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ABSTRACT

The pace at which data is described, queried and exchanged
using the RDF specification has been ever increasing with
the proliferation of Semantic Web. Minimizing SPARQL
query response times has been an open issue for the plethora
of RDF stores, yet SPARQL result caching techniques have
not been extensively utilized. In this work we present a
novel system that addresses graph-based, workload-adaptive
indexing of large RDF graphs by caching SPARQL query
results. At the heart of the system lies a SPARQL query
canonical labelling algorithm that is used to uniquely in-
dex and reference SPARQL query graphs as well as their
isomorphic forms. We integrate our canonical labelling al-
gorithm with a dynamic programming planner in order to
generate the optimal join execution plan, examining the uti-
lization of both primitive triple indexes and cached query
results. By monitoring cache requests, our system is able
to identify and cache SPARQL queries that, even if not ex-
plicitly issued, greatly reduce the average response time of
a workload. The proposed cache is modular in design, al-
lowing integration with different RDF stores. Incorporating
it to an open-source, distributed RDF engine that handles
large scale RDF datasets, we prove that workload-adaptive
caching can reduce average response times by up to two or-
ders of magnitude and offer interactive response times for
complex workloads and huge RDF datasets.

1. INTRODUCTION

The RDF standard [6] together with the SPARQL[8] query
language have been acknowledged as the de facto technolo-
gies to represent and query resources in the Semantic Web
era. The schema-free nature of RDF data allows the forma-
tion of a common data framework that facilitates the inte-
gration of data originating from different application, enter-
prise, and community boundaries. This property has led to
an unprecedented increase in the rate at which RDF data
is created, stored and queried, even outside the purely aca-
demic realm (e.g., [9, 2]) and consequently to the develop-
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ment of many RDF stores [37, 29, 40, 11, 30, 12] that target
RDF indexing and high SPARQL querying performance.

However, the move from the schema-dependent SQL data
to the schema-free RDF data has introduced new indexing
and querying challenges and made a lot of the well-known
relational database optimizations unusable. In fact, RDF
databases assume limited knowledge of the data structure
mainly in the form of RDFS triples [5]. However, RDFS in-
formation is not as rich and obligatory as the SQL schema;
it can be incomplete and change rapidly along with the
dataset. Therefore, most RDF databases are targeting the
indexing of individual RDF edges resulting in query execu-
tions with much more joins than processing the same dataset
in a schema-aware relational database. In contrast, RDF
databases that use RDFS information to store and group
RDF data [34, 35], fail to effectively adapt to schema changes
and to non-conforming, to the schema, data. In general,
RDF databases have not yet effectively benefited from the
classic schema-aware optimizations used in SQL databases:
e Grouping data that are accessed together using tables.

e Indexing according to filtering and join operations.

e View materialization of frequently queried data patterns.
We argue that all those optimizations can be employed by
an RDF database, without any prior knowledge of both the
data schema and the workload, by actively monitoring query
requests and adapting to the workload.

Result caching is a methodology that has been success-
fully employed over different applications and computing ar-
eas to boost performance and provide scalability. Given the
complexity and very high execution latencies [29, 30] of sev-
eral SPARQL query patterns, caching of frequent RDF sub-
graphs has the potential of boosting performance by even
orders of magnitude. While indexing of graph patterns is
extensively used in state of the art graph databases [41,
38], RDF stores have not yet taken advantage of these tech-
niques. What is more, these schemes focus on static index-
ing of important graph patterns, namely they index sub-
graphs based solely on the underlying dataset, without any
regard for the workload. However, the diversity of the ap-
plied SPARQL workloads together with the requirement for
high performance for all the different workloads calls for dy-
namic, workload-driven indexing solutions (e.g., [18]).

In this work we argue for a workload-adaptive RDF caching
engine that manages to dynamically index frequent workload
subgraphs in real time, and utilize them to decrease response
times. The major contributions of this paper are:

e A SPARQL query canonical labelling algorithm that is
able to generate canonical string labels, identical among all
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Figure 1: System architecture

isomorphic forms of a SPARQL query. We use these labels
to identify and request query graphs to or from the cache.
Most importantly, this scheme enables unique identification
of all common subgraphs inside any SPARQL workload.
e We integrate our SPARQL query canonical labelling algo-
rithm with a state-of-the-art Dynamic Programming Plan-
ner [28] by issuing cache requests for all query subgraphs
using their canonical label. The resulting optimal execution
plan may thus involve, in part or in whole, cached query sub-
graphs. In addition, we not only examine the utilization of
exact cached subgraphs, but also larger, more general graphs
that can be used to provide the input of a query subgraph.
e A Cache Controller process complements the caching frame-
work. The controller monitors all cache requests issued by
the workload queries, enabling it to detect cross-query prof-
itable subgraphs and trigger their execution and caching.
Our caching framework is modularly designed to be able
to support different RDF processing engines and their re-
spective indexing and cost models. It specifically targets
disk-based caching of RDF graphs for read-only workloads.
Persistent storage can support immense volumes of cached
results, that can be also indexed according to the engine’s
indexing capabilities. We integrate our prototype implemen-
tation with HoRDF+ [30], a state of the art distributed
query execution engine that utilizes multiple RDF indexes
along with efficient distributed merge and sort-merge joins.
Utilizing HBase and HDFS as the cache storage backends,
our system is able to handle arbitrarily large RDF graphs.
Extensive evaluation results using diverse workloads show
that our caching framework is able to effectively detect,
cache and utilize SPARQL query results to offer interactive,
millisecond-range average response times for several work-
loads, reducing them up to two orders of magnitude.

2. SOLUTION OVERVIEW

The goal of this work is to provide an efficient, workload-
based caching system that can adapt cache contents accord-
ing to the query requests, trying to minimize response times
for any SPARQL workload.

As depicted in Figure 1, query resolution starts from the
Dynamic Programming Planner (Section 4) that identifies
the optimal execution plan. We adapt a state-of-the-art
dynamic programming planner [27], in order to efficiently
discover and utilize all possibly usable cached query pat-
terns that relate to the query in hand. To achieve robust
tagging of query graphs in the face of multiple isomorphs,
we employ a novel canonical SPARQL query labelling algo-
rithm (Section 3) that allow us to uniquely index and refer
to SPARQL query patterns. Meta-data about cached results
are stored in-memory, indexed using their canonical labels,

in the Result Cache table. To compute the optimal cost for
each SPARQL query, our planner iterates over all its sub-
graphs issuing cache checks using their canonical label. The
benefit of utilizing cached results is evaluated by our planner
using the execution engine’s cost model, resulting in query
execution plans that can contain operators over both RDF
primary indexes (e.g., spo tables) and cached results.

To enhance the cache hit ratio as well as decrease query
response times, we not only examine exact query subgraphs
but also search for more general cached results that can pro-
vide input for a query subgraph by executing a filtering op-
eration over one or several of its variables. Our Cache Con-
troller module (see Section 5) is responsible for accessing
the Result Cache, as well as for recording all cache requests
using the Cache Requests table. During query execution, all
intermediate and final results are considered for caching ac-
cording to the specified result caching strategy. The Cache
Controller is responsible for monitoring cache requests and
maintaining detailed benefit estimations for possibly usable
query patterns as well as for their materialization cost. Uti-
lizing this information, we trigger the execution and caching
of profitable queries (frequently requested but not cached
queries) in order to boost the cache utilization. The result-
ing architecture is pictorially described in Figure 1.

3. SPARQL QUERY CANONICAL LABEL-
LING

In this section we address the problem of efficiently in-
dexing SPARQL query results. Indexing graph patterns is
a challenging task because it requires to tackle the graph
isomorphism problem [19], a fundamental problem in graph
theory. This problem arises when the same query pattern
appears in different queries with small deviations such as
pattern reordering, variable renaming etc. For example the
following SPARQL queries are isomorphic.

?p ub:worksFor "MIT" .
?p ub:name 7name . ?vl ub:emailAddress 7v3 .
?p ub:emailAddress 7email . ?vl ub:worksFor "MIT"

All “isomorphs” of the same SPARQL graph must be iden-
tified and linked to the same cache entry for a graph caching
scheme to work. To address this issue, we extend a solution
for graph canonical labelling and introduce the concept of
SPARQL graph canonical labelling.

DEFINITION 1. A graph labelling algorithm C takes as in-
put a graph G and produces a unique label L=C(G). C is a
canomnical graph labelling algorithm if and only if for every
graph H which is isomorphic to G we have C(G)=C(H). We
call L a canonical label of G. Additionally, L introduces a
canomnical total ordering between the vertices of G.

?vl ub:name 7v2 .

The canonical labelling problem shares the same computa-
tional complexity with the graph isomorphism problem and
belongs to the GI complexity class. GI is one of the few open
complexity classes that is not known to be either polynomial-
time solvable, or NP-complete[19, 15]. To date, there exists
a lot of heuristic evidence that GI is not NP-complete and
there are many efficient open-source implementations for
both graph isomorphism and canonical labelling algorithms
[4, 1, 7] that are able to handle really large graphs. One of
the first and most powerful canonical labelling algorithms
is McKay’s nauty algorithm [24] that introduced an innova-
tive use of automorphisms to prune the isomorphism search
space. In this paper we select to use Bliss [1] for computing



graph canonical labels. Bliss extends nauty by introducing
some extra heuristics that boost its performance on difficult
graphs. Furthermore, it offers a very efficient C++ library
that can compute canonical labels for graphs with thousands
of vertices in milliseconds making it ideal to handle even the
most complex SPARQL query graphs. The most descriptive
format that Bliss and most of the above algorithms work
with is the directed vertex-colored graph.

DEFINITION 2. A directed vertex-colored graph is a graph
G=(V,E,c), where V. ={1,2,...,n} is a vertex set, ECV xV
is a set of directed edges, and ¢ : V—N 1is a function that
associates to each vertex a non-negative integer(color).

In order to use the existing canonical labelling algorithms,
we need to transform SPARQL queries to directed vertex-
colored graphs without losing any information that can in-
troduce false positives or false negatives, i.e., non-isomorphic
SPARQL queries having the same label or isomorphic que-
ries having different labels. Our first task is to transform
SPARQL queries to directed vertex-and-edge-colored graphs.

DEFINITION 3. A directed vertex-and-edge-colored graph
is a graph G=(V,E,cy,cc), where V. = {1,2,...,n} is a finite
set of vertices, ECV XV is a set of directed edges, ¢, : V—N
and ce : E—N are color functions for vertices and edges.

