
Regime Shifts in Streams: Real-time Forecasting of
Co-evolving Time Sequences

Yasuko Matsubara
Kumamoto University

yasuko@cs.kumamoto-u.ac.jp

Yasushi Sakurai
Kumamoto University

yasushi@cs.kumamoto-u.ac.jp

ABSTRACT

Given a large, online stream of multiple co-evolving event sequences,
such as sensor data and Web-click logs, that contains various types
of non-linear dynamic evolving patterns of different durations, how
can we efficiently and effectively capture important patterns? How
do we go about forecasting long-term future events?

In this paper, we present REGIMECAST, an efficient and effec-
tive method for forecasting co-evolving data streams. REGIME-
CAST is designed as an adaptive non-linear dynamical system, which
is inspired by the concept of “regime shifts” in natural dynamical
systems. Our method has the following properties: (a) Effective:
it operates on large data streams, captures important patterns and
performs long-term forecasting; (b) Adaptive: it automatically and
incrementally recognizes the latent trends and dynamic evolution
patterns (i.e., regimes) that are unknown in advance; (c) Scalable:
it is fast and the computation cost does not depend on the length of
data streams; (d) Any-time: it provides a response at any time and
generates long-range future events.

Extensive experiments on real datasets demonstrate that REGIME-
CAST does indeed make long-range forecasts, and it outperforms
state-of-the-art competitors as regards accuracy and speed.

Categories and Subject Descriptors: H.2.8 [Database manage-

ment]: Database applications–Data mining

Keywords: Time series; Real-time forecasting; Regime shifts;

1. INTRODUCTION
Time-series event analysis is an important topic that has attracted

huge interest in countless domains such as sensor network mon-
itoring [10, 24], financial and economic analysis [37, 35], social
activity mining [13, 18], online text [6, 7], and medical and health
record data analysis [9, 4, 19]. In the real applications, a massive
volume and variety of time-stamped data is generated and collected
at a very high logging rate, and this situation provides various new
demands and opportunities for data scientists and analysts.

In this paper, we focus on the most important and challenging
time-series analysis task, namely, the real-time forecasting of co-
evolving event streams, and specifically, we present REGIMECAST,
an efficient forecasting method for co-evolving time sequences.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939755

REGIMECAST is designed as an adaptive non-linear dynamical sys-
tem, inspired by the concept of “regime shifts” in natural ecological
systems [31, 3].

Intuitively, the problem we wish to solve is as follows:

INFORMAL PROBLEM 1. Given a data stream X , which con-

sists of event entries of d-dimensional data, i.e., X = {x(1), . . . ,x(tc)},

where tc is the current time tick, forecast ls-steps-ahead future

event x(tc + ls), immediately, at any point in time.

What is real-time forecasting over data streams? Assume that
we have a data stream X , which is a semi-infinite sequence of event
entries of d-dimensional data, {x(1), x(2), . . ., x(tc), . . .}, where
x(tc) is the most recent event, and tc increases with every new time
tick. So, what would be the real requirements for forecasting data
streams? We need an efficient algorithm that reports upcoming un-
known future events, immediately, at any point in time, while dis-
carding redundant information. In short, the ideal solution would
satisfy the following requirements.

• ls-steps-ahead forecasting: Assume that we have multiple
sensors (e.g., accelerometers in automobiles or motion sen-
sors in public areas), which generate d-dimensional co-evolving
event entries, every millisecond. Given such a huge collec-
tion of event sequences, we want to forecast future events,
efficiently and effectively, (e.g., to perform traffic accident
prevention or home security monitoring and intrusion de-
tection). Basically, our forecasting algorithm should be (a)
long-term: it should generate more than, say, ls = 100
steps-ahead predictions, every time tick; and (b) continuous:
it should estimate future events, smoothly and continuously,
by monitoring current trends and dynamic evolving patterns.
With respect to the first property (a), it is very important to
predict long-range future events. For example, if we receive
an alert message, such as “there will be a traffic accident in

a second”, it would be too late to avoid the accident. That is,
faced with real-time forecasting problems, short-term (say,
1, 2, 3, . . . -steps-ahead) prediction is meaningless. The sec-
ond property, i.e., (b) continuous processing is a requirement
for data streams. Unlike the traditional time-series forecast-
ing approaches (e.g., ARIMA), which are static (as opposed
to dynamic), the ideal method should report future events, at
every point in time, by capturing and updating the current
dynamic evolving patterns, flexibly and continuously.

• Adaptive non-linear modeling: As we will see later (e.g., in
Figure 1 (a)), real-life time-series event streams contain var-
ious types of distinct, dynamic evolving patterns of differ-
ent durations, e.g., the walking and house-cleaning motion
patterns in Figure 1 (a), the normal and abnormal patterns
seen in network traffic monitoring streams, and the patterns

http://dx.doi.org/10.1145/2939672.2939755

1000 2000 3000 4000 5000 6000 7000 8000
−2

0

2

Original data

Time
V

a
lu

e

1000 2000 3000 4000 5000 6000 7000 8000
−2

0

2

Time

V
a

lu
e

 RegimeCast

Original

wipe window

(4)

walking dragging

sweeping
dustpan

(1)

walking

(3)(2)

(100:120)−steps−ahead forecasted variables
left/right

arms

left/right
legs

(a) Original data stream (top) and our real-time forecasted result (bottom)

300 400 500 600 700
−2

0

2

V
a

lu
e

Time

Real−time forecasting : t=560

(1)

560 680660
3700 3800 3900 4000 4100

−2

0

2

V
a
lu

e

Time

Real−time forecasting : t=4020

(2)

6500 6600 6700 6800 6900
−2

0

2

V
a

lu
e

Time

Real−time forecasting : t=6760

(3)

8400 8500 8600 8700 8800
−2

0

2

V
a

lu
e

Time

Real−time forecasting : t=8680

(4)

(b-1) Walking (tc = 560) (b-2) Dustpan (tc = 4020) (b-3) Wipe a window (tc = 6760) (b-4) Walking (tc = 8680)

Figure 1: Forecasting power of REGIMECAST for a “house cleaning” motion event stream: (a) The original data (top), our (100:120)-

steps-ahead forecasted results (bottom), and (b) snapshots of video clips (top) and REGIMECAST outputs (bottom) at four different

time ticks. Given an original data stream, REGIMECAST incrementally and automatically identifies typical motions (such as “walk-

ing” and “using a dustpan”), and also forecasts long-range future events (e.g., in figure (b-1), at the current time tick tc = 560, it

makes (100:120)-steps-ahead predictions, i.e., from ts = 660 to te = 680). We note that our algorithm requires no prior training and

no hint regarding the number of motions (i.e., regimes). For a more detailed explanation of our forecasting mechanism, please see

Figure 3.

of growth, maturity and decline seen in product sales or Web-
based online user activities (e.g., Figure 7). Hereafter, we re-
fer to such a distinct dynamic evolving pattern as a “regime”.
As shown in Figure 1 (a), a single event stream X consists
of multiple regimes, where there are some abrupt changes of
regimes, namely, “regime shifts”, such as, t = 1, 000, from a
walking motion to a dragging motion. Consequently, our al-
gorithm should identify any sudden discontinuity in an event
stream, and recognize the current regime, immediately, so
that it can forecast ls-steps-ahead future events, adaptively,
at any time. We should also emphasize that these regimes
are unknown in advance, and thus the algorithm should in-
crementally learn all arrived events, summarize them into a
compact yet powerful representation. We thus propose us-
ing an adaptive non-linear modeling approach that satisfies
all the above requirements. We will discuss this further in
subsection 3.2.

