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ABSTRACT
Most modern networks are perpetually evolving and can be
modeled by graph data structures. By collecting and index-
ing the state of a graph at various time instances we are able
to perform queries on its entire history and thus gain insight
into its fundamental features and attributes. This calls for
advanced solutions for graph history storing and indexing
that are capable of supporting application queries efficiently
while coping with the aggravated space requirements. To
this end, we advocate a purely vertex-centric approach and
we propose a storage model that is more space efficient than
any other proposal to date, and, moreover, is asymptoti-
cally space-optimal. We also describe its basic operations
and applications. Furthermore, we implement and incor-
porate our technique in the G∗ parallel graph processing
system, we conduct thorough experimental evaluation and
we show that we can yield improvements up to an order of
magnitude.

1. INTRODUCTION
The past few years have seen a rapid increase of networks

that produce a considerable amount of data. Networks, such
as citation networks, traffic networks and social networks,
are naturally represented as graphs. These graphs are usu-
ally dynamic, in the sense that the network they are orig-
inally representing is constantly evolving with nodes and
edges being inserted, updated, or deleted altogether. For
example, in a social network, friendships are very frequently
created and ended, while in a citation network each new
work cites a selection of the already existing works.

An important challenge that arises with the presence of
dynamicity in such networks (and their respective graphs)
is the appropriate handling of their history so that we can
extract features that characterize the whole (or part of the)
timeline of the graph, as opposed to solely its latest state.
By doing so, we are able to answer queries such as “what
was the diameter in a group of friends between 2010 and

2012” in social networks or “how many times has author A
collaborated with author B in 2000” in citation networks.

A key aspect in effectively tackling the overall problem
is the proper organization of the graph’s states at different
time instances, i.e. the organization of the graph’s snap-
shots. Additionally, the sets of all actions that occur be-
tween two snapshots (node/edge insertions, deletions and
updates), which are commonly referred to as deltas, should
be maintained in a practical fashion, too. A simple ap-
proach to solving the problem would be to explicitly store
all snapshots separately. However, a system could achieve
significant performance improvements by maintaining an in-
dexing and storage mechanism that takes advantage of the
fact that there are nodes and edges that remain unaltered
between snapshots in the sequence. Also, due to the large
graph sizes, this mechanism should consider that most of
the graph data reside within the external memory. Con-
sequently, the efficient design of the indexing and storage
components constitutes a crucial step towards mitigating the
impact of frequently accessing the external memory during
the processing of evolving graph sequences.

Indexing and storage of deltas should also be designed
with their applications in mind. The application queries
can be distinguished between (i) local queries, which require
information of a single graph vertex or a few vertices, and
(ii) global queries, which require information about most or
all vertices. Orthogonally to the amount of vertices, a query
may require access to (i) a single snapshot, or (ii) to a range
of snapshots in the sequence. The combinations of these two
dimensions yield four main types of queries over evolving
graphs, all of which need to be supported. An example of
a local query over a single snapshot is “What was the 2-
hop neighborhood of node A at time point t?”, whereas an
example of a global query over the entire graph history is
“Find the average number of friends of each member of a
social network in each month since the network’s creation.”

The key distinctive feature of our approach is that it
moves away from the concept of using deltas to reconstruct
specific snapshots, e.g., as in [23, 16, 14, 15], and can be
outlined as follows. Each unique graph node has a history
in the graph sequence which is defined by the sequence of
snapshots in which it exists. This history is stored within
the node in a space-optimal manner, and is structured in
such a way so that various queries can be supported (e.g.,
reconstruction of a specific snapshot). This local storage of
history allows for straightforward local handling of nodes
at various time instances or intervals. To accomplish this,
we look at all this history within the node as time inter-
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vals where various geometric operations, such as stabbing
queries, are to be supported. These geometric operations
in fact implement a fundamental set of access operations on
the snapshots of the sequence. Additionally, we experimen-
tally show that our technique is also particularly efficient
for global queries as well, especially when a range of snap-
shots is considered, because the overheads of complete graph
reconstruction are outweighed by the benefits of accessing
less data. Finally, our framework can be parallelized in a
straightforward manner with the only realistic assumption
being that each node can be stored in its entirety in a ma-
chine’s memory.

In summary, we make the following contributions:

• We propose the first purely entity-centric, and more
specifically, vertex-centric approach to organize his-
toric graphs. As explained in [15], a system may be
organized in time-centric manner (i.e. the data is in-
dexed according to the time instances), or in an entity-
centric approach (i.e. the data is indexed according to
nodes and edges and their individual history). The
former is inherently more suitable for global queries,
while the latter is advantageous for local queries, be-
cause it needs to reconstruct only the sub-graph of
interest instead of the complete graph.

• We show that our storing and indexing approach is
more space efficient than other existing approaches,
and moreover, we provide a theorem that states its
asymptotic space-optimality.

• We show in detail the main processing primitive oper-
ators supported, on top of which any complex historic
graph execution plan can be built, e.g., traversing a
specific reconstructed snapshot, finding the shortest
path between two vertices or computing the cluster-
ing coefficient of the graph vertices in the a graph se-
quence.

• To prove the practicality of our approach, we have im-
plemented and incorporated it in the G∗ parallel graph
processing system [18, 27]. We experimentally show
that, due to the low cost of accessing stored data, the
reconstruction overheads are outweighed in most of the
cases, and our solution is efficient even for queries that
require the reconstruction of complete snapshots. The
performance benefits can reach an order of magnitude.

The rest of this work is organized as follows. In the next
section we discuss related work. In Sec. 3, we present the
main definitions and notation. We introduce our storage
model in Sec. 4. We present example applications and prac-
tical improvements in Sec. 5. In Sec. 6, we conduct experi-
mental evaluation of our method and we conclude in Sec. 7.

2. PREVIOUS WORK
There have been two main research directions over the

previous years with regards to graph processing. The first
approach includes systems such as Trinity [26], Pregel [20],
Giraph [9] and others (e.g. GBase [12], Pegasus [13], Casso-
vary [4]) that focus on single snapshot processing. The main
characteristic of these systems is that they operate on sin-
gle very large graphs, as opposed to a collection of related
graph snapshots. The second category is concerned with

handling evolving sequences of large graphs that mostly re-
semble the history of a network. The following paragraphs
analyze the work conducted in this research direction, while
a comprehensive survey can be found in [17].

Perhaps, the closest proposals to ours are those in [14, 18,
27]. In general, these techniques rely on storage of snapshots
and deltas, which exhibits a trade-off between space and
time. Having a large amount of snapshots results in deltas
of small size but the space cost is substantial since we need
to maintain many copies of the graph. On the other hand,
having a handful of snapshots means that deltas will be
quite large. By contrast, we follow a purely vertex-based
approach without storing explicitly snapshots and deltas,
and we prove our space-optimality.

