
Storing and Analyzing Historical Graph Data at Scale

Udayan Khurana
IBM TJ Watson Research Center

ukhurana@us.ibm.com

Amol Deshpande
University of Maryland
amol@cs.umd.edu

ABSTRACT
The work on large-scale graph analytics to date has largely focused
on the study of static properties of graph snapshots. However, a
static view of interactions between entities is often an oversimplifi-
cation of several complex phenomena like the spread of epidemics,
information diffusion, formation of online communities, and so on.
Being able to find temporal interaction patterns, visualize the evolu-
tion of graph properties, or even simply compare them across time,
adds significant value in reasoning over graphs. However, because
of lack of underlying data management support, an analyst today
has to manually navigate the added temporal complexity of deal-
ing with large evolving graphs. In this paper, we present a system,
called Historical Graph Store, that enables users to store large vol-
umes of historical graph data and to express and run complex tem-
poral graph analytical tasks against that data. It consists of two key
components: a Temporal Graph Index (TGI), that compactly stores
large volumes of historical graph evolution data in a partitioned and
distributed fashion; it provides support for retrieving snapshots of
the graph as of any timepoint in the past or evolution histories of
individual nodes or neighborhoods; and a Spark-based Temporal
Graph Analysis Framework (TAF), for expressing complex tempo-
ral analytical tasks and for executing them in an efficient and scal-
able manner. Our experiments demonstrate our system’s efficient
storage, retrieval and analytics across a wide variety of queries on
large volumes of historical graph data.

1. INTRODUCTION
Graphs are useful in capturing behavior involving interactions be-
tween entities. Several processes are naturally represented as graphs
– social interactions between people, financial transactions, biolog-
ical interactions among proteins, geospatial proximity of infected
livestock, and so on. Many problems based on such graph mod-
els can be solved using well-studied algorithms from graph theory
or network science. Examples include finding driving routes by
computing shortest paths on a network of roads, finding user com-
munities through dense subgraph identification in a social network,
and many others. Numerous graph data management systems have
been developed over the last decade, including specialized graph
database systems like Neo4j, Titan, etc., and large-scale graph pro-

cessing frameworks such as Pregel [36], Giraph, GraphLab [34],
GraphX [20], GraphChi [31], etc.

However much of the work to date, especially on cloud-scale graph
data management systems, focuses on managing and analyzing a
single (typically, current) static snapshot of the data. In the real
world, however, interactions are a dynamic affair and any graph
that abstracts a real-world process changes over time. For instance,
in online social media, the friendship network on Facebook or the
“follows” network on Twitter change steadily over time, whereas
the “mentions” or the “retweet” networks change much more rapidly.
Dynamic cellular networks in biology, evolving citation networks
in publications, dynamic financial transactional networks, are few
other examples of such data. Lately, we have seen an increasing
merit in dynamic modeling and analysis of network data to obtain
crucial insights in several domains such as cancer prediction [49],
epidemiology [23], organizational sociology [24], molecular biol-
ogy [14], information spread on social networks [33] amongst oth-
ers.

In this work, our focus is on providing the ability to analyze and to
reason over the entire history of the changes to a graph. There are
many different types of analyses of interest. For example, an an-
alyst may wish to study the evolution of well-studied static graph
properties such as centrality measures, density, conductance, etc.,
over time. Another approach is through the search and discovery of
temporal patterns, where the events that constitute the pattern are
spread out over time. Comparative analysis, such as juxtaposition
of a statistic over time, or perhaps, computing aggregates such as
max or mean over time, possibly gives another style of knowledge
discovery into temporal graphs. Most of all, a primitive notion of
just being able to access past states of the graphs and performing
simple static graph analysis, empowers a data scientist with the ca-
pacity to perform analysis in arbitrary and unconventional patterns.

Supporting such a diverse set of temporal analytics and querying
over large volumes of historical graph data requires addressing sev-
eral data management challenges. Specifically, there is a want of
techniques for storing the historical information in a compact man-
ner, while allowing a user to retrieve graph snapshots as of any time
point in the past or the evolution history of a specific node or a spe-
cific neighborhood. Further the data must be stored and queried in
a distributed fashion to handle the increasing scale of the data. We
must also develop an expressive, high-level, easy-to-use program-
ming framework that will allow users to specify complex temporal
graph analysis tasks, while ensuring that the specified tasks can be
executed efficiently in a data-parallel fashion across a cluster.

ar
X

iv
:1

50
9.

08
96

0v
1

 [
cs

.D
B

]
 2

9
Se

p
20

15

In this paper, we present a graph data management system, called
Historical Graph Store (HGS), that provides an ecosystem for man-
aging and analyzing large historical traces of graphs. HGS con-
sists of two key distinct components. First, the Temporal Graph
Index (TGI), is an index that compactly stores the entire history of
a graph by appropriately partitioning and encoding the differences
over time (called deltas). These deltas are organized to optimize the
retrieval of several temporal graph primitives such as neighborhood
versions, node histories, and graph snapshots. TGI is designed to
use a distributed key-value store to store the partitioned deltas, and
can thus leverage the scalability afforded by those systems (our im-
plementation uses Apache Cassandra1 key-value store). TGI is a
tunable index structure, and we investigate the impact of tuning
the different parameters through an extensive empirical evaluation.
TGI builds upon our prior work on DeltaGraph [29], where the fo-
cus was on retrieving individual snapshots efficiently; we discuss
the differences between the two in more detail in Section 4.

The second component of HGS is a Temporal Graph Analysis Frame-
work (TAF), which provides an expressive library to specify a wide
range of temporal graph analysis tasks and to execute them at scale
in a cluster environment. The library is based on a novel set of tem-
poral graph operators that enable a user to analyze the history of a
graph in a variety of manners. The execution engine itself is based
on Apache Spark [54], a large-scale in-memory cluster computing
framework.

Outline: The rest of the paper is organized as follows. In Section 2,
we survey the related work on graph data stores, temporal indexing,
and other topics relevant to the scope of the paper. In Section 3, we
provide a sketch of the overall system, including key aspects of
the underlying components. We then present the Temporal Graph
Index and the Temporal Graph Analytics Framework in detail in
Section 4 and Section 5, respectively. In Section 6, we provide an
empirical evaluation of the various system components such as the
graph retrieval, scalability of temporal analytics, etc. We conclude
with a summary and a list of future directions in Section 7.

2. RELATED WORK
In the recent years, there has been much work on graph storage
and graph processing systems and numerous systems have been de-
signed to address various aspects of graph data management. Some
examples include Neo4J, AllegroGraph [1], Titan2, GBase [28],
Pregel [36], Giraph, GraphChi [31], GraphX [20], GraphLab [34],
and Trinity [43]. These systems use a variety of different mod-
els for representation, storage, and querying, and there is a lack
of standardized or widely accepted models for the same. Most
graph querying happens through programmatic access to graphs in
languages such as Java, Python or C++. Graph libraries such as
Blueprints3 provide a rich set of implementations for graph theo-
retic algorithms. SPARQL [40] is a language used to search pat-
terns in linked data. It works on an underlying RDF representation
of graphs. T-SPARQL [21] is a temporal extension of SPARQL.
He et al. [26], provide a language for finding sub-graph patterns
using a graph as a query primitive. Gremlin4 is a graph traver-
sal language over the property graph data model, and has been
adopted by several open-source systems. For large-scale graph
analysis, perhaps the most popular framework is the vertex-centric

1https://cassandra.apache.org
2http://thinkaurelius.github.io/titan/
3https://github.com/tinkerpop/blueprints/wiki
4https://github.com/tinkerpop/gremlin

programming framework, adopted by Giraph, GraphLab, GraphX,
and several other systems; there have also been several proposals
for richer and more expressive programming frameworks in recent
years. However, most of these prior systems largely focus on ana-
lyzing a single snapshot of the graph data, with very little support
for handling dynamic graphs, if any.

A few recent papers address the issues of storage and retrieval in
dynamic graphs. In our prior work, we proposed DeltaGraph [29],
an index data structure that compactly stores the history of all changes
in a dynamic graph and provides efficient snapshot reconstruction.
G* [32] stores multiple snapshots compactly by utilizing common-
alities. Chronos [25, 37] is an in-memory system for processing
dynamic graphs, with objective of shared storage and computation
for overlapping snapshots. Ghrab et al. [19] provide a system of
network analytics through labeling graph components. Gedik et
al. [17], describe a block-oriented and cache-enabled system to ex-
ploit spatio-temporal locality for solving temporal neighborhood
queries. Koloniari et al. also utilize caching to fetch selective
portions of temporal graphs they refer to as partial views [30].
LLAMA [35] uses multiversioned arrays to represent a mutating
graph, but their focus is primarily on in-memory representation.
There is also recent work on streaming analytics over dynamic
graph data [11, 10], but it typically focuses on analyzing only the
recent activity in the network (typically over a sliding window).
Our work in this paper focuses on techniques for a wide variety of
temporal graph retrieval and analysis on entire graph histories.

Temporal graph analytics is an area of growing interest. Evolu-
tion of shortest paths in dynamic graphs has been studies by Huo
et al. [27], Ren et al. [41], and Xuan et al. [53]. Evolution of
community structures in graphs has been of interest as well [4, 7,
22, 47]. Change in page rank with evolving graphs [13, 5], and
the study of change in centrality of vertices, path lengths of ver-
tex pairs, etc. [39], also lie under the larger umbrella of temporal
graph analysis. Ahn et al. [2] provide a taxonomy of analytical
tasks over evolving graphs. Barrat et al. [6], provide a good refer-
ence for studying several dynamic processes modeled over graphs.
Our system significantly reduces the effort involved in building and
deploying such analytics over large volumes of graph data.

Temporal data management for relational databases was a topic of
active research in the 80s and early 90s. Snapshot index [50] is
an I/O optimal solution to the problem of snapshot retrieval for
transaction-time databases. Salzberg and Tsotras [42] present a
comprehensive survey of temporal data indexing techinques, and
discuss two extreme approaches to supporting snapshot retrieval
queries, referred to as the Copy and Log approaches. While the
copy approach relies on storing new copies of a snapshot upon ev-
ery point of change in the database, the log approach relies on stor-
ing everything through changes. Their hybrid is often referred to
as the Copy+Log approach. We omit a detailed discussion of the
work on temporal databases, and refer the interested reader to a rep-
resentative set of references [9, 45, 38, 48, 12, 44, 42]. Other data
structures, such as Interval Trees [3] and Segment trees [8] can also
be used for storing temporal information. Temporal aggregation in
scientific array databases [46] is another related topic of interest,
but the challenges there are significantly different.

