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Abstract

This paper presents “Self-Chord”, a bio-inspired P2P
algorithm that can be profitably adopted to build the infor-
mation service of distributed systems, in particular of Com-
putational Grids. Self-Chord inherits the ability of Chord-
like structured systems for the construction and mainte-
nance of an overlay of peers, but features enhanced func-
tionalities deriving from the activity of ant-inspired mobile
agents, such as autonomy behavior, self-organization and
capacity to adapt to a changing environment. Self-Chord
features three main benefits with respect to classical P2P
structured systems: (i) it is possible to give a semantic
meaning to keys, which enables the execution of “class”
queries, which are very frequent in Grids; (ii) the keys are
fairly distributed over the peers, thus improving the balanc-
ing of storage responsibilities; (iii) maintenance load is re-
duced because, as new peers join the ring, the mobile agents
will spontaneously reorganize the keys in logarithmic time.
The efficiency and effectiveness of Self-Chord have been as-
sessed both with a simulation framework and a prototype of
the system.

1. Introduction

The information service is an important component
of distributed computing systems, such as computational
Grids [7], since it provides information and enables the dis-
covery of the resources that can be used to build and run
complex applications. The dynamic nature of Grids makes
human administrative intervention difficult or even unfea-
sible and centralized information services are proving unfit
to scale to hundreds or thousands of nodes. To tackle these
issues, the scientific community has proposed to design in-
formation services according to the P2P paradigm, which
offers better scalability and adaptivity features [15, 10].

P2P models are classified into unstructured and struc-
tured, based on the way nodes are linked to each other and

data about resources is placed on the nodes [1]. In unstruc-
tured systems, resources are published by peers without any
global planning. This facilitates network management but
reduces the efficiency of discovery procedures. In struc-
tured systems, resources are associated with specific hosts,
often through Distributed Hash Tables. For example, in
Chord [14], each peer is assigned a binary code, called in-
dex or key, by a hash function, and peers are organized in a
ring and ordered following the values of their indexes. Re-
sources are also indexed by keys, and each resource is con-
signed to the first peer on the ring whose index is equal or
larger than the resource key. Structured systems are gen-
erally more efficient in terms of search time and network
load but can limit the expressiveness of discovery requests:
users are only allowed to search for specific resources but
cannot issue complex or range queries. Moreover, struc-
tured systems may be difficult to administer in the case of
high churn rate, because new or modified resources must be
immediately (re)assigned to the corresponding peers.

Along with the P2P approach, another interesting and
recent trend is the design of self-organizing Grids [4], of-
ten inspired by biological systems such as ant colonies and
insect swarms. Ant algorithms are one of the most popular
examples of “swarm intelligence” systems, in which a num-
ber of ant-inspired agents follow very simple rules with no
centralized control, and complex global behavior emerges
from their local interactions [2]. Recently, bio-inspired
techniques have been proposed to design “self-structured”
P2P systems, in which the association of keys with hosts
is not pre-determined but adapts to the modification of the
environment [6, 9].

This paper presents Self-Chord, a P2P system that in-
herits from Chord the ability to maintain a structured ring
of peers, but features enhanced functionalities achieved
through the activity of ant-inspired mobile agents. Self-
Chord does not place resource keys to specified hosts, as
Chord does: this feature is actually unnecessary and lim-
its the system flexibility. Conversely, Self-Chord focuses
on the real objective, which is the reordering of keys over
the ring, and their fair distribution to the peers. Self-Chord



agents move keys across the ring and sort them in a self-
organizing fashion. The sorting of keys allows discovery
operations to be executed in logarithmic time, like in Chord,
exploiting the pointers of the finger tables [14]. Therefore
this basic functionality is unaltered. However, Self-Chord
features several benefits with respect to Chord:

(i) In Self-Chord, peer indexes and resource keys are de-
fined independently and there is no obligation to assign a
key to a well specified peer. This feature enables the defi-
nition of “classes” of resources; a class being defined as a
set of resources that share common characteristics, and are
mapped to the same key value by a hash function. A user
can issue “class” queries, i.e., explore the network to find a
number of resources belonging to the same class and then
select the most appropriate for his/her purpose. This is a
frequent issue in Grids: for example, a user might search
for hosts for which the CPU speed and the memory size are
within a specified range, and successively choose among
the discovered results. Moreover, the flexibility assured by
Self-Chord for the assignment of keys to resources enables
a semantic meaning to be given to keys. For example, each
bit in the resource key may represent the presence/absence
of a given topic [12]: this is appropriate if resources are
documents, because it is possible to specify the topics on
which a given document focuses.

