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Abstract— Microsoft StreamInsight (StreamInsight, for brevity) 

is a platform for developing and deploying streaming 

applications, which need to run continuous queries over high-

data-rate streams of input events. StreamInsight leverages a 

well-defined temporal stream model and operator algebra, as the 

underlying basis for processing long-running continuous queries 

over event streams. This allows StreamInsight to handle 

imperfections in event delivery and to provide correctness 

guarantees on the generated output. StreamInsight natively 

supports a diverse range of off-the-shelf streaming operators. In 

order to cater to a much broader range of customer scenarios 

and applications, StreamInsight has recently introduced a new 

extensibility infrastructure. With this infrastructure, 

StreamInsight enables developers to integrate their domain 

expertise within the query pipeline in the form of user defined 

modules (functions, operators, and aggregates). 

This paper describes the extensibility framework in 

StreamInsight; an ongoing effort at Microsoft SQL Server to 

support the integration of user-defined modules in a stream 

processing system. More specifically, the paper addresses the 

extensibility problem from three perspectives: the query writer’s 

perspective, the user defined module writer’s perspective, and 

the system’s internal perspective. The paper introduces and 

addresses a range of new and subtle challenges that arise when 

we try to add extensibility to a streaming system, in a manner 

that is easy to use, powerful, and practical. We summarize our 

experience and provide future directions for supporting stream-

oriented workloads in different business domains. 

I. INTRODUCTION 

Microsoft StreamInsight [11] (StreamInsight, from now on) 

is a platform for monitoring stream data from multiple sources 

to extract meaningful patterns, trends, exceptions, and 

opportunities. StreamInsight analyzes and correlates data 

incrementally and in-memory while the data is in flight, 

yielding very low response times and high throughput. 

StreamInsight is an event stream processing system whose 

operation and semantics are governed by a temporal extension 

of relational algebra [3], which logically views a set of events 

as a time-varying relation. StreamInsight queries consist of a 

tree of operators with well-defined semantics, as defined by 

their effect on the time-varying relation. Run-time query 

composability, query fusing, and operator sharing are some of 

the key features in the query processor. Further, StreamInsight 

includes several debugging and supportability tools enable 

developers and end users to monitor and track events as they 

are streamed from one operator to another within the query 

execution pipeline. 

The interest in data streaming applications has grown 

tremendously across various business sectors. For example, 

streaming engines are used in Web analytics, fraud detection, 

call center management, RFID monitoring, manufacturing and 

production line monitoring, smart power meters, financial 

algorithmic trading, and stock price analysis. A close analysis 

of a wide range of streaming-oriented workloads reveals the 

fact that these workloads share common characteristics, and 

yet, differ from each other in several domain-specific aspects. 

The common characteristics include the demand for coping 

with high event input rates that are usually characterized by 

imperfections in event delivery (either late events or payload 

inaccuracies).  Further, there is a need for a mechanism to 

minimize output latency while maintaining correctness 

guarantees over the output. A streaming engine is an 

appropriate choice to provide low-latency and high-

throughput solutions for these applications. Correctness 

guarantees with low latency are provided due to the system’s 

ability to (1) output speculative [1, 10] results based on 

potentially incomplete or inaccurate sets of events, (2) 

compensate [1, 22] (or correct) incorrect output as late events 

and/or more accurate payloads are received at the system’s 

input, and (3) identify which output is guaranteed [4, 6] to be 

correct, i.e., cannot change in the future, based on received (or 

automatically inserted) guarantees from the event sources. 

On the other hand, each business sector has unique 

demands that are specific to its business logic. Business logic 

is the outcome of domain expertise in a specific sector over 

years. It is hard to expect that a single data streaming engine 

(out-of-the-box or as-it-is without any specialization) can 

cover domain expertise in different domains. Thus, for broad 

applicability, a streaming system is expected to have an 

extensibility mechanism that can seamlessly integrate domain-

specific business logic into the incremental in-memory 

streaming query processing engine. 

As shown in Figure 1, there are three distinct entities that 

collaborate together to extend a streaming system for a 

particular application domain:  

1- The user defined module (UDM) writer. The UDM 

writer is the domain expert who writes and packages 

the code that implements a set of domain-specific 

operations as libraries of UDMs. For example, a 

financial application may have experts write UDMs 



that can detect interesting complex chart patterns [19] 

in real-time stock feeds. 

2- The query writer. The query writer invokes a UDM 

as part of the query logic. A query is expected to have 

one or more UDMs wired together with standard 

streaming operators (e.g., filter, project, joins) in the 

same query pipeline. Note that multiple query writers 

may leverage the same existing repository of UDMs 

for accomplishing specific business objectives. The 

typical query writer does not have a deep 

understanding of the technical domain-specific details 

within UDMs, but is an expert at understanding end-

user requirements and developing queries to meet these 

requirements. Continuing the financial example 

discussed above, the query writer may write a complex 

query (and the surrounding glue application) that 

correlates across stock feeds from multiple stock 

exchanges, performs necessary pre-processing and 

filtering, applies a UDM to detect a particular chart 

pattern, and delivers the results as part of a trader’s 

dashboard. 

3- The extensibility framework. The extensibility 

framework is an internal system component that 

connects the UDM writer and the query writer. The 

UDMs are deployed to the framework and made 

available to query writers to use as part of their queries. 

The framework executes the UDM logic on demand 

based on the query to be executed. Thus, the 

framework provides convenience, flexibility, and 

efficiency for both the UDM writer and the query 

writer.  

Microsoft StreamInsight is designed to satisfy the 

requirements of streaming-oriented workloads. Meanwhile, 

StreamInsight provides the vehicle to integrate business logic 

into the execution query pipeline through its extensibility 

framework. This paper describes the extensibility framework 

in Microsoft StreamInsight with particular emphasis on the 

roles of the UDM writer, the query writer, and the system’s 

internals to deliver efficient and extensible solutions to 

business needs.  

A. Design Principles and Contributions 

The extensibility framework in Microsoft StreamInsight 

has been architected to achieve several design principles. 

These design principles contribute to the flexibility, efficiency 

and the seamless integration of a wide range of user defined 

modules into the continuous query processing pipeline. We 

summarize our design principles as follows: 

1)  Ease-of-use 

This principle favors query writers over UDM writers. A 

UDM is written once and is used by many queries over time. 

Hence, UDM details are expected to be hidden from the query 

writer who invokes the UDM by name and, possibly, passes 

some initialization parameters if needed. 

