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ABSTRACT

k nearest neighbor join (kNN join), designed to find k nearest

neighbors from a dataset S for every object in another dataset R,

is a primitive operation widely adopted by many data mining ap-

plications. As a combination of the k nearest neighbor query and

the join operation, kNN join is an expensive operation. Given the

increasing volume of data, it is difficult to perform a kNN join on

a centralized machine efficiently. In this paper, we investigate how

to perform kNN join using MapReduce which is a well-accepted

framework for data-intensive applications over clusters of comput-

ers. In brief, the mappers cluster objects into groups; the reducers

perform the kNN join on each group of objects separately. We

design an effective mapping mechanism that exploits pruning rules

for distance filtering, and hence reduces both the shuffling and com-

putational costs. To reduce the shuffling cost, we propose two ap-

proximate algorithms to minimize the number of replicas. Exten-

sive experiments on our in-house cluster demonstrate that our pro-

posed methods are efficient, robust and scalable.

1. INTRODUCTION
k nearest neighbor join (kNN join) is a special type of join that

combines each object in a dataset R with the k objects in another

dataset S that are closest to it. kNN join typically serves as a primi-

tive operation and is widely used in many data mining and analytic

applications, such as the k-means and k-medoids clustering and

outlier detection [5, 12].

As a combination of the k nearest neighbor (kNN) query and the

join operation, kNN join is an expensive operation. The naive im-

plementation of kNN join requires scanning S once for each object

in R (computing the distance between each pair of objects from R

and S), easily leading to a complexity of O(|R| · |S|). Therefore,

considerable research efforts have been made to improve the effi-

ciency of the kNN join [4, 17, 19, 18]. Most of the existing work

devotes themselves to the design of elegant indexing techniques for

avoiding scanning the whole dataset repeatedly and for pruning as

many distance computations as possible.

All the existing work [4, 17, 19, 18] is proposed based on the

centralized paradigm where the kNN join is performed on a sin-

gle, centralized server. However, given the limited computational

capability and storage of a single machine, the system will eventu-

ally suffer from performance deterioration as the size of the dataset

increases, especially for multi-dimensional datasets. The cost of

computing the distance between objects increases with the num-

ber of dimensions; and the curse of the dimensionality leads to a

decline in the pruning power of the indexes.

Regarding the limitation of a single machine, a natural solution

is to consider parallelism in a distributed computational environ-

ment. MapReduce [6] is a programming framework for processing

large scale datasets by exploiting the parallelism among a cluster

of computing nodes. Soon after its birth, MapReduce gains pop-

ularity for its simplicity, flexibility, fault tolerance and scalabili-

ty. MapReduce is now well studied [10] and widely used in both

commercial and scientific applications. Therefore, MapReduce be-

comes an ideal framework of processing kNN join operations over

massive, multi-dimensional datasets.

However, existing techniques of kNN join cannot be applied or

extended to be incorporated into MapReduce easily. Most of the

existing work rely on some centralized indexing structure such as

the B+-tree [19] and the R-tree [4], which cannot be accommodat-

ed in such a distributed and parallel environment directly.

In this paper, we investigate the problem of implementing kNN

join operator in MapReduce. The basic idea is similar to the hash

join algorithm. Specifically, the mapper assigns a key to each ob-

ject from R and S; the objects with the same key are distributed to

the same reducer in the shuffling process; the reducer performs the

kNN join over the objects that have been shuffled to it. To guar-

antee the correctness of the join result, one basic requirement of

data partitioning is that for each object r in R, the k nearest neigh-

bors of r in S should be sent to the same reducer as r does, i.e.,

the k nearest neighbors should be assigned with the same key as r.

As a result, objects in S may be replicated and distributed to mul-

tiple reducers. The existence of replicas leads to a high shuffling

cost and also increases the computational cost of the join operation

within a reducer. Hence, a good mapping function that minimizes

the number of replicas is one of the most critical factors that affect

the performance of the kNN join in MapReduce.

In particular, we summarize the contributions of the paper as fol-

lows.

• We present an implementation of kNN join operator using

MapReduce, especially for large volume of multi-dimensional

data. The implementation defines the mapper and reducer

jobs and requires no modifications to the MapReduce frame-

work.

• We design an efficient mapping method that divides object-

s into groups, each of which is processed by a reducer to



perform the kNN join. First, the objects are divided into par-

titions based on a Voronoi diagram with carefully selected

pivots. Then, data partitions (i.e., Voronoi cells) are clustered

into groups only if the distances between them are restricted

by a specific bound. We derive a distance bound that leads to

groups of objects that are more closely involved in the kNN

join.

• We derive a cost model for computing the number of replicas

generated in the shuffling process. Based on the cost mod-

el, we propose two grouping strategies that can reduce the

number of replicas greedily.

• We conduct extensive experiments to study the effect of var-

ious parameters using two real datasets and some synthetic

datasets. The results show that our proposed methods are

efficient, robust, and scalable.

The remainder of the paper is organized as follows. Section 2 de-

scribes some background knowledge. Section 3 gives an overview

of processing kNN join in MapReduce framework, followed by the

details in Section 4. Section 5 presents the cost model and grouping

strategies for reducing the shuffling cost. Section 6 reports the ex-

perimental results. Section 7 discusses related work and Section 8

concludes the paper.

2. PRELIMINARIES
In this section, we first define kNN join formally and then give a

brief review of the MapReduce framework. Table 1 lists the sym-

bols and their meanings used throughout this paper.

2.1 kNN join
We consider data objects in an n-dimensional metric space D.

Given two data objects r and s, |r, s| represents the distance be-

tween r and s in D. For the ease of exposition, the Euclidean dis-

tance (L2) is used as the distance measure in this paper, i.e.,

|r, s| =
√

∑

1≤i≤n

(r[i]− s[i])2, (1)

where r[i] (resp. s[i]) denotes the value of r (resp. s) along the

ith dimension in D. Without loss of generality, our methods can

be easily applied to other distance measures such as the Manhattan

distance (L1), and the maximum distance (L∞).

DEFINITION 1. (k nearest neighbors) Given an object r, a

dataset S and an integer k, the k nearest neighbors of r from S,

denoted as KNN(r, S), is a set of k objects from S that ∀o ∈
KNN(r, S), ∀s ∈ S −KNN(r, S), |o, r| ≤ |s, r|.

DEFINITION 2. (kNN join) Given two datasets R and S and

an integer k, kNN join of R and S (denoted as R⋉KNN S, abbre-

viated as R ⋉ S), combines each object r ∈ R with its k nearest

neighbors from S. Formally,

R ⋉ S = {(r, s)|∀r ∈ R, ∀s ∈ KNN(r, S)} (2)

According to Definition 2, R⋉S is a subset of R×S. Note that

kNN join operation is asymmetric, i.e., R ⋉ S ̸= S ⋉ R. Given

k ≤ |S|, the cardinality of |R ⋉ S| is k × |R|. In the rest of this

paper, we assume that k ≤ |S|. Otherwise, kNN join degrades

to the cross join and just generates the result of Cartesian product

R× S.

