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Abstract. Due to the high frequency in location updates and the expensive cost 
of continuous query processing, server computation capacity and wireless 
communication bandwidth are the two limiting factors for large-scale 
deployment of moving object database systems.  Many techniques have been 
proposed to address the server bottleneck including one using distributed 
servers.  To address both of the scalability factors, P2P computing has been 
considered.  These schemes enable moving objects to participate as a peer in 
query processing to substantially reduce the demand on server computation, and 
wireless communications associated with location updates.  Most of these 
techniques, however, assume an open-space environment.  In this paper, we 
investigate a P2P computing technique for continuous kNN queries in a 
network environment.   Since network distance is different from Euclidean 
distance, techniques designed specifically for an open space cannot be easily 
adapted for our environment.   We present the details of the proposed technique, 
and discuss our simulation study.  The performance results indicate that this 
technique can significantly reduce server workload and wireless communication 
costs. 

1   Introduction 

With the advances in wireless communication technology and advanced positioning 
systems, a variety of location based services become available to the public. Among 
them, one important service is to continuously provide k-nearest-neighbor (kNN) 
search for a moving object.  Early research effort has focused on moving query over 
static points of interest. Recently, interest has been shifted to monitoring moving 
queries over moving objects, e.g., “Give me the five nearest BMW cars while I am 
driving on Colonial Drive.”  This new type of query, demanding constant updates 
from moving objects to keep the query results accurate, raises a great challenge. 

A simple mobile query processing system consists of a centralized server and a 
large number of moving objects.  There are two scalability issues for such systems: 
(1) query processing cost, and (2) location update cost.  Addressing the first issue has 
been the focus of the majority of the existing work [2, 4, 5, 6, 7, 12, 13, 16, 17].  
These researches focus on query processing techniques and do not worry about the 
communication cost associated with location updates. To address the second issue, 
namely update cost, using distributed servers has been proposed [14] to leverage the 
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aggregate bandwidth of the servers.  Another interesting idea for reducing location 
updates is to use safe regions [8, 15] or thresholds [19], where an object moving 
within a safe region or a threshold does not need to update its location.  To address 
both issues, i.e., expensive query processing cost and intensive location updates, 
Peer-to-peer (P2P) techniques were investigated in [1, 3, 9, 20].  In these schemes, 
each moving object participates in query processing as a peer by monitoring nearby 
queries and updating their result if the object’s new location affects the query results.  
The benefits of this strategy are twofold.  First, server computation is no longer a 
bottleneck (i.e., first scalability issue); and second, moving objects need to update 
their location much less frequently (i.e., second scalability issue).   

Most P2P solutions [1, 3, 20] assume an open space environment, where the 
distance between two objects is the straight line distance between them. In real-life 
scenarios, many moving objects (e.g., cars) are restricted to move on a network (e.g., 
road network).  Since the distance between two objects in a network is defined as the 
shortest network distance between them, techniques developed specifically for an 
open space environment cannot be easily extended to a road network.  A more recent 
P2P technique has been proposed in [9] for dynamic range queries over a network.  

In this paper, we focus on kNN queries over road networks. Unlike range queries, 
there are no fixed ranges for kNN queries and as objects move around, the ranges 
constantly change. Therefore, new definitions and new techniques must be developed 
to address the challenge. We solve the problem by proposing an efficient P2P 
solution. In our approach, each moving object monitors queries in the neighboring 
road segments, and will update a query result maintained on a server if the object 
becomes one of the kNN or is no longer one of the kNN of the affected query. Besides 
saving server computation costs, this scheme reduces communications as much less 
messages are communicated between objects and server compared with a centralized 
solution. 

The contributions of this paper are summarized as follows: 

 We introduce a novel way to define the range for kNN queries in road 
networks. 

 We propose a P2P solution to process kNN queries over road networks which 
has less server computation cost and communication cost. 

 We provide simulation study to show the benefits of using the proposed P2P 
solution. 

The remainder of this paper is organized as follows.  Related work is discussed in 
Section 2. Section 3 covers formal definitions and background information. The 
proposed solution is introduced in Section 4. In Section 5, we present the simulation 
study.  Finally, Section 6 concludes the paper. 