In [14] the authors differentiate between the two notions
of time used by researchers in the literature. More specif-
ically, transaction time represents the time that an event
takes place (i.e. the moment that an object is stored or
deleted from a database) whereas valid time signifies the
time period in which an object was valid (i.e. the time in-
terval that an object existed in a database). Their solution
is based on the notion of valid time, thus making the overall
problem more challenging. Their proposed system is com-
posed of two parts. The first component is a disk-stored tree-
like index structure called DeltaGraph that contains specific
materialized snapshots and differential functions, while the
second component is an in-memory structure that stores a
number of materialized snapshots. An extension to Delt-
aGraph geared towards vertex-centric queries, called Tem-
poral Graph Index (TGI), was proposed in [15]. Similarly
to the techniques in [14, 15], we also support the notion of
valid time and we employ non-trivial data structures, as ex-
plained later. However, our proposal is more space-efficient
than [14, 15], and actually, is space optimal.

A parallel graph processing system named G∗ has been
proposed in [18, 27]. G∗ stores each vertex along with its
history in a server only once, regardless of the number of
snapshots in the sequence it exists in. This minimizes the
overall space used for storing changes since duplicate data
is avoided. However, the system indexes both the nodes as
well as the historical information within the nodes which
may lead to a quadratic blowup in space for pointer data
(but not for the graph data). For that reason the authors
focus on a small number of snapshots and employ logging
in order to store all intermediate history between successive
snapshots. In the evaluation results, we show that we can
improve on [18, 27] up to an order of magnitude.

An earlier attempt to efficiently handle historic graph
queries has appeared in [23], which is later generalized in
[16]. Evolving graph sequences can also be engineered to
permit efficient evaluation of specific features or queries,
such as historical reachability queries [25], mining the most
frequently changing component [28] or shortest path dis-
tance queries [11]. Finally, in [5, 6], space-efficient methods
for compressing graph sequences are proposed. However,
these techniques are offline, since they require the entire
sequence to be given in advance. For operating online se-
quences, the authors express some thoughts without pro-
viding concrete implementation details. Furthermore, they
only consider graphs with no additional fields on their ver-
tices and edges (e.g. weights). In general, combining our
techniques with compression ones is an interesting direction
for future work.
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Figure 1: Evolving Graph Sequence. G2 is obtained
by inserting an edge to G1, while G3 is obtained by
creating a node, inserting an edge and deleting an
edge from G2 respectively

3. DEFINITIONS, NOTATION AND QUAL-
ITATIVE COMPARISON

Let G = {G1, G2, G3, . . .} be the sequence of graph snap-
shots to be stored and accessed. The sequence does not have
a final snapshot, in the sense that it is constantly evolving.
For a graph Gi ∈ G, the snapshot Gi = (Vi, Ei) corresponds
to the graph G at time instance i and is characterized by a
set of vertices Vi and a set of incoming and outgoing edges
Ei, with each vertex or edge possessing its own set of at-
tributes. We follow a linear notion of time and define it to
be a strictly increasing quantity measured in indivisible time
intervals. Conceptually, one may obtain the snapshot of Gi

by applying a set of insertions, deletions or value updates to
the vertices and edges of Gi−1. Moreover, since our theoret-
ical model works with valid time, a user is able to update
a specific snapshot even though it may not currently be the
last in the sequence (i.e., a user may update Gi−j , where
i > j, even though G currently holds i snapshots).

The sequence G can also be defined with respect to its
vertices and edges (V and E respectively). Therefore, it
follows naturally that V = V1 ∪ V2 ∪ V3 ∪ . . . and E = E1 ∪
E2∪E3∪ . . .. We use m to denote the total count of changes
(insertions, deletions and value updates) made throughout
the sequence. Note that since new snapshots may be added
to the sequence, the value of m becomes larger with each
new snapshot. As a direct consequence of the above, we
can deduce that at any time instance, the total count of
snapshots, vertices or edges is up to m, i.e. |G| ≤ m and
|V|+ |E| ≤ m. An example of an evolving graph sequence is
depicted in Figure 1. Lastly, the notation used throughout
the remainder of this work is summarised in Table 1.

In the next paragraph, we provide a qualitative compari-
son between different methods. To do that, we assume only
transaction time, since not all solutions support valid time,
as we and TGI do. This comparison is based on the ∆ frame-
work introduced in [15], which is summarized as follows. An
ephemeral node is a node at a specific time instance. Thus,
one needs to specify the time instance t for which we are
interested to retrieve the ephemeral node. The ephemeral
node contains an identifier, a list of incoming and outgoing
edges (a list of edges in the case of an undirected graph) as
well as a set of attributes that are attached to this particular
node or to an edge. An ephemeral edge is similarly defined.
A ∆ is a set of ephemeral nodes and edges at potentially
various times instances. All kinds of graph operations can
be defined on ∆s in order to compress and make more effi-
cient queries on time instances or time intervals. An event
is the minimum change that registers a new version of the

Table 1: Notation Table
Symbol Description

Gi A snapshot of graph G at time instance i

Vi The set of vertices of Gi

Ei The set of incoming and outgoing edges of Gi

G A sequence of Gi for various i

V The set of all vertices in G

E The set of all edges in G

|v| Size of vertex v, i.e. the count of fields and
edges of v across all of G

|vt| Size of vertex v at time t

m The total count of changes (insertions, dele-
tions, updates) made from the first snapshot
to the (currently) last snapshot in G

I External interval tree that maintains the “life-
time” of each vertex in V

T v
ts,te An interval in I signifying that vertex v in G

is active between the time instances ts and te
Dv Diachronic node of vertex v

f An identifier of a particular attribute or field
(e.g. name, weight etc.)

Iv External interval tree of Dv that maintains in-
formation regarding all the attributes of v

Af
v B-tree for the attribute with identifier f of ver-

tex v

Bv A B-tree used as an index over all Af
v trees

B A B-tree used as an index over the identifiers
of all the diachronic nodes

B Disk block size

graph. As a ∆, an event is simply the set of ephemeral nodes
and edges that constitute the changes between two succes-
sive time instances. An eventlist is a sequence of successive
events sorted in a chronological order. An eventlist is spec-
ified by the time interval [tstart, tend] of the respective ∆s.
Finally, a snapshot at a particular time instance t is the set
of all ephemeral nodes and edges at time instance t.

3.1 Qualitative Comparison
Following the above definitions, we provide a qualitative

comparison between different methods in Table 2, which
is an extended version of the corresponding table in [15].
Ephemeral operations correspond to accessing a particular
specified object (graph, subgraph or vertex) at a particular
time instance while Versioned operations correspond to ac-
cessing a particular object in a time interval. The 1-Hop
operation corresponds to accessing all adjacent nodes of a
particular node. The OPTIMAL row corresponds to the
ideal space and time access costs for the operations in the
worst-case.1

The LOG method corresponds to a single initial snap-
shot with an eventlist that stores all changes. The COPY
method corresponds to a snapshot for each change without
eventlists. One could combine these methods (COPY+LOG)

1For G∗, TGI and our solution, one could indeed describe
the complexity w.r.t. a variety of parameters and provide
a more detailed description. However, doing so would cer-
tainly not permit the direct comparison between the meth-
ods and would thus invalidate the very reason for which this
table is provided.
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Index

