
A Scalable Nearest Neighbor Search in P2P
Systems

Michal Batko1, Claudio Gennaro2, and Pavel Zezula1

1 Masaryk University
Brno, Czech Republic

{xbatko,zezula}@fi.muni.cz
2 ISTI-CNR
Pisa, Italy

gennaro@isti.cnr.it

Abstract. Similarity search in metric spaces represents an important
paradigm for content-based retrieval of many applications. Existing cen-
tralized search structures can speed-up retrieval, but they do not scale
up to large volume of data because the response time is linearly in-
creasing with the size of the searched file. In this article, we study the
problem of executing the nearest neighbor(s) queries in a distributed
metric structure, which is based on the P2P communication paradigm
and the generalized hyperplane partitioning. By exploiting parallelism
in a dynamic network of computers, the query execution scales up very
well considering both the number of distance computations and the hop
count between the peers. Results are verified by experiments on real-life
data sets.

1 Introduction

Peer-to-peer (P2P) communication has become a prospective concept for pub-
lishing and finding information on the ubiquitous computer networks today. Most
P2P systems so far support only simple lookup queries, i.e. queries that retrieve
all objects with a particular key value, for example [1] and [2]. Some recent work
has extended this functionality to support range queries over a single attribute
[3]. However, an increasing amount of data today can only be effectively searched
through specific (relative) measures of similarity.

For example, consider a P2P photo-sharing application where each user pub-
lishes photographs tagged with color histograms as its metadata. A typical query
in such a system would contain similarity predicates asking for photographs with
color histograms which are not very different from the color histogram of the
query photo sample.

The problem of retrieving elements from a set of objects that are close to a
given query reference (using specific similarity criterion), has a lot of applications
ranging from the pattern recognition to the textual and multimedia information
retrieval. The most general abstraction of the similarity concept, which is still
indexable, use the mathematical notion of the metric space.

The advantage of the metric space approach to the data searching is its
“extensibility”, because in this way, we are able to perform the exact match,
range, and similarity queries on any collection of metric objects. Since any vector
space is covered by a metric space with a proper distance function (for example
the Euclidean distance), even the n-dimensional vector spaces are easily handled.
Furthermore, there are numerous metric functions able to quantify similarity
between complex objects, such as free text or multi-media object features, which
are very difficult to manage otherwise. For example, consider the edit distance
defined for sequences and trees, the Hausdorff distance applied for comparing
shapes, or the Jacard coefficient, which is often used to asses similarity of sets.
The problem has recently attracted a lot of researchers to develop techniques
able to structure collections of metric objects in such a way so that the search
requests are performed efficiently – see the recent surveys [4] and [5].

Though metric indexes on single computers are able to speedup query execu-
tion, the processing time is not negligible and it grows linearly with the size of
the searched collection. Such property has recently been confirmed by numerous
experiments in [6]. The evaluation of metric distance functions can also take a
considerable amount of computational time. To search the partitioned space, we
usually have to compute distances (using the metric function) between many ob-
jects. The time to compute a distance can also depend on the size of compared
objects. For example, the edit distance of two strings has the computational
complexity O(n ·m), where n and m represent the number of characters in the
compared strings.

The distributed computer environment of present days is a suitable frame-
work for the parallel execution of queries. With such infrastructure, parallel
distance computations would enhance the search response time considerably.
Modern computer networks have a large enough bandwidth, so it is becoming
more expensive for an application to access a local disk than to access the RAM
of another computer on the network. In this paper, we try to apply current
approaches to the distributed data processing – Scalable and Distributed Data
Structures, SDDS, and Peer to Peer, P2P, communication – to the metric space
indexing. The motivation and the basic concepts of our proposal have been pub-
lished in [7] considering only the similarity range queries. In this paper we show
how such idea can be extended to the important case of similarity predicates,
specifically the nearest neighbors queries.

The rest of the paper is organized as follows. In Section 2, we summarize the
principles of metric queries, while in Section 3 we introduce a formal definition
of the distributed metric index. Section 4 describes the strategies for the nearest
neighbor search, which are experimentally evaluated in Section 5. The paper
concludes in Section 6.