Table 1: Symbols and their meanings

Symbol Definition

D an n-dimensional metric space

R (resp. S) an object set R (resp. S) in D
r (resp. s) an object, r ∈ R (resp. s ∈ S)

|r, s| the distance from r to s

k the number of near neighbors

KNN(r, S) the k nearest neighbors of r from S

R ⋉ S kNN join of R and S

P a set of pivots

pi a pivot in P

pr the pivot in P that is closest to r

PR
i the partition of R that corresponds to pi

pi.dj the j th smallest distance of objects in PS
i to pi

U(PR
i ) max{|r, p||∀r ∈ PR

i }
L(PR

i ) min{|r, p||∀r ∈ PR
i }

TR the summary table for partitions in R

N the number of reducers

2.2 MapReduce Framework
MapReduce [6] is a popular programming framework to sup-

port data-intensive applications using shared-nothing clusters. In

MapReduce, input data are represented as key-value pairs. Sever-

al functional programming primitives including Map and Reduce

are introduced to process the data. Map function takes an input

key-value pair and produces a set of intermediate key-value pairs.

MapReduce runtime system then groups and sorts all the interme-

diate values associated with the same intermediate key, and sends

them to the Reduce function. Reduce function accepts an interme-

diate key and its corresponding values, applies the processing logic,

and produces the final result which is typically a list of values.

Hadoop is an open source software that implements the MapRe-

duce framework. Data in Hadoop are stored in HDFS by default.

HDFS consists of multiple DataNodes for storing data and a master

node called NameNode for monitoring DataNodes and maintain-

ing all the meta-data. In HDFS, imported data will be split into

equal-size chunks, and the NameNode allocates the data chunks to

different DataNodes. The MapReduce runtime system establishes

two processes, namely JobTracker and TaskTracker. The JobTrack-

er splits a submitted job into map and reduce tasks and schedules

the tasks among all the available TaskTrackers. TaskTrackers will

accept and process the assigned map/reduce tasks. For a map task,

the TaskTracker takes a data chunk specified by the JobTracker and

applies the map() function. When all the map() functions com-

plete, the runtime system groups all the intermediate results and

launches a number of reduce tasks to run the reduce() function

and produce the final results. Both map() and reduce() func-

tions are specified by the user.

2.3 Voronoi Diagram based Partitioning
Given a dataset O, the main idea of Voronoi diagram based par-

titioning is to select M objects (which may not belong to O) as

pivots, and then split objects of O into M disjoint partitions where

each object is assigned to the partition with its closest pivot 1. In

this way, the whole data space is split into M “generalized Voronoi

cells”. Figure 1 shows an example of splitting objects into 5 par-

titions by employing the Voronoi diagram based partitioning. For

1In particular, if there exist multiple pivots that are closest to an
object, then the object is assigned to the partition with the smallest
number of objects.
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Figure 1: An example of data partitioning

the sake of brevity, let P be the set of pivots selected. ∀pi ∈ P, PO
i

denotes the set of objects from O that takes pi as their closest pivot.

For an object o, let po and PO
o be its closest pivot and the corre-

sponding partition respectively. In addition, we use U(PO
i ) and

L(PO
i ) to denote the maximum and minimum distance from pivot

pi to the objects of PO
i , i.e., U(PO

i ) = max{|o, pi||∀o ∈ PO
i },

L(PO
i ) = min{|o, pi||∀o ∈ PO

i }.

DEFINITION 3. (Range Selection) Given a dataset O, an ob-

ject q, and a distance threshold θ, range selection of q from O is to

find all objects (denoted as Ō) of O, such that ∀o ∈ Ō, |q, o| ≤ θ.

By splitting the dataset into a set of partitions, we can answer

range selection queries based on the following theorem.

THEOREM 1. [8] Given two pivots pi, pj , let HP (pi, pj) be

the generalized hyperplane, where any object o lying on HP (pi, pj)
has the equal distance to pi and pj . ∀o ∈ PO

j , the distance of o to

HP (pi, pj), denoted as d(o,HP (pi, pj)) is:

d(o,HP (pi, pj)) =
|o, pi|2 − |o, pj |2

2× |pi, pj |
(3)

Figure 2(a) shows distance d(o,HP (pi, pj)). Given object q,

its belonging partition PO
q , and another partition PO

i , according to

Theorem 1, it is able to compute the distance from q to HP (pq, pi).
Hence, we can derive the following corollary.

COROLLARY 1. Given a partition PO
i and PO

i ̸= PO
q , if we

can derive d(q,HP (pq, pi)) > θ, then ∀o ∈ PO
i , |q, o| > θ.

Given a partition PO
i , if we get d(q,HP (pq, pi)) > θ, accord-

ing to Corollary 1, we can discard all objects of PO
i . Otherwise,

we check partial objects of PO
i based on Theorem 2.

THEOREM 2. [9, 20] Given a partition PO
i , ∀o ∈ PO

i , the

necessary condition that |q, o| ≤ θ is:

max{L(PO
i ), |pi, q| − θ} ≤ |pi, o| ≤ min{U(PO

i ), |pi, q|+ θ}
(4)

Figure 2(b) shows an example of the bounding area of Equation

4. To answer range selections, we only need to check objects that

lie in the bounding area of each partition.

3. AN OVERVIEW OF KNN JOIN USING

MAPREDUCE
In MapReduce, the mappers produce key-value pairs based on

the input data; each reducer performs a specific task on a group
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(b) bounding area of Equation 4

Figure 2: Properties of data partitioning

of pairs with the same key. In essence, the mappers do something

similar to (typically more than) the hashing function. A naive and

straightforward idea of performing kNN join in MapReduce is sim-

ilar to the hash join algorithm.

Specifically, the map() function assigns each object r ∈ R a

key; based on the key, R is split into disjoint subsets, i.e., R =
∪

1≤i≤N
Ri, where Ri

∩

Rj = ∅, i ̸= j; each subset Ri is dis-

tributed to a reducer. Without any pruning rule, the entire set S has

to be sent to each reducer to be joined with Ri; finally R ⋉ S =
∪

1≤i≤N
Ri ⋉ S.

In this scenario, there are two major considerations that affect

the performance of the entire join process.

1. The shuffling cost of sending intermediate results from map-

pers to reducers.

2. The cost of performing the kNN join on the reducers.

Obviously, the basic strategy is too expensive. Each reducer per-

forms kNN join between a subset of R and the entire S. Given a

large population of S, it may go beyond the capability of the re-

ducer. An alternative framework [21], called H-BRJ, splits both

R and S into
√
N disjoint subsets, i.e., R =

∪

1≤i≤
√

N
Ri, S =

∪

1≤j≤
√

N
Sj . Similarly, the partitioning of R and S in H-BRJ is

performed by the map() function; a reducer performs the kNN

join between a pair of subsets Ri and Sj ; finally, the join results of

all pairs of subsets are merged and R⋉ S =
∪

1≤i,j≤
√

N
Ri ⋉ Sj .