2)  Flexibility and reusability 

This principle provides the query writer with the ability to 

change the event membership in the set of events that are 

passed to the UDM every time the UDM is invoked. The 

temporal attributes if input and output events can be altered 

based on the query semantics. This principle gives the 

flexibility of re-using the same UDM under different 

circumstances. 

3)  Portability and compatibility 

This principle favors simple UDM writers or UDM writers 

who published libraries of UDMs under traditional (non-

temporal) database systems. These libraries can be ported to 

Microsoft StreamInsight with minimal porting effort. Without 

violating the UDM’s view of data as a relational table, 

StreamInsight handles the temporal aspect of events and 

handles imperfections in event delivery on behalf of the UDM 

writer. 

4)  Powerful control over time-management and efficiency 

This principle favors advanced UDM writers who claim 

responsibility of managing the temporal aspect of events 

seeking maximum power and efficiency in the UDM. The 

system provides the UDM writer with the ability to 

read/generate the input/output timestamps of events. 

Meanwhile, it provides the query writer with the ability to 

override the UDM time management and to revert back to 

default system timestamping policy. Further, it allows 

advanced UDM writers to increase efficiency in the streaming 

setting, by providing them with facilities to express 

incremental computations for the UDM. 

5)  Breaking optimization boundaries 

A UDM stands as optimization boundary in the query 

pipeline. Because a UDM is a black box to the optimizer, it is 

hard to reason about optimization opportunities. However, 

working hand-in-hand with the UDM writer, the UDM writer 

has the option to provide several properties about the UDM 

through well-defined interfaces. The optimizer reasons about 

these properties and shoots for optimization opportunities. 

6)  Liveliness 

Liveliness is a bi-fold aspect: (1) it is the ability to 

guarantee that output results are accurate and stable (i.e., will 

not to be retracted) up to a specific point in the application 

time, and (2) to keep advancing the output time as input time 

advances. This principle is concerned with generating signals 
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Figure 1: Entities in a streaming solution for a domain. 
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that advance the output time properly as the system receives 

signals that indicate advances in the input time. 

B. Paper Outline 

The remainder of this paper is organized as follows: 

Section 2 provides some basic background on streams, and 

introduces our new concept of windowing for the extensibility 

framework. Then, we cover the details of the extensibility 

solution, by exploring the problem from three perspectives: 

the query writer’s perspective (Section 3), the user defined 

module writer’s perspective (Section 4), and the system’s 

internal perspective (Section 5). We summarize our 

experiences and lessons learned in Section 6, and finally 

conclude the paper in Section 7. 

II. STREAMS, EVENTS, AND WINDOWS 

A Data Stream Management System (DSMS) [8, 9, 11, 14, 

15, 16] is a system that enables applications to issue long-

running continuous queries (CQs) that monitor and process 

streams of data in real time. DSMSs are used for efficient real-

time data processing in a broad range of applications. While 

the core concepts are generalizable to any streaming system, 

this paper focuses on Microsoft StreamInsight, which is based 

on the CEDR [1, 2] research project. 

A. Streams and Events 

A physical stream is a potentially unbounded sequence {e1, 

e2, …, } of events. An event ei = <p, c> is a notification from 

the outside world (e.g., sensor) that consists of: (1) a payload 

p = <p1, …, pk>, and (2) a control parameter c that provides 

metadata about the event. While the exact nature of the 

control parameter associated with events varies across systems 

[1, 10, 17], two common notions are: (1) an event generation 

time, and (2) a duration, which indicates the period of time 

over which an event can influence output. We capture these 

by defining c = <LE, RE>, where the time interval [LE, RE) 

specifies the period (or lifetime) over which the event 

contributes to output. The left endpoint (LE) of this interval, 

also called start time, is the application time of event 

generation, also called the event timestamp. Assuming the 

event lasts for x time units, the right endpoint of an event, also 

called end time, is simply RE = LE + x. 

Compensations StreamInsight allows users to issue 

compensations (or corrections) for earlier reported events, by 

the notion of retractions [1, 20, 21, 22], which indicates a 

modification of the lifetime of an earlier event. This is 

supported by an optional third control parameter REnew, that 

indicates the new right endpoint of the corresponding event. 

Event deletion (called a full retraction) is expressed by setting 

REnew=LE (i.e., zero lifetime). 

Canonical History Table (CHT) This is the logical 

representation of a stream. Each entry in a CHT consists of a 

lifetime (LE and RE) and the payload. All times are 

application times, as opposed to system times. Thus, 

StreamInsight models a data stream as a time-varying relation, 

motivated by early work on temporal databases by Snodgrass 

et al. [3]. Table 1 shows an example CHT. This CHT can be 

derived from the actual physical events (either new inserts or 

retractions) with control parameter c = <LE, RE, REnew>. Table 

2 shows one possible physical stream with an associated 

logical CHT shown in Table 1. Note that a retraction event 

includes the new right endpoint of the modified event. The 

CHT (Table 1) is derived by matching each retraction in the 

physical stream (Table 2) with its corresponding insertion (i.e., 

matching by event ID) and adjusting the RE point of the event 

accordingly. StreamInsight operators are well-behaved and 

have clear semantics in terms of their effect on the CHT. This 

makes the underlying temporal algebra deterministic, even 

when data arrives out-of-order. 
TABLE I 

EXAMPLE OF A CHT 
ID LE RE Payload 

E0 1 5 P1 

E1 4 9 P2 

 

TABLE II 

EXAMPLE OF A PHYSICAL STREAM 
ID Type LE RE REnew Payload 

E0 Insertion 1 ∞ - P1 
E0 Retraction 1 ∞ 10 P1 

E0 Retraction 1 10 5 P1 

E1 Insertion 4 9 - P2 

 
The sync time of a physical event is defined as the earliest 

time that is modified by the event. For example, the sync time 

of a physical insert event with lifetime [LE, RE) is LE, while 

the sync time of a modification event with endpoints LE, RE, 

REnew is min(RE, REnew). 

B. Event Classes 

Users can use lifetimes to model different application 

scenarios. For instantaneous events with no lifetime, RE is set 

to LE+h where h is the smallest possible time-unit. We refer 

to such events as point events. On the other hand, there may 

be events that model an underlying continuous signal being 

sampled at intervals. In this case, each event samples a 

particular value, and has a lifetime until the beginning of the 

next event sample. We refer to such events as edge events. 

The most general form of events have arbitrary endpoints 

depending on when the modelled event came into and went 

out of existence – these events are referred to as interval 

events. For instance, Figure 2(A) depicts lifetimes of three 

interval events. 

