
The Extensibility Framework in

Microsoft StreamInsight
Mohamed Ali

1
, Badrish Chandramouli

2
, Jonathan Goldstein

1
, Roman Schindlauer

1

1
Microsoft Corporation
2
Microsoft Research

One Microsoft Way, Redmond WA 98052

{mali, badrishc, jongold, romans}@microsoft.com

Abstract— Microsoft StreamInsight (StreamInsight, for brevity)

is a platform for developing and deploying streaming

applications, which need to run continuous queries over high-

data-rate streams of input events. StreamInsight leverages a

well-defined temporal stream model and operator algebra, as the

underlying basis for processing long-running continuous queries

over event streams. This allows StreamInsight to handle

imperfections in event delivery and to provide correctness

guarantees on the generated output. StreamInsight natively

supports a diverse range of off-the-shelf streaming operators. In

order to cater to a much broader range of customer scenarios

and applications, StreamInsight has recently introduced a new

extensibility infrastructure. With this infrastructure,

StreamInsight enables developers to integrate their domain

expertise within the query pipeline in the form of user defined

modules (functions, operators, and aggregates).

This paper describes the extensibility framework in

StreamInsight; an ongoing effort at Microsoft SQL Server to

support the integration of user-defined modules in a stream

processing system. More specifically, the paper addresses the

extensibility problem from three perspectives: the query writer’s

perspective, the user defined module writer’s perspective, and

the system’s internal perspective. The paper introduces and

addresses a range of new and subtle challenges that arise when

we try to add extensibility to a streaming system, in a manner

that is easy to use, powerful, and practical. We summarize our

experience and provide future directions for supporting stream-

oriented workloads in different business domains.

I. INTRODUCTION

Microsoft StreamInsight [11] (StreamInsight, from now on)

is a platform for monitoring stream data from multiple sources

to extract meaningful patterns, trends, exceptions, and

opportunities. StreamInsight analyzes and correlates data

incrementally and in-memory while the data is in flight,

yielding very low response times and high throughput.

StreamInsight is an event stream processing system whose

operation and semantics are governed by a temporal extension

of relational algebra [3], which logically views a set of events

as a time-varying relation. StreamInsight queries consist of a

tree of operators with well-defined semantics, as defined by

their effect on the time-varying relation. Run-time query

composability, query fusing, and operator sharing are some of

the key features in the query processor. Further, StreamInsight

includes several debugging and supportability tools enable

developers and end users to monitor and track events as they

are streamed from one operator to another within the query

execution pipeline.

The interest in data streaming applications has grown

tremendously across various business sectors. For example,

streaming engines are used in Web analytics, fraud detection,

call center management, RFID monitoring, manufacturing and

production line monitoring, smart power meters, financial

algorithmic trading, and stock price analysis. A close analysis

of a wide range of streaming-oriented workloads reveals the

fact that these workloads share common characteristics, and

yet, differ from each other in several domain-specific aspects.

The common characteristics include the demand for coping

with high event input rates that are usually characterized by

imperfections in event delivery (either late events or payload

inaccuracies). Further, there is a need for a mechanism to

minimize output latency while maintaining correctness

guarantees over the output. A streaming engine is an

appropriate choice to provide low-latency and high-

throughput solutions for these applications. Correctness

guarantees with low latency are provided due to the system’s

ability to (1) output speculative [1, 10] results based on

potentially incomplete or inaccurate sets of events, (2)

compensate [1, 22] (or correct) incorrect output as late events

and/or more accurate payloads are received at the system’s

input, and (3) identify which output is guaranteed [4, 6] to be

correct, i.e., cannot change in the future, based on received (or

automatically inserted) guarantees from the event sources.

On the other hand, each business sector has unique

demands that are specific to its business logic. Business logic

is the outcome of domain expertise in a specific sector over

years. It is hard to expect that a single data streaming engine

(out-of-the-box or as-it-is without any specialization) can

cover domain expertise in different domains. Thus, for broad

applicability, a streaming system is expected to have an

extensibility mechanism that can seamlessly integrate domain-

specific business logic into the incremental in-memory

streaming query processing engine.

As shown in Figure 1, there are three distinct entities that

collaborate together to extend a streaming system for a

particular application domain:

1- The user defined module (UDM) writer. The UDM

writer is the domain expert who writes and packages

the code that implements a set of domain-specific

operations as libraries of UDMs. For example, a

financial application may have experts write UDMs

that can detect interesting complex chart patterns [19]

in real-time stock feeds.

2- The query writer. The query writer invokes a UDM

as part of the query logic. A query is expected to have

one or more UDMs wired together with standard

streaming operators (e.g., filter, project, joins) in the

same query pipeline. Note that multiple query writers

may leverage the same existing repository of UDMs

for accomplishing specific business objectives. The

typical query writer does not have a deep

understanding of the technical domain-specific details

within UDMs, but is an expert at understanding end-

user requirements and developing queries to meet these

requirements. Continuing the financial example

discussed above, the query writer may write a complex

query (and the surrounding glue application) that

correlates across stock feeds from multiple stock

exchanges, performs necessary pre-processing and

filtering, applies a UDM to detect a particular chart

pattern, and delivers the results as part of a trader’s

dashboard.

3- The extensibility framework. The extensibility

framework is an internal system component that

connects the UDM writer and the query writer. The

UDMs are deployed to the framework and made

available to query writers to use as part of their queries.

The framework executes the UDM logic on demand

based on the query to be executed. Thus, the

framework provides convenience, flexibility, and

efficiency for both the UDM writer and the query

writer.

Microsoft StreamInsight is designed to satisfy the

requirements of streaming-oriented workloads. Meanwhile,

StreamInsight provides the vehicle to integrate business logic

into the execution query pipeline through its extensibility

framework. This paper describes the extensibility framework

in Microsoft StreamInsight with particular emphasis on the

roles of the UDM writer, the query writer, and the system’s

internals to deliver efficient and extensible solutions to

business needs.

A. Design Principles and Contributions

The extensibility framework in Microsoft StreamInsight

has been architected to achieve several design principles.

These design principles contribute to the flexibility, efficiency

and the seamless integration of a wide range of user defined

modules into the continuous query processing pipeline. We

summarize our design principles as follows:

1) Ease-of-use

This principle favors query writers over UDM writers. A

UDM is written once and is used by many queries over time.

Hence, UDM details are expected to be hidden from the query

writer who invokes the UDM by name and, possibly, passes

some initialization parameters if needed.

2) Flexibility and reusability

This principle provides the query writer with the ability to

change the event membership in the set of events that are

passed to the UDM every time the UDM is invoked. The

temporal attributes if input and output events can be altered

based on the query semantics. This principle gives the

flexibility of re-using the same UDM under different

circumstances.

