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ABSTRACT
How to automatically spot the major trends in large amounts of
heterogeneous data? Clustering can help. However, most existing
techniques suffer from one or more of the following drawbacks:
1) Many techniques support only one particular data type, most
commonly numerical attributes. 2) Other techniques do not sup-
port attribute dependencies which are prevalent in real data. 3)
Some approaches require input parameters which are difficult to
estimate. 4) Most clustering approaches lack in interpretability.
To address these challenges, we present the algorithm Scenic for
dependency clustering across measurement scales. Our approach
seamlessly integrates heterogenous data types measured at differ-
ent scales, most importantly continuous numerical and discrete cat-
egorical data. Scenic clusters by arranging objects and attributes in
a cluster-specific low-dimensional space. The embedding serves as
a compact cluster model allowing to reconstruct the original het-
erogenous attributes with high accuracy. Thereby embedding re-
veals the major cluster-specific mixed-type attribute dependencies.
Following the Minimum Description Length (MDL) principle, the
cluster-specific embedding serves as a codebook for effective data
compression. This compression-based view automatically balances
goodness-of-fit and model complexity, making input parameters re-
dundant. Finally, the embedding serves as a visualization enhanc-
ing the interpretability of the clustering result. Extensive experi-
ments demonstrate the benefits of Scenic.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
clustering, heterogeneous data, Minimum Description Length

1. INTRODUCTION
In many applications, data are measured on different scales of

measurement. For example in biomedicine, we often have binary
attributes like sex and categorical attributes, like different geno-
types. Moreover, we often have continuous valued attributes like

Figure 1: Running Example.

laboratory parameters. To exploit the potential of the available in-
formation for knowledge discovery, we need data mining methods
which support the integration of different data sources regardless
of their measurement scale. As an example, each instance of the
data set in Figure 1 is characterized by five attributes: The numeri-
cal attributes x and y and three categorical attributes: the attribute
color with values red, green and blue; symbol with values box and
triangle, and filling with values open and filled, respectively.

In many cases, the true intrinsic dimensionality of a mixed-type
data set is much lower because of attribute dependencies. In com-
plex data sets, attribute dependencies are often not global but exist
at the level of single clusters. Our example consists of two clus-
ters, see also Figure 2(a). In Cluster 1, we observe a strong de-
pendency among the numerical x- and y-coordinates. In Cluster 2,
there is no dependency among the numerical coordinates but two
interesting mixed-type dependencies among numerical and cate-
gorical attributes: The attributes symbol and filling depend on the
x value of the objects. For small x values, we mostly observe open
boxes. The larger x the more likely we have filled triangles. Like-
wise, the attribute color depends on the y value: With increasing
y we see the transition of colors from red over green to blue. In
Cluster 2, the continuous attribute y basically measures the same
information as the discrete attribute color, however on a different
measurement scale. In many real applications, it is up to the ex-
pert to select a measurement scale, e.g. for a laboratory parameter
either a continuous scale or just record the information whether or
not the parameter is within some tolerance range. When integrat-
ing data from different sources, we can therefore expect to see a
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Figure 2: Single Clusters of Running Example: (a) Original space; (b,c) objects and attributes in Attribute-object (AO) space.

wide range of mixed-type attribute dependencies which are very
interesting for interpretation. Considering attribute dependencies
regardless of the measurement scale opens up novel opportunities
in clustering heterogeneous data. In clustering numerical data, cor-
relation clustering has attracted much attention. A large volume of
research papers, such as the approaches ORCLUS [1], 4C [4] and
CURLER [14] have demonstrated the potential of integrating Prin-
cipal Component Analysis (PCA) into clustering. These techniques
detect clusters in arbitrarily oriented subspaces corresponding to
unique correlation patterns revealed by PCA. The cluster-specific
subspaces are very useful for interpretation since they explain why
objects are clustered together. However, all these approaches are
suitable for vector data only, i.e. for data of continuous scale level.
We therefore introduce a novel cluster notion for mixed-type data.

1.1 Basic Idea
A cluster is a set of objects characterized by a unique attribute
dependency pattern. We detect and resolve mixed-type attribute
dependency patterns by embedding the data objects and the at-
tributes into a joint low-dimensional vector space, which we call the
Attribute-object (AO) space. Attributes and objects are arranged
such that the low-dimensional distances between the objects and
their corresponding attribute values are minimized. This type of
embedding has been proposed in [11], but has so far not been com-
bined with or integrated into clustering. To respect the order and
spacing constraints in numerical data, continuous attributes are rep-
resented as lines in low-dimensional space and for nominal attributes,
every category is embedded. Figures 2(b) and 2(c) display the em-
bedded objects and attributes of the two clusters of our running
example. For comparison, Figure 2(a) displays the single clusters
in original space. For clarity of presentation, we display the embed-
ding of the objects and of the attributes in separate sub-figures but
note that actually all objects and attributes lie in a common vec-

tor space. For each cluster a separate embedding is generated to
respect the cluster-specific attribute dependencies. The embedding
of the attributes in Figure 2(c) reveals at first glance the major char-
acteristics and dependencies of a cluster. Cluster 1 is composed of
open blue triangles. Therefore these three categories are placed at
the center of the display. We can see that both attributes x and y
measure similar information, since there is a small angle between
the corresponding lines in AO space. The embedding de-correlates
the data similar as PCA, c.f. Figure 2(b). Cluster 2 is composed of
open boxes and filled triangles of all colors. The complex mixed-
type dependency pattern in Cluster 2 becomes obvious and acces-
sible for interpretation from Figure 2(c). We can clearly see the
strong dependency between attribute x and the attributes filling and
symbol. Likewise, we see that the color value depends on the y-
coordinate. We can even see that the blue objects are clearly sep-
arated from the remaining colors by the y value, whereas red and
green objects overlap.

