
R. Wagner, N. Revell, and G. Pernul (Eds.): DEXA 2007, LNCS 4653, pp. 264–276, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A P2P Technique for Continuous k-Nearest-Neighbor
Query in Road Networks

Fuyu Liu, Kien A. Hua, and Tai T. Do

School of EECS, University of Central Florida, Orlando, FL, USA
{fliu,kienhua,tdo}@cs.ucf.edu

Abstract. Due to the high frequency in location updates and the expensive cost
of continuous query processing, server computation capacity and wireless
communication bandwidth are the two limiting factors for large-scale
deployment of moving object database systems. Many techniques have been
proposed to address the server bottleneck including one using distributed
servers. To address both of the scalability factors, P2P computing has been
considered. These schemes enable moving objects to participate as a peer in
query processing to substantially reduce the demand on server computation, and
wireless communications associated with location updates. Most of these
techniques, however, assume an open-space environment. In this paper, we
investigate a P2P computing technique for continuous kNN queries in a
network environment. Since network distance is different from Euclidean
distance, techniques designed specifically for an open space cannot be easily
adapted for our environment. We present the details of the proposed technique,
and discuss our simulation study. The performance results indicate that this
technique can significantly reduce server workload and wireless communication
costs.

1 Introduction

With the advances in wireless communication technology and advanced positioning
systems, a variety of location based services become available to the public. Among
them, one important service is to continuously provide k-nearest-neighbor (kNN)
search for a moving object. Early research effort has focused on moving query over
static points of interest. Recently, interest has been shifted to monitoring moving
queries over moving objects, e.g., “Give me the five nearest BMW cars while I am
driving on Colonial Drive.” This new type of query, demanding constant updates
from moving objects to keep the query results accurate, raises a great challenge.

A simple mobile query processing system consists of a centralized server and a
large number of moving objects. There are two scalability issues for such systems:
(1) query processing cost, and (2) location update cost. Addressing the first issue has
been the focus of the majority of the existing work [2, 4, 5, 6, 7, 12, 13, 16, 17].
These researches focus on query processing techniques and do not worry about the
communication cost associated with location updates. To address the second issue,
namely update cost, using distributed servers has been proposed [14] to leverage the

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 265

aggregate bandwidth of the servers. Another interesting idea for reducing location
updates is to use safe regions [8, 15] or thresholds [19], where an object moving
within a safe region or a threshold does not need to update its location. To address
both issues, i.e., expensive query processing cost and intensive location updates,
Peer-to-peer (P2P) techniques were investigated in [1, 3, 9, 20]. In these schemes,
each moving object participates in query processing as a peer by monitoring nearby
queries and updating their result if the object’s new location affects the query results.
The benefits of this strategy are twofold. First, server computation is no longer a
bottleneck (i.e., first scalability issue); and second, moving objects need to update
their location much less frequently (i.e., second scalability issue).

Most P2P solutions [1, 3, 20] assume an open space environment, where the
distance between two objects is the straight line distance between them. In real-life
scenarios, many moving objects (e.g., cars) are restricted to move on a network (e.g.,
road network). Since the distance between two objects in a network is defined as the
shortest network distance between them, techniques developed specifically for an
open space environment cannot be easily extended to a road network. A more recent
P2P technique has been proposed in [9] for dynamic range queries over a network.

In this paper, we focus on kNN queries over road networks. Unlike range queries,
there are no fixed ranges for kNN queries and as objects move around, the ranges
constantly change. Therefore, new definitions and new techniques must be developed
to address the challenge. We solve the problem by proposing an efficient P2P
solution. In our approach, each moving object monitors queries in the neighboring
road segments, and will update a query result maintained on a server if the object
becomes one of the kNN or is no longer one of the kNN of the affected query. Besides
saving server computation costs, this scheme reduces communications as much less
messages are communicated between objects and server compared with a centralized
solution.

The contributions of this paper are summarized as follows:

 We introduce a novel way to define the range for kNN queries in road
networks.

 We propose a P2P solution to process kNN queries over road networks which
has less server computation cost and communication cost.

 We provide simulation study to show the benefits of using the proposed P2P
solution.