2 Metric Space and Similarity Queries

The mathematical metric space is a pair (D, d), where D is the domain of objects
and d is the distance function able to compute distances between any pair of

2

objects from D. It is typically assumed that the smaller the distance, the closer
or more similar are the objects. For any distinct objects x, y, z ∈ D, the distance
must satisfy the following properties:

d(x, x) = 0 reflexivity
d(x, y) > 0 strict positiveness
d(x, y) = d(y, x) symmetry
d(x, y) ≤ d(x, z) + d(z, y) triangle inequality

Let F ⊆ D be the data-set. There are two basic types of similarity queries. The
range query retrieves all objects which have a distance from the query object
q ∈ D at most the specified threshold (range or radius) ρ.

{x ∈ F | d(q, x) ≤ ρ}

The nearest neighbor query returns the object that is the nearest (having the
shortest distance) to the query object q. We can extend this type of query to
return k nearest objects that form a set K ⊂ F defined as follows:

|K| = k ∧ ∀x ∈ K, y ∈ F −K : d(q, x) ≤ d(q, y)

Other forms of similarity queries concern the similarity joins and the reverse
nearest neighbor queries. In this article, we concentrate on the most frequent
(the most natural) form of similarity queries that is the nearest neighbors queries.

3 Principles of GHT*

The GHT* structure was proposed in [7] as a distributed metric index for similar-
ity range queries. In this paper, we provide a new formalization of this approach
and extend the search capability of the GHT* to processing the nearest neighbors
queries.

3.1 Architecture of GHT*

In general, the scalable and distributed data structure GHT* consists of network
nodes, peers, that can insert, store, and retrieve objects using similarity queries.
The GHT* architecture assumes that:

– Peers communicate through the message passing paradigm. For consistency
reasons, each request message expects a confirmation by a proper acknowl-
edgment message.

– Each peer participating in the network has a unique Network Node IDentifier
(NNID).

– Each peer maintains data objects in a set of buckets. Within a peer, the
Bucket IDentifier (BID) is used to address a bucket.

– Each object is stored exactly in one bucket.

3

An essential part of the GHT* structure is the Address Search Tree (AST). In
principle, it is a structure based on the Generalized Hyperplane Tree (GHT) [8],
which is one of the centralized metric space indexing structures. In the GHT*,
the AST is used to actually navigate to the (distributed) buckets when data
objects are stored and retrieved.

3.2 Address Search Tree

The AST is a binary search tree, where its inner nodes hold routing information
and the leaf nodes represent pointers to the data. Specifically, the inner nodes
always store a pair of pivots – these are some representative metric objects from
the data-set – and respective pointers to the left and the right subtrees. An
example of AST can be seen in Figure 1b. When searching for a place where
to store a new object, we start in the root and compute distances between the
inserted object and the pivots. If the distance to the first pivot is smaller than the
distance to the second pivot, we navigate to the left subtree of that inner node,
otherwise, the right subtree is considered. This process is recursively repeated
until a leaf node is reached.

The data objects are stored in buckets that are held either locally (thus we
can address the bucket by its BID) or on another peer, which can be identified by
a proper NNID. Therefore, the AST has always one of those two types of pointers
in leaf nodes. Whenever the navigation procedure reaches the leaf node of the
AST, the inserted object is stored either locally in the respective bucket (if a BID
identifier is found) or on a remote peer (if an NNID identifier is encountered).

In order to avoid hot-spots caused by the existence of a centralized node
accessed by every request, a form of the AST structure is present in every peer.
Due to the autonomous update policy, the AST structures in individual peers
may not be identical – with respect to the complete tree view, some sub-trees
may be missing. However, the GHT* provides a mechanism for updating the
AST automatically during the insertion or search operations.

Bucket

NNID or BID

Inner node

Legend:

Peer 2 Peer 3

Peer 1

< p1, p2 >

↙ ↘
< p3, p4 > < p5, p6 >

↙ ↘ ↙ ↘
b1 b1 b3 n1

Fig. 1. The GHT* network (a) and an example of Address Search Tree (b)

Figure 1a illustrates the AST structure in a network of three peers. The
dashed arrows from the leaves indicate the NNID pointers while the solid arrows

4

represent the BID pointers. In case of identical ASTs on all peers, each peer
knows all its neighbors having data and the proper routing is done just in one
step. However, the growth of replication is linear. The GTH* is also able to use
the so called logarithmic replication scheme where the replicated data grows in
a logarithmic way. In this case, each peer knows only few neighbors by keeping
complete AST paths only to its local buckets. With such scheme, the routing
is logarithmic in the worst case. In the following, we introduce a notation and
operators, which will help us to define the insertion and search algorithms more
precisely.