Preview of our results. Figure 1 (a) shows the original event stream
of a “house cleaning” motion (top) and the result we obtained with
REGIMECAST (bottom). The original data stream consists of four
co-evolving motion capture sensors: left/right arms and left/right
legs. As shown in the figure, the original event stream is composed
of several consecutive motions, including “walking”, “dragging a
mop”, “using a dustpan” and “wiping a window”.

The bottom of Figure 1 (a) shows our (100:120)-steps-ahead fore-
casting results, and specifically, REGIMECAST forecasts (100:120)-
steps-ahead future events, for every (reporting) time 1. Figure 1 (b-
1)-(b-4) shows original video clips (top) and snapshots of REGIME-
CAST outputs (bottom) at four different time ticks (i.e., tc = 560,

1The reporting-time window lp can be set by the user (e.g., lp =
20). If it is set at lp = 1, the algorithm reports a ls-steps-ahead
single event, every 1 time tick.

4020, 6760, 8680, respectively). In figures (b-1)-(b-4), the esti-
mated events are shown by bold colored lines, and the original se-
quences are shown by dotted gray lines. The red vertical axes show
the time ticks {tc, ts, te}, where, tc is the current time tick. At
each time tick tc, the algorithm tries to forecast (100:120)-steps-
ahead future events, that is, from ts to te. For example, in the
figure (b-1), at the current time tick tc = 560, it predicts future
events from ts = 660 to te = 680. We will see this snapshot-plot
so often that we have given it a name, “REGIMESNAP”. Also, We
will explain our detailed forecasting mechanism later in Figure 3 in
subsection 4.1.

Consequently, given a large collection of co-evolving events, our
method identifies important motion patterns (e.g., “walking” and
“wiping”), and forecasts ls-steps-ahead future events, incremen-
tally and automatically. Most importantly, our algorithm requires
no prior training and no hint regarding the number of motions (i.e.,
regimes) or trend-changing (i.e., regime shift) positions.
Contributions. In this paper, we present REGIMECAST, which is
a real-time forecasting method for large co-evolving data streams.
Our method has the following desirable properties:

1. Effective: it operates on a large collection of time series and
performs long-term event forecasting.

2. Adaptive: it incrementally and automatically recognizes la-
tent trends and non-linear dynamic patterns (i.e., regimes)
while these patterns are unknown in advance.

3. Scalable: the computation cost does not depend on data stream
length.

4. Any-time: it generates long-range predictions, immediately,
at any point in time.

Outline. The rest of the paper is organized in the conventional
way: Next we describe related work, followed by our proposed
model and algorithms, experiments, discussion and conclusions.

2. RELATED WORK
In recent years, there has been an explosion of interest in mining

time-stamped data [29, 30, 24, 23, 33]. Similarity search and pat-
tern discovery in time sequences have attracted huge interest [32,
21, 28, 24, 25, 20, 2]. Rakthanmanon et al. [27] proposed a sim-
ilarity search algorithm for “trillions of time series” under the dy-
namic time warping (DTW) distance. The work in [17] proposed
a scalable method for forecasting complex time-stamped events,
while, [14] developed AutoPlait, which is a fully-automatic mining
algorithm for co-evolving sequences. Traditional approaches ap-
plied to time series data mining typically use linear method, such
as auto-regression (AR), autoregressive integrated moving average
(ARIMA), linear dynamical systems (LDS), Kalman filters (KF)
and their derivatives including AWSOM [22], TBATS [12], PLiF [11]
and TriMine [17]. Note that these methods are fundamentally un-
suitable for our setting: they are all based on linear equations, and
are thus incapable of modeling data governed by non-linear equa-
tions. Existing non-linear methods for forecasting tend to be hard
to interpret and cannot be used easily for long-term prediction, be-
cause they rely on a nearest-neighbor search [36, 1]. Non-linear
mining and analyses of epidemics and social activities have at-
tracted a lot of interest [4, 15, 16, 26, 18]. The work described
in [18] studied the rise and fall patterns in the information diffusion
process through online social media.

3. DESIGN PHILOSOPHY OF REGIMECAST
In this section, we present the fundamental concepts and design

philosophy behind our method.

3.1 Regime shifts in natural systems
Large, abrupt, long-lasting changes in the structure of complex

systems – regime shift– it is a key concept for understanding real-
world dynamical phenomena. Because of its importance and sub-
stantial impact on human society, regime shift has been widely
studied over recent decades in various research domains, especially,
in the field of environmental ecology [31, 5, 3, 34].

In ecology, a regime is defined as a characteristic behavior of a
natural phenomenon over time, and a regime shift implies an abrupt
change, in relation to the duration of a regime, from one charac-
teristic behavior to another [5]. Typically, regime shifts are trig-
gered either by internal processes, e.g., weakening of stability, or
by external shocks that exceed the stabilizing capacity of a system.
Also, these transition patterns are sometimes gradual, rather than
abrupt [34].

For example, let us consider biological ecosystems, such as lakes,
coral reefs and woodlands, where biotic/abiotic components (e.g.,
fishes, corals, water, mineral soils) are interacting with each other,
as a complex, adaptive non-linear system. In such a natural ecosys-
tem, we can observe several sudden changes of states. For example,
one of the most dramatic state shifts is the the sudden loss of trans-
parency and vegetation in shallow lakes caused by human-induced
eutrophication. Similarly, in a marine ecosystem, there is a tran-
sition from a coral dominated system to an fleshy brown macroal-
gae dominated system, which is possibly induced by hurricane or
climate change. Also, as described in Figure 2 (a), a woodland
ecosystem can be alternated with a grassy open landscape. Land-
scapes can be kept open by herbivores (or, fires and tree cutting),
while woodlands, once established, are stable because adult trees
cannot be destroyed by herbivores [31] 2.
Theoretical analysis and mathematical modeling. The most ba-
sic and minimum form of an ecological dynamical system can be

2
Image courtesy of dan at FreeDigitalPhotos.net.

Woodlands !" Grasslands !" Walking! Wiping!

(a) Ecological system (b) Motion sensors
Figure 2: Illustration of regime shifts in an ecological system

vs. sensor stream: (a) Regime shifts between two alternative

stable states: woodlands and grasslands, and (b) regime shifts

in motion sensors, between walking and wiping activities.

described with the following ordinary differential equation (ODE) [31]:

ds(t)

dt
= a0 + a1s(t) + a2f(s(t)), (1)

where, s(t) shows the time-evolving ecosystem property, such as
nutrients or soils at time tick t, and a0 describes an environmental
factor that promotes s(t), (e.g., nutrient loading), a1 is the rate
at which s(t) grows/decays in the system (e.g., nutrient removal
rate, for a1 < 0). The last term, a2 represents the rate at which
s(t) recovers again as a function f(s(t)), (e.g., internal nutrient
recycling), and the function f can cause alternative stable states.

Because of its simplicity and generality, the above dynamical
equation and the concept of regime shifts have been applied outside
ecology, to sociology, economics, political science and beyond.
Next we present our proposed method, REGIMECAST, which is
inspired by the regime shifts in natural dynamical systems.

3.2 Proposed model
Given a large event stream X , which contains various dynamic

evolving patterns (i.e., regimes), our goal is to find important trends
and summarize them as a compact but powerful and adaptive rep-
resentative model, to perform, long-term event forecasting.