As a running example, let us assume that we need to get
a canonical label for the following SPARQL query:

?prof ub:teacherOf ?gcourse . (1)

?prof ub:teacher0f 7ugcourse . (2)

?ugcourse rdf:type ub:UndergraduateCourse . (3)
7gcourse rdf:type ub:GraduateCourse . (4)

Initially, we transform the query to a graph where each
triple query is represented by a vertex and triple queries
that share a common variable are linked with an edge. This
graph is depicted on the left of Figure 2, where the vertex
IDs correspond to the triple query labels presented above.
In the next stage, we remove all information related to the
variable names. To do so, for each triple query we create
a label that consists of three IDs, one for each position in-
side the triple. Bound nodes are translated to integer IDs
using a String to ID dictionary while variables are trans-
lated to zero. For the current example, let us assume that
the String-ID dictionary contains: {teacherOf—15, type—3,
UndergraduateCourse—52, GraduateCourse—35}. The la-
bel of the first triple query would be, for example, “0_15_0".
We handle OPTIONAL triple query patterns by appending
a special character ‘|’ at the beginning of their label. We
also direct and color the edges according to the type of join
that they represent. All possible types are {SS, SP, SO, PS,
PP, PO, OS, OP, O0}. As we will see later in this section,
the number of edge colors affects the labelling performance
so we need to reduce it as much as possible. To do so, we
introduce a position ordering (S<P<O) and only add edges
whose source position is lower than or equal to their desti-
nation position. We only require the following 6 edge types
{SS, SP, SO, PP, PO, OO}. In the second graph of Figure
2, we can see both the vertex and edge labels for our query.

In the final step, we translate the vertex and edge labels
to non-negative integers(colors). We just sort the vertex
labels and use as color the position of the label in the sorted
set. For edge labels we use the following translation {SS—1,
SP—2, SO—3, PP—4, PO—5, O0—6}. The final graph is
a directed vertex-and-edge-colored graph and can be seen in
the first graph of Figure 3. We note here that we do not use
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Figure 2: SPARQL query transformation

grouping, ordering, filtering and projection information for
labelling SPARQL queries. Queries that are isomorphic but
differ for example in result ordering will get the same label
but they will be handled as different versions of the same
result by our dynamic planner described in Section 4.

The above transformation removes all information rele-
vant to variable naming while managing to maintain all
structural information of the query using the directed join
edges. To prove this, we note that isomorphic queries that
contain different variable names would generate the same la-
belled graph because variable names do not affect the labels.
Respectively, we can generate an isomorphic SPARQL query
from the transformed graph by assigning variable names.
We initially give unique names to all variables, labelled as
0. We then iterate over all edges, equating their source and
destination variable names using the edge label information.
This process generates an isomorphic query proving that our
transformation maintains all structural query information.

In [25], McKay presents a practical way to transform di-
rected edge-colored graphs to simple directed graphs without
changing their automorphism group. We use this technique
to transform directed vertex-and-edge-colored graphs to di-
rected vertex-colored graphs. More specifically, if there are
v vertex colors and all available edge colors are integers in
{1,2,...,2% —1}, we construct a graph with d layers, each of
which contains n vertices, where n is the number of vertices
of the initial graph. We require only 6 edge colors, one for
each possible type of triple pattern join, and thus d equals to
3 leading to a new graph that contains 3n vertices. We ver-
tically connect the vertices of the different layers (each cor-
responding to one vertex of the original graph) using paths.
The vertex colors of the first layer remain the same as in
the original graph and they get propagated to higher layers
by adding v to the corresponding color of the lower layer.
For each edge of the original graph the binary expansion
of its color number tells us which layers should contain the
horizontal edge. For example, an edge with color 3, whose
binary expansion is 011, will be placed both in the first and
the second layer of the new graph. The transformation for
the above example is depicted in the second graph of Figure
3, where the vertex IDs represent the assigned colors.

Figure 3: Transformation to directed vertex-colored
graph

At this point we can use Bliss to produce a canonical
label for the above graph. The canonization process re-
turns a canonical order of the graph’s vertices. As stated



in [25], the order by which a canonical labelling of the new
graph labels the vertices of the first layer can be taken to
be a canonical labelling order of the original graph. Thus,
after executing Bliss we can get a canonical ordering for
our initial query. For our example the canonical ordering
is {1,2,4,3}, where the ids are the SPARQL triple query ids
used in the initial graph. Using this ordering, we generate
the string canonical label of the SPARQL query graph. We
iterate through the triple queries using this canonical order-
ing and, for each triple query we append its signature at the
end of the label string. While iterating, we also generate
the canonical ordering of the variables, i.e. variable ?prof is
the first variable that we find and thus it gets the canoni-
cal ID 71. In our example, the canonical variable mapping
is {?prof—71, ?gcourse—?72, Tugcourse—?3} and the gen-
erated string label is 71_15_72&71_15_73&72_3_35&73_3_52.
Our algorithm produces the exact same string label for any
isomorphic SPARQL query and thus is a canonical labelling
algorithm for SPARQL query graphs. This label is used as
key in both our Result Cache and Cache Requests tables
and provides a robust and efficient way to store and retrieve
information about SPARQL query graphs.

4. QUERY PLANNING

Finding the optimal join plan for complex queries has al-
ways been a major research challenge in optimizing database
systems. In addition, our system needs to effectively dis-
cover which of the maintained cached results can be used
to provide input for a query’s subgraph. Both these tasks
have exponential complexity to the size of the query be-
cause they need to at least check all its subgraphs. While
there exist several greedy, heuristic approaches for SPARQL
query planning [36, 30], they cannot be easily integrated
with a cached result discovery algorithm that finds all rel-
evant cached results. In contrast, dynamic programming
query planning approaches [27, 29] explore all subgraphs of
a query and thus can be easily modified to achieve both
optimal query planning and cached result discovery.

One of the oldest and most efficient dynamic programming
algorithms for join planning is DPsize [13] that is widely
used in commercial databases like IBM’s DB2. DPsize limits
the search space to left-deep trees and generates plans in
increasing order of size. A more recent approach, DPccp
[27] and its variant DPhyp [28] are considered to be the most
efficient, state-of-the-art dynamic programming algorithms
for query optimization. They reduce the search space by
examining all connected subgraphs of the query in a bottom-
up fashion. In addition, DPccp is successfully utilized to
generate optimal SPARQL join plans in RDF-3X [29]. In
this paper, we extend the DPccp algorithm and add support
for cached result discovery for all query subgraphs.

4.1 Cached result discovery

In this section, we describe how our dynamic program-
ming planner discovers all cached results that can enhance
the execution of the query in hand. Detailed descriptions
and pseudocodes of the proposed algorithms can be found in
Appendix C. The main idea is that while the planner exam-
ines all the connected subgraphs of the query, it generates for
each one a canonical label and issues a cache check. The ben-
efit of all discovered cached results is examined by the cost
model during the planner’s execution. The above approach
locates all cached results that exactly match a subgraph of

the query and evaluates their usability for the generation of
the optimal query plan. However, it cannot discover results
that can provide input for a subgraph by executing a fil-
tering operation over one or several of their variables. Lets
examine the following query:
?prof ub:worksFor "MIT" .
?prof ub:name "Mike" .
Using exact matching, our planner would only issue the

cache requests that contain all the bound literals and URIs
of the initial query, depicted in Figure 4.

?7prof ub:worksFor “MIT” . 7prof ub:worksFor “MIT” .

?prof ub:name “Mike” . 7prof ub:emailAddress ?email .
7prof ub:worksFor “MIT” .
?prof ub:emailAddress Temail .
7prof ub:name “Mike” .

?prof ub:emailAddress 7email .

?prof ub:emailAddress Temail .
?prof ub:name “Mike” .

Figure 4: Exact cache requests

However, we notice that the following indexed cached re-
sult, while not examined, could also be beneficial for answer-
ing the query, transforming it to a simple index lookup:

{ 7prof ub:worksFor 7univ .
?prof ub:name ?name } index by ?univ ?name

To address this scenario, we need to also examine more
general graphs as well as their indexing properties that can
help reduce the filtering operation overhead. For example
and in the above case, caching the general result without
any indexing might be useless, if for instance its size was
significantly larger than the size of the filtered results, as we
should read all its data in order to find the relevant ones. In
addition, the usability of a cached result also depends on the
join operation that must be applied on it. For example, if we
need to join this result with another triple pattern according
to variable ?prof, we would like to have it sorted in order to
perform a merge join operation and not a more complex and
inefficient hash or sort-merge join operation. Furthermore,
we need to take into account the case of cached results or
queries that contain more complex filters on variables, pro-
jection and group-by clauses. To achieve all these goals, we
need to find an efficient way to examine which of the cached
results can provide input for a query subgraph, due to fil-
tering, projection and grouping properties, and search them
to find the one that incurs the least cost.

To tackle this problem, we first abstract our query graph.
We remove all bound query nodes that reside in the subject
or object position of a triple query and replace them with
variables along with the respective equality filters. In the
above example, the query would be transformed to:

{ ?prof ub:worksFor 7univ .
?prof ub:name ?name } filter(7univ="MIT", ?name="Mike")

We use this abstract query graph in our dynamic pro-
gramming planner and thus check all its subgraphs issuing
cache requests. Each cache request is issued having as key
the canonical label of the abstract query subgraph and is ac-
companied by the filter, projection and group-by clauses of
the query as well as by a request for a join variable. As men-
tioned in Section 3, filters, projections and groupings are not
used to generate the canonical label and thus queries with
the same abstract structure will be grouped together using
their label. The use of canonical labels as cache keys re-
duces the results that we need to examine for every query
subgraph but we still need an efficient way to select the best
result from the list of all existing results that share the same
abstract structure. Each cache record, related to an abstract
query label, maintains all cached results that share this label

?prof ub:emailAddress 7email

?prof ub:emailAddress 7email
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Figure 5: Cached Result Tree

using a tree structure. This structure can be used to effi-
ciently search for the best result with respect to the request’s
auxiliary information(filters, projections, groupings). Figure
5 depicts this structure for the following abstract query:

{ 7?prof ub:worksFor 7univ . ?prof ub:name ?name }

For this example, we assume that our cache contains sev-
eral cached results with the same abstract query pattern.
As discussed in Section 3, the canonical labelling of the ab-
stract query provides a canonical ordering of its variables.
Let’s assume that the canonical ordering for our current ex-
ample is {?prof—7?1, 7univ—?2, Tname—73}. Each level of
the tree encodes the information related to the respective
variable. Each leaf of the tree represents a cached result
and therefore the path that connects it with the root node
encodes all its auxiliary information. For example, an edge
with label “*, Indexr” means that the result contains no filter
on this variable and provides an index for it. An edge labeled
==“MIT” appearing at the second level of the tree denotes
that the result contains the filter 22=“MIT”. A “II” edge
denotes that the respective variable is projected out in the
result. If the query contains a group-by clause it is encoded
as a last level edge in the cached result tree. To check the
usability of cached results for a cache request we can tra-
verse the tree from the root node and find the results that
can be utilised to answer it by following only the edges that
provide more generic results than the query request.