Size

Edge

Insertion
Snapshot

Ephemeral

Vertex

Versioned

Vertex

Ephemeral

1-Hop

Versioned

1-Hop

Ephemeral

Subgraph

Versioned

Subgraph

OPTIMAL |G| 1 |S| |A| |C| d d|C| |W | min{|W ||C|, |G|}

LOG |G| 1 |G| |G| |G| |G| |G| |G| |G|

COPY |G|2 |G| |S| |S| |S||C| |S| |S||C| |S| |S||C|

COPY+LOG
|G|2

|E|
|G|
|E|

|S| + |E| |S| + |E| |G| |S| + |E| |G| |S| + |E| |G|

TGI h|G| h|G| h|S| + |E| h|S| + |E| |C||S| h|S| + |E| |C||S| h|S| + |E| h|S| + |C||W |

G∗
|G|

+
|G|2

|E||C|

g + |E|

+
|G|
|E|

|C|
|G|
|E|

+ |E|

+g + |S|

|C|
|G|
|E|

+ |E|

+g + |A|

|C|

(

|G|
|E|

+ g

)

+|E|

|C|
|G|
|E|

+ |E|

+g + |A| + d

|C|

(

|G|
|E|

+ g

)

+|E| + d|C|

|C|
|G|
|E|

+ |E|

+g + |W |

|C|

(

|G|
|E|

+ g

)

+|E| + |C||W |

Ours |G| g + lg |C| |S| lg |C| g + |A| lg |C| g + |C| log |C| g + d lg |C| g + d|C| lg |C| |W | lg |C| |C||W | lg |C|

Impl. |G| g + |C| |S||C| g + |A||C| g + |A||C| g + d|C| g + d|C| |W ||C| |W ||C|

Table 2: Comparison of storage models w.r.t. space and access time on various operations. Multiplicative
and additive constant factors are discarded. Some of the following parameters either correspond to the actual
size of an object (e.g., size of a node in the operation Ephemeral Vertex) or to a mean value (e.g., mean size
of a node in operation Versioned Subgraph). |G| → total number of stored changes; |S| → size of snapshot;
|E| → eventlist size; h → height of a tree of snapshots used in TGI. It is upper bounded by log |G|; |C| →
number of changes within a node. It is upper bounded by |G|; d → the degree of a node; |W | → size of an
ephemeral subgraph W ;|A| → size of an ephemeral node; Let g = log |G|.

by allowing a sequence of snapshots with eventlists that
record the changes between them. TGI is based on the
COPY+LOG idea which, however, is considerably tuned so
that it allows a hierarchical structure of snaphsots combined
with partitioning of eventlists into small chunks in order to
achieve better locality. Furthermore, the system supports
lists of different instances of diachronic nodes within the
snapshots to facilitate vertex-centric operations. In addi-
tion, one of its merits is the dynamic partitioning of the
graph. Although in [15], they include partitioning in the
qualitative comparison, we choose not to incorporate it in
this comparison for reasons of uniformity since all other so-
lutions do not support such an explicit partitioning process
but consider it as an additional external mechanism. Fi-
nally, updates in TGI are only supported in batch mode
and the system does not allow for online small changes.

G∗ is a combination of a vertex-centric approach and the
COPY+LOGmethod, where differences are stored in a com-
pact way by employing redirection. This means that, for
successive snapshots, only differences are stored. As a result,
this fact complicates logging of operations between snap-
shots but to a small degree (the authors do not consider
it, since their focus is only on the storage of a rather small
number of successive snapshots).

¿From Table 2, we can deduce that our approach uses
the least space required w.r.t the total number of stored
changes in the sequence and is, therefore, asymptotically
space-optimal (see 2nd column). For the aforementioned
methods, one could implement the various operations shown
in Table 2 by employing additional indexing techniques (e.g.,
hash table with pointers to different versions of nodes in each
snapshot in the COPY method) and the stated complexities
may change based on such decisions. For ephemeral oper-
ations, we assume that the respective reconstructed object
is returned (e.g., the node as seen at time t). For versioned
operations in the time interval [ts, te], the reconstructed
ephemeral object is returned at time ts along with a list
of changes up until time te. Finally, to compare the perfor-
mance w.r.t. updates we focus only on insertions of edges.
Although different, similar performance is achieved for ver-
tex insertions.

3.2 The External Interval Tree
The algorithms and data structures of this work are ex-

pressed in the standard two-level external memory model

proposed by Aggarwal and Vitter [1]. Our proposed solu-
tions are heavily based on the use of the interval tree data
structure [21]. More specifically, let I = {(id, [xi, x

′

i])}, 1 ≤
i ≤ N be a set of N closed intervals on the real line, where id
is used as an identifier for each interval [xi, x

′

i]. We provide a
definition for the query type supported by the interval tree.

Definition 1. Given a query point p ∈ R and a set of
N intervals on the real line, a stabbing query returns all
intervals that overlap p.

Since this work focuses on the external memory, we will
use the external version of the interval tree [2]. However, we
perform a minor modification as in the following sections
we will need to search among all intervals with the same
endpoints for a particular interval according to its identi-
fier. In particular, there is a set of lists within each node
of the external interval tree that stores in a B-tree intervals
based on their left or right endpoint in order to facilitate
stabbing queries. Intervals that have same endpoints (left
or right endpoint) are consecutively and arbitrarily stored
in the B-trees. In our case, we need also to locate a partic-
ular interval among them based on a secondary key which
we call identifier of the interval. Thus, each time an interval
s is stored in a node, if there are other intervals within the
B-tree that have the same endpoint then we store s in a
sorted order among them based on its identifier. This can
be simply supported by either using a B-tree for each such
set of intervals with the same endpoints in a B-tree or by
adding a secondary key on this B-tree.

Theorem 1. Given block size B, we can construct an in-
terval tree on the N intervals of I that uses O(N/B) space
and supports interval insertions and deletions in O(logB N)
time and stabbing queries in O(logB N +K/B) time, where
K is the number of intervals that overlap the query point.

Finally, the interval tree can be extended to support open
and half-open intervals in a straightforward manner.

4. STORAGE MODEL
We propose a storage model for the graph sequence G.

This storage model supports a variety of fundamental ac-
cess and update operations that allow the user to access
any graph Gi (either the whole graph or a particular sub-
graph) as well as alter the graphs at any time instance. In
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the following, we begin with an overview of the proposed
data structure, which comprises nested elements at different
levels, followed by a description of the supported operations.
We conclude the section by providing an asymptotic analysis
of the space and time complexities.

4.1 Data Structure Overview
Recall that G = {G1, G2, G3, . . .} is a sequence of graph

snapshots with each Gi ∈ G corresponding to a snapshot
of the graph G at time instance i. A vertex v ∈ Gi is
characterized by a set of fields or attributes (e.g. color), a
set of incoming edges from the other vertices of Gi and a set
of outgoing edges to the other vertices of Gi. We construct
an external interval tree I that maintains a set of intervals
{T v

ts,te} where an interval T v
ts,te signifies the “lifetime” of

a vertex v, i.e. from time instance ts to time instance te.
It is worth to note that we signify a vertex to be “active”
(alive) up until the latest time instance, by setting the te
value to be +∞. Finally, each interval T v

ts,te is augmented
with a pointer (handle) to an additional data structure for
each vertex v, called diachronic node.