Address Search Tree Notation

Definition 1. Suppose that LBID is the set of all possible BIDs and LNNID is
the set of all possible NNIDs. The set of all possible ASTs TAST of the data-set
F is formed by the following rules:

– LBID ⊂ TAST ; i.e., every BID pointer is a legal AST.
– LNNID ⊂ TAST ; i.e., every NNID pointer is a legal AST.
– Let 〈p1, p2〉 ∈ F × F . Let Tl ∈ TAST and Tr ∈ TAST . Then the triple
〈〈p1, p2〉, Tl, Tr〉 ∈ TAST .

– The set TAST contains nothing else.

Observe that every T ∈ TAST is a rooted binary tree, where leaf nodes are
elements of LBID or LNNID and the inner nodes are the pairs 〈p1, p2〉. Every
inner node contains two pointers: one to the left subtree (Tl) and one to the
right subtree (Tr). For example, given the metric objects p1, p2, p3, p4, p5, p6, the
BIDs b1, b2, b3, and the NNID n1, a possible address search tree T ∈ TAST

of three levels could be: 〈〈p1, p2〉, 〈〈p3, p4〉, b1, b2〉, 〈〈p5, p6〉, b3, n1〉〉, as Figure 1b
illustrates.

Definition 2. Let r(T) be the function that returns the root node of the tree
T ∈ TAST . In particular, the node returned by r(T) is a pair 〈p1, p2〉, a BID
pointer, or a NNID pointer.

Definition 3. We represent a path of a generic tree T ∈ TAST , called BPATH,
with a string of n binary elements {0, 1}: p = (b1, b2, . . . , bn). Given a BPATH
p, the function S(T, p) returns the subtree reached by p on the tree T , as in the
following

S(T, ()) = T

S(〈〈p1, p2〉, Tl, Tr〉, (b1, . . . , bn)) =

{
S(Tl, (b2, . . . , bn)) if b1 = 0
S(Tr, (b2, . . . , bn)) if b1 = 1

Let p = (p1, . . . , pn) and s = (s1, . . . , sm) be two BPATHs, the concatenation
operator + is defined as p+s = (p1, p2, . . . , pn, s1, s2, . . . , sm). The concatenation
operator can be easily extended for sets of BPATHs. Let Q = {q1, q2, . . . , qn} be
the set of BPATHs, then p + Q = {p + q1, p + q2, . . . , p + qn}.

5

Pruning mechanism In order to search in an AST T , we need an algorithm
able to execute a query in the tree. For this purpose we define the traversing
operator Ψ . In principle, the operator examines every inner node (i.e. nodes with
pairs of two pivots 〈p1, p2〉) and it decides which subtree to follow. Such pruning
is based on the well known generalized hyperplane principles from [8].

Definition 4. Given an AST T , a metric object q, and a non negative real
number ρ, the traversing operator Ψ(T, q, ρ) returns a set of BPATHs as follows:

Ψ(lbid, q, ρ) = {()}
Ψ(lnnid, q, ρ) = {()}

Ψ(〈〈p1, p2〉, Tl, Tr〉, q, ρ) =





(0) + Ψ(Tl, q, ρ) if d(p1, q)− ρ ≤ d(p2, q) + ρ

(1) + Ψ(Tr, q, ρ) if d(p1, q) + ρ > d(p2, q)− ρ

(0) + Ψ(Tl, q, ρ)
∪

(1) + Ψ(Tr, q, ρ)
if both conditions qualify

The algorithm Ψ works as follows. If T is only composed of a node n (the
first two conditions of the definition), Ψ(T, q, ρ) corresponds to a single empty
BPATH (). For the other cases, the algorithm recursively traverses T , on the basis
of the query range (q, ρ), as in the search algorithm of the GHT. If for the root
node 〈p1, p2〉 the condition d(p1, q) − ρ ≤ d(p2, q) + ρ holds, we concatenate all
the BPATHs of the Ψ(Tl, q, ρ) to the simple BPATH (0). Whenever d(p1, q)+ρ >
d(p2, q)−ρ, we concatenate all the BPATHs of the Ψ(Tr, q, ρ) to the BPATH (1).
Note that, the conditions can be met simultaneously. When the radius ρ = 0,
which corresponds either to the exact match query or to the process of insertion,
a single BPATH is returned.

