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rules [1, 2], attribute-oriented induction for mining characteristic and discrimi-nant rules [12], etc. Such studies set a foundation and provide some interestingmethods for the exploration of highly promising spatial data mining techniques.Spatial data mining can be categorized based on the kinds of rules to bediscovered in spatial databases. A spatial characteristic rule is a general descrip-tion of a set of spatial-related data. For example, the description of the generalweather patterns in a set of geographic regions is a spatial characteristic rule.A spatial discriminant rule is the general description of the contrasting or dis-criminating features of a class of spatial-related data from other class(es). Forexample, the comparison of the weather patterns in two geographic regions isa spatial discriminant rule. A spatial association rule is a rule which describesthe implication of one or a set of features by another set of features in spatialdatabases. For example, a rule like \most big cities in Canada are close to theCanada-U.S. border" is a spatial association rule.There have been some interesting studies related to the mining of spatialcharacteristic rules and spatial discriminant rules [14, 15]. However, there islack of studies on mining spatial association rules. In this paper, we study theextension of the techniques for mining association rules in transaction-baseddatabases to mining spatial association rules.A spatial association rule is a rule of the form \X ! Y ", where X and Y aresets of predicates and some of which are spatial ones. In a large database manyassociation relationships may exist but some may occur rarely or may not holdin most cases. To focus our study to the patterns which are relatively strong,i.e., which occur frequently and hold in most cases, the concepts of minimumsupport and minimum con�dence are introduced [1, 2]. Informally, the supportof a pattern A in a set of spatial objects S is the probability that a member of Ssatis�es pattern A; and the con�dence of A ! B is the probability that patternB occurs if pattern A occurs. A user or an expert may specify thresholds tocon�ne the rules to be discovered to be strong ones.For example, one may �nd that 92% of cities within British Columbia (bc)and adjacent to water are close to U.S.A., as shown in (1), which associatespredicates is a, within, and adjacent to with spatial predicate close to.is a(X; city) ^within(X; bc) ^ adjacent to(X;water) ! close to(X;us): (92%)(1)Although such rules are usually not 100% true, they carry some nontrivialknowledge about spatial associations, and thus it is interesting to \mine" (i.e.,\discover") them from large spatial databases. The discovered rules will be usefulin geography, environmental studies, biology, engineering and other �elds.In this paper, e�cient methods for mining spatial association rules are stud-ied, with a top-down, progressive deepening search technique proposed. Thetechnique �rstly searches at a high concept level for large (i.e., frequently oc-curring) patterns and strong implication relationships among the large patternsat a coarse resolution scale. Then only for those large patterns, it deepens thesearch to lower concept levels (i.e., their lower level descendants). Such a deepen-ing search process continues until no large patterns can be found. An important



optimization technique is that the search for large patterns at high concept lev-els may apply e�cient spatial computation algorithms at a coarse resolutionscale (such as generalized close to (g close to), using approximate spatial com-putation algorithms, such as R-trees or plane-sweep techniques operating onminimum bounding rectangles (MBRs). Only the candidate spatial predicates,which are worth detailed examination, will be computed by re�ned spatial tech-niques(giving detailed predicates such as intersect, contain, etc.). Such multiple-level approach saves much computations because it is very expensive to performdetailed spatial computation for all the possible spatial association relationships.In Sect. 2 of our paper, existing spatial data mining methods are surveyed. InSect. 3, the concept of spatial association rules and its data mining methods areoutlined. In Sect. 4, an algorithm for the discovery of spatial association rules ispresented. In Sect. 5 we discuss the advantages of the algorithm and its possibleextensions. The study is summarized in Sect. 6.2 Previous Work Related to Spatial Data MiningIn this section, previous studies related to spatial data mining are overviewed,which provides a short survey of the topic and associates the previous work withour study.2.1 Statistical AnalysisUntil now statistical spatial analysis has been one of the most common tech-niques for analyzing spatial data [10]. Statistical methods handle well numericaldata, contain a large number of algorithms, have a strong possibility of get-ting models of spatial phenomena, and allow optimizations. However, statisticalanalysis usually requires the assumptions regarding to statistical independenceof spatially distributed data. Such assumptions are often unrealistic due to theinuence of neighboring regions. To deal with such problems, spatial models caninclude trend surface or dummy variables. If data in one region are inuencedby features of neighboring regions, the analyst may �t a regression model witha spatial lagged forms of the dependent variables. Statistical analysis also dealspoorly with symbolic data like names.expensive(condo)$ inside(condo;downtown)^ area(condo; large): (2)Nonlinear rules in the form of (2) cannot be described using standard methodsin statistical spatial analysis. Statistical approach requires a lot of domain andstatistical knowledge. Thus, it should be performed by domain experts with theexperience in statistics. Another problem related to statistical spatial analysis isexpensive computation of the results.2.2 Generalization-based Spatial Data MiningOne major approach in spatial data mining is to apply generalization techniquesto spatial and nonspatial data to generalize detailed spatial data to certain highlevel and study the general characteristics and data distributions at this level.



