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A B S T R A C T

Lung cancer is the leading cause of cancer deaths nowadays and its early detection and treatment plays an
important role in survival of patients. The main challenge is to acquire an accurate diagnosis in a limited time
and without the need of massive computing power. Here, we propose SqueezeNodule-Net, a light and accurate
convolutional neural network (CNN) that can rapidly classify nodules into malignant and benign, requiring
only a mid-range computing system. It is based on the compact CNN model SqueezeNet and its Fire Module,
whose structure we modified in two different ways and compared them with state-of-the-art models. We used
888 CT scans from the public dataset LUNA16 from which, after appropriate preprocessing, we generated
2D 50 × 50 images of benign and malignant nodules. We, also, produced 3D images in order to prove that
our models can run successfully with more spatial information by using the same computing system. For
2D images, SqueezeNodule-Net V1 achieves 93.2% accuracy, 94.6% specificity and 89.2% sensitivity, while
the SqueezeNodule-Net V2 achieves 94.3% accuracy, 95.3% specificity and 91.3% sensitivity. In 3D space,
SqueezeNodule-Net V1 gives 94.3% accuracy, 96.0% specificity and 87.4% sensitivity, while SqueezeNodule-
Net V2 gives 95.8% accuracy, 96.2% specificity and 90.2% sensitivity. Overall, compared to Squeeze-Net,
SqueezeNodule-Net V1 is 1.2–1.06 times smaller, 1.31–1.5 times faster and has 0.8–2.5 better classification
performance, while SqueezeNodule-Net V2 is 1.4–1.5 time larger, 0.04–1.5 times faster and has 0.1–2.7 times
better classification performance.
. Introduction

Lung Cancer is the leading cause of cancer deaths among both
en and women worldwide (Siegel, Miller, Fuchs, & Jemal, 2021).
rognosis for patients is poor, with 5-year survival rate for all types of
ung cancer being 21% (Siegel et al., 2021). However, early detection of
ung nodules is currently one of the most effective ways to predict and
reat the disease, reducing the mortality rate. Lung nodule is an early
linical sign of lung cancer and low dose Computed Tomography (CT) is
idely considered to be the most used approach for early screening (Cui
t al., 2020). Early detection of lung cancer significantly improves the
hances for survival, but it is a challenging task to detect early stages
f lung cancer as patients present a few, or even no symptoms (Choi &
hoi, 2013).

Convolutional Neural Networks (CNN) have emerged in recent years
s the state-of-the-art approach in computer vision tasks, such as image
lassification (Krizhevsky, Sutskever, & Hinton, 2012), object recogni-
ion (Su, Li, & Chen, 2021) and detection methods (Redmon, Divvala,
irshick, & Farhadi, 2015), achieving high classification performance

Krizhevsky et al., 2012; Redmon et al., 2015; Su et al., 2021). CNN is
neural network model, typically composed of three types of layers:

onvolution, pooling, and fully connected layers, with the first two

∗ Corresponding author at: Computer Engineering and Informatics Department, University of Patras, Rio, Patras, 26504, Achaia, Greece.
E-mail addresses: up1048623@upnet.gr (M. Tsivgoulis), papastergiou@ceid.upatras.gr (T. Papastergiou), vasilis@ceid.upatras.gr (V. Megalooikonomou).

types of layers performing feature extraction sequentially while the
last maps the extracted features into the final classification output
(Yamashita, Nishio, Do, & Togashi, 2018).

In the last decade, machine learning has been increasingly used
for Computer-Assisted Diagnosis (CAD) to analyze medical images in
various fields (Mathews, 2019). The architecture of a nodule CAD
system typically consists of three stages: (1) nodule candidates’ detec-
tion (2) false positive reduction and (3) nodule classification. In the
nodule detection stage, the main goal is to recognize as many candidate
nodules as possible, as this will contribute to an accurate diagnosis and
possibly to an increase in the survival rate. This procedure results in
many false positive nodules; therefore stage 2 aims at the significant
reduction of false positive samples. The nodule classification stage, is
the final step determining whether the nodule is malignant or benign,
playing a major role in the performance of CAD systems.

There are several papers reporting various types of deep learning
models aiming to improve the accuracy of CAD systems (Cao, Wu,
Cao, & He, 2020). The major challenge remains the balance between
classification performance, computational resources consumption and
training times, with the two later being inversely proportional to clas-
sification performance. For this reason, our study, based on the deep
learning model SqueezeNet (Iandola et al., 2016) that was proposed
ttps://doi.org/10.1016/j.mlwa.2022.100399
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as a compact version of AlexNet, proposes a lighter model structure
containing fewer trainable parameters, with comparable classification
performance.

SqueezeNet is pre-trained for image classification on the ImageNet
Dataset (Deng et al., 2009). A smaller CNN architecture provides ad-
vantages such as reduced communication costs in a distributed training
setting and is more suitable for deployment on memory-constrained
devices such as Field-Programmable Gate Arrays (FPGAs). Two variants
(with a simple and a complex bypass) of SqueezeNet has been proposed
(Iandola et al., 2016) with the former achieving the best classification
performance. However, the purpose of our work is to make SqueezeNet
even simpler, faster, and more efficient.

We introduce SqueezeNodule-Net, a compact and fast, regarding
training time, model, which is a simplified version of SqueezeNet.
Our model classifies 2D and 3D, preprocessed low-dose CT scans of
lung nodules, in two classes: malignant and benign. SqueezeNodule-Net
consists of a lighter, than SqueezNet’s, Fire Module and comes in two
versions, with the first one performing less ‘‘expand’’ and the second
one less ‘‘squeeze’’ of the input. The first version was intended to be
more compact than SqueezeNet, while the second focused mainly on
achieving better classification performance. Despite that SqueezeNet
was trained on the ImageNet database images (Deng et al., 2009; Ian-
dola et al., 2016), we chose to train the networks from scratch without
relying on the pre-trained weights as our classification task is targeted
to lung nodules, a specific task different than the generic classification
on ImageNet. The dataset used comes from LUNA16 Grand challenge
(Setio et al., 2017), a publicly available dataset that contains 888 Low-
dose CT scans in mhd+raw format. Data where, firstly, preprocessed
using undersampling, segmentation of the lungs using threshold, region
of interest centering, and augmentation. A 5-Fold Cross Validation
technique was used to evaluate our models.

In the 2D setting, SqueezeNodule-Net V1 had 1.2 times fewer pa-
rameters, achieving better runtime performance (1.5 times faster) and
better classification performance (0.8–2.5%) with respect to all inves-
tigated evaluation metrics, compared to SqueezeNet. SqueezeNodule-
Net V2 was 1.5 times larger but also 1.5 times faster than our first
version, while achieving improved classification results (0.7–2.1%).
SqueezeNodule-Net V2 was compared to state-of-the-art CNNs, such
as LeNet-5, DenseNet-121, ResNet-50 and VGG-11. As it was found,
training times were shorter (2.1 to 7.8 times faster) and classification
results were better (1.1–13.4%) in all evaluation metrics.

In the 3D data setting, SqueezeNodule-Net V1 is 1.06 times smaller,
has similar classification performance, but is 1.31 times faster than
SqueezeNet. SqueezeNodule-Net V2 is 1.4 times larger than
SqueezeNodule-Net V1, almost similar in training times (0.04 times
faster) but achieves better classification performance (0.1–2.7%). Once
again, SqueezeNodule-Net V2 was evaluated against state-of-the-art
models in the 3D setting. It was observed, that SqueezeNodule-Net
V2 was much faster in training (from 4.5 to 21 times), having fewer
trainable parameters (from 4.5 to 18.5 times), while classification
results were better in all investigated evaluation metrics (0.4–6.6%
more), with the exception of LeNet-5 that was 5.8 times faster and
7.8 times smaller compared to our model, but without achieving better
accuracy.

For the sake of completeness, we tested our models also on bench-
mark datasets such as Cifar-10 and MNIST. SqueezeNodule-Net V2 had
the best accuracy on Cifar-10 (82.5%) and MNIST (99.1%) datasets.
SqueezeNodule-Net V1 was the next best performing model on Cifar-10
(81.5%) and third on MNIST (99.0%) as far as accuracy is concerned.
It is also noteworthy that both models were approximately 1.04 to 2.62
times faster compared to the other models.
2

The contributions of this paper can be summarized as follows:

1. SqueezeNodule-Net V1 and V2 are proposed, by modifying
SqueezeNet’s (Iandola et al., 2016) core module, the Fire Mod-
ule, that is more compact and faster than SqueezeNet in both 2D
and 3D image models.

2. SqueezeNodule-Net V1 and V2 improve accuracy by 1.2–2.3%,
specificity by 0.8–1.5% and sensitivity by 2.5–4.6% of the
SqueezeNet model on 2D images of nodules.