3) Portability and compatibility

This principle favors simple UDM writers or UDM writers

who published libraries of UDMs under traditional (non-

temporal) database systems. These libraries can be ported to

Microsoft StreamInsight with minimal porting effort. Without

violating the UDM’s view of data as a relational table,

StreamInsight handles the temporal aspect of events and

handles imperfections in event delivery on behalf of the UDM

writer.

4) Powerful control over time-management and efficiency

This principle favors advanced UDM writers who claim

responsibility of managing the temporal aspect of events

seeking maximum power and efficiency in the UDM. The

system provides the UDM writer with the ability to

read/generate the input/output timestamps of events.

Meanwhile, it provides the query writer with the ability to

override the UDM time management and to revert back to

default system timestamping policy. Further, it allows

advanced UDM writers to increase efficiency in the streaming

setting, by providing them with facilities to express

incremental computations for the UDM.

5) Breaking optimization boundaries

A UDM stands as optimization boundary in the query

pipeline. Because a UDM is a black box to the optimizer, it is

hard to reason about optimization opportunities. However,

working hand-in-hand with the UDM writer, the UDM writer

has the option to provide several properties about the UDM

through well-defined interfaces. The optimizer reasons about

these properties and shoots for optimization opportunities.

6) Liveliness

Liveliness is a bi-fold aspect: (1) it is the ability to

guarantee that output results are accurate and stable (i.e., will

not to be retracted) up to a specific point in the application

time, and (2) to keep advancing the output time as input time

advances. This principle is concerned with generating signals

CQ +
app

UDM
repository

UDM
writers

Data Stream
Management

System

Query
writers

Output
- dashboard
- file
- other

Figure 1: Entities in a streaming solution for a domain.

Stream data
input

that advance the output time properly as the system receives

signals that indicate advances in the input time.

B. Paper Outline

The remainder of this paper is organized as follows:

Section 2 provides some basic background on streams, and

introduces our new concept of windowing for the extensibility

framework. Then, we cover the details of the extensibility

solution, by exploring the problem from three perspectives:

the query writer’s perspective (Section 3), the user defined

module writer’s perspective (Section 4), and the system’s

internal perspective (Section 5). We summarize our

experiences and lessons learned in Section 6, and finally

conclude the paper in Section 7.

II. STREAMS, EVENTS, AND WINDOWS

A Data Stream Management System (DSMS) [8, 9, 11, 14,

15, 16] is a system that enables applications to issue long-

running continuous queries (CQs) that monitor and process

streams of data in real time. DSMSs are used for efficient real-

time data processing in a broad range of applications. While

the core concepts are generalizable to any streaming system,

this paper focuses on Microsoft StreamInsight, which is based

on the CEDR [1, 2] research project.

A. Streams and Events

A physical stream is a potentially unbounded sequence {e1,

e2, …, } of events. An event ei = <p, c> is a notification from

the outside world (e.g., sensor) that consists of: (1) a payload

p = <p1, …, pk>, and (2) a control parameter c that provides

metadata about the event. While the exact nature of the

control parameter associated with events varies across systems

[1, 10, 17], two common notions are: (1) an event generation

time, and (2) a duration, which indicates the period of time

over which an event can influence output. We capture these

by defining c = <LE, RE>, where the time interval [LE, RE)

specifies the period (or lifetime) over which the event

contributes to output. The left endpoint (LE) of this interval,

also called start time, is the application time of event

generation, also called the event timestamp. Assuming the

event lasts for x time units, the right endpoint of an event, also

called end time, is simply RE = LE + x.

Compensations StreamInsight allows users to issue

compensations (or corrections) for earlier reported events, by

the notion of retractions [1, 20, 21, 22], which indicates a

modification of the lifetime of an earlier event. This is

supported by an optional third control parameter REnew, that

indicates the new right endpoint of the corresponding event.

Event deletion (called a full retraction) is expressed by setting

REnew=LE (i.e., zero lifetime).

Canonical History Table (CHT) This is the logical

representation of a stream. Each entry in a CHT consists of a

lifetime (LE and RE) and the payload. All times are

application times, as opposed to system times. Thus,

StreamInsight models a data stream as a time-varying relation,

motivated by early work on temporal databases by Snodgrass

et al. [3]. Table 1 shows an example CHT. This CHT can be

derived from the actual physical events (either new inserts or

retractions) with control parameter c = <LE, RE, REnew>. Table

2 shows one possible physical stream with an associated

logical CHT shown in Table 1. Note that a retraction event

includes the new right endpoint of the modified event. The

CHT (Table 1) is derived by matching each retraction in the

physical stream (Table 2) with its corresponding insertion (i.e.,

matching by event ID) and adjusting the RE point of the event

accordingly. StreamInsight operators are well-behaved and

have clear semantics in terms of their effect on the CHT. This

makes the underlying temporal algebra deterministic, even

when data arrives out-of-order.
TABLE I

EXAMPLE OF A CHT
ID LE RE Payload

E0 1 5 P1

E1 4 9 P2

TABLE II

EXAMPLE OF A PHYSICAL STREAM
ID Type LE RE REnew Payload

E0 Insertion 1 ∞ - P1
E0 Retraction 1 ∞ 10 P1

E0 Retraction 1 10 5 P1

E1 Insertion 4 9 - P2

The sync time of a physical event is defined as the earliest

time that is modified by the event. For example, the sync time

of a physical insert event with lifetime [LE, RE) is LE, while

the sync time of a modification event with endpoints LE, RE,

REnew is min(RE, REnew).

B. Event Classes

Users can use lifetimes to model different application

scenarios. For instantaneous events with no lifetime, RE is set

to LE+h where h is the smallest possible time-unit. We refer

to such events as point events. On the other hand, there may

be events that model an underlying continuous signal being

sampled at intervals. In this case, each event samples a

particular value, and has a lifetime until the beginning of the

next event sample. We refer to such events as edge events.

The most general form of events have arbitrary endpoints

depending on when the modelled event came into and went

out of existence – these events are referred to as interval

events. For instance, Figure 2(A) depicts lifetimes of three

interval events.

C. Detecting Progress of Time

We need a way to ensure that an event is not arbitrarily out-

of-order. The lack of such a facility causes two issues:

 We can never declare any produced output to be “final”,

i.e., it cannot change due to future events. This

declaration of output as final is useful in many cases, e.g.,

when we need to prevent false-positives in scenarios

where correctness is important, such as directing an

automatic power plant shutdown based on detected

anomalies.

 We cannot clean historic state in the DSMS, since it may

be needed forever in order to adjust previous output.