An attribute-oriented induction method has been proposed in [14]. It gen-eralizes data to high level concepts and describes general relationships betweenspatial and nonspatial data. Two algorithms were proposed in the study: (1)nonspatial-dominant generalization, and (2) spatial-dominant generalization.The nonspatial-dominant generalization algorithm �rst performs attribute-oriented generalization on task-relevant nonspatial data describing the propertiesof spatial objects. In this step, numerical data can be generalized to ranges ordescriptive high level concepts (e.g., �9�C to a range value \�10 to 0�C" orcold), and symbolic values to higher level concepts (e.g., potatoes and beets tovegetables). By doing so, low level distinctive values may be generalized to iden-tical high level values, and such high-level identical values among di�erent tuplescan be merged together with their spatial pointers clustered into one slot in thespatial attribute. Finally, the map consists of a small number of regions withhigh level descriptions.The spatial-dominant generalization �rst performs generalization on query-related spatial data. Data are generalized using spatial data hierarchies (such asgeographic or administrative regions) provided by users/experts or hierarchicaldata structures (such as quad-trees [19] or R-trees [11]). The generalized spatialentities (such as the merged regions) cluster the related nonspatial data together.After generalization of non-spatial data, every region can be described at a highconcept level by one or a set of predicates.Spatial hierarchies are not always given a priori. It is often necessary todescribe spatial behavior of similar objects or to determine characteristic fea-tures of distinct clusters. In [15], the attribute-oriented induction method wascombined with some e�cient spatial clustering algorithms, which can still beclassi�ed into spatial-dominant vs. nonspatial-dominant methods. The spatial-dominant method classi�es task-relevant spatial objects (such as points) intoclusters using an e�cient clustering algorithm and then perform an attribute-oriented induction for each cluster to extract rules describing general propertiesof a cluster. The nonspatial-dominant method �rst generalizes nonspatial at-tributes of query-related objects to high concept levels and then cluster thespatial objects with the same nonspatial descriptions. Then one may �nd that\expensive single houses in Vancouver area are clustered along the beach andaround two city parks".2.3 Other Relevant StudiesAlso knowledge mining in image databases, which can be treated as a specialtype of spatial databases, has been studied recently. Method for the classi�cationof sky objects and another method for recogntion of volcanos on the surface ofVenus are described in [8], where classi�cation trees were used to make �naldecisions.Sky objects were classi�ed as stars or galaxies. In the �rst step of the al-gorithm, basic attributes describing each object were extracted. Attributes likearea, sky brightness, positions of peak brightness, and intensity image moments,



etc. were produced. The training set was classi�ed by astronomers, and attributesmentioned above were used to construct the decision tree.In the study of volcanos attributes recognized by humans like diameters andcentral peaks are not su�cient for the classi�cation. Thus, eigenvalues of ma-trices representing images of possible volcanos were used as attributes for theclassi�cation algorithm.The studies on data mining in relational databases [1, 2, 12, 13, 16] areclosely related to spatial data mining. In particular, the previous studies onmining association rules [1, 2, 13] are closely related to this study.An association rule is a general form of dependency rule and is de�ned ontransaction-based databases [1]. It is in the form of \W ! B (c%)", explainedas, \if a pattern W appears in a transaction, there is c% possibility (con�dence)that the pattern B holds in the same transaction", where W and B are a set ofattribute values. Moreover, to ensure that such rules are interesting enough tocover frequently encountered patterns in a database, the concept of the supportof a rule \W ! B" is introduced, which is de�ned as the ratio that the pat-terns of W and B occurring together in the transactions vs. the total number oftransactions in the database. For example, in a shopping transaction databaseone may �nd a rule like \butter! bread (90%)", which means that 90% of cus-tomers who buy butter also purchase bread. E�cient algorithms for the discoveryof such kind of rules in transaction-based databases have been studied [1, 2].3 Spatial Association RulesGeneralization-based spatial data mining methods [14, 15] discover spatial andnonspatial relationships at a general concept level, where spatial objects are ex-pressed as merged spatial regions [14] or clustered spatial points [15]. However,these methods cannot discover rules reecting structure of spatial objects andspatial/spatial or spatial/nonspatial relationships which contain spatial predi-cates, such as adjacent to, near by, inside, close to, intersecting, etc.As a complementary, spatial association rules represents object/predicaterelationships containing spatial predicates. For example, the following rules arespatial association rules.{ Nonspatial consequent with spatial antecedent(s).is a(x; house) ^ close to(x; beach) ! is expensive(x): (90%){ Spatial consequent with non-spatial/spatial antecedent(s).is a(x; gas station) ! close to(x; highway): (75%)Various kinds of spatial predicates can be involved in spatial association rules.They may represent topological relationships [6] between spatial objects, suchas disjoint, intersects, inside/outside, adjacent to, covers/covered by, equal, etc.They may also represent spatial orientation or ordering, such as left, right, north,east, etc., or contain some distance information, such as close to, far away, etc.