3. SqueezeNodule-Net V1 has 15.8% fewer parameters and per-
forms better in terms of classification and running time per-
formance than SqueezeNet. Furthermore, despite the fact that
SqueezeNodule-Net V2 has 23.0% more parameters than
SqueezeNet, it outperforms SqueezeNet in terms of classification
performance and requires significant less epochs to converge,
performing better in terms of running time also.

4. The proposed models in the 3D images setting achieve the same
or better accuracy (+1.4%), specificity (+0.1%) and sensitiv-
ity (+2.7%) than SqueezeNet3D. SqueezeNodule-Net3D V1 is
6.2% smaller in size than SqueezeNet3D as well as 1.31x faster.
SqueezeNodule-Net3D V2 is 37.3% larger in size but due to fast
convergence is 1.35x faster than SqueezeNet3D.

5. The proposed models outperform, in most of the cases, state-of-
the-art models such as LeNet-5, VGG-11, ResNet-50 and
DenseNet-121 in terms of classification and running time per-
formance.

In Section 2 related work on the topic is covered while in Sec-
tion 3 the methodology of the proposed SqueezeNodule-Net model and
SqueezeNodule-Net’s V1 and V2 architecture is described. The descrip-
tion of the dataset used, the preprocessing procedure on the specific
dataset is covered in Section 4 and the results of our experiments in 2D
and 3D image space are discussed in Section 5. Finally, Sections 6 and
7 conclude the paper.

2. Related work

In recent years, CNN-based methods have been used a lot to improve
CAD systems. Most of the CAD systems for early lung cancer detection
include three stages: (1) nodule candidate detection; (2) false positive
reduction and (3) nodule classification.

Segmentation of lungs, (i.e. detecting and isolating the lung lobes),
and lung nodules detection (i.e. the detection of presence and the deter-
mination of the region of interest of a nodule) is an important procedure
in a CAD system when it comes to the diagnosis of malignant lung
nodules (Lee, Kouzani, & Hu, 2012). Various methods have been pro-
posed including traditional methods (Kamble, Sahu, & Doriya, 2020)
as well as deep learning methods (Gite, Mishra, & Kotecha, 2022).
Classical methods for lung segmentation include 3D Region Growing
(Medeiros da Nobrega, Rodrigues, & Filho, 2017), Non-Negative Ma-
trix Factorization with constraints (Hosseini-Asl, Zurada, Gimelfarb,
& El-Baz, 2016), Adaptive Crisp Active Contours (Rebouças Filho,
Cortez, da Silva Barros, Albuquerque, & Tavares, 2017), Automatic
Lung Segmentation using thresholds and morphologic operations (Nery,
Silva, Ferreira, & Caramelo, 2012) etc. Furthermore, lung segmentation
methods can be classified in three major categories fowling (Shaukat,
Raja, & Frangi, 2019): deformable boundary-based techniques, edge-
based techniques and threshold-based techniques. For an elaborated
comparison of classical techniques, the interested read can refer to
(Shaukat et al., 2019).

In the frame of deep learning methods various approaches have
been proposed (Gite et al., 2022; Krizhevsky et al., 2012). Deep neural
networks architectures like 2D CNNs (employing a U-net architecture
for segmenting lungs from X-rays) as in (Gordienko et al., 2019) or
3D CNN networks as in (Alakwaa, Nassef, & Badr, 2017; Hamidian,

Sahiner, Petrick, & Pezeshk, 2017) where a 3D CNN is trained for
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Table 1
Performance comparison of state-of-the-art models on the LUNA-16 dataset.

Method Acc. Spec. Sens. CPM Remarks

(Yuan, Fan, Wu, & Cheng, 2021) 0.956 0.998 0.812 0.881 Training Time =∼48 h
(Zhang, Lin, & Wang, 2021) 0.924 0.96 0.87 – –
(Zhang et al., 2020) 0.9167 – – – –
(Mastouri, Khlifa, Neji, & Hantous-Zannad, 2021) 0.9199 0.9227 0.9185 – –
(Liao, Liang, Li, Hu, & Song, 2019) 0.8142 – – – AUC = 0.87
(Utkin, Meldo, Kovalev, & Kasimov, 2019) 0.918 – 0.908 – Precision = 0.926
(Wang & Chakraborty, 2019) – – – – Training Time per epoch = 4 h
detecting automatic lung nodules by using volumes of interest and
then converted to a 3D Full convolutional Network that can generate
efficiently in a single pass the scores for the entire volume, have be
proven very efficient. U-net has been employed efficiently for lung seg-
mentation in different contexts e.g. for tuberculosis detection (Rahman
et al., 2020) or for quantification of COVID-19 infections from CTs
(Diniz et al., 2021). Furthermore, a 3D model (V-net) combined with
a Spatial Transformation Network has been employed for pulmonary
parenchyma segmentation (Zhao et al., 2021). These segmentations
where then employed for extracting radiomics features from the seg-
ments in order to distinguish between COVID-19 from community
acquired pneumonia and healthy subjects. Finally, U-net combined with
Variational Autoencoders have been employed for lung segmentation
from X-rays images, with promising results (Cao & Zhao, 2021).

For the nodule classification problem, Yang, Yu, and Wang (2016)
developed a 2D deep Convolutional Neural Network (CNN) using 5
different datasets. The datasets were a combination of real and artificial
nodules they created in order to verify the role of enlarging the dataset
and the relevance of artificial nodules. Furthermore, Zhang, Zhang,
Zhao, Wei, and Zhang (2018) used a current ResNet and 2.5D view of
CT Images. The 2.5D view images are constructed by the 2D images, re-
sampled from the original 3D CT images, through three different planes,
i.e., coronal plane, sagittal plane and axial plane, converting to a RGB
three-channel image. Also, Xie et al. (2019) performed a 3D multi-
view knowledge-based collaborative (MV-KBC) deep model, which was
built with three pre-trained ResNet-50 networks, for extracting multiple
features from nine planes and diagnosing malignant nodules. Overall,
in recent years, several algorithms have been developed for CAD system
optimization. The interested reader is referred to the recent review
papers (Cao et al., 2020; Li, Xiao, Huang, Hassan, & Huang, 2022).

The LUNA-16 dataset, used in this study, was lunched for the Lung
Nodules Analysis 16 (LUNA16) challenge, consisting of two different
tasks: (1) a complete system for nodule detection and (2) a false
positive reduction task (i.e. a classification task on given Region of
Interest (ROIs) (Setio et al., 2017). For the nodule classification task
many recent studies have appeared using the LUNA-16 dataset. Yuan
et al. (2021) proposed a 3D convolutional network, for nodule vs. non-
nodule classification, that extract spatial information using three paths
of different field sizes that are fused later in the model. Although they
reported a Competitive Performance Metric (CPM) score of 0.881, Re-
call of 0.812 Specificity 0.891 and Accuracy 0.956, their model needed
about 48 h of training time and used 10,855 MB of memory. Zhang
et al. (2021) propose a DenseNet architecture comprising 3D filters
and pooling kernels along with data augmentation, for the malignant
vs. benign classification task. They report an accuracy of 92.4%, a
specificity of 96.0% and a sensitivity of 87.0%. Zhang et al. (2020)
proposed a benign vs. malignant nodules classification architecture
using a squeeze-and-excitation network along with aggregated residual
transformations (SE-ResNeXt) modules, for features recalibration and
features reuse. They report an accuracy of 91.67% and an AUC of
0.9563. Mastouri et al. (2021) proposed Bilinear CNN (BCNN) struc-
tures combined with a linear SVM for nodules classification. They used
[VGG16, VGG19] structures, fine-tuned on the dataset (feature extrac-
tion), to build the bilinear architectures and they report an accuracy
of 91.99% a specificity of 92.27% and a sensitivity of 91.85% for the
nodule vs. non-nodule classification task. Liao et al. (2019) proposed a
3

two modules 3D deep U-net-like network architecture: the first module
detects and indicates the suspicious nodules of a patient, while the
second selects the top 5 nodules, according the detection confidence,
calculates the probabilities that the nodules are cancerous and outputs
the cancer probability of each subject in a Multiple Instance Learning
frame, using a leaky noisy-OR gate. The reported classification accuracy
and AUC are 81.42% and 0.87 respectively. In (Utkin et al., 2019) an
ensemble of triple neural networks is proposed, for taking into account
atypical cases of cancer, that operate on 5 histograms characterizing the
shape, the inner and outer structures of the nodules, extracted from the
nodules’ segments. The reported classification results are an accuracy of
91.8%, a Sensitivity of 90.8% and a Precision of 92.6%. Finally, Wang
and Chakraborty in (Wang & Chakraborty, 2019) propose a hierarchical
(sliced) model of recurrent neural networks (RNN), where different lay-
ers can be trained hierarchically, with an addition of selective attention
(alignment). They report in their results that the proposed network
converges much faster in comparison to a 3-D CNN, with the training
time per epoch being 4 h, in comparison of 12 h training per epoch
that needs the 3D-CNN. They, finally, state that both networks need 10
epochs for full convergence. Table 1 summarizes the comparison of the
results of State-of-the-art methods on the LUNA-16 dataset for the task
of the classification of lung nodules.