(ii) Structured systems like Chord can produce imbal-
ance problems depending on the location of peers and the
statistical distribution of the values of resource keys. In
Self-Chord, the keys are fairly distributed over the peers
that are actually present in the system, thus fostering a fair
balancing of storage responsibilities.

(iii) In Chord, appropriate operations are necessary when
a peer joins the ring or when new resources are published:
these resources must be immediately assigned to the peers
whose indexes match the resource keys. These operations
are not necessary in Self-Chord, because the mobile agents
are always active and will spontaneously reorganize the
keys. This assures scalability (keys are continuously re-
ordered as the network grows) and robustness with respect
to environmental changes.

It should be noted that, while the presented system is in-
spired by Chord, similar algorithms can be defined for any
structured system. For example, in CAN [13], the peers are
organized in a logical multi-dimensional space, and each
peer “owns” a distinct zone in this space. Each resource in-
dex is represented as a point of the space and is consigned
to the peer that is responsible for the zone that contains that
point. A bio-inspired algorithm can be devised to improve
the flexibility of CAN: the agents would traverse the net-
work across the n-dimensional structure to reorder the keys
in a self-organizing fashion.

The rest of the paper is organized as follows: Section 2
gives an overview of the Self-Chord model; Section 3 de-

scribes the operations of ant-inspired mobile agents; Sec-
tion 4 analyzes the performance of Self-Chord by present-
ing a set of results obtained with simulation experiments,
with particular emphasis given to important features such as
scalability, load balancing and dynamic behavior; Section 5
concludes the paper.

2 The Self-Chord Model

In Self-Chord, peers are organized in a logical ring. Each
peer is given an index, having Bp bits, which is obtained
with a uniform hash function and can have values between
0 and 2Bp − 1. The ring is constructed and maintained as
in Chord (see [14] for the details). Each resource is associ-
ated with a binary key, having Bc bits, which will be used
to discover and access the resource. The number of possi-
ble values of the resource key, Nc = 2Bc , can be viewed
as the number of classes in which the resources are cate-
gorized. A class is defined as a set of resources having a
specified set of characteristics, and therefore associated to
the same value of the key. The values of resource keys can
be obtained in two ways. The first is through the use of a
hash function. Alternatively, resource keys can be given a
semantic meaning: for example, the value of each bit indi-
cates the presence/absence of a specific topic, if the resource
is a document.

In Chord, Bp and Bc must be set to the same value, be-
cause there is a precise association between resources and
peers. Conversely, in Self-Chord the values of Bp and Bc

can be set independently: the granularity of resource cate-
gorization may be chosen depending on the specific applica-
tion domain. Consequently, there is no obligation to assign
a key to the peer having the same index, or to its successor,
as in Chord. To inherit the efficiency of resource discov-
ery operations offered by Chord, the resource keys must be
sorted on the ring. Whereas in Chord sorting is the outcome
of a global planning, in Self-Chord it is obtained through
the operations of ant-inspired agents that move the resource
keys across the ring.

For their work, the agents use the concept of peer cen-
troid. The centroid of a peer is defined as the real value,
between 0 and Nc, which minimizes the average distance
between itself and all the keys stored by this peer and the
two adjacent peers on the ring 1. For example, with Nc=64,
a peer that stores three keys with values {4,6,8} (assuming
for simplicity that the two adjacent peers do not store any
key) has a centroid equal to 6. With another example, a
peer that stores two keys with values {63, 0} has a centroid
equal to 63.5. The centroid value is an indication about the
keys stored in the local region of the ring and is used by

1Key values are defined in a circular space, in which value 0 succeeds
value Nc − 1: the distance between two values is defined as the length of
the minimum circle segment that separates these values.



agents to move the keys. The agents tend to take a key out
of a peer if its value is distant from the peer centroid, and
tend to forward this key towards a peer whose centroid is as
close as possible to the key value. These simple operations
are performed on the basis of local information, and gradu-
ally achieve the global sorting of the keys. The details are
discussed in Section 3.