3. OVERVIEW
In this section, we introduce key aspects related to HGS. We begin
with the data model, followed by the key challenges and concluding
with an overview of the system.

size

tim
e

node neighborhood graph

po
in
t

in
te
rv
al

Snapshot
shortest paths, pagerank
diameter, density
betweenness centrality
What is the average number
of friends for a person?

Multipoint Snapshot
evolution of graph density
comparing diameter across time
most central node last year
Has the degree of separation
increased in the last 1 year?

Subgraph
local clustering coefficient

Whether X or Y has a higher
knit cluster around them?

Subgraph versions
community evolution
compare local clustering
coefficient
Visualize evolution of this
community of investors.

Static vertex

Vertex history

vertex connections

degree evolution
Which are X's most
interacted contacts
until 1995?

How many citations
did I have in 2012?

Figure 1: The scope of temporal graph analytics can be repre-
sented across two different dimensions - time and entity. The
chart lists retrieval tasks (black), graph operations (red), ex-
ample queries (magenta) at different granularities of time and
entity size.

3.1 Data Model
Under a discreet notion of time, a time-evolving graph GT =(V T ,ET)
may be expressed as a collection of graph snapshots over differ-
ent time points, {G0 = (V 0,E0),G1, . . . ,Gt}. The vertex set V i

for a snapshot consists of a set of vertices (nodes), each of which
has a unique identifier, and an arbitrary number of key-value at-
tribute pairs. The edge sets E i consist of edges that each contain
references to two valid nodes in the corresponding vertex set V i,
information about the direction of the edge, and an arbitrary list
of key-value attribute pairs. A temporal graph can also be equiva-
lently described by a set of changes to the graph over time. We call
an atomic change at a specific timepoint in the graph an event. The
changes could be structural, such as the addition or the deletion of
nodes or edges, or be related to attributes such as an addition or
a deletion or a change in the value of a node or an edge attribute.
These approaches as well as certain hybrids have been used in the
past for the physical and logical modeling of temporal data. Our
approach to temporal processing in this paper is best described us-
ing a node-centric logical model, i.e., the historical graph is seen as
a collection of evolving vertices over time; the edges are considered
as attributes of the nodes.

3.2 Challenges
The nature of data management tasks in historical graph analytics
can be categorized based on the scope of analysis using the dual
dimensions of time and entity as illustrated with examples in Fig-
ure 1. The temporal scope of an analysis task can range from a
single point in time to a long interval; the entity scope can range
from a single node to the entire graph. While the diversity of an-
alytical tasks provides a potential for a rich set of insights from
historical graphs, it also poses several challenges in constructing a
system that can perform those tasks. To the best of our knowledge,
none of the existing systems address a majority of those challenges
that are described below:

Compact storage with fast access: An natural tradeoff between in-
dex size and access latencies can be seen in the Log and Copy
approaches for snapshot retrieval. Log requires minimal informa-
tion for encoding the graph’s history, but incurs large reconstruc-
tion costs. Copy, on the other hand, provides direct access, but at
the cost of excessive storage. The desirable index should consume

space of the order of Log index but provide near direct access like
Copy.

Time-centric versus entity-centric indexing: For point access such
as past snapshot retrieval, a time-centric indexing such as Delt-
aGraph or Copy+Log is suitable. However, for version retrieval
tasks such as retrieving a node’s history, entity-centric indexing is
the correct choice. Neither of the indexing approaches, however,
are feasible in the opposite scenarios. Given the diversity of ac-
cess needs, we require an index that works well with both styles of
lookup at the same time.

Optimal granularity of storage for different queries: Query la-
tencies for a graph also depends on the size of chunks in which the
data is indexed. While larger granularities of storage incur waste-
ful data read for “node retrieval”, a finely chunked graph storage
would mean higher number of lookups and aggregation for a 2-
hop neighborhood lookup. The physical and logical arrangement
of data should take care of access needs of queries of all granulari-
ties.

Coping with changing topology in a dynamic graph: It is evident
that graph partitioning is inevitable in the storage and processing of
large graphs. However, finding the appropriate strategy to maintain
workable partitioning on a constantly changing graph is another
challenge while designing a historical graph index.

Systematically expressing temporal graph analytics: A platform
for expressing a wide variety of historical graph analytics requires
an appropriate amalgam of temporal logic and graph theory. Addi-
tionally, utilizing a vast body of existing tools in network science is
an engineering challenge and opportunity.

Appropriate abstractions for distributed, scalable analytics: Par-
allelization is the key to scale up analytics for large network datasets.
It is essential that the underlying data-representations and operators
in the analytical platform be designed for parallel computing.

3.3 System Overview
Figure 2 shows the architecture of our proposed Historical Graph
Store. It consists of two main components:

Temporal Graph Index (TGI) records the entire history of a graph
compactly while enabling efficient retrieval of several temporal graph
primitives. It encodes various forms of differences (called deltas) in
the graph, such as atomic events, changes in subgraphs over inter-
vals of time, etc. It uses specific choices of graph partitioning, data
replication, temporal compression and data placement to optimize
the graph retrieval performance. TGI uses the Apache Cassandra
distributed key-value store as the backend to store the deltas. In
Section 4, we describe the design details of TGI and the access
algorithms.

Temporal Graph Analytics Framework (TAF) provides a tempo-
ral node-centric abstraction for specifying and executing complex
temporal network analysis tasks. We provide a Java and Python
based library to specify the retrieval, computation and analysis on a
set of (temporal) nodes (SoN). Computational scalability is achieved
by distributing tasks by node and time. TAF is built on top of
Apache Spark for supporting scalable, in-memory, cluster compu-

TEMPORAL GRAPH INDEX

(a) Framework to specify graph extraction and analysis.
Operators - Select, Timeslice, Filter, Map, MapDelta

Operands - Set of Nodes (SON), TGraph, …

Temporal
Graph History

TEMPORAL GRAPH ANALYSIS FRAMEWORK

(b) Apache Spark based parallel execution on RDDs

Persistent, distributed, compact graph history

QUERY MANAGER: Fetches Snapshots, Node Version
History, Historical Neighborhood States or Versions, ...

INDEX MANAGER: Creates TGI through partitioning, replication,
hierarchical temporal aggregation and version chaining.

RDD<TNode> RDD<TNode> RDD<TNode> RDD<TNode>

Figure 2: System Overview

tation and provides an option to utilize GraphX for static graph
computation. In Section 5, we describe the details of the library,
query processing, parallel data fetch aspects of the system, along
with a few examples of analytics.

4. TEMPORAL GRAPH INDEX
In this section, we investigate the issue of indexing temporal graphs.
First, we introduce a delta framework5 to define any temporal index
as a set of different changes or deltas. Using this framework, we are
able to qualitatively compare the access costs and sizes of different
alternatives for temporal graph indexing, including our proposed
approach. We then present the Temporal Graph Index (TGI), that
stores the entire history of a large evolving network in the cloud,
and facilitates efficient parallel reconstruction for different graph
primitives. TGI is a generalization of both entity and time-based
indexing approaches and can be tuned to suit specific workload
needs. We claim that TGI is the minimal index that provides effi-
cient access to a variety of primitives on a historical graph, ranging
from past snapshots to versions of a node or neighborhood. We
also describe the key partitioning strategies instrumental in scaling
to large datasets across a cloud storage.

4.1 Preliminaries
We start with a few preliminary definitions that help us formalize
the notion of the delta framework.

DEFINITION 1 (STATIC NODE). A static node refers to the state
of a vertex in a network at a specific time, and is defined as a set
containing: (a) node-id, denoted I (an integer), (b) an edge-list, de-
noted E (captured as a set of node-ids), (c) attributes, denoted A, a
map of key-value pairs.

A static edge is defined analogously, and contains the node-ids for
the two endpoints and the edge direction in addition to a map of

5A delta formalism provided by Ghandeharizadeh et al. [18] is an
interesting related read on this topic.

key-value pairs. Finally, a static graph component refers to either a
static edge or a static node.

DEFINITION 2 (DELTA). A Delta (∆) refers to either: (a) a
static graph component (including the empty set), or (b) a differ-
ence, sum, union or intersection of two deltas.

DEFINITION 3 (CARDINALITY AND SIZE). The cardinality
and the size of a ∆ are the unique and total number of static node
or edge descriptions within it, respectively.

DEFINITION 4 (∆ SUM). A sum (+) over two deltas, ∆1 and
∆2, i.e., ∆s = ∆1 +∆2 is defined over graph components in the two
deltas as follows: (1) ∀gc1 ∈ ∆1, if ∃gc2 ∈ ∆2 s.t. gc1.I = gc2.I,
then we add gc2 to ∆s, (2) ∀gc1 ∈ ∆1 s.t. @gc2 ∈ ∆2 s.t. gc1.I =
gc2.I, we add gc1 to ∆s, and (3) analogously the components present
only in ∆2 are added to ∆s.

Note that: ∆1+∆2 =∆2+∆1 is not necessarily true due the order of
changes. We also note that: ∆1+ /0=∆1, and (∆1+∆2)+∆3 =∆1+
(∆2 +∆3). Analogously, difference(-) is defined as a set difference
over different components of the two deltas. ∆1−φ = ∆1 and ∆1−
∆1 = φ , are true, while, ∆1−∆2 = ∆2−∆1, does not necessarily
hold.

DEFINITION 5 (∆ INTERSECTION). An intersection of two ∆s
is defined as a set intersection over the the components of two
deltas. ∆1 ∩ φ = φ , is true for any delta. Similarly, union of two
deltas ∆∪ = ∆1 ∪∆2, consists of all elements from ∆1 and ∆2. The
following is true for any delta: ∆1∪φ = ∆1.

Next we discuss and define some specific types of ∆s:

EXAMPLE 1 (EVENT). An event is the smallest change that
happens to a graph, i.e., addition or deletion of a node or an edge,
or a change in an attribute value. An event is described around one
time point. As a ∆, an event concerning a graph component c, at
time point te, is defined as the difference of state of c at and before
te, i.e., ∆event(c, te) = c(te)− c(te−1).

EXAMPLE 2 (EVENTLIST). An eventlist delta is a chronolog-
ically sorted set of event deltas. An eventlist’s scope may be defined
by the time duration, (ts, te], during which it defines all the changes
that happened to the graph.

EXAMPLE 3 (PARTITIONED EVENTLIST). An partitioned eventlist
delta is an eventlist constrained by the scope of a set of nodes (say
a set of nodes, N = {N1,N2, . . .}) apart from the time range con-
straint (ts, te].