An important factor in the overall efficiency of the models is the
consumption of resources and time. A complex and large model has
the limitation of requiring large computational effort. SqueezeNet was
invoked to solve this problem so that it can also run on mobile systems.
Initially, it was used to classify 227 × 227 × 3 images from the
ImageNet dataset, with similar accuracy to the well-known AlexNet
model (Iandola et al., 2016), but there exist some papers where it is
used for other types of images, such as medical images. Some of these
works present a modified version of Squeeze-Net. For instance, Ucar
and Korkmaz (2020) developed a deep SqueezeNet for rapid diagnosis
of Covid-19 using Bayesian optimization, for tuning hyperparameters,
to improve accuracy. Polsinelli, Cinque, and Placidi (2020) also worked
on Covid-19 using a modified SqueezeNet to improve convergence and
overfitting by adding a Batch Normalization layer between the squeeze
convolution layer and the ReLU layer. Furthermore, Özyurt, Sert, and
Avcı (2020) used SqueezeNet to extract features in MRI images for
brain tumor classification, in combination with the SR-FCM-CNN hy-
brid method. Mobeen-ur Rehman Khan, Abbas, and Danish Rizvi (2019)
used pre-trained SqueezeNet and compared it to VGG19 and AlexNet
for classification of diabetic retinopathy images. Finally, Santos et al.
(2018) reduced the size of SqueezeNet by modifying the 3 × 3 con-
volutions in the SqueezeNet’s Fire Modules and turning them into
Depthwise Separable Convolution.

Besides the special design of neural networks aiming at optimiz-
ing the consumption of resources and time, like MobileNet (Howard
et al., 2017), ShuffleNet V2 (Ma, Zhang, Zheng, & Sun, 2018) or in
(Zhao, Sugiyama, Yuan, & Cichocki, 2019) by optimizing their micro-
architecture (e.g., kernel types, low rank approximation etc.), or like
Mnasnet (Tan et al., 2019) or FBnet (Wu et al., 2019) by optimizing
their macro-architecture (e.g., module types) various other approaches
have been proposed that can be categorized into four major classes:
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Fig. 1. The different internal structure of the Fire module in SqueezeNet and SqueezeNodule-Net model.
(1) parameter pruning and quantization, (2) low-rank factorization,
(3) transferred/compact convolutional filters and (4) knowledge dis-
tillation (Cheng, Wang, Zhou, & Zhang, 2017). Pruning can help to
tackle the overfitting problem, regularize and decrease the complexity
of o a network (Gong, Liu, Yang, & Bourdev, 2014). Proposed methods
include works for reducing the number of connections based on the
Hessian of the loss functions (Hassibi & Stork, 1992), for pruning
non-informative weights in pre-trained models (Han, Pool, Tran, &
Dally, 2015) or in training compact models with sparsity constraints
(Wen, Wu, Wang, Chen, & Li, 2016) where sparsity constrains are
used on each layer for reducing redundant filters, channels or lay-
ers. Furthermore, network quantization refers in the compression of
a network by reducing the amount of bits used for representing their
weights. In (Wu, Leng, Wang, Hu, & Cheng, 2016) the authors used
k-means scalar quantization for the parameter values, Vanhoucke et al.
in (Vanhoucke, Senior, & Mao, 2011) show that quantizing the weight
parameters to 8-bit is beneficial in terms of speeding up the training
time of the network without a significant decrease in the classifi-
cation performance. Furthermore, in (Choi, El-Khamy, & Lee, 2016)
the authors use the Hessian weights for measuring the importance of
the network parameters and optimize Hessian-weighted quantization
errors for clustering the network parameters. Another quantization
approach come from (Rastegari, Ordonez, Redmon, & Farhadi, 2016)
where the authors propose XNOR-Net, a network that directly learn
binary weights and activations. For a comprehensive review on the
quantization methods for efficient neural network inferences the in-
terested read may refer to (Gholami et al., 2021). Finally, we present
some real-life applications where compact Deep Neural Networks are
applied in various settings. In (Chen, Lee, Sritapan, & Lin, 2016) the
authors trained a 16-layer CNN on iOS mobile devices on the Ima-
geNet database without compromising the classification performance.
Wu et al. (2016) and Yin et al. (2019) tackled the image classifica-
tion problem using Deep Neural Networks on mobile devices using
quantization, Nagel, Baalen, Blankevoort, and Welling (2019) applied
quantized Deep Neural Networks for semantic segmentation and object
detection while Mishchenko et al. (2019) used quantized CNNs for
small-footprint keyword spotting. The interested reader may refer to
(Nalepa, Antoniak, Myller, Lorenzo, & Marcinkiewicz, 2020) for an

detailed review on quantized models and applications.

4

3. Material and methods

3.1. SqueezeNodule-Net architecture

Here we introduce the SqueezeNodule-Net architecture that comes
in two versions. A lighter version SqueezeNodule-Net V1 and a heavier
version SqueezeNodule-Net V2. The key features of the SqueezeNodule-
Net architecture are described below. The key element to reduce the
model’s total parameters is the Fire Module. As shown in Fig. 1, the
Fire Module of SqueezeNodule-Net (simpfire) and SqueezeNet consists
of 1 × 1 Convolution instead of 3 × 3 Convolution that is employed by
AlexNet, resulting in a 1/9 reduction of the parameters for both models.
This layer is known as the Squeeze layer. In SqueezeNet this layer is
feeding an Expand layer (Fig. 1, left Fire Module) of two convolution
layers with 1 × 1 and 3 × 3 filters, respectively, that increases the
number of channels of the Squeeze layer. This is called a bottleneck
structure. However, in the proposed model the Expand Layer of the
Fire Module has been modified by reducing the number of 1 × 1
Convolutional Layer of the Expand Layer to zero as illustrated in Fig. 1
(right Fire Module).

Intuitively, 1 × 1 convolutions are operating on the filters’ space
without altering the spatial dimensionality of the input layer, since
practically they consist of a scalar (1 × 1) convolution, and they can
be used either to compress (compute reductions (i.e. embeddings) on
filters), if the number of the filters used is less than the dimensionality
of the filters’ space of the input or to expand an input (i.e. mapping
the input to an output of higher dimensionality on the filters’ space), if
the number of filters used in the convolution is higher than the filters’
space dimensionality of the input (Szegedy et al., 2014). In the case of
SqueezeNet’s Fire Module as well as in the proposed lighter Fire Module
(simpfire), the first Squeeze Layer computes a projection of the input
in the filter’s space, in a lower dimensionality filter space, acting as
computing embeddings in the filters’ space. The second Expand Layer
of SqueezeNet computes two different expansions: one the in spatial
and in the filters’ space with a 3 × 3 convolution (as in the proposed
lighter Fire Module) and an expansion on the filters space, by 1 × 1
convolution, resulting, after the concatenation layer, to an output of
twice the number of filters used in the 1 × 1 and 3 × 3 convolutions. In
other words, the embedded input is both expanded in the filters’ and
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in the spatial space by the 3 × 3 convolution and in the filters’ space
by the 1 × 1 convolution. In contrary, in the proposed simpfire module
the expansion occurs only by the 3 × 3 convolution in both the spatial
and the filters’ space. In this way, none information is lost, since the
embedded from the Squeeze layer information on the filters’ space, as
well as the spatial information is expanded by the 3 × 3 Convolution. As
observed experimentally (see Section 5) SqueezeNet’s second expansion
(1 × 1 convolution of the expand layer) can be omitted, since this
does not affect the classification performance of the model, but instead
contributes to a significant reduction of the parameters’ space and
consequently to reduced running times.

To be more explicit, the necessary equations of SqueezeNet (Iandola
et al., 2016) for the proposed models need to be modified. For the im-
age information to be compressed the number of filters in the Squeeze
Layer must be less than the total number of filters in the Expand Layer.
This can be expressed by the inequality:

𝑠𝑖,1×1 < 𝑒𝑖,3×3 (1)

where, 𝑠i,1×1 and 𝑒i,3×3 denote the number of filters of the Squeeze and
the Expand layers respectively, with 𝑖 indicating the Fire Module to
which we are referring to. Inequality (1) results in a limitation on the
number of input channels. The ratio between the number of filters in
Squeeze and Expand layers, named the Squeeze ratio (SR) is defined
by:

𝑆𝑅 =
𝑠𝑖,1×1
𝑒𝑖,3×3

(2)

Eq. (2) suggests that smaller SR values result to larger bottleneck in
he corresponding Fire Module.