Agents are generated and die like the real ants from
which they are inspired. Each peer, at the time that it con-
nects to the network, generates an agent with a given prob-
ability Pgen. With equal probabilities, this agent will be
“right-handed” or “left-handed”, meaning that it will move
in clockwise or counterclockwise direction. The lifetime of
the agent is randomly generated with a statistical distribu-
tion whose average is equal to the average connection time
of the connecting peer, calculated on the past activity of this
peer. Therefore, the turnover rate and the average number
of operating agents are related to the dynamic characteris-
tics of the network, i.e., to the frequency of peer joinings
and departures. Specifically, the average number of agents
Na that circulate in the network at a given instant of time is
associated with the average number of peers present in the
network at the same time, Np,

Na
∼= Np · Pgen (1)

The keys are sorted on the ring, and the obtained order
is robust with respect to successive modifications of the en-
vironment, for example to the connections/disconnections
of peers. The sorting of keys allows Self-Chord to rapidly
serve discovery requests, because a search message can be
driven towards the peer that stores the desired keys. Both
the sorting process and the discovery procedures exploit
Chord-like finger tables, so as to assure logarithmic times,
as Sections 3 and 4 will show.

Figure 1 gives an example of the way resource keys are
sorted. In this sample scenario, the values of Bp and Bc

are respectively equal to 6 and 3, and the ring contains 16
peers. At the interior of the ring, the figure specifies the
indexes of the peers, whereas at the exterior it reports, for
every peer, the keys stored by the peer (only the first three
keys are shown for simplicity) and the peer centroid c. It can
be noted that both the values of centroids and peer indexes
are sorted in clockwise direction, but they are not related
to one another. Indeed, different approaches are used to sort
them: the peer indexes are sorted by the Chord management
operations, whereas the resource keys are sorted by the self-
organizing operations of the Self-Chord agents.

3 Operations of Self-Chord Agents

Each agent, in its lifetime, performs a few simple opera-
tions, cyclically: (i) while it is not carrying any key, it hops

Figure 1. Sample sorting of resource keys in
the peers of Self-Chord. For each peer, its
index, a number of stored keys and the cen-
troid are reported.

from a peer to its predecessor or successor, depending on
the agent being left-handed or right-handed; (ii) at any new
peer, it decides whether or not to take a key out of the peer;
(iii) after taking a key, the agent jumps to a new peer ex-
ploiting the current peer’s finger table; (iv) at the new peer,
the agent decides whether or not to leave the carried key.
Operations (ii) and (iv) are repeated until the agent takes or
leave a key, respectively.

The decision about the take operation depends on the val-
ues of the key under consideration and the centroid of the
current peer. To foster the sorting of keys, it is convenient
to take keys that are distant from the peer centroid, whereas
the keys that are close to it are probably already placed in
the correct place. Therefore, the probability of taking a key
r out of a peer having centroid c is defined to be inversely
proportional to the similarity between r and c. The similar-
ity function f(r, c) and the take probability Ptake are,

f(r, c) = 1 −
d(r, c)

Nc/2
(2)

Ptake =
kt

kt + f(r, c)
with 0 ≤ kt ≤ 1 (3)

where d(r, c) is the distance between r and c, computed on
the circular space of the keys. For example, with Nc=64,
d(12, 18.7)=6.7 and d(3, 63.5)=3.5. The value of f(r, c) is
comprised between 0 (maximum diversity between r and
c) and 1 (maximum similarity). With high probability the
agent takes a key whose value is distant from the peer cen-
troid. The parameter kt can be tuned to modulate the take
probability. In fact, the probability is equal to 0.50 when



the values of kt and f(r, c) are comparable, whereas it ap-
proaches 1 when f(r, c) is much lower than kt (i.e., when
the key r is very different from the peer centroid) and 0
when f(r, c) is much larger than kt (i.e., when the key r is
similar to the centroid). In this work, kt is set to 0.1.