To solve this problem, we need the notion of stream

progress, which is realized using time-based punctuations [1,

4, 6]. A time-based punctuation is a special event that is used

to indicate time progress. These punctuations are called

Current Time Increments (or CTIs) in the terminology of

StreamInsight. A CTI is associated with a timestamp t and

indicates that there will be no future event in the stream that

modifies any part of the time axis that is earlier than t. Note

that we could still see retractions for events with LE less than t,

as long as both RE and REnew are greater than or equal to t.

D. Operator Types

A streaming continuous query (CQ) consists of a tree of

operators, each of which performs some transformation on its

input streams and produces an output stream. There are two

types of operators: span-based operators and window-based

operators.

1) Span-based Operators

A span-based operator accepts events from an input,

performs some computation for each event, and produces

output for that event with the same or possibly altered output

event lifetime. For example, Filter (see Figure 2 (A)) is a

span-based operator that selects events which satisfy certain

specified conditions. The lifetime of the output event is

equivalent to the entire “span” of the input event’s lifetime.

2) Window-based Operators

On the other hand, aggregation operators such as Count,

Top-K, Sum, etc. work by reporting a result (or set of results)

for every unique window. The result is computed using all

events that belong to that window. Window-based operators in

the StreamInsight extensibility framework use a novel notion

of windows, which we discuss next.

E. Imposing Windows on Event Streams

The basic idea is that we achieve windowing by simply

dividing the underlying time-axis into a set of possibly

overlapping intervals, called windows. Events are assigned to

windows based on a “belongs-to” condition. For example, in

case of all our window types1, an event belongs to a window if

and only if the event’s lifetime overlaps with the window’s

interval (time span).

The desired operation (e.g., sum or count) is applied over

every window (i.e., over the set of events belonging to that

window) as time moves forward. The output of a window is

the computation result of the operator over all events in that

window, and has a lifetime that is usually equal to the window

duration.

Interestingly, we will see in Section 3 that this core

windowing technique can be used to express all common

notions of windows, including sliding windows, hopping

windows, and count-based windows, by simply varying how

the time-axis is divided into intervals.

1 We will see in Section 3.2 that count-based windows have an added

restriction beyond the overlap condition.

Figure 2. Span-based operators vs. window-based operators.

Figure 2 (B) illustrates the “Count” aggregate over a 5

second tumbling window. We see that a tumbling window is

“simulated” by simply dividing the time interval into a

consecutive sequence of disjoint intervals of equal width (the

window length). One output event is produced for every

unique window as shown, where the output is computed over

all events whose lifetimes overlap with that window. Various

types of windows supported by Microsoft StreamInsight are

covered in detail in Section 3.

III. THE QUERY WRITER’S PERSPECTIVE

As mentioned in Section 1, the central design goals for the

query writer are ease-of-use and flexibility. Ease-of-use means

that all UDM implementation details are hidden from the

query writer. The query writer simply invokes a UDM by its

name, possibly passing some initialization parameters if

needed. Flexibility means that the query writer can control the

UDM behavior via two parameters: (1) the window

specification and (2) the input/output timestamping policy.

This section covers the language surface area for the query

writer to invoke UDMs, with particular focus on the window

specification and the input/output timestamping policy

parameters.

A. The LINQ Surface Area for Extensibility

On top of the streaming algebra, a suitable query language

exposes the operator functionality to the user. A good

declarative query language should be a concise, yet intuitive

interface to the underlying algebra. In StreamInsight, the

Language Integrated Query (LINQ) [5, 18] was chosen as

approach to express CEP queries. LINQ is a uniform

programming model for any kind of data that introduces

queries as first class citizens in the Microsoft .NET framework.

StreamInsight supports three fundamental types of user-

provided extensions to the system – user-defined functions,

user-defined aggregates, and user-defined operators. Based on

the type of extension, UDMs surface either as method calls in

the case of span-based stream operators, or as extension

methods on windowed streams, in the case of window-based

stream operators.

1) User-Defined Functions (UDFs): UDFs are method

calls with arbitrary parameters and a single return value. By

using UDFs, expressions of any complexity are possible. They

can be used wherever ordinary expressions (span-based

stream operators) occur: filter predicates, projections, join

predicates, etc. The method call is evaluated for each event. A

user-defined function must be compiled into an assembly that

is accessible by the StreamInsight server process at runtime.

The example below invokes the valThreshold UDF from the

MyFunctions library. The UDF is executed for every event e

in the stream and takes a single value as parameter (i.e., e.id).
var filtered =

 from e in stream

 where e.value < MyFunctions.valThreshold(e.id)

 select e;

2) User-Defined Aggregates (UDAs): A UDA is used on

top of a window specification (e.g., hopping, snapshot, or

count-based window) to aggregate the events contained in

each window. At runtime, a UDA receives a set of events,

representing the members of a single window, and produces

the aggregation result value that maps to one of the

StreamInsight primitive types (e.g., integer, float, string, etc).

In the example below, the median UDA is invoked for every

window w to compute the median of the payload field e.val

over all events with lifetimes that overlap the window w.
var result = from w in s.HoppingWindow(...)

 select new { f1 = w.Median(e.val) }

3) User-Defined Operators (UDOs): Similar to UDAs,

UDOs are used on top of a window specification to process

the events in each window. However, there are three

differences between a UDA and a UDO. First, a UDA returns

a value of a primitive type while a UDO returns an entire

event payload with one or more field values. Second, a UDA

return value that contributes to exactly one output event while

a UDO generates zero or more events. Third, the UDO has the

option to timestamp its output events. This type of UDO

(described in Section 4) is called a time-sensitive operator. As

an example, a pattern detection UDO may detect zero or more

patterns of interest in a single window. The pattern detection

UDO generates an output event for every detected pattern.

Each output event may consist of one or more payload fields

that describe the pattern. Moreover, the UDO decides on how

to timestamp each output event. A user defined timestamping

of the output becomes crucial in application scenarios where

detected patters are not expected to last for the entire window

duration. The following example shows how a query writer

invokes a UDO.
var newstream =

 from w in inputStream.SnapshotWindow(...)

 select w.MyPatternDetectionUDO();

B. The Window Specification

The window specification defines the shape of the windows

and, consequently, defines the event membership in each

window. There are the four different supported window types

in StreamInsight: hopping windows, tumbling windows,

snapshot windows, and count-based windows.