C. Detecting Progress of Time 

We need a way to ensure that an event is not arbitrarily out-

of-order. The lack of such a facility causes two issues: 

 We can never declare any produced output to be “final”, 

i.e., it cannot change due to future events. This 

declaration of output as final is useful in many cases, e.g., 

when we need to prevent false-positives in scenarios 

where correctness is important, such as directing an 

automatic power plant shutdown based on detected 

anomalies. 

 We cannot clean historic state in the DSMS, since it may 

be needed forever in order to adjust previous output. 



 

To solve this problem, we need the notion of stream 

progress, which is realized using time-based punctuations [1, 

4, 6]. A time-based punctuation is a special event that is used 

to indicate time progress. These punctuations are called 

Current Time Increments (or CTIs) in the terminology of 

StreamInsight. A CTI is associated with a timestamp t and 

indicates that there will be no future event in the stream that 

modifies any part of the time axis that is earlier than t. Note 

that we could still see retractions for events with LE less than t, 

as long as both RE and REnew are greater than or equal to t. 

D. Operator Types 

A streaming continuous query (CQ) consists of a tree of 

operators, each of which performs some transformation on its 

input streams and produces an output stream. There are two 

types of operators: span-based operators and window-based 

operators. 

1)  Span-based Operators 

A span-based operator accepts events from an input, 

performs some computation for each event, and produces 

output for that event with the same or possibly altered output 

event lifetime. For example, Filter (see Figure 2 (A)) is a 

span-based operator that selects events which satisfy certain 

specified conditions. The lifetime of the output event is 

equivalent to the entire “span” of the input event’s lifetime. 

2)  Window-based Operators 

On the other hand, aggregation operators such as Count, 

Top-K, Sum, etc. work by reporting a result (or set of results) 

for every unique window. The result is computed using all 

events that belong to that window. Window-based operators in 

the StreamInsight extensibility framework use a novel notion 

of windows, which we discuss next. 

E. Imposing Windows on Event Streams 

The basic idea is that we achieve windowing by simply 

dividing the underlying time-axis into a set of possibly 

overlapping intervals, called windows. Events are assigned to 

windows based on a “belongs-to” condition. For example, in 

case of all our window types1, an event belongs to a window if 

and only if the event’s lifetime overlaps with the window’s 

interval (time span). 

The desired operation (e.g., sum or count) is applied over 

every window (i.e., over the set of events belonging to that 

window) as time moves forward. The output of a window is 

the computation result of the operator over all events in that 

window, and has a lifetime that is usually equal to the window 

duration. 

Interestingly, we will see in Section 3 that this core 

windowing technique can be used to express all common 

notions of windows, including sliding windows, hopping 

windows, and count-based windows, by simply varying how 

the time-axis is divided into intervals. 

                                                 
1 We will see in Section 3.2 that count-based windows have an added 

restriction beyond the overlap condition. 

 
Figure 2. Span-based operators vs. window-based operators. 

Figure 2 (B) illustrates the “Count” aggregate over a 5 

second tumbling window. We see that a tumbling window is 

“simulated” by simply dividing the time interval into a 

consecutive sequence of disjoint intervals of equal width (the 

window length). One output event is produced for every 

unique window as shown, where the output is computed over 

all events whose lifetimes overlap with that window. Various 

types of windows supported by Microsoft StreamInsight are 

covered in detail in Section 3. 

III. THE QUERY WRITER’S PERSPECTIVE 

As mentioned in Section 1, the central design goals for the 

query writer are ease-of-use and flexibility. Ease-of-use means 

that all UDM implementation details are hidden from the 

query writer. The query writer simply invokes a UDM by its 

name, possibly passing some initialization parameters if 

needed. Flexibility means that the query writer can control the 

UDM behavior via two parameters: (1) the window 

specification and (2) the input/output timestamping policy. 

This section covers the language surface area for the query 

writer to invoke UDMs, with particular focus on the window 

specification and the input/output timestamping policy 

parameters. 

A. The LINQ Surface Area for Extensibility 

On top of the streaming algebra, a suitable query language 

exposes the operator functionality to the user. A good 

declarative query language should be a concise, yet intuitive 

interface to the underlying algebra. In StreamInsight, the 

Language Integrated Query (LINQ) [5, 18] was chosen as 

approach to express CEP queries. LINQ is a uniform 

programming model for any kind of data that introduces 

queries as first class citizens in the Microsoft .NET framework. 

StreamInsight supports three fundamental types of user-

provided extensions to the system – user-defined functions, 

user-defined aggregates, and user-defined operators. Based on 

the type of extension, UDMs surface either as method calls in 

the case of span-based stream operators, or as extension 

methods on windowed streams, in the case of window-based 

stream operators. 



1) User-Defined Functions (UDFs): UDFs are method 

calls with arbitrary parameters and a single return value. By 

using UDFs, expressions of any complexity are possible. They 

can be used wherever ordinary expressions (span-based 

stream operators) occur: filter predicates, projections, join 

predicates, etc. The method call is evaluated for each event. A 

user-defined function must be compiled into an assembly that 

is accessible by the StreamInsight server process at runtime. 

The example below invokes the valThreshold UDF from the 

MyFunctions library. The UDF is executed for every event e 

in the stream and takes a single value as parameter (i.e., e.id). 
var filtered =  

   from e in stream 

   where e.value < MyFunctions.valThreshold(e.id) 

   select e; 

 
2) User-Defined Aggregates (UDAs): A UDA is used on 

top of a window specification (e.g., hopping, snapshot, or 

count-based window) to aggregate the events contained in 

each window. At runtime, a UDA receives a set of events, 

representing the members of a single window, and produces 

the aggregation result value that maps to one of the 

StreamInsight primitive types (e.g., integer, float, string, etc). 

In the example below, the median UDA is invoked for every 

window w to compute the median of the payload field e.val 

over all events with lifetimes that overlap the window w.  
var result = from w in s.HoppingWindow(...) 

             select new { f1 = w.Median(e.val) } 

 
3) User-Defined Operators (UDOs): Similar to UDAs, 

UDOs are used on top of a window specification to process 

the events in each window. However, there are three 

differences between a UDA and a UDO. First, a UDA returns 

a value of a primitive type while a UDO returns an entire 

event payload with one or more field values. Second, a UDA 

return value that contributes to exactly one output event while 

a UDO generates zero or more events. Third, the UDO has the 

option to timestamp its output events. This type of UDO 

(described in Section 4) is called a time-sensitive operator. As 

an example, a pattern detection UDO may detect zero or more 

patterns of interest in a single window. The pattern detection 

UDO generates an output event for every detected pattern. 

