
Efficient Distributed Range Query Processing in
Apache Spark

Apostolos N. Papadopoulos
Dept. of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece

papadopo@csd.auth.gr

Spyros Sioutas
Dept. of Computer Eng. & Informatics

University of Patras
Patras, Greece

sioutas@ceid.upatras.gr

Nikolaos Zacharatos
Dept. of Computer Eng. & Informatics

University of Patras
Patras, Greece

zacharato@ceid.upatras.gr

Christos Zaroliagis
CTI & Dept. of Computer Eng. & Informatics

University of Patras
Patras, Greece

zaro@ceid.upatras.gr

Abstract—Range queries are important in many diverse ap-
plications. In its simplest one-dimensional form, a range query
is expressed by an interval [a, b] on the real line, whereas the
answer consists of all elements e ∈ [a, b]. In this work, we focus
on efficient range query processing techniques in the Apache
Spark engine, which is the state-of-the-art solution for big data
management and analytics. We aim at developing a Spark-based
indexing scheme that supports range queries in such large-scale
decentralized environments and scale well w.r.t. the number of
nodes and the data items stored. Towards this goal, there have
been solutions in the last few years, which however turn out
to be inadequate at the envisaged scale, since the classic linear
or even the logarithmic complexity (for point queries) is still
too expensive, whereas range query processing is even more
demanding. In this paper, we go one step further and present
a solution with sub-logarithmic complexity. In particular, we
present SPIS (SPark-based Interpolation Search), a tree structure
that outperforms the existing Spark built-in lookup techniques.
We carry out an experimental evaluation by using synthetic data
sets. Our experimental results demonstrate the efficiency and
scalability of the proposed approach.

Index Terms—Range queries, Indexing, Apache Spark, Perfor-
mance evaluation

I. INTRODUCTION

Range queries have been extensively studied in different

disciplines, such as computational geometry, geographical

information systems, multimedia databases, just to name a

few. In its simplest one-dimensional form (also known as the

interval query), this query involves searching for all elements

e where e ∈ [a, b]. Thus, we are interested in detecting all

available values that belong to a specific interval. Evidently,

generalizations to higher dimensions are derived easily, since

we just need to consider intervals in each axis of the coordinate

system. Many applications require the management and the

analysis of massive multi-dimensional datasets.

• For example, large-scale spatial systems contain massive

datasets with location information about the underlying

objects. Range queries are often executed to extract

information from specific parts of the address space.

• As a second example, consider an e-shop data warehouse

which contains information about products. A customer

may require to focus on specific products that satisfy

several restrictions on the product attributes, e.g., the

price should be less than 100$, the screen size should

be at least 21 inches. To enable this behavior, efficient

algorithmic techniques are required to support range

queries in potentially massive amounts of product data.

One of the directions to follow for efficient range query

processing is the exploitation of multiple resources (i.e., CPUs

and disks). Typically, modern infrastructures are composed of

a set of machines organized in a shared-nothing architecture

where machines communicate using a high-speed LAN. Dis-

tributed range queries were investigated in previous research

mainly from the P2P point of view. In [4] Skip Graphs were

introduced (an extension of skip lists) connecting the elements

between the nodes forming a balanced tree providing great re-

silience, while supporting search/insertion/deletion algorithms.

In [1], another alternative was implemented that uses hash

tables, which are very efficient for exact-match searching, to

perform range queries by using an order-preserving peer to

peer indexing.

In addition to P2P systems, research in distributed data

management involves the exploitation of multiple resources

that form a cluster or data center. Platforms like Apache

Hadoop [16] enable application development by hiding low-

level operations such as fault tolerance. A rapidly evolving

system, that complements the Hadoop ecosystem, is Apache

Spark [17] which offers significant performance improvements

in comparison to vanilla MapReduce.

A. The MapReduce Model

MapReduce [15] is a programming model and an associated

implementation for processing and generating big data sets

with a parallel, distributed algorithm on a cluster (collection

of compuservers or nodes), with a designated node as master

569

2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)

978-1-7281-0912-1/19/$31.00 ©2019 IEEE
DOI 10.1109/CCGRID.2019.00073



and the other nodes designated as workers. It can usually be

divided into a five-step computation.

1) Partition: input is being split and assigned to each

worker.

2) Map: each worker node applies the map function to its

local data, and writes the output to a temporary storage.

3) Shuffle: worker nodes redistribute data based on the

output keys (produced by the map function), such that

all data belonging to one key is located on the same

worker node.