The remainder of this paper is organized as follows. Related work is discussed in
Section 2. Section 3 covers formal definitions and background information. The
proposed solution is introduced in Section 4. In Section 5, we present the simulation
study. Finally, Section 6 concludes the paper.

2 Related Work

Mouratidis et al. [12] studied the kNN monitoring query problem in road networks,
where query and data objects all move around. However, their techniques only
focused on reducing server workload without worrying about the communication cost
and the update cost. As we pointed out in the introduction section, these costs will

266 F. Liu, K.A. Hua, and T.T. Do

undermine the scalability of the system. Recently, Wu et al. [20] proposed a
distributed solution to answer moving kNN queries; nevertheless, the proposed
solution is only applicable to open space environments.

To the best of our knowledge, the work most related to ours is the research
presented by Jensen et al. in [11], in which an algorithm was given for continuous
kNN queries. This algorithm takes a client-server approach with the server keeps the
location information of all the clients. For a given new query, the server performs a
kNN search to identify a Nearest Neighbor Candidate set (NNC set) and a distance
limit. This information is sent to the query object, which subsequently needs to
repeatedly estimate distances between the clients in the NNC set and the query object
to maintain the query result. When the number of clients in the NNC set with a
distance to the query object greater than the distance limit exceeds a predefined
certain threshold, the query object needs to contact the server to refresh the NNC set.
A drawback of this approach is the potentially low accuracy in the kNN
approximation because the criterion employed to refresh the NNC set does not
consider the clients outside the NNC set, which could become the query’s kNNs even
when the criterion is still satisfied.

In summary, although there have been a tremendous amount of work in kNN query
processing, there is no existing P2P solution for such queries in a road network
environment, which allows all objects to participate in query processing in order to
reduce both server computation and communication costs.

3 Preliminaries

In this section, we first define the underlying spatial network, and then give
definitions for moving objects, kNN queries and monitoring regions.

Definition 1. (Network) A network is modeled as an undirected graph G = (N, E),
where N is a set of nodes, and E is a set of edges. An edge is expressed as <ni, nj>,
where ni and nj represent the start node and the end node. To avoid ambiguity, we use
a numbering system such that i is always less than j. The distance between two nodes
ni and nj is denoted by d(ni, nj), which is the shortest network distance from ni to nj.

Please note that for simplicity, a road network is modeled as an undirected graph
where edges are considered to be bidirectional, but our techniques can be easily
extended to networks with unidirectional edges. Also, in this paper, road segment and
edge are used interchangeably whenever there is no confusion.

Definition 2. (Edge Distance) Based on the types of nodes connecting two edges
together, we classify the distance between two edges into the following four types: SS,
SE, ES, and EE. We call the resultant distance associated with a specific type as Edge
Distance. For example, the distance type is SS if both nodes are start (S) nodes; the
distance type is SE if one node is start (S) node while another is end (E) node.
Formally, given ei = <nis, nie> and ej = <njs, nje>, dxy(ei, ej) = d(nix, njy), where x, y ∈
{S, E}. To make the definition complete, we add an extra distance type called SAME
(SM) to cover the case when the two edges are identical. Formally, if i = j, dSM(ei, ej)
= 0, otherwise, dSM(ei, ej) = ∞. As a result, the shortest distance between any two
edges ei and ej can be expressed as: d(ei, ej) = mintype ∈ {SM, SS, SE, ES, EE}{ dtype(ei, ej)}.

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 267

Definition 3. (Moving Object) A moving object is represented by a moving point in
the road network. At any one time, an object o can be described as <e, pos, direction,
speed, reportTime >, where e is the edge that o is moving on and pos is the distance
from o to the start node of e. The value of direction is set to 1 if o is moving from the
start node of e to the end node of e; otherwise, it is set to -1. reportTime records the
time when the pos is reported.

Distance between any two objects oi and oj, denoted as d(oi, oj), is the shortest
network distance from oi to oj. It can be calculated as below.