Each output event may consist of one or more payload fields 

that describe the pattern. Moreover, the UDO decides on how 

to timestamp each output event. A user defined timestamping 

of the output becomes crucial in application scenarios where 

detected patters are not expected to last for the entire window 

duration. The following example shows how a query writer 

invokes a UDO. 
var newstream = 

   from w in inputStream.SnapshotWindow(...) 

   select w.MyPatternDetectionUDO(); 

B. The Window Specification 

The window specification defines the shape of the windows 

and, consequently, defines the event membership in each 

window. There are the four different supported window types 

in StreamInsight: hopping windows, tumbling windows, 

snapshot windows, and count-based windows. 

1) Hopping Windows: Hopping windows divide the 

timeline into regular intervals, independently of event start or 

end times. Each hopping window is offset by a hop size w.r.t. 

the previous window. The window is defined by two time 

spans: the hop size H and the window size S. For every H time 

units, a new window of size S is created. Figure 3 shows a 

stream that contains three events: e1, e2, and e3. The vertical 

bars show a hopping window segmenting the timeline. 
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Figure 3: Hopping windows 

2) Tumbling Windows: Figure 4 illustrates a special case of 

the hopping window where the hop size H equals the window 

size S.  This special case of gapless and non-overlapping 

hopping window is called the tumbling window. Note that for 

both hopping and tumbling windows, if an event spans a 

window boundary, the event becomes a member in every 

window it overlaps. This is the case for events e1 and e2 in 

Figure 3.  
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Figure 4. Tumbling windows. 

3) Snapshot Windows: Instead of a fixed grid along the 

timeline, snapshot windows are defined according to the start 

and end times of the events in the stream. The size and time 

period of the window is defined only by the events in the 

stream. A snapshot is defined as: the maximal time interval 

where no change is observed in the input. In other words, it is 

the maximal time interval that contains no event endpoints 

(left endpoint LE or right endpoint RE).  

For each pair of consecutive event endpoints (LE or RE), a 

snapshot window is created. By this definition, all event 

endpoints fall on window boundaries and never in between. 

That is, snapshot windows divide the timeline according to all 

occurring changes in the input that are signaled by event 

endpoints. 

Figure 5 shows a stream with three events: e1, e2, and e3. 

The vertical bars show the snapshot window boundaries that 

are defined by these events. Based on the start time and end 



time of events, only event e1 is in the first snapshot window. 

However, both events e1 and e2 are overlapping and, 

therefore, are included in the second window. 
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Figure 5. Snapshot windows. 

4) Count Windows: A count window with a count of N is 

defined as the timespan that contains N consecutive event 

endpoints. Because StreamInsight supports multiple classes of 

events (point, interval, or edge as described in Section 2.2), 

there are two types of count windows supported over interval 

events. Count by start time windows span N event start times 

(LE). Here, an event belongs to a window if its LE is within 

the window. Similarly, Count by end time windows span N 

event end times (RE). In this case, an event belongs to a 

window if its RE is within the window. We explain the count 

by start times windows in this section and the generalization 

count by end time windows is straightforward. Count 

windows move along the timeline with each distinct event 

start time. Hence, each new event will cause the creation of a 

new count window that extends in the future to include N 

event start points in the window, as long as the there are N 

events in the future. If there are less than N events, no window 

is created. If each event on the timeline has a unique 

timestamp, the number of events in each such window is equal 

to N. In case of multiple events with the same event start time, 

the number of contained events can be higher than N. 

Readers may wonder why we choose to count the number 

of start times instead of the number of events, to define count 

window. The main reason is that we want our windowing 

operation to be well-behaved and deterministic. In case we 

only wanted the most recent N events to form part of a 

window, there can be ambiguity regarding which events form 

part of the window, in case there are multiple events with the 

same left endpoint or start time (LE). Our definition of count 

windows fits well with our overlap-based window semantics, 

and is also compatible with our customer applications that 

require count windows. 

Figure 5 shows an example count by start time window 

with N=2.  
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Figure 6. Count window that counts event by start times. 

 

C. The Clipping and Timestamping Policies 
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Figure 7. Input clipping and output timestamping policies. 

Refer to Figure 7. Apart from the definition of the window 

(hopping, tumbling, snapshot, or count window), the query 

author can influence (1) how the windowing operation affects 

the lifetimes of the input events that are contained in the 

window before they are passed to the window-based operation 

and (2) how the lifetimes of the operation's output events are 

to be adjusted. Both policies are specified by the query writer 

as part of the window operator to control or override the 

default timestamps of the input/output events of the window 

operations. These transformations are called input clipping 

policy and output timestamping policy, respectively. 

1)  Input Clipping Policy 

The input clipping policy adjusts the timestamps of the 

incoming events with respect to the window boundary. There 

are four clipping policies for input events:  

 Left Clipping: Clips the event’s left endpoint eLE to the 

window left boundary wLE if the event e starts before the 

window start time (i.e., if eLE < wLE, set eLE = wLE).   

 Right Clipping: Clips the event’s right endpoint eRE to the 

window right boundary wRE if the event e ends after the 

window end time (i.e., if eRE < wRE, set eRE = wRE).   

 Full Clipping: Clips event from both sides by applying 

both left and right clipping policies. 

 No Clipping: Events are sent to the UDM without being 

clipped. 

 
As a consequence of such adjustments, any time-sensitive 

window operation
2
 that takes into consideration the event 

timestamps while computing the output value is affected by 

the specified clipping policies. Figure 8 shows how events in a 

tumbling window are fully clipped to the windows.  

The decision to clip an event with respect to the window 

boundary has to be based on the operator semantics. For 

example, a pattern operator that detects the pattern “A 

followed by B” requires the original event start times to 

reason about the chronological order of events, and hence 

cannot work with left clipping if it needs to be able to 

                                                 
2  An example of time-sensitive user defined modules is given in 

Section 4. 



incorporate the effect of overlapping events that start earlier 

that the left endpoint of the window. 
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Figure 8: Tumbling windows with fully clipped events. 

Moreover, the right clipping policy has a crucial impact on 

the progress of output time and on the system resources. 

Hence, the clipping decision needs to be taken carefully by the 

query writer. To explain the effect of right clipping on the 

progress of output time, assume an event e that extends t time 

units after the window right endpoints (i.e., e.RE = w.RE+t).  

Because the output of the window w depends on the e.RE, 

which extends t time units in the future, and because 

retractions are expected to change the event’s e.RE, the system 

will not be able to finalize the window output until a CTI 

(Current Time Increment as explained in Section 2) is 

signaled t time units beyond the window w.RE. Although the 

system generates speculative output from window w as soon 

as an event that overlaps the window w is received, the system 

delays the propagation of the CTI signal to the output by t 

time units. Also, the memory resources taken by the window 

are not reclaimed till the CTI passes w.RE by t time units. 