So, what exactly are the most important properties for forecast-
ing the event stream X? Specifically, we want to describe the fol-
lowing three important properties:

• (P1) Latent non-linear dynamics
• (P2) Regime shifts in event streams
• (P3) Nested structure

Similar to the natural dynamical systems described in subsection 3.1,
real event streams evolve naturally over time, depending on many
latent factors, such as traffic, weather and driver’s condition for
automobile sensors, or user’s preferences and customs for online
Web-click activities. We need to capture the complicated and hid-
den dynamics of real time-series events that involve non-linear phe-
nomena. To handle (P1), we propose using latent non-linear differ-
ential equations. We also want to automatically detect the switch-
ing positions of dynamic evolution patterns, that is, (P2) regime
shifts in event streams. Figure 2 compares regime shifts in an eco-
logical system vs. an event stream (i.e., a motion sensor stream).
We conjecture that event streams behave as a complex, adaptive
non-linear dynamical system in the same way that biotic/abiotic
components in a natural ecosystem evolve and interact over time,
where there are multiple alternative stable states (i.e., regimes), that
can be switched to one another. We should also note that real event
streams are composed of multi-level nested systems, each of which
has a different time scale, and can be integrated as a part of a larger
system, that is, we need (P3). For example, as shown in Figure 7,
Web-click activities exhibit long-term evolution such as ten-year

patterns of growth and decline, as well as short-term, say weekly,
daily and hourly patterns. Similar behavior can be observed in nat-
ural systems, e.g., both long-term climate change and sudden hur-
ricanes can affect a coral reef system [31]. We thus propose using
a multi-level nested modeling structure that enables more effective
modeling and forecasting.

Now, we describe our concept in steps, adding complexity.

3.2.1 Latent non-linear dynamical systems (P1)

We begin with the simplest case, where we have only a single
dynamical pattern (i.e., regime), e.g., walking motion in a sensor
event stream, where, there are no regime shifts in the sequence
(P1). In our basic model, we assume that there are two classes
of time-evolving activities:

• s(t): Potential activity, i.e., k-dimensional latent activity at
time tick t, (s(t) = {si(t)}

k
i=1).

• v(t): Estimated event, i.e., d-dimensional actual activity that
can be observed at time tick t, (v(t) = {vi(t)}

d
i=1).

Here, we can only observe the actual event v(t) at time tick t, (such
as, actual variables generated by d sensors), while s(t) is a hidden
vector that evolves over time as a dynamical system. Consequently,
a single regime can be described with the following equations:

MODEL 1. Let s(t) be the k-dimensional potential activity at

time tick t, and v(t) be the d-dimensional estimated event at time

tick t. Our base model is governed by the following equations,

ds(t)

dt
= p+Qs(t) +AS(t) (2)

v(t) = u+Vs(t) (3)

with initial conditions s(0) = s0, where, ds(t)/dt is the derivative

with respect to time tick t and S(t) shows the quadratic form matrix

of s(t), i.e., S(t) = s(t)Ts(t).

Here, p, Q, A describe the potential activity s(t), each of which
captures linear, exponential, and non-linear dynamical activities 3,
while, u, V show the observation projection, which generates the
estimated event v(t) at each time tick t. Also note that the non-
linear activity tensor A should be sparse, to eliminate the com-
plexity of the system. We will explain this later in section 4.

Consequently, we have the following:

DEFINITION 1 (SINGLE REGIME PARAMETER SET: θ). Let θ

be a parameter set of a single non-linear dynamical system, i.e.,

θ = {s0,p,Q,A,u,V}. We refer to θ as a single regime param-

eter set.

3.2.2 Regime shifts in event streams (P2)

Our next step is to answer the most important question, namely,
how can we describe regime shifts in an event stream (P2)? As-
sume that we have a sensor stream that consists of c = 2 regimes,
e.g., walking and wiping motions (Figure 2 (b)). We want an adap-
tive model that can generate c distinct time-evolving patterns, such
as walking and wiping motions, where these patterns appear inter-
changeably, that is, the regimes can be switched to others. So what
would be the best way to describe the dynamic evolving regime
shift patterns among c distinct regimes? We thus introduce an ad-
ditional time-evolving activity, namely,

• w(t): Regime activity, i.e., c-dimensional latent regime shift
activity among c regimes at time tick t.

3 In this paper, for simplicity, we use a quadratic function for the
non-linear activity tensor A.

Here, w(t) describes the dynamical activity for each i-th regime
(1 ≤ i ≤ c) at time tick t.

Consequently, we extend Model 1, and propose the following
model, which is designed as a complex and adaptive dynamical
system:

MODEL 2. Let si(t) be the k dimensional latent activity of i-
th regime at time tick t (i.e., si(t) = {sij(t)}

k
j=1), w(t) be the

contribution strength of each i-th regime at time tick t (i.e., w(t) =
{wi(t)}

c
i=1), and v(t) be the d-dimensional estimated event at time

tick t. Our full model can be described as the following equations,

dsi(t)

dt
= pi +Qisi(t) +AiSi(t) (i = 1, . . . , c) (4)

dw(t)

dt
= r(t) (5)

v(t) =
c∑

i=1

wi(t) [ui +Visi(t)] (6)

where, dw(t)/dt shows the derivative with respect to time tick t.

In Model 2, we need an additional parameter, r(t), which is a c-
dimensional vector at time tick t. Let R be a parameter set of
regime shift dynamics, i.e., R = {r(t)}tct=1, where tc shows the
length of the event sequence. We refer to R as a regime shift ma-
trix. Please note that if there is a single regime (i.e., c = 1), our
full model is identical to Model 1. Consequently, we have the fol-
lowing:

DEFINITION 2 (REGIME SET: Θ). Let Θ be a parameter set

of regime set, namely, Θ = {θ1, . . . ,θc,R}, that describes non-

linear co-evolving patterns of c regimes.

3.2.3 With nested structure (P3)

Until now, we have assumed a single-level dynamical system,
which consists of a regime set Θ. In reality, however, we should
consider multi-level, nested structure to describe multi-scale dy-
namical activities, such as long-term evolution (e.g., ten-year pat-
tern) and short-term (e.g., weekly) dynamical events in online ac-
tivities. So, is there any simple solution to capture this phenomenon?
To handle (P3), we propose using multi-level regime set M =
{Θ(1),Θ(2), . . . }, where each regime set Θ(i) in M describes a
dynamical system at a different time scale. The idea is that, given
a set of multi-level regimes in M, we generate the local estimated
event v(i)(t) at the i-th level. The estimated event v(t) can be
organized simply by gathering all the local event set together.
Full model parameter set of RegimeCast. Our complete model
consists of the following:

DEFINITION 3 (COMPLETE SET OF REGIMECAST: M). Let

M be a full parameter set, namely, M = {Θ(1), . . . ,Θ(h)}, that

describes multi-level time evolving patterns.

4. STREAMING ALGORITHM
We now introduce our full algorithm, namely, REGIMECAST,

which is an efficient and effective forecasting method for large co-
evolving event streams.

4.1 Problem formulation
We first define some key concepts.

DEFINITION 4 (EVENT STREAM: X). Let X be a data stream

that consists of event entries of d-dimensional data, i.e., X = {x(1),
. . . ,x(tc)}, where tc is the current time tick. We refer to X as an

event stream.