Apart from checking the usability of cached results for a
cache request, we also need to be able to evaluate their cost
and find the result that best matches each cache request. As
cost of a cached result we refer to the amount of records that
need to be accessed for using it. To estimate this cost in the
presence of several indexed variables and query filters, we
need to extend our tree structure with selectivity estimations
and result sizes. The procedure of inserting a cached result
in the result tree can be seen in Algorithm 2. The treelnsert
method recursively adds a new leaf node, representing the
current result, along with its size in number of records. The
minResults value of each tree node, visible inside each node
of Figure 5, represents an estimation of the smallest cost
that can be achieved by the results of its respective subtree.
Having guarantees for the smallest cost of a subtree, we
can perform the search for a cache request using efficient A*
search and prune entire subtrees that do not contain relevant
results. To create the minimum cost estimations, each leaf
node contains the actual result size; we propagate this value
to the parent nodes by keeping each time the minimum value
among all children. In the case of indexed edges, we apply

Figure 6: Search Result Tree
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the selectivity estimations before we propagate the value
from the child to the parent node. If a request contains a
filter on a variable that is indexed, we need to reduce the
cost of the result by the expected selectivity of the filtering
operation on the index. Edges that contain no indexes do
not change the cost of the result because we would need to
access all their data to perform the filtering operation.

Our cache implementation does not depend on the spe-
cific way that an RDF execution engine handles selectiv-
ity estimations. To create the cached result tree we only
require the maximum selectivity that can be achieved by
doing a filtering operation on a certain index. For each in-
dexed edge of a cached result we generate a selectivity value
s = minRecords/total Records, depicted along the indexed
edges of Figure 5. In our running example, an index on the
general result(1 million records), on variable 72 (?univ) has
a minimum amount of 100 records and thus its maximum
selectivity is s = 100/1m = 10™*. To handle the estimation
of multiple filtering operations on different variables we fol-
low the independency assumption i.e. the selectivity of two
filtering operations with selectivities s; and s2 is s = s1 - 2.
This property allows us to follow paths of filtering operations
on the cached result tree and maintain a total estimation by
just multiplying the individual selectivities while crossing in-
dexed edges. The treeInsert method (Algorithm 2) starts by
adding the respective leaf along with its amount of records.
We then move from the leaf to the root node and update
the minimum values of the parent nodes. When crossing an
indexed edge we apply the maximum selectivity by multi-
plying it with the child’s number of records. We also set a
minimum value of 1 for the costs of nodes. The complex-
ity of the add operation is linear to the amount of variables
contained in the abstract query pattern.

Figure 6 depicts the execution of the searchTree method
(Algorithm 1) when searching for the cache request:

{ ?prof ub:worksFor ?7univ . ?prof ub:name ?name

} filter(?7univ="MIT"), joinVar(?prof)

As mentioned before, we use the minimum cost estimations
of the tree nodes in order to perform an A* search and prune
subtrees with large costs. The search procedure starts from
the root node and checks all nodes in a best first search
according to cost estimations. In Figure 6, each node con-
tains two numbers; its estimated cost (upper number) and
its selectivity (lower number). Only edges that can be used
for answering the request are followed. For example, the
edge with label 23=“John” will not be followed because it is
more restrictive than the request. Furthermore, when cross-



ing indexed edges that match with a filtering operation of
the request we need to apply their selectivity. For exam-
ple, when crossing the edge (?2: “* Indexed”) we need to
apply the selectivity of the filter ?2=“MIT”. To do so, we
consult the selectivity estimator of the abstract result for
the respective variable. We use the abstract result to esti-
mate selectivities because a tree edge can belong to several
results with different sizes and we want to have an estima-
tion for the maximum selectivity. In this case the selectivity
of 22=“MIT” is 0.002 because it is expected to return 2000
records and the abstract result contains 1 million records. To
estimate the selectivity of several consecutive filtering oper-
ations we maintain a selectivity estimation for each open
node and propagate it to children nodes by multiplying it
when crossing indexed edges with filter operations. Addi-
tionally, when crossing join variable edges we multiply the
selectivity by 2 if the edge is not indexed due to the fact
that the overhead of performing a hash or sort-merge join
algorithm instead of a merge join can be approximated by
the time to read the input data twice [29]. The minimum
cost estimation for each node (upper value) is computed by
multiplying its selectivity with the minResults estimation
depicted in Figure 5.

Our cost estimations can deviate from the actual costs
due to the use of the abstract result selectivity estimator
and our assumption of independency for filtering operations.
Therefore, we perform a top-k search for results and then
further examine the cost of each result, inside DPccp, using
the detailed cost model of the execution engine. In Figure
6, we perform a top-2 search depicting on the side of each
node the step in which it was opened. Nodes marked with an
X were not opened; grey coloured nodes depict the results.
We observe that we only required 5 steps to find the top-
2 cached results and our search managed to prune a large
part of the search tree due to auxiliary info mismatches and
minimum cost estimations.

5. CACHE CONTROLLER

In this section, we describe the functionality of our Cache
Controller module. Its main challenges are the generation
and caching of profitable query patterns and the cache re-
placement strategy. As profitable query patterns we define
queries that, even if not exactly issued by users or executed
as intermediate results, could benefit the execution of the
workload if cached. For example, consider a workload of
queries having the same abstract query structure but ran-
dom bound selective IDs. Caching only the intermediate
results of those queries would not offer a great benefit to
the workload because it would achieve cache hits only for
queries that share the exact same selective IDs. In con-
trast, caching the abstract query pattern indexed according
to the variable that contains the selective IDs would intro-
duce benefits for all queries, in this special type of workload,
transforming them to index scans. Apart from identifying
abstract results and their indexing, our cache controller can
intelligently identify cross-query frequent subgraphs and in-
dex them according to: 1) Their most common filtering vari-
ables and 2) their most common join variables.

5.1 Generation of profitable cached results

As discussed in the previous section, our dynamic pro-
gramming planner issues cache requests for all subgraphs
of the abstract query. In addition, these cache requests

are issued while optimizing the query plan and can thus
be recorded along with estimations about their effect to the
execution time of the respective query. Maintaining such a
detailed log of cache requests provides valuable information
about which query patterns can provide the most benefit to
the workload. The exact benefit computation of all cached
requests Q; = (V4, E;) to the execution of a query Q = (V, E)
would require the execution of DPccp for each one of them.
To avoid this, we use the following function, that multiplies
the query’s cost by the fraction of triple patterns covered by
the subgraph, to compute a benefit estimation.
BQUIQ) = [T - cost(@) 1)
This benefit estimation requires the optimal cost of the
query Q and can be computed at the end of our planning
process. Therefore, during the planning process our planner
records all non satisfied cache requests (Q;) and at the end
compiles a list of requests along with their respective benefit
and sends it to the Cache Controller for further processing.
This means that the complexity cost of attributing benefits
to possibly usable query patterns does not affect the execu-
tion and planning time of queries because it is done in an of-
fline manner by the separate thread of the Cache Controller
module. The Controller maintains a Cache Requests struc-
ture containing request benefits indexed by their abstract
canonical label. Each record holds a tree structure encoding
benefit estimations for requests sharing the same label. Fig-
ure 7 depicts this benefit estimation tree, generated by the
addBenefit method (Algorithm 3), for the following cache
request (Q;) with benefit B = 3sec:
{ ?prof ub:worksFor ?7univ . ?prof ub:name ?name }
filter (7univ="MIT", ?name="Mike"), joinVar(?prof)
Each leaf of the tree represents a query pattern that can pos-
sibly benefit the cache request. To attribute benefits to all
possibly usable results at each level of the tree we at least
follow the “* Indexr” and the “*” edges. If the respective
variable contains a filter, we also add an edge containing
it. Furthermore, if the record of the Cache Requests table
already contained benefits for results with filters that can
be used for the current request, they are also followed. For
example, if a previous query had a regular expression fil-
ter Tname = “M x” we would also attribute benefits to
its subtree. The values inside the nodes represent the se-
lectivity estimations for the respective pattern. To generate
these estimations we only require a selectivity estimator of
the abstract result and the total amount of records of the
abstract result. We again use the independency property to
estimate the selectivities for multiple filters on different vari-
ables. Therefore, we just need to propagate the selectivity
estimation from the parent to the child node by multiplying
with the selectivity of the respective edge. The benefit for
each usable result, leaf node, is:
b=B—s-R/thr (2)
where B is the total benefit of the request, s is the selectivity
of the result, R is the number of records of the abstract
query, and thr is the engine’s read throughput (e.g. 100k
records/sec). The second part of the equation represents the
cost to read the result. In Figure 7, the benefit for a result
with selectivity s3 is by = 3sec — s3 * 1m/100k ~ 3sec. We
also ignore benefits that are less than 0, for example the
non indexed abstract result, rightmost leaf, has selectivity 2
and benefit b = 3sec — 2 x 1m/100k = —17sec. When the
benefits of all patterns are estimated, the Cache Controller




sums the previously existing benefit values with the new ones
and stores the tree inside the record of the Cache Results
table. The Controller, running our planner, estimates the
execution cost of the most prominent requests and maintains
an ordered list of (request, benefit/cost) pairs (Algorithm
5) used by the profitableQueryGeneration method to trigger
the caching of the most profitable queries.

The query pattern tree grows exponentially to the number
of variables in an abstract query and there are various com-
puted and maintained benefits for results that will never be
the most profitable. However, this exponential complexity
does not affect our query response times because it is done
independently of the query execution. To alleviate the prob-
lem of maintaining all the benefit estimations, we have an
offline process (Algorithm 5) that runs in configurable time-
frames (e.g. every 10sec or every 10 queries) and maintains
only the top-k leaf nodes of the Cache Requests table. Fur-
thermore, to avoid promoting only queries with large costs,
we normalize the benefit estimation of a query pattern us-
ing its execution cost. Thus, in the previous example, if we
had queries that mostly targeted “MIT”, both the indexed
version of the abstract result and the version that contains
only records for “MIT” would gather the same benefit but
eventually the more specific result would be cached due to
its lower cost of execution.