Therefore, for workloads with long living events, right 

clipping is highly recommended for the liveliness and the 

memory demands of the system. We discuss liveliness and 

cleanup in detail in Section 5. 

2)  Output Timestamping Policy 

On the output side, the output timestamping policy decides 

on the default management of the event’s timestamps and 

their lifetimes. The output of a window based operation is fed 

to the next operator in the query plan or directed to the 

consumer of the query output (if it is the last operator in the 

query plan). There are several possible output timestamping 

policies:  

 Align events to the window boundaries. This policy is the 

only option for time-insensitive operations that do not 

timestamp their output events (this will be covered in 

Section 4). Also, it gives the query writer the ability to 

override the UDM timestamping policy and revert to a 

default timestamping policy. 

 Keep the timestamps and lifetimes of output events 

unchanged. This policy applies only to time-sensitive 

UDMs that timestamp the output events. The only 

restriction on that policy is that a UDM is not allowed to 

generate an output event in the past (e.LE < w.LE). Past 

output is vulnerable to cause CTI violation, that is, 

generate output after time progression guarantees has 

been established on the output. 

 Clip the events to the window boundaries. This policy 

keeps the timestamps and lifetimes of output events as 

indicated by the UDM. However, if the event stretches 

beyond the window boundary, it gets clipped to the 

window boundary. 

We discuss the effect of these timestamping policies on 

liveliness and state cleanup in detail in Section 5, and present 

a new policy that can achieve maximal liveliness by imposing 

a new restriction the lifetime of events produced by the UDM. 

IV. THE UDM WRITER’S PERSPECTIVE 

The extensibility framework has been designed with 

attention given to two classes of UDM writers. The first class 

represents a wide range of software vendors who are not 

trained to think under the data streaming model with its 

temporal dimension. Moreover, this class of UDM writers has 

developed libraries of UDMs over years of experience in their 

domain. The second class of UDM writers targets stream-

oriented applications where temporal attributes are first class 

citizens in their business logic.  

The first class of users, call them traditional users, are 

interested in porting their logic from traditional databases to 

the streaming world with minimal efforts. According to the 

“portability and compatibility design principle” (refer to 

Section 1), StreamInsight conveniently accommodates that 

class of UDM writers through:  

 Preserving a relational view of the data. 

 Managing the temporal dimension on behalf of the UDM 

writer. 

 Handling imperfect event delivery represented by late 

event arrivals on behalf of the UDM writer 

 

The second class of users, call them power users, seeks full 

control over the temporal attributes of events as well as 

maximum achievable performance. According to the 

“powerful time management design principle” (as described in 

Section 1), StreamInsight conveniently accommodates that 

class of UDM writers through: 

 Authorizing UDMs to read the temporal dimension of 

input events (LE and RE) 

 Giving UDMs the ability to timestamp their output events. 

 Supporting the incremental evaluation of output results. 

 

From all three extensibility interfaces (UDFs, UDOs and 

UDAs), UDFs are the most straightforward to implement. A 

UDF is defined as a .NET method call with an arbitrary 

number of parameters. The UDF is a span-based operation 

that is evaluated for each event. For brevity, we focus our 

discussion in this section on UDOs and UDAs that are 

executed over a window-based model. As explained in 

Section 3, a UDO or UDA is called for each window at 

runtime.  

To cover the two classes of users, StreamInsight requires 

the UDM writer to take two decisions in advance: 

The first decision lets the UDM writer declares his model 

of thinking. StreamInsight supports two models of thinking: 

incremental and non-incremental models. Non-incremental 



model provides a relational view of the world to UDM writers 

while the incremental model provides the deltas or the 

changes in the input to the UDM since the UDM’s last 

invocation. The second decision indicates whether the UDM 

is time sensitive or time insensitive. Time insensitive UDMs 

deal with payloads. However, time-sensitive UDMs handle 

events (i.e., payloads plus temporal attributes). Time sensitive 

UDMs read the temporal attributes of input events, reason 

about time, generate and timestamp output events.  

In the following subsections, we describe non-incremental 

versus incremental UDMs as well as time sensitivity in UDMs. 

A. Non-incremental vs. Incremental UDMs 

1)  Non-Incremental UDMs 

A UDA/UDO can be implemented as a non-incremental 

operation. The engine passes a list (or IEnumerable according 

to the .NET framework terminology, or a table in the 

relational database terminology) of all events that overlap the 

window to the UDM. Thus, according to the portability and 

compatibility design principle, the UDM writer adopts a 

relational viewpoint towards the set of input events and 

defines the operation on the set in a declarative way. Figure 9 

illustrates that a UDM writer is expected to implement a 

single method, called ComputeResult. The ComputeResult 

method accepts an IEnumerable of payloads (in case of time-

insensitive UDM) or an IEnumerable of events (in case of 

time-sensitive UDM). The ComputeResult method performs 

the computation on the given input and generates a scalar field 

value (in case of a UDA), an IEnumerable of payloads (in case 

of time-insensitive UDO), or an IEnumerable of events (in 

case of time-sensitive UDO). Note that the UDM writer deals 

with payloads or events (payloads plus temporal attributes). 

The UDM writer does not have to worry about imperfections 

in event delivery. Section 5 (Systems Internals) provides the 

details on how the underlying framework invokes the UDM as 

many time as the number of windows and as many time as 

needed to process insertions and retractions. 

UDO/UDA

Compute Result

IEnumerable<Event>

or

IEnumerable<Payload>

Result Scalar (UDA)

or

IEnumerable<Event>

or

IEnumerable<Payload>

 
Figure 9. Non-incremental UDMs. 

2)  Incremental UDMs 

In order to tap the full benefit of a streaming system, we 

need a mechanism to allow advanced UDM writers to express 

incremental computations, such that the framework maintains 

a state per window that is updated incrementally with the 

arrival of every insertion or deletion event. Figure 10 shows 

that the UDM writer is expected to implement three methods. 

The AddEventToState takes as input the state of a window and 

the set of delta events that overlap that window. Delta events 

are the events that have arrived to the system and overlap 

window w since the last invocation of the UDM over window 

w. The AddEventToState incrementally updates the state of the 

window to reflect the effect of adding the delta events to the 

state. Similarly, the RemoveEventToState incrementally 

updates the state of the window to reflect the effect of 

removing the delta events on the state. The UDM writer also 

implements the ComputeResult method that computes the 

output given the window state as input. Based on the 

incoming insertion, retractions and CTIs, the underlying 

extensibility framework (as explained in Section 5) invokes 

the UDM methods to incrementally maintain a per-window 

state and to generate the proper insertions and retraction to the 

output. 