EXAMPLE 4 (SNAPSHOT). A snapshot, G ta is the state of a
graph G at a time point ta. As a ∆, it is defined as the difference
of the state of the graph at ta from an empty set, ∆snapshot(G , ta) =
G(ta)−G(−∞).

EXAMPLE 5 (PARTITIONED SNAPSHOT). A partitioned snap-
shot is a subset of a snapshot. It is identified by a subset of all
nodes, P in graph, G at time, ta. It consists of the state of all
nodes at time ta and all the edges whose at least one of the end
points lies in P at time, ta.

4.2 Prior Techniques
The prior techniques for temporal graph indexing use changes or
differences in various forms to encode time-evolving datasets. We
can express them in the ∆ framework as follows. The Log index is
equivalent to a set of all event deltas (equivalently, a single eventlist
delta encompassing the entire history). The Copy+Log index can be
represented as combination of: (a) a finite number of distinct snap-
shot deltas, and (b) eventlist deltas to capture the change between
successive snapshots. Although we are not aware of a specific pro-
posal for a vertex-centric index, however, a natural approach would
be to maintain a set of partitioned eventlist deltas, one for each node
(with edge information replicated with the endpoints). The Delta-
Graph index, proposed in our prior work, is a tunable index with
several parameters. For a typical setting of parameters, it can be
seen as equivalent to taking a Copy+Log index, and replacing the
snapshot deltas in it with another set of deltas constructed hierar-
chically as follows: for every k successive snapshot deltas, replace
them with a single delta that is the intersection of those deltas and
a set of difference deltas from the intersection to the original snap-
shots, and recursively apply this till you are left with a single delta.

Table 1 estimates the cost of fetching different graph primitives as
the number and the cumulative size of deltas that need to be fetched
for the different indexes. The first column shows an estimate of
the total storage space, which varies considerably across the tech-
niques.

4.3 Temporal Graph Index: Definition
Given the above formalism, a Temporal Graph Index for a graph G
over a time period T = [0, tc] is described by a collection of different
∆s as follows:

(a) Partitioned Eventlists: A set of partitioned eventlist ∆s, {Et p},
where Et p captures the changes during the time interval t be-
longing to partition p.

(b) Derived Partitioned Snapshots: Consider r distinct time points,
ti, where 1 ≤ i ≤ r, ti ∈ T , For each ti, we consider l parti-
tion ∆s, Pi

j, 1 < j < l, such that ∪ jPi
j = G ti . There exists a

function that maps any node-id(I) in G ti to a unique partition-
id(Pi

j), fi : I → Pi
j. With a collection of Pi

j over T as leaf
nodes, we construct a hierarchical tree structure where a par-
ent is the intersection of children deltas. The difference of
each parent from its child delta is called as a derived parti-
tioned snapshot and is explicitly stored. Note that Pi

j’s are
not explicitly stored. This is the same as DeltaGraph, with
the exception of partitioning.

(c) Version Chain: For all nodes N in the graph G , we maintain
a chronologically sorted list of pointers to all the references
for that node in the delta sets described above (a and b). For
a node I, this is called a version chain(VCI).

In short, the TGI stores deltas or changes in three different forms,
as follows. The first one is the atomic changes in a chronological
order through partitioned eventlists. This facilitates direct access to

{Pi
1} {Pi

2} {Pi
3} {Pi

4} {Pi
5} {Pi

6} {Pi
7} {Pi

8}

{Pi
1-1=f(Pi

1, Pi
2) }

Pi
1-2 Pi

1-3
Pi

1-4

Pi
2-1 Pi

2-2

Pi
3-1

{Ei
1} {Ei

2} {Ei
3} {Ei

4} {Ei
5} {Ei

6} {Ei
7}

time
T0

{Ji
1-1= Pi

1- Pi
1-1 }

(a) TGI deltas - partitioned eventlists, snapshots and derived snapshots.
The (dotted) bounded deltas are not stored.

...

...

E1
2 E2

2E3
2....

E5
2 P5

1-2E5
6...

Version Chain

N4

N3

N2

N1

NODE
Fetch

Coordinator

Index
Shard1

Index
Shard2

Index
Shard3

Index
Shard K

Layout
Manager

Index
Manager

(a) (b)
(b) Version Chains

Index
Manager

Query
Manager

QP QP QP QP

Cloud Datastore

(c) Architecture

Figure 3: Temporal Graph Index representation.

the changes that happened to a part or whole of the graph at speci-
fied points in time. Secondly, the state of nodes at different points in
time is stored indirectly in form of the derived partitioned snapshot
deltas. This facilitates direct access to the state of a neighborhood
or the entire graph at a given time. Thirdly, a meta index stores
node-wise pointers to the list of chronological changes for each
node. This gives us a direct access to the changes occurring to indi-
vidual nodes. Figure 3(a) shows the arrangement of eventlist, snap-
shot and derived snapshot partitioned deltas. Figure 3(b) shows a
sample version chain.

TGI utilizes the concept of temporal consistency which was opti-
mally utilized by DeltaGraph. However, it differs from DeltaGraph
in two major ways. First, it uses a partitioning for eventlists, snap-
shots or deltas instead of a large monolithic chunks. Additionally,
it maintains a list of version chain pointers for each node. The
combination of these two novelties along with DeltaGraph’s tem-
poral compression generalizes the notion of entity-centric and time-
centric indexing approaches in an efficient way. This can be seen
by the qualitative comparison shown in Table 1 as well as empirical
results in Section 6.

4.4 TGI: Design and Architecture
In the previous subsection, we presented the logical description of
TGI. We now describe the strategies for physical storage on a cloud
which enables high scalability. In a distributed index, we desire that
all graph retrieval calls achieve maximum parallelization through
equitable distribution. A distribution strategy based on pure node-

Index Snapshot Static Vertex Vertex versions 1-hop 1-hop Versions
Size ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1

Log |G| |G| |G|
|E| |G| |G|

|E| |G| |G|
|E| |G| |G|

|E| |G| |G|
|E|

Copy |G|2 |S| 1 |S| 1 |S||G| |G| |S| 1 |S||G| |G|
Copy+Log |G|2

|E| |S|+ |E| 2 |S|+ |E| 2 |G| |G|
|E| |S|+ |E| 2 |G| |G|

|E|
Node Centric 2|G| 2.|G| |N| |C| 1 |C| 1 |R|.|V | |R| |R|.|V | |R|
DeltaGraph X∗1 h.|S|+ |E| 2h h.|S|+ |E| 2h |G| |G|

|E| h.(|S|+ |E|) 2h |G| |G|
|E|

TGI X∗∗2 h.|S|+ |E| 2h h.|S|
p + |E|

p 2h |V |(1+ |S|
p) |V |+1 h.(|S|+|E|)

p 2h |V |(1+ |S|
p) |V |+1

Table 1: Comparison of access costs for different retrieval queries and index storage on various temporal indexes. |G| =number of
changes in the graph; |S| =size of a snapshot; h = height and |E| = eventlist size in C+L, DG or TGI; |V | =number of changes to
a node; |R|=numbers of neighbors of a node; p= number of partitions in TGI. The metrics used are the sum of delta cardinalities
(∑∆ |∆|) and the number of deltas (∑∆ 1). For reasons of space, ∗X1 = |G|(h+1); ∗∗X2 = |G|(2h+3).

based key is good idea for snapshot style access, however, it is bad
for a subgraph history style of access. A pure time-based key strat-
egy on the other hand, has complementary qualities and drawbacks.
An important related challenge for scalability is dealing with two
different skews in a temporal graph dataset – temporal and topo-
logical. They refer to the uneven density of graph activity over
time and the uneven edge density across regions of the graph, re-
spectively. Another important aspect to note is that for a retrieval
task, it is desirable that all the required micro-deltas on a particular
machine be proximally located to minimize latency of lookups6.

Based on the above constraints and desired properties, we describe
the physical layout of TGI as follows:

1. The entire history of the graph is divided into time spans,
keeping the number of changes to the graph consistent across
different time spans, ft : e.time→ tsid, where e is the event
and tsid is the unique identifier for the time span. This is
illustrated in Figure 4.

2. A graph at any point is horizontally partitioned into a fixed
number of horizontal partitions based upon a random func-
tion of the node-id, fh : nid→ sid, where nid is the node-id
and sid is unique identifier of for the horizontal partition.

3. The micro-deltas (including eventlists) are stored as a key-
value pairs, where the delta-key is composed of
{tsid,sid,did, pid}, where did is a delta-id, and pid is the
partition-id of the micro-delta.

4. The placement-key is defined as a subset of the composite
deltas key described above, as {tsid,sid}, which defines the
chunks in which data is placed across a set of machines on a
cluster. A combination of the tsid and sid ensure that a large
fetch task, whether snapshot or version oriented, seeks data
distributed across the cluster and not just one machine.

5. The micro-deltas are clustered by the delta key. The given
order of the delta-key besides the placement-key elements,
means that all the micro-partitions of a delta are stored con-
tiguously, which makes it efficient to scan and read all micro-
partitions belonging to a delta in a snapshot query. On the
other hand, if the order of did and pid is reversed, it makes
fetching a micro-partition across different deltas more effi-
cient.

6In general, this depends on the underlying storage mechanism.
While the physical placement of micro-deltas is irrelevant for a
memory-based storage, it is significant for any disk-based storage
due to seek times.

time

TIME SPAN 1 TIME SPAN 2 TIME SPAN 3

... G(t)

Figure 4: The graph history is divided into non-overlapping
periods of time. Such division is based on time intervals after
which the locality-based graph partitioning is updated. It is
also used as a partial key for data chunking and placement.

Irrespective of a temporal or a topological skew in the graph, the
index is spread out across a cluster in a balanced manner. This also
makes it possible to fetch the graph primitives of large sizes in a
naturally parallel manner. For instance, a snapshot query would de-
mand all micro-partitions for a specific set of deltas in a particular
timespan across all horizontal partitions. Given an equitable dis-
tribution of the deltas across all machines of a cluster, we retrieve
the data in parallel on each storage machine, without a considerable
skew.

Implementation: TGI uses Cassandra for its delta storage. There
are 5 tables that contain TGI data and metadata:
(1) Deltas(tsid, sid, did, pid, dval) table stores the
deltas as described above, where dval contains serialized value of
the micro-delta as a binary string.
(2) Versions(nid, vchain) consists of each node’s version
chain as a hash-table with keys for each timespan.
(3) Timespans(tsid, start, end, checkpts, k, df)
stores, for each timespan, start and end times, a list of snapshot
checkpoints, and arity.
(4) Graph(start, end, events, tscount, gtype) con-
tains global information about the graph and TGI.
(5) Micropartitions(nid, tsid, pid) contains micro-
delta partitioning information about nodes. It is not utilized in case
of random partitioning.
The graph construction and fetching modules are written in Python,
using Pickle and Twisted libraries for serialization and communi-
cation.