In H-BRJ, R and S are partitioned into equal-sized subsets on a

random basis.

While the basic strategy can produce the join result using one

MapReduce job, H-BRJ requires two MapReduce jobs. Since the

set S is partitioned into several subsets, the join result of the first

reducer is incomplete, and another MapReduce is required to com-

bine the results of Ri ⋉ Sj for all 1 ≤ j ≤
√
N . Therefore, the

shuffling cost of H-BRJ is
√
N · (|R|+ |S|) +∑

i

∑

j
|Ri ⋉Sj |2,

while for the basic strategy, it is |R|+N · |S|.
In order to reduce the shuffling cost, a better strategy is that R

is partitioned into N disjoint subsets and for each subset Ri, find a

subset of Si that Ri⋉S = Ri⋉Si and R⋉S =
∪

1≤i≤N
Ri⋉Sj .

Then, instead of sending the entire S to each reducer (as in the

basic strategy) or sending each Ri to
√
N reducers, Si is sent to the

reducer that Ri belongs to and the kNN join is performed between

Ri and Si only.

2
√
N · (|R| + |S|) is the shuffling cost of the first MapReduce.

∑

i

∑

j
|Ri ⋉ Sj | is the shuffling cost of the second MapReduce

for merging the partial results.
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Figure 3: An overview of kNN join in MapReduce

This approach avoids replication on the set R and sending the

entire set S to all reducers. However, to guarantee the correctness

of the kNN join, the subset Si must contain the k nearest neighbors

of every r ∈ Ri, i.e., ∀r ∈ Ri,KNN(r, S) ⊆ Si. Note that

Si ∩ Sj may not be empty, as it is possible that object s is one of

the k nearest neighbors of ri ∈ Ri and rj ∈ Rj . Hence, some

of the objects in S should be replicated and distributed to multiple

reducers. The shuffling cost is |R|+α · |S|, where α is the average

number of replicas of an object in S. Apparently, if we can reduce

the value of α, both shuffling and computational cost we consider

can be reduced.

In summary, for the purpose of minimizing the join cost, we need

to

1. find a good partitioning of R;

2. find the minimal set of Si for each Ri ∈ R, given a parti-

tioning of R 3.

Intuitively, a good partitioning of R should cluster objects in R

based on their proximity, so that the objects in a subset Ri are more

likely to share common k nearest neighbors from S. For each Ri,

the objects in each corresponding Si are cohesive, leading to a s-

maller size of Si. Therefore, such partitioning not only leads to

a lower shuffling cost, but also reduces the computational cost of

performing the kNN join between each Ri and Si, i.e., the number

of distance calculations.

4. HANDLING KNN JOIN USING MAPRE­

DUCE
In this section, we introduce our implementation of kNN join

using MapReduce. First, Figure 3 illustrates the working flow of

our kNN join, which consists of one preprocessing step and two

MapReduce jobs.

3The minimum set of Si is Si =
∪

1≤j≤|Ri| KNN(ri, S). How-

ever, it is impossible to find out the k nearest neighbors for all ri
apriori.

• First, the preprocessing step finds out a set of pivot objects

based on the input dataset R. The pivots are used to cre-

ate a Voronoi diagram, which can help partition objects in R

effectively while preserving their proximity.

• The first MapReduce job consists of a single Map phase,

which takes the selected pivots and datasets R and S as the

input. It finds out the nearest pivot for each object in R ∪ S

and computes the distance between the object and the piv-

ot. The result of the mapping phase is a partitioning on R,

based on the Voronoi diagram of the pivots. Meanwhile, the

mappers also collect some statistics about each partition Ri.

• Given the partitioning on R, mappers of the second MapRe-

duce job find the subset Si of S for each subset Ri based on

the statistics collected in the first MapReduce job. Finally,

each reducer performs the kNN join between a pair of Ri

and Si received from the mappers.

4.1 Data Preprocessing
As mentioned in previous section, a good partitioning of R for

optimizing kNN join should cluster objects based on their proximi-

ty. We adopt the Voronoi diagram based data partitioning technique

as reviewed in Section 2, which is well-known for maintaining data

proximity, especially for data in multi-dimensional space. There-

fore, before launching the MapReduce jobs, a preprocessing step

is invoked in a master node for selecting a set of pivots to be used

for Voronoi diagram based partitioning. In particular, the following

three strategies can be employed to select pivots.

• Random Selection. First, T random sets of objects are se-

lected from R. Then, for each set, we compute the total sum

of the distances between every two objects. Finally, the ob-

jects from the set with the maximum total sum distance are

selected as the pivots for data partitioning.

• Farthest Selection. The set of pivots are selected iteratively

from a sample of the original dataset R (since preprocessing

procedure is executed on a master node, the original dataset

may be too large for it to process). First, we randomly select

an object as the first pivot. Next, the object with the largest



distance to the first pivot is selected as the second pivot. In

the ith iteration, the object that maximizes the sum of its

distance to the first i− 1 pivots is chosen as the ith pivot.

• k-means Selection. Similar to the farthest selection, k-means

selection first does sampling on the R. Then, traditional k-

means clustering method is applied on the sample. With the

k data clusters generated, the center point of each cluster is

chosen as a pivot for the Voronoi diagram based data parti-

tioning.

4.2 First MapReduce Job
Given the set of pivots selected in the preprocessing step, we

launch a MapReduce job for performing data partitioning and col-

lecting some statistics for each partition. Figure 4 shows an exam-

ple of the input/output of the mapper function of the first MapRe-

duce job.

Specifically, before launching the map function, the selected piv-

ots P are loaded into main memory in each mapper. A mapper se-

quentially reads each object o from the input split, computes the

distance between o and all pivots in P, and assigns o to the closest

pivot P . Finally, as illustrated in Figure 4, the mapper outputs each

object o along with its partition id, original dataset name (R or S),

distance to the closest pivot.

Meanwhile, the first map function also collects some statistic for

each input data split and these statistics are merged together while

the MapReduce job completes. Two in-memory tables called sum-

mery tables are created to keep these statistics. Figure 3 shows an

example of the summary tables TR and TS for partitions of R and

S, respectively. Specifically, TR maintains the following informa-

tion for every partition of R: the partition id, the number of objects

in the partition, the minimum distance L(PR
i ) and maximum dis-

tance L(PR
i ) from an object in partition PR

i to the pivot. Note

that although the pivots are selected based on dataset R alone, the

Voronoi diagram based on the pivots can be used to partition S as

well. TS maintains the same fields as those in TR for S. Moreover,

TS also maintains the distances between objects in KNN(pi, P
S
i )

and pi, where KNN(pi, P
S
i ) refers to the k nearest neighbors of

pivot pi from objects in partition PS
i . In Figure 3, pi.dj in TS rep-

resents the distance between pivot pi and its j th nearest neighbor

in KNN(pi, P
S
i ). The information in TR and TS will be used to

guide how to generate Si for Ri as well as to speed up the compu-

tation of Ri ⋉ Si by deriving distance bounds of the kNN for any

object of R in the second MapReduce job.