For systematic study the mining of spatial association rules, we �rst introducesome preliminary concepts.De�nition1. A spatial association rule is a rule in the form ofP1 ^ : : :^ Pm ! Q1 ^ : : :^Qn: (c%) (3)where at least one of the predicates P1; : : : ; Pm; Q1; : : : ; Qn is a spatial predicate,and c% is the con�dence of the rule which indicates that c% of objects satisfyingthe antecedent of the rule will also satisfy the consequent of the rule. 2Following this de�nition, a large number of spatial association rules can bederived from a large spatial database. However, most people will be only inter-ested in the patterns which occur relatively frequently (i.e., with large supports)and the rules which have strong implications (i.e., with high con�dence). Therules with large supports and high con�dence are strong rules.De�nition2. The support of a conjunction of predicates, P = P1 ^ : : :^ Pk,in a set S, denoted as �(P=S), is the number of objects in S which satisfy Pversus the cardinality (i.e., the total number of objects) of S. The con�denceof a rule P ! Q in S, '(P ! Q=S), is the ratio of �(P ^Q=S) versus �(P=S),i.e., the possibility that Q is satis�ed by a member of S when P is satis�ed bythe same member of S. A single predicate is called 1-predicate. A conjunctionof k single predicates is called a k-predicate. 2Since most people are interested in rules with large supports and high con�-dence, two kinds of thresholds: minimum support and minimum con�dence, canbe introduced. Moreover, since many predicates and concepts may have strongassociation relationships at a relatively high concept level, the thresholds shouldbe de�ned at di�erent concept levels. For example, it is di�cult to �nd regularassociation patterns between a particular house and a particular beach, however,there may be strong associations between many expensive houses and luxuri-ous beaches. Therefore, it is expected that many spatial association rules areexpressed at a relatively high concept level.De�nition3. A set of predicates P is large in set S at level k if the support ofP is no less than its minimum support threshold �0k for level k, and all ancestorsof P from the concept hierarchy are large at their corresponding levels. Thecon�dence of a rule \P ! Q=S" is high at level k if its con�dence is no lessthan its corresponding minimum con�dence threshold '0k. 2De�nition4. A rule \P ! Q=S" is strong if predicate \P ^Q" is large in setS and the con�dence of \P ! Q=S" is high. 2Based on these de�nitions, an example is presented for the explanation of theprocess of mining strong spatial association rules in large databases. To facilitatethe speci�cation of the primitives for spatial data mining, an SQL-like spatialdata mining query interface, which is designed based on a spatial SQL proposedin [7], has been speci�ed for an experimental spatial data mining system proto-type, GeoMiner, which is currently under implementation and experimentation.



Example 1. Let the spatial database to be studied adopt an extended-relationaldata model and a SAND (spatial-and-nonspatial database) architecture [3]. Thatis, it consists of a set of spatial objects and a relational database describingnonspatial properties of these objects.Our study of spatial association relationships is con�ned to British Columbia,a province in Canada, whose map is presented in Fig. 1, with the followingdatabase relations for organizing and representing spatial objects.1. town(name; type; population; geo; : : :).2. road(name; type; geo; : : :).3. water(name; type; geo; : : :).4. mine(name; type; geo; : : :).5. boundary(name; type; admin region 1; admin region 2; geo; : : :).Notice that in the above relational schemata, the attribute \geo" represents aspatial object (a point, line, area, etc.) whose spatial pointer is stored in a tupleof the relation and points to a geographic map. The attribute \type" of a relationis used to categorize the types of spatial objects in the relation. For example, thetypes for road could be fnational highway, local highway, street, back laneg, andthe types for water could be focean, sea, inlets, lakes, rivers, bay, creeksg. Theboundary relation speci�es the boundary between two administrative regions,such as B.C. and U.S.A. (or Alberta). The omitted �elds may contain otherpieces of information, such as the area of a lake and the ow of a river.Suppose a user is interested in �nding within the map of British Columbia thestrong spatial association relationships between large towns and other \near by"objects including mines, country boundary, water (sea, lake, or river) and majorhighways. The GeoMiner query is presented below.discover spatial association rulesinside British Columbiafrom road R, water W, mines M, boundary Bin relevance to town Twhere g close to(T.geo, X.geo) and X in fR, W, M, Bgand T.type = ``large'' and R.type in fdivided highwaygand W.type in fsea, ocean, large lake, large rivergand B.admin region 1 in ``B.C.''and B.admin region 2 in ``U.S.A.''Notice that in the query, a relational variable X is used to represent one ofa set of four variables fR, W, M, Bg, a predicate close to(A, B) says that aspatial objects A and B are close one to another, and g close to is a prede-�ned generalized predicate which covers a set of spatial predicates: intersect,adjacent to, contains, close to.Moreover, \close to" is a condition-dependent predicate and is de�ned by aset of knowledge rules. For example, a rule in (4) states if X is a town and Y isa country, then X is close to Y if their distance is within 80 kms.