UDO/UDA

Add Event

to StateIEnumerable (delta events)

Statei

Statei+1

Remove Event

from StateIEnumerable (delta events)

Statei

Statei+1

Compute Result

Statei

Result Scalar (UDA)

or

IEnumerable (UDO)

 
Figure 10. Incremental UDMs. 

B. Time Sensitivity in UDMs 

1)  Time-Insensitive UDMs 

Time insensitive UDMs do not consider the temporal 

dimension while computing the result. Many time-insensitive 

UDMs have been written over the years for traditional 

databases. These UDMs are still of value and are expected to 

be executed on sets of event payloads in the streaming domain. 

2)  Time-Sensitive UDMs 

Time sensitive UDMs are classified into two groups: the 

first group of time-sensitive UDMs is concerned about the 

input’s temporal attributes. The input’s temporal attributes are 

(1) lifetime of input events and (2) the duration of the window 

that contains the set of input events, i.e., the window 

descriptor. The second group of time-sensitive UDMs is 

concerned with the output’s temporal attributes, that is, the 

timestamps of the output events. The two groups are not 

mutually exclusive. Some UDMs read the input temporal 

attributes and generate the timestamps of the output events 

according to the UDM logic. 

C. Example End-to-End UDM Development 

In this subsection, we provide an example of a simple time-

insensitive user defined aggregate (MyAverage). Then, we 

leverage the aggregate with reasoning about the temporal 

dimensions to provide a time-weighted average version of the 

aggregate (MyTimeWeightAverage). MyTimeWeightAverage 

adjusts the contribution of each element to the computed 



overage by the event’s lifetime compared to the entire window 

duration. 

Example. The following code snippet shows how a simple 

time-insensitive aggregate (MyAverage) that computes the 

average over a given payload field. MyAverage does not 

reason about temporal properties of incoming events. 

MyAverage derives from the CepAggregate base class, which 

is a system-provided base class, and declares the input and 

output types to be of double data type. 

MyAverage.GenerateOutput method accepts an IEnumerable 

of payloads that are of type double and returns the average as 

single value of type double that represents the average over 

the given IEnumerable of payloads. 
public class MyAverage :  

             CepAggregate<double, double> 

{ 

    public override double 

    ComputeResult(IEnumerable<double> payloads) 

    { 

        return events.Sum() / events.Count(); 

    } 

} 

 

In order to integrate the user-defined aggregate into the 

LINQ development experience for the query writer, an 

extension method needs to be defined: 
static public class UDAExtensionMethods 

{ 

    [CepUserDefinedAggregate(typeof(MyAverage))] 

    public static double 

    MyAverage(this CepWindow<T> window, 

            Expression<Func<T, double>> map) 
    { 

        throw CepUtility.DoNotCall(); 

    } 

} 

 

As shown in this example, the extension method serves the 

purpose of associating the aggregate definition with a LINQ 

extension method signature. The extension method is never 

actually executed but is used by the LINQ provider to insert 

the proper method call into the runtime query plan. The 

signature of the extension method includes an expression that 

is used by the query writer to map the stream’s input event 

type to the UDM expected input data type. Note that UDMs 

are pre-packed modules that operate on payload of type T. The 

mapping expression bridges the gap between the incoming 

events’ schema and the UDM expected payload type T. In the 

above example, the mapping expression is expected to pick a 

payload field of type double from the input event schema. 

In contrast to time insensitive UDMs, a time-weighted 

average is a time-sensitive aggregate that reasons about the 

event lifetimes w.r.t. the window time span: 
public class MyTimeWeightedAverage :  

     CepTimeSensitiveAggregate<double, double> 

{ 

    public override double  

    ComputeResult( 

       IEnumerable<IntervalEvent<double>> events,  

       WindowDescriptor windowDescriptor) 

    { 

        double avg = 0; 

        foreach (IntervalEvent<double> 

                 intervalEvent in events) 

        { 

            avg += intervalEvent.Payload *  

                 (intervalEvent.EndTime–                                                

                   intervalEvent.StartTime).Ticks; 

        } 

        return avg / (windowDescriptor.EndTime – 

                windowDescriptor.StartTime).Ticks; 

    } 

} 

 

MyTimeWeightAverage class derives from the 

CepTimeSensitiveAggregate base class that is provided by the 

system to declare the time sensitivity of the UDM. As shown 

by the above code snippet, MyTimeWeightAverage reads the 

window’s temporal properties (windowDescriptor.StartTime 

and windowDescriptor.EndTime) as well as the input event 

life times (intervalEvent.StartTime and 

intervalEvent.EndTime). Note that time sensitive UDMs have 

the option to timestamp their output event. If the UDM does 

not timestamp the output, the output events are by default 

timestamped with the entire window duration timestamps (e.LE 

= windowDescriptor.StartTime and e.RE = 

windowDescriptor.EndTime). 

V. SYSTEM INTERNALS 

We now discuss the system internals for UDMs, i.e., we 

discuss how StreamInsight efficiently handles incoming 

events (insertions and retractions) and windows internally, in 

order to invoke the appropriate API calls for the UDMs and 

produce output events. UDFs are easy to handle; for each 

incoming event, the system first evaluates each UDF input 

parameter from the event content, and then invokes the user-

defined function. The result of the user-defined function is 

returned back to the system to continue normal processing of 

the remainder of the plan. We focus on UDOs/UDAs in the 

rest of this section. 

A. Invoking User APIs 

The system accumulates a set of events for a window and 

invokes the appropriate user API call, optionally modifying 

the lifetimes of the event(s) sent to the UDO based on a user-

specified input clipping policy (see Section 3.3.1). The UDO 

produces a set of results. There are two possible modes: 

If the user is using the time-insensitive API, they return a 

set of payloads, and the UDO adds timestamps to the rows in 

order to convert them into events. Timestamp addition is 

based on the output timestamping policy (see Section 3.3.2), 

which may be specified by the user. The only option for time-

insensitive UDOs is to set the output lifetime equal to the 

window lifetime. 

If the user is using a time-sensitive API, they return events 

with timestamps directly to the system. The UDO may specify 

an output timestamping policy that adjusts or restricts the 

possible lifetimes that the UDO can assign to its output events. 