2   Related Work 

Mouratidis et al. [12] studied the kNN monitoring query problem in road networks, 
where query and data objects all move around. However, their techniques only 
focused on reducing server workload without worrying about the communication cost 
and the update cost. As we pointed out in the introduction section, these costs will 
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undermine the scalability of the system. Recently, Wu et al. [20] proposed a 
distributed solution to answer moving kNN queries; nevertheless, the proposed 
solution is only applicable to open space environments. 

To the best of our knowledge, the work most related to ours is the research 
presented by Jensen et al. in [11], in which an algorithm was given for continuous 
kNN queries.  This algorithm takes a client-server approach with the server keeps the 
location information of all the clients.  For a given new query, the server performs a 
kNN search to identify a Nearest Neighbor Candidate set (NNC set) and a distance 
limit.  This information is sent to the query object, which subsequently needs to 
repeatedly estimate distances between the clients in the NNC set and the query object 
to maintain the query result.  When the number of clients in the NNC set with a 
distance to the query object greater than the distance limit exceeds a predefined 
certain threshold, the query object needs to contact the server to refresh the NNC set.  
A drawback of this approach is the potentially low accuracy in the kNN 
approximation because the criterion employed to refresh the NNC set does not 
consider the clients outside the NNC set, which could become the query’s kNNs even 
when the criterion is still satisfied.  

In summary, although there have been a tremendous amount of work in kNN query 
processing, there is no existing P2P solution for such queries in a road network 
environment, which allows all objects to participate in query processing in order to 
reduce both server computation and communication costs. 

3   Preliminaries 

In this section, we first define the underlying spatial network, and then give 
definitions for moving objects, kNN queries and monitoring regions. 

Definition 1. (Network) A network is modeled as an undirected graph G = (N, E), 
where N is a set of nodes, and E is a set of edges. An edge is expressed as <ni, nj>, 
where ni and nj represent the start node and the end node. To avoid ambiguity, we use 
a numbering system such that i is always less than j. The distance between two nodes 
ni and nj is denoted by d(ni, nj), which is the shortest network distance from ni to nj.  

Please note that for simplicity, a road network is modeled as an undirected graph 
where edges are considered to be bidirectional, but our techniques can be easily 
extended to networks with unidirectional edges. Also, in this paper, road segment and 
edge are used interchangeably whenever there is no confusion. 

Definition 2. (Edge Distance) Based on the types of nodes connecting two edges 
together, we classify the distance between two edges into the following four types: SS, 
SE, ES, and EE. We call the resultant distance associated with a specific type as Edge 
Distance. For example, the distance type is SS if both nodes are start (S) nodes; the 
distance type is SE if one node is start (S) node while another is end (E) node. 
Formally, given ei = <nis, nie> and ej = <njs, nje>, dxy(ei, ej) = d(nix, njy), where x, y ∈ 
{S, E}. To make the definition complete, we add an extra distance type called SAME 
(SM) to cover the case when the two edges are identical. Formally, if i = j, dSM(ei, ej) 
= 0, otherwise, dSM(ei, ej) = ∞. As a result, the shortest distance between any two 
edges ei and ej can be expressed as: d(ei, ej) = mintype ∈ {SM, SS, SE, ES, EE}{ dtype(ei, ej)}. 
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Definition 3. (Moving Object) A moving object is represented by a moving point in 
the road network. At any one time, an object o can be described as <e, pos, direction, 
speed, reportTime >, where e is the edge that o is moving on and pos is the distance 
from o to the start node of e. The value of direction is set to 1 if o is moving from the 
start node of e to the end node of e; otherwise, it is set to -1. reportTime records the 
time when the pos is reported.  

Distance between any two objects oi and oj, denoted as d(oi, oj),  is the shortest 
network distance from oi to oj. It can be calculated as below. 

Property 1. Assume the positions of objects oi and oj are denoted as <ei, posi> and 
<ej, posj>, where ei = <nis, nie>, ej= <njs, nje>, and the lengths of ei and ej are ei.length 
and ej.length, respectively. The distance between oi and oj can be calculated as the 
minimum of the following five items: 

d(oi, oj) = min{dSM(ei, ej) + | posi - posj|, dSS(ei, ej)+ posi + posj , dSE(ei, ej)+ posi + 
ej.length - posj , dES(ei, ej)+ ei.length - posi + posj , dEE(ei, ej)+ ei.length - posi + 
ej.length - posj } 

Property 2. For a moving object, with pos, direction, speed, and reportTime all 
known, and provided that the moving object still moves on the same edge, the new 
position of the moving object at current time currentTime can be calculated as 
(currentTime – reportTime) × speed  × direction + pos. 