The number of the Expand filters of the Fire Module 𝑖 is:

𝑖 = 𝑏𝑎𝑠𝑒𝑒 + (𝑖𝑛𝑐𝑟𝑒 ∗
|

|

|

|

𝑖
𝑓𝑟𝑒𝑞

|

|

|

|

) (3)

ith 𝑏𝑎𝑠𝑒𝑒 indicating the number of the Expand filters in the first
ire Module and 𝑓𝑟𝑒𝑞 the frequency of changing the number of the
xpand filters in the subsequent Fire Modules (e.g., if 𝑓𝑟𝑒𝑞 = 2, the
umber of filters will be changed every 2 Fire Modules). Finally, 𝑖𝑛𝑐𝑟𝑒
s the number of additional Expand filters added after a Fire Module
i.e., after every 𝑓𝑟𝑒𝑞 Fire Modules, the number of Expand filters is
ncreased by 𝑖𝑛𝑐𝑟𝑒). In the Expand layer of the Fire Modules of the
roposed model, there are only 3 × 3 filters. It is true that: 𝑒𝑖 = 𝑒𝑖,3×3

The structure of the proposed architecture is shown in Fig. 2. At
he beginning of SqueezeNodule-Net V1 a convolution layer (conv1) is
ocated, followed by 8 simpfire modules (simpfire2-simpfire9) resulting
n a convolution layer (conv10). Each convolution layer is followed by
ReLU layer.

The number of filters in each simpfire module gradually increases,
s a consequence of Eq. (3). SqueezeNodule-Net’s downsampling, late
n the network, results in convolution layers with large activation maps,
nlike traditional architectures (e.g., VGG) that use early downsam-
ling. Large activation maps result in higher classification accuracy
iven the same number of parameters. At the end of the model instead
f using as usually, Fully Connected layers, we employ Convolutional
ayers, since Fully Connected layers have a large number of parameters
ompared to convolutional layers and are prone to overfitting. For
his reason, in the proposed model, like in the SqueezeNet model, a
lobal average pooling layer is used, which computes a channel-wise
verage over the last convolutional layer. Furthermore, Max Pooling
ayers are used, as indicated in Fig. 2, and since they do not have
ny trainable weights, they do not contribute to the model’s size.
urthermore, Max Pooling layers tend to reduce overfitting of the
odel (Nirthika, Manivannan, Ramanan, & Wang, 2022). Finally, we
se a ‘‘softmax’’ activation function in the output layer to ensure that
he output values are in the range 0 to 1. SqueezeNodule-Net’s Fire
odule (simpfire) consists of 2 groups of hyperparameters, namely 𝑠1×1

nd 𝑒3×3, and since there exist 8 simpfire modules, the proposed model
esults in a total of 24 groups of trainable parameters. Since it is a
5

Fig. 2. The SqueezeNodule-Net for 2D grayscale input (50 × 50 × 1).

binary classification task the last Convolutional Layer (Conv10) consists
of 2 filters.

In the 3D setting, the structure of the SqueezeNodule-Net3D is
similar, with the only difference being the use of 3D Convolution and
Max Pooling Layers in order to accept 3D input.

3.1.1. SqueezeNodule-Net V1
Having mentioned the above, in the proposed model SqueezeNodule-

Net V1, we define the following: 𝑏𝑎𝑠𝑒𝑒 = 64, si,1×1 = 16, 𝑖𝑛𝑐𝑟𝑒 = 128,
𝑟𝑒𝑞 = 2 and 𝑆𝑅 = 0.25.

Unlike SqueezeNet, 𝑏𝑎𝑠𝑒𝑒 = 64 is used instead of 128, because, as
t will be shown experimentally, less expanding the input contributes
o better runtime and classification performance. The Expand Layer of
he proposed Lighter Fire Module employs only 3 × 3 Convolutional
ayers, which implies that the SR will be equal to 0.25, (e.g., in the first
impfire module the Squeeze Ratio is SR = si,1×1

ei,1×1+ei,3×3
= 16

0+64 = 0.25).

.1.2. SqueezeNodule-Net V2
In order to further normalize the bottleneck, a second version is

elivered, which employs a heavier Squeeze Layer (𝑠𝑖,1×1 = 32). The
ncoming information in the simpfire module is increased, a fact that
eads to even less information needed to be retrieved by the Expand
ayer. This results in an increase in the SR, i.e., 𝑆𝑅 = 𝑠𝑖,1×1

𝑒𝑖,1×1+𝑒𝑖,3×3
=

32
0+64 = 0.50.

The last 2 simpfire modules have been set to have SR=0.25. By
decreasing the SR of the last two simpfire modules we end up with
a model employing 23% more parameters than SqueezeNet. On the
contrary, by preserving the 𝑆𝑅 = 0.50 in the last two simpfire modules
we end up with 68% more parameters than these of SqueezeNet. As
will be shown in experiments, this choice did not affect the run time
and classification performance, since less training epochs were needed
to achieve better classification performance.
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Fig. 3. Workflow of the preprocessing phase before the augmentation procedure.
4. Experiments

In this section, the dataset, the experimental setup, and the evalu-
ation of the proposed SqueezeNodule-Net (V1 and V2), versus state-
of-the-art classical and ‘‘light’’ architectures (e.g., the ‘‘light’’ CNN
proposed by Polsinelli et al. (2020) for the diagnosis of Covid-19 dis-
ease) are presented. All experiments were conducted using the Jupyter
Notebook employing Keras integrated in Python 3.7.9 (Chollet et al.,
2015) for implementing the deep learning frameworks using Tensor-
flow as backend engine. The experiments were executed in an Intel®
Core™ i7 4770 CPU, NVIDIA GeForce GTX 1650 4 GB GPU and 16,0 GB
of RAM workstation.

The rest of the section includes the presentation and preprocessing
of the LUNA16 dataset (as shown in Fig. 3), the definition of the
evaluation metrics for the proposed models in the 2D and 3D setting.

4.1. LUNA16 dataset

The dataset used for the binary classification task (benign vs malig-
nant nodules) was LUNA16 (Setio et al., 2017), a subset of the publicly
available LIDC/IDRI dataset from the Cancer Imaging Archive, where
CT scans with slice thickness greater than 2.5 mm have been excluded.
More specifically, the LUNA16 dataset consists of 888 CT Scans, with
about 200 slices in each CT scan. The annotations of the nodules
were delivered by 4 experienced radiologists. Each radiologist marked
lesions identified as non-nodule, and nodules < 3 mm and ≥ 3 mm. All
nodules greater than 3 mm accepted by 3 out of 4 radiologists have
been included, while nodules smaller than 3 mm have been excluded
from the dataset. The annotations were saved in a CSV file, with each
line indicating the 3D cartesian coordinates and the corresponding
diameter in mm of the nodule. From a total of 551,065 annotations
1351 (0.24%) were labeled as positive samples (malignant nodules),
while the rest were labeled as negative samples (benign nodule or
non-nodule).

4.2. Undersampling

The LUNA16 dataset is highly unbalanced therefore, the positive
and negative samples are balanced by employing a undersampling
procedure: negative samples that constitute 25% of the total dataset
have been selected by uniform distribution randomly, resulting in 4053
negative samples. Even with the undersampling used, the positive-
negative samples ratio is not close to 1, a fact that will be addressed

by data augmentation.

6

4.3. Segmentation of the Lungs by thresholding

After undersampling, there is a need to remove the parts of the CT
scan that are not necessary for the training of the model. This is done
by removing from the CT scan the redundant parts (e.g., bones) and
maintain parts such as air, lung tissue, water, blood etc. By using this
procedure, the contrast between the nodule and its surrounding area is
increased, which is expected to increase the performance of the model,
since the nodule will be highlighted against the surrounding tissue.
Since, the intensity of the CT scan image is set in Hounsfield Units and
each intensity interval corresponds to specific parts of the body (such as
lung, liver, bone, water, etc.), using a thresholding procedure (Alakwaa
et al., 2017; Khumancha, Barai, & Rao, 2019), the redundant parts of
the CT scan can be removed. The radiodensity for the lung tissue is
-500. Anything over 400 is redundant since these regions correspond
to bones under different radiation (Alakwaa et al., 2017). Using the
thresholding process (Alakwaa et al., 2017; Khumancha et al., 2019)
intensity interval of interest is kept from −1000 to 400. In Fig. 4, we
can observe a slice of the lung CT scan having a nodule, the nodule
before thresholding and the nodule after thresholding. The upper row
corresponds to a benign nodule and the lower row to a malignant
nodule.

4.4. Detection of region of interest

The dimensions of each CT scan in the dataset were 512 × 512 × 𝑛,
with 𝑛 being the number of axial scans. The ROIs were identified
according to the coordinates in the annotation’s file. The annotations
were in Cartesian coordinates and were converted to Voxel coordinates,
using SimpleITK library. The final grayscale images centered around
the nodule, were of size 50 × 50. We also generated 3D images of
32 × 32 × 32 voxels, for feeding the 3D models, by including 16
slices before and 16 slices after the annotation of the radiologists.
32 × 32 × 32 voxels were used, since 95.33% of the nodules could
fit in such a bounding box (Li, Cao, Zhao, & Wang, 2016).