B. Definitions 

Recall that each unique window W corresponds to a time 

interval, with left and right endpoints (W.LE and W.RE). The 

window is associated with all events whose lifetimes overlap 

the interval [W.LE, W.RE). We define the current watermark 



m as the maximum of (1) the latest received CTI and (2) the 

maximum LE across all received events. 

We say that a window is closed if no future event can affect 

(overlap) that window. This is determined based on received 

CTIs which prevent events from occurring arbitrarily in the 

past. Otherwise, the window is said to be active. 

C. Data Structures 

Our algorithms maintain the invariant that output is 

produced for all non-empty windows that do not overlap the 

interval [m, ∞). CTI handling is discussed in Section 5.5. 

Refer to Figure 11. We maintain two data structures in the 

system: 

WindowIndex: This data structure tracks all active 

windows in the system. It is organized as a red-black tree, 

with one entry for each unique window (the window could be 

of any type as described in Section 3). Each entry for window 

W is indexed W.LE. Each window entry contains (1) 

W.#endpts, the number of event endpoints within the window 

and (2) W.#events, the number of events that overlap the 

window. 

EventIndex: This data structure tracks all active events (i.e., 

events that have not been cleanup up by CTIs). It is organized 

as a two-layer red-black tree, where the first layer indexes 

events by RE and the second layer indexes events by LE. Note 

that we could also use an interval tree to replace this data 

structure. 

 

 

D. Non-incremental UDOs 

At an abstract level, the algorithms for both incremental 

and non-incremental UDOs have four phases: 

Determine which existing windows are affected as a result 

of the incoming event. 

Issue retractions for affected windows to delete the older 

output produced for those windows 

Update data structures, to take the incoming event into 

account. This can cause new windows to be created or 

existing windows to be deleted or merged. 

Issue new events as output, for all affected windows (after 

the data structure is updated). 

Determine Affected Windows   When a new event e 

arrives at the operator, we first determine which windows are 

affected by the insertion, i.e., their event set membership 

would change as a result of the insertion. In case of an 

insertion, this is exactly all windows whose lifetimes overlap 

[e.LE, e.RE). In case the event is a lifetime modification, the 

set of affected windows is determined only based on the 

windows that overlap the changed part of the event lifetime 

which is [min(RE, REnew), max(RE, REnew)). Note that in case 

of count windows, we perform post-filtering to ensure that our 

modified belongs-to relation is satisfied. 

Issue Full Retractions   For each affected window W, we 

use EventIndex to retrieve all (old) events that overlap [W.LE, 

W.RE). Finally, the user API is invoked for the window (with 

the old event set), to produce a set of events. The system 

issues full retractions for all these events. 

Note that the interface between the system and the UDO is 

stateless, hence we needed to invoke the UDO again to 

determine what events it produced earlier, so that those events 

can be retracted appropriately. Thus, a UDO needs to ensure 

that it is deterministic, i.e., two invocations of the API with 

the same input will cause the same output to be produced. 

Update Data Structures   Next, we update WindowIndex 

to take the newly inserted event into account. This may cause 

a new window to be created or existing windows to be split. 

Further, the counters W.#endpts and W.#events are updated. 

In case of a lifetime modification event, W.#endpts may 

become 0 for any window W; as a result, the window W is 

deleted. An event lifetime modification can cause existing 

windows to be merged or deleted. We finally insert event e 

into EventIndex to complete updating data structures. 

Produce Output Events   Finally, for every new window 

affected by the event, we again invoke the user API to 

produce a set of events. These are output directly to the end-

user as insert events. We follow empty preserving semantics, 

where a window that contains no overlapping events (i.e., 

W.#events=0) does not produce any ouput by default. 

E. Incremental UDOs 

An incremental UDO exposes an API that allows 

incremental operations over a pre-defined operator state. The 

system maintains the state for each window (as an opaque 

object) on behalf of the UDO. Thus, each entry in 

WindowIndex maintains window state as an additional piece 

of information. 

The algorithms are similar to the non-incremental case, 

with some modifications as follows. When an event arrives at 

the operator, for each affected window, we invoke the UDO 

with the old state (instead of the entire set of old events) to 

produce the set of events to be fully retracted. After updating 

the data structures as before, we invoke the UDO for each 

affected window, by passing it the old state and the new event 

– the UDO processes this input incrementally and returns the 

new state and output events/payloads. WindowIndex is 

updated with the new state, and the events/payloads are 

processed as before. 

F. CTI Handling 

Red-Black 

Tree 

Window 

W 
W.LE (key) 

W.RE 

W.#endpts 

W.#events 

 

Event e 
e.LE (2nd key) 

e.RE (1st key) 

e.Payload 

 
WindowIndex EventIndex 

Figure 11: WindowIndex and EventIndex data structures. 



CTIs (punctuations) are used by the system to produce 

output (if the CTI increases the current watermark) as well as 

to clean up operator state in the data structures. 

1)  UDO Liveliness with CTIs 

In the most general form time-sensitive UDOs with no 

restrictions on the lifetime of events produced by the UDO, 

we can never issue CTIs as output because any window could 

potentially produce an output event with LE=∞. Since this is 

unacceptable, we now propose specific restrictions on UDOs 

that can improve liveliness. 

As a first step, assume that we enforce the following 

restriction on output intervals: a time-sensitive UDO invoked 

for window W may produce an event e only if e.LE ≥ W.LE. 

In other words, the output timestamp must be within or after 

the current window. We refer to this particular output 

timestamping property as WindowBasedOutputInterval. 

Recall from Section 3.3.2 that we can enforce this policy by 

clipping output event lifetime to the window boundaries. This 

restriction gives us a limited amount of liveliness. Specifically, 

let c be the latest CTI received on the operator’s input. Let W 

be the earliest window associated with an event e1 such that 

e1.RE>c. With only the above restriction, when we use a time-

sensitive UDO, we will never be able to issue an output CTI 

with timestamp > W.LE. To see why, note that since we have 

a CTI only until timestamp c, e1 can still change in the future, 

i.e., its RE can increase to a larger value. This change to e1 

results in a change to the set of events in W, and causes W to 

be recomputed, potentially producing an output event with 

timestamp W.LE. 

In the special case of a window W having an event with 

infinite lifetime, we can never issue a CTI beyond W.LE. To 

remedy this, a further improvement to liveliness is possible by 

setting the input clipping policy (see Section 3.3.1) such that 

the RE of events belonging to a window W are clipped to 

W.RE before being sent to the UDO. For many UDOs such as 

time-weighted average, this is an acceptable restriction 

because they do not care about the actual RE of the event if 

the event RE is beyond W.RE. Under this clipping policy, we 

can propagate a CTI until W.RE, where W is the latest 

window such that c ≥ W.RE. To see why this is the case, we 

note that the clipped version of events belonging to window 

W (or earlier) can never change because the CTI has moved 

beyond W.RE. 