A diachronic node Dv of a vertex v maintains a collection
of data structures corresponding to the full vertex history
in the sequence G, i.e. when that vertex was inserted, all
corresponding changes to its edges or attributes and finally
its deletion time (if applicable). More formally, a diachronic
node Dv maintains an external interval tree Iv which stores
information regarding all of v’s characteristics (fields and
edges) throughout the entire G sequence. An interval in
Iv is stored as a quadruple (f, {ℓ1, ℓ2, . . .}, ts, te), where f is
the identifier of the field that has values ℓ1, ℓ2, . . . (numbers,
pointers etc.) during the time interval [ts, te]. Note that an
edge belonging to v (i.e. one end of the edge is v), can be
represented as a field of v by using one value ℓi to denote
the other end of the edge, another value ℓj to mark the edge
as incoming or outgoing and a last value ℓh that is used as
a handle to the diachronic node corresponding to the vertex
in the other end of the edge. The nodes in Iv maintain the
intervals similarly to the nodes of I discussed in Sec. 3.

Additionally, the diachronic node maintains a B-Tree for
each field and for each individual edge of the vertex. The B-
tree corresponding to the attribute with identifier f of vertex
v is denoted as Af

v and is used to maintain the entire history
of changes of f between the different snapshots in G. Each
record in Af

v is a triple ({ℓ1, ℓ2, . . .}, ts, te) where ℓ1, ℓ2, . . .
are the values of f during the time interval [ts, te]. The edges
of v are represented in a similar manner to fields taking into
account the values ℓi, ℓj and ℓh which were discussed on the
previous paragraph. Using the Af

v trees, which are built on
the [ts, te] intervals, we can support stabbing queries for a
particular set of fields within the diachronic node, without
aggravating asymptotically the space usage. Given the fact
that the count of Af

v trees is dependant on the edge count of
v and to facilitate efficient searching of a specific Af

v tree, we
maintain a B-Tree Bv over all Af

v trees. Finally, we maintain
the location of all diachronic nodes using a B-Tree dictionary
B built on the IDs of the diachronic nodes.

Figure 2 shows the proposed data structure, where |vi| is
the size of vi (i.e. the count of fields and edges of vi across all
of G). The full arrows are handles to diachronic nodes from
the intervals in I while the dashed arrows signify handles to
diachronic nodes from B. Depending on the operation we
may use either option to locate a specific diachronic node.

: : :

Dv2

T
v1
ts;te

T
v2
t0s;t

0
e

I

B

Iv2

Bv2

Af1
v2 A

fjv2j
v2

: : :

: : :

: : :

Dv1

Iv1

Bv1

Af1
v1 A

fjv1j
v1

Figure 2: Our proposed data structure

Algorithm 1 InsertVertex(v, ts, te)

Input: vertex id v, start time ts, end time te
Output: a pointer pv to the diachronic node of v
1: T v

ts,te ← new interval (v, ts, te)
2: pv ← pointer(new diachronic node(v))
3: T v

ts,te .attach(pv)
4: B.insert(pv) ⊲ pv is inserted in B along with the ID of v
5: I.insert(T v

ts,te)
6: return pv

4.2 Basic Operations
We implement a basic set of operations over the graph

sequence that can be used to carry out more complex op-
erations concerning a subgraph (or the entire graph) at a
particular time instance. Henceforth, we use the term fields
and attributes interchangeably to refer to the attributes of
each vertex and assume that all operations refer to a vertex
in the sequence labeled as v. Each operation description is
accompanied by pseudocode.

pointer pv = InsertVertex(id v, start time ts, end time

te) (Algorithm 1) creates an interval T v
ts,te that corresponds

to a new vertex v in the sequence G that is inserted at time
ts. Furthermore, an empty diachronic node Dv is created for
v and a pointer pv to Dv is attached to T v

ts,te and inserted
in B. Finally, the interval T v

ts,te is inserted in I and the pv
pointer is returned. If at the time of insertion, the end time
te is not known, we set it to infinity.

values {ℓ1, ℓ2, . . .} = ReadAttribute(id v, field f, time

t) (Algorithm 2) returns the set of values {ℓ1, ℓ2, . . .} of
the field f in vertex v at time t2. To realize this op-
eration we retrieve the diachronic node Dv by querying B
for id v. Afterwards, we obtain the Af

v tree using Bv and
perform a query for time t. If there exists a set of values
S = {ℓ1, ℓ2, . . .} for f at the time instance t it is returned,
otherwise the operation returns a NULL value.

void WriteAttribute(id v, field f, values {ℓ1, ℓ2, . . .},
start time ts, end time te) (Algorithm 3) assigns a set
of values S = {ℓ1, ℓ2, . . .} which are valid for the time in-
terval [ts, te] to the field f of vertex v. To achieve this,
firstly we obtain the diachronic node Dv of v by searching
B for id v. Following that, we perform a stabbing query on
the respective Af

v tree of f for each of the ts and te end-
points. If the stabbing queries do not return any interval

2We use a set of values rather than a singular value to
make our approach more generic and permit multi-valued
attributes
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Algorithm 2 ReadAttribute(v, f , t)

Input: vertex id v, attribute or field f , time instance t
Output: a set of values S = {ℓ1, ℓ2, . . .} corresponding to

the values of f at time t; NULL otherwise
1: Dv ← B.query(v)
2: Af

v ← Dv.Bv .query(f) ⊲ Alt: Af
v ← Dv .query(Bv,f)

3: S ← Af
v .stab(t)

4: if S 6= ∅ then
5: return S
6: else
7: return NULL

8: end if

t0s t0e

ts te
(a)

t0s t0e

ts te
(b)

t0s t0e

ts te
(c)

t0s t0e = t00s

ts te
(d)

t00e

Figure 3: Cases of existing intervals for the field f

then the field f does not have any values associated with
it in the time interval [ts, te] and we insert the relevant data
in Iv and Af

v directly; otherwise, we retrieve the (at most
two) returned interval(s) and follow a different approach.
The two cases above are described in detail in the following
paragraphs:

1. In the first case, the field f does not have any val-
ues associated with it in the time interval [ts, te]. In
that case we proceed as follows: We insert a quadru-
ple (f, {ℓ1, ℓ2, . . .}, ts, te) in Iv. In addition, a record
({ℓ1, ℓ2, . . .}, ts, te) is stored in f ’s respective B-tree
Af

v .

2. In the second case, the field f has values associated
with it in the time interval [ts, te], i.e. there exist
(up to) two intervals [t′s, t

′
e] and [t′′s , t

′′
e ] in the data

structure, such that either (a) t′s < ts < t′e < te,
(b) ts < t′s < te < t′e, (c) t′s < ts < te < t′e or (d)
t′s < ts < (t′e = t′′s ) < te < t′′e is true (Figure 3). In
that case, we search Iv for [t′s, t

′
e] corresponding to the

field f (and [t′′s , t
′′
e ] if it exists) by simulating an inser-

tion of this interval in Iv. Let vt′ be the node of Iv
that interval [t′s, t

′
e] is to be stored. After locating the

at most three lists in which it is to be stored we search
these lists based on the endpoints of [t′s, t

′
e]. If there

are more than one such intervals then we use the iden-
tifier of [t′s, t

′
e] to search among them and locate this

interval. The same procedure is applied for [t′′s , t
′′
e ].