Property 1. Assume the positions of objects oi and oj are denoted as <ei, posi> and
<ej, posj>, where ei = <nis, nie>, ej= <njs, nje>, and the lengths of ei and ej are ei.length
and ej.length, respectively. The distance between oi and oj can be calculated as the
minimum of the following five items:

d(oi, oj) = min{dSM(ei, ej) + | posi - posj|, dSS(ei, ej)+ posi + posj , dSE(ei, ej)+ posi +
ej.length - posj , dES(ei, ej)+ ei.length - posi + posj , dEE(ei, ej)+ ei.length - posi +
ej.length - posj }

Property 2. For a moving object, with pos, direction, speed, and reportTime all
known, and provided that the moving object still moves on the same edge, the new
position of the moving object at current time currentTime can be calculated as
(currentTime – reportTime) × speed × direction + pos.

Definition 4. (k-Nearest-Neighbor Query) A kNN query q can be denoted as <o,
k>, where o is the object issuing the query (or the focus of the issued query), and k is
the number of nearest neighbors interested in. Denote the set of all other moving
objects (i.e. excluding o) as O, a kNN query q returns a subset O’ ⊆ O of k objects,
such that for any object oi in O’ and any object oj in (O – O’), d(oi, o) ≤ d(oj, o).

For a given kNN query <o, k>, we call the object o as the query object, all objects
in the set (O – O’) as the data objects. Among all objects in the query results O’, we
name the object that has the largest distance to o as the kNN object, and all other
objects in the set O’ as the (k-i)NN objects, with i = 1, …, k-1.

Definition 5. (Range of kNN Query) Given a kNN query q = <o, k>, with object o
moving on edge eo . Assume the kNN object for this query is object oNN , which is
moving on edge eNN , then the range of the kNN query is defined as eo.length if eo and
eNN are identical, otherwise, the range is defined as eo.length + eNN.length + d(eo, eNN).
Please note that the range is the allowed maximum distance between the query object
and the kNN object given that both objects move on their own edges.

As shown in the following Definition 6, this range concept is utilized to prune out
objects that certainly can not become query result.

Definition 6. (Monitoring Region) A monitoring region of a kNN query is a set
of edges that can be reached by the query’s range while the query object and the
query’s kNN object both move within their own current edges. Formally, for a query
q = <o, k> where o moves on edge e, if the query’s range is q.range, then its
monitoring region r = {ei | ei ∈ E, d(e, ei) < q.range }. If an edge is included in

268 F. Liu, K.A. Hua, and T.T. Do

a query’s monitoring region, we say that this edge intersects with the query’s
monitoring region.

The monitoring region can be computed with a depth-first search by expanding
from the start and the end node of edge e. The detailed algorithm is omitted. The
interested reader is referred to [9]. The output of the algorithm, denoted by mrOutput,
has the following format: mrOutput = {<ei, type, distance> | ei ∈ E, type ∈ {SM, SS,
SE, ES, EE}, distance = dtype(ei , e)< q.range }. For an object moving on edge ei’ in
that monitoring region, it stores locally a subset of the above mrOutput as {<ei, type,
distance>|<ei, type, distance> ∈ mrOutput, ei = ei’ }, to facilitate computing its
distance to the query object. As a result, moving objects do not need to store the
whole road network and perform the computation-intensive shortest-path algorithm.
This is considered as one nice feature of our proposed technique.

To illustrate the above definitions, we give an example below. A partial road
network is drawn in Figure 1, where nodes are denoted as n1, n2, etc. Each edge’s
length is indicated by the number close to that edge. Notations like n1n2, n1n3, are used
to represent edges. Assume that there is one object A (represented by a star) moving
on edge n1n4, and we are interested in its 2-NNs, which have been determined to be B
and C (represented by triangles). Based on Definition 4, A is the query object, B is the
(k-i)NN object, C is the kNN object, and all other objects (represented by circles) are
data objects. Since C is moving on edge n2n3, and the shortest distance between edge
n1n4 and n2n3 is 1 (through edge n3n4), based on Definition 5, the range of this query is
computed as the sum of the lengths of edge n1n4 and edge n2n3, then added by 1,
which gives (3 + 2 + 1) = 6. The monitoring region is then computed by expanding
from both nodes (n1 and n4) of edge n1n4. The results are shown in the figure by the
thick edges. All objects moving in the monitoring region will monitor this query.

Fig. 1. Example of Monitoring Region Fig. 2. Example of Message Processing

To deal with long road segments, such as highways, we set a maximum for the
allowed segment length. Any segment that is longer than this maximum will be
divided into multiple shorter pieces. We add a virtual node at each position where the
original segment is divided, and the resultant shorter segments become virtual edges.
In our system, we do not differentiate virtual node (edge) from real node (edge).