1) Hopping Windows: Hopping windows divide the

timeline into regular intervals, independently of event start or

end times. Each hopping window is offset by a hop size w.r.t.

the previous window. The window is defined by two time

spans: the hop size H and the window size S. For every H time

units, a new window of size S is created. Figure 3 shows a

stream that contains three events: e1, e2, and e3. The vertical

bars show a hopping window segmenting the timeline.
e1

e2

e3

Input

Events

Hopping

Windows

Time

e1

e1
e2

e2

e3

e2

e2

Window

Event

belonging

to window

Figure 3: Hopping windows

2) Tumbling Windows: Figure 4 illustrates a special case of

the hopping window where the hop size H equals the window

size S. This special case of gapless and non-overlapping

hopping window is called the tumbling window. Note that for

both hopping and tumbling windows, if an event spans a

window boundary, the event becomes a member in every

window it overlaps. This is the case for events e1 and e2 in

Figure 3.

e1

e2

e3

Input

Events

Tumbling

Windows

Time

e1

e1
e2

e2

e3

e3

e2

Figure 4. Tumbling windows.

3) Snapshot Windows: Instead of a fixed grid along the

timeline, snapshot windows are defined according to the start

and end times of the events in the stream. The size and time

period of the window is defined only by the events in the

stream. A snapshot is defined as: the maximal time interval

where no change is observed in the input. In other words, it is

the maximal time interval that contains no event endpoints

(left endpoint LE or right endpoint RE).

For each pair of consecutive event endpoints (LE or RE), a

snapshot window is created. By this definition, all event

endpoints fall on window boundaries and never in between.

That is, snapshot windows divide the timeline according to all

occurring changes in the input that are signaled by event

endpoints.

Figure 5 shows a stream with three events: e1, e2, and e3.

The vertical bars show the snapshot window boundaries that

are defined by these events. Based on the start time and end

time of events, only event e1 is in the first snapshot window.

However, both events e1 and e2 are overlapping and,

therefore, are included in the second window.
e1

e2

e3

Input

Events

Snapshot

Windows

Time

e1

e1
e2

e2

e3
Figure 5. Snapshot windows.

4) Count Windows: A count window with a count of N is

defined as the timespan that contains N consecutive event

endpoints. Because StreamInsight supports multiple classes of

events (point, interval, or edge as described in Section 2.2),

there are two types of count windows supported over interval

events. Count by start time windows span N event start times

(LE). Here, an event belongs to a window if its LE is within

the window. Similarly, Count by end time windows span N

event end times (RE). In this case, an event belongs to a

window if its RE is within the window. We explain the count

by start times windows in this section and the generalization

count by end time windows is straightforward. Count

windows move along the timeline with each distinct event

start time. Hence, each new event will cause the creation of a

new count window that extends in the future to include N

event start points in the window, as long as the there are N

events in the future. If there are less than N events, no window

is created. If each event on the timeline has a unique

timestamp, the number of events in each such window is equal

to N. In case of multiple events with the same event start time,

the number of contained events can be higher than N.

Readers may wonder why we choose to count the number

of start times instead of the number of events, to define count

window. The main reason is that we want our windowing

operation to be well-behaved and deterministic. In case we

only wanted the most recent N events to form part of a

window, there can be ambiguity regarding which events form

part of the window, in case there are multiple events with the

same left endpoint or start time (LE). Our definition of count

windows fits well with our overlap-based window semantics,

and is also compatible with our customer applications that

require count windows.

Figure 5 shows an example count by start time window

with N=2.
e1

e2

e3

Input

Events

Count

Windows

(N=2)

Time

e1

e2

e2

e3
Figure 6. Count window that counts event by start times.

C. The Clipping and Timestamping Policies

Window Operator

Set-based Operator

Input Clipping

Policy

Window definition

Output Timestamping

Policy

Stream of Events

Stream of EventsStream of Windows

Stream of Events

Figure 7. Input clipping and output timestamping policies.

Refer to Figure 7. Apart from the definition of the window

(hopping, tumbling, snapshot, or count window), the query

author can influence (1) how the windowing operation affects

the lifetimes of the input events that are contained in the

window before they are passed to the window-based operation

and (2) how the lifetimes of the operation's output events are

to be adjusted. Both policies are specified by the query writer

as part of the window operator to control or override the

default timestamps of the input/output events of the window

operations. These transformations are called input clipping

policy and output timestamping policy, respectively.

1) Input Clipping Policy

The input clipping policy adjusts the timestamps of the

incoming events with respect to the window boundary. There

are four clipping policies for input events:

 Left Clipping: Clips the event’s left endpoint eLE to the

window left boundary wLE if the event e starts before the

window start time (i.e., if eLE < wLE, set eLE = wLE).

 Right Clipping: Clips the event’s right endpoint eRE to the

window right boundary wRE if the event e ends after the

window end time (i.e., if eRE < wRE, set eRE = wRE).

 Full Clipping: Clips event from both sides by applying

both left and right clipping policies.

 No Clipping: Events are sent to the UDM without being

clipped.

As a consequence of such adjustments, any time-sensitive

window operation
2
 that takes into consideration the event

timestamps while computing the output value is affected by

the specified clipping policies. Figure 8 shows how events in a

tumbling window are fully clipped to the windows.

The decision to clip an event with respect to the window

boundary has to be based on the operator semantics. For

example, a pattern operator that detects the pattern “A

followed by B” requires the original event start times to

reason about the chronological order of events, and hence

cannot work with left clipping if it needs to be able to

2 An example of time-sensitive user defined modules is given in

Section 4.

incorporate the effect of overlapping events that start earlier

that the left endpoint of the window.
e1

e2

e3

Input

Events

Tumbling

Windows

Time

e1

e1
e2

e2

e3

e3

e2

Figure 8: Tumbling windows with fully clipped events.

Moreover, the right clipping policy has a crucial impact on

the progress of output time and on the system resources.

Hence, the clipping decision needs to be taken carefully by the

query writer. To explain the effect of right clipping on the

progress of output time, assume an event e that extends t time

units after the window right endpoints (i.e., e.RE = w.RE+t).

Because the output of the window w depends on the e.RE,

which extends t time units in the future, and because

retractions are expected to change the event’s e.RE, the system

will not be able to finalize the window output until a CTI

(Current Time Increment as explained in Section 2) is

signaled t time units beyond the window w.RE. Although the

system generates speculative output from window w as soon

as an event that overlaps the window w is received, the system

delays the propagation of the CTI signal to the output by t

time units. Also, the memory resources taken by the window

are not reclaimed till the CTI passes w.RE by t time units.

Therefore, for workloads with long living events, right

clipping is highly recommended for the liveliness and the

memory demands of the system. We discuss liveliness and

cleanup in detail in Section 5.

2) Output Timestamping Policy

On the output side, the output timestamping policy decides

on the default management of the event’s timestamps and

their lifetimes. The output of a window based operation is fed

to the next operator in the query plan or directed to the

consumer of the query output (if it is the last operator in the

query plan). There are several possible output timestamping

policies:

 Align events to the window boundaries. This policy is the

only option for time-insensitive operations that do not

timestamp their output events (this will be covered in

Section 4). Also, it gives the query writer the ability to

override the UDM timestamping policy and revert to a

default timestamping policy.

