Content
Router is investigated, where the search cost (number of messages required to
evaluate a range query, averaged over 100 random searches) is measured. The
main variable component in the cost of range queries is finding the item with
the smallest qualifying value, so only that cost is reported. P-Ring is compared
to BATON*, Chord and Skip Graphs [1].

Fig. 26. Search performance

158 S. Sioutas et al.

Figure 26 illustrates the search cost of P-Ring’s Content Router, Skip Graphs,
BATON* and Chord. It is clear that P-Ring’s cost is lower than the cost of Skip
Graphs and approximately equal to the cost of BATON* and Chord.

4 Comparison of Hierarchical Structures

In this Section we provide a comparison of the overlay structures presented in the
previous sections. Table 2 demonstrates the complexities of the overlay structures
for the operations of: Range Search, Insert/Delete Key, Maximum size of routing
tables, and Join/Depart Node.

Table 2. Time complexities of structures’ actions.

Structures Range search Insert/Delete key Max size of routing table Join/Depart node

BATON [9] O(logN) O(logN) O(logN) O(logN)

BATON* [8] O(logm N) O(m · logm N) O(m · logm N) O(m · logm N)

D2-Tree [3] O(logN) Õ(logN) O(logN) Õ(logN)

D3-Tree [16] O(logN) Õ(logN) O(logm N) Õ(logN)

ART [18] Ô(log2b logN) O(m · logm logN) O(N1/4/ logc N) O(m · logm logN)

ART+ [17] Ô(log2b logN) Õ(log logN) O(N1/4/ logc N) Õ(log logN)

P-Ring [4] O(logd N) Õ(d · logd N) O(logN) Õ(d · logd N)

SPIS [14] O(log log(n/N)) Õ(1) O((n/N)a) Õ(1)

N : number of nodes; n: number of elements with (N << n); m: fanout;
d: order of the ring; a: constant 0 < a < 1; ˜O: amortized bound; O: expected amortized bound.

In the case of node failure in the SPIS structure, a replica of the respective
partition is ready to be assigned to another worker, while in case of node join, a
simple repartition of the data is performed.

We notice that the SPIS solution is the fastest when it comes to Insert/Delete
Key and Join/Depart Node, since the actions on the RDDs (or Dataframes)
partitions of Spark Cluster, occur mostly in memory and in bulk processing
fashion. For this reason (bulk processing), the complexities of insert/delete key
and join/departure node operations are amortized.

As Table 2 shows, all the structures have different complexities on every oper-
ation. This means that there is no clear answer on which structure is the best
to use. It highly depends on the nature of the problem, the type of network,
and the application at hand that determines which operations uses more than
others.

5 Conclusions

In this work we focused on range query processing for big data. We presented and
reviewed state-of-the-art hierarchical (and not DHT-based) distributed overlay
structures for efficient big data management that exhibit stable scalability.

Scalable and Hierarchical Distributed Data Structures for Big Data 159

References

1. Aspnes, J., Shah, G.: Skip graphs. In: Proceedings 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), Baltimore, MD, pp. 384–393 (2003)

2. Barkai, D.: Technologies for sharing and collaborating on the net. In: 1st Inter-
national Conference on Peer-to-Peer Computing (P2P 2001), 27–29 August 2001,
Linköping, Sweden, pp. 13–28 (2001)

3. Brodal, G.S., Sioutas, S., Tsichlas, K., Zaroliagis, C.: D2-tree: a new overlay with
deterministic bounds. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010.
LNCS, vol. 6507, pp. 1–12. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-17514-5 1

4. Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasundaram,
J.: Load balancing and range queries in P2P systems using P-Ring. ACM Trans.
Internet Technol. 10(4), 1–30 (2011)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Ding, G., Wang, L., Wu, Q.: Big data analytics in future internet of things. CoRR,
abs/1311.4112 (2013)

7. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. In: (e)Proceedings of the Thirtieth
International Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada,
31 August–3 September 2004, pp. 444–455 (2004)

8. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Vu, Q.H., Zhang, R.: Speeding up search
in peer-to-peer networks with a multi-way tree structure. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, Chicago, Illi-
nois, USA, 27–29 June 2006, pp. 1–12 (2006)

9. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: BATON: a balanced tree structure for peer-
to-peer networks. In: Proceedings of the 31st Conference on Very Large Databases
(VLDB 2005), Trondheim, Norway, pp. 661–672 (2005)

10. Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A.K., Tsichlas, K., Zaroliagis,
C.D.: Improved bounds for finger search on a RAM. Algorithmica 66(2), 249–286
(2013)

11. Knuth, D.E.: The Art of Computer Programming, vol. III, 2nd edn. Addison-
Wesley, Redwood City (1998)

12. Liau, C.Y., Ng, W.S., Shu, Y., Tan, K.-L., Bressan, S.: Efficient range queries and
fast lookup services for scalable P2P networks. In: Ng, W.S., Ooi, B.-C., Ouksel,
A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS, vol. 3367, pp. 93–106. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31838-5 7

13. Mehlhorn, K., Tsakalidis, A.K.: Dynamic interpolation search. In: Automata, Lan-
guages and Programming, 12th Colloquium, Nafplion, Greece, 15–19 July 1985,
Proceedings, pp. 424–434 (1985)

14. Papadopoulos, A.N., Sioutas, S., Zacharatos, S., Zaroliagis, C.: Efficient distributed
range query processing in apache spark. In: Proceedings of 19th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing - CCGRID 2019, pp.
569–575. IEEE Computer Society (2019)

15. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable
content-addressable network. In: SIGCOMM, pp. 161–172 (2001)

16. Sioutas, S., Sourla, E., Tsichlas, K., Zaroliagis, C.: D 3-tree: a dynamic determin-
istic decentralized structure. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 989–1000. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48350-3 82

https://doi.org/10.1007/978-3-642-17514-5_1
https://doi.org/10.1007/978-3-642-17514-5_1
https://doi.org/10.1007/978-3-540-31838-5_7
https://doi.org/10.1007/978-3-662-48350-3_82
https://doi.org/10.1007/978-3-662-48350-3_82

160 S. Sioutas et al.

17. Sioutas, S., Sourla, E., Tsichlas, K., Zaroliagis, C.: ART+: a fault-tolerant decen-
tralized tree structure with ultimate sub-logarithmic efficiency. In: Karydis, I.,
Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.) ALGOCLOUD 2015. LNCS,
vol. 9511, pp. 126–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29919-8 10

18. Sioutas, S., Triantafillou, P., Papaloukopoulos, G., Sakkopoulos, E., Tsichlas, K.:
Art: Sub-logarithmic decentralized range query processing with probabilistic guar-
antees. J. Distrib. Parallel Databases (DAPD) 31(1), 71–109 (2012)

19. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

20. White, T.: Hadoop: The Definitive Guide. O’Reilly (2015)
21. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-

mun. ACM 59(11), 56–65 (2016)
22. Zhang, Y., Liu, L., Li, D., Liu, F., Lu, X.: DHT-based range query processing for

web service discovery. In: Proceedings of the IEEE International Conference on
Web Services (ICWS 2009), Los Angeles, CA, pp. 477–484, IEEE, July 2009

https://doi.org/10.1007/978-3-319-29919-8_10
https://doi.org/10.1007/978-3-319-29919-8_10

	Scalable and Hierarchical Distributed Data Structures for Efficient Big Data Management
	1 Introduction
	2 Hierarchical Tree-Based Structures
	2.1 BATON
	2.2 BATON*
	2.3 D2-Tree
	2.4 D3-Tree
	2.5 ART
	2.6 ART+
	2.7 SPark-based Interpolation Search Tree (SPIS)

	3 Decentralized Ring-Based Structures
	3.1 P-Ring

	4 Comparison of Hierarchical Structures
	5 Conclusions
	References