4.3 Second MapReduce Job
The second MapReduce job performs the kNN join in the way

introduced in Section 3. The main task of the mapper in the sec-

ond MapReduce is to find the corresponding subset Si for each Ri.

Each reducer performs the kNN join between a pair of Ri and Si.

As mentioned previously, to guarantee the correctness, Si should

contains the kNN of all r ∈ Ri, i.e., Si =
∪

∀rj∈Ri
KNN(rj , S).

However, we cannot get the exact Si without performing the kNN

join on Ri and S. Therefore, in the following, we derive a distance

bound based on the partitioning of R which can help us reduce the

size of Si.

4.3.1 Distance bound of kNN

Instead of computing the kNN from S for each object of R, we

derive a bound of the kNN distance using a set oriented approach.

Given a partition PR
i (i.e., Ri) of R, we bound the distance of the

kNN for all objects of PR
i at a time based on TR and TS , which we

have as a byproduct of the first MapReduce.
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Figure 4: Partitioning and building the summary tables

THEOREM 3. Given a partition PR
i ⊂ R, an object s of PS

j ⊂
S, the upper bound distance from s to ∀r ∈ PR

i , denoted as

ub(s, PR
i ), is:

ub(s, PR
i ) = U(PR

i ) + |pi, pj |+ |pj , s| (5)

Proof. ∀r ∈ PR
i , according to the triangle inequality, |r, pj | ≤

|r, pi|+ |pi, pj |. Similarly, |r, s| ≤ |r, pj |+ |pj , s|. Hence, |r, s| ≤
|r, pi| + |pi, pj | + |pj , s|. Since r ∈ PR

i , according to the defini-

tion of U(PR
i ), |r, pi| ≤ U(PR

i ). Clearly, we can derive |r, s| ≤
U(PR

i ) + |pi, pj |+ |pj , s| = ub(s, PR
i ).

Figure 5(a) shows the geometric meaning of ub(s, PR
i ). Accord-

ing to the Equation 5, we can find a set of k objects from S with

the smallest upper bound distances as the kNN of all objects in PR
i .

For ease of exposition, let KNN(PR
i , S) be the k objects from S

with the smallest ub(s, PR
i ). Apparently, we can derive a bound

(denoted as θi that corresponds to PR
i ) of the kNN distance for all

objects in PR
i as follows:

θi = max
∀s∈KNN(PR

i
,S)
|ub(s, PR

i )|. (6)

Clearly, ∀r ∈ PR
i , the distance from r to any object of KNN(r, S)

is less than or equal to θi. Hence, we are able to bound the distance

of the kNN for all objects of PR
i at a time. Moreover, according

to the Equation 5, we can also observe that in each partition PS
i ,

k objects with the smallest distances to pi may contribute to refine

KNN(PR
i , S) while the remainder cannot. Hence, we only main-

tain k smallest distances of objects from each partition of S to its

corresponding pivot in summary table TS (shown in Figure 3).

Algorithm 1: boundingKNN(PR
i )

1 create a priority queue PQ;

2 foreach PS
j do

3 foreach s ∈ KNN(pj , P
S
j ) do /* set in TS */

4 ub(s, PR
i )← U(PR

i ) + |pi, pj |+ |s, pj |;
5 if PQ.size < k then PQ.add(ub(s, PR

i ));
6 else if PQ.top > dist then

7 PQ.remove(); PQ.add(ub(s, PR
i ));

8 else break;

9 return PQ.top;

Algorithm 1 shows the details on how to compute θi. We first

create a priority queue PQ with size k (line 1). For partition

PS
j , we compute ub(s, PR

i ) for each s ∈ KNN(pj , P
S
j ), where
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Figure 5: Bounding k nearest neighbors

|s, pj | is maintained in TS . To speed up the computation of θi, we

maintain |s, pj | in TS based on the ascending order. Hence, when

ub(s, PR
i ) ≥ PQ.top, we can guarantee that no remaining objects

in KNN(pj , P
S
j ) help refine θi (line 8). Finally, we return the top

of PQ which is taken as θi (line 9).

4.3.2 Finding Si for Ri

Similarly to Theorem 3, we can derive the lower bound distance

from an object s ∈ PS
j to any object of PR

i as follows.

THEOREM 4. Given a partition PR
i , an object s of PS

j , the low-

er bound distance from s to ∀r ∈ PR
i , denoted by lb(s, PR

i ), is:

lb(s, PR
i ) = max{0, |pi, pj | − U(PR

i )− |s, pj |} (7)

PROOF. ∀r ∈ PR
i , according to the triangle inequality, |r, pj | ≥

|pj , pi| − |pi, r|. Similarly, |r, s| ≥ |r, pj | − |pj , s|. Hence,

|r, s| ≥ |pj , pi| − |pi, r| − |pj , s|. Since r ∈ PR
i , according to

the definition of U(PR
i ), |r, pi| ≤ U(PR

i ). Thus we can derive

|r, s| ≥ |pi, pj | − U(PR
i ) − |s, pj |. As the distance between any

two objects is not less than 0, the low bound distance lb(s, PR
i ) is

set to max{0, |pi, pj | − U(PR
i )− |s, pj |}

Figure 5(b) shows the geometric meaning of lb(s, PR
i ). Clearly,

∀s ∈ S, if we can verify lb(s, PR
i ) > θi, then s cannot be one of

KNN(r, S) for any r ∈ PR
i and s is safe to be pruned. Hence, it is

easy for us to verify whether an object s ∈ S needs to be assigned

to Si.

THEOREM 5. Given a partition PR
i and an object s ∈ S, the

necessary condition that s is assigned to Si is that: lb(s, PR
i ) ≤ θi.

According to Theorem 5, ∀s ∈ S, by computing lb(s, PR
i ) for

all PR
i ⊂ R, we can derive all Si that s is assigned to. However,

when the number of partitions for R is large, this computation cost

might increase significantly since ∀s ∈ PS
j , we need to compute

|pi, pj |. To cope with this problem, we propose Corollary 2 to find

all Si which s is assigned to only based on |s, pj |.

COROLLARY 2. Given a partition PR
i and a partition PS

j , ∀s ∈
PS
j , the necessary condition that s is assigned to Si is that:

|s, pj | ≥ LB(PS
j , P

R
i ), (8)

where LB(PS
j , PR

i ) = |pi, pj | − U(PR
i )− θi.

PROOF. The conclusion directly follows Theorem 5 and Equa-

tion 7.

According to Corollary 2, for partition PS
j , objects exactly lying

in region [LB(PS
j , PR

i ), U(PS
j )] are assigned to Si. Algorithm 2

shows how to compute LB(PS
j , PR

i ), which is self-explained.