 Keep the timestamps and lifetimes of output events

unchanged. This policy applies only to time-sensitive

UDMs that timestamp the output events. The only

restriction on that policy is that a UDM is not allowed to

generate an output event in the past (e.LE < w.LE). Past

output is vulnerable to cause CTI violation, that is,

generate output after time progression guarantees has

been established on the output.

 Clip the events to the window boundaries. This policy

keeps the timestamps and lifetimes of output events as

indicated by the UDM. However, if the event stretches

beyond the window boundary, it gets clipped to the

window boundary.

We discuss the effect of these timestamping policies on

liveliness and state cleanup in detail in Section 5, and present

a new policy that can achieve maximal liveliness by imposing

a new restriction the lifetime of events produced by the UDM.

IV. THE UDM WRITER’S PERSPECTIVE

The extensibility framework has been designed with

attention given to two classes of UDM writers. The first class

represents a wide range of software vendors who are not

trained to think under the data streaming model with its

temporal dimension. Moreover, this class of UDM writers has

developed libraries of UDMs over years of experience in their

domain. The second class of UDM writers targets stream-

oriented applications where temporal attributes are first class

citizens in their business logic.

The first class of users, call them traditional users, are

interested in porting their logic from traditional databases to

the streaming world with minimal efforts. According to the

“portability and compatibility design principle” (refer to

Section 1), StreamInsight conveniently accommodates that

class of UDM writers through:

 Preserving a relational view of the data.

 Managing the temporal dimension on behalf of the UDM

writer.

 Handling imperfect event delivery represented by late

event arrivals on behalf of the UDM writer

The second class of users, call them power users, seeks full

control over the temporal attributes of events as well as

maximum achievable performance. According to the

“powerful time management design principle” (as described in

Section 1), StreamInsight conveniently accommodates that

class of UDM writers through:

 Authorizing UDMs to read the temporal dimension of

input events (LE and RE)

 Giving UDMs the ability to timestamp their output events.

 Supporting the incremental evaluation of output results.

From all three extensibility interfaces (UDFs, UDOs and

UDAs), UDFs are the most straightforward to implement. A

UDF is defined as a .NET method call with an arbitrary

number of parameters. The UDF is a span-based operation

that is evaluated for each event. For brevity, we focus our

discussion in this section on UDOs and UDAs that are

executed over a window-based model. As explained in

Section 3, a UDO or UDA is called for each window at

runtime.

To cover the two classes of users, StreamInsight requires

the UDM writer to take two decisions in advance:

The first decision lets the UDM writer declares his model

of thinking. StreamInsight supports two models of thinking:

incremental and non-incremental models. Non-incremental

model provides a relational view of the world to UDM writers

while the incremental model provides the deltas or the

changes in the input to the UDM since the UDM’s last

invocation. The second decision indicates whether the UDM

is time sensitive or time insensitive. Time insensitive UDMs

deal with payloads. However, time-sensitive UDMs handle

events (i.e., payloads plus temporal attributes). Time sensitive

UDMs read the temporal attributes of input events, reason

about time, generate and timestamp output events.

In the following subsections, we describe non-incremental

versus incremental UDMs as well as time sensitivity in UDMs.

A. Non-incremental vs. Incremental UDMs

1) Non-Incremental UDMs

A UDA/UDO can be implemented as a non-incremental

operation. The engine passes a list (or IEnumerable according

to the .NET framework terminology, or a table in the

relational database terminology) of all events that overlap the

window to the UDM. Thus, according to the portability and

compatibility design principle, the UDM writer adopts a

relational viewpoint towards the set of input events and

defines the operation on the set in a declarative way. Figure 9

illustrates that a UDM writer is expected to implement a

single method, called ComputeResult. The ComputeResult

method accepts an IEnumerable of payloads (in case of time-

insensitive UDM) or an IEnumerable of events (in case of

time-sensitive UDM). The ComputeResult method performs

the computation on the given input and generates a scalar field

value (in case of a UDA), an IEnumerable of payloads (in case

of time-insensitive UDO), or an IEnumerable of events (in

case of time-sensitive UDO). Note that the UDM writer deals

with payloads or events (payloads plus temporal attributes).

The UDM writer does not have to worry about imperfections

in event delivery. Section 5 (Systems Internals) provides the

details on how the underlying framework invokes the UDM as

many time as the number of windows and as many time as

needed to process insertions and retractions.

UDO/UDA

Compute Result

IEnumerable<Event>

or

IEnumerable<Payload>

Result Scalar (UDA)

or

IEnumerable<Event>

or

IEnumerable<Payload>

Figure 9. Non-incremental UDMs.

2) Incremental UDMs

In order to tap the full benefit of a streaming system, we

need a mechanism to allow advanced UDM writers to express

incremental computations, such that the framework maintains

a state per window that is updated incrementally with the

arrival of every insertion or deletion event. Figure 10 shows

that the UDM writer is expected to implement three methods.

The AddEventToState takes as input the state of a window and

the set of delta events that overlap that window. Delta events

are the events that have arrived to the system and overlap

window w since the last invocation of the UDM over window

w. The AddEventToState incrementally updates the state of the

window to reflect the effect of adding the delta events to the

state. Similarly, the RemoveEventToState incrementally

updates the state of the window to reflect the effect of

removing the delta events on the state. The UDM writer also

implements the ComputeResult method that computes the

output given the window state as input. Based on the

incoming insertion, retractions and CTIs, the underlying

extensibility framework (as explained in Section 5) invokes

the UDM methods to incrementally maintain a per-window

state and to generate the proper insertions and retraction to the

output.

UDO/UDA

Add Event

to StateIEnumerable (delta events)

Statei

Statei+1

Remove Event

from StateIEnumerable (delta events)

Statei

Statei+1

Compute Result

Statei

Result Scalar (UDA)

or

IEnumerable (UDO)

Figure 10. Incremental UDMs.

B. Time Sensitivity in UDMs

1) Time-Insensitive UDMs

Time insensitive UDMs do not consider the temporal

dimension while computing the result. Many time-insensitive

UDMs have been written over the years for traditional

databases. These UDMs are still of value and are expected to

be executed on sets of event payloads in the streaming domain.

2) Time-Sensitive UDMs

Time sensitive UDMs are classified into two groups: the

first group of time-sensitive UDMs is concerned about the

input’s temporal attributes. The input’s temporal attributes are

(1) lifetime of input events and (2) the duration of the window

that contains the set of input events, i.e., the window

descriptor. The second group of time-sensitive UDMs is

concerned with the output’s temporal attributes, that is, the

timestamps of the output events. The two groups are not

mutually exclusive. Some UDMs read the input temporal

attributes and generate the timestamps of the output events

according to the UDM logic.