Definition 4. (k-Nearest-Neighbor Query) A kNN query q can be denoted as <o, 
k>, where o is the object issuing the query (or the focus of the issued query), and k is 
the number of nearest neighbors interested in. Denote the set of all other moving 
objects (i.e. excluding o) as O, a kNN query q returns a subset O’ ⊆ O of k objects, 
such that for any object oi in O’ and any object oj in (O – O’), d(oi, o) ≤ d(oj, o). 

For a given kNN query <o, k>, we call the object o as the query object, all objects 
in the set (O – O’) as the data objects. Among all objects in the query results O’, we 
name the object that has the largest distance to o as the kNN object, and all other 
objects in the set O’ as the (k-i)NN objects, with i = 1, …, k-1. 

Definition 5. (Range of kNN Query) Given a kNN query q = <o, k>, with object o 
moving on edge eo . Assume the kNN object for this query is object oNN , which is 
moving on edge eNN , then the range of the kNN query is defined as eo.length if eo and 
eNN are identical, otherwise, the range is defined as eo.length + eNN.length + d(eo, eNN). 
Please note that the range is the allowed maximum distance between the query object 
and the kNN object given that both objects move on their own edges.  

As shown in the following Definition 6, this range concept is utilized to prune out 
objects that certainly can not become query result. 

Definition 6. (Monitoring Region) A monitoring region of a kNN query is a set  
of edges that can be reached by the query’s range while the query object and the 
query’s kNN object both move within their own current edges. Formally, for a query  
q = <o, k> where o moves on edge e, if the query’s range is q.range, then its 
monitoring region r = {ei | ei ∈ E, d(e, ei) < q.range }. If an edge is included in  
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a query’s monitoring region, we say that this edge intersects with the query’s 
monitoring region. 

The monitoring region can be computed with a depth-first search by expanding 
from the start and the end node of edge e. The detailed algorithm is omitted. The 
interested reader is referred to [9]. The output of the algorithm, denoted by mrOutput, 
has the following format: mrOutput = {<ei, type, distance> | ei ∈ E, type ∈ {SM, SS, 
SE, ES, EE}, distance = dtype(ei , e)< q.range }. For an object moving on edge ei’ in 
that monitoring region, it stores locally a subset of the above mrOutput as {<ei, type, 
distance>|<ei, type, distance> ∈ mrOutput, ei = ei’ }, to facilitate computing its 
distance to the query object. As a result, moving objects do not need to store the 
whole road network and perform the computation-intensive shortest-path algorithm. 
This is considered as one nice feature of our proposed technique. 

To illustrate the above definitions, we give an example below. A partial road 
network is drawn in Figure 1, where nodes are denoted as n1, n2, etc. Each edge’s 
length is indicated by the number close to that edge. Notations like n1n2, n1n3, are used 
to represent edges. Assume that there is one object A (represented by a star) moving 
on edge n1n4, and we are interested in its 2-NNs, which have been determined to be B 
and C (represented by triangles). Based on Definition 4, A is the query object, B is the 
(k-i)NN object, C is the kNN object, and all other objects (represented by circles) are 
data objects. Since C is moving on edge n2n3, and the shortest distance between edge 
n1n4 and n2n3 is 1 (through edge n3n4), based on Definition 5, the range of this query is 
computed as the sum of the lengths of edge n1n4 and edge n2n3, then added by 1, 
which gives (3 + 2 + 1) = 6. The monitoring region is then computed by expanding 
from both nodes (n1 and n4) of edge n1n4. The results are shown in the figure by the 
thick edges. All objects moving in the monitoring region will monitor this query. 