Table 1: Symbols and definitions.
Symbol Definition

d Number of dimensions
tc Current time tick
X d co-evolving event stream, i.e., X = {x(1), . . . ,x(tc)}
x(t) d-dimensional event at time tick t, i.e., x(t) = {xi(t)}

d
i=1

s(t) Potential activity at time tick t, i.e., s(t) = {si(t)}
k
i=1

w(t) Regime activity at time tick t, i.e., w(t) = {wi(t)}
c
i=1

v(t) Estimated event at time tick t, i.e., v(t) = {vi(t)}
d
i=1

XC Current window, i.e., XC = X[tm : tc]
VF Forecast window, i.e., VF = V [ts : te]

c(i) Number of regimes at i-th level

θj
(i) Parameter set of j-th regime at i-th level

R(i) Parameter set of regime shift matrix at i-th level

Θ(i) Full parameter set at i-th level

M Complete set of REGIMECAST, i.e., M = {Θ(i)}hi=1

! "!! #!! $!!

!"

!

"

%

t
c

Future (unknown) events!

t
s

Forecast window Current window!X
C

t
mTime-tick!

Arrived events!

t
e

V
F

Estimated events!

Event stream!X

V
E

Figure 3: Illustration of REGIMESNAP: Given an event stream

X (black dotted lines), our algorithm estimates the current

time-series pattern VE (colored bold lines), and reports ls-

steps-ahead future events VF (in a red box), incrementally and

continuously. Here, XC = X[tm : tc] is a current window (i.e.,

recently arrived events) and VF = V [ts : te] is a ls-steps-ahead

future (i.e., unknown) event set.

Assume that we receive a new event x(tc), continuously, and tc
increases with every new time tick. It would be convenient to treat
the most recently arrived events, as a current window.

DEFINITION 5 (CURRENT WINDOW: XC). Let XC = X[tm :
tc] be the subsequence of length lc, starting from time tick tm and

ending at tc (1 ≤ tm ≤ tc) 4.

Given the current window XC , our next step is to find the optimal
regimes in M, and predict ls-steps-ahead future activities: VF =
{v(ts), . . . ,v(te)} using Model 2.

DEFINITION 6 (ls-STEPS-AHEAD FORECAST WINDOW: VF).
Let VF = V [ts : te] denote the ls-steps-ahead future events start-

ing from time-tick ts and ending at te (tc ≤ ts ≤ te), where,

ts = tc + ls, te = ts + lp, and lp is the length of the reporting

window.

Figure 3 shows a snapshot of REGIMECAST at the current time
tick tc, namely, REGIMESNAP. Here, the black dotted lines show
the original event stream X , which consists of a d = 4 dimensional
event sequence. The bold colored lines show our estimated events
VE from time tick tm to te. Note that the subsequence from tc to te
is future (unknown) events, and we need to estimate these hidden
dynamical patterns, incrementally and continuously.

4We set lc = 3 · ls in our setting.

Regime

Reader!

Regime

Estimator

Event stream X!

X
C

θ
1

(1)
θ
2

(1)

θ
1

(2) θ
2

(2)

+ ...

TSM-DB

!

Future
 events!

V
E

(1)
V
E

(2)

(a)!

(b)!

Forecast
window

V
F

≈

Θ
(1)

Θ
(2)

Time!

M

V
E

Report!

t
c

Figure 4: Overview of the REGIMECAST algorithm: Given an

event stream X , it first extracts the current window XC , and

then (a) searches for the optimal regime patterns in the time-

series model database, and generates the ls-steps-ahead events

VF . If there is a new (i.e., unknown) regime pattern in XC , (b)

it also estimates the new regime model parameter set θ, and

inserts it into the database.

Consequently, given an event stream X , our goal is to capture
the current time-evolving patterns in XC , as a complex, non-linear
dynamical system, and predict the ls-steps-ahead forecast window
VF , at any point in time. We formally define our problem as fol-
lows:

PROBLEM 1. Given a data stream X = {x(1), . . ., x(tc), . . .}
at regular time intervals, report ls-steps-ahead future events VF at

any point in time, i.e.,

• identify the optimal regime patterns in XC ,

• update the model parameter set M that describe the dynamic

patterns in XC ,

• report ls-steps-ahead future events, i.e., VF .

4.2 Overview
We now introduce our forecasting algorithm, REGIMECAST, which

consists of the following algorithms.

• REGIMEREADER: Estimates good regime dynamics and gen-
erates the estimated events VE = V [tm : te], when we are
given the current window XC and the model parameters Θ.

• REGIMEESTIMATOR: Estimates a good regime parameter
set θ for XC , when the current window XC contains a new
regime pattern (if required).

• REGIMECAST: Estimates the optimal event set VE
(i) at each

level i (i = 1, . . . , h), computes estimated event event set
VE = VE

(1) + VE
(2) + . . . , and reports the ls-steps-ahead

future events i.e., forecast window VF . It also maintains the
full model parameter set M.

Figure 4 illustrates how the REGIMECAST algorithm works. Given
an event stream X = {x(1), . . . ,x(tc)}, where tc is the current
time tick, our algorithm incrementally extracts the current window
XC , estimates the current regime pattern VE = VE

(1) + VE
(2) +

. . . , and reports ls-steps-ahead future events VF , at any point in
time. It also maintains the time-series model database (TSM-DB),
and updates model parameters in M, if required.

4.3 Proposed algorithms
Here we present our proposed algorithms in steps. To simplify

the discussion, let us focus on a simple step first, where we have a
single-level window XC and a regime parameter set Θ (that is, we
have a single-level structure, h = 1).

Algorithm 1 REGIMEREADER (XC ,Θ)

1: Input: current window XC and current regime parameters Θ
2: Output: Estimated events VE = V [tm : te] and updated regimes Θ
3: /* (I) Individual regime estimation */
4: for i = 1 : c do
5: /* Estimate s′

0
and activity VC

′

i for i-th regime θi */
6: {θi[s0], VCi} = arg min

s′
0
,VC

′

i

||XC − VC
′

i||; // VC
′

i = fC(s′
0
|θi);

7: end for
8: /* (II) Estimate regime activity at current time tick tc */
9: w(tc) = arg min

w1,...,wc

||XC −
∑c

i=1 wiVCi||;

10: r(tc) = w(tc)−w(tc − 1); // Calculate regime shift variable
11: R = R ∪ r(tc); Θ = {θ1, . . . ,θc,R}; // Update full parameters
12: VE = fE(Θ); // Calculate estimated event VE

13: return {VE ,Θ};

4.3.1 RegimeReader

Assume that we are given the current window XC and the cur-
rent regime parameter set Θ = {θ1, . . . ,θc,R}. Our first goal
is to estimate the dynamical event sequence VE = V [tm : te],
as shown in Figure 4 (a). So, how can we estimate events VE ,
given the current regime set Θ? The most straightforward solu-
tion would be simply to use the fixed parameters in Θ and calcu-
late v(tm),v(tm + 1), . . . , using Model 2. However, in real event
streams, the latent trends of the current window XC would dynam-
ically and continuously change over time. That is, We should iden-
tify the optimized regimes in Θ that describe the characteristics of
the current window XC . Most importantly, the algorithm needs to
adaptively update parameters in Θ, so that it can describe the cur-
rent activities in XC . Algorithm 1 shows the overall procedure for
the adaptive regime detection, namely, REGIMEREADER. In short,
the algorithm consists of two parts, namely, (I) individual regime
optimization, and (II) regime shift identification.
(I) Individual regime optimization. For each i-th regime parame-
ters θi ∈ Θ (i = 1, . . . , c), the algorithm tries to optimize the ini-
tial condition of potential activity, i.e., s0 in θi, so that it minimizes
the mean square errors between the original events and the esti-
mated events, i.e., min ||XC−VCi||. Here, let fC(s0|θ) be a func-
tion that generates estimated events VC = {v(tm), . . . ,v(tc)} in
Model 2, given regime parameters s0 and θ.
(II) Regime shift identification. Given a set of c optimized event
sequences {VCi}

c
i=1, the algorithm estimates the latent dynamics

of regime shifts at time tick tc, and specifically, it computes regime
activity w(tc) to optimize the regime set in Θ, and updates regime
shift matrix R in Θ, according to Equation 6 (i.e., min ||XC −
fC(Θ)||). Finally, it computes the estimated event VE = fE(Θ)
as the optimal events for the current window XC .