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 269

4 Proposed Solution

4.1 Assumptions and System Overview

We have the following two assumptions: (1) every moving object is equipped with
some positioning devices. (2) every moving object has some computing power for
data processing.

The proposed system adopts a server-client architecture. On the server side, all
information about query objects, kNN objects, (k-i)NN objects, and queries are stored.
The server determines the monitoring region for each query and sends the query to
objects moving in that monitoring region. The moving objects save the received
information in their local storage space. Periodically, based on the saved information,
a moving object needs to calculate its distance to the query object, and compares that
distance with the distance from the kNN object to the query object. For a data object,
if it moves closer to the query object than the kNN object, it sends a message to the
server to trigger an update. Similarly, for a (k-i)NN object, if it moves further away
from the query object than the kNN object, it also notifies the server.

4.2 Server Data Structure

A number of excellent disk-based storage structures have been proposed for road
networks [10, 18]. Any of these techniques can be easily adapted for our network
database to achieve good access locality and therefore low I/O cost.

There are mainly three tables used: (1) a query-object-table to store query objects
in the form of <oid, eid, pos, direction, speed, reportTime>, (2) a query-table to store
monitoring queries in the form of <qid, oid, k, kNN object, (k-i)NN objects,
mrOutput>, where the mrOutput is the output from the algorithm for monitoring
region calculation, as mentioned in Section 3, and (3) a segment-query-table, where
for each edge, the qids of all queries whose monitoring regions intersect with that
edge are stored. An entry in this table has the form of <eid, {qid}>. To facilitate the
initialization step (to be discussed in Section 4.4), we also keep track of how many
objects currently moving on each edge.

4.3 Moving Object Data Structure

A moving object stores all queries whose monitoring regions intersect with the edge
where it is moving. We use a table for that need. For a moving object moving on edge
e, Each entry in the table has the following format: <qid, oid, eLength, {<e, type,
dist>}, nn_oid, nn_eLength, {<e’, nn_type, nn_dist>}>, where qid is the query id, oid
is the corresponding query object’s id, eLength is the length of the edge that the query
object is on, and {<e, type, dist>} stores a subset of mrOutput (the attribute inside the
query-table on the server), where each tuple specifies the edge distance type and the
actual edge distance from the moving object’s segment to the query object’s segment.
With eLength and the set {<e, type, dist>}, the moving object can calculate its
distance to the query object. Similarly, nn_oid denotes the kNN object’s object id,
nn_eLength is the length of the edge where the kNN object is on, and {<e’, nn_type,
nn_dist>} stores a set of tuples which help to calculate the distance from the kNN

270 F. Liu, K.A. Hua, and T.T. Do

object to the query object. Please note that e’ is the edge where the kNN object is
moving on. In order to estimate the locations of the query object and the kNN object at
different time units other than at the saved reportTime, we also store the information
about the query object and the corresponding kNN object on moving objects.

4.4 Initialization

For every new moving object that enters the system, it needs to report its location,
heading, and speed to the server. The server determines and sends the moving object a
set of queries that should be monitored. If the new moving object is a query object,
the server calculates the first set of k nearest neighbors in the following four steps:

(1) Since the server knows how many objects are moving on each edge, by
comparing with the requested number k, the server can decide the set of edges to send
a probe message. The probe message has the format of <qid, oid, pos, eLength, {<e,
type, dist>}>, where pos is the position of the query object on its edge, and other
parameters have the same meanings as those discussed in Section 4.3.

(2) After the probe message is received by all moving objects moving on the
identified edges, based on Property 1, moving objects can calculate their distances to
the query object and send the distances back to the server.

(3) The server compares all the returned distances and picks the k smallest ones.
The moving objects with the k smallest distances are the initial k nearest neighbors.
Among the k identified objects, the one with the largest distance is the kNN object.

(4) With the kNN object known, the server calculates the query’s range using
Definition 5, computes the query’s monitoring region with Definition 6, and sends a
message, which contains the information of the query object and the kNN object, to all
objects in the monitoring region.