Our novel objective function directly relates clustering 1) to
unsupervised classification and 2) to data compression. Since
each cluster represents a unique attribute dependency pattern, a
unique vector space representation of the original attributes is an
essential part of the cluster model. We exploit this cluster-specific
low-dimensional embedding to reconstruct the original attribute val-
ues with high accuracy. Therefore, we search for clusters which
predict or explain the original mixed-type attribute values in the
data with high accuracy. However, the prediction accuracy alone is
not sufficient to comprehensively assess the quality of a clustering
result: The more clusters and the more complex the cluster models,
i.e. the higher dimensional the vector space representation of each
cluster model, the better is the prediction accuracy. To trade off
goodness-of-fit and model complexity, we therefore combine the
idea of unsupervised classification with the idea of data compres-
sion.
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1.2 Contributions
The benefits of our approach can be summarized as follows:

• We introduce a novel cluster notion to support general-
ized dependency clustering of data measured at different
measurement scales.

• The novel algorithm Scenic (Scale-free Dependency
Clustering) clusters by embedding objects and attributes in a
joint low-dimensional vector space which is very useful for
interpretation of the result.

• Linking clustering to unsupervised classification and data com-
pression, Scenic produces valid results without overfitting.

Notation. In the following we consider a data set DS with n ob-
jects. Each object x is represented by d attributes. Attributes are
denoted by capital letters and can be either numerical features or
categorical variables with two or more values. We denote the num-
ber of categorical attributes by dc and the number of numerical
attributes by dn. For a an attribute A, we denote a value (category
or numerical value) by a. We further denote by ax the value of
object x and attribute A. The representation of an object x in AO
space is denoted by π(x), and the representation of a value a of
attribute A by π(a). The number of categories of A is denoted by
|A|. The result of our algorithm is a disjoint partitioning ofDS into
k clusters C1, ..., Ck. The remainder of this paper is organized as
follows: In the next section, we elaborate our novel cluster notion
and the clustering objective. In Section 3, we introduce the algo-
rithm Scenic. Section 4 is dedicated to an extensive experimental
evaluation. Section 5 surveys related work and Section 6 concludes
the paper.

2. CLUSTER NOTION
AND CLUSTERING OBJECTIVE

In this section, we introduce our cluster model based the Attribute-
object space, a low-dimensional vector space representation for
mixed-type data suitable for unsupervised classification and data
compression. We start by formally introducing the AO space and
illustrating its basic properties.

2.1 Basic Properties of the AO Space
DEFINITION 1 (ATTRIBUTE-OBJECT SPACE.). The AO space

of dimensionality dv of a cluster consists of the following:

• The n× dv matrix Π(x) containing the low-dimensional ob-
ject coordinates π(x) of each object x as row-vectors;

• the c × dv matrix Π(a) containing the low-dimensional at-
tribute coordinates π(a) for each attribute A and each value
a, where c denotes the total number of distinguishable at-
tribute values of all numerical and categorical attributes in
the data.

Each numerical attribute A imposes order and spacing constraints
on π(a):

• Order constraint: For every pair of values a1 and a2, every
numerical attribute A and every dimension d of the AO space
holds: a1 < a2 ⇒ π(a1)d < π(a2)d.

• Spacing constraint: For every three values a1, a2, a3 holds:
a1 = a2 · a3 ⇒ π(a1)d = π(a2)d · π(a3)d.

The goal of the AO space is to represent the major aspects of the
complex high-dimensional similarity among mixed-type data ob-
jects and attributes in a compact form. Similar as Principle Com-
ponent Analysis, the transformation to AO space distills the major

characteristics from the data by 1) resolving attribute dependencies
and 2) removing noise. To learn a suitable AO space, it is essen-
tial to respect the fundamental difference in nature between nom-
inal and continuous attributes. The order and spacing constraints
guarantee that continuous attributes appear as lines in AO space.
Actually, each single value is embedded, but all values lie on a line
which we therefore display continuous instead of dotted in Fig-
ure 2(c). Only by this restriction, we obtain simple and thus inter-
pretable mixed-type dependencies such that with increasing x we
observe more likely filled triangles than open boxes. Nominal at-
tributes have no order or spacing on their categories and therefore
their location in AO space is not restricted. It would be even very
counterproductive to restrict their location since by embedding we
want to learn their hidden order and spacing from the overall data.
It is also not necessary to restrict the location of the objects in any
way. Considering Figure 2(b), the objects are clearly not arbitrar-
ily embedded. However, it is important to note that any arbitrary
embedding of the objects and the nominal categories would be a
valid AO space as long as the order and spacing constraints on the
numerical attributes are respected.