Here, we use the Levenberg-Marquardt (LM) algorithm to mini-
mize the mean square errors || · ||.

4.3.2 RegimeEstimator

Next, let us tackle the next question, namely, what if there is a
new, unknown regime in XC? We want to estimate the new regime
parameter set θ that describes the dynamical patterns in XC , and
insert it into the full parameter set Θ (Figure 4 (b)). Since θ con-
sists of a large number of parameters, it is extremely expensive to
optimize all the parameters simultaneously. Also, as we mentioned
in subsubsection 3.2.1, the non-linear activity tensor A should be
sparse, to avoid overfitting, and to simplify the dynamical patterns
in a single regime. We thus propose an efficient and effective al-
gorithm, namely, REGIMEESTIMATOR, which searches for the op-
timal solution in terms of both the linear and non-linear parame-
ters. The idea is that we split parameter set θ into two subsets, i.e.,

Algorithm 2 REGIMEESTIMATOR (XC)

1: Input: current window XC

2: Output: Estimated model parameter set θ = {s0,p,Q,A,u,V}
3: /* Estimate linear dynamical parameters θL = {p,Q,u,V}*/
4: A = 0; // Initialize tensor A
5: {s0,θL} = arg min

s′
0
,θ′

L

||XC − VC ||; //VC = fC(s′
0
,θ′

L,θN)

6: /* Estimate non-linear dynamical parameters θN = {A} */
7: {s0,θN} = arg min

s′
0
,θ′

N

||XC − VC ||; //VC = fC(s′
0
,θL,θ

′

N)

8: θ = {s0,θL,θN}; // Full parameter set

9: return θ = {s0,p,Q,A,u,V};

θL = {p,Q,u,V} and θN = {A}, each of which corresponds
to a linear/non-linear parameter set, and try to fit the parameter sets
separately. Algorithm 2 shows the steps performed by REGIME-
ESTIMATOR in detail. Given a current window XC , it first set
A = 0, and estimates the initial condition s0 and linear param-
eters θL that describe linear dynamical patterns in XC . Here, we
use the expectation-maximization (EM) algorithm to optimize the
parameters. It then estimates non-linear elements in A to minimize
the errors between XC and potential activity VC , using the LM
algorithm. Also note that, for the non-linear tensor A, we only es-
timate parameters for the diagonal elements aijk ∈ A (i = j = k)
to eliminate the complexity.

4.3.3 RegimeCast

Until now, we have discussed how to generate the estimated
event sequence VE at a single-level regimes Θ. Our final goal is
to capture multi-level dynamical patterns M= {Θ(1), . . . ,Θ(h)},
and predict ls-steps-ahead forecast window VF (see Figure 4). As
we described in subsubsection 3.2.3, given a event stream X , we
want to describe multi-level dynamical activities, e.g., yearly, weekly,
and daily patterns. We thus propose multi-scale modeling approach
that enables more effective forecasting. The idea is that we de-
compose the current window XC into a set of multi-scale event se-
quences XC = XC

(1)+. . . XC
(h), where XC

(i) shows the current
event sequence at the i-th level. Specifically, the i-th level sequence
can be computed as follows: XC

(i) = g(XC−
∑i

j=1 XC
(j)|H(i)),

where g(·|t) denotes the moving average of length t. 5

The detailed REGIMECAST algorithm is shown in Algorithm 3.
Given a new event x(tc), it extracts the current window XC

(i) at

the i-th level, and (I) estimates event sequence VE
(i). If there is no

appropriate regime in Θ(i) (i.e., the error between the current win-
dow and estimated events is more than ǫ, e.g., ǫ = 1/2||XC

(i)||),

(II) it creates a new regime θ and update the regime set Θ(i). Fi-
nally, (III) it reports ls-steps-ahead forecast window VF .
Efficient event generation and dynamic point set (DPS). Since
our estimation algorithm, REGIMEREADER, is based on a complex
dynamical system, described in Model 2, it requires O(le) time to
calculate the potential activity SE = {s(tm), . . . , s(te)} at every
time tick tc, where le shows the length of SE . However, it is a po-
tential bottleneck for the real-time processing. We thus propose an
efficient approach for the dynamic event generation. Specifically,
instead of computing all events SE = {s(tm), s(tm + 1), s(tm +
2), . . . , s(te)}, we generate a subset of SE , namely, a dynamic

point set (DPS): ŜE = {s(tm), s(tm+δ), s(tm+2δ), . . . , s(te)},
where δ shows the time interval of the potential activity (say, δ =
0.1 · ls). We use a simple yet powerful, numerical integration
method, namely, the forth-order Runge-Kutta method [8], to gen-
erate the dynamic point set ŜE :

5In this paper, we set H = {2 · ls, 1}.

Algorithm 3 REGIMECAST (x(tc))

1: Input: a new event x(tc) at time tick tc
2: Output: ls-steps-ahead future events VF

3: /* Initialize forecast window VF = 0 */
4: for i = 1 : h do
5: Compute XC

(i); // current window at i-level
6: /* (I) Parameter fitting for regime activities */

7: {VE
(i),Θ(i)} = REGIMEREADER(XC

(i),Θ(i));
8: /* (II) Regime estimation (if required) */

9: VC
(i) = V (i)[tm : tc]; // Estimated events from tm to tc

10: if ||XC
(i) − VC

(i)|| > ǫ then

11: θ = REGIMEESTIMATOR(XC
(i)); Θ(i) = {Θ(i) ∪ θ};

12: end if
13: end for
14: /* (III) ls-steps-ahead future event generation */

15: VE = VE
(1) + . . . , VE

(h);VF = V [ts : te];

16: return VF ;

s(t+ δ) = s(t) +
1

6
(K1 + 2K2 + 2K3 +K4) +O(δ5) (7)

where, we define ds(t)/dt = F (s(t)), and K1 = δF (s(t)),K2 =
δF (s(t)+ 1

2
K1),K3 = δF (s(t)+ 1

2
K2),K4 = δF (s(t)+K3).

Consequently, the algorithm requires O(le/δ) time to compute ŜE ,

where le/δ shows the length of ŜE .
Theoretical analysis. Let le be the length of the estimate event set
VE , and c be the number of regimes in M.

LEMMA 1. The computation time of REGIMECAST is at least

O(c · le/δ) time per time tick, at most O(c · le/δ+ lc) time per time

tick.

PROOF. For each time tick tc, REGIMEREADER requires O(c ·
le/δ) time to estimate c optimal regimes VE . If there is a new
regime in the current window XC , REGIMEESTIMATOR requires
O(lc) to estimate parameter set θ. Thus, we have at least O(c·le/δ)
time at most O(c · le/δ + lc) time per time tick.