  

Fig. 1. Example of Monitoring Region Fig. 2. Example of Message Processing 

To deal with long road segments, such as highways, we set a maximum for the 
allowed segment length. Any segment that is longer than this maximum will be 
divided into multiple shorter pieces. We add a virtual node at each position where the 
original segment is divided, and the resultant shorter segments become virtual edges. 
In our system, we do not differentiate virtual node (edge) from real node (edge). 
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4   Proposed Solution 

4.1   Assumptions and System Overview 

We have the following two assumptions: (1) every moving object is equipped with 
some positioning devices. (2) every moving object has some computing power for 
data processing. 

The proposed system adopts a server-client architecture. On the server side, all 
information about query objects, kNN objects, (k-i)NN objects, and queries are stored. 
The server determines the monitoring region for each query and sends the query to 
objects moving in that monitoring region. The moving objects save the received 
information in their local storage space. Periodically, based on the saved information, 
a moving object needs to calculate its distance to the query object, and compares that 
distance with the distance from the kNN object to the query object. For a data object, 
if it moves closer to the query object than the kNN object, it sends a message to the 
server to trigger an update. Similarly, for a (k-i)NN object, if it moves further away 
from the query object than the kNN object, it also notifies the server.  

4.2   Server Data Structure 

A number of excellent disk-based storage structures have been proposed for road 
networks [10, 18].  Any of these techniques can be easily adapted for our network 
database to achieve good access locality and therefore low I/O cost. 

There are mainly three tables used:  (1) a query-object-table to store query objects 
in the form of <oid, eid, pos, direction, speed, reportTime>, (2) a query-table to store 
monitoring queries in the form of <qid, oid, k, kNN object, (k-i)NN objects, 
mrOutput>, where the mrOutput is the output from the algorithm for monitoring 
region calculation, as mentioned in Section 3, and (3) a segment-query-table, where 
for each edge, the qids of all queries whose monitoring regions intersect with that 
edge are stored.  An entry in this table has the form of <eid, {qid}>. To facilitate the 
initialization step (to be discussed in Section 4.4), we also keep track of how many 
objects currently moving on each edge. 

4.3   Moving Object Data Structure 

A moving object stores all queries whose monitoring regions intersect with the edge 
where it is moving. We use a table for that need. For a moving object moving on edge 
e, Each entry in the table has the following format: <qid, oid, eLength, {<e, type, 
dist>}, nn_oid, nn_eLength, {<e’, nn_type, nn_dist>}>, where qid is the query id, oid 
is the corresponding query object’s id, eLength is the length of the edge that the query 
object is on, and {<e, type, dist>} stores a subset of mrOutput (the attribute inside the 
query-table on the server), where each tuple specifies the edge distance type and the 
actual edge distance from the moving object’s segment to the query object’s segment. 
With eLength and the set {<e, type, dist>}, the moving object can calculate its 
distance to the query object. Similarly, nn_oid denotes the kNN object’s object id, 
nn_eLength is the length of the edge where the kNN object is on, and {<e’, nn_type, 
nn_dist>} stores a set of tuples which help to calculate the distance from the kNN 
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object to the query object. Please note that e’ is the edge where the kNN object is 
moving on. In order to estimate the locations of the query object and the kNN object at 
different time units other than at the saved reportTime, we also store the information 
about the query object and the corresponding kNN object on moving objects. 

4.4   Initialization 

For every new moving object that enters the system, it needs to report its location, 
heading, and speed to the server. The server determines and sends the moving object a 
set of queries that should be monitored. If the new moving object is a query object, 
the server calculates the first set of k nearest neighbors in the following four steps:  

(1) Since the server knows how many objects are moving on each edge, by 
comparing with the requested number k, the server can decide the set of edges to send 
a probe message. The probe message has the format of <qid, oid, pos, eLength, {<e, 
type, dist>}>, where pos is the position of the query object on its edge, and other 
parameters have the same meanings as those discussed in Section 4.3. 

(2) After the probe message is received by all moving objects moving on the 
identified edges, based on Property 1, moving objects can calculate their distances to 
the query object and send the distances back to the server. 

(3) The server compares all the returned distances and picks the k smallest ones. 
The moving objects with the k smallest distances are the initial k nearest neighbors. 
Among the k identified objects, the one with the largest distance is the kNN object. 

(4) With the kNN object known, the server calculates the query’s range using 
Definition 5, computes the query’s monitoring region with Definition 6, and sends a 
message, which contains the information of the query object and the kNN object, to all 
objects in the monitoring region. 