4) Reduce: worker nodes now process each group of output

data, per key, in parallel.

5) Join Results: workers combine their local output data to

create the final output result.

B. The Spark Environment

Apache Spark [3] is a fast and general engine for big-data

processing. It is the evolution of the Hadoop framework [2].

Hadoop is the open-source implementation of the MapReduce

model and is widely used for distributed processing among

multiple nodes. Spark’s in-memory data engine can perform

tasks up to one hundred times faster than Hadoop, when

compared with jobs that require the writing of their state back

out to disk between stages. Even jobs where the data cannot

be completely contained within memory tend to be around 10

times faster than their Hadoop counterpart. Spark also includes

a stack of libraries that combine SQL, streaming, machine

learning and graph processing in a single engine. Spark makes

easy to build distributed applications in Java, Python, Scala

and R. The applications are translated into MapReduce jobs

and run in parallel. Furthermore, Spark can access different

data sources, such as HDFS or HBase and can be used to

process datasets bigger than the cluster’s aggregate memory.

Spark uses Resilient Distributed Datasets (RDDs) as its fun-

damental data organization scheme. An RDD is an immutable

(i.e., read-only) distributed collection of objects. The datasets

are divided into partitions, which are further computed on

different nodes of the cluster. However, Data Frames (DFs)

are also supported that provide more rich smantics and also

provide additional optimizations for running SQL queries over

distributed data. In this paper, we focus on the RDD API since

we are interested in providing faster search capabilities at the

partition level.

C. Motivation and Contributions

In this paper, we develop an indexing scheme to organize

the data in order to support efficient execution of range queries

in Apache Spark. Our proposal is based on the Interpolation
Search Tree (IST) [5] data structure which has proven to

be extremely efficient. We show that by substituting the

ordinary linear scan of each data partition with an IST-based

organization, significant performance improvements may be

achieved. The intuition behind the proposed approach is that

in many realistic scenarios data need to be filtered during

processing in order for the values to be contained in specific

intervals (ranges). In such a case, by simply performing a

linear scan is expected to bring unnecessary computational

costs.

We have tested our solution against two of the baseline

ones used by Spark in a cluster of 32 physical machines

running Hadoop and Spark. Our results show that the IST-

based scheme is significantly more efficient and also it scales

well by increasing the number of Spark Executors.

An acceptable solution for processing range queries in

large-scale decentralized environments must scale in terms of

the number of nodes and the number of data items stored.

The available solutions for architecting such large-scale cloud

management systems are inadequate for our purposes, since at

the envisaged scale (trillions of data items at millions of nodes)

the classic linear or even the logarithmic complexity (for point

queries) offered by these solutions is still too expensive. Also,

for range queries, it is even more disappointing. Until now,

all available Spark built-in solutions incur large overheads

with respect to all operations (search, insertion/deletion of

items). In this work, we aim at achieving sub-logarithmic

complexity for all the above operations. However, since Big

Data platforms are mainly used for analysis (and not for

arbitrary insertions/deletions) we focus on the performance of

range queries over a large collection of values.

Algorithm 1 Search(x,S)

1: left = 1
2: right = n
3: next = k ∈ [left, right]
4: while x �= S[next] and left < right do
5: if x ≤ S[next] then
6: right = next− 1
7: else
8: left = next+ 1
9: end if

10: next = k ∈ [left, right]
11: end while
12: if x = S[next] then
13: print(′Success′)
14: else
15: print(′Fail′)
16: end if

Let S = {Xi, 1 ≤ i ≤ n} be an ordered set of n elements.

Algorithm 1 provides the pseudocode for (the very common

in data processing) search operation.

If next = left + 1, then Algorithm 1 is a lin-

ear searching routine with O(n) worst-case complexity. If

next =
⌊
right+left

2

⌋
, then Algorithm 1 is a binary search-

ing routine with O(log n) worst-case time. If next =⌊
x−S[left]

S[right]−S[left] (right− left)
⌋
+ left, then Algorithm 1 is

an interpolation searching routine for which further time im-

provements can be obtained if the input elements follow some

specific classes of distributions. In particular, for elements

generated according to the uniform distribution, the interpo-

lation searching routine achieves Θ(log log n) expected time,

570



and this time bound holds for the extended class of regular

distributions [8]. A natural extension is to adapt interpolation

search into dynamic data structures, that is, data structures

which support insertion and deletion of elements in addition

to interpolation search. In [5], the first such dynamic structure,

called Interpolation Search Tree (IST), was presented.