Once an agent has taken a key r from a peer, it tries to go
to the region of the ring where this key should be deposited,
in other words it tries to jump towards the peer whose cen-
troid is as close as possible to the carried key. To calculate
the length of the jump, the agent exploits the fact that the
peer indexes are ordered and the resource keys are also be-
ing ordered. First, the agent calculates the difference r − c
in the arithmetic modulo Nc, where c is the centroid of the
current peer. Then, it makes a proportion between this dis-
tance, calculated in the space of resource keys, and the dis-
tance between the current peer Ps and the “destination” peer
Pd, calculated in the space of peer indexes 2:

r − c

Nc

=
Pd − Ps

Nr

(4)

Accordingly, the agent tries to jump to a peer whose in-
dex is as close as possible to:

Pd = Ps +
Nr

Nc

(r − c) (5)

To do this, the agent exploits the finger table of Ps. In
Chord, the i−th finger of peer p, denoted by p.finger(i)
contains the index of the first peer, d, that succeeds the index
of p by at least 2i−1, namely d = successor(p+2i−1), i =
1..Bp. The finger table is used by Chord to let the search
messages jump to distant peers, so as to complete discov-
ery procedures in a logarithmic time, since at every jump
the search space can be halved. Self-Chord uses a bidi-
rectional finger table, in which a reverse finger table is
defined to point to the peers that follow the current peer
in the counterclockwise direction. A reverse finger, de-
noted as p.rev finger(i), points to the peer with index
d = predecessor(p − 2i−1), i = 1..Bp. The reverse fin-
gers are symmetrical to those used by Chord and can be
easily maintained with the only additional cost of doubling
the storage memory for the fingers. A similar structure was
defined in the BiChord system [8].

After calculating Pd, the agent jumps to the peer of the
finger table whose index is the closest to Pd. At the new
peer, the agent evaluates the leave operation (see the details
below). If this operation is actually performed, the agent
will again move towards the successor or predecessor peer,
until it will take another key. Otherwise, the agent will re-
calculate the value of Pd and make another jump, trying to
approach better the region of the ring where the carried key
should be deposited.

2In formula (4), Nr is the number of potential index values that can be
assigned to a peer, and is equal to 2

Bp

The reason why a reverse finger table is used is now ex-
plained. While in Chord it is always possible to choose a
finger that points to a peer whose index is not higher than
the target peer (the target peer being the peer that stores the
desired keys), this cannot be assured in Self-Chord, as the
placement of keys over the ring is based on the agents’ sta-
tistical operations, not on a well defined assignment pattern.
If only the forward finger table were available, an agent that
overcomes the target peer in the clockwise direction could
not move backward, but would be obliged to perform an-
other round trip in the clockwise direction to return to the
target peer. With a bidirectional finger table, an agent can
move in both directions, so this problem does not occur.

After each jump, the agent must decide whether or not to
leave the key on this peer. The leave probability, Pleave, is,

Pleave =
f(r, c)

kl + f(r, c)
with 0 ≤ kl ≤ 1 (6)

where r is the value of the carried key, c is the centroid of the
current peer, and the similarity function f(r, c) is computed
as in (2). Contrary to Ptake, Pleave is directly proportional
to the similarity between r and c, therefore the agent tends
to leave a key if it is similar to the other keys stored in the
local region of the ring. The parameter kl is set to a higher
value than kt, specifically to 0.5, in order to limit the fre-
quency of leave operations. Indeed, it was observed that if
the leave probability function tends to be too high, it can be
difficult for an agent to carry a key for an amount of time
sufficient to move it into the appropriate Grid region.

Take and leave operations contribute to the correct re-
ordering of keys, because the agents tend to place every key
in a peer that has a centroid value close to the key value.
The progressive sorting is guaranteed by the fact that the
centroid of a peer is calculated not only on the keys stored
in the peer itself, but also on the keys stored by the two
adjacent peers.