Afterwards, we perform a series of interval insertions
and deletions in Iv and the corresponding Af

v B-tree
depending on the subcases presented below (the result-
ing intervals end up with the appropriate set of values
based on their original intervals):

Subcase (a) Deletion of [t′s, t
′
e] followed by the inser-

tion of [t′s, ts), [ts, t
′
e) and [t′e, te]

Subcase (b) Deletion of [t′s, t
′
e] followed by the inser-

tion of [ts, t
′
s), [t

′
s, te) and [te, t

′
e]

Algorithm 3 WriteAttribute(v, f , {ℓ1, ℓ2, . . .}, ts, te)

Input: vertex id v, attribute or field f , a set of values
{ℓ1, ℓ2, . . .}, start time ts, end time te

Output: -
1: Dv ← B.query(v)
2: Af

v ← Dv .Bv .query(f)
3: hasV alues← false ⊲ Boolean used to distinguish

between the two cases
4: if Af

v .stab(ts) 6= ∅ or Af
v .stab(te) 6= ∅ then

5: Retrieve the interval(s) from Af
v

6: hasV alues← true
7: end if
8: if ¬hasV alues then ⊲ Case 1
9: Iv.insert((f, {ℓ1, ℓ2, . . .}, ts, te))
10: Af

v .insert(({ℓ1, ℓ2, . . .}, ts, te))
11: else ⊲ Case 2
12: Using the interval(s) retrieved from Af

v , retrieve the
corresponding interval(s) in Iv

13: if ∄[t′′s , t
′′
e ] then

14: if t′s < ts < t′e < te then ⊲ Subcase a
15: In Iv, Af

v : Delete [t′s, t
′
e]. Insert [t′s, ts),

[ts, t
′
e), [t

′
e, te]

16: else if ts < t′s < te < t′e then ⊲ Subcase b
17: In Iv, Af

v : Delete [t′s, t
′
e]. Insert [ts, t

′
s),

[t′s, te), [te, t
′
e]

18: else if t′s < ts < te < t′e then ⊲ Subcase c
19: In Iv, Af

v : Delete [t′s, t
′
e]. Insert [t′s, ts),

[ts, te), [te, t
′
e]

20: end if
21: else ⊲ Subcase d
22: In Iv, A

f
v : Delete [t′s, t

′
e], [t

′′
s , t

′′
e ]. Insert [t′s, ts),

[ts, t
′
e), [t

′′
s , te), [te, t

′′
e ]

23: end if
24: end if

Subcase (c) Deletion of [t′s, t
′
e] followed by the inser-

tion of [t′s, ts), [ts, te) and [te, t
′
e]

Subcase (d) Deletion of [t′s, t
′
e] and [t′′s , t

′′
e ] followed

by the insertion of [t′s, ts), [ts, t
′
e), [t

′′
s , te) and [te, t

′′
e ]

Finally, the WriteAttribute operation is also used in a sim-
ilar manner to delete a particular interval by specifying the
field f and the interval [ts, te] to be deleted and passing a
NULL value as the set of values.

We conclude the operation by pointing out that the first
case represents the insertion of data corresponding to a par-
ticular vertex’s field, while the second case can be seen
as correcting the data that the vertex already had. To
that end, we do not permit cases where the insertion of
an interval would delete an already existing interval (e.g.
ts < t′s < t′e < te) as that would result in the loss of infor-
mation. In those cases, the user should explicitly delete the
related intervals before inserting the new one.

pointer pu = ReadVertex(id v, time t) (Algorithm 4) re-
turns a pointer to an object u that corresponds to the vertex
v as seen at time t. This is realized by obtaining the di-
achronic node Dv of v using B and then performing a stab-
bing query to Iv . The stabbing query returns the set of
values at time instance t for each field f in v. After follow-
ing this approach, all the resulting objects are collected and
put in an object u which is returned by pu.
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Algorithm 4 ReadVertex(v, t)

Input: vertex id v, time instance t
Output: a pointer pv to an object u that corresponds to v

as seen at t
1: Dv ← B.query(v)
2: P ← Dv.Iv .stab(t)
3: u← new vertex(v,t)
4: for each f = (attribute or edge) in P do
5: u.add(f)
6: end for
7: return pointer(u)

4.3 Analysis of Space and Time Complexities
Our space and time cost analysis is based on the rele-

vant costs of B-Trees and external interval trees. Assum-
ing that the first snapshot in the sequence is empty, each
of the m changes occurring in the time-evolving sequence is
ultimately stored O(1) times in O(1) linear-sized data struc-
tures. More specifically, in the InsertVertex operation we
insert an interval in I and a record in B for each newly
created vertex while in each WriteAttribute operation we
insert up to three intervals and records in Iv and the corre-
sponding Af

v B-tree respectively. This brings the total space
usage for m changes to O(m/B) which is asymptotically op-
timal with respect to the number of changes.

It’s worth noting at this point that our indexing module
(the I and B structures) each maintain a record for each
unique vertex (diachronic node) in the sequence. This is in
contrast to the indexing module of the original G∗ system
which maintains a record for each different version of each
vertex. This results in a potential time slowdown (since
upon locating the diachronic node we also have to retrieve
the proper version) but greatly reduces the total space cost.
The efficiency of our methods will be further described in
Sec.s 5.3 and 6.

Furthermore, we analyze the time cost of each operation.
The InsertVertex operation requires O(logB m) time, since
the insertion of T v

ts,te in I and the insertion of the diachronic
node pointer in B each require O(logB m) time (the creation
of the diachronic node itself is performed in constant time).

The ReadAttribute operation requires O(logB m) time in
total. RetrievingDv by querying B and obtaining Af

v require
O(logB m) time each. Finally, the query in Af

v also requires
O(logB m) time.

We will analyze the WriteAttribute operation by sepa-
rately analyzing its two cases. Firstly, obtaining Dv is done
in O(logB m) time. To determine which case stands true, we
perform two calls to ReadAttribute that require O(logB m)
time in total. In the first case we perform two insertions,
each requiring O(logB m) time.

In the second case, searching for [t′s, t
′
e] (and potentially

[t′′s , t
′′
e ]) in Iv can be done in O(logB m) total time. In any of

the resulting subcases we perform a series of O(1) deletions
and insertions each requiringO(logB m) time. Thus, the sec-
ond case also requires O(logB m) time, yielding O(logB m)
total time for the operation.

To access a full vertex v at time t, we retrieve Dv by query-
ing B and then we perform a stabbing query to Iv by using
the operation ReadVertex. The total cost is O(logB m +
|vt|/B), where |vt| is the size of the vertex v at time t (i.e.
the count of fields and edges of v at time t).

Algorithm 5 SnapshotMaterialization(G, t)

Input: evolving graph sequence G, time instance t
Output: a snapshot Gt of the graph at time instance t
1: Vt ← I.stab(t)
2: Gt ← new snapshot(t)
3: for each vertex v in Vt do
4: Gt.add(v)
5: end for
6: return Gt

vspace-0.5cm

The following theorem summarizes the results attained in
this section.

Theorem 2. We can maintain a time-evolving graph se-
quence in a data structure using optimal O(m/B) space,
where m is the total number of changes in the sequence and
B is the disk block size. The data structure supports the fol-
lowing basic operations:
1) InsertVertex in O(logB m) time,
2) ReadAttribute in O(logB m) time,
3) WriteAttribute in O(logB m) time,
4) ReadVertex in O(logB m+ |vt|/B) time,
where |vt| is the size of the vertex v at time t.