In this paper, we present SPIS (SPark-based Interpolation

Search), a dynamic tree structure that constitutes an imple-

mentation of IST in Spark’s environment, aiming at rapid

processing of range queries in large-scale data applications.

The rest of the work is organized as follows. In the next

section, we present some fundamental concepts related to our

research. Section III present out main contribution whereas

Section IV reports some representative experimental results.

Finally, Section V concludes the paper and discusses briefly

future work in the area.

II. PRELIMINARIES

In this section, we present some important concepts related

to our research. In particular, we explain the way the Interpo-

lation Search Tree works and present its main characteristics.

The Interpolation Search Tree (IST) is a multi-way tree, where

the degree of a node depends on the cardinality of the set

stored below it [5]. It requires O(n) space for an element

set of cardinality n. More precisely, the degree of the root is

Θ(na), for some constant 0 < a < 1. The root splits the set

into Θ(n1−a) subsets. The children of the root have degree

equal to Θ(n(1−a)a).
Each node u in the IST is associated with a REPu array,

which contains a sample of the subset of elements that is stored

below u, a variable Su, which denotes the size of the subset,

and a variable Cu which counts how many insertions/deletions

have been performed since the last rebuilding (of the IST) that

involved u.

The search algorithm (Algorithm 2) performs interpolation

search (by using Algorithm 1 with the appropriate next value

as described in Section 1) in the REP array of every node of

the tree, starting from the root, in order to locate the subset

in which the search should be continued. The expected search

time is O(log log (n)).

Algorithm 2 Search element into IST

procedure IST SEARCH(Input : X)

i = Search(X,REProot)
let node u be the i-th child of root
while u �= leaf do

i = Search(X,REPu)
let u be the i-th child of u

end while
return u

end procedure

The insertion algorithm (Algorithm 3) uses the search

algorithm to locate the correct position and then adds a marked

leaf. After inserting a marked leaf, the path from that marked

leaf to the root is followed increasing each node’s C variable

by one. It finds the highest node, let it be r, that violates

the rebuilding condition (Cr > Sr/4) and rebuilds the subtree

rooted at r. Only after rebuilding, the marked leaf is unmarked.

Algorithm 3 Insert element into IST

procedure INSERT(Input : X)

Leaf node u = IST Search(X)
Add new marked Leaf node to the parent of u
Increase the counters from u to root
Let r be the highest node such that Cr > Sizer/4
if r exists then

Rebuild the tree rooted at r
end if

end procedure

The deletion algorithm (Algorithm 4) works in a similar

manner. It uses the search algorithm to locate (if it exists) the

leaf we want to delete, and then marks it. The path from that

marked leaf to the root is followed, increasing each node’s

C variable by one. It finds the highest node, let it be r, that

violates the rebuilding condition (Cr > Sr/4) and rebuilds the

subtree rooted at r. Only after rebuilding, the marked leaf is

removed.

Algorithm 4 Delete element from IST

procedure DELETE(Input : X)

Leaf node u = IST Search(X)
if uvalue = X then

Mark leaf u
Increase the counters from u to root
Let r be the highest node such that Cr > Sizer/4
if r exists then

Rebuild the tree rooted at r
end if

end if
end procedure

Any rebuilt subtree is an ideal Interpolation Search subtree.

A rebuilding that starts from the root is called global rebuilding

and makes the whole IST ideal. The amortized insertion and

deletion cost is O(log n); the expected amortized insertion and

deletion cost is O(log log (n)) [5].

III. IST IN SPARK

In this section we present the implementation of IST in the

Spark environment, using Scala.

Let A be our input file that contains our data set (for this

example we will use random integer numbers). Suppose A has

one number per line (if not, then we can transform it to the

desired format).

We create an RDD named inputRDD by referencing A
(line 1 of algorithm 5). Then we transform our inputRDD to

integerRDD using a map function to convert each element

from string to integer (as shown in line 2 of algorithm 5 ).

Using spark’s built-in sortBy method we sort the elements of

integerRDD and transform it to T (line 3 of algorithm 5).

571



Algorithm 5 Simple RDD transformation example

1: val inputRDD = sc.textF ile(”hdfs : //url/to/A”)
2: val integerRDD = inputRDD.map( .toInt)
3: val T = integerRDD.sortBy[Int](x => x)

After sorting is completed, each partition of T holds

roughly the same number of sorted elements. Assume T is

divided in K partitions.