4.5 Message Processing

For a given query, there are four different types of objects, namely, query object, data
object, kNN object, and (k-i)NN object. Please note that since the system as many
kNN queries, for a moving object, it can assume multiple roles. Below we list
different types of messages sent out from moving objects, and discuss how the server
responds to these messages.

4.5.1 Switch Segment Message
Every moving object needs to monitor its own location on the segment it is moving
on. If its position on that segment is less than zero or greater than the segment’s
length, it knows that it has moved to a new segment. At this time, the moving object
reports to the server and requests for the new segment’s length and a new set of
queries. For each query, the server sends the query object and the kNN object’s
information with the relevant edge distances, and the lengths of the edges where the
query object and the kNN object are moving on, respectively. With the received
information, later on, the moving object can estimate the position of the query object
and the kNN object. Using saved edge distances, the moving object can calculate its
distance to the query object and the distance from the kNN object to the query object.

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 271

However, if the moving object itself is also a query object (or a kNN object) for
some query, the monitoring region for that query needs to be updated. The server
performs the following three tasks: (1). update the query-object-table (or the query-
table) with the object’s new location. (2). compute a new monitoring region for the
query and update the query-table. (3). send out messages to notify moving objects in
the old monitoring region to stop monitoring the query, and notify moving objects in
the new monitoring region to add this query for monitoring. If the moving object is a
(k-i)NN object for some query, although there is no need for monitoring region re-
computation, the server needs to update the query-table accordingly.

4.5.2 Enter Query Message
For a data object, it periodically checks its distance to the monitored query object,
and compares with the distance from the kNN object to the query object. If it is getting
closer to the query object than the kNN object is, a message is sent to the server to
indicate that it is currently part of the query result.

The server first estimates the current positions of the saved kNN object and (k-i)NN
objects to decide which object should be replaced by the new-coming object. Then the
server updates the query-object-table. If the replaced object is the kNN object, the
server also calculates a new monitoring region based on the new kNN object, and
notifies all affected objects.

4.5.3 Exit Query Message
For a (k-i)NN object, since it could move further away from the query object and
become the kNN object, it needs to periodically monitor its distance to the query
object and compare with that of the kNN object. Once the distance is larger than the
distance from the kNN object to the query object, the (k-i)NN object needs to report to
the server.

After the server receives this type of message, it replaces the current kNN object
with the one sending out the message, re-calculates the monitoring region, and
notifies all affected objects.

4.5.4 Other Messages
Other than the three types of messages described above, there are some other
scenarios when a moving object needs to contact server. When a query object (or a
kNN object) changes its speed, it sends the update to the server, and the server updates
the query-object-table (or the query-table) and forwards the update to relevant
moving objects. Similarly, when a (k-i)NN object changes its speed, it also notifies the
server, and the server just updates the query-table (i.e. No need to send the update to
moving objects).

4.5.5 Optimization
For the sake of clarity, we have assumed that the server can receive only one message
per time unit. In reality, the server bandwidth is more plentiful and many messages
should be able to arrive at the server per time unit. To reduce server computation and
communication cost, for all the messages received during a given time unit requiring
monitoring region re-computation (such as “Exit Query Message” and “Enter Query
Message”), immediately after the message is received, the server only updates the

272 F. Liu, K.A. Hua, and T.T. Do

query result to keep the result accurate. And the server waits until the end of that time
unit to re-compute the monitoring region and sends out message to notify moving
objects to update their monitoring queries.

4.6 An Example

In this section, we use the same example as the one used in Section 3 to show how a
data object keeps monitoring its distance to the query object and the distance from the
kNN object to the query object.

For example, at time t, as shown in Fig. 1, the query object A is at position 2.5 on
edge n1n4, the kNN object C is at position 1 on edge n2n3, and a data object G is at
position 1.5 on edge n1n7. Since G is inside the query’s monitoring region, it has A
and C’s information saved locally. Besides, it stores the edge distance {<n1n7, SS, 0>}
and the length of edge n1n4, to determine the distance from itself to A. To calculate the
distance from C to A, it also has the edge distances {<n2n3, SS, 2>, <n2n3, SE, 3>,
<n2n3, ES, 4>, <n2n3, EE, 1>} and the length of edge n2n3 saved.