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lakeFig. 1. The map of BC.close to(X;Y )  is a(X; town) ^ is a(Y; country) ^ dist(X;Y; d) ^ d < 80 km:(4)close to(X;Y )  is a(X; town) ^ is a(Y; road) ^ dist(X;Y; d) ^ d < 5 km: (5)However, \close to" between a town and a road will be de�ned by a smallerdistance such as (5).Furthermore, we assume in the B.C. map, admin region 1 always contains aregion in B.C., and thus \U.S.A." or its states must be in \B.admin region 2".Since there is no constraint on the relation \mine", it essentially means, \M.typein ANY", which is thus omitted in the query.To facilitate mining multiple-level association rules and e�cient processing,concept hierarchies are provided for both data and spatial predicates.A set of hierarchies for data relations are de�ned as follows.{ A concept hierarchy for towns:(town (large town (big city, medium sized city), small town (: : : ) : : : ) : : : ).{ A concept hierarchy for water:(water (sea (strait (Georgia Strait, : : : ), Inlet (: : : ), : : : ),river (large river (Fraser River, : : : ), : : : ),lake (large lake (Okanagan Lake, : : : ), : : : ), : : : ), : : : ){ A concept hierarchy for road:(road (national highway (route1, : : : ),provincial highway (highway 7, : : : ),city drive (Hasting St., Kingsway, : : : ),city street (E 1st Ave., : : : ), : : : ), : : : )Spatial predicates (topological relations) should also be arranged into a hier-archy for computation of approximate spatial relations (like \g close to" in Fig.
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g_close_toFig. 2. The hierarchy of topological relations.2) using e�cient algorithms with coarse resolution at a high concept level andre�ne the computation when it is con�ned to a set of more focused candidateobjects. 24 A Method for Mining Spatial Association Rules4.1 An Example of Mining Spatial Association RulesExample 2. We examine how the data mining query posed in Example 1 is pro-cessed, which illustrates the method for mining spatial association rules.Firstly, the set of relevant data is retrieved by execution of the data retrievalmethods [3] of the data mining query, which extracts the following data setswhose spatial portion is inside B.C.: (1) towns: only large towns; (2) roads: onlydivided highways2; (3) water: only seas, oceans, large lakes and large rivers; (4)mines: any mines; and (5) boundary: only the boundary of B.C., and U.S.A.Secondly, the \generalized close to" (g close to) relationship between (large)towns and the other four classes of entities is computed at a relatively coarseresolution level using a less expensive spatial algorithm such as the MBR datastructure and a plane sweeping algorithm [18], or R*-trees and other approxi-mations [5]. The derived spatial predicates are collected in a \g close to" table(Table 1), which follows an extended relational model: each slot of the table maycontain a set of entries. The support of each entry is then computed and thosewhose support is below the minimum support threshold, such as the column\mine", are removed from the table.Notice that from the computed g close to relation, interesting large item setscan be discovered at di�erent concept levels and the spatial association rulescan be presented accordingly. For example, the following two spatial associationrules can be discovered from this relation.is a(X; large town) ! g close to(X;water): (80%)is a(X; large town)^ g close to(X;sea) ! g close to(X;us boundary):(92%)2 Not all the segments of national and provincial highways in Canada are divided ones,our computation only counts the divided ones. Also, \provincial divided highway" isabbreviated to \provincial highway" in later presentations.