4 Performance Analysis of Self-Chord

To assess the Self-Chord algorithm, a set of experiments
were performed with an event-based simulator that has al-
ready been used for other bio-inspired algorithms [6]. Sim-
ulation results have also been validated, for small networks,
against those obtained with a prototype of Self-Chord that
is available at the Web site http://self-chord.icar.cnr.it.

An efficient method to evaluate the Self-Chord sorting
process is to consider the distances (in the space of resource
keys) between the centroids of every two consecutive peers,
and compute the average of these values. In fact, when the
keys belonging to Nc classes are correctly sorted across a
ring of Np peers, the centroid values of the peers should
be sorted and equally spaced, and the distance between any
two consecutive centroids should be comparable to Nc/Np.



A first set of tests were performed in networks having
a varying number of peers, from 256 to 4096. It is as-
sumed that Bc=10 (resources are categorized into Nc=1024
classes) and Bp=16 (peer indexes are defined over 16 bits).
It is also assumed that the average number of resources pub-
lished by a peer, referred to as Nres, is equal to 10 and the
actual number of resources of each single peer is extracted
with a Gamma probability function. The key value of each
published resource is generated with a uniform distribution,
therefore at the beginning key values are distributed ran-
domly; afterwards, the keys are sorted through the oper-
ations of Self-Chord agents. The Pgen probability is set to
1.0: each new or reconnecting peer issues exactly one agent.
The dynamic characteristics are modeled as follows: each
peer has a different average connection time, and the global
average for all the peers, Tpeer , is set to 5 hours. The av-
erage lifetime of an agent is set to the average connection
time of the peer that generates the agent. After receiving
an agent, a peer forwards it to the next peer after a random
interval Tmov. Since the Self-Chord procedures can be ac-
celerated or decelerated by tuning the value of Tmov, this
parameter will be used as a time unit and the performance
results versus time will be reported accordingly. It should
be noted here that all these settings, as well as the setting of
the parameters kt and kl, discussed in Section 3, can affect
the duration of the transient phase, but do not influence the
behavior of Self-Chord in the steady state.

Figure 2 shows the trend of the average distance between
consecutive centroids. The figure shows that, starting at
time 0 from a state with maximum disorder, and owing
to agent operations, the mean of the centroid distance de-
creases from very large values to the expected value Nc/Np,
confirming the capacity of the Self-Chord algorithm to or-
der the keys on the ring. Of course, the time needed to re-
order the keys increases with the number of peers. It ranges
from less than 2000 time units with 256 peers to about
12,500 time units with 4096 peers. To obtain the value in
seconds, the number of time units must be multiplied by
the agent forwarding time Tmov. These results show that
Self-Chord is able to reorder the keys in an acceptable time
even starting from a very unfortunate (and unrealistic) sit-
uation, in which all the peers join the system at the same
time and, since resource keys are assigned with a uniform
hash function, the disorder is maximum. In a real system,
the peers join the ring gradually, and the new keys are po-
sitioned by agents among a large number of keys that are
already correctly sorted, which is a much easier task. This
gradual sorting process is much faster, and a new key can
be moved to the correct peer in logarithmic time. This issue
will be better analyzed in Section 4.2.

The sorting of keys over the ring is profitably exploited
by the discovery procedure. A search message is issued by
a peer to find as many keys as possible that have a spec-
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Figure 2. Average distance between two con-
secutive centroids with Nc=1024 resource
classes and variable number of peers. The
average distance tends to the value Nc/Np.

ified value, and therefore belong to a given class. This is
obtained by driving the search message towards the peer
whose centroid is the closest to the target key value. In-
deed, at the steady state, the values of the keys stored by a
peer are always very close to the peer centroid (the analysis
of this phenomenon can be found in [5]). At each step, the
search message is forwarded, through the finger tables, to
the peer whose centroid is estimated to be the closest to the
target key value. The destination peer is selected through a
proportion between the resource keys and the peer indexes,
similarly to what is done in the reordering phase, see (4) and
(5). If the centroid of the destination peer is closer to the
target key than the centroid of the current peer, the search
message is forwarded to that peer, and the discovery pro-
cedure continues. Whenever this condition is not satisfied,
the discovery procedure terminates, because with very high
probability the current peer is the one that stores the largest
number of keys having the desired value.