Architecture: TGI architecture can be seen in Figure 3c, where
Query Mananger (QM) is responsible for planning, dividing and
delegating the query to one or more Query Processors (QP). The
QPs query the datastore in parallel and process the raw deltas into
the required result. Depending on the query specification, the dis-
tributed result is either aggregated at a particular QP (the QM) or
returned to the client which made the request without aggregation.
The Index Manager is responsible for the construction and mainte-
nance activities of the index. The cloud represents the distributed
datastore.

Construction and Update: The construction process involves three
different stages. First, we analyze the input data using the index
construction parameters including the timespan length (ts), number
of horizontal partitions (ns), number of likely datastore nodes (m),
eventlist size (l), and micro-delta partition size (psize). In the sec-
ond stage, the input data is split into horizontal partitions. In the
third stage, parallel construction workers of the IM work on sepa-
rate horizontal partitions, and build the index, a time span at a time.
The process of construction of each timespan is similar to that of
DeltaGraph, albeit more fine-grained due to delta partitioning and
version chain construction as well. The TGI accepts updates of
events in batches of timespan length. The update process involves
creating an independent TGI with the new events, and merging it
with the original TGI. The merger of TGIs involves updates of cor-
responding deltas, VC index and the metadata.

4.5 Dynamic Graph Partitioning
Partitioning deltas into micro-deltas is an essential aspect of TGI
and provides cheaper access to subgraph elements when compared
to DeltaGraph or similar indexes. In a time-evolving graph, how-
ever, the size and topology of the graph change with time. The key
is to keep the size of each micro-delta (and each micro-eventlist)
about the same and bounded by a number that dictates the latency
for fetching a node or neighborhood. The two traditional approaches
to partitioning a static graph are random (node-id hash-based) or
locality-based (min-cut max-flow) partitioning. Random partition-
ing is simpler and involves minimal bookkeeping. However, since
it loses locality, it is unsuitable for neighborhood-level granular-
ity access. Locality-aware partitioning, on the other hand, pre-
serves locality but incurs extra bookkeeping in form of a {node-
id:partition-id} map. TGI is designed to work with either config-
uration as desired, as well as different partition size specifications.
TGI also supports replication of edge-cuts for further speed up of 1-
hop neighborhoods. It uses a separate auxiliary micro-delta besides
each micro-delta to store the replication, thereby preventing extra
read cost for snapshot or node centric queries. This is illustrated in
Figure 5.

Locality-aware partitioning, however, faces an additional challenge
with time-evolving graphs. With the change in size and topology of
a graph, a partitioning deemed good (with respect to locality) at an
instant may cease to be good at a later time. A probable approach of
frequent repartitioning over time would maintain partitioning qual-
ity, but leads to excessive amounts of bookkeeping, which in turn
leads to degradation of performance while accessing different node
or neighborhood versions. Maintaining and looking up that map as
frequently as the changes in the graph is highly inefficient. Hence,
we divide the history of the graph into time spans, where we keep
the partitioning consistent within each time span, but perform it
afresh it at the beginning of each new time span. This gives rise to
two problems, described briefly as follows. Firstly, given a graph

over time span, T ∈ [ts, te), find the graph partitioning that mini-
mizes the edge cuts across all time points combined. Secondly, to
determine the appropriate points for the end of a time span and the
beginning of a new one, with respect to over all query performance.
We discuss these problems below.

Static graph partitioning for an undirected and unweighted graph
G = (V,E) into k partitions is defined as follows. Each node vi ∈V
is assigned a partition set Pr such that 0 ≤ r < k. The constraint is
that

⌊
|V |
k

⌋
≤ |Pr| ≤

⌈
|V |
k

⌉
, i.e., the partitions are more or less equal

in size. The number of edge cuts across partitions are intended to be
minimized, i.e., a count of all edges whose end points lie in differ-
ent partitions. For a weighted graph, the edge cut cost is counted as
the sum of the edge weights, which pushes stronger relationships
(with higher edge weights) to be preferred for being in the same
partition over the lesser weighted ones. Also, in case of a node
weighted graph, the partition set count can be determined using the
node weight. Different graph partitioning algorithms work under
these constraints using one or the other heuristic, as described be-
fore.

For a dynamic graph partitioning, we consider an edge and node
weighted, undirected time evolving graph, without the loss of gen-
erality. Consider the following: graph GT =(V τ ,Eτ ,W τ

E ,W
τ
N) where,

τ ∈ [ts, te), is the time range for which we find a single partition-
ing; V τ ,Eτ ,W τ

E ,W
τ
N are the set of vertices, edges, edge weights,

node weights over time τ , respectively. Our partitioning strategy
involves projecting the graph over time range T to a single point
in time using a time collapsing function Ω, there by reducing the
graph Gτ to a static graph, Gτ =Ω(Gτ). The constraint on function
Ω is that Gτ must contain all the vertices that existed in Gτ at least
once in Gτ . Using Gτ , we can employ static graph partitioning to
find a suitable partitioning technique in the following manner.

The choice of Ω function determines how well the GT is a represen-
tation of Gτ . Let us consider a few different options. (1) Median:
consider the time point t which is the median of the end points of
τ . The edges and weights in Gτ are the edge weights in Gt . (2)
Union-Max: for an edge that existed at any time in Gτ , we include
it in Gτ such that its weight is the maximum value from all time
points in GT . (3) Union-Mean: for an edge that existed at any time
in Gτ , we include it in Gτ , where its weight is the weighted average
(time fraction) of the edge weights in Gτ . Non existence of an edge
during a time period counts as a 0 contribution for the respective
time period. (4). For any of the cases above, the node weight, wn,
can be defined independently of the edge set and edge weights. We
consider three options as follows. (1) wn = 1 for each nodes n in
Gτ ; (2) wn = degree(n) for each node n in GT ; (3) wn = ¯degree(n),
i.e., average degree over τ .

Given these different heuristic combinations, we plan to study their
empirical behavior and use the apparently most suitable one for
TGI partitioning. The default TGI partitioning uses Union-Max for
edge weights and uniform node weights.

We argue that this style of partitioning that involves first projecting
a temporal graph to a static one, followed by conventional forms
of static graph partitioning, is better than other conceivable alter-
natives. One such alternative way of doing it is to determine the
partitioning at different time points in τ , say Pτ and then reducing
Pτ to Pτ , a single partitioning scheme. This approach has the fol-
lowing major disadvantages. Firstly, the output partitions from a

a static graph partitioning algorithm for two versions of graph Gτ ,
say G1 and G2 are not aligned, even when the two snapshots are
similar to a large extent. This is attributed to some degree of ran-
domness associated with graph partitioning algorithms. This makes
it infeasible to combine P1 and P2 in to a single result. Secondly,
this approach is much more expensive compared to our approach,
because it involves computing τ orders of partitions. Another al-
ternative approach is to use one of the online graph partitioning
algorithms, which updates a partition set for a graph upon a small
change in the graph. However, the output of such an approach only
gives us partitioning schemes at different time points. The parti-
tions across time are better aligned to each other than the previous
approach, but we would still need to compute a combined partition-
ing from all available partitions, and the notion of time collapsing
is inevitable. Secondly, the partitioning results from incremental
graph partitioning are often inferior compared to the batch mode of
partitioning for obvious reasons.

Determining the appropriate number and the exact boundaries of
time-spans is another important issue. The need for creating higher
number of time-spans and hence reducing the duration of a time-
span is to maintain healthier partitioning. Let the hit taken on query
latencies (assuming a certain query load Q) due to a subpar snap-
shot partitioning be, f (T). This hit is generally incurred on k-hop
queries, without replication, due to higher number of micro-delta
seeks. In case of replication across partitions, the degree of repli-
cation increases with inferior partitioning, and leads to indirect im-
pact on query latencies. On the other hand, there is need to cre-
ate longer time-spans because the version queries require multiple
micro-deltas, at different time points. Higher the changing num-
ber of partitions over query’s time interval, say t, higher the query
latency. Let us say that for an average query time interval (again,
as per a specific query load), the gain due to longer time spans is,
g(T). The appropriate length of a average time-span hence is the
solution of the maxima of g(T)− f (T). In practice, uniform time-
span length in numbers of the number of events is perhaps the most
convenient. While the models of f and g are complex, a good num-
ber for size of T can be observed empirically.

4.6 Fetching Graph Primitives
We briefly describe access methods for different graph primitives.
The algorithms provided here use primitive TGI fetch methods whose
description should be self-explanatory from their nomenclature.

Snapshot Retrieval: In snapshot retrieval, the state of a graph at
a time point is retrieved. Given a time ts, the query manager lo-
cates the appropriate time span T such that ts ∈ T , within which,
it figures out the path from the root of the TGI to the leaf closest
to the given time point. All the snapshot deltas, ∆s1,∆s2, . . . ,∆sm,
(i.e., all their micro-partitions) along that path and the eventlists
from the leaf node to the time point, ∆e1,∆e2, . . . ,∆en are fetched
and merged appropriately as: ∑

m
i=1 ∆si + ∑

n
i=1 ∆ei (notice the or-

der). This is performed across different query processors covering
the entire set of horizontal partitions. The procedure for snapshot
retrieval is specified in Algorithm 1.

Node’s history: Retrieving a node’s history during time interval,
[ts, te) involves finding the state of the graph at point ts, and all
changes during the time range (ts, te). The first one is done in a
similar manner to snapshot retrieval except the fact that we look up
only a specific micro-partition in a specific horizontal partition, that
the node belongs to. The second part happens through fetching the

A

D
C

I

K

J

E

G

F

H

B

L

(a) Graph Snapshot.

A

D
C

I

K

J

E

G

F

H

B

L
Partition 1
Partition 2
Partition 3

(b) Random partitioning of graph
snapshot with high number of
edge-cuts.

A

D
C

I

K

J

E

G

F

H

B

L

(c) Min-cut partitioning of snap-
shot.

A

D
C

I

K

J

E

G

F

H

B

L

I

E

D H

I

L

D

partitions

auxiliary
partitions

(d) Min-cut partitioning of snap-
shot with edge-cut replication and
auxiliary storage strategy.