Town Water Road Boundary MineVictoria Juan de Fuca Strait highway 1, highway 17 USSaanich Juan de Fuca Strait highway 1, highway 17 USPrince George highway 97Pentincton Okanagan Lake highway 97 US Alalla: : : : : : : : : : : : : : :Table 1. The computed \g close to" relation.The detailed computation process is not presented here since it is similar tomining association rules for exact spatial relationships to be presented below.Since many people may not be satis�ed with approximate spatial relation-ships, such as g close to, more detailed spatial computation often needs to beperformed to �nd the re�ned (or precise) spatial relationships in the spatialpredicate hierarchy. Thus we have the following steps.Re�ned computation is performed on the large predicate sets, i.e., thoseretained in the g close to table. Each g close to predicate is replaced by one ora set of concrete predicate(s) such as intersect, adjacent to, close to, inside, etc.Such a process results in Table 2.Town Water Road BoundaryVictoria hadjacent to, J.Fuca Straiti hintersects, highway 1i,hintersects, highway 17i hclose to, USiSaanich hadjacent to, J.Fuca Straiti hintersects, highway 1i,hclose to, highway 17i hclose to, USiPrince George hintersects, highway 97iPentincton hadjacent to, Okanagan Lakei hintersects, highway 97i hclose to, USi: : : : : : : : : : : :Table 2. Detailed spatial relationships for large sets.Table 2 forms a base for the computation of detailed spatial relationships atmultiple concept levels. The level-by-level detailed computation of large predi-cates and the corresponding association rules is presented as follows.The computation starts at the top-most concept level and computes largepredicates at this level. For example, for each row of Table 2 (i.e., each largetown), if the water attribute is nonempty, the count of water is incremented byone. Such a count accumulation forms 1-predicate rows (with k = 1) of Table3 where the support count registered. If the (support) count of a row is smallerthan the minimum support threshold, the row is removed from the table. Forexample, the minimum support is set to 50% at level 1, a row whose countis less than 20, if any, is removed from the table. The 2-predicate rows (i.e.,



k = 2) are formed by the pair-wise combination of the large 1-predicates, withtheir count accumulated (by checking against Table 2). The rows with the countsmaller than the minimum support will be removed. Similarly, the 3-predicatesare computed. Thus, the computation of large k-predicates results in Table 3.k large k-predicate set count1 hadjacent to, wateri 321 hintersects, highwayi 291 hclose to, highwayi 291 hclose to, us boundaryi 282 hadjacent to, wateri, hintersects, highwayi 252 hadjacent to, wateri, hclose to, us boundaryi 232 hclose to, us boundaryi, hintersects, highwayi 263 hadjacent to, wateri, hclose to, us boundaryi, hintersects, highwayi 22Table 3. Large k-predicate sets at the top concept level (for 40 large towns in B.C.).Spatial association rules can be extracted directly from Table 3. For example,since hintersects, highwayi has a support count of 29, and hadjacent to, wateri,hintersects, highwayi has a support count of 25, and 25=29 := 86%, we have theassociation rule (6).is a(X; large town) ^ intersects(X;highway) ! adjacent to(X;water): (86%)(6)Notice that a predicate \is a(X; large town)" is added in the antecedent of therule since the rule is related only to large town.Similarly, one may derive another rule (7). However, if the minimum con-�dence threshold were set to 75%, this rule (with only 72% con�dence) wouldhave been removed from the list of the association rules to be generated.is a(X; large town) ^ adjacent to(X;water) ! close to(X;us boundary):(72%)(7)After mining rules at the highest level of the concept hierarchy, large k-predicates can be computed in the same way at the lower concept levels, whichresults in Tables 4 and 5. Notice that at the lower levels, usually the minimumsupport and possibly the minimum con�dence may need to be reduced in orderto derive enough interesting rules. For example, the minimum support of level2 is set to 25% and thus the row with support count of 10 is included in Table4; whereas the minimum support of level 3 is set to 15% and thus the row withsupport count of 7 is included in Table 5.Similarly, spatial association rules can be derived directly from the large k-predicate set tables at levels 2 and 3. For example, rule (8) is found at level 2,and rule (9) is found at level 3.is a(X; large town) ! adjacent to(X;sea) (52:5%) (8)is a(X; large town) ^ adjacent to(X;georgia strait) ! close to(X;us):(78%) (9)



k large k-predicate set count1 hadjacent to, seai 211 hadjacent to, large riveri 111 hclose to, us boundaryi 281 hintersects, provincial highwayi 211 hclose to, provincial highwayi 242 hadjacent to, seai, hclose to, us boundaryi 152 hclose to, us boundaryi, hintersects, provincial highwayi 192 hadjacent to, seai, hclose to, provincial highwayi 112 hclose to, us boundaryi, hclose to, provincial highwayi 223 hadjacent to, seai, hclose to, us boundaryi, hclose to, provincial highwayi 10Table 4. Large k-predicate sets at the second level (for 40 large towns in B.C.).k large k-predicate set count1 hadjacent to, georgia straiti 91 hadjacent to, fraser riveri 101 hclose to, us boundaryi 282 hadjacent to, georgia straiti, hclose to, us boundaryi 7Table 5. Large k-predicate sets at the third level (for 40 large towns in B.C.).Notice that only the descendants of the large 1-predicates will be examinedat a lower concept level. For example, the number of large towns adjacent toa lake is small and thus hadjacent to, lakei is not represented in Table 4. Thenthe predicates like hadjacent to; okanagan lakei will not be even considered atthe third level. The mining process stops at the lowest level of the hierarchies orwhen an empty large 1-predicate set is derived.As an alternative of the problem, large towns may also be further parti-tioned into big cities (such as towns with a population larger than 50,000 peo-ple), other large towns, etc. and rules like rule (10) can be derived by a similarmining process.is a(X; big city) ^ adjacent to(X;sea) ! close to(X;us boundary):(100%) (10)4.2 An Algorithm for Mining Spatial Association RulesThe above rule mining process can be summarized in the following algorithm.Algorithm 4.1 Mining the spatial association rules de�ned by De�nition 1 ina large spatial database.Input: The input consists of a spatial database, a mining query, and a set ofthresholds as follows.