Improving Liveliness Further   Even with the above 

improvement, there is no guarantee that when new a CTI is 

received, a new output CTI with the increased timestamp will 

be output in response. We fix this problem by defining a new 

output timestamping policy called TimeBoundOutputInterval. 

The basic idea is that given a window W into which a physical 

event e (insertion or retraction) is being incorporated, the 

output event(s) produced by the UDO in response to that event 

are constrained to have LE ≥ sync time of e (see Section 2.1 

for the definition of sync time). Most common UDOs 

including time-weighted average, pattern matching, traditional 

aggregates, and top-k are time-bound, i.e., they adhere to the 

TimeBoundOutputInterval restriction. It is easy to see that 

with this restriction, we can propagate CTIs with maximal 

liveliness, i.e., whenever there is an incoming CTI with 

timestamp c, we can produce an output CTI with timestamp c. 

2)  Internal State Cleanup using CTIs 

Beyond ensuring liveliness, an important use of CTIs is 

state cleanup. We need to get rid of old entries from our data 

structures as soon as they are not needed, so that memory is 

freed up for new events and other operators in the system. 

When we receive a CTI with timestamp c, we prune 

WindowIndex to get rid of closed windows, i.e., windows that 

will never be required by the system in the future. The process 

is identical for incremental and non-incremental UDOs. There 

are three cases: 

If the UDO is time-insensitive, we can delete a window W 

as soon as W.RE ≤ c. This is because future lifetime 

modifications of events in this window are guaranteed not to 

affect this window. 

If the UDO is time-sensitive with no input event clipping, 

we can prune WindowIndex by deleting all windows W that 

are closed, i.e., every event e belonging to W has e.RE ≤ c. 

This is a necessary condition because any future event lifetime 

modification could change the window definition, causing this 

window to be re-computed. This requirement can cause 

windows to be alive for a long time if events have long 

lifetimes. We can alleviate this problem by specifying the 

input event clipping policy, as described next. 

If the UDO is time-sensitive with input event clipping, i.e., 

we clip the RE of input events to the window boundary, we 

can delete a window as soon as W.RE ≤ c. This is possible 

because in this case, even if an event lifetime changes, its 

clipped version that lies within W will not change, and hence 

W will not require re-computation. 

We also have to delete events (and corresponding entries) 

from the EventIndex that are no longer required. Deletion of 

events is simple: we delete all events that belong only to 

closed windows (see above for what constitutes a closed 

window under various circumstances). 

VI. EXPERIENCES AND LESSONS LEARNED 

We have implemented and deployed the extensibility 

framework in Microsoft StreamInsight, and have received 

valuable feedback from our customers. In this section, we 

summarize our experiences and user-feedback received during 

this process of extending a complex event processing system 

with powerful yet easy-to-use user-defined capabilities. 

A. Temporal Algebra 

StreamInsight is based on a clean well-defined and 

deterministic temporal algebra and operator semantics. Our 

past experience has shown that clean semantics, which are a 

cornerstone of traditional databases and relational algebra, are 

necessary for meaningful operator composability, repeatable 

behavior, query debuggability, and cost-based query 

optimization. This foundation helped in building a clean 

extensibility solution without making operational decisions. 

Our algebra helped clearly understand and control the 

implications of physical effects such as CTIs, disorder, 

retractions, etc. and tackle the core underlying issues behind 



subtle aspects such as liveliness and state cleanup. Our novel 

semantics for count-based windows were also driven by the 

need for determinism. 

B. Liveliness 

As mentioned above, liveliness turned out to be more subtle 

than expected. We initially expected that this would not 

causes issues beyond those seen with internal operators, but 

finally it turned out that we had to spend significant time 

working out a practically usable and efficient solution. 

C. Window Definitions 

We had an initial solution for windowing that simply 

modified event lifetimes in order to simulate windowing, but 

quickly found that this was inadequate for most customer 

applications, since it destroyed the user’s notion of lifetime 

just for the purpose of introducing windowing. 

D. API Interfaces 

We found that there is a wide range of potential UDM 

writers, depending upon the age of the application and the 

specific requirements of the business domain. Thus, simply 

providing one powerful API to all UDM writers was not 

acceptable, due to the broad range of development expertise 

and requirements in the community. 

E. Role Separation 

The separation of roles of query writer from the UDO 

writer was found to be crucial in a practical sense, in order to 

make the solution marketable in business environments, where 

possibly different departments and users with widely different 

backgrounds and expertise assume these roles. 

F. Programming Interface 

LINQ as an end-user programming surface has been 

generally well-received, as query writers do not have to worry 

about “hiking” the query over the client/server wall. On the 

other hand, some query writers prefer a SQL-style interface, 

for which we are looking at alternatives such as extending 

languages such as StreamSQL [23]. One inconvenience with 

our current extensibility framework is that the UDM module 

itself needs to be hiked over the wall to be made accessible to 

the StreamInsight server – we are looking at alternatives to 

handle this in a cleaner way, such as UDM serialization. 

VII. CONCLUSIONS 

Leveraging a data streaming system with the ability to host 

and execute user-defined modules (UDMs) enables domain 

experts to extend and deploy the system in multiple 

environments. This paper presented the extensibility 

framework in Microsoft StreamInsight from three perspectives.  

The first perspective is a query writer’s perspective. 

Because a single UDM can be invoked by hundreds of queries, 

the role of the query writer is designed to be as simple as 

invoking a method call and as flexible as executing the same 

UDM under different window specifications and different 

input/output policies. 

The second perspective is the user defined module (UDM) 

writer’s perspective. Simple users get the ability to write 

powerful UDMs without the need to worry about steam-

specific event types (i.e., insertion, retractions) or temporal 

attributes of events (event timestamp, and duration). More 

interestingly, UDMs writers get the ability to port libraries 

they have created for traditional database systems with 

minimal amount of effort. Meanwhile, advanced UDM writers 

get the flexibility to manage the temporal aspect of input and 

output events within their code. 

Finally, the paper presented the extensibility framework 

from a system internals perspective. This perspective covers 

how the system hosts a UDM, how the system relieves the 

UDM writer from stream-specific operations, and how it 

carries over time management and event imperfection 

handling on behalf of the UDM writer. This perspective also 

addresses how the system shoots for several optimization 

opportunities while executing users’ code. 
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