Figure 5: Graph partitioning using min-cut strategy along with
1-hop replication and the use of auxiliary micro-deltas im-
proves 1-hop neighborhood retrieval performance without af-
fecting the performance of snapshot or node retrieval.

Algorithm 1 Snapshot Retrieval
1: procedure GETSNAPSHOT(t) . Graph at time t
2: t ′← GetNearestPartTime(t)
3: K← GetNearestPartKeys(t)
4: D← GetDeltas(K)
5: g← /0
6: for d : D do
7: g← g+d
8: end for
9: B← GetEventLists(t ′, t)

10: for b : B do
11: b← FilterByTime(b, t ′, t)
12: g← g+b
13: end for
14: return g . The snapshot
15: end procedure

node’s version chain to determine its points of changes during the
given range. The respective eventlists are fetched and filtered for
the given node. The procedure for node-history retrieval is speci-
fied in Algorithm 2.

k-hop neighborhood (static): In order to retrieve the k-hop neigh-
borhood of a node, we can proceed in two possible ways. One of
them is to fetch the whole graph snapshot and filter the required
subgraph. The other is to fetch the given node, and then deter-
mine its neighbors, fetch them, and recurse. It is easy to see that
the performance of the second method will deteriorate fast with
growing k. However for lower values, typically k ≤ 2, the latter

Algorithm 2 Node’s History
1: procedure GETNODEHISTORY(I,ts, te)

. Node I’s history for ts to te
2: C← GetVC(I)
3: C← FilterByTime(C, ts, te)
4: D← GetDeltas(C)
5: IN ← /0
6: D← FilterByTime(D, ts, te)
7: D← FilterById(D, I)
8: for d:D do
9: IN ← IN ∪d

10: end for
11: return IN . Node’s history
12: end procedure

is faster or at least as good, especially if we are using neighbor-
hood replication as discussed in a previous subsection. In case of
a neighborhood fetch, the query manager automatically fetches the
auxiliary portions of deltas (if they exist), and if the required nodes
are found, further lookup is terminated. Two different procedures
for fetching a k-hop neighborhood are specified in Algorithm 3 and
Algorithm 4, respectively.

Algorithm 3 Node’s k-Hop Neighborhood (1)
1: procedure GETNODEKHOPNEIGH1(I,ts)

. Node I’s k-hop neighborhood at t
2: g← GetSnapshot(t)
3: C←{I}
4: R←{I}
5: for p:1 to k do
6: S← /0
7: for r:R do
8: N← GetNeighbors(g,r)
9: C←C∪N

10: S← S∪N
11: end for
12: R← S
13: end for
14: g′← FilterByID(g,C)
15: return g′ . Node’s k-hop
16: end procedure

Neighborhood evolution: Neighborhood evolution queries can be
posed in two different ways. First, requesting all changes for a
described neighborhood, in which case the query manager fetches
the initial state of the neighborhood followed by the events indicat-
ing the change. Second, requesting the state of the neighborhood
at multiple specific time points. This translates to the retrieval of
multiple single neighborhoods fetch tasks. Algorithm 5 specifies
the procedure to fetch one hop neighborhood history. The general
k-hop evolution process can be seen as a combination of the 1-hop
evolution procedure along with the k-hop (static) neighborhood re-
trieval.

5. ANALYTICS FRAMEWORK
In this section, we describe the Temporal Graph Analysis Frame-
work (TAF), that enables programmers to express and execute com-
plex analytical tasks on time-evolving graphs. We present details
of the novel model of computation, including a library of temporal
graph operators and operands (exposed through Python and Java
APIs); we also present the details of implementation on top of

Algorithm 4 Node’s k-Hop Neighborhood (2)
1: procedure GETNODEKHOPNEIGH2(I,t)

. Node I’s k-hop neighborhood at t
2: N← GetNode(I, t)
3: M← GetNeighbors(N)
4: G← /0
5: for r: 1 to k do
6: L← /0
7: for m:M do
8: if m ∈ G then
9: N← GetNode(m)

10: G← G+R
11: L← L∪GetNeighbors(m)
12: end if
13: end for
14: M← L
15: end for
16: return G . k-hop neighborhood
17: end procedure

Algorithm 5 Node’s 1-Hop History
1: procedure GETNODE1HOPHISTORY(I,ts, te)

. Node I’s 1-hop history for ts to te
2: H← GetNodeHistory(I, ts, te)
3: G←{H}
4: S← /0 . S is a set of pairs <Node,time-range>
5: for h:H do
6: S← UpdateNeighborInfo(S,h)
7: end for
8: for s:S do
9: G← G∪ s

10: end for
11: return G . Node’s 1-hop history
12: end procedure

Apache Spark, which enables scalable, parallel, in-memory execu-
tion. Finally, we describe TAF’s coordination with TGI to provide a
complete ecosystem for historical graph management and analysis.

5.1 Temporal Graph Analysis Library
In this section, we describe a set of operators for analyzing large
historical graphs. At the heart of this library is a data model where
we view the historical graph as a set of nodes or subgraphs evolving
over time. The choice of temporal nodes as a primitive helps us de-
scribe a wide range of fetch and compute operations in an intuitive
manner. More importantly, it provides us an abstraction to paral-
lelize computation. The temporal nodes and set of temporal nodes
bear a correspondence to tuples and tables of the relational alge-
bra, as the basic unit of data and the prime operand, respectively.
Operands: The two central data types are defined below:

DEFINITION 6 (TEMPORAL NODE). A temporal node (NodeT),
NT , is defined as a sequence of all and only the states of a node N
over a time range, T = [ts, te). All the k states of the node must have
a valid time duration Ti, such that ∪k

i Ti = T and ∩k
i Ti = φ .

DEFINITION 7 (SET OF TEMPORAL NODES). A SoN, is de-
fined as a set of r temporal nodes {NT

1 ,N
T
2 . . .NT

r } over a time
range, T = [ts, te), as depicted in Figure 6.

time
no
de

attribu
te

{
se
le
ct

{
timeslice

{filter

Figure 6: SoN: A set of nodes can be abstracted as a 3 dimen-
sional array with temporal, node and attribute dimensions.

The NodeT class provides a range of methods to access the state
of the node at various time points, including: getVersions()
which returns the different versions of the node as a list of static
nodes (NodeS), getVersionAt()which finds a specific version
of the node given a timepoint, getNeighborIDsAt() which
returns IDs of the neighbors at the specified time point, and so on.

A Temporal Subgraph (SubgraphT) generalizes NodeT and cap-
tures a sequence of the states of a subgraph (i.e., a set of nodes and
edges among them) over a period of time. Typically the subgraphs
correspond to k-hop neighborhoods around a set of nodes in the
graph. An analogous getVersionAt() function can be used to
retrieve the state of the subgraph as of a specific time point as an
in-memory Graph object (the user program must ensure that any
graph object so created can fit in the memory of a single machine).
A Set of Temporal Subgraphs (SoTS) is defined analogously to SoN
as a set of temporal subgraphs.

Operators: Below we discuss the important temporal graph alge-
bra operators supported by our system.

1. Selection accepts an SoN or an SoTS along with a boolean
function on the nodes or the subgraphs, and returns an SoN
or SoTS. Selection performs entity-centric filtering on the
operand, and does not alter temporal or attribute dimensions
of the data.

2. Timeslicing accepts an SoN or an SoTS along with a time-
point (or time interval) t, finds the state of each of individual
nodes or subgraphs in the operand as of t, and returns it as
another SoN or SoTS, respectively (SoN/SoTS can represent
sets of static nodes or subgraphs as a well). The operator can
accept a list of timepoints as input and return a list.

3. Graph accepts an SoN and returns an in-memory Graph ob-
ject containing the nodes in the SoN (with only the edges
whose both endpoints are in the SoN). An optional parame-
ter, tp, may be specified to get a GraphS valid at time tp.

4. NodeCompute is analogous to a map operation; it takes as
input an SoN (or an SoTS) and a function, and applies the
function to all the individual nodes (subgraphs) and returns
the results as a set.

5. NodeComputeTemporal. Unlike NodeCompute, this oper-
ator takes as input a function that operates on a static node
(or subgraph) in addition to an SoN (or an SoTS); for each
node (subgraph), it returns a sequence of outputs, one for
each different state (version) of that node (or subgraph). Op-
tionally, the user may specify another function (NodeCom-
puteDelta) that operates on the delta between two versions of
a node (subgraph), which the system can use to compute the
output more efficiently. An optional parameter is a method
describing points of time at which computation needs to be
performed; in the absence of it, the method will be evaluated
at all the points of change.

6. NodeComputeDelta operator takes as input: (a) a function
that operates on a static node (or subgraph) and produces an
output quantity, (b) an SoN (or an SoTS) like
NodeComputeTemporal, (c) a function that operates on
the following: a static node (or subgraph), some auxiliary in-
formation pertaining to that state of the node (or subgraph),
the value of the quantity at that state, and an update (event) to
it. This operator returns a sequence of outputs, one for each
state of the node (or subgraph), similar to
NodeComputeTemporal. However, the method of com-
putation in this method is different because it updates the
computed quantity for each version incrementally instead of
computing it afresh. An optional parameter is the method de-
scribing points of time at which to base the comparison. An
optional parameter is a method describing points of time at
which computation needs to be performed; in the absence of
it, the method will be evaluated at all the points of change.

7. Compare operator takes as input two SoNs (or two SoTSs)
and a scalar function (returning a single value), computes the
function value over all the individual components, and re-
turns the differences between the two as a set of (node-id,
difference) pairs. This operator tries to abstract the common
operation of comparing two different snapshots of a graph
at different time points. A simple variation of this opera-
tor takes a single SoN (or SoTS) and two timepoints as in-
put, and does the compare on the timeslices of the SoN as of
those two timepoints. An optional parameter is the method
describing points of time at which to base the comparison.

8. Evolution operator samples a specified quantity (provided as
a function) over time to return evolution of the quantity over
a period of time. An optional parameter is the method de-
scribing points of time at which to base the evolution.

9. TempAggregation abstractly represents a collection of tem-
poral aggregation operators such as Peak, Saturate, Max,
Min, and Mean over a scalar timeseries. The aggregation
operations are used over the results of temporal evaluation
of a given quantity over an SoN or SoTs. For instance, find-
ing “times at which there was a peak in the network density”
is used to find eventful timepoints of high interconnectivity
such as conversations in a cellular network, or high transac-
tional activity in a financial network.