C. Example End-to-End UDM Development

In this subsection, we provide an example of a simple time-

insensitive user defined aggregate (MyAverage). Then, we

leverage the aggregate with reasoning about the temporal

dimensions to provide a time-weighted average version of the

aggregate (MyTimeWeightAverage). MyTimeWeightAverage

adjusts the contribution of each element to the computed

overage by the event’s lifetime compared to the entire window

duration.

Example. The following code snippet shows how a simple

time-insensitive aggregate (MyAverage) that computes the

average over a given payload field. MyAverage does not

reason about temporal properties of incoming events.

MyAverage derives from the CepAggregate base class, which

is a system-provided base class, and declares the input and

output types to be of double data type.

MyAverage.GenerateOutput method accepts an IEnumerable

of payloads that are of type double and returns the average as

single value of type double that represents the average over

the given IEnumerable of payloads.
public class MyAverage :

 CepAggregate<double, double>

{

 public override double

 ComputeResult(IEnumerable<double> payloads)

 {

 return events.Sum() / events.Count();

 }

}

In order to integrate the user-defined aggregate into the

LINQ development experience for the query writer, an

extension method needs to be defined:
static public class UDAExtensionMethods

{

 [CepUserDefinedAggregate(typeof(MyAverage))]

 public static double

 MyAverage(this CepWindow<T> window,

 Expression<Func<T, double>> map)
 {

 throw CepUtility.DoNotCall();

 }

}

As shown in this example, the extension method serves the

purpose of associating the aggregate definition with a LINQ

extension method signature. The extension method is never

actually executed but is used by the LINQ provider to insert

the proper method call into the runtime query plan. The

signature of the extension method includes an expression that

is used by the query writer to map the stream’s input event

type to the UDM expected input data type. Note that UDMs

are pre-packed modules that operate on payload of type T. The

mapping expression bridges the gap between the incoming

events’ schema and the UDM expected payload type T. In the

above example, the mapping expression is expected to pick a

payload field of type double from the input event schema.

In contrast to time insensitive UDMs, a time-weighted

average is a time-sensitive aggregate that reasons about the

event lifetimes w.r.t. the window time span:
public class MyTimeWeightedAverage :

 CepTimeSensitiveAggregate<double, double>

{

 public override double

 ComputeResult(

 IEnumerable<IntervalEvent<double>> events,

 WindowDescriptor windowDescriptor)

 {

 double avg = 0;

 foreach (IntervalEvent<double>

 intervalEvent in events)

 {

 avg += intervalEvent.Payload *

 (intervalEvent.EndTime–

 intervalEvent.StartTime).Ticks;

 }

 return avg / (windowDescriptor.EndTime –

 windowDescriptor.StartTime).Ticks;

 }

}

MyTimeWeightAverage class derives from the

CepTimeSensitiveAggregate base class that is provided by the

system to declare the time sensitivity of the UDM. As shown

by the above code snippet, MyTimeWeightAverage reads the

window’s temporal properties (windowDescriptor.StartTime

and windowDescriptor.EndTime) as well as the input event

life times (intervalEvent.StartTime and

intervalEvent.EndTime). Note that time sensitive UDMs have

the option to timestamp their output event. If the UDM does

not timestamp the output, the output events are by default

timestamped with the entire window duration timestamps (e.LE

= windowDescriptor.StartTime and e.RE =

windowDescriptor.EndTime).

V. SYSTEM INTERNALS

We now discuss the system internals for UDMs, i.e., we

discuss how StreamInsight efficiently handles incoming

events (insertions and retractions) and windows internally, in

order to invoke the appropriate API calls for the UDMs and

produce output events. UDFs are easy to handle; for each

incoming event, the system first evaluates each UDF input

parameter from the event content, and then invokes the user-

defined function. The result of the user-defined function is

returned back to the system to continue normal processing of

the remainder of the plan. We focus on UDOs/UDAs in the

rest of this section.

A. Invoking User APIs

The system accumulates a set of events for a window and

invokes the appropriate user API call, optionally modifying

the lifetimes of the event(s) sent to the UDO based on a user-

specified input clipping policy (see Section 3.3.1). The UDO

produces a set of results. There are two possible modes:

If the user is using the time-insensitive API, they return a

set of payloads, and the UDO adds timestamps to the rows in

order to convert them into events. Timestamp addition is

based on the output timestamping policy (see Section 3.3.2),

which may be specified by the user. The only option for time-

insensitive UDOs is to set the output lifetime equal to the

window lifetime.

If the user is using a time-sensitive API, they return events

with timestamps directly to the system. The UDO may specify

an output timestamping policy that adjusts or restricts the

possible lifetimes that the UDO can assign to its output events.

B. Definitions

Recall that each unique window W corresponds to a time

interval, with left and right endpoints (W.LE and W.RE). The

window is associated with all events whose lifetimes overlap

the interval [W.LE, W.RE). We define the current watermark

m as the maximum of (1) the latest received CTI and (2) the

maximum LE across all received events.

We say that a window is closed if no future event can affect

(overlap) that window. This is determined based on received

CTIs which prevent events from occurring arbitrarily in the

past. Otherwise, the window is said to be active.

C. Data Structures

Our algorithms maintain the invariant that output is

produced for all non-empty windows that do not overlap the

interval [m, ∞). CTI handling is discussed in Section 5.5.

Refer to Figure 11. We maintain two data structures in the

system:

WindowIndex: This data structure tracks all active

windows in the system. It is organized as a red-black tree,

with one entry for each unique window (the window could be

of any type as described in Section 3). Each entry for window

W is indexed W.LE. Each window entry contains (1)

W.#endpts, the number of event endpoints within the window

and (2) W.#events, the number of events that overlap the

window.

EventIndex: This data structure tracks all active events (i.e.,

events that have not been cleanup up by CTIs). It is organized

as a two-layer red-black tree, where the first layer indexes

events by RE and the second layer indexes events by LE. Note

that we could also use an interval tree to replace this data

structure.

D. Non-incremental UDOs

At an abstract level, the algorithms for both incremental

and non-incremental UDOs have four phases:

Determine which existing windows are affected as a result

of the incoming event.

Issue retractions for affected windows to delete the older

output produced for those windows

Update data structures, to take the incoming event into

account. This can cause new windows to be created or

existing windows to be deleted or merged.

Issue new events as output, for all affected windows (after

the data structure is updated).