Algorithm 6 IST building

1: procedure BUILD IST(Input :Sorted RDD T )

2: for all (Ti ∈ T ) do
3: new IntepolationSearchTree object

4: new root node

5: for all (xa
i ∈ Ti) do

6: new leaf node r
7: rvalue = xa

i

8: Insert r into the tree

9: Update counters

10: end for
11: Rebuild tree at the root

12: end for
13: end procedure

Let Ti denote the i-th partition of T , |Ti| the size of the

i-th partition, xa
i the a-th element and let xF

i , xL
i denote the

first and last element of the i-th partition respectively, where

1 ≤ i ≤ K and 1 ≤ a ≤ |Ti|.
Then, max{Ti} ≤ min{Tj}, ∀ 1 ≤ i < j ≤ K, and

xa
i ≤ xb

i , ∀ 1 ≤ a < b ≤ |Ti|. Thus, xF
i = min{Ti} and

xL
i = max{Ti}.

The next step is to create an IST on each partition. Instead

of using the insertion algorithm to add the elements one by

one in the tree, we use a bulk-insertion to insert all sorted

elements in the tree, and globally rebuild it from the root.

This way, we need only one rebuilding to make an ideal IST

for each partition. The procedure of IST building is shown in

Algorithm 6. Note that the IST object for the specific partition

has to fit in the memory of each Executor. However, this issue

can be resolved since we can split our input dataset in a larger

number of partitions if necessary.

Algorithm 7 Searching element in Spark’s IST

procedure DISTRIBUTED SEARCH(Input : X)

for all (Ti ∈ T ) do
if (( X ≥ xF

i ) AND ( X ≤ xL
i )) then

Y = IST Search(X))
else

Y = null
end if
return Y

end for
end procedure

We can now search/insert/delete elements in the IST of each

partition. Searching is quite simple: we query each partition

with a single value.

• If the value is inside the partition’s interval, perform the

searching algorithm, and return the corresponding leaf

and the number of the partition.

• If the value isn’t inside the partition’s interval, return null.

Thus only one partition performs the searching algorithm,

while the rest return null. Algorithm 7 shows the searching

procedure.

The insertion algorithm works as follows. Distributed

Search is performed, which returns the partition and the

position the leaf has to be inserted. Then, the classic Insertion

algorithm is performed. Once again, only one partition

performs the insertion algorithm. Algorithm 8 shows the

insertion procedure.

Algorithm 8 Inserting element in Spark’s IST

procedure DISTRIBUTED INSERT(Input : X)

Y = Distributed Search(X)
In the tree and position that Y denotes, perform:

Insert(X)
end procedure

Algorithm 9 Deleting element in Spark’s IST

procedure DISTRIBUTED DELETE(Input : X)

Y = Distributed Search(X)
In the tree and position that Y denotes, perform:

Delete(X)
end procedure

The deletion algorithm works in a similar manner. Dis-

tributed Search is performed which returns the partition and

the leaf to be deleted. Then, the classic deletion algorithm is

performed. Algorithm 9 shows the deletion procedure.

Now, we turn to the range query and explain how it works.

Given two values min and max, we want to get all the

elements that their key is inside the [min,max] interval. We

query each partition with min and max:

• If min is inside the i-th partition’s interval [xF
i ,xL

i ],

then the search algorithm is performed and we get the

corresponding element B.

– If max is inside the partition’s interval, then the

search algorithm is performed again and we get the

corresponding element E. All elements in-between

B and E are returned.

– Else if max isn’t inside the partition’s interval, then

E is assigned to the last element of the partition (xL
i ).

All elements in-between B and E are returned.

• Else if max is inside the i-th partition’s interval, then

the search algorithm is performed and we get the corre-

sponding element E. B is assigned to the first element

572



of the partition (xF
i ). All elements in-between B and E

are returned.

• Else if min< xF
i and max> xL

i , the whole partition is

returned.

• Else if none of the above happens, zero is returned.

IV. EXPERIMENTAL EVALUATION

In this section, we report on the experimental evaluation

of the IST implementation in the Spark environment. All

experiments have been conducted on a cluster with 32 physical

machines running Hadoop 2.7 and Spark 2.1.0. We have

used synthetic datasets for the experimentation with different

cardinalities. The dataset contains one-dimensional values that

were produced by a mixture of Gaussians. The selection of this

dataset was based in the fact that many real-world datasets con-

tain clusters and are frequently modeled as Gaussian mixtures.