In an ordered ring, the number of steps that are needed to
reach the target peer is logarithmic with respect to the num-
ber of peers, since each step allows the search space to be
approximately halved, as in Chord [14]. Figure 3 reports the
average, the 1st and the 99th percentile of the path length,
defined as the number of steps/jumps performed by a search
message. Here it is worth recalling that the average number
of steps experienced in Chord is equal to 1

2
lg

2
Np [14], but

it is reduced to 1

3
lg

2
Np in BiChord [8], in consequence of

the presence of the reverse finger table. Figure 3 shows that
also in Self-Chord the average number of steps is always
very close or slightly larger than 1

3
lg

2
Np. Moreover, the

99th percentile is always lower than lg
2
Np, meaning that

the search process is very fast also in the most unfortunate
cases.

Figure 4 shows the mean number of keys discovered by
a search request, for different values of Np. The assumption
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is that a search message, after completing its path, retrieves
all the keys, having the desired value, that are located on the
current peer and on four adjacent peers, two on the left and
two on the right. Indeed, due to the statistical nature of the
reordering process, it is possible that these neighbors store
a low number of keys having the desired value. In Figure 4,
the number of discovered keys is reported versus time, start-
ing from a situation of maximum disorder, in order to show
that the index gradually increases as reordering process pro-
ceeds. The steady value is comparable to (Np · Nres)/Nc.
In fact, this is the expected number of keys of a specific class
that are published in a network having Np peers, in the case
that Nres is the average number of resources published by
a peer (10 in these experiments) and Nc is the number of
resource classes (1024). In conclusion, the discovery pro-
cedure successfully discovers almost all the resources that
have the desired value of the key.

4.1 Non-Uniform Distribution of Keys

So far, the performance of Self-Chord has been analyzed
under the assumption that the values of the keys associated
with the resources are uniformly distributed. However, in
Self-Chord a resource key can have a semantic meaning:
for example, if the resource is a document, a bit of the key
can express the fact that a document focuses or not on a
given topic. In a case like this, some key values can be
more frequent than others.

A set of experiments was performed assuming that the
key values are distributed according to the triangular distri-
bution shown in Figure 5.

Figure 5. Triangular distribution of keys.

In classical structured P2P systems, a non-uniform distri-
bution of keys produces a non-uniform balance of load. In
Chord, for example, under the described triangular distribu-
tion, the peer with index Nc

2
would store a large number of

keys, since it would be assigned the keys of the most pop-
ular resources. Conversely, Self-Chord distributes the keys
to the peers in a fair fashion, both with uniform and non-
uniform distribution of keys. In fact, the agents take and
leave the keys with no regard to their relative popularity.

The distribution of the number of keys stored in a peer
confirms the fair balance of load. The average, the 1st and
the 99th percentile of this index were found to have the same
values with both the uniform and the triangular distribution
of keys, and are equal to 10, 2 and 22, respectively. The im-
provement versus Chord is considerable. For example, the
99th percentile calculated in Chord under the uniform as-
sumption, and reported in [14], is about 50, compared to the
value of 22 experienced in Self-Chord. With a non uniform
distribution, an acceptable load balance can be maintained
in Chord only by defining additional structures, specifically
with the use of a number of virtual nodes on each real peer.
Conversely, Self-Chord does not need any superstructure to
achieve a fair load balance.