1. A database, which consists of three parts: (1) a spatial database, SDB,containing a set of spatial objects, (2) a relational database, RDB, de-scribing nonspatial properties of spatial objects, and (3) a set of concepthierarchies,2. a query, which consist of: (1) a reference class S, (2) a set of task-relevantclasses for spatial objects C1; :::; Cn, and (3) a set of task-relevant spatialrelations, and3. two thresholds: minimum support (minsup[l]) and minimum con�dence(minconf [l]) for each level l of description.Output: Strong multiple-level spatial association rules for the relevant sets ofobjects and relations.Method: Mining spatial association rules proceeds as follows.Step 1: Task relevant DB := extract task relevant objects(SDB;RDB);Step 2: Coarse predicate DB :=coarse spatial computation(Task relevant DB);Step 3: Large Coarse predicate DB :=�ltering with minimum support(Coarse predicate DB);Step 4: Fine predicate DB :=re�ned spatial computation(Large Coarse predicate DB);Step 5: Find large predicates and mine rules(Fine predicate DB);Explanation of the detailed steps of the algorithm.Step 1 is accomplished by the execution of a spatial query. All the task-relevant objects are collected into one database: Task relevant DB.Step 2 is accomplished by execution of some e�cient spatial algorithms ata coarse resolution level. For example, R-trees [4] or fast MBR technique andplane-sweep algorithm [18] can be applied to extract the objects which are ap-proximately close to each other, corresponding to computing g close to for theTask relevant DB. The e�ciency of the method is reasoned in the next sub-section. Predicates describing spatial relations between objects are stored in anextended relational database, called Coarse predicate DB, which allows an at-tribute value to be either a single value or a set of values (i.e., in non-�rst-normalform).Step 3 computes the support for each predicate in Coarse predicate DB,(and registers them in a predicate-support table), and �lters out those entrieswhose support is below the minimum support threshold at the top level, i.e.,minsup[1]. This �ltering process results in a database which contains all large1-predicates, which is called Large Coarse predicate DB. Notice that spatialassociation rules can also be generated at this resolution level, if desired. Sincethis process is similar to the process of Step 5, the detailed processing of Step 3is not presented here.Step 4 is accomplished by execution of some e�cient spatial computation al-gorithms [5] at a �ne resolution level on Large Coarse predicate DB obtainedin Step 3. Notice that although such computation is performed for the interestingportion of the spatial database, the computation is only on those pairs which havepassed the corresponding spatial testing at a coarse resolution level. Thus, the



number of object pairs which need to be computed at this level is substantiallysmaller that the number of pairs computed at a coarse level. Moreover, as anoptimization technique, one can use the support count of an approximate predi-cate in Large Coarse predicate DB to predict whether there is still hope for apredicate at a �ne level to pass the minimum support threshold. For example, ifthe current support for predicate P plus the remaining number of support for itscorresponding predicate P coarse is less than the minimum support threshold,no further test of P is necessary in the remaining processing.Step 5 computes the large k-predicates for all the k's and generates the strongassociation rules at multiple concept levels. This step is essential for miningmultiple-level association rules and is thus examined in detail.This step is outlined as follows. First, obtain large k-predicates (for all thek's) at a top concept level. Second, for the large 1-predicates at level 1, get theircorresponding large 1-predicates at level 2, and then get all large k-predicates atthis level. This process repeats until an empty large 1-predicate set is returned orbottom level in the hierarchy was explored. A detailed study of such a progressivedeepening process for mining multiple-level association rules in a transaction-based (but not spatial) database is presented in [13].At each level, the computation of large k-predicates for all k's proceeds fromcomputing large-1 predicates, then large-2 predicates (using the pair-wise com-bination of large 1-predicates as the candidate set), large-3 predicates (usingthe combinations of large 2-predicates as the candidate set), and so on, until anempty candidate set or an empty computed k-predicate set is obtained. Such aprocess of computing large k-predicate sets (called large k-itemsets in [1]) usingpreviously computed (k � 1)-predicate sets in a transaction-based database isstudied in [1], and is called Algorithm Apriori.Notice that this k-predicate sets computation algorithm is fairly e�cient onesince it generates candidate k-predicate sets by full exploration of the combina-tion of (k�1)-predicate sets before testing the k-predicate pairs against the pred-icate database. For example, Table 4 contains large 2-predicates \hadjacent to,seai, hclose to, us boundaryi" and \hclose to, us boundaryi, hintersects, provin-cial highwayi" but does not contain \hadjacent to, seai, hintersects, provincialhighwayi". It cannot form a candidate 3-predicate \hadjacent to, seai, hclose to,us boundaryi, hintersects, provincial highwayi". Thus the e�ort of testing sucha 3-predicate against the predicate database can be saved.After �nding large k-predicates, the set of association rules for each level lcan be derived based on the minimum con�dence at this level, minconf [l]. Thisis performed as follows [1]. For every large n-predicate A, if m-predicate B isnot a subset of A, the rule \A ! B" is added into the result of the query ifsupport(A ^B)=support(A) � minconf [l ].The process is summarized in the following procedure, where LL[l] is thelarge predicate set table at level l, and L[l; k] is the large k-predicate set tableat level l. The syntax of the procedure is similar to C and Pascal.(1) procedure �nd large predicates and mine rules(DB);(2) for (l := 1; L[l; 1] 6= ; and l < max level; l++) do begin



(3) L[l; 1] := get large 1 predicate sets(DB; l);(4) for (k := 2; L[l; k� 1] 6= ;; k++) do begin(5) Pk := get candidate set(L[l; k� 1]);(6) foreach object s in S do begin(7) Ps := get subsets(Pk ; s); fCandidates satis�ed by sg(8) foreach candidate p 2 Ps do p.support++;(9) end;(10) L[l; k] := fp 2 Pkjp:support � minsup[l]g;(11) end;(12) LL[l] := Sk L[l; k];(13) output := generate association rules(LL[l]);(14) end(15) end 2In this procedure, line (2) shows that the mining of the association rules isperformed level-by-level, starting from the top-most level, until either the large1-predicate set table is empty or it reaches the maximumconcept level. For eachlevel l, line (3) computes the large 1-predicate sets and put into table L[l; 1].Lines (4)-(11) computes the large k-predicate sets L[l; k] for all k > 1 at thelevel l progressively, essentially using the Apriori algorithm [1], as we discussabove. Line (12) collects all the large k predicate at each level l into one tableLL[l], and �nally line (13) generates the spatial association rules at each conceptlevel from the large predicate table LL[l]. 2The generated rules may need to be examined by human experts or passthrough some automatic rule quality testing program [17] in order to �lter outsome obvious or redundant rules and output only those fairly new and interestingones to the users.4.3 A Discussion of the AlgorithmAlgorithm 4.1 is an interesting and e�cient algorithm for mining multiple-levelstrong spatial association rules in large spatial databases. Here we reason on thetwo essential properties of this algorithm: its correctness and its e�ciency.Correctness of the algorithm.First, we show that Algorithm 4.1 discovers the correct and complete set ofassociation rules given by the De�nition 1.Step 1 is a query processing process which extracts all data which are relevantto the spatial data mining process based on the completeness and correctnessof query processing. Step 2 applies a coarse spatial computation method whichcomputes the whole set of relevant data and thus still ensures its completenessand correctness. Step 3 �lters out those 1-predicates whose support is smallerthan the minimumsupport threshold. Obviously, predicates �ltered out are thosewhich has no hope to generate rules with support reaching the minimumsupport.Step 4 applies a �ne spatial computation method which computes predicatesfrom the set of derived coarse predicates and thus still ensures the completeness



and correctness based on the nature of the spatial computationmethods. Finally,Step 5 ensures to �nd the complete set of association rules at multiple conceptlevels based on the previous studies at mining multiple-level association rulesin transaction-based databases [1, 13]. Therefore, the algorithm discovers thecorrect and complete set of association rules.E�ciency of the algorithm.We have the following theorem for the e�ciency of the algorithm.Theorem5. Let the average costs for computing each spatial predicate at acoarse and �ne resolution level be Cc and Cf respectively. The worst-case timecomplexity of Steps 2-5 of Algorithm 4.1 is O(Cc � nc +Cf � nf +Cnonspatial),where nc is the number of predicates to be coarsely computed in the relevantspatial data sets, nf is the number of predicates to be �nely computed from thecoarse predicate database, and Cnonspatial is the total cost of rule mining in apredicate database.Proof sketch.Step 1 applies a spatial database query processing method whose compu-tational complexity has been excluded from the total cost of the computationaccording to the statement of the theorem.Step 2 involves the computation of the largest set of spatial predicates sinceeach pair of objects needs to be checked to see whether it potentially and approx-imately