In addition, queries issue cache requests adding benefit
to all their subgraphs. When one query pattern gets se-
lected for caching the corresponding benefit should be re-
moved from all other patterns that were requested by the
same queries as they were satisfied. Not reducing benefits
for satisfied queries can lead to: 1) executing all subgraphs
of a frequent query pattern, 2) difficulties in identifying new
profitable cache requests due to obsolete benefit estimations
of satisfied requests. To alleviate this problem, we main-
tain for each query pattern in the Cache Requests table a
list of query IDs that attributed to its benefit. This list is
used to reduce the benefit of cache requests after the exe-
cution of a profitable query. We reduce the benefit of each
request by the fraction of its query IDs that belonged to
the profitable’s query ID list. In our example above, if we
decided to execute the abstract query indexed according to
variable 7univ, all query profits would go to zero because the
profitable query gathered benefit from all workload queries.
Thus, no more queries would be executed by the Controller.
To avoid maintaining obsolete benefit estimations for cache
requests, we additionally decrease their benefit with time.

5.2 Cache replacement strategy

In this paper, we target disk based cached results keeping
only their meta-data in main memory. Thus, the amount of
the maintained cached results is only limited by the avail-
able disk space. However, the user can set limits on the disk
space capacity dedicated for storing cached results. When a
new cached result cannot be stored without exceeding those
limits we need to remove some of the existing cached re-
sults. To be able to intelligently select which result should
be evicted from the cache, the Controller also maintains a
benefit estimation for each cached result. This benefit esti-
mation is updated using the method addResultBenefit (Al-
gorithm 4) and differs from the one described in the previous
section. After the execution of a query that used a cached
result, the Controller executes the planner one more time,
restricting the use of this cached result. This gives us the

cost of the query without utilizing the respective cached re-
sult. The controller adds the difference between this cost
and the actual cost to the result’s benefit value. Benefits,
also, decrease with time in order to avoid maintaining obso-
lete results. We prioritize cache evictions using Algorithm
6 that utilizes this benefit estimation. New results can only
evict cached results that have less benefit. In addition, if the
cache size constraints are violated, our controller will not ex-
ecute new profitable queries unless their benefit is larger than
the lowest cached result benefit. To evict multiple results,
due to its size, a new result must have benefit greater than
the sum of benefits of all evicted results.

6. RELATED WORK

In this section, we present related research on SPARQL
result caching techniques as well as on RDF databases, dis-
cussing the effect of our caching framework on them.

6.1 SPARQL result caching

Here, we present some of the most relevant research ap-
proaches on SPARQL query result caching. While this is a
challenging problem, few relevant approaches to address it
exist. A first attempt to introduce SPARQL caching was
made in [23], where a meta-data relational database is re-
sponsible for storing information about cached query results.
However, this approach cannot tackle the isomorphism prob-
lem introduced when the same SPARQL graph pattern is
requested from different queries with small deviations such
as pattern reordering, variable renaming, etc.

A more sophisticated approach was presented in [39], where
the cache keys consisted of normalized Algebra Expression
Trees (AETs) that correspond to cached join plans. How-
ever, a cached AET is only used in join plans that exactly
contain it as a subtree. This is also not a general subgraph
caching framework and leads to inferior cache utilization.

In [22], the authors introduce a similarity-based match-
ing algorithm that can detect cached queries that resemble
the query in hand. Yet, this greedy technique cannot find
all candidate subgraph matches for a SPARQL query. They
also propose some heuristics used to augment the workload
queries and prefetch SPARQL query results, which resem-
bles our profitable query execution. Their approach is again
based on heuristic techniques that can not examine the ben-
efit of all possibly usable results as well as their indexing. To
sum up, current caching frameworks fail to effectively locate
all subgraph matches and subsequently use them to produce
optimal query plans for SPARQL queries.

Apart from SPARQL result caching there are other rele-
vant techniques that try to tackle parts of the problem that
we address in this paper. Many of the state-of-the-art ap-
proaches in graph database indexing propose the use of fre-
quent pattern indexing [41, 38]. Frequent and discrimina-
tive subgraphs are discovered and indexed during the import
phase of the dataset and can be then utilized to efficiently
answer queries that contain them. In addition, large amount
of research has been done in the area of multi-query opti-
mization [33] and view selection [26] for relational databases.
Approaches for multi-query optimization have also been pro-
posed for SPARQL query processing [21]. All these tech-
niques depend either on knowledge of the workload queries
or on expensive import procedures that find frequent pat-
terns in the dataset. In contrast, our approach assumes no
a-priori knowledge on both the dataset and the workload



and targets the adaptive indexing and caching of frequent
query patterns by actively monitoring the workload queries.

6.2 RDF datastores

One of the first and most widely used ideas for indexing
and querying RDF data was presented in Hexastore [37].
According to it, the materialization of all six permutations
of subject-predicate-object values is required in order to re-
trieve any triple pattern at minimal cost and extensively
use efficient merge joins. A similar indexing approach is fol-
lowed in RDF-3X [29] which maintains all Hexastore indices
as well as additional indices that collect statistical informa-
tion amounting to a total of 15 indices. RDF-3X also uses
the DPccp algorithm in order to find the optimal join exe-
cution plan and thus our caching framework can be easily
integrated and offer the respective performance gains.

BitMat [11] is an alternative approach for storing RDF
triples via a 3-dimensional bit matrix. Each matrix element
is a bit denoting the presence or absence of the correspond-
ing triple. This 3-d bit matrix is flattened to multiple 2-d
matrices used for query execution. BitMat uses a greedy
technique to chose the sequence of matrix operations that
need to be performed for the execution of a SPARQL query.

To tackle the big-data challenge, research has recently
moved onward to distributed RDF data management sys-
tems. A first attempt to utilize MapReduce and HBase was
made in HoRDF [31] which materializes three RDF triple in-
dexes using HBase tables. HoRDF performs joins using the
MapReduce framework, employing a greedy planner that
decides on the sequence of joins as well as their type of ex-
ecution ranging from centralized to distributed joins.

An alternative proposal is presented by Huang et al. [17];
this method starts out by partitioning the RDF graph into
distinct subgraphs, each stored in a single node running a
local RDF-3X instance. Moreover, in a replication scheme,
each node keeps information on the graph contents within n
hops from the contents it owns. This provision allows for un-
obstructed parallel processing of SPARQL queries satisfying
an n hop guarantee. In case this guarantee is not satisfied,
Hadoop is invoked for distributed join processing.

Lastly, Trinity-RDF [40] is a distributed, memory-based
graph engine for RDF data. It stores RDF triples as graph
edges using distributed memory hashmaps. Utilizing graph
exploration techniques it avoids join execution overheads
and takes advantage of the quick random access provided by
the memory resident data. Trinity-RDF depends on a DP
planner to find the best graph exploration execution plan.

To sum up, all the aforementioned systems utilize differ-
ent RDF indexing and query execution techniques. They
also rely on a range of techniques for query optimization,
from dynamic programming planners to greedy heuristic
planners. However, none of the above systems effectively
utilizes cached results or adaptive indexing techniques. We
argue that our caching framework can be integrated with
and benefit these systems transparently because:

e The DPccp algorithm is generic and can handle the query
optimization for all those systems.

e Cost models for the different operators of the various sys-
tems can be plugged into the DPccp algorithm and used to
devise the optimal query execution plan for each engine.

e Our labelling algorithm is based on the SPARQL standard
and thus is applicable to all systems.

e Our caching implementation only depends on query meta-

data and thus query results can be stored and reused using
the system’s native storage format.

7. EXPERIMENTS

In this section, we present a thorough performance evalu-
ation of our generic RDF caching framework. We choose to
integrate our caching framework on top of the open source’,
distributed HoRDF+ database [30, 32] that combines the
Hadoop and HBase to index and query RDF data. HoRDF+
generates HBase indexes for all permutations of RDF ele-
ments, namely spo, pso, pos, ops, osp and sop [37], along
with aggregated statistic indexes that can provide a de-
tailed join cost model. In addition, HoORDF+ is highly scal-
able, utilizing MapReduce to perform distributed Merge and
Sort-Merge joins. Joins can be executed using either single-
machine or distributed jobs according to the join cost result-
ing in small response times for selective queries. HoRDF+
utilizes aggressive byte-level compression and result group-
ing in order to reduce its result space consumption. As we
focus on disk-based result caching, aggressive compression
is a major plus and boosts the caching efficiency by allowing
more results to be maintained.

Our caching framework is independent to the query exe-
cution engine and thus only small changes are required for
HoRDF+, as well as for other RDF stores, to support it.
Our cache depends on indexing cached results for: 1) filter-
ing operations, 2) boosting performance for join execution.
Most RDF databases, including HoRDF+, utilize order pre-
serving indexes that can be used to efficiently perform both
operations. HoRDF+’s indexed results can be used in both
Merge and Sort-Merge joins in the same way as HoRDF+'s
primary triple indexes [30]. Non-indexed results have no
ordering properties and are stored in plain HDFS files.

7.1 SPARQL query canonical labelling

In this section we test the performance of our SPARQL
query canonical labelling algorithm. Its performance is tightly
coupled with Bliss’s, with an added transformation overhead
introduced when translating SPARQL queries into directed,
vertex-colored graphs. To evaluate the efficiency of our al-
gorithm, we measure the time required to canonically label
a set of different SPARQL query graphs consisting of paths,
stars, cycles and path-stars. Path-stars are graphs that con-
tain a star subgraph and each of the branches of the star
consists of a path of two triple patterns.