2.2 Unsupervised Classification
and Data Compression

Definition 1 specifies what a valid AO space is. But what is a good
AO space? It is essential to answer this question for the following
reasons: Our example demonstrates that especially the embedding
of the attributes is very helpful to interpret the cluster content (cf.
Figure 2(c)), however we must clarify how much we can trust what
we see. We also need a quality measure to compare different AO
spaces which are produced as intermediate results of our algorithm,
e.g. two sets of AO spaces resulting from different partitioning of
the objects into clusters.

A key idea of this paper is to regard clustering as an unsu-
pervised classification problem in a novel way: Given the low-
dimensional AO representation of objects and attributes, we
want to predict the original attribute values (i.e. the mixed-
type input data) with high accuracy. A cluster corresponds to
an unknown class of the data. The AO space of a cluster is a spe-
cific classification system accustomed to the data distribution in the
cluster. The goal of clustering is to find a grouping of objects which
maximizes the prediction accuracy.

However, the idea of unsupervised classification alone is not a
suitable optimization goal. To see this, consider a clustering where
each object is placed in its own singleton cluster. For each sin-
gleton cluster, the embedding AO space always provides optimal
prediction accuracy. Considering the nominal attributes, each AO
space would only contain those categories which the corresponding
object has. For the numerical attributes all lines would shrink to
points. Thus, each object would be embedded together with its in-
dividual attribute values only. No matter what classification scheme
we would apply, we could perfectly predict the original values since
there are no incorrect answers in the solution space. However, such
clustering result would be very bad for interpretation since we learn
nothing about the data. Therefore we must take action against over-
fitting.

To avoid overfitting we combine the idea of unsupervised
classification with the idea of data compression, also known as
the Minimum Description Length (MDL) Principle. Suppose,
we want to transfer the data via a communication channel from a
sender to a receiver. A good AO space is a compact model of the
data which can drastically reduce the communication costs. The
description length DL of a cluster Ci corresponds to:

DL(Ci) = RECi + MCCi .
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The reconstruction error RECi denotes the number of bits required
to reconstruct the original feature information, i.e. the numerical
and categorical attribute values of all objects using the AO space as
a model. The model complexity MCCi corresponds to the number
of bits required to encode the AO model itself and includes the bits
required to encode the low-dimensional object coordinates as well
as the model parameters.

2.2.1 Reconstruction Error
Categorical Attributes. Considering a single object x and cate-
gorical attribute A, we determine the reconstruction error REx,A

using Bayes’s theorem and Huffman Coding: For each category a
of A, the probability to observe a given the representation π(x) of
x in AOL space is provided by:

p(a|π(x)) =
p(a) · p(π(x)|a)

p(π(x))
.

With a suitable model for the probability distribution of category a
in AO space, we can specify the probability to observe π(x) given
that category a. From Section 3.1 it will be evident that applying a
Gaussian PDF Na(μa, Σa) with diagonal covariance is an appro-
priate choice. Thus,

p(π(x)|a) = (2π)−
dv
2 · |Σa|− 1

2 exp(π(x)−μa)t·Σ−1
a ·(π(x)−μa).

Applying additionally p(a) = |a|
n

and p(π(x)) =
∑

a∈A p(π(x)|a)
we can deduce the probability of category a given the AO represen-
tation π(x). Informally, a good AO space predicts the true category
of an object xwith high accuracy. This implies, in a good AO space
we obtain a very high probability, ideally almost 1, for p(ax|π(x)),
denoting by ax the true category of object x, and a very low proba-
bility to all remaining categories of attribute A. The reconstruction
error of the AO space corresponds to the amount of uncertainty on
the categorical attribute values which remains after embedding. To
quantify the reconstruction error in bits, we use the principle of
Huffman coding summing up over all objects in a cluster Ci and all
categorical attributes:

REcat =
∑

x∈Ci

∑

Acat

− log2(p(ax|π(x))).

Numerical Attributes. To quantify the reconstruction error REB

of a numerical attribute B for the objects of a cluster Ci, we ap-
ply multivariate regression where the AO coordinates of the objects
π(Ci) are the regressors and the original attribute values Ci,B cor-
respond to the dependent variable:

Ci,B = π(Ci) · βB + εB .

This is a standard linear regression with a Gaussian error distribu-
tion. The coding costs therefore correspond to the negative log-
likelihood of the error distribution summed up over all objects and
attributes:

REnum =
∑

x∈Ci

∑

Anum

− log2(
1

σεA

√
2π

exp−
(x− μεA)2

2σ2
εA

).

The overall reconstruction error RE is provided by summing up
the numerical and categorical reconstruction errors:
RECi = REnum + REcat.

2.2.2 Model complexity
Following [13], we estimate the costs to encode the model param-
eters by:

Pcost =
|m|
2
· log2 |Ci|,

where |m| stands for the number of model parameters. The number
of model parameters |m| = dv · n + 2 · dv · |cat| + dv · dn,

where the first term corresponds to the costs required to encode
the object representations, the second term to the category means
and variances and the third term is required for the linear models
of the numerical attributes, i.e. the model coefficients β. Besides
the model complexity of the cluster-specific embeddings, we need
to specify the cluster identifier for each object. Using Huffman
coding, these id-costs account for IDcost = |Ci| · log2(

n
|Ci| ). The

overall model complexity is the sum of the parameter costs and the
id-costs: MCCi = Pcost + IDcost.