4.3.3 kNN join between Ri and Si

As a summary, Algorithm 3 describes the details of kNN join

procedure that is described in the second MapReduce job. Before

launching map function, we first compute LB(PS
j , PR

i ) for every

Algorithm 2: compLBOfReplica()

1 foreach PR
i do

2 θi ← boundingKNN (PR
i );

3 foreach PS
j do

4 foreach PR
i do

5 LB(PS
j , PR

i )← |pi, pj | − U(PR
i )− θi;

Algorithm 3: kNN join

1map-setup /* before running map function */

2 compLBOfReplica ();

3map (k1,v1)

4 if k1.dataset = R then

5 pid← getPartitionID(k1.partition);

6 output(pid, (k1, v1));

7 else

8 PS
j ← k1.partition;

9 foreach PR
i do

10 if LB(PS
j , PR

i ) ≤ k1.dist then

11 output(i, (k1, v1));

12reduce (k2,v2) /* at the reducing phase */

13 parse PR
i and Si (PS

j1
, . . . , PS

jM
) from (k2, v2);

14 sort PS
j1
, . . . , PS

jM
based on the ascending order of

|pi, pjl |;
15 compute θi ← max∀s∈KNN(PR

i
,S) |ub(s, PR

i )|;
16 for r ∈ PR

i do

17 θ ← θi; KNN(r, S)← ∅;
18 for j ← j1 to jM do

19 if PS
j can be pruned by Corollary 1 then

20 continue;

21 foreach s ∈ PS
j do

22 if s is not pruned by Theorem 2 then

23 refine KNN(r, S) by s;

24 θ ← max∀o∈KNN(r,S){|o, r|};

25 output(r,KNN(r, S));

PS
j (line 1–2). For each object r ∈ R, the map function generates a

new key value pair in which the key is its partition id, and the value

consists of k1 and v1 (line 4–6). For each object s ∈ S, the map

function creates a set of new key value pairs, if not pruned based

on Corollary 2 (line 7–11).

In this way, objects in each partition of R and their potential k

nearest neighbors will be sent to the same reducer. By parsing the

key value pair (k2, v2), the reducer can derive the partition PR
i and

subset Si that consists of PS
j1
, . . . , PS

jM
(line 13), and compute the

kNN of objects in partition PR
i (line 16–25).

∀r ∈ PR
i , in order to reduce the number of distance compu-

tations, we first sort the partitions from Si by the distances from

their pivots to pivot pi in the ascending order (line 14). This is

based on the fact that if a pivot is near to pi, then its correspond-

ing partition often has higher probability of containing objects that

are closer to r. In this way, we can derive a tighter bound dis-

tance of kNN for every object of PR
i , leading to a higher prun-

ing power. Based on Equation 6, we can derive a bound of the



kNN distance, θi, for all objects of PR
i . Hence, we can issue a

range search with query r and threshold θi over dataset Si. First,

KNN(r, S) is set to empty (line 17). Then, all partitions PS
j are

checked one by one (line 18–24). For each partition PS
j , based on

Corollary 1, if d(r,HP (pi, pj)) > θ, no objects in PS
j can help

refine KNN(r, S), and we proceed to check the next partition di-

rectly (line 19–20). Otherwise, ∀s ∈ PS
j , if s cannot be pruned by

Theorem 2, we need to compute the distance |r, s|. If |r, s| < θ,

KNN(r, S) is updated with s and θ is updated accordingly (lines

22–24). After checking all partitions of Si, the reducer outputs

KNN(r, S) (line 25).

5. MINIMIZING REPLICATION OF S
By bounding the k nearest neighbors for all objects in partition

PR
i , according to Corollary 2, ∀s ∈ PS

j , we assign s to Si when

|s, pj | ≥ LB(PS
j , PR

i ). Apparently, to minimize the number of

replicas of objects in S, we expect to find a large LB(PS
j , PR

i )
while keeping a small |s, pj |. Intuitively, by selecting a larger num-

ber of pivots, we can split the dataset into a set of Voronoi cells

(corresponding to partitions) with finer granularity and the bound of

the kNN distance for all objects in each partition of R will become

tighter. This observation is able to be confirmed by Equation 8. By

enlarging the number of pivots, each object from R ∪ S is able to

be assigned to a pivot with a smaller distance, which reduces both

|s, pj | and the upper bound U(PR
i ) for each partition PR

i while a

smaller U(PR
i ) can help achieve a larger LB(PS

j , PR
i ). Hence, in

order to minimize the replicas of objects in S, it is required to se-

lect a larger number of pivots. However, in this way, it might not be

practical to provide a single reducer to handle each partition PR
i .

To cope with this problem, a natural idea is to divide partitions of

R into disjoint groups, and take each group as Ri. In this way, Si

needs to be refined accordingly.

5.1 Cost Model
By default, let R =

∪

1≤i≤N
Gi, where Gi is a group consisting

of a set of partitions of R and Gi ∩Gj = ∅, i ̸= j.

THEOREM 6. Given partition PS
j and group Gi, ∀s ∈ PS

j , the

necessary condition that s is assigned to Si is:

|s, pj | ≥ LB(PS
j , Gi), (9)

where LB(PS
j , Gi) = min∀PR

i
∈Gi

LB(PS
j , PR

i ).

PROOF. According to Corollary 2, s is assigned to Si as long as

there exists a partition PR
i ∈ Gi with |s, pj | ≥ LB(PS

j , PR
i ).

By computing LB(PS
j , Gi) in advance for each partition PS

j ,

we can derive all Si for each s ∈ PS
j only based on |s, pj |. Ap-

parently, the average number of replicas of objects in S is reduced

since duplicates in Si are eliminated. According to Theorem 6, we

can easily derive the number of all replicas (denoted as RP (S)) as

follows.

THEOREM 7. The number of replicas of objects in S that are

distributed to reducers is:

RP (S) =
∑

∀Gi

∑

∀PS
j

|{s|s ∈ P
S
j ∧ |s, pj | ≥ LB(PS

j , Gi)}| (10)

5.2 Grouping Strategies
We present two strategies for grouping partitions of R to approx-

imately minimize RP (S).

Algorithm 4: geoGrouping()

1 select pi such that
∑

pj∈P
|pi, pj | is maximized;

2 τ ← {pi}; G1 ← {PR
i }; P← P− {pi};

3 for i← 2 to N do

4 select pl ∈ P such that
∑

pj∈τ
|pl, pj | is maximized;

5 Gi ← {PR
l }; P← P− {pl};τ ← τ ∪ {pl};

6 while P ̸= ∅ do

7 select group Gi with the smallest number of objects;

8 select pl ∈ P such that
∑

∀PR
j

⊂Gi
|pl, pj | is minimized;

9 Gi ← Gi ∪ {PR
l }; P← P− {pl};

10 return {G1, G2, . . . , GN}

5.2.1 Geometric grouping

Geometric grouping is based on an important observation: given

two partitions PR
i and PS

j , if pj is far away from pi compared with

the remaining pivots, then PS
j is deemed to have a low possibility

of containing objects as any of kNN for objects in PR
i . This ob-

servation can be confirmed in Figure 1 where partition P5 does not

have objects to be taken as any of kNN of objects in P2. Hence,

a natural idea to divide partitions of R is that we make the parti-

tions, whose corresponding pivots are near to each other, into the

same group. In this way, regarding group Gi, objects of partitions

from S that are far away from partitions of Gi will have a large

possibility to be pruned.