First, we generate SPARQL query graphs using only one
type of triple pattern query, e.g., ?vl ub:takesCourse 7v2.
This means that all vertexes of the transformed graph, de-
picted in Figure 2, will have the same label. Bliss and nauty
use vertex color and graph structure information to break
the graph symmetry and prune the isomorphism search space
when searching for a canonical label. Consequently, for
SPARQL queries that contain only one type of triple pat-
tern, our canonical labelling algorithm can benefit only from
the graph structure. The response times required to label
queries with variable number of triple patterns (of a single
type) are depicted in the first graph of Figure 8. Path and
cycle queries require almost stable labelling time, close to
0.2 ms, due to their small number of isomorphs. In con-
trast, star queries require a labelling time exponential in
the number of triple patterns. Our labelling transformation

"http://h2rdf.googlecode.com



generates graphs with edges corresponding to join variables
and thus it transforms star SPARQL queries to cliques be-
cause all triple patterns are joined according to the central
variable of the star. Path-stars are a combination of a star
and multiple paths and thus their complexity is higher than
that of a simple path with the same size but lower than the
complexity of the respective star graphs.
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Figure 8: SPARQL query canonical labelling evalu-
ation against queries of variable complexity and size

The second graph of Figure 8 depicts the effect of having
different types of triple patterns in the queries. Different
triple patterns give our canonical labelling algorithm more
information to prune the isomorphism search space. We
measure the time needed to label star and path-star queries
with variable number of nodes while ranging the percent-
age of unique triple patterns. For stars we examine que-
ries with 0%, 50% and 100% of the query’s patterns being
unique while the rest of the patterns are duplicates. We no-
tice that the required labelling time decreases when queries
contain more unique patterns that help our algorithm break
the graph symmetry. This performance gain is also visible in
path-star queries. Finally, this gain is exponential especially
in the case of star queries leading to almost linear labelling
complexity for both star and path-star queries with 100%
unique triple queries. In general, our algorithm is able to
label most real-life SPARQL queries in less than 1 ms.

7.2 Dynamic Programming Planner

In this section, we evaluate our dynamic programming
planner that integrates DPccp [27] with our canonical la-
belling algorithm. The first graph of Figure 9 depicts the
time required for our planner to generate canonical labels
for all the query subgraphs, check for existing usable cached
results and compute the optimal join plan for several types
of SPARQL query graphs. We use a set of query graphs con-
sisting of paths, cycles, stars, path-stars and grids and vary
the number of their triple queries. DPccp utilizes the edge-
graph representation of SPARQL queries, depicted in the
left graph of Figure 2. When processing star queries DPccp
faces an exponential complexity to the amount of triple que-
ries. This is expected because star SPARQL queries are
transformed to cliques in the edge-graph and thus contain
exponential amount of connected subgraphs that need to be
enumerated. However, we can generate optimal plans for
star queries with up to 10 triple queries in milliseconds. In
contrast, for path and cycle queries that do not contain as
many subgraphs, the planner exhibits great performance and
is able to process queries with up to 20 relations in less than
30ms. Path-star and grid query graphs, due to their more
complex graph structure, present higher complexity than
paths and cycles resulting in millisecond response times for
queries with up to 14 triple queries.

Another major parameter that affects the complexity of

T LI e T T T T

100FA—A paths 1 10EA—A Paths ]
% Stars > Stars
101 Cycles 7 ] 7—/ Path-Stars
—</ Path-Stars v Grids
2 Grds Ol SV
gl 2o A
= 0.1f = 0. B e
S
oo 0.0t A—MHA 1
T4 6 §101214161820 i 0100 1000

number of triple queries results per cache record

Figure 9: Query planning performance

our planner is the tree search for cached results inside a cache
record. This procedure mainly depends on the amount of
results that are stored inside a cache record. As explained
in Section 4.1, we perform a top-k, A* search to find the
best results inside each cache record. From our experimen-
tation, we have discovered that a top-3 search inside each
cache record is sufficient to discover the best cached results
in all our query examples and therefore we utilize a top-
3 search in all the experiments of this section. The sec-
ond graph of Figure 9, depicts the effect of the amount of
cached results to the planners execution time. To test the
impact of the amount of cached results to the execution of
our planner, we select a set of query graphs all consisting of
10 triple queries and range the number of cached results per
cache record, utilized by the results, by randomly generat-
ing and loading 1 to 1000 cached results. We assume that
1000 results per unique abstract query subgraph suffice to
evaluate our planner’s performance even for the most chal-
lenging caching scenario. From the experimental results, we
note that the performance of our planner scales logarithmi-
cally to the amount of cached results for all query patterns.
This means that our A* search manages to effectively prune
large parts of the cached result trees due to their filtering
constraints and our minimum cost estimations. The time
needed for our planner to evaluate the same query in the
presence of 1 and 1000 cached results per cache record only
increases by a factor of 2 for all query patterns. To sum up,
our dynamic programming planner is able to both effectively
locate cached results and generate the optimal join plan in
less than a second for most realistic SPARQL queries; this
includes all benchmark queries used in the following sections.

7.3 Cache efficiency

In this section we evaluate the ability of our cache to effec-
tively generate profitable results in order to decrease query
response times for several diverse SPARQL workloads.

7.3.1 Cluster configuration and Datasets

Our evaluation cluster consists of 10 worker nodes plus a
single machine in the role of the Hadoop and HBase master.
Each of our workers features a 2 Quad-Core E5405 Intel
Xeon®CPUs at 2.00GHz, 8 GB of RAM and a 500GB disk,
while the master has similar CPU and disk and 4 GB of
RAM. Each worker is set to concurrently run 5 mappers
and 5 reducers, each consuming 512MB of RAM. In our
experiments, we used Hadoop v1.1.2 and HBase v0.94.5.

We utilize the LUBM dataset generator[14] that creates
RDF datasets with academic domain information, enabling
a variable number of triples by controlling the number of
university entities. LUBM is widely used to compare the
performance and scalability of triple stores due its ability
to create arbitrarily large datasets. We use two datasets in



our experiments: LUBM10k (10k universities, 1.38 billion
triples and a total of 250GB of data) and LUBM20k (20k
universities, 2.8 billion triples and 500GB of data).

7.3.2  SPARQL query workloads

To evaluate caching performance, we use the suite of LUBM
read-only benchmark queries [3]. Our caching framework as
well as the integrated execution engine (HaRDF+) offer lim-
ited OWL functionality. Thus, we do not consider queries
that require complex OWL reasoning in the current evalu-
ation. To better present the advantages of our system we
generate 4 representative query workloads:

Selective query workload (W1): This workload con-
sists of queries that contain selective triple patterns, such
as 7student ub:takesCourse <Coursel>. These selective
patterns can be efficiently used to reduce the size of data
processed because they can be directly retrieved using the
maintained hexastore triple indexes. HoRDF+ executes se-
lective queries in a centralized manner resulting to great re-
sponse times. The LUBM queries for this workload can be
found in Appendix A. Our workload issues queries sequen-
tially choosing each time randomly one of the above queries.
To make this a more challenging workload, we also randomly
alter the bound nodes of each query. For example, LQ1 will
be issued each time containing a different graduate course.
We can easily generate random IDs because all LUBM URIs
follow the format <http://www.Departmentl.University8.edu
/GraduateCourse5>, thus making it easy to generate random
department, university and course IDs. The same is true for
all IDs present in the aforementioned queries.

Non selective query workload (W2): This workload
consists of queries that do not contain any selective triple
pattern and require to retrieve and join large relations us-
ing distributed joins. Queries in this category have both
small and large result sizes because their selectivity is based
on graph pattern selectivity and not basic triple-pattern se-
lectivity. Representative LUBM queries from this workload
can be found in Appendix A. For example, LQ2 is quite
selective because it retrieves the graduate students that are
members of the same university that they graduated from.
While all graduate students have graduated from a univer-
sity and are members of another university only few of them
satisfy the triangle pattern and thus the selectivity of the
query is based on the selectivity of this triangular relation.
LQ15 produces a large output because it generates informa-
tion for all universities professors and courses. To make this
workload more challenging, we randomly alter the type of
the triple queries. For example, in LQ9 we randomly gen-
erate its first 3 triple queries by alternating between Pro-
fessor, FullProfessor, AssistantProfessor, AssociateProfessor
and Lecturer. In general, there are not many subclasses we
can select from and thus the executed workload consists of
19 distinct SPARQL queries.

Subgraph pattern query workload (W3): Another
strong point of our caching algorithm is the ability to detect
cross-query frequent subgraphs and use them to effectively
reduce the workload’s response time. To highlight this sce-
nario, we generate a workload of queries that all contain the
triangular query patten:

?x ub:member0f 7z .
?x ub:undergraduateDegreeFrom 7y .

Each query in this workload consists of this subgraph along
with a set of other triple patterns that are different across

7z ub:subOrganizationOf 7y .

the set of queries. Two of the workload queries contain
only non selective triple queries like: ?x ub:name ?7n, 7x
ub:email 7em, etc. We also add two queries that contain se-
lective patterns like: ?x ub:member0f <DepartmentO.Uni-
versityO.edu> and 7z ub:subOrganization0f <Univer-
sity0> with random selective IDs. The last query of this
workload is the LQ2 which also contains the triangular sub-
graph along with randomly selected type triple patterns.

General query workload (W4): This workload con-
tains all the queries of the previous workloads. It consists
of 14 different SPARQL query types containing both selec-
tive and non selective queries. It also contains inter-query
subgraph dependencies as discussed above.

7.3.3  Workload caching

In this section we test the caching performance of our sys-
tem for the aforementioned workloads utilizing the LUBM10k
dataset. For each workload, we examine the impact of our
cache implementation to the average query response time
and highlight the strong and weak points of our system. Fig-
ure 10 presents the average query response times for our four
query workloads. To highlight the distinct contributions of
our system we depict the average response time for: 1) the
baseline HoRDF+ system, 2) our caching implementation
with exact cache checks labelled “Exact” and 3) our fully
functional system with abstract query cache checks labelled
“Abstract”. In all cases, we use unlimited cache size by de-
fault. We average query response times using a window of
10 queries in order to avoid large randomness in the figures
and achieve quick responsiveness to the cache changes. Fi-
nally, our Cache Controller is configured to check the Cache
Requests table and generate profitable queries every 10 sec.

W1: The first graph of Figure 10 illustrates the behaviour
of the average query response time for the selective work-
load. Initially, we note that our baseline HoRDF+ system
has a stable average performance that ranges between 1 and
2.5 seconds. This is expected due to the use of centralized
joins that take advantage of HBase indexes. By including
the caching mechanism, average response times are gradu-
ally decreased to 500ms within 400 sec. Our abstract query
cache check technique is especially useful in this workload.
Due to the fact that the workload contains random selective
IDs, it is true that no exact subgraph of the issued queries
could be efficiently used to improve the execution of the con-
sequent queries. This is the reason that the “exact” version
behaves in the same way as HoRDF+. In contrast, when
using abstract cache checks our system can effectively dis-
cover, execute and index profitable SPARQL queries. For
example, the controller will cache the following query (Q.)
{ ?x ub:worksFor ?y .
?x ub:emailAddress 7em .