At time (t+1), as shown in Fig. 2, data object G moves to position 1 on edge n1n7.
It estimates the new position of A on edge n1n4 using Property 2 and gets 1.5.
Similarly, it estimates the new position of C on edge n2n3 as 1.1. Then with Property
1, it computes its distance to A as 2.5 (calculated as: 1 + 1.5 + 0), while the distance
from C to A is 3.4 (through the edge distance <n2n3, EE, 1>, calculated as: (2 - 1.1) +
1.5 + 1). Since its distance to the query object is less than the distance from the kNN
object to the query object, it sends an enter query message to the server. The server
replaces C with G as the new kNN object, determines the new query range, and re-
computes the monitoring region. In this example, the new query range is 5 (sum of the
lengths of edge n1n4 and edge n1n7), and the new monitoring region is drawn as thick
edges in Figure 2. As we can see, data object E on edge n10n11 is no longer in the
monitoring region.

5 Performance Study

We implemented a simulator to measure the performance of our proposed technique.
For a system designed to process monitoring queries, the server could easily become a
bottleneck. Whether or not a system can reduce server computation and communication
cost is very critical, as a result, we choose the following performance metrics.

 Server workload. This cost is measured as the total number of edges accessed in
order to answer queries. This is a good measure because server workload consists of
I/O time and CPU time, while I/O time is more dominant.

 Communication cost. We measure this cost by counting the messages sent out
from both the server and the client to reflect the bandwidth consumption.

For server workload, we compare our technique with one popular centralized
solution: query index [8], which was originally designed for an open space
environment. To make the comparison fair, the query index scheme is adapted for a
road network environment. In the adapted scheme, queries are indexed by a segment-
query table (similar to the table used in our technique), where for each segment, all

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 273

queries whose query object can reach that segment within the distance from the query
object to the kNN object are saved. Every time when a moving object sends its
updated location to the server, based on the segment where the moving object is on,
the server retrieves all queries for that segment from the segment-query table. Then
the server computes the distances from the moving object to query objects to
determine if the moving object belongs to any query result. Also, every time when a
query object’s location is updated or its kNN object’s location is updated, the server
updates that segment-query table.

We also compare communication cost to a centralized approach, which we name it
as Query Blind Optimal (QBO) method. In the QBO method, moving objects only
need to contact the server when they switch segments or change speeds. When an
object moves to a new segment, the server sends back the new segment’s length to
help the object to determine when it moves out of that segment. At each time unit, the
server estimates all moving objects’ locations and answers all kNN queries. This
method is optimal on communication cost if we assume that moving objects do not
have any knowledge about queries, which is why we call it Query Blind Optimal
method. Besides this QBO method, we also have a naïve method which serves as a
basis for comparison. In this naïve method, all moving objects report to the server
when their locations change, as a result, there is no need for the server to send
messages back to the clients.

5.1 Simulation Setup

Our simulation is based on a terrain of 50 × 50 square miles. We generate a synthetic
road network by first placing nodes randomly on the terrain, and then connect nodes
together randomly to form edges. There are 2000 nodes and 4000 edges in our setup,
with the longest edge as 3 miles. Moving objects are placed randomly on edges with
initial speeds and directions. Among all the moving objects, some are specified as
query objects with a pre-defined number (k) of interested nearest neighbors. The
speeds are in the range of [0.1, 1] mile/min, following a Zipf distribution with a
deviation of 0.7. When an object moves close to a road intersection, it moves to a
randomly picked segment. At each time unit, there are a certain percentage of objects
changing their speeds. The threshold for changing speed is set as 0.1 mile/min. The
time step parameter for the simulation is one minute. We run simulation for 10 times
and compute the average as the final output. Each simulation lasts for 200 time units.
The simulation was run on a Pentium 4 2.6GHz desktop pc with 2GB memory.

In the experiments, we vary different parameters, as listed in Table 1, to study the
scalability of the proposed system. If not otherwise specified, the experiment takes the
default values.