Algorithm 4 shows the details of geometric grouping. We first

select the pivot pi with the farthest distance to all the other pivots

(line 1) and assign partition PR
i to group G1 (line 2). We then

sequentially assign a partition to the remaining groups as follows:

for group Gi (2 ≤ i ≤ N ), we compute the pivot pl which has

the farthest distance to the selected pivots (τ ) and assign PR
l to Gi

(line 3–5). In this way, we can guarantee that the distance among

all groups are the farthest at the initial phase. After assigning the

first partition for each group, in order to balance the workload, we

do the following iteration until all partitions are assigned to the

groups: (1) select the group Gi with the smallest number of objects

(line 7); (2) compute the pivot pl with the minimum distance to the

pivots of Gi, and assign PR
l to Gi (line 8–9). In this way, we can

achieve that the number of objects in each group is nearly the same.

Finally, we return all groups that maintain partitions of R (line 10).

5.2.2 Greedy grouping

Let RP (S,Gi) be the set of objects from S that need to be as-

signed to Si. The objective of greedy grouping is to minimize the

size of RP (S,Gi ∪ {PR
j }) − RP (S,Gi) when assigning a new

partition PR
j to Gi. According to Theorem 6, RP (S,Gi) is able

to be formally quantified as:

RP (S,Gi) =
∪

∀PS
j

⊂S

{s|s ∈ P
S
j ∧ |s, pj | ≥ LB(PS

j , Gi)} (11)

Hence, theoretically, when implementing the greedy grouping ap-

proach, we can achieve the optimization objective by minimizing

RP (S,Gi ∪ {PR
j }) − RP (S,Gi) instead of

∑

PR
j

∈Gi
|pi, pj | in

the geometric grouping approach. However, it is rather costly to

select a partition PR
j from all remaining partitions with minimum

RP (S,Gi ∪ {PR
j }) − RP (S,Gi). This is because by adding a

new partition PR
j to Gi, we need to count the number of emerging

objects from S that are distributed to the Si. Hence, to reduce the

computation cost, once ∃s ∈ PS
l , |s, pj | ≤ LB(PS

j , Gi), we add



all objects of partition PS
l to RP (S,Gi), i.e., the RP (S,Gi) is

approximately quantified as:

RP (S,Gi) ≈
∪

∀PS
j

⊂S

{PS
j |LB(PS

j , Gi) ≤ U(PS
j )} (12)

Remark: To answer kNN join by exploiting the grouping strate-

gies, we use the group id as the key of the Map output. We omit the

details which are basically the same as described in Algorithm 3.

6. EXPERIMENTAL EVALUATION
We evaluate the performance of the proposed algorithms on our

in-house cluster, Awan4. The cluster includes 72 computing n-

odes, each of which has one Intel X3430 2.4GHz processor, 8G-

B of memory, two 500GB SATA hard disks and gigabit ethernet.

On each node, we install CentOS 5.5 operating system, Java 1.6.0

with a 64-bit server VM, and Hadoop 0.20.2. All the nodes are

connected via three high-speed switches. To adapt the Hadoop en-

vironment to our application, we make the following changes to the

default Hadoop configurations: (1) the replication factor is set to 1;

(2) each node is configured to run one map and one reduce task. (3)

the size of virtual memory for each map and reduce task is set to

4GB.

We evaluate the following approaches in the experiments.

• H-BRJ is proposed in [21] and described in Section 3. In par-

ticular, to speed up the computation of Ri ⋉ Sj , it employs

R-tree to index objects of Sj and finds kNN for ∀r ∈ Ri by

traversing the R-tree. We used the implementation generous-

ly provided by the authors;

• PGBJ is our proposed kNN join algorithm that utilizes the

partitioning and grouping strategy;

• PBJ is also our proposed kNN join algorithm. The only dif-

ference between PBJ and PGBJ is that PBJ does not have the

grouping part. Instead, it employs the same framework used

in H-BRJ. Hence, it also requires an extra MapReduce job to

merge the final results.

We conduct the experiments using self-join on the following

datasets:

• Forest FCoverType5 (Forest for short): This is a real dataset

that predicts forest cover type from cartographic variables.

There are 580K objects, each with 54 attributes (10 integer,

44 binary). We use 10 integer attributes in the experiments.

• Expanded Forest FCoverType dataset: To evaluate the per-

formance on large datasets, we increase the size of Forest

while maintaining the same distribution of values over the

dimensions of objects (like [16]). We generate new objects

in the way as follows: (1) we first compute the frequencies

of values in each dimension, and sort values in the ascending

order of their frequencies; (2) for each object o in the original

dataset, we create a new object ō, where in each dimension

Di, ō[i] is ranked next to o[i] in the sorted list. Further, to

create multiple new objects based on object o, we replace

o[i] with a set of values next to it in the sorted list for Di. In

particular, if o[i] is the last value in the list for Di, we keep

this value constant. We build Expanded Forest FCoverType

dataset by increasing the size of Forest dataset from 5 to 25

times. We use “Forest ×t” to denote the increased dataset

where t ∈ [5, 25] is the increase factor.

4http://awan.ddns.comp.nus.edu.sg/ganglia/
5http://archive.ics.uci.edu/ml/datasets/Covertype

• OpenStreetMap6 (OSM for short): this is a real map dataset

containing the location and description of objects. We ex-

tract 10 million records from this dataset, where each record

consists of 2 real values (longitude and latitude) and a de-

scription with variable length.

By default, we evaluate the performance of kNN join (k is set

to 10) on the “Forest ×10” dataset using 36 computing nodes. We

measure several parameters, including query time, distance com-

putation selectivity, and shuffling cost. The distance computation

selectivity (computation selectivity for short) is computed as fol-

lows:

# of object pairs to be computed

|R| × |S| , (13)

where the objects also include the pivots in our case.

6.1 Study of Parameters of Our Techniques
We study the parameters of PGBJ with respect to pivot selec-

tion strategy, pivot number, and grouping strategy. By combining

different pivot selection and grouping strategies, we obtain 6 strate-

gies, which are: (1) RGE, random selection + geometric grouping;

(2) FGE, farthest selection + geometric grouping; (3) KGE, k-

means selection + geometric grouping; (4) RGR, random selection

+ greedy grouping; (5)FGR, farthest selection + greedy grouping;

(6) KGR, k-means selection + greedy grouping.