2.2.3 Clustering Objective
The clustering objective is to find a partitioning of the objects into
clusters such that the overall description length is minimized:

min
∑

Ci∈C
DL(Ci).

It is important to note that the number of clusters is not an input
parameter but is determined by our algorithm at runtime guided by
the description length. Likewise, the description length allows us
to select a suitable dimensionality of the individual cluster-specific
embeddings.

3. ALGORITHM SCENIC
Having specified the cluster notion and clustering objective we now
introduce an efficient and effective algorithm to find a good clus-
tering. In particular, our algorithm needs to give answers to the
following two questions: How to find a good AO space for a clus-
ter? And: How to find the clusters? This section discusses the
answers of our approach Scenic.

3.1 Detecting a Suitable AO Space
Intuitively, it is clear that in an AO space suitable for unsupervised
classification and data compression, objects must be embedded as
close as possible to the embeddings of their own correct attribute
values. At the same time, objects should be as far away as possible
from the embeddings of the attribute values they do not have. For
example, an object having the value blue at the categorical attribute
color should be embedded as close as possible to the embedding of
the category blue and at the same time as far away as possible from
the values red and green in order to guarantee correct prediction
and effective compression, cf. Section 2.2.1.

Interestingly, the claim that the object should be placed as close
as possible to its correct values and as far as possible to the values
of other objects resembles a lot to clustering. In clustering, like
K-means we claim that objects in a common cluster should be as
similar as possible and objects in different clusters should differ as
much as possible. As building block to detect a suitable AO space
we use the algorithm Princals [11], which is, similar as K-means,
an alternating least squares algorithm. Princals first initializes the
object coordinates randomly. To avoid the trivial solution that all
objects are embedded to the same location, the random coordinates
are column-centered and orthogonalized. Princals then iterates two
steps until convergence: In step 1), coordinates for the attribute
values are determined as the mean of all assigned objects, i.e. all
objects having this value. To preserve the order and spacing con-
straints, the location of the numerical attribute values is corrected
by a linear regression using the original attribute values as regres-
sors. In step 2), coordinates for the objects are determined by the
mean of all category locations to which the object belongs. After
the second step, the object coordinates are orthogonalized, e.g. by
using the Gram-Schmidt procedure. When the data is solely nu-
merical, Princals yields the same result as PCA of the centered and
normalized data.
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algorithm Scenic (): set of clusters

Cluster CS := k-Scenic (1);
return REC-SPLIT (CR) ;
determine best AO of clusters with MDL ;

algorithm k-Scenic (k): set of k clusters

{C1, ..., Ck} := INITIALIZATION (k);
repeat

assign every object to Ci with minimum coding cost;
update AO space as in Section 3.1;

until convergence;
return {C1, ..., Ck};

procedure INITIALIZATION (k): set of k clusters

k-d Princals;
obtain l object clusters for each category combination;
while l > k do

merge most similar category combination;
return {C1, ..., Ck};

procedure REC-SPLIT (Cluster C): set of clusters

{CL, CR} := k-Scenic (2);
if MDL(CL) + MDL(CR) ≥ MDL(C) then

return {C};
else

return REC-SPLIT (CL)∪ REC-SPLIT (CR);

Figure 3: The Algorithm Scenic.

Applying a Gaussian PDF in Section 2 is justified by the fact,
that Princals embeds each category a at the center of all objects
having the value a. Therefore, all category centroids also share a
common variance. Moreover, it is appropriate to apply a spherical
Gaussian without covariance matrix and to consider each dimen-
sion separately because of the orthogonality of the AO dimensions.

3.2 Finding the Clusters
We start by introducing the algorithm k-Scenic for dependency
clustering with a fixed number of clusters k and finally introduce
Scenic which combines k-Scenic with an effective top-down split-
ting strategy for parameter-free clustering. Figure 3 summarizes
the algorithm in pseudocode.

Since k-Scenic is a k-means-style algorithm which is initializa-
tion dependent, we propose the following initialization strategy. In-
spired by spectral clustering [10], k clusters can be well separated
in a k-dimensional AO space. Similar to PCA, the k first dimen-
sions of the AO space can be regarded as the major dimensions
explaining most of the variance. Due to the special properties of
the AO space and the algorithmic scheme of Princals, the objects
of each category combination form a Gaussian in AO space. If
we have more than k category combinations, we greedily merge in
each step the most similar category combinations until we end up
with k clusters. We merge two category combinations by replacing
their multivariate Gaussians with the representative having mini-
mal Kulback-Leibler divergence to both of them. The parameters
of this representative can be determined efficiently in closed form,
cf. [5].

After initialization, k-Scenic iterates two phases until conver-
gence: 1) Assignment of each object to that cluster where it has
the minimal coding costs, and 2) update of the cluster model which
involves updating the AO space. Starting with all objects in one
cluster, the algorithm Scenic recursively applies 2-Scenic as long
we observe an improvement in coding costs. During the splitting
phase, clustering is performed in 2-dimensional AO space. In the
end, the best AO dimensionality of each individual cluster is deter-
mined with MDL.