5. EXPERIMENTS
In this section we demonstrate the effectiveness of REGIME-

CAST with real event streams. The experiments were designed to
answer the following questions:

Q1 Effectiveness: How successful is our method in forecasting
long-term events in given input streams?

Q2 Accuracy: How well does our method forecast future event
entries?

Q3 Scalability: How does our method scale in terms of compu-
tational time?

Our experiments were conducted on an Intel Core i7-3770K 3.50GHz
with 32GB of memory, running Linux. We normalized the values
of each dataset so that they had the same mean and variance (i.e.,
z-normalization), and set k = 4 for all datasets.

5.1 Q1: Effectiveness
We demonstrate the forecasting power of REGIMECAST in terms

of capturing important patterns of event streams.
Sensor event streams. We first examine our forecasting results on
real motion event streams. Figure 1, Figure 5 and Figure 6 show
our real-time forecasting results for three motion capture steams:
“house-cleaning”, “exercise” and “chicken-dance”, respectively.
The datasets were obtained from the CMU motion capture database6.
Each event stream consists of d = 4 dimensional vectors (left-right

6MoCap: http://mocap.cs.cmu.edu/

legs and arms), and it contains various motions (i.e., regimes), such
as walking and dancing. One of the results has already been pre-
sented in section 1 (i.e., Figure 1). It automatically and effectively
identifies multiple regime shift positions (such as from the wiping
motion to the walking motion), and forecasts long-range future ac-
tivities.

Figure 5 shows our real-time forecasting results and some snap-
shots obtained at several different time ticks. Specifically, Figure 5
(a) consists of several regimes, which correspond to some exer-
cise activities. The bottom of Figure 5 (a) shows the output for
(100:120)-steps-ahead real-time predictions, where we set the re-
porting window lp = 20. More specifically, REGIMECAST gen-
erates (100:120)-steps-ahead future events for every lp = 20 time
tick, (e.g., at time tick tm = 100, it reports X[200 : 220], at time
tick tm = 120, it reports X[220 : 240], and so on). Figure 5
(b) shows four examples of REGIMESNAP at different time points,
each of which belongs to one of four different regimes. As shown in
the figures, our modeling approach successfully captures dynami-
cal regime shift patterns, as well as the non-linear dynamical evolv-
ing activities of four different regimes.

Figure 6 shows REGIMECAST for the chicken-dance stream. Specif-
ically, the top of Figure 6 (a) shows the original stream, which is
composed of four steps in the following order: “beaks”, “wings”,
“tail feathers” and “claps”, and these steps are repeated again. It is
a much more challenging task to forecast upcoming dance steps be-
cause the event stream contains several nested multi-scale regimes.
As shown at the top of Figure 6 (b), each step can be decomposed
into several basic movements, where each movement has a differ-
ent tempo/speed. For example, “tail feathers” consists of “moving
arms, quickly” and “bending knees, once”, The bottom of Figure 6
(a) and (c-1)-(c-3) show our entire output of (30:35)-steps-ahead
forecasting results, and REGIMESNAP at several time ticks, re-
spectively. As shown in the figures, our proposed method captures
complicated dynamical activities, which consist of multiple hidden
regimes, and successfully generates long-range upcoming motion
patterns. We should also note that our algorithm does not use any
prior training or hint regarding the steps. It incrementally finds im-
portant dynamical patterns (i.e., regimes), estimates the parameters
of the new regime and inserts it into the model database.
Online activity streams. Next, we demonstrate our forecasting
power as regards Web-click activities. Figure 7 shows our results
for GoogleTrend event streams, which consist of the search vol-
umes for various queries (i.e., words) on Google7. Each query
represents the search volumes related to keywords over time (over
twelve years, on a weekly basis). We performed our real-time
forecasts on four event streams, which were taken from the fol-
lowing domains: (a) OnlineTV, (b) Beer, (c) Social media and (d)
Software. For each event stream, it continuously generates three-
months-ahead predictions, every time tick.

Figure 7 (a) shows our forecasting result for OnlineTV, which
contains d = 4 dimensional events: Netflix (x1), Hulu (x2), YouTube
(x3) and Amazon Prime (x4). Recently, there has been a rapid
increase in new video streaming services, and REGIMECAST suc-
cessfully captures the long-range evolution and exponential rising
patterns in all co-evolving keywords. Note that there was a regime
shift point from 2011 to 2012, i.e., Hulu (x2, shown as the green
line) has had a declining pattern since 2011, which coincided with
the ascent of Netflix (x1, shown as the blue line), possibly indi-
cating that there was competition/interaction between the two ser-
vices, and Netflix has been drawing customers’ attention away from
Hulu. Most importantly, our algorithm, REGIMECAST, can auto-

7GoogleTrend: http://www.google.com/trends/

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

0

2

Original data

Time

V
a
lu

e

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

0

2

Time

V
a
lu

e

Forecasted result

 RegimeCast

Original
stretchingwalking (left) (both)(right)(left) (both)

(1) (2) (3) (4)

Forecasted variables

walking

(a) Original event stream (top) and (100:120)-steps-ahead forecasting results (bottom)

2000 2200 2400

−2

−1

0

1

2

V
a

lu
e

Time

Real−time forecasting : t=2240

2800 3000 3200

−2

−1

0

1

2

V
a

lu
e

Time

Real−time forecasting : t=3100

3900 4000 4100 4200 4300

−2

−1

0

1

2

V
a

lu
e

Time

Real−time forecasting : t=4200

4700 4800 4900 5000 5100

−2

−1

0

1

2

V
a

lu
e

Time

Real−time forecasting : t=4980

(b-1) Stretch/left (tc = 2240) (b-2) Stretch/right (tc = 3100) (b-3) Stretch/both (tc = 4200) (b-4) Walking (tc = 4980)

Figure 5: REGIMECAST is effective: Forecasting power of REGIMECAST for the motion event stream (“exercise”). (a) The original

data (top), our (100:120)-steps-ahead predictions (bottom), and (b) snapshots of video clips (top) and REGIMESNAP (bottom) at four

different time ticks. REGIMECAST automatically identifies important regime patterns (e.g., “stretching” and “walking”), and also

forecasts future events, incrementally, and effectively.

200 400 600 800 1000 1200

−2

0

2

Original data

Time

V
a

lu
e

200 400 600 800 1000 1200

−2

0

2

Time

V
a

lu
e

RegimeCast

beaks

wings

tail feathers

claps

(1)

(2)

(3)

(a) Original stream (top) and our forecasted events (bottom)

 beaks !"wings tail feathers claps#

(b) Four steps of “chicken dance”

450 500 550

−2

0

2

V
a
lu

e

Time

Real−time forecasting : t=540

(1)

950 1000 1050

−2

0

2

V
a

lu
e

Time

Real−time forecasting : t=1044

(2)

1050 1100 1150

−2

0

2

V
a
lu

e

Time

Real−time forecasting : t=1116

(3)

(c-1) tc = 540 (c-2) tc = 1044 (c-3) tc = 1116
Figure 6: Real-time forecasting of REGIMECAST for “chicken dance”: (a) Given the dance motion stream (bottom), our proposed

method incrementally identifies four basic steps, i.e., (b) “beaks”, “wings”, “tail feathers” and “claps” in the sequence, and adaptively

forecasts long-range future patterns. (c) REGIMESNAP for four different time points. Here, it generates (30:35)-steps-ahead future

events. We emphasize that our algorithm does not need any prior training or knowledge regarding the motions (i.e., regimes).