6.1.1 Effect of pivot selection strategies

Table 2 shows the statistics of partition sizes using different piv-

ot selection strategies including random selection, farthest selec-

tion and k-means selection. We observe that the standard deviation

(dev.for short) of partition size drops rapidly when the number

of pivots increases. Compared to random selection and k-means

selection, partition size varies significantly in the farthest selection.

The reason is that in the farthest selection, outliers are always s-

elected as pivots. Partitions corresponding to these pivots contain

few objects, while other partitions whose pivots reside in dense ar-

eas contain a large number of objects. Specifically, when we select

2000 pivots using farthest selection, the maximal partition size is

1,130,678, which is about 1/5 of the dataset size. This large dif-

ference in partition size will degrade performance due to the unbal-

anced workload. We also investigate the group size using geometric

grouping approach7. As shown in Table 3, the number of objects

in each group varies significantly using the farthest selection. A-

gain, this destroys the load balance since each reducer needs to

perform significantly different volume of computations. However,

the group sizes using random selection and k-means selection are

approximately the same.

Figure 6 shows the execution time for various phases in kNN

join. We do not provide the execution time for farthest selection be-

cause it takes more than 10,000s to answer kNN join. The reason of

the poor performance is: almost all the partitions of S overlap with

large-size partitions of R. Namely, we need to compute distances

for a large number of object pairs. Comparing RGE with KGE,

and RGR with KGR in Figure 6, we observe that the overall per-

formance using random selection is better than that using k-means

selection. Further, when the number of pivots increases, the gap of

the overall performance becomes larger. This is because k-means

selection involves a large number of distance computations, which

results in large execution time. Things get worse when k increases.

6http://www.openstreetmap.org
7We omit the results for greedy grouping as they follows the same
trend.



Table 2: Statistics of partition size

Random Selection Farthest Selection k-means Selection

# of pivots min. max. avg. dev. min. max. avg. dev. min. max. avg. dev.

2000 116 9062 2905.06 1366.50 24 1130678 2905.06 27721.10 52 7829 2905.06 1212.38

4000 18 5383 1452.53 686.41 14 1018605 1452.53 13313.56 17 5222 1452.53 700.20

6000 24 4566 968.35 452.79 13 219761 968.35 5821.18 3 3597 968.35 529.92

8000 6 2892 726.27 338.88 12 97512 726.27 2777.84 6 2892 726.27 338.88

Table 3: Statistics of group size

# of pivots
Random Selection Farthest Selection k-Means Selection

min. max. avg. dev. min. max. avg. dev. min. max. avg. dev.

2000 143720 150531 145253 1656 86805 1158084 145253 170752 143626 148111 145253 1201

4000 144564 147180 145253 560 126635 221539 145253 20204 144456 146521 145253 570

6000 144758 146617 145253 378 116656 1078712 145253 149673 144746 145858 145253 342

8000 144961 146118 145253 251 141072 173002 145253 6916 144961 146118 145253 251
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Figure 6: Query cost of tuning parameters
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Figure 7: Computation selectivity & replication

However, during the kNN join phase, the performance of k-means

selection is slightly better than that of random selection. To verify

the result, we investigate the computation selectivity for both cases.

As shown in Figure 7(a), we observe that the computation selectiv-

ity of using k-means selection is less than that of using random

selection. Intuitively, k-means selection is more likely to selec-

t high-quality pivots that separate the whole dataset more evenly,

which enhances the power of our pruning rules. However, another

observation is that the selectivity difference becomes smaller when

the number of pivots increases. This is because k-means selection

will deteriorate into random selection when the number of pivots

becomes larger. It is worth mentioning that the computation se-

lectivity of all the techniques is low, where the maximum is only

2.38h.

6.1.2 Effect of the pivot number

From Figure 6, we observe that the minimal execution time for

kNN join phase occurs when |P| = 4000. To specify the reason,

we provide the computation selectivity in Figure 7(a). From this

figure, we find that the computation selectivity drops by varying |P|
from 2000 to 4000, but increases by varying |P| from 4000 to 8000.

As discussed in kNN join algorithm, to compute KNN(r, S), we

need to compute the distances between r and objects from S as well

as between r and pi ∈ P . When the number of pivots increases,

the whole space will be split into a finer granularity and the pruning

power will be enhanced as the bound becomes tighter. This leads

to a reduction in both distance computation between R and S and

replication for S. The results for replication of S are shown in Fig-

ure 7(b). One drawback of using a large number of pivots is that

the number of distance computation between r and the pivots be-

comes larger. On balance, the computation selectivity is minimized

when |P| = 4000. For the overall execution time, it arrives at the

minimum value when |P| = 4000 for RGE and |P| = 2000 for

the remaining strategies. The overall performance degrades for all

the combination of pivot selection and partition grouping strategies

when the number of pivots increases.

6.1.3 Effect of grouping strategies

When comparing RGE with RGR, and KGE with KGR in Fig-

ure 6, we find the execution time in the kNN join phase remains

almost the same using different grouping strategies. In fact, in our

partitioning based approach, for each object r with all its potential

k nearest neighbors, the number of distance computations for r re-

mains constant. This is consistent with the results for the number

of object pairs to be computed in Figure 7(a). As described above,

in PGBJ, ∀r ∈ Ri, we send all its potential kNN from S to the

same reducer. Hence, the shuffling cost depends on how to par-

tition R into subsets. From Figure 7(b), when |P| increases, the
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Figure 8: Effect of k over “Forest × 10”
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Figure 9: Effect of k over OSM dataset

average replication of S using greedy grouping is slightly reduced.

However, the execution time in partition grouping phase increases

significantly. This leads to the increment in the overall execution

time.

Remark. To summarize the study of the parameters, we find that

the overall execution time is minimized when |P| = 4000 and

RGE strategy is adopted to answer kNN join. Hence, in the re-

maining experiments, for both PBJ and PBGJ, we randomly select

4000 pivots to partition the datasets. Further, we use geometric

grouping strategy to group the partitions for PBGJ.

6.2 Effect of k
We now study the effect of k on the performance of our proposed

techniques. Figure 8 and Figure 9 present the results by varying k

from 10 to 50 on “Forest × 10” and OSM datasets, respectively.

In terms of running time, PGBJ always performs best, followed

by PBJ and H-BRJ.This is consistent with the results for compu-

tation selectivity. H-BRJ requires each reducer to build a R-tree

index for all the received objects from S. To find the kNN for an

object from R, the reducers will traverse the index and maintain

candidate objects as well as a set of intermediate nodes in a priori-

ty queue. Both operations are costly for multi-dimensional objects,

which result in the long running time. In PGJ, our proposed pruning

rules allow each reducer to derive a distance bound from received

objects in S. This bound is used to reduce computation cost for

kNN join. However, without grouping phase, PGJ randomly sends

a subset of S to each reducer. This randomness results in a loose

distance bound, thus degrading the performance. In addition, Fig-

ure 8(c) shows the shuffling cost of three approaches on the default

dataset. As we can see, when k increases, the shuffling cost of

PGBJ remains nearly the same, while it increases linearly for PBJ

and H-BRJ. This indicates that the replication of S in PGBJ is in-

sensitive to k. However, for H-BRJ and PBJ, the shuffling cost of

Ri ⋉ Sj (∀Ri ⊂ R, Sj ⊂ S) increases linearly when k varies.