4.5. Data augmentation

After undersampling, positive samples represent about 25.0% of the
dataset. Hence, a data augmentation procedure was necessary. Different
data augmentation methods have been employed: (1) augmentation
of the positive class by transformation, (2) symmetrical augmentation
on both classes and weighted training, (3) augmentation of the pos-
itive samples by artificial produced positive nodules by Generative
Adversarial Networks (GAN) and finally (4) progressive image resizing.

4.5.1. Augmentation of the positive class by transformation
We augmented the positive (malignant) class by rotating the posi-

tive samples by 90 degrees. After the augmentation the positive samples

represented about 40% of the training and validation set.
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Fig. 4. Upper row: (1) slice of lung with benign nodule, (2) the benign nodule before thresholding, (3) the benign nodule after thresholding, Lower row: (1) slice of lung with
malignant nodule, (2) the malignant nodule before thresholding, (3) the malignant nodule after thresholding.
Fig. 5. Malignant nodules generated by the DCGANN.

.5.2. Symmetric augmentation of both classes and weighted training
We augmented both classes symmetrically by generating new data

y rotating each sample by 90 degrees. This results in an unbalanced
ata set with a ratio of 25:75. In particular benign nodules are over-
epresented compared to malignant nodules. A way to address the class
mbalance is to use the weighted training. Class weighting adjusts the
ost function of the model so that misclassifying an observation from
he minority class is penalized more heavily than misclassifying an ob-
ervation from the majority class. The calculation of the optimal weight
oefficients is done using the sklearn library tools. This procedure was
mplemented for all the models shown in Tables 3 and 4.

.5.3. Augmentation by artificially created samples using GANs
Another technique to deal with imbalanced data is to generate new

ata artifacts based on the real data. Inspired by Chaudhari, Agrawal,
nd Kotecha (2020), we used a data augmentation technique for pop-
lating the underrepresented positive class. We used a deep learning
odel as proposed by Radford, Metz, and Chintala (2015), known as
CGAN (Deep Convolutional Generative Adversarial Networks). The
odel consists of two models: a generator and a discriminator. The

enerator produces synthetic images that resemble the training images
in our case malignant nodules). It takes a random noise vector in the
atent space and maps it to the data space (i.e. gray scale image). The
enerator starts with a dense (i.e. fully-connected layer), followed by a
eries of transpose convolution, batch normalization and the leaky relu
ctivation function to end up to a convolution layer with one filter and
tanh activation function for generating grayscale images of 32x32x1
ixels. The discriminator is a simple binary classification network that
akes both the real and the fake images and outputs a probability of
7

whether the given image is real or fake. For this purpose, a series of
strided-convolution layers are used with leaky relu and the dropout of
0.25. Next, the feature maps are flattened and a dense layer with 1 unit
is used. Finally, the sigmoid activation function is applied to the fully
connected layer. The model was trained using 1081 malignant nodules
for 20k epochs in order to produce artificially malignant nodules for
augmenting the positive (malignant) class. At the end the positive class
represented 40% of the dataset, as in all augmentation techniques that
we used. Fig. 5 displays some artificially generated malignant nodules
by DCGAN.

4.5.4. Progressive image resizing
Progressive Image Resizing is a transfer learning technique to se-

quentially resize all the images while training the CNN models on
smaller to bigger image sizes (Bhatt, Ganatra, & Kotecha, 2021). In
fact, we choose to train our model for 25 × 25 × 1 nodule images
and use its weights in the next model that was fed with 40 × 40 × 1
images. Finally, the new weights are used for the model with input
50x50x1 images. In this manner, each larger scale model incorporates
the previous layers and weights learned in the smaller scale model,
and thus results in refining the final model as well as increasing the
classification performance (Bhatt et al., 2021). We used this technique
on the SqueezeNet, SqueezeNodule-Net V1 and SqueezeNodule-Net V2
models and not in models that due to their architecture design was not
possible to be applied.

4.6. Evaluation metrics

For the evaluation of the models, 5-fold Cross Validation (CV) was
used. For each fold a validation set was extracted from the Training
Set (TS) (10% of the TS), for applying an early stopping procedure.
Four statistical measures were used for evaluating the binary classifi-
cation performance of the models: accuracy, sensitivity, specificity, and
G-mean (i.e., the geometric mean of sensitivity and specificity).

4.7. Evaluation setting

In all models, the Adam (Kingma & Ba, 2017) gradient descent
optimization algorithm was used with a learning rate of 10−4, and the
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Table 2
SqueezeNet, SqueezeNodule-Net V1 and V2 performance.

CNN Acc. Spec. Sens. G-mean Total Params Inf. Time (s) FLOPS Tr. Time (min.) Mean epochs

SqueezeNet 92.0%
(0.023)

93.8%
(0.021)

86.7%
(0.034)

90.1%
(0.027)

772 K 0.28 50.4M 2.5 50.4

Light CNN [16] 93.7%
(0.026)

96.4%
(0.013)

85.5%
(0.065)

89.5%
(0.042)

1804 K 0.74 107.2M 1.8 28

ShuffleNet 85.9%
(0.003)

90.6%
(0.053)

78.4%
(0.069)

84.27%
(0.032)

957 K 1.02 9.6M 1.75 21

Mobile Net v2 90.3%
(0.002)

93.8%
(0.038)

79.9%
(0.016)

86.3%
(0.002)

2259 K 0.32 20.9M 1.4 21

SqueezeNodule-Net V1 93.2%
(0.014)

94.6%
(0.012)

89.2%
(0.027)

91.8%
(0.017)

607 K 0.17 43M 1.7 51.4

SqueezeNodule-Net V2 94.3%
(0.019)

95.3%
(0.016)

91.3%
(0.030)

93.2%
(0.022)

888 K 0.18 68.6M 1.2 38.4
Fig. 6. Confusion matrices of the 2D models of SqueezeNodule-Net V1 (left) and SqueezeNodule-Net V2 (right).
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inary cross entropy loss function:

𝑝 (𝑞) = − 1
𝑁

𝑁
∑

𝑖=1
𝑦𝑖 ⋅ log

(

𝑝
(

𝑦𝑖
))

+ (1 − 𝑦𝑖) ⋅ log(1 − 𝑝
(

𝑦𝑖
)

) (4)

ith 𝑦𝑖 representing the label of sample 𝑖 and 𝑝
(

𝑦𝑖
)

the predicted prob-
bility of sample 𝑖 being positive. Unless otherwise stated, the batch
ize was set to 96 for all experiments. An early stopping procedure
onitoring the validation loss was used, with patience parameter of
epochs. Also, a ‘‘reduce learning rate in plateau’’ technique was used
ith a patience factor of 5 epochs and a reducing learning rate factor of
.1, so that if there is no improvement of the model for 5 consecutive
pochs the learning rate is reduced by a factor of 0.1. Finally, it should
e noted that all models were trained from scratch without using any
re-trained weights.

. Results

.1.

.1.1. Results for the 2D models
In the first experiment SqueezeNodule-Net V1 and V2 were eval-

ated against SqueezeNet, and a Light CNN based on SqueezeNet
Polsinelli et al., 2020) on the 2D dataset. Table 2 presents the average
alues of the 5-fold CV along with their standard deviation value of
he classification performance metrics. Furthermore, Table 2 presents
he Total Parameters, the Training and Inference time, the Flops and
he mean value of epochs needed for each model to converge. Fig. 6
resents the confusion matrices of the test set for SqueezeNodule-Net
1 (left) and V2 (right) for the 2D setting.

For the 2D dataset, the proposed models perform better than

queezeNet in all metrics. In fact, SqueezeNodule-Net V2 model has the b

8

ighest accuracy (94.3%), specificity (95.3%) and sensitivity (91.3%).
n terms of evaluation metrics SqueezeNodule-Net V2 performs better
han V1 and SqueezeNet models. The Light CNN (Polsinelli et al., 2020)
s quite competitive and situated between SqueezeNet and
queezeNodule-Net V1 but inferior to SqueezeNodule-Net V2 in terms
f classification performance.

Table 2 shows that the proposed models are more compact and
aster than SqueezeNet and Light CNN (Polsinelli et al., 2020) model.
n particular, SqueezeNodule-Net V1 has 15.8% fewer parameters and
s about 1.5× faster than SqueezeNet. While V2 model has 23.0%
ore parameters and yet it is still 2.1× faster than SqueezeNet, as

t takes 12 epochs fewer to converge. Light CNN is a larger model
han the proposed (SqueezeNodule-Net V1 has about 66% and V2 about
1% fewer parameters). Light CNN seems to converge faster but takes
wice as long running time for each epoch, resulting in almost the
ame running time compared to SqueezeNodule-Net V1 while V2 is
.5× faster the Light CNN. Finally, Figs. 7 and 8 present misclassified
False Positive and False Negative) nodules of SqueezeNodule-Net V1
nd V2.