5. APPLICATIONS
In this section, we start by discuss snapshot materializa-

tion and graph traversal, which are fundamental applica-
tion in historical queries, and a case study for local queries,
namely graph sampling. Then, we provide an overview of
practical considerations during implementation.

5.1 Core Algorithms for Global Queries
Below we explain how to materialize a snapshot of the

graph at a specific time instance, and how to execute a graph
traversal algorithm (e.g. DFS/BFS) for a given source ver-
tex and time instance.

Theorem 3. Given G we can materialize a specific snap-
shot Gt = (Vt, Et) at time instance t in O(|Vt| logB m+ S

B
)

time (I/Os) where S is the total size of all vertices in Vt.

Proof. We begin by executing a stabbing query on I to
retrieve all the vertices that exist on the time instance t.
Afterwards, we perform a ReadVertex operation on each of
the returned diachronic nodes to obtain the final result. The
initial stabbing query requires O(logB m+ |Vt|/B) time and
each subsequent ReadVertex operation takes O(logB m +
|ut|/B) time where |ut| is the size of the vertex u at time
t. Let S be the total size of all vertices in Vt. Since there
are |Vt| ReadVertex operations and S ≥ |Vt|, this brings the
total time to O(|Vt| logB m+ S

B
) (see Algorithm 5).

Theorem 4. Given G we can perform a depth-first search
on a specific snapshot Gt = (Vt, Et) at time instance t start-
ing from a source vertex v in O(|Vt| logB m+ S

B
) amortized

time (I/Os) where S is the total size of all vertices in Vt.

Proof. To perform a depth-first search we require the
use of an external stack data structure [22]. The external
stack is the external memory equivalent of an internal mem-
ory LIFO (Last-In First-Out) data structure and supports
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Algorithm 6 DepthFirstSearch(G, t, v)

Input: evolving graph sequence G, time instance t, source
vertex v

Output: a preordering report of the vertices in Gt

1: st← new external stack
2: Dv ← B.query(v)
3: st.push(Dv)
4: while ¬st.isEmpty() do
5: Du ← st.pop()
6: if Du is not “visited” then
7: Mark Du as “visited” and report it
8: for each outgoing edge e in ReadVertex(u,t) do
9: st.push(e.destination)
10: end for
11: end if
12: end while

insertions (push) and deletions (pop) in O(1/B) amortized
time. As a first step, we retrieve the diachronic node of v
using B in O(logB m) time and push the node to the stack.
We then iteratively pop the node in the top of the stack,
mark it as visited and perform a ReadVertex on the acquired
node. For each outgoing edge we push the respective node
in the stack and repeat the same procedure until the stack is
empty. The worst case for this algorithm occurs when Gt is
connected and thus all |Vt| vertices are eventually inserted
and deleted from the stack.

The push and pop require O(|Vt|/B) amortized time in to-
tal, while all the ReadVertex operations requireO(|Vt| logB m
+ S

B
) time (Theorem 3), which brings the total cost to

O(|Vt| logB m+ S

B
) worst-case time (see Algorithm 6).

5.2 Graph Sampling: a local query case-study
Graph sampling [10] is a technique related to picking a

subset of vertices and/or edges from a given graph aiming
at preserving and/or estimating certain desired graph prop-
erties. In this way, the new smaller graph is similar with
respect to certain properties to the full one. Thus, an algo-
rithm may be applied to the smaller graph to compute these
properties for the full graph, leading to improved efficiency.
The main motivating example for graph sampling is the lack
of data (e.g., API rate limits in twitter) or lack of resources
(e.g., time) to access the data (e.g., the huge graph of all
followers in twitter). Although sampling can be tackled by
optimization methods, these assume full access to the graph
in the first place which as we said earlier is either not possi-
ble or time consuming. As a result, we focus only on simple
approaches that are tailored to our framework.

The most important graph sampling techniques include
Vertex Sampling (VS) and Traversal Based Sampling (TBS).
Let G = (V,E) be a simple graph. In the VS technique,
a subset V ′ ⊆ V is chosen randomly as well as all edges
between these nodes that belong to E, that is E′ = {(u, v) :
(u, v) ∈ E, u, v ∈ V ′}. A major version of this technique is
Vertex Sampling with Neighborhood (VSN), where initially

a set of nodes Ṽ is chosen and then E′ is the set of all edges
that are incident to Ṽ while V ′ is the set of all nodes that
are endpoints of the edges in E′. Finally, in TBS, a sampler
starts with a set of initial nodes and then extends the sample
by following edges from nodes already visited by employing
various strategies (e.g., randomly, BFS, DFS).

We now discuss how graph sampling fits into our frame-
work. In graph sampling one needs to access a limited num-
ber of nodes/edges bounded by a predefined budget B which
is reduced each time an edge or a vertex is sampled. If the
operation is applied at a single snapshot, then one can sim-
ply materialize this snapshot and then apply the sampling
procedure onto it. However, this is contradictory in certain
cases since the graph may be so large that we are not able to
access it. As a result, one cannot employ methods that store
historical graphs that are based on materializing snapshots
in order to support such operations. It is more appropri-
ate in this case to materialize single nodes, which is a main
strong point of vertex-centric storage techniques, like ours.

Next, we deal with computing the degree distribution
when graph sampling is employed and different storage ap-
proaches are followed. VS and Random Walks (RW) have a
pretty good performance in approximating the degree distri-
bution of the underlying network (directed or undirected) [24]
since they are unbiased estimators and their mean squared
error is rather small. Estimating the degree distribution in
a specific time instance for both methods requires sampling
randomly nodes at the specific snaphsot and then, in the
case of RWs, visiting adjacent vertices. TGI [15] would first
construct the snapshot at this time instance and move to
the sampling process. On the other hand, G∗ [18] and our
method would only process the nodes that are sampled. This
is more efficient when the budget B is small (e.g., ≤ 10% of
the size of the sampled graph). When comparing G∗ and our
solution, G∗ is expected to be more efficient in the case of
VS since after discovering the first node we just follow edges
which are discovered very efficiently. On the other hand,
our solution is more suitable for the VS method, since for
each node G∗ may need a lot of processing before accessing
it when compared to our solution.

Similarly, let us assume that we wish to find the degree
distribution of a graph in a given time interval. For the VS
method, TGI finds each node by reconstructing the snapshot
and then it uses the version chains that connect all versions
of a node in a list to speed up the processing. Apart from
the obvious problem with the reconstruction of the snapshot
when the budget B is small, the node chains are not packed
together and thus do not exhibit space locality. On the other
hand, G∗ uses the same idea as in the case of sampling
ephemeral nodes but because of the fact that all history
information of a node is simply packed in a block it is easy
to access it. However, the high access cost remains due
to the complicated indexing mechanism to access each time
instance. Our solution has the simplest indexing mechanism
while at the same time maintains all the history of the node
within a single object and thus exhibiting high space locality
leading to fast access times although more operations are
required to decode the information within this fat node.