5.2 System Implementation

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
sots = SOTS(k=1, tgiH).Timeslice("t = July 14,2002").fetch()
nm = NodeMetrics()
nodeCC = sots.NodeCompute(nm.LCC, append = True, key="cc")
maxlCC = nodeCC.Max(key="cc")

(a) Finding node with highest local clustering coefficient

tgiH = TGIHandler(tgiconf, "snet", sparkcontext)
son = SON(tgiH).Timeslice('t >= Jan 1,2003 and t< Jan 1, '
 \',2004').Filter("community")
sonA=son.Select("community =\"A\" ").fetch()
sonB=son.Select("community =\"B\" ").fetch()
compAB = SON.Compare(sonA, sonB, SON.count())
print('Average membership in 2003,')
print(A=%s\tB=%s'%(mean(compAB[0]), mean(compAB[1])))

(b) Comparing two communities in a network

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
son = SON(tgiH).Select("id < 5000").Timeslice("t >= OCt"
 \"24, 2008").fetch()
gm = GraphMetrics()
evol = son.GetGraph().Evolution(gm.density, 10)
print('Graph density over 10 points=%s'%evol)

(c) Evolution of network density

Figure 7: Examples of analytics using the TAF Python API.

The library is implemented in Python and Java and is built on top of
the Spark API. The choice of Spark provides us with an efficient in-
memory cluster compute execution platform, circumventing deal-
ing with the issues of data partitioning, communication, synchro-
nization, and fault tolerance. We provide a GraphX integration for
utilizing the capabilities of the Spark based graph processing sys-
tem for static graphs.

The key abstraction in Spark is that of an RDD, which represents a
collection of objects of the same type, stored across a cluster. SoN
and SoTS are implemented as RDDs of NodeT and SubgraphT re-
spectively (i.e., as RDD<NoteT> and RDD<SubgraphT>). The
in-memory graph objects may be implemented using any popular
graph representation, specially the ones that support useful libraries
on top. We now describe in brief the implementation details for
NodeT and SubgraphT, followed by details of the incremental com-
putational operator, and the parallel data fetch operation.

Figure 7 shows sample code snippets for three different analytical
tasks – (a) finding the node with the highest clustering coefficient
in a historical snapshot; (b) comparing different communities in a
network; (c) finding the evolution of network density over a sample
of ten points.

NodeT and SubgraphT: A set of temporal nodes is represented
with an RDD of NodeT (temporal node). A temporal node con-
tains the information for a node during a specified time interval.
The question of the appropriate physical storage of the NodeT (or
SubgraphT) structure is quite similar to storing a temporal graph
on disk such as the one using a DeltaGraph or a TGI, however, in-
memory instead of disk. Since NodeT is fetched at query time, it is
preferable to avoid creating a complicated index, since the cost to
create the index at query time is likely to offset any access latency
benefits due to the index. An intuitive guess based upon exami-
nation of certain temporal analysis tasks is that its access pattern
is most likely going to be in a chronological order, i.e., the query
requesting the subsequent versions or changes, in order of time.

Hence, we store NodeT (and SubgraphT) as an initial snapshot
of the node (or subgraph), followed by a list of chronologically
sorted events. It provides methods such as GetStartTime(),
GetEndTime(), GetStateAt(), GetIterator(), Iter-
ator.GetNextVersion(), Iterator.GetNextEvent(),
and so on. We omit the details of these methods as their function-
ality is apparent from the nomenclature.

NodeComputeDelta: NodeComputeDelta evaluates a quantity
over each NodeT (or SubgraphT) using two supplied methods, f ()
which computes the quantity on a state of the node or subgraph,
and, f∆(), which updates the quantity on a state of the node or sub-
graph for a given set of event updates. Consider a simple example
of finding the fraction of nodes with a specific attribute value in a
given SubgraphT. If this were to be performed using
NodeComputeTemporal, the quantity will be computed afresh
on each new version of the subgraph, which would cost O(N.T)
operations where N is the size of the operand (number of nodes)
and T is the number of versions. However, using the incremen-
tal computation, each new version can be processed in constant
time after the first snapshot, which adds up to, O(N +T). While
performing the incremental computation, the corresponding f∆()
method is expected to be defined so as to evaluate the nature of the
event – whether it brings about any changing the output quantity
or not, i.e., a scalar change value based upon the actual event and
the concerned portions of the state of the graph, and also update
the auxiliary structure, if used. Code in Figure 8 illustrates the us-
age of NodeComputeTemporal and NodeComputeDelta in
a similar example.

tgiH = TGIHandler(tgiconf, "dblp", sparkcontext)
sots = SOTS(k=2, tgiH).Timeslice('t >= Nov 1,2009 and t< Nov 30,'\
 '2009').fetch()
labelCount = sots.NodeComputeDelta(fCountLabel)
...
def fCountLabel(g):
 labCount = 0
 for node in g.GetNodes():
 if node.GetPropValue('EntityType') == 'Author':
 labCount += 1
 return labCount

(a) Using NodeComputeTemporal

tgiH = TGIHandler(tgiconf, "dblp", sparkcontext)
sots = SOTS(k=2, tgiH).Timeslice('t >= Nov 1,2009 and t< Nov 30,'\
 '2009').fetch()
labelCount = sots.NodeComputeTemporal(fCountLabel, fCountLabelDel)
...
def fCountLabelDel(gPrev, valPrev, event):
 valNew = valPrev
 if event.Type == EType.AttribValAlter:
 if event.AttribKey == 'EntityType':
 if event.PrevVal == 'Author':
 valNew = valPrev - 1
 else if event.NextVal == 'Author':
 valNew = valPrev + 1
 return valNew

def fCountLabel(g):
 labCount = 0
 for node in g.GetNodes():
 if node.GetPropValue('EntityType') == 'Author':
 labCount += 1
 return labCount

(b) Using NodeComputeDelta

Figure 8: Incremental computation using different methods
compute counts of nodes with a specific label in subgraphs over
time.

Consider a somewhat more intricate example, where one needs to
find counts of a small pattern over time on an SoTS, such as find-
ing the occurrence of a subgraph pattern in the data graph’s history.
In order to perform such pattern matching over long sequences of
subgraph versions, it is essential to maintain certain inverted in-
dexes which can be looked up to answer in constant time whether

an event has caused a change in the answer from a previous state
or caused a change in the index itself, or both. Such inverted in-
dexes, quite common to subgraph pattern matching, are required to
be updated with every event; otherwise, with every new event up-
date, we would need to look up the new state of the subgraph afresh
which would simply reduce it to performing non-indexed subgraph
pattern matching over new snapshots of a subgraph at each time
point, which is a fairly expensive task. In order to utilize a con-
stantly updated set of indices, the auxiliary information, which is
a parameter and a return type for f∆(), can be utilized. Note that
such an incremental computational operator opens up possibilities
for using a considerable amount of algorithmic work available in
literature on online and streaming graph query evaluation, respec-
tively, to be applied to historical graph analysis. For instance, there
is work on pattern matching in streaming [52, 16] and incremental
computing [15, 51] contexts, respectively.

Specifying interesting time points: In the map-oriented version op-
erators on an SoN or an SoTS, the time points of evaluation, by
default, are all the points of change in the given operand. However,
a user may choose to provide a definition of which points to select.
This can be as simple as returning a constant set of timepoints,
or based on a more complex function of the operand(s). Except
the Compare operator, which accepts two operands, other opera-
tors allow an optional function, which works on a singe temporal
operand; the compare accepts a similar function that operates on
two such operands. Two such examples can be seen in Figure 9.

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
son = SON(tgiH).Select("id < 5000").Timeslice("t >= OCt"
 \"24, 2008").fetch()
gm = GraphMetrics()
evol = son.GetGraph().Evolution(gm.density,
 \ selectTimepointsMinimal)
print('Graph density over 3 points=%s'%evol)
...
def selectTimepointsMinimal(son):
 time_arr = []
 st = son.GetStartTime()
 et = son.GetEndTime()
 time_arr.append(st)
 time_arr.append((st + et)/2)
 time_arr.append(et)
 return time_arr

(a) Specifying the start, end and middle point of SON for an
Evolution query.

tgiH = TGIHandler(tgiconf, "snet", sparkcontext)
son = SON(tgiH).Timeslice('t >= Jan 1,2003 and t< Jan 1, '
 \'2004').Filter("community")
sonA=son.Select("community =\"A\" ").fetch()
sonB=son.Select("community =\"B\" ").fetch()
compAB = SON.Compare(sonA, sonB, SON.count(),
 \ selectTimepointsAll)
print('Average membership in 2003,')
print(A=%s\tB=%s'%(mean(compAB[0]), mean(compAB[1])))
...
def selectTimepointsAll(sonA, sonB):
 time_arr = []
 ptsA = sonA.GetAllChangePoints()
 ptsB = sonB.GetAllChangePoints()
 time_arr = ptsA + ptsB
 return time_arr

(b) Specifying all change points in two SON’s for a Compare query.

Figure 9: Using the optional timepoint specification function
with evolution and comparison queries.

Data Fetch: In a temporal graph analysis task, we first need to in-
stantiate a TGI connection handler instance. It contains configu-
rations such as address and port of the TGI query manager host,
graph-id, and a SparkContext object. Then, a SON (or SOTS)
object is instantiated by passing the reference to the TGI handler,

Parallel Fetch

Apache
Spark
Cluster

TGI

Master

History Manager

Spark Node1 Spark Node2 Spark Node kSpark Node

TGI Node1 TGI Node 2 TGI Node 3 TGI Node r

Query

QP QP QP QP

RDD<NodeT> RDD<NodeT> RDD<NodeT> RDD<NodeT>

Fetch

Query

TGIDriver TGIDriver TGIDriver TGIDriver

RDD<TGIDriver>

3

1

2

4

5
6

Figure 10: A pictorial representation of the parallel fetch op-
eration between the TGI cluster and the analytics framework
cluster. The numbers in circles indicate the relative order of
events and the arrowheads indicate the direction of flow.

and any query specific parameters (such as k-value for fetching 1-
hop neighborhoods with SOTS). The next few instructions spec-
ify the semantics of the graph to be fetched from the TGI. This
is done through the commands explained in Section 5.1, such as
the Select, Filter, Timeslice, etc. However, the actual
retrieval from the index doesn’t happen until the first statement fol-
lowing the specification instructions. A fetch() command can
be used explicitly to tell the system to perform the fetch operation.
Upon the fetch() call, the analytics framework sends the com-
bined instructions to the query planner of the TGI, which translates
those instructions into an optimal retrieval plan. This prevents the
system from retrieving large amounts of data from the index that is
a superset of the required information and prune it later.