4.5   Message Processing 

For a given query, there are four different types of objects, namely, query object, data 
object, kNN object, and (k-i)NN object. Please note that since the system as many 
kNN queries, for a moving object, it can assume multiple roles. Below we list 
different types of messages sent out from moving objects, and discuss how the server 
responds to these messages. 

4.5.1   Switch Segment Message 
Every moving object needs to monitor its own location on the segment it is moving 
on. If its position on that segment is less than zero or greater than the segment’s 
length, it knows that it has moved to a new segment. At this time, the moving object 
reports to the server and requests for the new segment’s length and a new set of 
queries. For each query, the server sends the query object and the kNN object’s 
information with the relevant edge distances, and the lengths of the edges where the 
query object and the kNN object are moving on, respectively. With the received 
information, later on, the moving object can estimate the position of the query object 
and the kNN object. Using saved edge distances, the moving object can calculate its 
distance to the query object and the distance from the kNN object to the query object. 



 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 271 

However, if the moving object itself is also a query object (or a kNN object) for 
some query, the monitoring region for that query needs to be updated. The server 
performs the following three tasks: (1). update the query-object-table (or the query-
table) with the object’s new location. (2). compute a new monitoring region for the 
query and update the query-table. (3). send out messages to notify moving objects in 
the old monitoring region to stop monitoring the query, and notify moving objects in 
the new monitoring region to add this query for monitoring. If the moving object is a 
(k-i)NN object for some query, although there is no need for monitoring region re-
computation, the server needs to update the query-table  accordingly. 

4.5.2   Enter Query Message 
For a data object, it periodically checks its distance to the monitored query object, 
and compares with the distance from the kNN object to the query object. If it is getting 
closer to the query object than the kNN object is, a message is sent to the server to 
indicate that it is currently part of the query result. 

The server first estimates the current positions of the saved kNN object and (k-i)NN 
objects to decide which object should be replaced by the new-coming object. Then the 
server updates the query-object-table. If the replaced object is the kNN object, the 
server also calculates a new monitoring region based on the new kNN object, and 
notifies all affected objects. 

4.5.3   Exit Query Message 
For a (k-i)NN object, since it could move further away from the query object and 
become the kNN object, it needs to periodically monitor its distance to the query 
object and compare with that of the kNN object. Once the distance is larger than the 
distance from the kNN object to the query object, the (k-i)NN object needs to report to 
the server.  

After the server receives this type of message, it replaces the current kNN object 
with the one sending out the message, re-calculates the monitoring region, and 
notifies all affected objects. 

4.5.4   Other Messages 
Other than the three types of messages described above, there are some other 
scenarios when a moving object needs to contact server. When a query object (or a 
kNN object) changes its speed, it sends the update to the server, and the server updates 
the query-object-table (or the query-table) and forwards the update to relevant 
moving objects. Similarly, when a (k-i)NN object changes its speed, it also notifies the 
server, and the server just updates the query-table (i.e. No need to send the update to 
moving objects). 

4.5.5   Optimization 
For the sake of clarity, we have assumed that the server can receive only one message 
per time unit.   In reality, the server bandwidth is more plentiful and many messages 
should be able to arrive at the server per time unit. To reduce server computation and 
communication cost, for all the messages received during a given time unit requiring 
monitoring region re-computation (such as “Exit Query Message” and “Enter Query 
Message”), immediately after the message is received, the server only updates the 
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query result to keep the result accurate. And the server waits until the end of that time 
unit to re-compute the monitoring region and sends out message to notify moving 
objects to update their monitoring queries. 

4.6   An Example 

In this section, we use the same example as the one used in Section 3 to show how a 
data object keeps monitoring its distance to the query object and the distance from the 
kNN object to the query object. 

For example, at time t, as shown in Fig. 1, the query object A is at position 2.5 on 
edge n1n4, the kNN object C is at position 1 on edge n2n3, and a data object G is at 
position 1.5 on edge n1n7. Since G is inside the query’s monitoring region, it has A 
and C’s information saved locally. Besides, it stores the edge distance {<n1n7, SS, 0>} 
and the length of edge n1n4, to determine the distance from itself to A. To calculate the 
distance from C to A, it also has the edge distances {<n2n3, SS, 2>, <n2n3, SE, 3>, 
<n2n3, ES, 4>, <n2n3, EE, 1>} and the length of edge n2n3 saved. 