5.3 Practical Considerations
The solution we proposed in Sec. 4 makes extensive use

of the external interval tree data structure in order to pro-
vide efficient asymptotic bounds. We can take advantage of
the fact that in practice, the size of an individual diachronic
node and the count of the intervals it maintains for its at-
tributes and edges is substantially small. In practice we can
replace B-trees with linked lists and hash maps since we then
avoid the constant factors that arise from the use of a more
elaborate data structure.
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More specifically, we can use a hash map to represent B
and omit representing I to reduce the space overhead (to
recreate a specific snapshot we simply visit all diachronic
nodes through B). Furthermore, in each diachronic node v,
we omit Iv and replace Bv with three hash map data struc-
tures (one for each set of attributes, incoming and outgoing
edges respectively). Finally, we model each of the Af

v trees
corresponding to attributes with a linked list that maintains
intervals. For practical applications these modifications im-
prove our runtime efficiency at the expense of not strictly
following the asymptotic guarantees of Theorem 2, but our
approach is still more space-efficient than other proposals.
Additionally, the improvements reduce the space cost of our
data structure in all cases.

Finally, our solution could be simplified considerably if
only transaction time (rather than both transaction and
valid time) was considered. We omit details about this dis-
cussion due to space constraints.

6. EXPERIMENTAL EVALUATION
In this section, we provide experimental results after in-

corporating our storage model in the G∗ parallel graph pro-
cessing system. We aim to show (i) actual space savings,
and (ii) real execution times for global queries, for which
a vertex-centric approach may be thought to be inefficient.
The experiments ran on a private cluster with 21 virtual
machines (VMs). 20 VMs played the role of the G* work-
ers, each having 1 VCPU, 5 GB RAM and 100 GB storage.
One VM served as both G* master master and worker hav-
ing 4 VCPUs, 28 GB RAM and 500 GB storage. All the
VMs were connected through a 1GBit local network. The
memory is large enough so that it can hold any diachronic
node in its entirety.

6.1 An Overview of the Original G∗ System
and our extension

In the original G∗ system, the indexing model is based on
maintaining “(vertexID, diskLocation)” pairs for the ver-
tices stored in each G∗ server. These pairs are stored in
collections that are formed in an efficient way so that the
overall space required by the index is reduced and is able to
(fully or mostly) fit in the internal memory of each server.
While the index is maintained in the main memory, the ver-
tices or edges and their attributes are stored on disk. A
query on the G∗ system is converted to a structure of graph
operators that are computed in a fashion similar to pipelin-
ing. The basis of the graph operators is the vertex operator
that retrieves a particular version of a vertex along with its
attributes and edges from the disk.

We incorporate our work into the G∗ system by replac-
ing the existing indexing model with the model proposed
in Sec. 4 along with the practical improvements described
in Subsection 5.3. The system is further modified so that
it stores entire diachronic nodes on the disk instead of ver-
tices. To answer queries, the system still makes use of the
vertex operator. However, the modified system retrieves an
entire diachronic node from the disk and thus, it performs
an operation equivalent to ReadVertex to obtain a particular
version of a vertex.

6.2 Dataset Description
We use both real and synthetic datasets. The former pro-

vide insights into actual performance benefits, while the lat-

Table 3: Experiments on real datasets. The number
of vertices and edges refer to the last snapshot of
the sequence

Dataset Vertices Edges Snapshots
hep-Th 27770 352807 156
hep-Ph 34546 421578 132
US Patents 3774768 16518948 444

Table 4: Space consumption in real datasets
Original Indexing
Module Size (MB)

Proposed Indexing
Module Size (MB) Difference (%)

Dataset Index Size Data Size Index Size Data Size Index Size Data Size
hep-Th 9.49 788.06 0.95 98.63 -89.99% -87.48%
hep-Ph 12.33 859.5 1.17 102.81 -90.51% -88.04%
US Patents 1094.41 23407.75 122.38 5456.63 -88.82% -76.69%

ter allow us to evaluate our approach under a wide range of
configurations.

The real datasets were obtained from the Large Network
Dataset Collection of SNAP [19]. The first dataset is a ci-
tation graph of the arXiv hep-th category released as a part
of the 2003 KDD Cup [8]. The dataset contains citations
from January 1993 to April 2003, which we use to create a
sequence of monthly snapshots of the citation graph. The
second dataset is similar to the first dataset as it focuses on
the arXiv hep-ph category on the same time period while
featuring a slightly larger count of vertices and edges. In
both datasets, we omit 0.4% of the total edges due to the
difficulty of mapping them to a specific snapshot (e.g. pa-
per A cites paper B but paper B is inserted in the dataset
with a later timestamp than that of A). The last dataset
maintains records for all the US utility patents granted be-
tween 1963 and 1999 and their cross-citations. We build a
sequence of monthly snapshots for that time period while
omitting 0.04% of the edges due to insufficient date infor-
mation in the dataset (e.g. withdrawn patents). In the real
datasets we only focus on the edges between vertices and do
not maintain any attributes (such as names or weights). A
detailed overview of each real dataset is shown on Table 3.

The synthetic datasets follow either the Erdős-Rényi (ER) [7]
or the Barabási-Albert (BA) [3] scale-free graph model. The
latter resembles real-world settings and environments more
closely. To construct an ER synthetic dataset, we supply the
number of vertices and edges in the first snapshot, the num-
ber of all snapshots, and the percentage of vertices and edges
inserted or updated between snapshots (e.g., in a snapshot
of 1000 vertices and 1000 edges an insertion rate of 5% would
result in the next snapshot having 1050 vertices and 1050
edges). Vertices have a name and edges are weighted. An
update is defined as the alternation of either a vertex’s name
or an edge’s weight. BA sequences are created similarly. In
a BA sequence, each newly inserted vertex is connected to
the existing vertices, preferring those with a larger degree,
with the number of edges created for each newly inserted
vertex specified by a parameter.

6.3 Space Consumption
Table 4 shows the space utilization of each system for each

of the real datasets. The space savings are up to an order of
magnitude. Our proposed solutions use approximately 90%
less space for indexing and 76% to 88% less space for the
data files. Recall that in our solution the index consists of a
LinkedHashMap containing “(DiacNodeID, Location)” pairs.
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Figure 4: Space Consumption in sequences
with insertion rate = update rate = 1% (top),
insertion rate = 2%, update rate = 1% (middle), and
insertion rate = 1%, update rate = 2% (bottom). In
each subfigure, the upper part refers to the index
size, and the lower to the size of the data files.

Next we experiment with the synthetic datasets for sev-
eral sequence sizes and insertion/update rates, as shown in
Figure 4. Four main observations are as follows. (i) As pre-
viously, the space savings reach an order of magnitude. (ii)
The higher the insetion/update, the more significant the
savings. This can be explained by the fact that, since all
vertex and edge updates are stored in the diachronic nodes,
the size of the index only becomes larger only when new
vertices are created in the sequence. A similar observation
can be made about the data file sizes. (iii) In general, our
proposed system favors sequences with a higher updates-to-
insertions ratio and (iv) the relative differences in space con-
sumption remain the same across experiments with different
starting vertices and edges counts. Similar observations can
be drawn for BA (see Figure 5), where the savings in space
there are slightly less, i.e., up to 84% less space.