3.3 Insert and Range Search Algorithms

Insertion of an object starts at the peer asking for insertion by traversing its
AST from the root to a leaf using the function Ψ with ρ = 0. If a BID pointer is
found, the inserted object is stored in this bucket. Otherwise, the found NNID
pointer is applied to forward the request to the proper peer where the insertion
continues recursively until an AST leaf with the BID pointer is reached.

Algorithm 1
procedure Insert(x, p)

Sp = S(T, p);
{p1} = Ψ(Sp, x, 0);
n = r(S(Sp, p1));
if n ∈ LNNID then

send a request for Insert(x,p1) to peer with NNID n;
if n ∈ LBID then

insert x in local bucket with BID n;

6

Algorithm 1 formalizes this insertion procedure, where x is the inserted ob-
ject and p represents the path in the AST traversed so far (using the BPATH
notation), which is initially empty, i.e. p = (). If the search is forwarded to
another peer, the p parameter contains the BPATH already traversed by the
sending peer.

Algorithm 2
procedure RangeSearch(q,ρ,p)

Sp = S(T, p);
P = Ψ(Sp, q, ρ);
for each pi ∈ P

n = r(S(Sp, pi));
if n ∈ LNNID then

send a request for RangeSearch(q,ρ,pi) to peer with NNID n;
if n ∈ LBID then

search (q, ρ) in local bucket with BID n;
end for each

By analogy to insertion, the range search also starts by traversing the local
AST of the querying peer. The AST is traversed by using the operator Ψ with the
query object q and the search radius ρ. As already explained, the function Ψ can
assign both the sub-trees as qualifying. For all qualifying paths having a NNID
pointer in their leaves, the query request is recursively forwarded (including its
known BPATHs) to the respective peers until a BID pointer occurs in every leaf.

4 Searching for Nearest Neighbors

Whenever we want to search for similar objects using the range search, we must
specify the maximal distance of objects that qualify. However, it can be very
difficult to specify the radius without some knowledge about the data and the
used metric space. For example, the range ρ = 3 of the edit distance metric
represents less than four edit operations between the two strings, which has a
clear semantic meaning. However, a distance of two color-histogram vectors of
images is a real number, which cannot be so easily quantified. When a too small
query radius is specified, the result set can even be empty and a new search
with a larger radius is needed to get a result. On the other hand, queries with
too large query radii might be computationally expensive, and the response sets
might contain many not significant objects.

An alternative way to search for similar objects is to use the nearest neighbors
queries. Such queries guarantee the retrieval of k most relevant objects, that is
the set of k objects with the shortest distances to the query object q. Though the
problem of executing k nearest neighbors (kNN) queries is not new and many
algorithms have been proposed in the literature, see for example [9] for many
references and additional readings, the distributed kNN query processing have
not been systematically studied.

7

4.1 kNN Search in GHT*

In principle, there are two basic strategies how the kNN queries can be evaluated.
The first strategy starts with a very large query radius, covering all the data
in a given data-set, to identify a degree to which specific regions might contain
searched neighbors. Such information is stored in a priority stack (queue) so that
the most promising regions are accessed first. As objects are found, the search
radius is reduced and the stack adjusted accordingly. Though this strategy never
accesses regions not intersecting the query region that is bound by the distance
to the k-th nearest neighbor of the query, the processing of regions is strictly
serial. On a single computer, the approach is optimum [9], but not convenient for
distributed environments aiming at exploiting parallelism. The second strategy
starts with the zero radius to locate the first region to explore and then extends
the radius to locate other candidate regions, if the result set is still not correct.
In this article, we adopt the second approach.

4.2 kNN Algorithm

In our algorithm, we first search for the bucket with a high probability of the
occurrence of the nearest neighbors. In particular, we access the bucket in which
the query object would be stored using the insert operation. In the accessed
bucket, we sort its objects according to their distances with respect to q. As-
sume that there are at least k objects in the bucket, so the first k objects, i.e.
the objects with the shortest distances to q, are the candidates for the result.
However, there may be other objects in different buckets that are closer to the
query than some of the candidates. In order to control, we issue a similarity
range search with the radius equal to the distance of the k-th candidate. In this
way, we get a set of objects of the cardinality always greater than or equal to
k. If we sort all the retrieved objects and retain the first k with the shortest
distances, we get the exact answer to the query.