The runtime complexity of Scenic depends on the number of it-
erations within the k-Scenic invocations and the number of itera-

tions within Princals. The runtime for k-Scenic is n · |iterkSc| ·
(|iterP | · nd2

v), where the last term represents the time needed for
Gram-Schmidt orthogonalization. Since the number of iterations in
k-Scenic |iterkSc| and the number of iterations in Princals |iterP |
usually is small (about 10 - 50), the algorithm is efficient.

4. EXPERIMENTS
In this section we perform experiments comparing Scenic to IN-
CONCO [12] and K-Means Mixed [2], two state-of-the-art tech-
niques for clustering mixed-type numerical and categorical data.
As a baseline, we also compare to K-means and K-modes. As clus-
tering quality measure we report the Normalized Mutual Informa-
tion (NMI) [15]. This score scales between 0 and 1. The higher the
NMI the better is the clustering.

4.1 Synthetic Data
Figure 4 displays the clusters found by Scenic (a) and the compar-
ison methods (b-d) on our running example. The data set consists
of 1,000 objects represented by three nominal and two numerical
attributes. Each of the two clusters is composed of 500 objects
exhibiting a cluster-specific attribute dependency pattern, see also
Figure 1 for the complete data set. In both clusters, the numeri-
cal coordinates exhibit a Gaussian distribution, spherical in Cluster
2 and with strong covariance in Cluster 1 (explaining 80% of the
variance). Cluster 1 consists of open blue triangles. The categorical
values of Cluster 2 have been assigned as follows: With probability
p := CDF (xi) of the Gaussian cumulative density function at the
x-coordinate of object i we observe bold triangles, with (1-p) prob-
ability open boxes. Analogously for the colors red and green and
the y-coordinate; additionally the color blue is assigned for objects
with CDF (yi) ≥ 0.9.

Scenic is the only method perfectly clustering this data set la-
beling the objects exactly to the ground truth as generated. Scenic
successfully detects the numerical correlation in Cluster 1 and the
mixed-type dependency in Cluster 2 and therefore achieves a per-
fect NMI of 1.0. The embedding of the attributes and the objects
is a valuable source of information for interpreting the result. Es-
pecially the embedding of the attributes displayed in Figure 2(c)
clearly visualizes the core characteristics of the clusters and the at-
tribute dependencies: Categories placed at the center of the display
like open, blue, triangle in Cluster 1 represent the typical attribute
values of a cluster. Analogously, we can see that for Cluster 2,
green and red objects are more frequent than blue ones, and the
cluster contains open boxes as well as filled triangles. The com-
plex mixed-type dependency pattern also becomes obvious at first
glance: We have a correspondence between numerical x and the
probability of observing open boxes or filled triangles which is dis-
played in the figure by the placement of those categories at the x-
axis; analogously for the colors and the y-axis. Scenic selects to
embed Cluster 1 in one-dimensional space and Cluster 2 in two-
dimensional space.

The second best result with an NMI of 0.71 is obtained by K-
means Mixed [2], cf. Figure 4(b). This clustering is guided by the
attribute color: All blue objects are assigned to Cluster 1. Cluster
2 consists of the remaining red and green objects. K-means Mixed
employs an optimization scheme to decide upon the relative impor-
tance of the single attributes for clustering. Among them, color best
distinguishes between the clusters, since there are only relatively
few blue objects in Cluster 2. However, only a technique consider-
ing dependencies between attributes of arbitrary scale can success-
fully cluster this data: The blue objects wrongly assigned to Cluster
1 by K-means-Mixed do not fit at all into this cluster since they have
no correlation among the numerical x- and y-coordinates. How-
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Figure 4: Results on Running Example: single clusters found by Scenic (a) and the comparison methods (b-d). Please also refer to
Figure 1 for the complete data set and to Figure 2 for the embedding of objects and attributes performed by Scenic.

ever, these objects fit very well to Cluster 2 because of the transi-
tion from open boxes to filled triangles for increasing x-coordinate.
The same result as with K-means Mixed can be obtained with stan-
dard K-means when we binarize the categorical attributes. Using
solely the two numerical attributes in standard K-means yields a
poor result with NMI of 0.18. It is evident that the categorical at-
tributes contain important information for cluster separation, thus
integrating both types of attributes improves the clustering result.

Another possibility is using the algorithm K-modes for categor-
ical data and integrating the numerical information by discretizing
the numerical attributes. This option yields an NMI of 0.33 us-
ing 10 equidistant bins, cf. Figure 4(c). This clustering is mainly
guided by the attribute filling: Cluster 1 contains in majority open
objects and Cluster 2 filled ones. Since the number of bins is diffi-
cult to select we report the result with the best NMI among several
trials. Integrating the other source of information by type conver-
sion is not an ideal solution but also helps in this case. Running
K-modes solely on the nominal data yields an NMI of only 0.27.