At time (t+1), as shown in Fig. 2, data object G moves to position 1 on edge n1n7. 
It estimates the new position of A on edge n1n4 using Property 2 and gets 1.5. 
Similarly, it estimates the new position of C on edge n2n3 as 1.1. Then with Property 
1, it computes its distance to A as 2.5 (calculated as: 1 + 1.5 + 0), while the distance 
from C to A is 3.4 (through the edge distance <n2n3, EE, 1>, calculated as: (2 - 1.1) + 
1.5 + 1). Since its distance to the query object is less than the distance from the kNN 
object to the query object, it sends an enter query message to the server. The server 
replaces C with G as the new kNN object, determines the new query range, and re-
computes the monitoring region. In this example, the new query range is 5 (sum of the 
lengths of edge n1n4 and edge n1n7), and the new monitoring region is drawn as thick 
edges in Figure 2. As we can see, data object E on edge n10n11 is no longer in the 
monitoring region. 

5   Performance Study 

We implemented a simulator to measure the performance of our proposed technique. 
For a system designed to process monitoring queries, the server could easily become a 
bottleneck. Whether or not a system can reduce server computation and communication 
cost is very critical, as a result, we choose the following performance metrics. 

 Server workload. This cost is measured as the total number of edges accessed in 
order to answer queries. This is a good measure because server workload consists of 
I/O time and CPU time, while I/O time is more dominant. 

 Communication cost. We measure this cost by counting the messages sent out 
from both the server and the client to reflect the bandwidth consumption. 

For server workload, we compare our technique with one popular centralized 
solution: query index [8], which was originally designed for an open space 
environment. To make the comparison fair, the query index scheme is adapted for a 
road network environment. In the adapted scheme, queries are indexed by a segment-
query table (similar to the table used in our technique), where for each segment, all  
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queries whose query object can reach that segment within the distance from the query 
object to the kNN object are saved. Every time when a moving object sends its 
updated location to the server, based on the segment where the moving object is on, 
the server retrieves all queries for that segment from the segment-query table. Then 
the server computes the distances from the moving object to query objects to 
determine if the moving object belongs to any query result. Also, every time when a 
query object’s location is updated or its kNN object’s location is updated, the server 
updates that segment-query table. 

We also compare communication cost to a centralized approach, which we name it 
as Query Blind Optimal (QBO) method. In the QBO method, moving objects only 
need to contact the server when they switch segments or change speeds. When an 
object moves to a new segment, the server sends back the new segment’s length to 
help the object to determine when it moves out of that segment. At each time unit, the 
server estimates all moving objects’ locations and answers all kNN queries. This 
method is optimal on communication cost if we assume that moving objects do not 
have any knowledge about queries, which is why we call it Query Blind Optimal 
method. Besides this QBO method, we also have a naïve method which serves as a 
basis for comparison. In this naïve method, all moving objects report to the server 
when their locations change, as a result, there is no need for the server to send 
messages back to the clients. 

5.1   Simulation Setup 

Our simulation is based on a terrain of 50 × 50 square miles. We generate a synthetic 
road network by first placing nodes randomly on the terrain, and then connect nodes 
together randomly to form edges. There are 2000 nodes and 4000 edges in our setup, 
with the longest edge as 3 miles. Moving objects are placed randomly on edges with 
initial speeds and directions. Among all the moving objects, some are specified as 
query objects with a pre-defined number (k) of interested nearest neighbors. The 
speeds are in the range of [0.1, 1] mile/min, following a Zipf distribution with a 
deviation of 0.7. When an object moves close to a road intersection, it moves to a 
randomly picked segment. At each time unit, there are a certain percentage of objects 
changing their speeds. The threshold for changing speed is set as 0.1 mile/min. The 
time step parameter for the simulation is one minute. We run simulation for 10 times 
and compute the average as the final output. Each simulation lasts for 200 time units. 
The simulation was run on a Pentium 4 2.6GHz desktop pc with 2GB memory. 