If less than k objects are found in the first accessed bucket, other strategy
must be applied because we do not know the upper bound on the distance to the
k-th nearest neighbor. We again execute the range search operation, but we have
to estimate the radius. If we get enough objects from the range query (at least
k), we are done – the result is again the first k objects from the sorted result of
the range search. Otherwise, we have to expand the radius and try again (i.e.
iterate) until enough objects are received. There are two possible strategies how
to estimate the radius.

Optimistic strategy The objective is to minimize the costs, i.e. the number of
accessed buckets and distance computations, by using a not very large radius,
at the risk that more iterations are needed if not enough objects are found. In
the first iteration we use the bounding radius of the candidates, i.e. the distance
to the last candidate, despite of the fact that we have less than k candidates.
The optimistic strategy hopes that there are enough objects in the other buckets
within this radius. Let x be the number of objects returned from the last range

8

query. If x ≥ k, we are done, otherwise, we expand the radius to ρ + ρk−x
k and

iterate again.

Pessimistic strategy The estimated radius is chosen rather large so that the prob-
ability of next iteration is minimum, risking excessive (though parallel) bucket
accesses and distance computations. To estimate the radius, we use the distance
between pivots of the inner nodes, because the pivot selection algorithm (de-
scribed in [7]) chooses pivots as the most distant pair of objects available. More
specifically, the pessimistic strategy traverses the AST from the leaf with the
pointer to the bucket up to the tree root and applies the distance between piv-
ots as the range radius. Every iteration climbs one level up in the AST until
the search terminates or the root is encountered. If there are still not enough
retrieved objects, the maximum distance of the metric is used and all the objects
in the structure are evaluated.

Algorithm 3
procedure kNN(q,k,p)

Sp = S(T, p);
{p1} = Ψ(Sp, x, 0);
n = r(S(Sp, p1));
if n ∈ LNNID then

send a request for kNN(q,p1) to peer with NNID n;
if n ∈ LBID then

compute distances to all objects in local bucket with BID n;
A = sort object using the distances, smallest first;
do

ρ = EstimateRadius(); // Using some strategy
O = RangeSearch(q, ρ, ());
insert sort objects O into A using distances computed by the range search;

repeat until |A| < k
end if

4.3 Implementation issues

As an extension of the algorithms above, several optimization strategies have
been implemented. To avoid multiple accesses to the same buckets, the so called
BPATH sets are used during the range searches in the kNN iterations. In par-
ticular, if the distances to all objects in a bucket are evaluated during a range
search, this bucket is never accessed again in the following iterations. Naturally,
the first bucket (the one with candidate objects) is never searched twice.

If objects are sent during the query evaluation, the computed distances are
always appended. Therefore the peer, which is sorting the result set, never re-
peats distance computations and only performs a rather quick merge sort of the
distances. Unless necessary, we send between peers object identities and not the
whole objects, which can be large. Recall that a range search can return more
than k objects. In this way, the peer which initiated the query, only receives the
matching objects and not all the intermediate results.

9

5 Performance Evaluation

In this section, we present results of performance experiments that assess differ-
ent aspects of our GHT* prototype implemented in Java. We have conducted
our experiments on two real-life data-sets. First, we have used a data-set of
45-dimensional vectors of color image features with the L2 (Euclidian) metric
distance function (VEC). This data-set have a normal distribution of distances
and every object has the same size (45 numbers). The second data-set is formed
by sentences of the Czech national corpus with the edit distance function as the
metric (TXT). The distribution of distances in this data-set is rather skewed –
most of the distances are within a very small range of values. Moreover, the size
of sentences varies significantly. There are sentences with only a few words, but
also quite long sentences with tenths of words.

For the experimental purposes, we have used 100 independent computers
(peers) connected by a high-speed network. Essentially, every peer provides some
computation capacity, which is used during the object insertion and the query
evaluation. We have used some of the peers to insert the data and the others
to execute queries. The number of peers storing the data was automatically
determined by the size of the data-set, because the number and capacity of
buckets on individual peers was constant.

Notice that our prototype uses the simplest bucket structure – a linked list of
objects – which needs to examine every object in a bucket in order to solve the
query. By applying a metric index on individual peers, the performance would
significantly improve.