In Fig. 9 we can observe where the SqueezeNodule-Net V1 model
ocuses for malignant and benign samples respectively. On the left are
he saliency maps and on the right are the samples which are input
o the model and in the middle are both, one on top of the other,
or comparison. The intensity of saliency is everywhere, however the
aliency intensity concentrates around the nodule, which we want to
dentify. Finally, we note that because the benign nodule is not distinct,
he intensity is more diffuse than in the malignant one but remains
oncentrated around the nodule.

.1.2. Comparison with other 2D CNNs
In the next experiment, a comparison of the performance of the
est version, SqueezeNodule-Net V2, with state-of-the-art CNN models
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Fig. 7. False Negatives (upper row) and False Positives (lower row) predicted by SqueezNodule-Net V1.
Fig. 8. False Negatives (upper row) and False Positives (lower row) predicted by SqueezNodule-Net V2.
LeNet-5, DenseNet-121, ResNet-50 and VGG-11 is performed (Fig. 10).
The models are trained from scratch without using their pre-trained
weights, in order to have a fair comparison. The default hypermeters
were used as mentioned in Section 4.7. Fig. 10 presents the classifi-
cation performance metrics of the compared models. Table 3 presents
the total trainable parameters, the average training time, the training
time per epoch as well as the average number of epochs needed for
convergence.

In general, SqueezeNodule-Net V2 performs better than all other
investigated models. It is observed (Fig. 10) that SqueezeNodule-Net
V2 compared to the aforementioned state-of-art models has 1.1–5.8%
better accuracy. Also, its specificity is better by +0.4% to +2.4%, with
the exception of ResNet-50 where it is slightly lower by 1.3%. In
sensitivity, however, SqueezeNodule-Net V2 is much better, achieving
from +8.3% to 13.4%. According to Table 3, the SqueezeNodule-Net V2
9

is from 8 to 40 times smaller than the known models, and it also is 2.8
to 7.8 times faster. The exception is LeNet-5 where it is a very simple
model being 3.7 times smaller and 3 times faster than SqueezeNodule-
Net V2, but having poor performance in the evaluation metrics, as is
the case with VGG.

In order to compare the mean CV evaluation metrics obtained
from the proposed models against the other investigated models we
performed pairwise Kruskal–Wallis test by ranks. Table 4 resumes the
p-values obtained by comparing SqueezeNodule-Net V1 and V2 against
the investigated methods.

Although the size of the samples (i.e. the 5-fold CV performance
metrics) is not big, 5 over 7 architectures have at least one perfor-
mance metric that is statistically significant different from the proposed
models, in terms of classification performance metrics. Even though,
all investigated architectures do not have statistically significant dif-
ferences, all investigated models have inferior training and inference
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Fig. 9. On the left side are saliency maps of malignant (up) and benign (down). On the right side are the malignant (up) and benign sample (down) as input of the model. In
the middle are combinations of saliency map and input, one on top of the other for comparison.
Fig. 10. Histogram comparison among SqueezeNodule-Net V2, LeNet-5, DenseNet-121, ResNet-50 and VGG-11.
Table 3
Comparison with well-known models.

CNN Total # of
Params

Avg. Tr.
Time (min)

Tr.
Time/epoch
(s)

Inf. Time
(s)

FLOPS Avg.# of
epochs

SqueezeNodule-Net V2 888.674 1,2 2 0.18 68.6M 38,4
LeNet-5 234.714 0,4 0,0065 0.05 0.8M 66,6
DenseNet-121 7.033.282 3,3 7 0.90 133.1M 29
ResNet-50 23.535.418 9,3 8 0.81 200.0M 70
VGG-11 28.110.082 0,9 3 0.22 30.8M 19,8
-

-

times, with the exception of LeNet-5, which classification performance
is poor in comparison to the proposed models.

5.1.3. Results for the 3D models
In this section the performance of the same models was evaluated

on the 3D dataset. In this set of experiments, the RMSprop opti-
mization algorithm was used, which performs better in this setting
(Valova, Harris, Mai, & Gueorguieva, 2020). As the 3D images con-
sumes more memory resources, the batch size needs to be modified for
this set of experiments. Specifically, a batch size of 64 was used for
SqueezeNodule3D-Net V1 and V2, while SqueezeNet3D needs a batch
size of 48 in order to run in our machine. Table 5 shows the average
10
5-fold CV classification metrics along with the total parameter, training
and inference time, flops and mean epochs needed for each model to
converge. Fig. 11 presents the confusion matrices of the testing set for
SqueezeNodule-Net V1 (left) and V2 (right) for the 3D setting.

In the 3D dataset with images of 32 × 32 × 32 voxels, SqueezeNodule
Net3D V1 has almost the same classification performance compared
to SqueezeNet3D, while SqueezeNodule-Net3D V2 has the best clas-
sification performance. SqueezeNodule-Net3D V1 compared to the
SqueezeNet has about 6.2% fewer parameters. However, SqueezeNodule
Net V1 needs less memory consumption, and as a result, due to the
larger batch size, it is about 1.3× faster than SqueezeNet3D.
SqueezeNodule-Net3D V2 performs better than SqueezeNet3D, as it has
+1.4% more accuracy, +0.1% specificity and +2.7% sensitivity; but
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Table 4
Kruskal–Wallis rank tests of SqueezeNodule-Net V1 and SqueezeNodule-Net V2 vs. the investigated methods.

CNN Accuracy Specificity Sensitivity

SqueezeNodule-Net
V1

SqueezeNodule-Net
V2

SqueezeNodule-Net
V1

SqueezeNodule-Net
V2

SqueezeNodule-Net
V1

SqueezeNodule-Net
V2

SqueezeNodule-Net V1 – p=0.3472 – p=0.3472 – p=0.2948
SqueezeNodule-Net V2 p=0.3472 – p=0.3472 – p=0.2948 –
SqueezeNet p=0.91681 p=0.5296 p=0.3472 p=0.7540 p=0.1172 p=0.0758
Light CNN p=0.2506 p=0.9168 p=0.0472 p=0.6015 p=0.1172 p=0.0758
LeNet-5 p=0.0283 p=0.0163 p=0.8340 p=0.1425 p=0.0163 p=0.0163
DenseNet-121 p=0.1745 p=0.91681 p=0.1172 p=0.4020 p=0.0758 p=0.0758
ResNet-50 p=0.6015 p=0.91681 p=0.0283 p=0.3472 p=0.0472 p=0.0758
VGG-11 p=0.0472 p=0.0283 p=0.9168 p=0.3472 p=0.0090 p=0.0090
ShuffleNet p=0.0090 p=0.0090 p=09168 p=0.4647 p=0.0163 p=0.0163
Table 5
SqueezeNet3D, SqueezeNodule-Net3D V1 and V2 performance.

CNN Acc. Spec. Sens. G-mean Total Params Inf. Time (s) FLOPS Tr. Time (min.) Mean epochs

SqueezeNet3D 94.4%
(0.009)

96.1%
(0.010)

87.5%
(0.012)

91.6%
(0.004)

1829K 13.4 5581.0M 11.8 28.4

SqueezeNodule-Net3D V1 94.3%
(0.008)

96.0%
(0.005)

87.4%
(0.024)

91.5%
(0.014)

1715K 2.16 419.7M 9.0 25.8

SqueezeNodule-Net3D V2 95.8%
(0.006)

96.2%
(0.009)

90.2%
(0.017)

93.1%
(0.009)

2511K 2.40 740.9M 8.8 21.2
Table 6
Comparison with well-known models.

CNN Total #
of Params

Avg. Tr.
Time (min)

Tr.
Time/epoch
(s)

Inf. Time
(s)

FLOPS Avg.# of
epochs

Batch

SqueezeNodule3D-Net V2 2,5M 8,8 25 2.40 740.9M 21,2 64
LeNet-50 (3D) 0,2M 1,5 4 0.54 28.7M 22,6 64
DenseNet-121 (3D) 11,3M 61,5 90 3.26 671.3M 41,0 8
ResNet-50 (3D) 46,1M 183,6 249 12.3 4136.8M 44,3 8
VGG-11 (3D) 50,7M 48,3 232 13.69 9760.7M 12,5 8
Fig. 11. Confusion matrices of the 3D models of SqueezeNodule-Net V1 (left) and SqueezeNodule-Net V2 (right).
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he size of V2 model is 37% larger than the original. Nevertheless,
he simpfire module is clearly requiring less computational power and
ccording to the average number of epochs it helps to converge faster.
s a result, SqueezeNodule-Net V2 is 1.35× faster than SqueezeNet3D.

.1.4. Comparison with other 3D CNNs
In this section we evaluate our best 3D Model, SqueezeNodule-

et3D V2, against state-of-the-art CNN models: LeNet-5 (3D), ResNet-
0 (3D) and VGG-11 (3D) (Fig. 12).