The analytics engine runs in parallel on a set of machines, so does
the graph index. The parallelism at both places speeds up and scales
both the tasks. However, if the retrieval graph at the TGI cluster was
aggregated at the Query Manager and sent serially to the master of
the analytical framework engine after which it was distributed to
the different machines on the cluster, it would create a space and
time bottleneck at the Query Manager and the master, respectively,
for large graphs. In order to bypass this situation, we have designed
a parallel fetch operation, in which there is a direct communication
between the nodes of the analytics framework cluster and the nodes
of the TGI cluster. This happens through a protocol that can be seen
in Figure 10. The protocol is briefly described in the following
ordered steps:

1. Analytics query containing fetch instructions is received by
the TAF master.

2. A handshake between the TAF master and TGI query man-
ager is established. The latter receives fetch instructions and
the former is made aware of the active TGI query processor
nodes.

3. Parallel fetch starts at the TGI cluster.

4. The TAF master instantiates a TGIDriver instance at each of
its cluster machines wrapped in a RDD.

5. Each node at the TAF performs a handshake with one or more
of the TGI nodes.

6. Upon completion of fetch at TGI, the individual TGI nodes
transfer the SoN to an RDDs on the corresponding TAF nodes.

6. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the efficiency of TGI and
TAF. To recap, TGI is a persistent store for entire histories of large
graphs, that enables fast retrieval for a diverse set of graph primi-
tives – snapshots, subgraphs, and nodes at past time points or across
intervals of time. We primarily highlight the performance of TGI
across the entire spectrum of retrieval primitives. We are not aware
of a baseline that may compete with TGI across all or a substantial
subset of these retrieval primitives. Specialized alternatives such as
DeltaGraph for snapshot retrieval is highly unsuitable for node or
neighbor version retrieval; a version centric index may be special-
ized for node-version retrieval but is highly unsuitable for snapshot
or neighborhood-version style retrieval. Also note that TGI gener-
alizes all the known approaches including those two; using appro-
priate parameter configurations, it can even converge to any specific
alternative. Secondly, we demonstrate the scalability of TGI design
through experiments on parallel fetching for large and varying data
sizes. Finally, we also report experiments demonstrating computa-
tional scalability of the TAF for a graph analysis task, as well as the
benefits of our incremental computational operator.

Datasets and Notation: We use four datasets: (1) Wikipedia cita-
tion network consisting of 266,769,613 edge addition events from
Jan 2001 to Sept 2010. At its largest point, the graph consists of
21,443,529 nodes and 122,075,026 edges; (2) We augment Dataset
1 by adding around 333 million synthetic events which randomly
add new edges or delete existing edges over a period of time, mak-
ing a total of 700 million events; (3) Similarly, we add 733 million
events, making the total around 1 billion events; (4) Using a Friend-
ster gaming network snapshot, we add synthetic dates at uniform
intervals to 500 million events with a total of approximately 37.5
million nodes and 500 million edges.

Following key parameters that are varied in the experiments: data
store machine count (m), replication across dataset (r), number of
parallel fetching clients (c), eventlist size (l), snapshot or eventlist
partition size (ps), and Spark cluster size (ma).

We conducted all experiments on an Amazon EC2 cluster. Cas-
sandra ran on machines containing 4 cores and 15GB of available
memory. We did not use row caching and the actual memory con-
sumption was much lower that the available limit on those ma-
chines. Each fetch client ran on a single core with up to 7.5GB
available memory. The machines with TAF nodes running Spark
workers ran on a single core and 7.5GB of available memory each.

Snapshot retrieval: Figure 11 shows the snapshot retrieval times
for Dataset 1 for different values of the parallel fetch factor, c. As
we can see, the retrieval cost is directly proportional to the size
of the output. Further, using multiple clients to retrieve the snap-
shots in parallel gives near-linear speedup, especially with low par-
allelism. This demonstrates that TGI can exploit available paral-
lelism well. We expect that with higher values of m (i.e., if the
index were distributed across a larger number of machines), the
linear speedup would be seen for larger values of c (this is also cor-
roborated by the next set of experiments). The snapshot retrieval
times for dataset 4 can be seen in Figure 13c.

Figure 12 shows snapshot retrieval performance for three differ-

c=1
c=2
c=4
c=8
c=16
c=32

R
et

rie
va

l T
im

e
(s

ec
s)

0

100

200

Snapshot Size (node count)
0 10 20×106

Figure 11: Snapshot retrieval times for varying parallel fetch
factor (c), on Dataset 1; m = 4; r = 1, ps = 500.

ent sets of values for m and r. We can see that while there is no
considerable difference in performance across the different config-
urations, using two storage machines slightly decreases the query
latency over using one machine, in the case of a single query client,
c = 1. For higher c values, we see that m = 2 has a slight edge over
m = 1. Also, the behavior for the two m = 1 and m = 2;r = 2 cases
are quite similar for same c values. However, we observed that the
latter case allows a higher possibility of c value whereas the former
peaks out at a lower c value.

Further, the net effect of Cassandra compression for deltas is negli-
gible for TGI. We omit the detailed points of our investigation, but
Figure 13a is representative of the general behavior.

Size of the delta partitions (or the number) affects the performance
the snapshot retrieval performance only to a small degree as seen
in Figure 13b. This occurs due to a the TGI design which makes
sure that all the partitions of a delta (micro-deltas) are stored con-
tiguously in a cluster. This demonstrates that TGI is a superset of
DeltaGraph where we are able to handle other queries along with
efficient snapshot retrieval. Note that we do not provide experimen-
tal results on the internals of snapshot retrieval which have been
thoroughly explored in our prior work [29].

c=1
c=2

R
et

rie
va

l T
im

e
(s

ec
s)

0

1

2

Version Changes
0 50 100 150

Figure 16: Node version retrieval for Dataset 4; m = 6; r =
1,c = 1, ps = 500.

Node History Retrieval: Smaller eventlists or partition sizes pro-
vide a lower latency time for retrieving different versions of a node,
which can be seen in Figure 14a and Figure 14c, respectively. This
is primarily due to the reduction in work required for fetching and
deserialization. A higher parallel fetch factor is effective in reduc-
ing the latency for version retrieval (Figure 14b). Note that the per-
formance of version retrieval and snapshot retrieval with respect to
varying partition sizes is contrary and represents a trade-off. How-
ever, smaller eventlist sizes benefit both version retrieval and snap-
shots. Node version retrieval for Dataset 4 shows a similar behav-
ior, which can be seen in Figure 16.

NodeComputeTemporal
NodeComputeDelta

Ti
m

e
Ta

ke
n

(s
ec

)

0

20

40

Version Count
0 5 10 15 20

Figure 17: Label counting in several 2-hop neighborhoods
through version (NodeComputeTemporal) and incremental
(NodeComputeDelta) computation, respectively. We report
cumulative time taken (excluding fetch time) over varying ver-
sion counts; 2 Spark workers were used for dataset 4.

Neighborhood Retrieval: We compared the performance of re-
trieving 1-hop neighborhoods, both static and specific versions, us-
ing different graph partitioning and replication choices. A topolog-
ical, flow-based partitioning accesses fewer graph partitions com-
pared to a random partitioning scheme, and a 1-hop neighborhood
replication restricts the access to a single partition.This can be seen
in Figure 15a for 1-hop neighborhood retrieval latencies. As dis-
cussed in Section 4, the 1-hop replication does not affect other
queries involving snapshots or individual nodes, as the replicated
portion is stored separately from the original partition. In case of
a 2-hop neighborhood retrieval, there are similar performance ben-
efits over random partitioning, which can be reasoned based upon
similar speed-ups for 1-hop neighborhoods.

Increasing Data Over Time: We observed the fetch performance
of TGI with an increasing size of the index. We measured the laten-
cies for retrieving certain snapshots upon varying the time duration
of the graph dataset, as shown in Figure 15b. Datasets 2 and 3 con-
tain additional 333 million and 733 million events over dataset 1,
respectively. Only a marginal difference in snapshot retrieval per-
formance demonstrates TGI’s scalability for large datasets.

Conducting Scalable Analytics: We examined TAF’s performance
through an analytical task for determining the highest local clus-
tering coefficient in historical graph snapshot. Figure 15c shows
compute times for the given task on different graph sizes, as well
as varying size of the Spark cluster. Speedups due to parallel exe-
cution can be observed, especially for larger datasets.

Temporal Computation: Earlier in the chapter, we presented two
separate ways of computing a quantity over changing versions of a
graph (or node). Those include, evaluating the quantity on different
versions of the graph separately, and alternatively, performing it in
an incremental fashion, utilizing the result for the previous version
and updating it with respect to the graph updates. This can be seen
for a simple node label counting task in Figure 8. the benefits due
to the incremental (NodeComputeDelta operator) computation
over a version-based computation (NodeComputeTemporal op-
erator) can be seen in Figure 17.

7. CONCLUSION
Graph analytics are increasingly considered crucial in obtaining in-
sights about how interconnected entities behave, how information
spreads, what are the most influential entities in the data, and many
other characteristics. Analyzing the history of how a graph evolved
can provide significant additional insights, especially about the fu-
ture. Most real-world networks however, are large and highly dy-
namic. This leads to creation of very large histories, making it

challenging to store, query, or analyze them. In this paper, we pre-
sented a novel Temporal Graph Index that enables compact storage
of very large historical graph traces in a distributed fashion, sup-
porting a wide range of retrieval queries to access and analyze only
the required portions of the history. We also present a distributed
analytics framework, built on top of Apache Spark, that allows ana-
lysts to quickly write complex temporal analysis tasks. Our experi-
ments show that our temporal index exhibits very efficient retrieval
performance across a wide range of queries, and can effectively
exploit the available parallelism in a distributed setting.

8. REFERENCES
[1] Jans Aasman. Allegro graph: Rdf triple database. Technical

report, Franz Incorporated, 2006.
[2] Jae-wook Ahn, Catherine Plaisant, and Ben Shneiderman. A

task taxonomy for network evolution analysis. IEEE
Transactions on Visualization and Computer Graphics, 2014.

[3] L. Arge and J. Vitter. Optimal dynamic interval management
in external memory. In FOCS, 1996.

[4] Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. An
event-based framework for characterizing the evolutionary
behavior of interaction graphs. ACM TKDD, 2009.

[5] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast
incremental and personalized pagerank. VLDB, 2010.

[6] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani.
Dynamical processes on complex networks. Cambridge
University Press Cambridge, 2008.

[7] Tanya Y Berger-Wolf and Jared Saia. A framework for
analysis of dynamic social networks. In SIGKDD, 2006.