2004 2007 2010 2013 2016

0

2

4

Time

V
a
lu

e

2004 2007 2010 2013 2016

0

2

4

Time

V
a
lu

e

Netflix

Hulu

YouTube

Amazon(P)

Original data

RegimeCast

2004 2007 2010 2013

−2

0

2

Time

V
a
lu

e

2004 2007 2010 2013

−2

0

2

Time

V
a
lu

e

Corona

Keystone

Coors

Modelo

SierraNevada

Original data

Regime
Cast

2004 2007 2010 2013
−1

0

1

2

Time

V
a

lu
e

2004 2007 2010 2013
−1

0

1

2

Time

V
a

lu
e

Tumblr

Facebook

LinkedIn

SoundCloud

Yelp

Original data

RegimeCast

2004 2007 2010 2013
−2

0

2

Time

V
a

lu
e

2004 2007 2010 2013
−2

0

2

Time

V
a

lu
e

HTML

Java

SQL

JavaScript

HTML5

Original data

RegimeCast

(a) Online TV (b) Beers (c) Social media (d) Software
Figure 7: REGIMECAST successfully forecasts 3-months-ahead future events of online user activities: Each event sequence con-

sists of the Google search volume for several keywords (from 2004 to the present), i.e., (a) OnlineTV (1:Netflix, 2:Hulu, 3:YouTube,

4:Amazon Prime), (b) Beer (1:Corona, 2:Keystone, 3:Coors, 4:Modelo, 5:Sierra Nevada), (c) Social media (1:Tumblr, 2:Facebook,

3:LinkedIn, 4:SoundCloud, 5:Yelp), (d) Software (1:HTML, 2:Java, 3:SQL, 4:JavaScript, 5:HTML5). Given the online user activities

(top), it incrementally forecasts events three months (i.e., 13 weeks) ahead, at every reporting window lp = 2 weeks (bottom).

1000 2000 3000 4000 5000
0

1

2

3

4

Time

Forecasting error
R

M
S

E

1

2

3

4

R
M

S
E

RegimeCast

ARIMA

RegimeCast

ARIMA

TBATS

Average

(a) Forecasting error for each time tick (left) and average (right)

1000 2000 3000 4000 5000
−2

0

2

1000 2000 3000 4000 5000
−2

0

2

ARIMA

TBATS

(b) Forecasting results of ARIMA (top) and TBATS (bottom)

Figure 8: Forecasting error (RMSE) for the motion event

stream: REGIMECAST consistently outperforms the state-of-

the-art methods with respect to accuracy between real values

and the (100:120)-steps-ahead forecasted results. (a) Forecast-

ing error for each time tick (left) and the average (right). Lower

is better. (b) Forecasting results of our competitors. Please also

see the original stream and our result shown in Figure 5 (a).

1000 2000 3000 4000 5000

10
0

10
1

10
2

Sequence length

W
a

ll
c
lo

c
k
 t

im
e

 RegimeCast

RegimeCastF

ARIMA

TBATS

RegimeEstimator

10
0

10
1

10
2

W
a

ll
c
lo

c
k
 t

im
e

Average

RegimeCast (r)

RegimeCast

RegimeCastF (r)

RegimeCastF

ARIMA

TBATS

(a) “Exercise”

2000 4000 6000 8000

10
0

10
1

10
2

10
3

Sequence length

W
a

ll
c
lo

c
k
 t

im
e

 RegimeCast

RegimeCastF

ARIMA

TBATS

10
0

10
1

10
2

W
a

ll
c
lo

c
k
 t

im
e

Average

RegimeCast (r)

RegimeCast

RegimeCastF (r)

RegimeCastF

ARIMA

TBATS

(b) “House-cleaning”

Figure 9: Wall clock time vs. sequence length tc (left) and

average (right): REGIMECAST consistently wins. It is up to

270 times faster than TBATS.

50 75 100 125 150 175 200
0.5

1

1.5

2

2.5

3

Steps

R
M

S
E

 RegimeCast

ARIMA

TBATS

50 75 100 125 150 175 200

10
1

10
2

Steps

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
.)

RegimeCast

ARIMA

TBATS

(a) forecasting error (b) computation time
Figure 10: ls-steps-ahead forecasting over the motion event

stream (“exercise”): REGIMECAST consistently wins. (a) Fore-

casting error (RMSE) vs. prediction length ls; (b) Wall clock

time vs. prediction length ls. Lower is better.

matically identify sudden changes of regimes, and forecast upcom-
ing events, adaptively and immediately.

Figure 7 (b) shows our result for Beer, which successfully cap-
tures the long-term non-linear dynamical evolution of the beer in-
dustry. There is significant growth of all the keywords with one
exception, Coors (shown as the red line), which is a popular beer,
brewed in Colorado, US. Similarly, as shown in Figure 7 (c) and
(d), our proposed method also successfully identifies non-linear
dynamic patterns of Social media and Software, including grow-
ing and competing activities, and estimates optimal regimes. Our
forecasted results are very close to the real event streams.

5.2 Q2. Accuracy
Next, we discuss the quality of REGIMECAST in terms of fore-

casting accuracy. We compared our method with the following
methods: (a) ARIMA, where we determined the optimal param-
eter set using AIC, and (b) TBATS [12], which is a state-of-the-art
forecasting algorithm for complex seasonal time series.

Figure 8 shows the forecasting power of REGIMECAST for the
motion event stream: “exercise”, which is shown in Figure 5 (a).
Specifically, Figure 8 (a) shows the root mean square error (RMSE)
between the original and the (100:120)-steps-ahead forecasted events,
where the left figure shows the RMSE for each time tick, and the
right figure shows the average errors. A lower value indicates a
better forecasting accuracy. Note that we omit the TBATS result
for the left figure, due to high error values.

Figure 8 (b) shows the actual forecasting results of ARIMA and
TBATS. Compared to our forecasted result, shown in Figure 5 (a),
ARIMA and TBATS are unsuitable for capturing complex, non-
linear dynamics and regime shifts; they are linear models, and
failed to forecast abrupt changes of regimes.

5.3 Q3. Scalability
We also evaluate the efficiency of our forecasting algorithm. Figure 9

compares REGIMECAST with ARIMA and TBATS in terms of
computation time for varying sequence lengths tc. Note that the
figures are shown in linear-log scales. To evaluate the efficiency
of the dynamic point set (DPS), which is described in section 4, we
also compared them with special versions of our method, REGIME-
CAST-F, which uses full point set (i.e., it sets the time interval
δ = 1). As we expected, REGIMECAST generates long-range fu-
ture events, significantly faster than the competitors for the large
streams (i.e., up to two orders of magnitude). In the left column
of Figure 9, each spike corresponds to REGIMEESTIMATOR pro-
cess, which creates a new regime (please see the red circle). The
right column of Figure 9 shows the average computation time of en-
tire event streams. Here, REGIMECAST/REGIMECAST-F (r) shows
the average computation time of REGIMEREADER, and REGIME-
CAST/REGIMECAST-F is the computation time of REGIMECAST.

Discussion: ls-steps-ahead prediction. As we mentioned in the
introduction section, one of our motivations is the long-range fore-
casting over data streams. So, how long ahead can our method fore-
cast future events? Is there any difference between, say, 50-steps-
ahead and 200-steps-ahead forecasting results? We thus examine
the forecasting power of REGIMECAST in terms of the future event
length ls. Figure 10 shows the forecasting errors and speeds of
REGIMECAST for varying the steps: ls = 50, 75, . . . , 200. Specif-
ically, Figure 10 compares our method with other methods in terms
of (a) forecasting accuracy and (b) computation time. Thanks to our
carefully designed models and algorithms, our method achieved a
large reduction in both computation time and forecasting error for
every step ls.