Table 1. Simulation Parameters

Parameter Name Value Range Default Value
Number of Moving Objects [50000, 100000] 100000
Number of Queries [10, 1000] 200
Number of Nearest Neighbors (k) [1, 20] 5
Percentage of Objects Changing Speed per Time Unit [2, 50] 10

274 F. Liu, K.A. Hua, and T.T. Do

5.2 Simulation Results

Figure 3 shows the impact of number of queries on server workload and
communication cost. Please note that in Fig 3.a, the vertical axis is in logarithmic
scale. The plot shows that both the proposed technique and the Query Index method
incur more server workload with the increases in the number of concurrent queries. A
comparison indicates that the proposed approach is about 50 times better than the
Query Index method. This huge savings can be attributed to the computations carried
out on moving objects, which greatly reduce server workload.

1000

10000

100000

1000000

10000000

10 50 100 200 500 1000
of Queries

o
f
S

eg
m

en
ts

 /
 T

im
e

U
n
it

Proposed Query Index

0

20000

40000

60000

80000

100000

120000

10 50 100 200 500 1000
of Queries

o
f
M

es
sa

g
es

 /
 T

im
e

U
n
it

Proposed Naive QBO

 (a) (b)

Fig. 3. Effect of number of queries on (a) server workload and (b) communication cost

In Fig 3.b, we compare the communication cost of the proposed technique with
those of a Naïve approach and the QBO method. We observe that the curve of the
naïve method is flat and it displays the highest communication costs. This is expected
since every object updates its location at every time step. The curve of the QBO
method is also flat because the communication cost is primarily introduced by objects
when they move to new segments or change their speeds; and the occurrences of such
activities are independent of the number of concurrent queries. The communication
cost of the proposed technique increases as the number of queries increases. This can
be explained as follows. Since the P2P strategy needs to update the query results
maintained on the remote server, the objects have more query updates to perform with
the increases in the number of concurrent queries resulting in a higher communication
cost. Nevertheless, the proposed technique performs very well (i.e., comparable to
the QBO) for numbers of queries as high as 200. Its performance worsens when the
numbers of concurrent queries is greater than 200. Under this circumstance, we note
that distributed servers can be used to accommodate the increase in the
communication costs. In such an environment, our P2P technique would require a
smaller number of distributed servers since it is able to reduce server workload and
the demand on server bandwidth.

In Figure 4, we vary the other three parameters to study their effects on
communication cost. In Fig 4.a, the number of moving objects is varied from 50000 to
100000. As we can see, for all the three studied methods, the number of messages
increases as the number of moving objects increases. Fig 4.b studies the effect of
increasing the percentage of objects changing speed per time unit from 2% to 50%.
The result shows that for the naïve method, the curve is a flat line as in Fig 3.b. Both
our technique and the QBO technique incur more communication cost when there are
more objects changing speeds at every time step. Compared to the QBO technique,

 A P2P Technique for Continuous k-Nearest-Neighbor Query in Road Networks 275

0

20000

40000

60000

80000

100000

120000

50000 60000 70000 80000 90000 100000

of Moving Objects

o
f

M
es

sa
g
es

 /
 T

im
e

U
n
it

Proposed Naive QBO

0

20000

40000

60000

80000

100000

120000

2 5 10 20 33 50

Percentage of Objects Changing Speed

o
f
M

es
sa

g
es

 /
 T

im
e

U
n
it

Proposed Naive QBO

0

20000

40000

60000

80000

100000

120000

1 2 5 10 15 20

of Interested Nearest Neighbors

o
f
M

es
sa

g
es

 /
 T

im
e

U
n
it

Proposed Naive QBO

 (a) (b) (c)

Fig. 4. Effect of (a) number of moving objects, (b) percentage of objects changing speed per
time unit, (c) number of interested nearest neighbors, on communication cost

our technique has a much less steeper curve because among all objects that change
speeds, only query objects, kNN objects, and (k-i)NN objects, which combined
account for a small fraction of the total number of objects, need to contact the server,
however, in the QBO technique, all objects changing speeds have to report to the
server. We also try to vary the number of interested nearest neighbors (k) and the
result is shown in Fig 4.c. From the plot, we observe that both the naïve method and
the QBO technique are not affected by the number of requested nearest neighbors. For
our technique, more messages are needed if there are more nearest neighbors to be
found. This is expected since a bigger k will make more objects into (k-i)NN objects,
and quite probably, larger monitoring regions are demanded. Consequently, higher
communication cost is necessary.