[8] G. Blankenagel and R. Guting. External segment trees.
Algorithmica, 1994.

[9] A. Bolour, T. L. Anderson, L. J. Dekeyser, and H. K. T.
Wong. The role of time in information processing: a survey.
SIGMOD, 1982.

[10] Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos.
Facilitating real-time graph mining. In CloudDB, 2012.

[11] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph: taking
the pulse of a fast-changing and connected world. In
EUROSYS, 2012.

[12] Chris J. Date, Hugh Darwen, and Nikos A. Lorentzos.
Temporal data and the relational model. Elsevier, 2002.

[13] Prasanna Desikan, Nishith Pathak, Jaideep Srivastava, and
Vipin Kumar. Incremental page rank computation on
evolving graphs. In ACM Special interest tracks and posters
of at WWW, 2005.

[14] David Eisenberg, Edward M Marcotte, Ioannis Xenarios, and
Todd O Yeates. Protein function in the post-genomic era.
Nature, 2000.

[15] Wenfei Fan, Xin Wang, and Yinghui Wu. Incremental graph
pattern matching. ACM Transactions on Database Systems
(TODS), 38(3):18, 2013.

[16] Jun Gao, Chang Zhou, Jiashuai Zhou, and Jeffrey Xu Yu.
Continuous pattern detection over billion-edge graph using
distributed framework. In Data Engineering (ICDE), 2014
IEEE 30th International Conference on, pages 556–567.
IEEE, 2014.

[17] B. Gedik and R. Bordawekar. Disk-based management of
interaction graphs. TKDE, 2014.

[18] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus:
elevating deltas to be first-class citizens in a database

programming language. ACM Transactions on Database
Systems (TODS), 21(3), 1996.

[19] A. Ghrab, S. Skhiri, S. Jouili, and E. Zimányi. An
analytics-aware conceptual model for evolving graphs. In
Data Warehousing and Knowledge Discovery. Springer,
2013.

[20] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel
Crankshaw, Michael J. Franklin, and Ion Stoica. Graphx:
Graph processing in a distributed dataflow framework. In
OSDI, 2014.

[21] F. Grandi. T-SPARQL: A TSQL2-like temporal query
language for RDF. In ADBIS, 2010.

[22] D. Greene, D. Doyle, and P. Cunningham. Tracking the
evolution of communities in dynamic social networks. In
ASONAM, 2010.

[23] Thilo Gross, Carlos J Dommar D’Lima, and Bernd Blasius.
Epidemic dynamics on an adaptive network. Physical review
letters, 2006.

[24] Ranjay Gulati and Martin Gargiulo. Where do
interorganizational networks come from? American journal
of sociology, 1999.

[25] W. Hant, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, W. Chen, and E. Chen. Chronos: a graph
engine for temporal graph analysis. In EuroSys, 2014.

[26] H. He and A. Singh. Graphs-at-a-time: query language and
access methods for graph databases. In SIGMOD, 2008.

[27] W. Huo and V. Tsotras. Efficient temporal shortest path
queries on evolving social graphs. In SSDBM, 2014.

[28] U Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and
Christos Faloutsos. Gbase: a scalable and general graph
management system. In ACM SIGKDD, 2011.

[29] Udayan Khurana and Amol Deshpande. Efficient snapshot
retrieval over historical graph data. In IEEE ICDE, 2013.

[30] G. Koloniari and E. Pitoura. Partial view selection for
evolving social graphs. In GRADES workshop, 2013.

[31] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. In OSDI, 2012.

[32] A. Labouseur, J. Birnbaum, Jr. Olsen, P., S. Spillane,
J. Vijayan, J. Hwang, and W. Han. The G* graph database:
efficiently managing large distributed dynamic graphs.
Distributed and Parallel Databases, 2014.

[33] Kristina Lerman and Rumi Ghosh. Information contagion:
An empirical study of the spread of news on digg and twitter
social networks. ICWSM, 2010.

[34] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. Hellerstein. Distributed GraphLab: a framework for
machine learning and data mining in the cloud. VLDB, 2012.

[35] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and
Margo I. Seltzer. LLAMA: Efficient Graph Analytics Using
Large Multiversioned Arrays . In ICDE, 2015.

[36] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In ACM SIGMOD, 2010.

[37] Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan
Yang, Lidong Zhou, Vijayan Prabhakaran, Enhong Chen,
and Wenguang Chen. Immortalgraph: A system for storage
and analysis of temporal graphs. ACM TOS, July 2015.

[38] G. Ozsoyoglu and R.T. Snodgrass. Temporal and real-time
databases: a survey. IEEE TKDE, 1995.

[39] Raj Kumar Pan and Jari Saramäki. Path lengths, correlations,
and centrality in temporal networks. Physical Review E,

2011.
[40] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez.

Semantics and complexity of SPARQL. In The Semantic
Web. 2006.

[41] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying
historial evolving graph sequences. In VLDB, 2011.

[42] B. Salzberg and V. Tsotras. Comparison of access methods
for time-evolving data. ACM Computing Surveys, 1999.

[43] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed
graph engine on a memory cloud. In ACM SIGMOD, 2013.

[44] R. Snodgrass, editor. The TSQL2 Temporal Query Language.
Kluwer, 1995.

[45] R. Snodgrass and I. Ahn. A taxonomy of time in databases.
In SIGMOD, 1985.

[46] Emad Soroush and Magdalena Balazinska. Time travel in a
scientific array database. In IEEE ICDE, 2013.

[47] Lei Tang, Huan Liu, Jianping Zhang, and Zohreh Nazeri.
Community evolution in dynamic multi-mode networks. In
SIGKDD, 2008.

[48] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass (editors). Temporal Databases: Theory,
Design, and Implementation. 1993.

[49] Ian W Taylor, Rune Linding, David Warde-Farley, Yongmei
Liu, Catia Pesquita, Daniel Faria, Shelley Bull, Tony
Pawson, Quaid Morris, and Jeffrey L Wrana. Dynamic
modularity in protein interaction networks predicts breast
cancer outcome. Nature biotechnology, 2009.

[50] V. Tsotras and N. Kangelaris. The snapshot index: an I/O-
optimal access method for timeslice queries. Inf. Syst., 1995.

[51] Gergely Varró, Dániel Varró, and Andy Schürr. Incremental
graph pattern matching: Data structures and initial
experiments. Electronic Communications of the EASST, 4,
2006.

[52] Changliang Wang and Lei Chen. Continuous subgraph
pattern search over graph streams. In Data Engineering,
2009. ICDE’09. IEEE 25th International Conference on,
pages 393–404. IEEE, 2009.

[53] B. Xuan, A. Ferreira, and A. Jarry. Computing shortest,
fastest, and foremost journeys in dynamic networks.
International Journal of Foundations of Computer Science,
2003.

[54] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
USENIX conference on Hot topics in cloud computing, 2010.

c=1
c=2
c=4
c=8

R
et

rie
va

l T
im

e
(s

ec
)

0

50

100

150

Retrieved Snapshot Size (node count)
0 10 20×106

m=1; r=1

(a) m=1; r=1; ps=500

c=1
c=2
c=4
c=8

R
et

rie
va

l T
im

e
(s

ec
)

0

50

100

150

200

Retrieved Snapshot Size (node count)
0 10 20×106

m=2; r=1

(b) m=2; r=1; ps=500

c=1
c=4
c=8
c=16

R
et

rie
va

l T
im

e
(s

ec
)

0

50

100

150

Retrieved Snapshot Size (node count)
0 10 20×106

m=2; r= 2

(c) m=2; r=2; ps=500

Figure 12: Snapshot retrieval times across different m and r values on Dataset 1.

uncompressed
compressed

R
et

rie
va

l T
im

e
(s

ec
)

0

20

40

Retrieved Snapshot Size (node count)
0 10 20×106

m=2; c=8; r=1

(a) Compressed vs. uncompressed delta stor-
age.

ps=1000
ps=2000
ps=4000

R
et

rie
va

l T
im

e
(s

ec
s)

0

20

40

Snapshot Size (node count)
0 10 20×106

m=4; c=8

(b) Effect of partition sizes.

Friendster

R
et

rie
va

l T
im

e
(s

ec
s)

0

100

200

300

Snapshot Size (node count)
0 10 20 30 40×106

(c) Snapshot retrieval times for Dataset 4; m =
6; r = 1,c = 1, ps = 500.

Figure 13: Snapshot retrieval across various parameters.

l=10000
l=5000
l=2500

R
et

rie
va

l T
im

e
(s

ec
s)

0

1

2

3

Number of change points
0 50 100

(a) Effect of eventlist size, l.

c=1
c=2
c=4

R
et

rie
va

l T
im

e
(s

ec
s)

0

0.5

1.0

1.5

Version Changes
0 50 100

(b) Speedups due to parallel fetch factor, c.

100 version changes

R
et

rie
va

l T
im

e
(s

ec
s)

3.5
4.0
4.5
5.0
5.5

Partition Size
0 5000 10000

(c) Effect of partition sizes.

Figure 14: Node version retrieval across various parameters.

Average across 250 random nodes

Fe
tc

h
Ti

m
e

(s
ec

)

0

0.5

1.0

1.5

Partitioning and Replication Type
Random Maxflow Maxflow+Replication

(a) Retrieval times for 1-hop neighbor-
hood with different partitioning and
replication strategies.

Dataset 1
Dataset 2
Dataset 3

R
et

rie
va

l T
im

e
(s

ec
)

0

20

40

Retrieved Snapshot Size (Node Count)
0 10 20×106

(b) Snapshot retrieval for varying sizes
of datasets.

N=76740
N=133810
N=201603

Ti
m

e
Ta

ke
n

(s
ec

)

0

20

40

60

Spark Workers
1 2 3 4 5

(c) TAF computation times for Local Clus-
tering Coefficient on varying graph sizes
(N=node count) using different cluster sizes.

Figure 15: Experiments on partitioning type and replication; growing data size; and, TAF analytics computation.

	1 Introduction
	2 Related Work
	3 Overview
	3.1 Data Model
	3.2 Challenges
	3.3 System Overview

	4 Temporal Graph Index
	4.1 Preliminaries
	4.2 Prior Techniques
	4.3 Temporal Graph Index: Definition
	4.4 TGI: Design and Architecture
	4.5 Dynamic Graph Partitioning
	4.6 Fetching Graph Primitives

	5 Analytics Framework
	5.1 Temporal Graph Analysis Library
	5.2 System Implementation

	6 Experimental Evaluation
	7 Conclusion
	8 References