It is observed (Fig. 12) that SqueezeNodule-Net3D V2 compared
o the aforementioned models achieves higher accuracy (+0.4% to
4.4%), specificity (+0.1% to 4.8%) as well as sensitivity (+0.4% to
6.6%). Also, according to Table 6 our model is from 4.5 to 20.2
 m

11
times more compact as well as 4.5 to 21 times faster. It is worth
mentioning that the VGG-11 (3D) which achieves better sensitivity by
+1.4%, it is much worse in size (20.2× larger) and convergence speed
4.5× slower) while LeNet-5 (3D) which is ∼ 7.8× smaller and 5.8×
aster loses in metric evaluations.

In order to compare the mean CV evaluation metrics obtained from
he proposed models against the other investigated models in the 3D
etting, we performed pairwise Kruskal–Wallis test by ranks. Table 7
esumes the p-values obtained by comparing SqueezeNodule-Net V1
nd V2 against the investigated methods.

Although the size of the samples (i.e. the 5-fold CV performance
etrics) is not big, 2 over 5 architectures have at least one perfor-
ance metric that is statistically significant different from the proposed
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Fig. 12. Histogram comparison among SqueezeNodule-Net3D V2, LeNet-5, ResNet-50 and VGG-11.
Table 7
Kruskal–Wallis rank tests of SqueezeNodule-Net V1 and SqueezeNodule-Net V2 vs. the investigated methods.

CNN Accuracy Specificity Sensitivity

SqueezeNodule-Net
V1

SqueezeNodule-Net
V2

SqueezeNodule-Net
V1

SqueezeNodule-Net
V2

SqueezeNodule-Net
V1

SqueezeNodule-Net
V2

SqueezeNodule-Net V1 – p=0.25059 – p=0.6015 – p=0.1745
SqueezeNodule-Net V2 p=0.25059 – p=0.6015 – p=0.1745 –
SqueezeNet p=0.4647 p=0.1172 p=0.34721 p=0.1745 p=1 p=0.0758
LeNet-5 p=0.0163 p=0.0090 p=0.0472 p=0.0472 p=0.009 p=0.009
DenseNet-121 p=0.3472 p=0.91681 p=0.1172 p=0.34721 p=0.6015 p=0.5296
ResNet-50 p=0.2506 p=0.0758 p=0.60151 p=0.6015 p=0.6015 p=0.0758
VGG-11 p=0.0472 p=0.1172 p=0.0283 p=0.1172 p=0.0758 p=0.17453
m

b

models, in terms of classification performance metrics. Even though,
all investigated architectures do not have statistically significant dif-
ferences, all investigated models have in general inferior training and
inference times in comparison to our models.

5.2. Comparison of different augmentation methods

In this section we compare the results of the 2D models using three
different augmentation methods: (1) Weighted data augmentation on
both classes 25% for the benign and 75% for the malignant class; (2)
Data augmentation on the malignant class using artificial produced
malignant nodules employing DCGAN (Radford et al., 2015) by aug-
menting the malignant class by 40% of the training and validation set
and (3) by enriching the dataset using progressive resizing on both
classes starting from 25 × 25 pixels images and progressing to 40 × 40
nd 50 × 50 using the procedure in described in (Bhatt et al., 2021).

Table 8 summarizes the results of the different augmentation pro-
edures in comparison to the results obtained by the augmentation
rocedure used in the experiments in Section 5.1.1 (the percentages
nside the parenthesis refer to the difference to the results obtained in
ection 5.1.1).

We can observe in the results that the weighted augmentation
rocedure on the two classes influenced all investigated methods posi-
ively, by augmenting slightly their classification performance, with the
xception of LeNet-5 network. The same positive effect had also the
rogressive resizing procedure. In contrast the augmentation by using
rtificial images produced by the DCGAN had a negative influence
n all investigated methods. Furthermore, when using the progres-
ive resizing procedure we achieved, in general, better classification
erformance in all the investigated metrics: sensitivity increased from
.7% to 1.6% in all three models, placing thus SqueezeNodule-Net V2
92.0%) in first place and SqueezeNet (88.3%) in last place. We did not
hoose to further enlarge the final images in order to make the results
omparable to our initial method.

Finally, we have to mention that the proposed methods Squeeze-
odule-Net V1 and V2, had better classification performance in com-
arison to all investigated methods. Furthermore, we can observe that
he different augmentation methods do not have a big influence on the
anking of the methods with respect to the classification performance.
12
5.3. Squeeze ratio comparison

For completeness, the proposed architecture was evaluated for dif-
ferent values of the SR, to observe how much the model’s performance
varies as a function of SR, as shown in Fig. 13. At the same time, all
Fire Modules were tested to have the same Squeeze Ratio as shown in
Fig. 14, seeking to prove that the last 2 Fire Modules do not need to
have a Squeeze Ratio above 0.25.

In Fig. 13 the Fire Modules of each model have the same Squeeze
Ratio, even the last 2 Fire Modules. In Fig. 14 all models have the last
2 Fire Modules with a Squeeze Ratio equal to 0.25. That is, V3(0.60*)
means that the first 6 Fire Modules have SR=0.60 and the last 2 Fire
Modules have SR=0.25. The same for V4 and V5.

What it is observed is that when the model has the last 2 Fire
Modules with 𝑆𝑅 > 0.25 then the model increases in size without
achieving better evaluation metrics. In contrast, the models where the
last 2 Fire Modules have the last 2 Fire Modules equal to 0.25 (Fig. 14)
seem to achieve good evaluation metrics without increasing the model
size as much as in Fig. 13.

5.4. Cifar-10 & MNIST

The SqueezeNodule-Net V1 and V2 models were evaluated on
the benchmark datasets Cifar-10 and MNIST, and compared with
SqueezeNet, LeNet-5, DenseNet-BC, ResNet-50 and VGG-11. In both
datasets no pre-trained weights were used to be fair in comparison to
our models. The results are shown in Tables 9 and 10.

On Cifar-10 dataset the models ran with a batch size of 64 with the
exception of the VGG-11 which was able to run with a batch size of 32,
due to a mid-range GPU. All models were run on 100 epochs with the
Stochastic Gradient Descent optimizer with learning rate = 0.001 and

omentum = 0.9.
On the MNIST dataset the models were run for 15 epochs with a

atch size of 128. We used the Adam optimizer with a learning rate =
0.001 as it gave better results than SGD.

Table 10 summarizes the classification and run time performance
of the investigated models. The proposed models in both Cifar-10 and
MNIST are the most efficient if we consider the training time along
with the classification accuracy. Again, SqueezeNodule-Net V2 is the
preferred model in terms of both training time and accuracy.
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Table 8
Classification results using different augmentation procedures in comparison with the results reported in Tables 2 and 3 (the percentage inside the parenthesis refers to the difference
in relation to Tables 2 and 3).

CNN Symmetric augmentation (25:75)
on both classes

Augmentation using DCGANN Progressive Resizing
25 × 25 → 40 × 40 → 50 × 50

Acc. Spec. Sens. Acc. Spec. Sens. Acc. Spec. Sens.

SqueezeNodule-Net V1 94.9%
(+1.3%)

96.5%
(+1.5%)

89.4%
(+0.2%)

86.7%
(−6.5%)

90.4%
(−4.2%)

76.4%
(−12.8%)

94.3%
(+1.1%)

95.5%
(+0.9%)

90.5%
(+1.3%)

SqueezeNodule-Net V2 96.1%
(+1.8%)

97.7%
(+2.4%)

91.3%
(+0)

87.4%
(−6.9%)

91.8%
(−3.5%)

77.8%
(−13.5%)

95.8%
(+1.5%)

97.7%
(+2.4%)

92.0%
(+0.7%)

SqueezeNet 93.1%
(+1.1%)

96.4%
(+2.6%)

85.6%
(−1.1%)

87.1%
(−4.9%)

91.7%
(−2.1%)

74.2%
(−12.5%)

95.3%
(+1.3%)

97.5%
(+3.7%)

88.3%
(+1.6%)

Light CNN 93.1%
(+1.3%)

96.4%
(+1.0%)

85.6%
(+2.4%)

a a a b b b

LeNet-5 87.4%
(−2.5%)

89.3%
(−4.3%)

81.2%
(+1.8%)

85.5%
(−4.6%)

91.5%
(−2.1%)

68.6%
(−10.8%)

c c c

DenseNet-121 93.4%
(+2.1%)

96.1%
(+1.2%)

84.8%
(+3%)

81.3%
(−10.0%)

89.9%
(−5.0%)

58.1%
(−23.7%)

d d d

ResNet-50 94.5%
(+1.3%)

96.4%
(−0.2%)

88.5%
(+5.5%)

74.7%
(−18.5%)

84.9%
(−11.7%)

47.1%
(−36.5%)

d d d

VGG-11 92.0%
(+3.5%)

95.3%
(+2.4%)

82.2%
(+4.3%)