Previously it was mentioned that the resource discovery
algorithm estimates the index of the next peer to which a
search message is forwarded, with the implicit assumption
of a uniform distribution of keys. The discovery procedure
could become longer with a non-uniform distribution, be-



cause the destination peer could have a different centroid
value than the estimated one. Therefore, a set of experi-
ments was performed to observe what happens if the dis-
tribution of keys is triangular. Figure 6 reports the aver-
age, 1st and 99th percentile of the number of steps made
by search messages, and compares the values obtained with
the uniform and the triangular distributions of keys. The
comparison shows that a possible erroneous estimation of
the centroid value of the destination peer can be rapidly
compensated by the next steps of the search message. In-
deed, the average number of steps required with the non-
uniform case is only slightly larger than that obtained with
the uniform distribution, and in the most unfortunate cases
(evaluated through the 99th percentile) a few more steps are
sufficient to successfully complete the discovery procedure.
More details about the behavior of Self-Chord in the case of
non-uniform distribution can be found in [5].
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4.2 Dynamic Behavior

Self-Chord has an important advantage versus Chord
also in terms of network and processing load. In a struc-
tured system like Chord, the keys of new resources, for ex-
ample those published by new or reconnecting peers, must
be immediately placed in specified hosts: this can originate
a high load if many resources are published in a short inter-
val of time. In Self-Chord, the load is invariant because a
new peer does not need to perform any additional operation:
the keys of the new resources will be picked by the agents
that pass by this peer. The processing load L can be defined
as the average number of agents per second that arrive and
are processed at a peer. L can be calculated by multiply-
ing the average number of agents Na by the frequency of
their movements 1/Tmov, so obtaining the number of times
per second that an agent arrives at any peer, and then di-

viding the result by the average number of peers N p to get
the number of times per second that an agent arrives at a
specific peer,

L =
Na

Np · Tmov

≈
Pgen

Tmov

(7)

The simplification is given by applying (1).
For example, if the average value of Tmov is equal to 5

seconds, and Pgen is set to 1.0, each peer receives and pro-
cesses about one agent every 5 seconds, which is an accept-
able load, since take and leave operations are very simple.
This result, obtained theoretically, has been confirmed by
simulation. Note that the processing load only depends on
the probability that a reconnecting peer generates an agent,
Pgen, and on the frequency of agent movements across the
Grid, 1/Tmov. It does not depend on other system param-
eters such as the frequency of peer joinings and disconnec-
tions, the network size, the average number of resources
published by a node and so on, which confirms the scalabil-
ity properties of Self-Chord.

The results discussed so far have shown that the Self-
Chord agents reorder the keys starting from a completely
disordered network. Normal circumstances are much less
stressful: if the network grows gradually, the correct sort-
ing of the keys can be kept with few agent operations that
move the new keys to the correct place of the ring. The
relocation of a new key is achieved by a procedure that is
analogous to that used for resource discovery, and there-
fore can be completed very rapidly, in a time that is less
than logarithmic with respect to the number of peers. How-
ever, a set of specific experiments was performed to evalu-
ate Self-Chord in more disadvantageous situations: once the
reordering process has reached a steady condition, a pertur-
bation is generated by simulating the simultaneous arrival
of a large number of new peers, each with 10 new resources
on average. The initial number of peers Np is set to 1024,
but after 10,000 time units, a number of new peers, specified
as a percentage Pjoin of Np, join the network.

Performance analysis focuses on the average distance be-
tween consecutive centroids, since this index gives an im-
mediate indication about the effective reordering of keys
over the network. Figure 7 shows the value of this index
before and after the perturbation induced by the joining of
a percentage Pjoin of new peers, with Pjoin set to 25%,
50% and 100%, corresponding respectively to 256, 512 and
1024 peers. The index experiences a sudden and prominent
increase at the joining time: since the new keys are pub-
lished randomly by the peers, the key ordering is disturbed.
However, the agents replace the new keys and restore the
correct ordering very rapidly, in a number of time ranging
from 40 to 200 time units.

It can be noticed that the steady value of the average cen-
troid distance, after the perturbation, becomes equal to the
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Figure 7. Average distance between two con-
secutive centroids. At the beginning, the val-
ues of Np and Nc are set to 1024. After 10,000
time units, a percentage Pjoin of new peers
join the network.

new value of Nc/Np. With Nc set to 1024, the value of the
ratio is equal, in the three examined cases, to 4/5, 2/3 and
1/2, respectively. The comparison between Figures 7 and 2
is interesting. While the agents take about 5000 time units
to order the keys in a network with 1024 peers, if they start
from scratch, they take only 200 time units to order the keys
published by additional 1024 peers.