Figure 1 presents such a distribution in the two-dimensional

space. In our experiments, we have used the projection in the

x and y axis to construct the one-dimensional dataset used in

our performance evaluation.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1. Dataset distribution.

A. Runtime Performance Tests

First, we report our results for the evaluation of the runtime

performance of the proposed approach. The following

algorithmic techniques were carried out in conducting our

experiments. Each technique corresponds to a different query

mechanism. We start with our technique, called Algorithmic

Technique A.

Algorithmic Technique A
• Create an RDD by referencing the dataset file. Map its

contents to Float. Sort and partition the RDD to the

Executors as shown in Algorithm 5.

• Generate an array of 5000 random float pairs in the

interval [0, 1] to perform range search queries. The array

is created at the Driver node and broadcasted to all

Executors in the cluster.

• Create an IST on each partition (using Algorithm 6).

• Execute 5000 Range Queries on the IST of each partition

using the pairs of the array as input parameters, and

monitor the total runtime.

Next we measure Spark’s built-in features, called F and M

Algorithmic Techniques. On the same datasets, we execute

range queries using two approaches: the first approach

(F) uses simple filtering on unsorted RDDs (using the

filter transformation), whereas the second one (M) uses

mapPartitions and find transofmations on sorted RDDs.

The filter function works as follows:

RDD2 = RDD1 . f i l t e r ( ( f u n c t i o n p)=>Boolean )

An element of RDD1 is assigned to RDD2 only if it satisfies

the predicate (function p). In our case each element has to be

inside the [min,max] interval.
These techniques are summarized below:

Algorithmic Technique F
• Create an RDD by referencing the dataset file.

• Generate an array of 100 random float pairs in the interval

[0, 1] (to perform range search queries).

• Filter the input RDD using the elements of the array as

bounds.

The Algorithmic technique M is similar to A. The RDD is

sorted and partitioned to the executors. Each query works

like the IST Range Search, checking the partition’s interval

[xF
i ,xL

i ] and performing the corresponding action. The

difference is that instead of using the Search Algorithm on

the IST, we apply linear search to determine the relevant

elements.

Algorithmic Technique M
• Create an RDD by referencing the dataset file. Map its

contents to Float. Sort and partition the RDD to the

Executors (like shown in Algorithm 5).

• Generate an array of 5000 random float pairs in the

interval [0, 1 (to perform range search queries).

• Using mapPartition and find function, perform 5000
range queries on the elements of each partition.

Again, we measure the total runtime of the whole processes.

The difference between the algorithmic techniques F and M
is that F ’s partition’s dataset size can be larger than the

Executor’s memory since it is performed using iterators. M ’s

partition dataset size on the other hand must be able to fit

inside the Executor’s memory in order to determine the first

(xF
i ) and the last (xL

i ) element respectively. In case the size

of a partition is larger than the size of the Executor memory,

we can split the current partition into smaller parts and work

in each part separately.
For comparison purposes, we have used the elapsed time

per query for all algorithmic techniques. The corresponding

573



results are given in Table I. The runtime results correspond

to 32 Spark Executors.

TABLE I
RUNTIME PERFORMANCE COMPARISON.

Input Size Number of A F M
×106 Partitions (ms) (s) (ms)

10 64 7.88 2.58 13.46
20 64 8.74 5.22 19.58

100 128 12.2 2.46 83.12
200 128 14.5 4.28 125.04
1000 512 56.54 15.10 507.14

We observe that algorithmic technique A is significantly

faster than Spark’s built-in techniques F and M . The differ-

ence is more evident for bigger datasets.

B. Scalability Results

The second set of experiments was carried out in order to

test the scalability of our proposed organization scheme. Using

an input dataset of ten million float numbers, we followed

the procedure described below while gradually adding more

Executors to our cluster. The following process has been

followed:

• Create an RDD by referencing the dataset file. Map its

contents to Float. Sort and partition the RDD to the

Executors (like shown in Algorithm 5).

• Generate an array of 5000 random float pairs in the

interval [0, 1] (to perform range search queries). The array

is created in the master node and broadcasted to the

cluster.

• Create an IST on each partition (using Algorithm 6).

• Execute 5000 Range Queries on the IST of each partition

using the pairs of the array as input parameters, and

monitor the total runtime.

Time performance evaluation results (in seconds) reported

in Fig. 2 correspond to average runtime for each experiment.