?x ub:name ?n .

?X ub:telephone 7t .

?x rdf:type ub:Professor .} index by 7y

that can convert the execution of LQ4 from a complex join
that takes nearly 2sec, to a simple HBase index access that
requires, on average, only several milliseconds. The same
holds for all W1 queries, resulting in an average response
time of 0.5sec (an average 75% reduction in the mean re-
sponse time). The response time thus gradually decreases
during workload execution as more queries get effectively
cached. The 400 sec, required for the response time to reach
its lowest point, correspond to the distributed execution and
indexing of 6 complex SPARQL queries (like Q.); yet, their
execution does not introduce large overheads to the que-
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Figure 10: Average query response times for W1, W2, W3 and W4

ries of the workload that run at the same time. Finally, we
note that while HoRDF+’s basic indexes occupy 62GB of
disk space, our system requires only an additional 1.3GB of
disk space to cache the corresponding results and decrease
the average response time for this workload. Although the
workload queries are selective, the generated cached results
are quite large because they contain information for all their
selective nodes. The small size of cached results is mainly
attributed to HoRDF+’s aggressive compression scheme.
W2: The average response times for the compared sys-
tems are presented in the second graph of Figure 10. This
workload is a lot more execution-intensive than the previous
one, leading to an average response time of nearly 130 sec for
the plain HoRDF+ approach. However, our fully functional
caching system is able to achieve interactive, millisecond-
range response times for this workload in less than 1000 sec-
onds (over two orders of magnitude reduction in the mean
response time). Again, our caching system takes advantage
of the abstract cache requests technique in order to capture
the changes in the type fields of the queries and generate
the most profitable cached results. It only requires the exe-
cution and indexing of 3 results to offer interactive response
times for this workload. For example, the profitable cached
result that corresponds to LQ9 is:
{?y ub:teacherOf 7z . 7?x ub:advisor 7y .
?x ub:takesCourse 7z . 7x rdf:type 7tl .
?y rdf:type 7t2 . 7z rdf:type 7t3} index by 7tl 7t2 7t3
The time required to execute these 3 queries is actually
around 400 sec. The additional time required to minimize
the average response times is introduced by: 1) the fact that
the result discovery process will not be very effective until
enough entries are gathered in the Cache Requests table,
2)the concurrent distributed execution of workload queries
affects the execution time of profitable queries. We notice
that the “exact” version of our algorithm can also reduce the
average response time for this workload but it needs nearly
1500 sec to do so. As mentioned before, when we do not uti-
lize abstract cache requests we can only benefit from exact
subgraph cache matches. However, this workload actually
contains only 19 distinct queries and therefore we only need
to execute each query once and then all queries will be di-
rectly found in the result cache. Despite being execution
intensive only one of those queries, LQ15, has large output
that requires 5.8GB of disk space. LQ2 and LQ9 are in fact
very selective and require not more than 3MB of disk space.
‘W3: The third graph of Figure 10 depicts the average re-
sponse times achieved for the subgraph pattern based work-
load. We can observe that both versions of our caching
algorithm are presenting similar average response time be-
haviours. This is due to the fact that the common triangu-
lar query pattern, despite its complexity, is quite selective,
with less than 3000 results. Both our algorithms can detect
this inter-query dependency and in fact this is the first prof-

itable query that is cached in both cases. The selectivity of
this pattern is quite large, leading to really efficient, inter-
active execution times after only 240 sec. After caching the
triangular subgraph, our fully functional version will also
continue with caching indexed results for all the selective
queries of the workload. This procedure leads to another
small gain in performance, which can be seen after 600 sec.
At this point the results could be directly retrieved using
an HBase scan rather than executing a small join, showing
over two orders of magnitude reduction in workload’s mean
response time. The disk size occupied by our cached results
in this workload is only 50KB.

‘W4: The caching efficiency for this workload is depicted
in the last graph of Figure 10. We observe that this is a
quite challenging workload for our baseline HoRDF+ engine
as it presents an average response time of around 60 sec.

Regarding our caching implementation that only uses ex-
act subgraph matching, we note that it is able to reduce the
average response time by an order of magnitude resulting in
average response times that oscillate around 3 seconds after
2000 seconds. Our “exact” version is able to cache: 1) the
non selective results due to their small distinct number, 2)
the frequent subgraph queries by caching their common sub-
graph. Nevertheless, this caching framework is not able to
further reduce the execution time of small selective queries.

Using abstract cache requests we manage to reduce the
average response time by two orders of magnitude for this
challenging workload, resulting in interactive response times
that stabilize close to 500 msec. As mentioned in Section 5.1,
our Cache Controller prioritizes the execution of profitable
queries according to their expected benefit and thus the que-
ries that correspond to the costly, non selective SPARQL
queries will be issued first. The large benefits of caching
costly queries are obtained early, leading to one order of
magnitude better response times after the first 700 sec. Af-
ter caching large queries, our Cache Controller gradually
improves the execution efficiency for the rest of the queries,
requiring less than 1300 sec to execute and cache all the rel-
evant, profitable SPARQL queries and drop response times
to their lowest values. Due to the aggressive compression of
H2RDF+, the disk space occupied by all the cached results
is only 7.5GB, leading us to assume that we can easily scale
and handle even more complex datasets and workloads.

7.4 Caching techniques comparisson

To present a more detailed comparison of all different
caching techniques for RDF data we use the Detailed Cost
Saving Ratio (DCSR) metric presented in [20].

PSR = 215 (3)
i€

where ¢; is the execution cost for query ¢; without utilising
the cache and s; is the savings provided by using the cache:




0, if ¢; does not use the cache

si =1 ¢, if there is an exact match for g; (4)
¢; — cfi, if g; uses the cache and has cost cf;

DCSR captures the different levels of effectiveness of the

materialized results against the workload queries and can

be used to accurately compare different caching techniques.
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Figure 11: Effectiveness of caching techniques

The DCSR(%) measurements, for our generic workload
‘W4, for four different RDF caching techniques are presented
in Figure 11. To compare our system to the related RDF
caching techniques we choose as baseline the AET-based
caching [39] which caches normalized join execution trees
and is the most efficient among the related work systems.
We also compare the effectiveness of our techniques for: 1)
utilizing more general results using the abstract cache re-
quests, 2) generating profitable results using our benefit es-
timations. Figure 11, shows that our fully functional cache
implementation can achieve the best cost saving ratio stabil-
ising to 96% after 350 queries. We also note that the cache
efficiency is reduced by nearly 15% when removing our ab-
stract request functionality and another 4% when removing
the discovery of profitable results. Lastly, our system out-
performs the AET based caching by nearly 24% due to its
ability to utilize all possibly usable cached results. The cost
savings achieved by the AET based technique are limited to
the caching of non-selective queries that do not vary much
across the workload. The efficiency difference compared to
our cache would increase for workloads with more variable
query types and filtering values.

7.5 Dataset Size and Caching Policy effects

The left part of Figure 12 depicts the efficiency of our
cache for W4, utilizing LUBM10k and LUBM20k. The ma-
jor differences between the two are:

e The average response time in the beginning of the execu-
tion is larger for LUBM20k. When increasing the dataset
size, the response time for non-selective queries increases re-
spectively while the performance of selective queries remains
almost stable. This is why the baseline average response
time increases but remains less than double.

e The time needed for our caching framework to give milli-
second-range average response times increases. While for
LUBM10k our framework requires 1300 sec, 2000 sec are re-
quired for fully caching the general workload for LUBM20k.
This is due to the fact that most of the profitable queries
are non-selective, thus their execution time increases along
with the dataset size.

To evaluate the effectiveness of the described caching pol-
icy heuristics described in Section 5, we execute W4 three
times: 1) with unlimited cache and without using our benefit
estimation to discover profitable queries, 2) with unlimited
cache and using the proposed benefit estimation, 3) with
benefit estimation and 2GB cache size. The experimental
results are presented on the right part of Figure 12. For the
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Figure 12: Cache performance for different dataset,
caching policies and cache size

no estimation policy, instead of maintaining benefit estima-
tions we just maintain a counter for each cache request, in-
cremented by 1 each time the query graph is requested. We
observe that both policies can eventually minimize the aver-
age response time of the workload but the proposed simple
benefit-based approach manages to smoothly decrease the
response times by caching the profitable queries in the most
suitable order. In contrast, the policy that uses no benefit
estimations cannot effectively order the caching of profitable
results, leading to large deviations in the average response
time due to the fact that costly queries happen to get cached
later than selective queries.

When limiting the cache size, we note that the large out-
put of LQ15 cannot be cached, while all the rest cached
results fit inside our cache, requiring nearly 1.7GB of disk
space. LQ15 requires 182 sec to be executed by HoRDF+.
While all other queries present interactive response times
after 800 sec, the execution of LQ15 triggers the oscillations
of the average response time.

8. CONCLUSIONS

In this paper we presented a novel SPARQL caching frame-
work that is able to effectively cache and utilize query re-
sults. We introduced a SPARQL canonical labelling algo-
rithm that manages to generate canonical labels for most
real life SPARQL queries in less than a millisecond. Fur-
thermore, we extended the DPccp dynamic programming
planner by adding support for subgraph cache checks and
generation of optimal query plans that consider the utiliza-
tion of cached query subgraphs. We introduced a Cache
Controller module that is able to discover and cache prof-
itable SPARQL queries to reduce the response times for sev-
eral workloads. Our caching framework was integrated on
top of a state-of-the-art distributed RDF datastore, reduc-
ing its average response time by up to two orders of mag-
nitude and offering interactive response times for complex
workloads and huge RDF datasets.
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APPENDIX

A. WORKLOAD QUERIES

For completeness, we include the LUBM SPARQL queries
described in Section 7.3.2.

A.1 Selective query workload (W1):

LQ1: ?x rdf:itype ub:GraduateStudent .
7x ub:takesCourse <GraduateCourse0>
LQ3: ?x rdf:type ub:Publication .
?x ub:publicationAuthor <AssistantProfessor0>
LQ4: ?x ub:worksFor <Department0.University0.edu> .
7x ub:name 7n . 7x ub:emailAddress Tem .
7x ub:telephone 7t . ?x rdf:type ub:Professor
LQ5: 7x rdf:type ub:GraduateStudent .
7x ub:memberOf <Department0.University0.edu>
LQ7: 7x rdf:type ub:Student . 7y rdf:type ub:Course .
7x ub:takesCourse 7y .
<AssociateProfessor0> ub:teacherOf 7y
LQ8: 7x rdf:type ub:Student . 7y rdf:type ub:Department .
?7x ub:memberOf 7y . 7x ub:emailAddress 7em .
7y ub:subOrganizationOf <University0> .