Figure 4(d) shows the result of INCONCO [12]. This algorithm
is in principle capable to consider mixed-type attribute dependency
patterns, however has a special and limited dependency model: In
a mixed-type attribute dependency, all categories of the involved
nominal variables must have a unique numerical data distribution
which is modeled by a separate Gaussian for each single category.
In the cluster model of INCONCO it is not possible that only some
of the categories are involved in a dependency. For example in
Cluster 2, we observe a transition from open boxes to filled trian-
gles for increasing x value. This dependency involves the attributes
symbol and filling, but only one of the two categories of each at-
tribute. INCONCO would model this dependency by having an
own Gaussian not only for open boxes and filled triangles but also
for filled boxes and open triangles, attribute combinations which

are not existing in this cluster. In addition, the assumption of having
a unique Gaussian for each category combination does not fit to the
data distribution. As Scenic relying on the MDL, INCONCO se-
lects the number of clusters automatically. Since the data does not
fit to the model assumptions of the algorithm, INCONCO prefers
to keep all objects in one cluster, a solution having an NMI of 0. To
enable comparison, we forced a split into two clusters. The result-
ing clustering with an NMI of 0.32 is mostly distinguishing open
boxes (Cluster 2) from the remaining objects (Cluster 1).

Runtime. Scenic is faster than K-means Mixed. However, IN-
CONCO and of course also K-means and K-modes are faster than
Scenic. For example to process a data set with 5,000 points and
data distribution as the running example, Scenic needs 28 seconds,
K-means Mixed 134 seconds, INCONCO, K-modes and K-means
less than a second.

4.2 Real Data
We compare to K-means Mixed [2] and INCONCO [12] on two
real data sets available at the UCI Machine Learning repository [6].
K-means and K-modes have been left out due to worse results.

4.2.1 Abalone
The abalone data set consists of 4,177 instances which are de-
scribed by nine attributes: The categorical attribute sex with three
values male, female and infant. Further eight numerical attributes
represent several measurements of the abalone shell, cf. Figure 5;
finally the integer-valued attribute rings providing the number of
rings of the shell which allows inferring the age of the animal. The
data has been originally collected to study the population biology
of abalone in Tasmania in an unsupervised way. Since added to the
UCI Machine Learning repository [6], the attribute rings has been
mostly used for evaluation purpose. Therefore, we also excluded
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Figure 5: Cluster-specific Embedding of Attributes on Abalone Data.

this attribute from clustering and used it for evaluation. Scenic de-
tects four clusters on this data set which correspond well to the
attribute sex. Cluster 1 is purely composed of the 1,342 infants
and Cluster 2 consists all 1,307 females. The males are split up into
two clusters because Scenic identifies two groups of male instances
having different attribute dependency patterns. Figure 5 displays
the embedding of the attributes for all four clusters. For clarity of
presentation, we omitted the attribute sex. Since all clusters are sex-
pure, the corresponding value is embedded at the center of all dis-
plays. Note that different rotation in the embedding has no seman-
tic meaning. From Figure 5 it is obvious that we have two general
types of dependencies in the data: The young males and the infants
are very similar (Cluster 1, displayed in Figure 5(a) and Cluster 4,
cf. Figure 5 (d)). In both clusters, the attributes length and diame-
ter are strongly correlated. The attributes shucked weight, viscera
weight and whole weight are also correlated but represent different
information. Height is rather correlated with length and diameter;
shell weight with the other weight attributes. In mature males and
females, cf. Figure 5(b) and 5(c), all attributes with exception of
height and shell weight are rather correlated.

It is probably not surprising that the grouping into sex-pure clus-
ters performed by Scenic is informative regarding the evaluation
attribute rings: Especially the infant cluster 1 has with 7.89 a much
smaller average number of rings than the other clusters (Cluster
2 (females): 11.13, Cluster 3 (males): 10.95, Cluster 4 (males):
10.37). Running a two-sample t-test on the ring distribution of
each pair of clusters assuming unequal variance provides further
evidence that it is reasonable 1) to cluster this data set according
to the sex, and 2) to split up the males into two subgroups. Cor-
rected with Bonferroni for multiple comparisons, almost all pairs
of clusters exhibit significant differences in the number of rings (at
level α = 0.05). In particular, Cluster 3 and 4 differ significantly
with p-value of 0.001 (corrected). Thus, as already observed above,
Cluster 3 represents the mature males and Cluster 4 represents the
younger males having attribute dependencies similar to the infants.
The only pair of clusters not exhibiting a significant difference in
age are Cluster 3 representing the mature males and Cluster 4 rep-
resenting the females.

For comparison, we parameterized K-means Mixed to also de-
tect four clusters. The result mainly separates the infants from the
rest of the data. Cluster 1 consists of 1,337 infants. The other three
clusters contain males, females and the few remaining infants to al-
most equal proportions. Regarding the number of rings, the result
of K-means mixed is also reasonable since all pairs of clusters dif-
fer significantly in a two-sample t-test on this attribute. However,
since K-means Mixed does not support attribute dependencies and
the only output is the grouping of objects into clusters, the result
is difficult to interpret: We do not know why objects are grouped
together and which attributes are important for clustering.