6. CONCLUSIONS
In this paper, we focused on the problem of real-time forecasting

over co-evolving event streams. Our proposed method, REGIME-
CAST exhibits all the desirable properties:

1. It is Effective: It captures complex non-linear dynamic pat-
terns in event streams and forecasts long-term future events.

2. It is Adaptive: It incrementally and automatically recognizes
the current regimes and finds regime shift points immedi-
ately, while it requires no prior training.

3. It is Scalable: Thanks to our efficient streaming algorithms,
the computation time does not depend on data stream length.

4. It is Any-time: It provides a response at any time and gener-
ates long-range future events, immediately.

Acknowledgement. This work was supported by JSPS KAKENHI
Grant-in-Aid for Scientific Research Number JP15H02705, JP16K12430,
JP26730060, JP26280112, and the MIC/SCOPE #162110003.

7. REFERENCES
[1] D. Chakrabarti and C. Faloutsos. F4: Large-scale automated

forecasting using fractals. CIKM, 2002.
[2] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:

A survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.
[3] C. Folke, S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist,

L. Gunderson, and C. S. Holling. Regime shifts, resilience
and biodiversity in ecosystem management. Annual Review

of Ecology, Evolution, and Systematics, 35:557–581, 2004.
[4] J. Ginsberg, M. Mohebbi, R. Patel, L. Brammer,

M. Smolinski, and L. Brilliant. Detecting influenza
epidemics using search engine query data. Nature,
457:1012–1014, 2009.

[5] S. Hare and N. Mantua. Empirical evidence for North Pacific
regime shifts in 1977 and 1989. Progress in oceanography,
47(2000):103–145, 2000.

[6] M. D. Hoffman, D. M. Blei, and F. R. Bach. Online learning
for latent dirichlet allocation. In NIPS, pages 856–864, 2010.

[7] T. Iwata, T. Yamada, Y. Sakurai, and N. Ueda. Online
multiscale dynamic topic models. In KDD, pages 663–672,
2010.

[8] E. Jackson. Perspectives of Nonlinear Dynamics:.
Cambridge University Press, 1992.

[9] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online
algorithm for segmenting time series. In ICDM, pages
289–296, 2001.

[10] J. Letchner, C. Ré, M. Balazinska, and M. Philipose. Access
methods for markovian streams. In ICDE, pages 246–257,
2009.

[11] L. Li, B. A. Prakash, and C. Faloutsos. Parsimonious linear
fingerprinting for time series. PVLDB, 3(1):385–396, 2010.

[12] A. M. D. Livera, R. J. Hyndman, and R. D. Snyder.
Forecasting time series with complex seasonal patterns using
exponential smoothing. Journal of the American Statistical

Association, 106(496):1513–1527, 2011.
[13] M. Mathioudakis, N. Koudas, and P. Marbach. Early online

identification of attention gathering items in social media. In
WSDM, pages 301–310, 2010.

[14] Y. Matsubara, Y. Sakurai, and C. Faloutsos. Autoplait:
Automatic mining of co-evolving time sequences. In
SIGMOD, pages 193–204, 2014.

[15] Y. Matsubara, Y. Sakurai, and C. Faloutsos. The web as a
jungle: Non-linear dynamical systems for co-evolving online
activities. In WWW, pages 721–731, 2015.

[16] Y. Matsubara, Y. Sakurai, and C. Faloutsos. Non-linear
mining of competing local activities. In WWW, 2016.

[17] Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and
M. Yoshikawa. Fast mining and forecasting of complex
time-stamped events. In KDD, pages 271–279, 2012.

[18] Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and
C. Faloutsos. Rise and fall patterns of information diffusion:
model and implications. In KDD, pages 6–14, 2012.

[19] Y. Matsubara, Y. Sakurai, W. G. van Panhuis, and
C. Faloutsos. FUNNEL: automatic mining of spatially
coevolving epidemics. In KDD, pages 105–114, 2014.

[20] A. Mueen and E. J. Keogh. Online discovery and
maintenance of time series motifs. In KDD, pages
1089–1098, 2010.

[21] T. Palpanas, M. Vlachos, E. Keogh, and D. Gunopulos.
Streaming time series summarization using user-defined
amnesic functions. IEEE Transactions on Knowledge and

Data Engineering, 20(7):992–1006, 2008.
[22] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive,

hands-off stream mining. In VLDB, pages 560–571, 2003.
[23] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern

discovery in multiple time-series. In VLDB, pages 697–708,
2005.

[24] S. Papadimitriou and P. S. Yu. Optimal multi-scale patterns
in time series streams. In SIGMOD, pages 647–658, 2006.

[25] P. Patel, E. J. Keogh, J. Lin, and S. Lonardi. Mining motifs in
massive time series databases. In Proceedings of ICDM,
pages 370–377, 2002.

[26] B. A. Prakash, A. Beutel, R. Rosenfeld, and C. Faloutsos.
Winner takes all: competing viruses or ideas on fair-play
networks. In WWW, pages 1037–1046, 2012.

[27] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A.
P. A. Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J.
Keogh. Searching and mining trillions of time series
subsequences under dynamic time warping. In KDD, pages
262–270, 2012.

[28] Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream
monitoring under the time warping distance. In ICDE, pages
1046–1055, Istanbul, Turkey, April 2007.

[29] Y. Sakurai, Y. Matsubara, and C. Faloutsos. Mining and
forecasting of big time-series data. In SIGMOD, Tutorial,
pages 919–922, 2015.

[30] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid:
Stream mining through group lag correlations. In SIGMOD,
pages 599–610, 2005.

[31] M. Scheffer, J. A. Foley, S. R. Carpenter, C. Folke, and B. H.
Walker. Catastrophic shifts in ecosystems. Nature,
413(6856):591–6, 2001.

[32] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering
similar multidimensional trajectories. In ICDE, pages
673–684, 2002.

[33] M. Vlachos, G. Kollios, and D. Gunopulos. Elastic
translation invariant matching of trajectories. Mach. Learn.,
58(2-3):301–334, Feb. 2005.

[34] Y. R. Zelnika, E. Meron, and G. Bel. Gradual regime shifts in
fairy circles. PNAS, 2015.

[35] Y. Zhao, N. Sundaresan, Z. Shen, and P. S. Yu. Anatomy of a
web-scale resale market: a data mining approach. In WWW,
pages 1533–1544, 2013.

[36] J. Zhou and A. K. H. Tung. Smiler: A semi-lazy time series
prediction system for sensors. In SIGMOD, pages
1871–1886, 2015.

[37] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of
thousands of data streams in real time. In VLDB, pages
358–369, 2002.

	Introduction
	Related work
	Design philosophy of REGIMECAST
	Regime shifts in natural systems
	Proposed model
	Latent non-linear dynamical systems (P1)
	Regime shifts in event streams (P2)
	With nested structure (P3)

	Streaming algorithm
	Problem formulation
	Overview
	Proposed algorithms
	RegimeReader
	RegimeEstimator
	RegimeCast

	Experiments
	Q1: Effectiveness
	Q2. Accuracy
	Q3. Scalability

	Conclusions
	References