85.7%
(−2.8%)

91.1%
(−1.8%)

70.4%
(−9.5%)

d d d

ShuffleNet 90.1%
(+2.7%)

92.7%
(+2.1%)

82.3%
(+3.9%)

78.3%
(−11.8%)

88.3%
(−2.3%)

48.9%
(−29.5%)

93.2%
(+7.3%)

96.4%
(+5.8%)

82.1%
(+3.7%)

aLight CNN cannot handle input images of sizes 32 × 32 as DCGANN demands.
bLight CNN cannot handle input images of sizes 40 × 40 as the Progressive Resizing procedure demands.
cLeNet-5 needs minimum size of input images 28 × 28, thus the Progressive Resizing Procedure cannot start from 25 × 25 as in our setting.
dThe models need minimum size of input images 32 × 32, thus the Progressive Resizing Procedure cannot start from 25 × 25 as in our setting.
Fig. 13. Comparison of the evaluation metrics and total number of parameters between models with different values of Squeeze Ratio, following the SqueezeNodule-Net architecture.
ll Fire Modules of each model have the same SR.
Fig. 14. Comparison of the evaluation metrics and total number of parameters among models with different values of Squeeze Ratio, following the SqueezeNodule-Net architecture.
The last 2 Fire Modules in each model have SR=0.25.
6. Discussion

In this work we proposed a modified SqueezeNet model, called
SqueezeNodule-Net, to tackle the task of lung nodules classification
in two classes: malignant and benign. We modify the Fire Module of
SqueezeNet, which performs in the first place a 1 × 1 convolution,
13
for projecting the input into a lower dimensionality filters’ space,
compressing (i.e. squeezing) the input of the module and expanding
afterwards the squeezed tensor by applying separately an 1 × 1 and
a 3 × 3 expanding convolutions to result to an output having twice
the size of the expand filters 𝑒𝑖 after the concatenation layer, by
omitting the 1 × 1 expand convolution. In this way, the output of
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Table 9
Comparison with Cifar-10 dataset.

CNN Accuracy Total Tr. Time (min)

SqueezeNodule-Net V1 81.5% 38.3
SqueezeNodule-Net V2 82.5% 40.0
SqueezeNet 80.6% 41.6
LeNet-5 65.1% 36.6
DenseNet-BC 79.9% 46.6
ResNet-50 69.9% 105.0
VGG-11 68.7% 105.0

Table 10
Comparison with MNIST dataset.

CNN Accuracy Total Tr. Time (min)

SqueezeNodule-Net V1 99.0% 1.75
SqueezeNodule-Net V2 99.1% 2.00
SqueezeNet 98.9% 2.75
LeNet-5 98.7% 0.50
DenseNet-BC 98.6% 3.0
ResNet-50 99.1% 11.50
VGG-11 98.2% 8.75

the modified Fire Module (simpfire) will have exactly 𝑒𝑖 filter, without
oss of information, since the spatial as well as the filters’ compressed
i.e. embedded) information expands through the 3 × 3 convolution.
he results of our experiments regarding classification performance in
he task of lung nodules classification showed that SqueezeNodule-Net
1 and V2 perform better or comparable to other compact architec-

ures, as well as in comparison to state-of-the-art Deep Learning models.
n the other hand, our proposed architecture has in general fewer
arameters, and needs thus less training and inference time, without
ompromising the classification performance. For example, although
eNet-5 has fewer parameters, and requires less training and inference
ime, its performance on Sensitivity is poor in comparison to the
roposed models.

Data augmentation can insert bias to the classification model, and
his fact can sometimes lead to confounded training. One of the aug-
entation methods that we used was augmenting the positive (ma-

ignant) samples by performing a 90 degrees rotation of the existing
ositive samples. In order to ensure that this augmentation procedure
oes not insert bias in the training of our models we used three different
echniques: (1) symmetric augmentation on both classes followed by
eighted training, (2) augmentation by producing artificial positive

amples by applying a generative model and (3) the progressive re-
izing technique (although this technique is rather a transfer learning
aradigm, as we discuss it in the paragraph regarding of the data
ugmentation). As reported in Section 5.2, augmenting symmetrical
n both classes, and then using a weighted training as well as the
rogressive resizing procedures, had a small positive impact on all
lassification evaluation metrics on all investigated methods, without
mpacting the ranking of the investigated methods. That could suggest
hat even the 90 degrees augmentation of the positive class had not in-
erted bias into the training procedure. On the other hand, the DCGANN
ugmentation technique had a negative influence on all investigating
ethods. This could be attributed to the fact that DCGAN produces
2 × 32 images, and as the images we used on our experiments are
f size 50 × 50, we had to resize the images of the initial dataset and
rain the models on 32 × 32 images. In medical applications, like the
ung nodules classification, down-scaling the input images can result
o possible loss of crucial information and thus in poor classification
esults, as it may be the case, with the DCGAN augmentation technique
sed here. Further investigation of augmentation by artificial generated
mages is needed, something that is out of the scope of this work.

Hyperparameters play a significant role on all Machine Learning and
eep Learning models and the tuning of them is a long and elaborating
rocedure. In order to ensure that the results provided in Section 5

re not biased towards our models, because of the hyperparameters,

14
we revaluated the classification metrics of the investigated base line
methods, by optimizing their hyperparameters for the lung nodules
classification task. For this purpose, we used a grid search on the
hyperparameter’s space consisting of (1) learning rate, (2) optimization
algorithm and (3) batch size. We tuned the hyperparameters in a
validation set and in each case, we used the best model to compute
the test classification metrics. Only in two cases (LeNet-5 and Shuffle-
Net) the best hyperparameters were not the hyperparameters of the
reported classification metrics in Section 5. Table 11 summarizes the
classification metrics for these two models.

In the case of the LeNet-5 network, the hyperparameter optimiza-
tion has augmented slightly (below 1%) all the classification metrics. In
the case of ShuffleNet the classification metrics have augmented signif-
icantly (from 5.7%–9.3%). Even through the specificity of ShuffleNet
is slightly better (1%) than SqueezeNodule-Net V2 when the other two
metrics (accuracy and sensitivity) are considered, the proposed model
has better classification performance (0.2% and 3.9% respectively).
We need to note here, that this comparison is done against the pro-
posed models without optimizing their corresponding hyperparameters.
Also, in the results reported for the CIFAR-10 and MNIST datasets
hyperparameters were not tuned. For the proposed models we utilized
the parameters that were utilized in the LUNA-16 dataset, (a dataset
completely different of CIFAR-10 and MNIST databases), while for the
base models the default parameters were used.

7. Conclusion

This work focused on lung cancer nodule classification, relying on
a fairly compact model, SqueezeNet. The main goal was to reduce
the required computational power and runtime needed of classification
systems while maintaining high accuracy. In this work two models were
proposed, SqueezeNodule-Net V1 and SqueezeNodule-Net V2. Special
emphasis was given on the latter, as it is the best performing model.
These models are a simplified version of the original SqueezeNet and
are capable of running on mid-range computer systems, at reasonably
good times.

In the first part of the experiments, these models were trained for
2D images (50 × 50), giving much better results than classical models
such as LeNet-5, DenseNet-121, ResNet-50, VGG-11, but also better
than SqueezeNet itself. SqueezeNodule-Net V1 has 93.2% accuracy,
94.6% specificity and 89.2% sensitivity, while SqueezeNodule-Net V2
has 94.3% accuracy, 95.3% specificity and 91.3% sensitivity. Still, our
2D models V1 and V2 are about 1.5× and 2.1× faster respectively than
queezeNet.

In the second part, these models were used for 3D images of
ize 32 × 32 × 32, as well, in order to observe their performance
n 3D space. Thus, the SqueezeNet and the proposed models were
onverted to receive the 3D images as well as the LeNet-5 (3D),
esNet-50 (3D) and VGG-11 (3D) models, in order to perform the
omparison. The results were quite satisfying, as both proposed models
erformed better than the SqueezeNet even in 3D space. In particular,
queezeNodule-Net V1 (3D) has 94.3% accuracy, 96.0% specificity
nd 87.4% sensitivity, while SqueezeNodule-Net V2 (3D) has 95.8%
ccuracy, 96.2% specificity and 90.2% sensitivity. SqueezeNet (3D)
equired more computational power, resulting in both proposed models
eing about 1.3× faster. The only downside is that even though they
equire less computational power in 3D space the size of our models
ncreases more than the SqueezeNet. However, they are still quite
ompetitive considering time and accuracy.
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Table 11
The classification evaluation using hyperparameter tuning of the baseline investigated methods.

CNN Acc. Sp. Se. Optmizer lr Batch size

LeNet-5 89.1%
(0.050)

92.0%
(0.047)

80.5%
(0.072)

Adam 0.01 128

ShuffleNet 94.1%
(0.005)

96.3%
(0.005)

87.7%
(0.009)

SGD 0.001 64
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