INCONCO detects 25 clusters on this data set. The four largest
clusters are consist of more than 300 objects. None of these clus-
ters represent a particular sex, e.g. the largest cluster with 1,056
instances consists of 554 males, 442 females and 60 infants. Also
regarding the number of rings, the result is not specific. None of
the clusters stands out significantly. Since INCONCO lacks a vi-
sual representation of the attribute dependency patterns and detects
many small clusters, the detected dependencies are hard to interpret
and to compare across clusters. In summary, Scenic achieves all we
want: 1) Scenic automatically selects a meaningful number of clus-
ters. 2) The embedding of the attributes clearly visualizes the most
important attributes and dependency patterns for clustering. 3) The
clusters differ significantly in the evaluation attribute.

4.2.2 Acute Inflammations Data
This data set consists of several measurements relevant for the diag-
nosis of acute inflammation of the urinary bladder and acute nephri-
tis. Each of the 120 instances represents a patient and is charac-
terized by six attributes. In contrast to the abalone data, besides
the temperature of the patient which is measured on a continuous
scale, all other attributes are binary taking the values yes or no: oc-
currence of nausea, lumbar pain, urine pushing, micturition pain,
burning or swelling. The data contains two binary attributes which
can be used as evaluation attributes, the diagnosis acute inflam-
mation of the urinary bladder (in the following called Evaluation
Attribute 1) and the diagnosis acute nephritis (Evaluation Attribute
2). Both diseases can but must not co-occur.

Scenic detects five clusters on this data set. This clustering has
an NMI of 0.24 with respect to Evaluation Attribute 1 and an NMI
of 0.43 with respect to Evaluation Attribute 2. In particular, Clus-
ter 1 consists of 29 patients suffering from acute nephritis, 19 of
which also suffer from acute inflammation of the urinary bladder.
Characteristic for this cluster is the high average temperature of
40.6 degrees Celsius and the presence of nausea. Cluster 2 con-
sists of 21 patients with acute nephritis who do not have inflamma-
tion of the urinary bladder. The patients in this cluster also have a
high average temperature of 39.9 degrees but in contrast to those in
Cluster 1 do not suffer from nausea and also not from micturition
pain, which makes sense since they do not have inflammation of the
bladder. Cluster 3 consists of 20 patients suffering from inflamma-
tion of the urinary bladder but without nephritis. These patients are
characterized by a normal average temperature of 36.9 degrees, and
by the fact that they are all having the characteristic symptoms of
pushing, micturition pain and burning or swelling. Cluster 4 con-
sists of 20 subjects who have neither nephritis nor inflammation
of the bladder. Cluster 5 consists of 30 subjects which are mostly
suffering from inflammation of the bladder (20 of 30). None of
the subjects in Cluster 5 has nephritis. In contrast to Cluster 2, the
average temperature in Cluster 5 is with 38,5 degrees slightly el-
evated. Furthermore, in contrast to the subjects in Cluster 3, this
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Figure 6: Embedding of Selected Clusters of Acute Inflammations Data. In sub-figures (ii) filled dots represent patients suffering
from inflammation of the bladder, open dots represent subjects not suffering from this condition.

group is not suffering from burning or swelling. Figure 6 displays
the embedding of the attributes (i) and of the objects (ii) for Cluster
1 (a) and Cluster 5 (b). As previously, for clarity of presentation,
we only show those categories which show a variation inside the
corresponding cluster, since all remaining categories are aligned
at the origin of the display. Clusters 1 and 5 are the only clus-
ters which are not class-pure with respect to Evaluation Attribute
1, which means that these clusters contain subjects suffering from
inflammation of the bladder as well as subjects who are not suffer-
ing from this condition. In Cluster 1, we observe a strong depen-
dency among the categories pushing and burning and no pushing
and no burning, respectively. These pairs of categories are grouped
together and aligned at the x-axis of the display of Figure 6(a,i).
From Figure 6(a,ii) it becomes evident that this axis separates sub-
jects affected from inflammation of the bladder from subjects who
are not. In the embedding of the objects we can distinguish among
three sub-groups. Sub-group 1 has no symptoms and relatively low
temperature and does not suffer from inflammation of the bladder.
Sub-groups 2 and 3 suffer from this condition, where sub-group
2 has no burning but pushing and sub-group 3 has both of those
characteristic symptoms. The second axis of the display is spanned
mainly by the numerical attribute temperature, which has slight de-
pendency to the categorical attributes. Especially patients with the
symptoms pushing and burning, i.e. those who have nephritis and
inflammation of the bladder tend to have a higher temperature than
patients only having nephritis. In Cluster 5, we observe different
dependencies. Similar as in Cluster 1, the categories pushing and
no pushing follow approximately the x-axis of the display. How-
ever, in contrast to Cluster 1, the binary attribute micturition pain
strongly depends on the temperature and vice versa. Subjects with-
out micturition pain have higher temperature than the other sub-
jects. As in Cluster 1, the x-axis of the display clearly distinguishes
subjects with inflammation of the bladder from those without. In
Figure 6(b,ii) the subjects form three sub-groups which are class-

pure with respect to Evaluation Attribute 1. Sub-groups 1 and 2
consists of patients with inflammation of the bladder, where the
subjects in sub-group 1 have the symptoms micturition pain and
pushing, and the subjects in sub-group 2 only pushing but a higher
temperature. Sub-group 3 is composed of patients who have an ele-
vated temperature but no other symptoms. This group has not been
diagnosed with inflammation of the bladder.