6.3 Effect of Dimensionality
We now evaluate the effect of dimensionality. Figure 10 presents

both the running time and computation selectivity by varying the

number of dimensions from 2 to 10.

From the results, we observe that H-BRJ is more sensitive to the

number of the dimensions than PBJ and PGBJ. In particular, the

execution time increases exponentially when n varies from 2 to 6.

This results from the curse of dimensionality. When the number of

dimensions increases, the number of object pairs to be computed

increases exponentially. Interestingly, the execution time of kNN

join increases smoothly when n varies from 6 to 10. To explain

this phenomenon, we analyze the original dataset and find that val-

ues of 6–10 attributes have low variance, which means the kNN for

objects from R do not change too much by adding these dimen-

sions. We show the shuffling cost in Figure 10(c). For H-BRJ and

PBJ, when the number of dimensions increases, the shuffling cost

increases linearly due to the larger data size. However, for PGB-

J, when the number of dimensions varies from 2 to 6, the shuffling

cost increases exponentially due to the exponential increment of the

replication of S. Nevertheless, it will converge to |R| + N × |S|
even at the worst case. Although it may exceed both H-BRJ and

PBJ, in that case, PBJ can be used instead of PBGJ if we take the

shuffling cost into main consideration.

6.4 Scalability
We now investigate the scalability of three approaches. Figure 11

presents the results by varying the data size from 1 to 25 times of

the original dataset.

From Figure 11(a), we can see that the overall execution time of

all the three approaches quadratically increases when we enlarge

the data size. This is determined by the fact that the number of ob-

ject pairs increase quadratically with the data size. However, PGBJ

scales better than both PBJ and H-BRJ. In particular, when data

size becomes larger, the running time of PGBJ grows much slower
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Figure 11: Scalability

than that of H-BRJ. To verify this result, we analyze the computa-

tion selectivity for the three approaches. As shown in Figure 11(b),

the computation selectivity of PGBJ is always the smallest one.

One observation is that when data size increases, the selectivity d-

ifferences among three approaches tend to be constant. In practice,

for large datasets with multi-dimensional objects, a tiny decrease

in selectivity will lead to a dramatic improvement in performance.

This is the reason that the running time of PGBJ is nearly 6 times

faster than that of H-BRJ on “Forest × 25”, even if their selectiv-

ity does not differ too much. We also present the shuffling cost in

Figure 11(c). From the figure, we observe that the shuffling cost

of PGBJ is still less than that of PBJ and H-BRJ, and there is an

obvious trend of increasing returns when the data size increases.

6.5 Speedup
We now measure the effect of the number of computing nodes.

Figure 12 presents the results by varying the number of computing

nodes from 9 to 36.

From Figure 12(a), we observe that the gap of running time a-

mong three approaches tends to be smaller when the number of

computing nodes increases. Due to the increment of number of

computing nodes, for H-BRJ and PBJ, the distribution of objects

over each reducer becomes sparser. This leads to an increment of

computation selectivity that is shown in Figure 12(b). However, the

computation selectivity for PGBJ remains constant. Based on this

trend, it is reasonable to expect that PGBJ will always outperform

both H-BRJ and PBJ, while the improvement in running time is get-

ting less obvious. We also show the shuffling cost in Figure 12(c).

From the figure, we can see that the shuffling cost increases linearly

with the number of computing nodes. In addition, our approaches

cannot speed up linearly, because: (1) each node needs to read piv-

ots from the distributed file system; (2) the shuffling cost will be

increased.

7. RELATED WORK
In centralized systems, various approaches based on the exist-

ing indexes have been proposed to answer kNN join. In [3, 2],

they propose Mux, a R-tree based method to answer kNN join. It

organizes the input datasets with large-sized pages to reduce the

I/O cost. Then, by carefully designing a secondary structure with

much smaller size within pages, the computation cost is reduced

as well. Xia et al. [17] propose a grid partitioning based approach

named Gorder to answer kNN join. Gorder employs the Principal

Components Analysis (PCA) technique on the input datasets and

sorts the objects according to the proposed Grid Order. Objects are

then assigned to different grids where objects in close proximity

always lie in the same grid. Finally, it applies the scheduled block

nested loop join on the grid data so as to reduce both CPU and

I/O costs. Yu et al. [19] propose IJoin, a B+-tree based method

to answer kNN join. Similar to our proposed methods, by split-

ting the two input datasets into respective set of partitions, IJoin

method employs a B+-tree to maintain the objects of each dataset

using the iDistance technique [20, 9] and answer kNN join based

on the properties of B+-tree. Yao et al. [18] propose Z-KNN, a Z-

ordering based method to answer kNN join in relational RDBMS

by SQL operators without changes to the database engine. Z-KNN

method transforms the kNN join operation into a set of kNN search

operations with each object of R as a query point.

Recently, there has been considerable interest on supporting sim-

ilarity join queries over MapReduce framework. In [16, 13], they

study how to perform set-similarity join in parallel using MapRe-

duce. Set-similarity join returns all object pairs whose similarity

does not exceed a given threshold, given the similarity function like

Jaccard. Due to the different problem definitions, it is not applica-

ble to extend their techniques to solve our problem. Similar to our

methods, Akdogan et al. [1] adopt the Voronoi diagram partitioning

based approach using MapReduce to answer range search and kNN

search queries. In their method, they take each object of the dataset
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Figure 12: Speedup

as a pivot and utilize their pivots to partition the space. Obviously,

it incurs high maintenance cost and computation cost when the di-

mension increases. In their work, they claim they method limits to

handle 2-dimensional datasets. More related study to our work ap-

pears in [14], which proposes a general framework for processing

join queries with arbitrary join conditions using MapReduce. Un-

der their framework, they propose various optimization techniques

to minimize the communication cost. Although we have differen-

t motivations, it is still interesting to extend our methods to their

framework in the further work. In [11], they study how to extract k

closest object pairs from two input datasets in MapReduce, which

is the special case of our proposed problem. In particular, we focus

on exactly processing kNN join queries in this paper, thus exclud-

ing approximate methods, like LSH [7, 15], or H-zkNNJ [21].

8. CONCLUSION
In this paper, we study the problem of efficiently answering the k

nearest neighbor join using MapReduce. By exploiting Voronoi Di-

agram based partitioning method, our proposed approach is able to

divide the input datasets into groups and we can answer the k near-

est neighbor join by only checking object pairs within each group.

Several pruning rules are developed to reduce the shuffling cost as

well as the computation cost. Extensive experiments performed

on both real and synthetic datasets demonstrate that our proposed

methods are efficient, robust and scalable.
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