6 Conclusions

In this paper, we introduced a P2P technique for continuous kNN queries in a network
environment. To the best of our knowledge, this is the first P2P solution that fully
leverages the computation power of all peers to address the kNN problem. This
scheme utilizes mobile computing power to reduce server workload and the number
of location updates necessary. We presented the detailed design and gave simulation
results to show the performance advantages of the proposed technique. When
compared to an adapted Query Index method, our approach incurs about 50 times less
server load. In terms of communication cost, the proposed technique performs
comparable to a Query Blind Optimal scheme when there are as many as 200
concurrent queries. As the number of concurrent queries increases, the moving
objects need to communicate more frequently to update the query results maintained
on the server.

References

1. Cai, Y., Hua, K.A., Cao, G.: Processing Range- Monitoring Queries on Heterogeneous
Mobile Objects. In: MDM (2004)

2. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual Partitioning: An Efficient
Method for Continuous Nearest Neighbor Monitoring. In: SIGMOD (2005)

276 F. Liu, K.A. Hua, and T.T. Do

3. Gedik, B., Liu, L.: MobiEyes: Distributed Processing of Continuously Moving Queries on
Moving Objects in a Mobile System. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS,
vol. 2992, Springer, Heidelberg (2004)

4. Hu, H., Lee, D.L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Ioannidis,
Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Boehm, K., Kemper, A.,
Grust, T., Boehm, C. (eds.) EDBT 2006. LNCS, vol. 3896, Springer, Heidelberg (2006)

5. Kolahdouzan, M.R., Shahabi, C.: Voronoi-Based K Nearest Neighbor Search for Spatial
Network Databases. In: VLDB, pp. 840–851 (2004)

6. Hu, H., Lee, D.L., Lee, V.C.S.: Distance Indexing on Road Networks. In: VLDB (2006)
7. Xiong, X., Mokbel, M., Aref, W.: SINA: Scalable Incremental Processing of Continuous

Queries in Spatio-temporal Databases. In: SIGMOD (2004)
8. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query indexing

and velocity constrained indexing: Scalable techniques for continuous queries on moving
objects. IEEE Trans. on Computers 51(10) (2002)

9. Liu, F., Do, T.T., Hua, K.A.: Dynamic Range Query in Spatial Network Environments. In:
Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, Springer,
Heidelberg (2006)

10. Shekhar, S., Liu, D.R.: CCAM: A Connectivity-Clustered Access Method for Networks
and Network Computations. IEEE TKDE 9(1) (1997)

11. Jensen, C.S., Kolar, J., Pedersen, T.B., Timko, I.: Nearest Neighbor Queries in Road
Networks. In: Proc. ACMGIS, pp. 1–8 (2003)

12. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous Nearest Neighbor
Monitoring in Road Networks. In: VLDB, pp. 43–54 (2006)

13. Cho, H., Chung, C.: An Efficient and Scalable Approach to CNN Queries in a Road
Network. In VLDB, pp. 865–876 (2005)

14. Wang, H., Zimmermann, R., Ku, W.S.: Distributed Continuous Range Query Processing
on Moving Objects. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS,
vol. 4080, pp. 655–665. Springer, Heidelberg (2006)

15. Hu, H., Xu, J., Lee, D.L.: A Generic Framework for Monitoring Continuous Spatial
Queries over Moving Objects. In: SIGMOD (2005)

16. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects.
In: IEEE ICDE, IEEE Computer Society Press, Los Alamitos (2005)

17. Xiong, X., Mokbel, M., Aref, W.: SEA-CNN:Scalable Processing of Continuous K-
Nearest Neighbor Queries in Spatio-temporal Databases. In: IEEE ICDE, IEEE Computer
Society Press, Los Alamitos (2005)

18. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network
Databases. In: VLDB (2003)

19. Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.: A Threshold-Based Algorithm for
Continuous Monitoring of k Nearest Neighbors. IEEE TKDE 17(11), 1451–1464 (2005)

20. Wu, W., Guo, W., Tan, K.L.: Distributed Processing of Moving K-Nearest-Neighbor
Query on Moving Objects. In: IEEE ICDE, IEEE Computer Society Press, Los Alamitos
(2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