5.1 Performance Characteristics

In our experiments, we have measured different performance related characteris-
tics of the query evaluation. In order to quantify the CPU costs, we have counted
the number of distance computations necessary to evaluate a nearest neighbor
query. The number is the sum of the computations incurred during the naviga-
tion (i.e. while searching in the AST) and the computations necessary to evaluate
the query in the accessed buckets. The total number of distance computations
corresponds to the number of distance computations that would be needed in
a centralized environment. The parallel cost is the maximal number of distance
computations evaluated on a peer or a set of peers accessed serially. As we have
already explained, the evaluation algorithm for a kNN query consists of sequen-
tial steps. At the beginning we have to find the first bucket and examine its
objects (see Section 4.2), then, we iterate using the range search with the esti-
mated radii. Naturally, the distance computations evaluated during these steps
must be considered serial.

We also measured the number of accessed buckets, which are of a limited
capacity. In our experiments, we have used a maximum of 2,000 objects per
bucket and maximally 5 buckets per a peer. The average bucket occupation was
about 50%. We have measured the total number of buckets accessed during a
query and the number of buckets accessed per a peer.

10

Finally, we have measured the number of messages exchanged between peers.
The total number of messages can be seen as a representation of the network
load. However, most of the messages are sent in parallel, because one peer can
send a message to multiple peers. In specific situations, a peer must forward a
message to a more appropriate peer. The number of those forwardings is usually
called the hop count. In our experiments, we have measured the maximal hop
count to execute a query. The hop count represents the sequential part of the
message passing process, i.e. its parallel cost.

We do not use the execution time of the query evaluation as the relevant
measure, because there are many factors (such as the speed of peer processors,
the congestion of the network, the load of peers, etc.) that can directly influence
the execution time of a query.

For comparison reasons, we also provide the costs of a range search for every
experiment. The radius ρ is adjusted so that it represents the minimal bounding
radius of the set of objects returned by the corresponding kNN query.

Every value in the graphs represents the average obtained from execution of
50 queries with different query objects and fixed k. We only show results for the
pessimistic strategy, but with 1,000 objects per bucket on average, the strategy
was only applied for evaluating queries with k > 1, 000. In such situation, nearly
all the objects in the data-set had to be accessed to solve the query. Therefore,
the performance of the optimistic strategy was practically the same.

5.2 kNN Search Performance

In this set of experiments, we have analyzed the performance of the kNN search
with respect to different k on data-sets of 10, 000 objects. Results are summarized
as graphs in Figure 2 for the VEC and Figure 3 for the TXT data-sets. Our
experiments show that the parallel costs of our kNN queries remain quite stable
for the increasing k while the total costs (note that graph values are divided by
10 and the x axis has a logarithmic scale) grow very quickly with the number
of neighbors k. Note that, for k values greater than 100 for VEC (and values
over 10 for TXT) almost all the objects had to be accessed and the distances to
the query objects computed. However, this is not a general observation and it
is strictly dependent on the distance distribution in the processed data. In the
figures, we also show the costs of the corresponding range search, that is the
range search with the radius equal to the distance of the k-th nearest neighbor.
Naturally, the performance is better, but the overhead incurred by the kNN
algorithm seems to be constant, not dependent on the value of k.

5.3 kNN Search Scalability

The effect of growing data-sets on the performance of queries (i.e. the scalability)
is usually the worst problem with the centralized metric indices. For example,
experiments with the D-Index [6] structure using the same TXT data-set have
shown that a kNN query takes around 4 seconds for the data-set size of 10,000
and about 40s seconds for the size of 100,000 objects (sentences) – the increase

11

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 100 1000 10000

di
st

an
ce

 c
om

pu
ta

tio
ns

k

kNN total/10
kNN parallel
range total/10
range parallel

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 100 1000 10000

bu
ck

et
s

ac
ce

ss
ed

k

kNN total/10
kNN parallel
range total/10
range parallel

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000 10000

m
es

sa
ge

s
se

nt

k

kNN total
kNN hop count
range total
range hop count

Fig. 2. Dependence of different costs on k for the VEC data-set.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 10 100 1000 10000

di
st

an
ce

 c
om

pu
ta

tio
ns

k

kNN total/10
kNN parallel
range total/10
range parallel

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000 10000

bu
ck

et
s

ac
ce

ss
ed

k

kNN total/10
kNN parallel
range total/10
range parallel

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100 1000 10000

m
es

sa
ge

s
se

nt

k

kNN total
kNN hop count
range total
range hop count

Fig. 3. Dependence of different costs on k for the TXT data-set.

of the search costs in a centralized structure is linear with respect to the size of
the data-set. Our experiments with the GHT* exhibit nearly constant parallel
costs even when the data-set grows. Contrary to the D-Index, we have always
achieved the response time around 2 seconds.