In the experiments, we vary different parameters, as listed in Table 1, to study the 
scalability of the proposed system. If not otherwise specified, the experiment takes the 
default values. 

Table 1. Simulation Parameters 

Parameter Name Value Range Default Value 
Number of Moving Objects [50000, 100000] 100000 
Number of Queries [10, 1000] 200 
Number of Nearest Neighbors (k) [1, 20] 5 
Percentage of Objects Changing Speed per Time Unit [2, 50] 10 
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5.2   Simulation Results 

Figure 3 shows the impact of number of queries on server workload and 
communication cost.  Please note that in Fig 3.a, the vertical axis is in logarithmic 
scale.  The plot shows that both the proposed technique and the Query Index method 
incur more server workload with the increases in the number of concurrent queries.  A 
comparison indicates that the proposed approach is about 50 times better than the 
Query Index method.  This huge savings can be attributed to the computations carried 
out on moving objects, which greatly reduce server workload. 
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Fig. 3. Effect of number of queries on (a) server workload and (b) communication cost 

In Fig 3.b, we compare the communication cost of the proposed technique with 
those of a Naïve approach and the QBO method. We observe that the curve of the 
naïve method is flat and it displays the highest communication costs.  This is expected 
since every object updates its location at every time step.   The curve of the QBO 
method is also flat because the communication cost is primarily introduced by objects 
when they move to new segments or change their speeds; and the occurrences of such 
activities are independent of the number of concurrent queries.   The communication 
cost of the proposed technique increases as the number of queries increases.  This can 
be explained as follows.  Since the P2P strategy needs to update the query results 
maintained on the remote server, the objects have more query updates to perform with 
the increases in the number of concurrent queries resulting in a higher communication 
cost.  Nevertheless, the proposed technique performs very well (i.e., comparable to 
the QBO) for numbers of queries as high as 200.  Its performance worsens when the 
numbers of concurrent queries is greater than 200.  Under this circumstance, we note 
that distributed servers can be used to accommodate the increase in the 
communication costs.  In such an environment, our P2P technique would require a 
smaller number of distributed servers since it is able to reduce server workload and 
the demand on server bandwidth. 

In Figure 4, we vary the other three parameters to study their effects on 
communication cost. In Fig 4.a, the number of moving objects is varied from 50000 to 
100000. As we can see, for all the three studied methods, the number of messages 
increases as the number of moving objects increases. Fig 4.b studies the effect of 
increasing the percentage of objects changing speed per time unit from 2% to 50%. 
The result shows that for the naïve method, the curve is a flat line as in Fig 3.b. Both 
our technique and the QBO technique incur more communication cost when there are 
more objects changing speeds at every time step. Compared to the QBO technique,  
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Fig. 4. Effect of (a) number of moving objects, (b) percentage of objects changing speed per 
time unit, (c) number of interested nearest neighbors, on communication cost 

our technique has a much less steeper curve because among all objects that change 
speeds, only query objects, kNN objects, and (k-i)NN objects, which combined 
account for a small fraction of the total number of objects, need to contact the server, 
however, in the QBO technique, all objects changing speeds have to report to the 
server. We also try to vary the number of interested nearest neighbors (k) and the 
result is shown in Fig 4.c. From the plot, we observe that both the naïve method and 
the QBO technique are not affected by the number of requested nearest neighbors. For 
our technique, more messages are needed if there are more nearest neighbors to be 
found. This is expected since a bigger k will make more objects into (k-i)NN objects, 
and quite probably, larger monitoring regions are demanded. Consequently, higher 
communication cost is necessary. 

6   Conclusions 

In this paper, we introduced a P2P technique for continuous kNN queries in a network 
environment. To the best of our knowledge, this is the first P2P solution that fully 
leverages the computation power of all peers to address the kNN problem.  This 
scheme utilizes mobile computing power to reduce server workload and the number 
of location updates necessary. We presented the detailed design and gave simulation 
results to show the performance advantages of the proposed technique.  When 
compared to an adapted Query Index method, our approach incurs about 50 times less 
server load.  In terms of communication cost, the proposed technique performs 
comparable to a Query Blind Optimal scheme when there are as many as 200 
concurrent queries.  As the number of concurrent queries increases, the moving 
objects need to communicate more frequently to update the query results maintained 
on the server. 
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