A.2 Non selective query workload (W2):

LQ2: 7z rdf:itype ub:Department .
?7x ub:memberOf 7z . ?x rdf:type ub:GraduateStudent .
7z ub:subOrganizationOf 7y . 7y rdf:type ub:University .
7x ub:undergraduateDegreeFrom 7y .

LQ9: 7x rdf:type ub:Student . 7y rdf:type ub:Professor .
7z rdf:type ub:Course . 7x ub:advisor 7y .
7y ub:teacherOf 7z . ?x ub:takesCourse 7z .

LQ15:7p rdf:type ?tp . 7p ub:worksFor 7d .
7s ub:takesCourse ?c . 7p ub:teacherOf 7c

B. EXTENDED EXPERIMENTS

In order to test our system with real-life RDF data and
SPARQL queries that contain more edges and selective nodes,
we utilize the Yago2 dataset [16]. This dataset consists of
real data gathered from various resources such as Wikipedia,
WordNet, GeoNames, etc., and contains more than 120 mil-
lion triples. It is smaller than the various LUBM datasets
we used in our experimental section but introduces more
complex query and data structures. To test our system,
we generate a workload consisting of SPARQL queries, also
used in [29], containing up to 10 triple patterns:

YQ1: 7gn <hasGivenName> 7p. ?fn <hasFamilyName> 7p. 7p
<type> “scientist?. ?p <wasBornIn> 7city. ?p <hasAcadem-
icAdvisor> 7a. 7a <wasBornln> ?city2. 7city <isLocatedIn>
“Switzerland”. ?city2 <isLocatedIn> “Germany”.

YQ2: 7a <type> “actor”. ?a <livesIn> ?city . 7a <actedIn>
?ml . 7a <directed> ?m2 . ?city <isLocatedIn> 7s. 7s <isLo-
catedIn> “United States”. 7ml <type> “movie” . ?ml <isLo-
catedIn> “Germany”. ?m2 <type> “movie” . ?m2 <isLocate-
dIn> “Canada”.

YQ3: 7pl <hasGivenName> 7nl . ?pl <wasBornln> “Berlin”.
7pl <isMarriedTo> 7p2. 7p2 <hasGivenName> 7n2 . 7p2 <was-
Bornln> “London”.

In order to make this workload more challenging, our
workload generator utilizes random city and country names.
This workload resembles the selective W1 used in Section



7.3.2. All the above queries have complex query graph struc-
tures with several triple patterns but their selectivity is small
and thus the average execution time of the workload without
caching is in the range of 2.5 seconds.
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Figure 13: Yago2 query workload

As depicted in Figure 13, our caching framework can grad-
ually reduce the average query execution time for this work-
load after nearly 200 seconds. This time is required to ex-
ecute and index the 3 abstract queries that contain infor-
mation for all possible selective IDs. In fact, query struc-
ture complexity (number of triple patterns, graph structure)
mainly affects the planning time of the query, as was tested
in Section 7.2, while the execution complexity of the query
mainly depends on the underlying data and join algorithms.
Therefore, the major conclusion of this experiment is that
our system has the same effects on workloads with complex
query structures. Its overhead depends on the planning over-
head, which is in the range of milliseconds, while the join
execution complexity occupies the major part of the query
time, especially in the case of large non-selective queries. As
depicted in this experiment, even for small selective queries
the query structure complexity introduces negligible over-
heads to the average query response times.

C. ALGORITHMS

In this section, we formally describe our proposed algo-
rithms using pseudocodes. We start with the checkCache
method described in Algorithm 1. This algorithm is used
inside the DPccp planner to find usable cached results for
every connected subgraph (csg) of the abstract query graph.
The abstraction procedure, as mentioned in Section 4.1, re-
moves all the bound subject and object nodes and intro-
duces the respective filters that are contained in the auxil-
iary query info (aux). This auxiliary query info also contains
the filtering, projection, grouping and result ordering infor-
mation of the initial query. Furthermore, the checkCache
method also searches for the k most relevant results in the
ResultCache. The major steps of this algorithm are the
canonical labelling and the top-k tree search on top of the
respective result tree. An important part of the searchTree
method is the selectivity estimation of a cached result edge
according to the auxiliary query info, described using func-
tion selectivity(edge, auz). This function computes: 1) the
usability of cached results for the query in hand, 2) the selec-
tivity of the usable cached results using the abstract query
estimator (line 42) of Section 4.1.

Another important algorithm of our caching framework is
the cacheResult Algorithm 2 that inserts the meta-data of a
result in our cache structure. Again, the algorithm consists
of two major steps, the canonical labelling and the tree in-
sertion to the respective result tree. The treelnsert method,
as mentioned in Section 4.1, is responsible for creating the
respective tree node along with the parent nodes that do not
already exist. It also updates the minResults value of each
node that takes part in the insertion procedure by propagat-
ing the result size from the leaf node to the root node, ap-
plying selectivity estimations when crossing indexed edges.

Our next algorithm is the addBenefit Algorithm 3 that
attributes the benefit for a specific query subgraph using

Algorithm 1 CHECKCACHE

1: function checkCache(V, E, aux, k)
: //V, E : vertices and edges of the abstract query subgraph
3 //aux : auxiliary query info(filters, projections, etc)
4 //k : search for the top-k results
5: label + canonical Label(V, E)
6: resultTree < ResultCache.get(label)
7 //resultTree : the result tree for a certain canonical label
8 return searchTree(resultTree, aux, k)
9: function searchTree(resultTree, auz, k)
10: results < {}

11: //openNodes : priority queue with pairs (node, cost)

12: openNodes <+ {(resultTree.root,1)}

13: while openNodes # {} do

14: //get the open node with the minimum cost

15: n < openNodes.removeHead()

16: h if (results.size = k)and(n.cost > results.maxCost)
then

17: //We have found k results and all open nodes

18: //have greater cost than the current results

19: return results

20: processNode(n, openNodes, results, auz, k)

21: return results

22: function processNode(n, openNodes, results, auz, k)
23: for (edge, child) € n.children() do

24: if (s = selectivity(edge, aux)) > 0 then

25: child.selectivity < s * n.selectivity

26: child.cost < child.minResults * child.selectivity
27: if child.isLeaf() then

28: //maintain the k best results

29: if results.size < k then

30: results.add(child)

31: else if results.maxCost > child.cost then
32: results.removeMax AndAdd(child)

33: else

34: openNodes.add({child, child.cost})

35: function selectivity(edge, auz)

36: //compute edge selectivity for auz info

37: selectivity < 1

38: for a € aux.get(edge.variable) do

39: //check edge usability

40: if edge.subsumes(a) then

41: if a.isFilter() then

42: if edge.isIndexed then

43: //filter selectivity estimation

44: //using the abstract result estimator
45: selectivity < selectivity = filterSelectivity(a)
46: else if a.isJoinVariable() then

47: if edge.isNotIndexed() then

48: selectivity < selectivity * 2

49: else

50: selectivity <— 0

51: return selectivity

its canonical label. This algorithm, introduced in Section
5.1, follows all possibly usable results in the benefit tree (at
least 3 for each tree level, see lines 20-22) and attributes the
respective benefit, computed using its selectivity estimation
and Equation 2. It also prunes sub-trees with benefit <
0 and adds the query ID to the list of the query IDs that
contributed to the benefit of a cache request.

Algorithm 4 describes the complete processing of a SPARQL
query. It starts with the abstraction of the query graph
updating its aux info. It then calls the extended DPccp
planner that issues cache requests and records their bene-
fit using Equation 1. The optimal query plan is executed
and then the CacheController thread handles the caching of
produced intermediate results, the request and result bene-
fit attribution (lines 8-10). The cacheResults method tries
to cache all computed results consulting our caching policy.
The addRequestBenefits updates benefits for all recorded
cache requests using Algorithm 3. Lastly, the addResult-
Benefit method updates the benefit of all utilized cached
results. It computes their contribution to the query execu-
tion by checking the optimal execution time computed by



the DPccp without the use of the respective cached result.

Our caching policy, described in Section 5.2, is depicted
in Algorithm 6. The evictions function, called if the cache
constraints are violated, tries to find a set of results that
cover the new result size and have cumulative benefit that
is lower than the benefit of the new result. Furthermore,
the decreaseBenefits function is presented that handles the
update of benefits after the execution of a profitable result
mentioned in the end of Section 5.1.

Lastly, Algorithm 5 presents our periodic processes. The
updateBenefits method is responsible for decreasing the ben-
efit estimations for both cached results and requests through
time. To do so it uses a configurable decrease factor 0 < a <
1. It also maintains the ordered lists of results and requests
used in our other algorithms. In the case of cache requests,
we remove requests that are not in the top-k most profitable
ones and also compute their execution cost. The profitable-
QueryGeneration method iterates over all cache requests in
decreasing order of benefit/cost and, consulting our caching
policy, selects the most profitable request for execution. It
proactively checks the caching policy using an estimation
of the query size, in order to avoid executing requests that
cannot be cached due to their size and benefit constraints.