The leftmost graphs in Figures 4 and 5 confirm the scalability of the GHT*
considering the number of distance computations – the cost around 4,000 compu-
tations remains stable even for the full data-set of 100, 000 objects. The middle
graphs show the number of forwarded messages, which in fact represent the num-
ber of peers actually addressed. This number is increasing, because more peers
are used to store the data, therefore more peers have to be accessed in order to
solve the query. The hop count, shown in the last graph, is slowly rising with
the growing data-set. Compared to the range search, the values for the kNN are
higher, because there is always the overhead with locating the first bucket. The
observed increase of the number of hops seems to be logarithmic.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20000 40000 60000 80000 100000

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

objects

3 NN
100 NN
1000 NN
range for 3 NN
range for 100 NN
range for 1000 NN

 0

 5

 10

 15

 20

 25

 30

 20000 40000 60000 80000 100000

m
es

sa
ge

 f
or

w
ar

ds

objects

3 NN
100 NN
1000 NN
range for 3 NN
range for 100 NN
range for 1000 NN

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 20000 40000 60000 80000 100000

m
ax

im
al

 h
op

 c
ou

nt

objects

3 NN
100 NN
1000 NN
range for 3 NN
range for 100 NN
range for 1000 NN

Fig. 4. The scalability of GHT* while resizing the VEC data-set

12

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20000 40000 60000 80000 100000

pa
ra

lle
l d

is
ta

nc
e

co
m

p.

objects

3 NN
100 NN
1000 NN
range for 3 NN
range for 100 NN
range for 1000 NN

 0

 5

 10

 15

 20

 25

 30

 35

 20000 40000 60000 80000 100000

m
es

sa
ge

 f
or

w
ar

ds

objects

3 NN
100 NN
1000 NN
range for 3 NN
range for 100 NN
range for 1000 NN

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 20000 40000 60000 80000 100000

m
ax

im
al

 h
op

 c
ou

nt

objects

3 NN
100 NN
1000 NN
range for 3 NN
range for 100 NN
range for 1000 NN

Fig. 5. The scalability of GHT* while resizing the TXT data-set

6 Conclusions

To the best of our knowledge, the problem of distributed index structures sup-
porting the execution of the nearest neighbors queries on metric data sets has
not been studied yet. The GHT* structure stores and retrieves data from do-
mains of arbitrary metric spaces and satisfies all the necessary conditions of the
scalable and distributed data structures. It is scalable in that it distributes the
structure over more and more independent peer computers. The parallel search
time for kNN queries becomes practically constant for arbitrary data volume,
and the hop count grows logarithmically. It has no hot spots – all clients and
servers use as precise addressing scheme as possible and they all incrementally
learn from misaddressing during insertion or search. Finally, node splits are per-
formed locally without sending multiple messages to many other peers.

Our future work will concentrate on strategies for updates (object deletion),
pre-splitting policies, and more sophisticated strategies for organizing buckets.
An interesting research challenge is to consider other metric space partitioning
schemes (not only the generalized hyperplane) and study their suitability for
implementation in distributed environments.

References

1. Litwin, W., Neimat, M.A., Schneider, D.A.: LH* - a scalable, distributed data
structure. ACM TODS 21 (1996) 480–525

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proc. of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications. (2001) 161–172

3. Li, X., Kim, Y.J., Govindan, R., Hong, W.: Multi-dimensional range queries in
sensor networks. In: Proceedings of the First International Conference on Embedded
Networked Sensor Systems. (2003) 63–75

4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Surveys 33 (2001) 273–321

5. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM
Trans. Database Syst. 28 (2003) 517–580

6. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index
for metric data sets. Multimedia Tools and Applications 21 (2003) 9–13

13

7. Batko, M., Gennaro, C., Savino, P., Zezula, P.: Scalable similarity search in met-
ric spaces. In: Digital Library Architectures: Peer-to-Peer, Grid, and Service-
Orientation, Pre-proceedings of the Sixth Thematic Workshop of the EU Network of
Excellence DELOS, S. Margherita di Pula, Cagliari, Italy, 24-25 June, 2004, Edizioni
Libreria Progetto, Padova (2004) 213–224

8. Uhlmann: Satisfying general proximity / similarity queries with metric trees. IPL:
Information Processing Letters 40 (1991) 175–179

9. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans.
Database Syst. 24 (1999) 265–318

14