The disconnection of a peer is very simple to manage.
In Chord, the keys are consigned to the successor peer, be-
cause this is the peer devoted to handle them. In Self-Chord,
they are passed half to the successor and half to the prede-
cessor peer, thus improving the load balance even in this
respect.

4.3 Discussion

The results reported in this section allow for a com-
prehensive analysis of Self-Chord and its comparison with
Chord. Due to the self-organizing sorting of keys performed
by agents, the most important functionality of Chord, log-
arithmic discovery time, is preserved. In addition, Self-
Chord features several benefits with respect to Chord:

(i) Better support of complex discovery requests. In
structured P2P systems, Chord included, a user can search
for a specific resource using its resource key as a search
parameter, but more complex discovery requests, such as
range queries, are not easily supported, unless at the cost
of maintaining complex structures, for example tree-shaped
[11]. In Self-Chord, the definition of resource keys is flex-
ible, and it is possible to give them a semantic meaning.
This enables the system to serve both “class” queries, issued
to search for resources having common characteristics, and
“range” queries, issued to discover resources that may over-
lap contiguous classes. Both these functionalities are very
useful in Grid Computing. Range queries can be supported

if key values of resources are given a semantic meaning, or
if they are obtained by a locality preserving hash function,
as for example in [3]. With both approaches, keys of similar
resources are placed into neighbor hosts, and in many cases
may be discovered by a single query.

(ii) Better balance of storage load. Self-Chord improves
the balance of storage load among peers. In Chord, a peer
is responsible for all the keys whose values are between its
index and the index of the predecessor peer on the ring.
Therefore, a peer might store a large number of keys if
the distance between this peer and its predecessor is large.
Moreover, if some resources are more popular than others,
imbalance problems are even worse, because the peers that
store popular keys may be overloaded. In Self-Chord, the
number of keys stored by a peer does not depend neither on
the distance from its predecessor nor on the popularity dis-
tribution of keys. As discussed in Section 4.1, the work of
agents in Self-Chord is capable of significantly improving
the load balance, with respect to Chord, even with a uni-
form distribution of keys, and the advantage increases with
a non-uniform distribution.

(iii) Improved dynamic behavior. In Chord the compu-
tational load strongly depends on the dynamic behavior of
the system, for example on the churn rate of peers, whereas
in Self-Chord it is constant. In Self-Chord, the placement
of new/modified keys in the correct position of the ring
is achieved in a logarithmic time, so it is as fast as a re-
source discovery operation. Moreover, any perturbation of
the steady condition, even very intense, such as those con-
sidered in Section 4.2, is efficiently managed, and the key
ordering is recovered rapidly. This assures scalability (keys
are continuously reordered as the network grows) and ro-
bustness with respect to environmental changes.

Finally, it should be remarked here that all these im-
provements are obtained in a totally decentralized and self-
organizing fashion, while they would be very difficult to
achieve with any centralized algorithm. This confirms
the surprising efficacy of these very simple nature-inspired
mechanisms, especially when they are adopted in a large
distributed environment.

5 Conclusions

This paper aims to open a new research avenue for P2P
frameworks, because it presents a P2P system that inher-
its the beneficial characteristics of structured systems, but
offers further profitable characteristics inherited by biolog-
ical systems, such as self-organization, adaptivity, scalabil-
ity and fast recovery from external perturbations. In Self-
Chord, a set of ant-inspired mobile agents move and reorder
the resource keys in a ring of peers in a self-organizing fash-
ion, without any predetermined association between keys
and peers. The efficiency and effectiveness of Self-Chord



are confirmed by results obtained by simulation. In this
paper the presented ant-inspired approach is applied to to
Chord, but it could similarly be applied to other structured
P2P systems, in which peers are not organized in a ring,
but in other structures such as multi-dimensional grids or
trees. In these cases, the self-organization and ordering of
keys can be achieved with proper modifications of the bio-
inspired algorithm presented in this paper.
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