INCONCO detects 4 clusters with an NMI of 0.11 with respect to
Evaluation Attribute 1 and 0.52 with respect to Evaluation Attribute
2. As for Scenic, all clusters detected by INCONCO are class-pure
with respect to Evaluation Attribute 2. The only difference explain-
ing the lower NMI of Scenic is the fact that Scenic detects one more
cluster than INCONCO. Since the evaluation attributes are binary
detecting more clusters has negative effects on NMI. Therefore, we
parameterized K-means Mixed to detect 2 clusters. However, the
result does not match well any of the two evaluation attributes: K-
means Mixed has an NMI of 0.007 with respect to Evaluation At-
tribute 1 and 0.20 with respect to Evaluation Attribute 2.

In summary, Scenic is the only technique yielding a result which
matches well both evaluation attributes. The categorical cluster at-
tribute produced by Scenic well corresponds to the diagnosis nephri-
tis. Furthermore, in the leading dimensions of the cluster-specific
object embedding, the objects are perfectly separated according to
the diagnosis inflammation of the bladder.

5. RELATED WORK AND DISCUSSION
In clustering numerical data, considering attribute dependencies
has a long history with a lot of well-known approaches like OR-
CLUS [1] or CURLER [14]. The research area and is often re-
ferred to as correlation clustering or generalized subspace cluster-
ing. Compared to the large volume of research papers on clustering
numerical data, only relatively few approaches focus on categor-
ical data. Recently, some approaches for finding clusters in sub-
spaces of categorical data sets have been proposed like Clicks [17].
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However, to the best of our knowledge, the topic of generalized
subspace clustering on categorical data is largely unexplored.

Despite the practical relevance integrative mining of data with
different measurement scales, only disproportionably few approaches
focus on clustering data represented by numerical and categorical
attributes. Recently, some approaches to clustering such mixed-
type data sets have been proposed, in particular K-prototypes [9],
CFIKP [16], CAVE [8], CEBMDC [7], INTEGRATE [3], K-means
Mixed [2] and INCONCO [12]. In early approaches like K-proto-
types, not only the number of clusters k but also the relative im-
portance of the numerical and categorical attributes in clustering
needs to be specified by input parameters. Many later papers set
the primary focus on the key question how to balance the relative
importance of numerical and categorical information in clustering
and developed creative solutions: Ensemble methods in CEBMDC,
complex optimization methods in K-means Mixed and elements of
information theory in INTEGRATE, CAVE and INCONCO.

In the experimental evaluation, we decided to compare Scenic to
K-means Mixed [2] and INCONCO [12], since both algorithms fol-
low different philosophies on how to integrate numerical and cat-
egorical information in clustering. K-means Mixed dynamically
learns the significance of each single attribute during the cluster-
ing process. The objective function of the algorithm formalizes
the idea that attributes well separating the data objects are more
interesting for clustering. By this attribute weighting scheme, K-
means Mixed performs some kind of primitive subspace clustering.
To the best of our knowledge, INCONCO is the first step towards
making the benefits of generalized subspace clustering available
for mixed-type data. As Scenic, INCONCO is based on the MDL
Principle however with a different intention. INCONCO does not
regard clustering as an unsupervised classification problem but di-
rectly compresses the input data. Mixed-type attribute dependen-
cies are revealed by an extended Cholesky Decomposition. How-
ever, as mentioned in the experimental section, the cluster model
of INCONCO is limited to support certain types of attribute depen-
dencies only. In particular, all categories of all nominal variables
involved in a dependency with some numerical variables need to
have different Gaussian distributions of the numerical variables.
Our experiments on synthetic and real data demonstrate that this
condition does often not hold. As additional major benefit over IN-
CONCO, the result of Scenic comprises a clear visualization of the
attribute dependencies which is very helpful for interpretation.

6. CONCLUSION
In this paper, we have proposed Scenic, a technique for generalized
dependency clustering across measurement scales. The key idea of
Scenic is to consider clustering as an unsupervised classification
problem. Scenic clusters by constructing low-dimensional joint
embeddings of the objects and mixed-type attributes which allow
to predict the original attribute values with high accuracy. To avoid
overfitting, we combine this idea with data compression. Guided
by the Minimum Description Length Principle, Scenic automati-
cally selects the number of clusters as well as the dimensionality
of the embeddings. As an additional value-add, the embeddings
of objects and attributes are a valuable source of information for
interpretation. Especially the embedding of the attributes allows
understanding even complex dependencies involving several cate-
gorical and numerical attributes at first glance.

Many open challenges remain in mining heterogeneous data:
Scenic assigns each object to one distinct cluster. However, objects
may belong to several clusters. We therefore focus on fuzzy and

subspace clustering with special attention on detecting interesting
non-redundant clusterings. Besides clustering, we currently focus
on outlier detection methods respecting the dependencies among
numerical and categorical attributes. As a long term goal, we want
to include further types of attributes, e.g. hierarchical and relational
information.
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