Algorithm 2 CACHERESULT

1: function cacheResult(V, E, auz, size)
//V, E : vertices and edges of the abstract query graph
//aux : auxiliary query info(filters, projections, etc)
//size : the size of the result in records
label + canonicalLabel(V, E)
resultTree < ResultCache.get(label)
treeInsert(resultTree.root, aux, size)
function treelnsert(node, auz, size)
if node.isLeaf() then
node.minResults = size

else
alnfo < aux.get(node.variable)

if ((edge, child) = node.getEdge(alnfo)) = null) then
//Edge does not exist, create new
(edge, child) = newEdge(alnfo)

treeInsert(child, auzx, size)

if aInfo.isIndexed() then
//compute the maximum selectivity of the index

= b e e e et

19: mazxSel < mazxSelectivity(edge)

20: results = child.minResults * maxSel
21: else

22: results = child.minResults

23: if results < node.minResults then

24: if results < 1 then

25: results « 1

26: node.minResults = results

D. COMPLEXITY

In this section, we formally examine the time and space
complexities of our proposed algorithms. Our first algorithm
is the canonical labelling algorithm proposed in Section 3.
The complexity of this algorithm is directly associated with
the complexity of the Bliss algorithm that attempts to solve
the graph isomorphism (GI) problem. GI is known to have

time complexity at most O(2V™!°8™) for graphs with n ver-
tices [10]. However, this is not a representative bound for
Bliss because its complexity mainly depends on the amount
of automorphisms present in the graph structure rather than
on the number of its vertices. Indeed, there are graph exam-
ples that result in exponential labelling times but for gen-
eral graphs Bliss presents sub-exponential complexity. Our
extended SPARQL query labelling algorithm introduces a
polynomial time, O(n), transformation of the input query
which is negligible compared to the worst-case exponential
time complexity of Bliss. The major overhead of our scheme
is the fact that it transforms the m vertices of the query
graph to 3n vertices and thus introduces a polynomial in-
crease to the input size. However, this overhead does not

Algorithm 3 ADDBENEFIT

1: function addBenefit(label, auz, bene fit, qI D)

2: //label : the canonical label of the abstract query graph
3: //auz : auxiliary query info(filters, projections, etc)

4: //benefit : the estimated benefit for the query

5: //aID : the query ID

6: benefitTree < CacheRequests.get(label)

7: treeAddBenefit(benefitTree.root, auzx, benefit,1,qlD)
8: function tree AddBenefit(node, auz, benefit, s, qI D)

9: //s : parent node selectivity

10: if node.isLeaf() then

11: b = benefit — s * R/thr //Equation 2

12: if b > 0 then

13: node.benefit = node.benefit + b

14: node.queryl Ds.add(qI D)

15: else

16: alnfo < aux.get(node.variable)

17: newEdgel fNotExists(“*”

18: newEdgel f NotExists(“x, Index”)

19: newEdgel f NotExists(alnfo)

20: for (edge, child) € node.children() do

21: //check usability, selectivity of existing edges
22: selectivity < s * selectivity(edge, aln fo)

23: //prune subtrees with benefit < 0

24: if (benefit — selectivity * R/thr) > 0 then

25: treeAddBene fit(child, auz, bene fit, selectivity)

Algorithm 4 EXECUTEQUERY

1: function exzecuteQuery(query)

2: (g, auz) + abstractQuery(query)

3 //q: abstract query, aux: auxiliary query info
4 cacheRequests « {}

5: plan <— DPcep(q, aux, cache Requests)

6: results < execute(plan) //RDF engine
7.
8
9

//handled offline by the CacheController thread
CacheController.cache Results(results)
: CacheController.addRequest Bene fits(cache Requests, g1 D)
10: CacheController.addResult Bene fit(q, plan)

11: function cacheResults(results)

12: //cache computed results

13: for result € results do

14: //get the respective benefit from the cache requests
15: request < CacheRequests.get(result)

16: result.benefit < request.benefit

17: result.queryl Ds < request.querylDs

18: cache(result, result.benefit)

19: function addRequestBenefits(cache Requests, qI D)
20: for (req, benefit) € cacheRequests do

21: addBenefit(req.label, req.auzx, benefit, gI D)
22: function addResultBenefit(q, plan)

23: //update the benefit of utilized cached results

24: for result € plan.usedCachedResults do

25: newPlan < DPccpWithoutResult(q, result)
26: result.bene fit+ = (newPlan.cost — plan.cost)

substantially affect the worst-case complexity of Bliss.

Our second algorithm is the top-k, A* search, (searchTree
in Algorithm 1) performed in order to search results that
share the same canonical label. The irregularity of the A*
search does not allow us to set a useful upper bound for this
algorithm. Of course, an upper bound for the algorithm
is the maximum size of the tree stored inside each cache
record but this bound does not take into account the intel-
ligent pruning of the search space performed. In the worst
case, the tree search will have complexity O(r), where r is
the maximum amount of cached results that share the same
graph structure and thus the same canonical label. We note
here that r is also bound by the cache size constraints and
we can therefore expect that it will not grow limitless.

Our checkCache Algorithm 1, generates a canonical label
and then performs a tree search in the respective result tree.
As mentioned before, the canonical labelling time will, in the
worst, case, dominate the checkCache mechanism due to its



Algorithm 5 CACHE CONTROLLER PERIODIC PROCESS

1: // methods that run in configurable time or query intervals
2: function updateBenefits

3: //OrderedResults : benefit ordered list of cached results
4: for result € ResultCache do

5: //decrease benefit with time using paramater 0 < a < 1
6: result.benefit = result.benefit x a

7 OrderedResults.insert(result)

8: //OrderedRequests : benefit ordered list with max size
9: for request € CacheRequests do

10: //decrease benefit with time

11: request.benefit = request.benefit x a

12: OrderedRequests.insert(request)

13: //remove cache requests that are not in OrderedRequests
14: removeFromCacheRequests(OrderedRequests)

15: for request € OrderedRequests do

16: //estimate cost for best requests using D Pccp

17: request.bene fit = request.benefit/estimateCost()
18: function profitableQueryGeneration

19: //iterate in decreasing order of benefit/cost

20: for req € OrderedRequests do

21: //proactively check cache replacement

22: evict + evictions(estimateSize(req), req.benefit)
23 if evict.satisfied then

24 result < executeQuery(req)

25: return

Algorithm 6 cACHINGPOLICY

1: function cache(result, benefit)

2: evict < evictions(result.size, benefit))

3: if evict.satisfied then

4: removeCachedResults(evict)

5: cacheResult(result.V, result.E, result.aux, result.size)
6: decreaseBenefits(result.querylDs)

7 return

8: function evictions(size, benefit)

9: //cache replacement policy

10: evict + {}

11: if availableCacheSize > size then

12: evict.satisfied = true

13: return evict

14: //iterate cached results in decreasing benefit order

15: for result € OrderedResults do

16: if result.benefit < benefit then

17: evict.add(result)

18: if evict.totalSize > size then

19: break

20: if evict.totalSize > size then

21: evict.satis fied = true

22: else

23: evict.satisfied = false

24: return evict

25: function decreaseBenefits(queryIDs)

26: for request € CacheRequests do

27: oldSize < request.querylDs.size

28: //remove common query IDs

29: request.queryl Ds = request.querylDs \ queryIDs
30: newSize < request.querylDs.size

31: request.benefit = request.bene fit x newSize/oldSize

exponential time complexity and due to the fact that the
tree search has bounded worst-case performance. However,
as shown in our experimental evaluation, our checkCache
mechanism is practical and presents acceptable time com-
plexity for general graphs.

We now examine the time complexity of our dynamic pro-
gramming query planner that integrates the DPccp algo-
rithm with our checkCache algorithm. DPccp bases its enu-
meration procedure on finding all csg-cmp-pairs in the query
graph [28]. Csg-cmp-pairs are pairs containing a connected
subgraph(csg) of the query graph and one of its connected
complement subgraphs(cmp).

DEFINITION 4. (csg-cmp-pair). Let G=(V,E) be a query
graph and S1, S2 two subsets of V such that S1 C V and
S2 C (V\ S1) are a connected subgraph and a connected
complement respectively. If there further exists an edge (u,

v)EE such that uCS1 and vCS2, we call (51, S2) a csg-cmp-
pair.

For each unique csg, connected subgraph of the query
graph, we call the checkCache algorithm in order to search
for usable cached results. Therefore, if s is the amount of
connected query subgraphs and m is the amount of csg-cmp-
pairs, the complexity of our planner is O(s - ¢ + m) where ¢
is the complexity of the checkCache mechanism. The com-
plexity of the original DPccp is O(m). In the worst case m
is exponentially larger than s because for each csg we need
to enumerate all the respective cmp subgraphs. In fact, for
the worst case of clique graphs s = O(2") and m = O(3")
[27]. Therefore, the worst-case complexity of our extended
dynamic programming planner is O(2"-2V™1°8™ 4 37 which
does not largely deviate from the original complexity of the
DPccp algorithm. However, as depicted in our experiments
and in the extensive complexity evaluations of both DPccp
[27] and Bliss [1], the above worst-case complexity does not
arise for general graphs and the algorithms are practical for
all tested query graphs.

We now discuss the complexity of our offline operations
handled by the CacheController module. By offline we mean
that they are not part of the critical path of executing a
SPARQL query. Initially, we study the complexity of the
cacheResult method presented in Algorithm 2. This opera-
tion consists of a canonical labelling step and one execution
of the treelnsert method. The complexity of the treelnsert
method is linear in the amount of variables in the query
graph and thus is linear, O(n), in the input graph size. The
treelnsert method has also linear space complexity because
it only inserts one node in the result tree along with its re-
spective parent nodes that do not already exist. Therefore,
the complexity of the cacheResult method is dominated by
the worst-case complexity of our canonical labelling.

The addRequestBenefits method, presented in Algorithm
4, is responsible for attributing benefits to all possibly us-
able query patterns for all the cache requests issued during
the planning of a query. The number of cache requests for
a query graph is bound by the number of its connected sub-
graphs(csg) s. For every csg the addBenefit method is called
(Algorithm 3). The worst-case time and space complexity
of the addBenefit method is O(d") where d is the maximum
degree of the tree nodes (at least 3) and v is the number of
variables in the query. In total, the worst-case complexity
of the cacheRequests method is O(s - d”). This worst-case
complexity is tamed by: (i) the offline pruning of the benefit
trees that maintains the top-k most profitable tree nodes for
all query labels and (ii) the ability of the addBenefit method
to prune entire subtrees with benefit < 0.

The profitable QueryGeneration method, presented in Al-
gorithm 5, iterates, in a benefit order, over the benefit es-
timations checking the caching policy in order to select the
query that is going to be executed and cached. Our caching
policy check has linear complexity, O(res), in the amount
of cached results res because, in the worst case, it needs to
check the removal of all cached queries. Therefore, its worst-
case complexity is O(req - res) where req is the number of
maintained request benefit estimations. As stated above,
this number is regulated by our offline request pruning pro-
cess in order not to grow exponcentially. The res parameter
is also regulated by the cache size constraints.

Our updateBenefits method, presented in Algorithm 5, has
complexity O(res-logres+req-creq+req-logreq+req-dp).
It sorts res cached results, it maintains and sorts req of the
creq accumulated requests. It also executes req times the
DPccp algorithm, with complexity dp as presented above.
The main memory space complexity of our caching frame-
work is O(res 4+ req + creq) which is regulated using the
configurable res and req values. The creq value is regulated
by the execution frequency of the updateBenefits method.
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