Determine Affected Windows When a new event e

arrives at the operator, we first determine which windows are

affected by the insertion, i.e., their event set membership

would change as a result of the insertion. In case of an

insertion, this is exactly all windows whose lifetimes overlap

[e.LE, e.RE). In case the event is a lifetime modification, the

set of affected windows is determined only based on the

windows that overlap the changed part of the event lifetime

which is [min(RE, REnew), max(RE, REnew)). Note that in case

of count windows, we perform post-filtering to ensure that our

modified belongs-to relation is satisfied.

Issue Full Retractions For each affected window W, we

use EventIndex to retrieve all (old) events that overlap [W.LE,

W.RE). Finally, the user API is invoked for the window (with

the old event set), to produce a set of events. The system

issues full retractions for all these events.

Note that the interface between the system and the UDO is

stateless, hence we needed to invoke the UDO again to

determine what events it produced earlier, so that those events

can be retracted appropriately. Thus, a UDO needs to ensure

that it is deterministic, i.e., two invocations of the API with

the same input will cause the same output to be produced.

Update Data Structures Next, we update WindowIndex

to take the newly inserted event into account. This may cause

a new window to be created or existing windows to be split.

Further, the counters W.#endpts and W.#events are updated.

In case of a lifetime modification event, W.#endpts may

become 0 for any window W; as a result, the window W is

deleted. An event lifetime modification can cause existing

windows to be merged or deleted. We finally insert event e

into EventIndex to complete updating data structures.

Produce Output Events Finally, for every new window

affected by the event, we again invoke the user API to

produce a set of events. These are output directly to the end-

user as insert events. We follow empty preserving semantics,

where a window that contains no overlapping events (i.e.,

W.#events=0) does not produce any ouput by default.

E. Incremental UDOs

An incremental UDO exposes an API that allows

incremental operations over a pre-defined operator state. The

system maintains the state for each window (as an opaque

object) on behalf of the UDO. Thus, each entry in

WindowIndex maintains window state as an additional piece

of information.

The algorithms are similar to the non-incremental case,

with some modifications as follows. When an event arrives at

the operator, for each affected window, we invoke the UDO

with the old state (instead of the entire set of old events) to

produce the set of events to be fully retracted. After updating

the data structures as before, we invoke the UDO for each

affected window, by passing it the old state and the new event

– the UDO processes this input incrementally and returns the

new state and output events/payloads. WindowIndex is

updated with the new state, and the events/payloads are

processed as before.

F. CTI Handling

Red-Black

Tree

Window

W
W.LE (key)

W.RE

W.#endpts

W.#events

Event e
e.LE (2nd key)

e.RE (1st key)

e.Payload

WindowIndex EventIndex

Figure 11: WindowIndex and EventIndex data structures.

CTIs (punctuations) are used by the system to produce

output (if the CTI increases the current watermark) as well as

to clean up operator state in the data structures.

1) UDO Liveliness with CTIs

In the most general form time-sensitive UDOs with no

restrictions on the lifetime of events produced by the UDO,

we can never issue CTIs as output because any window could

potentially produce an output event with LE=∞. Since this is

unacceptable, we now propose specific restrictions on UDOs

that can improve liveliness.

As a first step, assume that we enforce the following

restriction on output intervals: a time-sensitive UDO invoked

for window W may produce an event e only if e.LE ≥ W.LE.

In other words, the output timestamp must be within or after

the current window. We refer to this particular output

timestamping property as WindowBasedOutputInterval.

Recall from Section 3.3.2 that we can enforce this policy by

clipping output event lifetime to the window boundaries. This

restriction gives us a limited amount of liveliness. Specifically,

let c be the latest CTI received on the operator’s input. Let W

be the earliest window associated with an event e1 such that

e1.RE>c. With only the above restriction, when we use a time-

sensitive UDO, we will never be able to issue an output CTI

with timestamp > W.LE. To see why, note that since we have

a CTI only until timestamp c, e1 can still change in the future,

i.e., its RE can increase to a larger value. This change to e1

results in a change to the set of events in W, and causes W to

be recomputed, potentially producing an output event with

timestamp W.LE.

In the special case of a window W having an event with

infinite lifetime, we can never issue a CTI beyond W.LE. To

remedy this, a further improvement to liveliness is possible by

setting the input clipping policy (see Section 3.3.1) such that

the RE of events belonging to a window W are clipped to

W.RE before being sent to the UDO. For many UDOs such as

time-weighted average, this is an acceptable restriction

because they do not care about the actual RE of the event if

the event RE is beyond W.RE. Under this clipping policy, we

can propagate a CTI until W.RE, where W is the latest

window such that c ≥ W.RE. To see why this is the case, we

note that the clipped version of events belonging to window

W (or earlier) can never change because the CTI has moved

beyond W.RE.

Improving Liveliness Further Even with the above

improvement, there is no guarantee that when new a CTI is

received, a new output CTI with the increased timestamp will

be output in response. We fix this problem by defining a new

output timestamping policy called TimeBoundOutputInterval.

The basic idea is that given a window W into which a physical

event e (insertion or retraction) is being incorporated, the

output event(s) produced by the UDO in response to that event

are constrained to have LE ≥ sync time of e (see Section 2.1

for the definition of sync time). Most common UDOs

including time-weighted average, pattern matching, traditional

aggregates, and top-k are time-bound, i.e., they adhere to the

TimeBoundOutputInterval restriction. It is easy to see that

with this restriction, we can propagate CTIs with maximal

liveliness, i.e., whenever there is an incoming CTI with

timestamp c, we can produce an output CTI with timestamp c.

2) Internal State Cleanup using CTIs

Beyond ensuring liveliness, an important use of CTIs is

state cleanup. We need to get rid of old entries from our data

structures as soon as they are not needed, so that memory is

freed up for new events and other operators in the system.

When we receive a CTI with timestamp c, we prune

WindowIndex to get rid of closed windows, i.e., windows that

will never be required by the system in the future. The process

is identical for incremental and non-incremental UDOs. There

are three cases:

If the UDO is time-insensitive, we can delete a window W

as soon as W.RE ≤ c. This is because future lifetime

modifications of events in this window are guaranteed not to

affect this window.

If the UDO is time-sensitive with no input event clipping,

we can prune WindowIndex by deleting all windows W that

are closed, i.e., every event e belonging to W has e.RE ≤ c.

This is a necessary condition because any future event lifetime

modification could change the window definition, causing this

window to be re-computed. This requirement can cause

windows to be alive for a long time if events have long

lifetimes. We can alleviate this problem by specifying the

input event clipping policy, as described next.

If the UDO is time-sensitive with input event clipping, i.e.,

we clip the RE of input events to the window boundary, we

can delete a window as soon as W.RE ≤ c. This is possible

because in this case, even if an event lifetime changes, its

clipped version that lies within W will not change, and hence

W will not require re-computation.