6.4 Time efficiency for global queries

Ins/Snap.:100K
Snapshots:10

Ins/Snap.:10K
Snapshots:100

Ins/Snap.:1K
Snapshots:1K

Sequence Setting

0

200

400

600

800

S
iz
e
 (
M
B
)

Index
Size (Orig.)

Index
Size (New)

Ins/Snap.:100K
Snapshots:10

Ins/Snap.:10K
Snapshots:100

Ins/Snap.:1K
Snapshots:1K

Sequence Setting

0

10000

20000

30000

40000

50000

Data
Size (Orig.)

Data
Size (New)

V. Up./Snap.:0
E. Up./Snap.:0

V. Up./Snap.:50K
E. Up./Snap.:500K

V. Up./Snap.:100K
E. Up./Snap.:1M

Sequence Setting

0

100

200

300

400

500

600

S
iz
e
 (
M
B
)

Index
Size (Orig.)

Index
Size (New)

V. Up./Snap.:0
E. Up./Snap.:0

V. Up./Snap.:50K
E. Up./Snap.:500K

V. Up./Snap.:100K
E. Up./Snap.:1M

Sequence Setting

0

10000

20000

30000

Data
Size (Orig.)

Data
Size (New)

Snapshots:1K Snapshots:5K Snapshots:10K
Sequence Setting

0

10

20

30

40

50

S
iz

e
 (
M

B
)

Index
Size (Orig.)

Index
Size (New)

Snapshots:1K Snapshots:5K Snapshots:10K
Sequence Setting

0

50

100

150

200

250
Data
Size (Orig.)

Data
Size (New)

Figure 5: Space efficiency of indices for the BA
dataset. Top: effect of granularity (starting vertices
= 2M and edges per newly inserted vertex = 10).
Middle: effect of updates (starting vertices = 2M ,
edges per newly inserted vertex = 10, insertions per
snapshot = 100K, snapshots = 10). Bottom: effect
of the number of snapshots (starting vertices = 10K,
edges per newly inserted vertex = 1, insertions per
snapshot = 10).

In the last part of the experiments, we measure the run-
ning time for the following global queries, which are in [18]:

Vertex Degree Distribution (DegDistr): for each graph
snapshot, count the vertices with a specific vertex de-
gree, sorted by the vertex degree in a descending order.

Average Vertex Degree (AvgDeg): for each graph snap-
shot, compute its average vertex degree, and give re-
sults in a descending order.

Clustering Coefficient Distribution (ClCoeff): for each
graph snapshot, compute the clustering coefficient of
its vertices. Report the number of vertices grouped by
the clustering coefficient sorted in a descending order.
Note that this is a bulk synchronous parallel (BSP)
operator and more difficult to evaluate.

The results for the real datasets are reported in Table
5. The “DegDistr” and “AvgDeg” queries were run on all
the monthly snapshots of each sequence on both systems.
However, due to high memory demand by the original G∗

system, running the “ClCoeff” query in all snapshots of the
“US Patents” dataset was infeasible. For that reason, we
applied the “ClCoeff” query in subsets of the snapshots in
the “US Patents” sequence. More specifically, in Table 5 the
symbols “∗”, “†” and “‡” represent that the query was run
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on the last snapshot of the sequence, the last five snapshots
of the sequence and all the snapshots, respectively. The first
observation that can be made is that our system is more ef-
ficient for the “DegDistr” and “AvgDeg” queries, yielding
up to 30% faster response times. This can be explained by
the fact that, since we retrieve entire diachronic nodes from
the disk, we need to make fewer accesses on the secondary
memory compared to the original system which retrieves
specific versions of each vertex. These benefits outweigh the
additional time overhead of reconstructing a vertex from a
diachronic node in a particular time instance, thus reduc-
ing the total time cost. In the “ClCoeff” query our system
has slightly inferior performance compared to the original
system that can be explained by the nature of the datasets
itself. The datasets exhibit a “cold start” phenomenon in
that the first snapshots of the sequence have very few ver-
tices and edges that in turn results to the cost of vertex
reconstructions overcoming the gains of the fewer disk ac-
cesses. This is also shown in the “US Patents” dataset,
where our system has better performance when the “ClCo-
eff” query focuses on the (quite large) five last snapshots of
the sequence.

We can achieve significant speedups for the synthetic datasets
as well. The results for the ER sequences are shown in Fig-
ure 6. For all three types of queries, the maximum reduction
in response time is 54%-56%.

Finally, we tested the BA synthetic sequences, execut-
ing the queries on varying sequence portions. More specif-
ically, we executed a query on the last snapshot of the se-
quence or on a selection of the last 5-20% of the snapshots
of the sequence. Additionally, we ran the queries on non-
consecutive snapshots by specifying an appropriate step size.
Initially, we investigated the impact of granularity, as in the
space-efficiency experiments. We ran the three queries in
sequences of 10, 100 and 500 snapshots. Regarding the se-
quence with the 10 snapshots, since the percentages of the
previous paragraph do not directly correspond to meaning-
ful snapshot ranges, we ran the queries in the last 1, 2 and
5 snapshots. The results can be seen in Figure 7. In the
case of querying only the last snapshot of the sequence, our
method is slower since it suffers from the time overhead of
reconstructing that particular snapshot. However, the time
efficiency of our approach improves as the query percentage
becomes higher. The effect of updates is shown in Figure 8.
Again, for higher query percentage we achieve better perfor-
mance. Finally, we evaluated the impact of graph density
on the total query time, after building sequences of varying
vertex degree per newly inserted vertex. The results showed
that density played no significant role as the relative differ-
ence remained the same (no figure is provided due to space
limitations).

7. CONCLUSIONS
We advocate employing a vertex-centric approach to stor-

ing the evolving history of graphs. We show that this leads
to an asymptotically space-optimal solution, which is effi-
cient for both local and global queries. Local queries benefit
from the fact that only the vertices of interest are retrieved
instead of entire snapshots. Global queries can also benefit
from the fact that fewer disk accesses are required, despite
the overhead of snapshot reconstruction, as shown in real
runs in the G* parallel graph processing system. In our
experiments, the space savings were up to an order of mag-
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Figure 6: Comparison of time efficiency in sequences
with insertion rate = 1%, update rate = 1% (top),
insertion rate = 2%, update rate = 1% (middle), and
insertion rate = 1%, update rate = 2% (bottom).
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nitude, while running times of historical queries dropped to
more than a half.
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Table 5: Time efficiency in real datasets
Original G*
System Time (s)

Proposed G*
System Time (s) Difference (%)

Dataset DegDistr AvgDeg ClCoeff DegDistr AvgDeg ClCoeff DegDistr AvgDeg ClCoeff
hep-Th 7.9 7.2 723 7.7 6.2 855 -1.90% -13.77% 18.26%
hep-Ph 9.7 8.4 410 7.7 7.2 471 -20.29% -14.65% 15.02%

US Patents 329 316
* 213

242 221
* 234

-26.52% -30.08%
* 9.69%

† 496 † 377 † -23.84%
‡ - ‡ 1204 ‡ -
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Figure 8: Effect of updates on time. Starting ver-
tices = 1M , edges per newly inserted vertex = 5,
snapshots = 10.
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