The total runtime also includes sorting time. Sorting is

performed by three Executors (note that the file is stored in

three partitions in the HDFS) before being split across the

cluster. That is the reason behind the significant improvement

in the first three tests. After that, the runtime is steadily

decreases which shows the good scalability of our proposed

approach.

V. CONCLUSIONS

In this work we have presented SPIS, a scalable interpo-

lation search file structure for Spark, implemented in Scala.

The main motivation behind this research is that the standard

filtering mechanism that Spark provides is inefficient when

specific queries must be executed. In particular, executing

multi-dimensional range queries using the standard Spark

mechanism, requires a large number of comparisons which

leads to performance degradation. In this paper, we apply a

simple IST-based data organization which leads to fast range

query execution and allows scalable range query processing in

large amounts of data.

Fig. 2. Scalability performance.

An interesting direction for future work is the support of

efficient range query processing mechanisms in SQL query

execution over Spark data frames. Spark supports SQL queries

through the SQL library. We believe that the incorporation of

efficient range query processing techniques will contribute in

reducing the overall cost of processing SQL queries. Another

interesting direction is the performance evaluation of range

query processing in high dimensional datasets. In that case,

it is expected that data organization methods, like the one

presented in this paper, are expected to improve performance

significantly.

REFERENCES

[1] Maha Abdallah and Hung Cuong Le. Scalable Range Query Process-
ing for Large-Scale Distributed Database Applications, Proceedings of
IASTED PDCS, 2005.

[2] Apache Hadoop. The apache software foundation: Hadoop homepage.
http://hadoop.apache.org/, 2015.

[3] Apache Spark. The apache software foundation: Spark homepage.
http://spark.apache.org/, 2015.

[4] Aspnes J. and Shah G. Skip Graphs”, Proceedings 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp.384-393, Balti-
more, MD, 2003.

[5] K. Mehlhorn and A. Tsakalidis. Dynamic Interpolation Search. Journal
of the ACM, 40(3):621-634, July 1993.

[6] Pearl, Y., Itai, A., and Avni, H. Interpolation Search-A log logN search.
Commun.ACM 21, 7, (1978), 550554.

[7] Peterson W. W. Addressing for random storage. IBM J Res. Develop.
1 (1957), 131-132

[8] Willard. D. Maintaining dense sequential files in a dynamic environment.
In Proceedings of the 14th Symposium on Theory of Computing. (San
Fransisco, Calif., May 5-7). ACM, New York, 1982. pp. 114-122.

[9] Jagadish H.V., Ooi B.C. and Vu Q.H. Baton: a Balanced Tree Structure
for Peer-to-peer Networks, Proceedings 31st International Conference
on Very Large Data Bases (VLDB), pp.661-672, Trondheim, Norway,
2005.

[10] Jagadish H.V., Ooi B.C., Tan K.L., Vu Q.H. and Zhang R. Speeding up
Search in P2P Networks with a Multi-way Tree Structure”, Proceedings
ACM International Conference on Management of Data (SIGMOD),
pp.1-12, Chicago, IL, 2006.

574



[11] Karger D., Kaashoek F., Stoica I., Morris R. and Balakrishnan H. Chord:
a Scalable Peer-to-peer Lookup Service for Internet Applications”, Pro-
ceedings ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM), pp.149-160,
San Diego, CA, 2001.

[12] Ratnasamy S., Francis P., Handley M., Karp R. Shenker S. A Scal-
able Content addressable Network”, Proceedings ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), pp.161-172, San Diego, CA, 2001.

[13] Goodrich M.T., Nelson M.J. and Sun J.Z. The Rainbow Skip Graph:
a Fault-Tolerant Constant-Degree Distributed Data Structure”, Pro-
ceedings 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp.384-393, Miami, FL, 2006.

[14] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, Scott
Shenker. prefix hash tree”, Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing table of contents
(Brief announcement), pp.368-368, Newfoundland, Canada, 2004.

[15] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data pro-
cessing on large clusters Commun. ACM 51(1): 107-113 (2008)

[16] Tom White. Hadoop: The Definitive Guide, O’Reilly, 2015
[17] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,

Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram
Venkataraman, Michael Franklin, Ali Ghodsi, Joseph Gonzalez, Scott
Shenker, Ion Stoica. Apache Spark: A Unified Engine for Big Data
Processing, Commun. ACM 59(11), pp.56-65, 2016.

575