We also have to delete events (and corresponding entries)

from the EventIndex that are no longer required. Deletion of

events is simple: we delete all events that belong only to

closed windows (see above for what constitutes a closed

window under various circumstances).

VI. EXPERIENCES AND LESSONS LEARNED

We have implemented and deployed the extensibility

framework in Microsoft StreamInsight, and have received

valuable feedback from our customers. In this section, we

summarize our experiences and user-feedback received during

this process of extending a complex event processing system

with powerful yet easy-to-use user-defined capabilities.

A. Temporal Algebra

StreamInsight is based on a clean well-defined and

deterministic temporal algebra and operator semantics. Our

past experience has shown that clean semantics, which are a

cornerstone of traditional databases and relational algebra, are

necessary for meaningful operator composability, repeatable

behavior, query debuggability, and cost-based query

optimization. This foundation helped in building a clean

extensibility solution without making operational decisions.

Our algebra helped clearly understand and control the

implications of physical effects such as CTIs, disorder,

retractions, etc. and tackle the core underlying issues behind

subtle aspects such as liveliness and state cleanup. Our novel

semantics for count-based windows were also driven by the

need for determinism.

B. Liveliness

As mentioned above, liveliness turned out to be more subtle

than expected. We initially expected that this would not

causes issues beyond those seen with internal operators, but

finally it turned out that we had to spend significant time

working out a practically usable and efficient solution.

C. Window Definitions

We had an initial solution for windowing that simply

modified event lifetimes in order to simulate windowing, but

quickly found that this was inadequate for most customer

applications, since it destroyed the user’s notion of lifetime

just for the purpose of introducing windowing.

D. API Interfaces

We found that there is a wide range of potential UDM

writers, depending upon the age of the application and the

specific requirements of the business domain. Thus, simply

providing one powerful API to all UDM writers was not

acceptable, due to the broad range of development expertise

and requirements in the community.

E. Role Separation

The separation of roles of query writer from the UDO

writer was found to be crucial in a practical sense, in order to

make the solution marketable in business environments, where

possibly different departments and users with widely different

backgrounds and expertise assume these roles.

F. Programming Interface

LINQ as an end-user programming surface has been

generally well-received, as query writers do not have to worry

about “hiking” the query over the client/server wall. On the

other hand, some query writers prefer a SQL-style interface,

for which we are looking at alternatives such as extending

languages such as StreamSQL [23]. One inconvenience with

our current extensibility framework is that the UDM module

itself needs to be hiked over the wall to be made accessible to

the StreamInsight server – we are looking at alternatives to

handle this in a cleaner way, such as UDM serialization.

VII. CONCLUSIONS

Leveraging a data streaming system with the ability to host

and execute user-defined modules (UDMs) enables domain

experts to extend and deploy the system in multiple

environments. This paper presented the extensibility

framework in Microsoft StreamInsight from three perspectives.

The first perspective is a query writer’s perspective.

Because a single UDM can be invoked by hundreds of queries,

the role of the query writer is designed to be as simple as

invoking a method call and as flexible as executing the same

UDM under different window specifications and different

input/output policies.

The second perspective is the user defined module (UDM)

writer’s perspective. Simple users get the ability to write

powerful UDMs without the need to worry about steam-

specific event types (i.e., insertion, retractions) or temporal

attributes of events (event timestamp, and duration). More

interestingly, UDMs writers get the ability to port libraries

they have created for traditional database systems with

minimal amount of effort. Meanwhile, advanced UDM writers

get the flexibility to manage the temporal aspect of input and

output events within their code.

Finally, the paper presented the extensibility framework

from a system internals perspective. This perspective covers

how the system hosts a UDM, how the system relieves the

UDM writer from stream-specific operations, and how it

carries over time management and event imperfection

handling on behalf of the UDM writer. This perspective also

addresses how the system shoots for several optimization

opportunities while executing users’ code.

REFERENCES

[1] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng
Hong. Consistent Streaming Through Time: A Vision for Event Stream

Processing. In Proceedings of CIDR, 412-422, 2007.
[2] Jonathan Goldstein, Mingsheng Hong, Mohamed Ali, and Roger Barga.

Consistency Sensitive Streaming Operators in CEDR. Technical Report,

MSR-TR-2007-158, Microsoft Research, Dec 2007.

[3] C. Jensen and R. Snodgrass. Temporal Specialization. In proceedings
of ICDE, 594-603, 1992.

[4] Utkarsh Srivastava, Jennifer Widom. Flexible Time Management in

Data Stream Systems. In PODS, 263-274, 2004.
[5] Paolo Pialorsi, Marco Russo. Programming Microsoft LINQ, Microsoft

Press, May 2008.

[6] Peter Tucker, David Maier, Tim Sheard, Leonidas Fegaras: Exploiting
Punctuation Semantics in Continuous Data Streams. IEEE TKDE

15(3): 555-568 (2003).

[7] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, Peter Tucker:
Semantics and Evaluation Techniques for Window Aggregates in Data

Streams. SIGMOD 2005: 311-322.

[8] Arvind Arasu, Shivnath Babu, Jennifer Widom: CQL: A Language for
Continuous Queries over Streams and Relations. DBPL 2003: 1-19.

[9] Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, Oliver

Spatscheck: A Heartbeat Mechanism and Its Application in Gigascope.
VLDB 2005: 1079-1088.

[10] Jin Li et al.: Out-of-order Processing: A New Architecture for High-

Performance Stream Systems. PVLDB 1(1):274-288 (2008).
[11] M. Ali et al.: Microsoft CEP Server and Online Behavioral Targeting.

VLDB 2009 (demonstration).

[12] Sankar Subramanian et al.: Continuous Queries in Oracle. VLDB 2007:
1173-1184.

[13] D.Abadi et al. The design of the Borealis stream processing engine. In
CIDR, 2005.

[14] Oracle Inc. http://www.oracle.com/.

[15] StreamBase Inc. http://www.streambase.com/.

[16] B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly Progress

Detection in Iterative Stream Queries. In VLDB, 2009.

[17] Moustafa A. Hammad et al.: Nile: A Query Processing Engine for Data
Streams. ICDE 2004: 851.

[18] Microsoft LINQ. http://tinyurl.com/42egdn.

[19] Chart Patterns. http://tinyurl.com/6zvzk5.
[20] M. Liu et al. Sequence pattern query processing over out-of-order

event streams. In ICDE, 2009.

[21] R. Motwani et al. Query processing, approximation, and resource
management in a DSMS. In CIDR, 2003.

[22] E. Ryvkina et al. Revision processing in a stream processing engine: a

high-level design. In ICDE, 2006.
[23] N. Jain et al. Towards a Streaming SQL Standard. In VLDB, 2008.