satis�es the predicate to be coarsely computed. Since there are totallync predicates with distinct object sets as variables to be coarsely computed inthe relevant spatial data sets, and the cost of computing each spatial predicateat a coarse resolution level is Cc, the total processing cost at this step should beO(Cc � nc).To avoid checking the predicates which will not be used later in the �necomputation, approximate computation can be performed at a coarse resolutionlevel. To accelerate this process, every object can be described using its MBRand coarse predicates can be derived using R-tree technique for spatial join [4]or plane sweep technique [18].Furthermore, to computations faster one may use the data generalized andapproximated data. For example, sinusoity of lines can be reduced, and smallregions can be converted to points, etc.With a similar reasoning, Step 4 involves the computation of the spatialpredicates at a re�ned level. More detailed spatial computation algorithms willbe applied at this stage. Since there are totally nf predicates with distinct objectsets as variables to be �nely computed in the relevant data sets, and the costof computing each spatial predicate at a �ne resolution level is Cf , the totalprocessing cost at this step should be O(Cf�nf ). Notice in most cases, Cf > Cc,but nf � nc, which ensures that the total cost of computation is reasonable.According to the algorithm, the computation of support counts, thresholdtesting, and rule generation will not involve further spatial computation. Thusthe total computation cost for Steps 3 and 5 will be O(Cnonspatial), whereCnonspatial is the total cost of rule mining in a nonspatial predicate database.Adding all costs together, we have the formula presented in the theorem. 2



Execution time of the above mining algorithm can be estimated using theresults of spatial join computations based on real data [4, 5] and on our expe-rience on mining multilevel association rules [13]. Time of �nding multiple levelassociation rules by algorithm 4.1 is presented by (11). ComponentC 0c�N of thisequation presents time of the execution of step 2 of the algorithm,Cfilter�Nnspis the time of �ltering small coarse predicates, Cf�Fratio�Nc presents executiontime of �nding �ne predicates and Cnsp � Fratio �Nnsp presents mining associ-ation rules from the set of �ne predicates. Curve "coarse+�lter+�ne" on Fig. 3shows the execution time of algorithm 4.1. In case when �ltering in Step 2 of thealgorithm is not used t2 time is needed as it is shown by curve "coarse+�ne".Execution time of naive algorithm when no tree structure is used for �ndingcoarse predicates can be computed by (13). This time is presented by curve"naive+�lter+�ne". Table 6 lists some parameters used in the cost analysis.Estimated time shown in Fig. 3 indicates a substantial improvement of perfor-mance when tree structure is used to compute coarse predicates. It also showslarge acceleration of computation process by �ltering out coarse predicates notleading to large predicates, which avoids �ne computations on such predicates.t1 = C 0c �N + Cfilter �Nnsp +Cf � Fratio �Nc +Cnsp � Fratio �Nnsp (11)t2 = C 0c �N + Cf �Nc + Cnsp �Nnsp (12)t3 = C 00c �N2 +Cfilter �Nnsp + Cf � Fratio �Nc +Cnsp � Fratio �Nnsp (13)Name Value MeaningC 0c 0.5 ms constant for �nding coarse predicates using R-trees [4]C 00c 0.2 ms constant for �nding coarse predicates using naive algorithmCf 10 ms cost of computing one �ne predicate using TR*-trees [5]Cnsp 1.5 ms constant for �nding association rules in a predicates databaseCfilter 0.5 ms constant for �ltering out predicates in step 3 of the algorithm 4.1Nnsp 0.2 � N number of tuples in a predicates databaseNc 0.8 � N number of coarse predicates from step 2 of the algorithm 4.1Fratio 0.1 ratio of coarse predicate possibly leading to large predicatesTable 6. Database parameters.5 Discussion5.1 Major Strengths of the MethodThe spatial data mining method developed in the previous section has the fol-lowing major strengths for mining spatial association rules.
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"coarse+fine"Fig. 3. Execution time.{ Focused data mining guided by user's query.The data mining process is directed by a user's query which speci�es therelevant objects and spatial association relationships to be explored. Thisnot only con�nes the mining process to a relatively small set of data andrules for e�cient processing but also leads to desirable results.{ User-controlled interactive mining.Users may control, usually via a graphical user interface (GUI), minimumsupport and con�dence thresholds at each abstraction level interactivelybased on the currently returned mining results.{ Approximate spatial computation: Substantial reduction of the candidate set.Less costly but approximate spatial computation is performed at an abstrac-tion level �rst on a large set of data which substantially reduces the set ofcandidate data to be examined in the future.{ Detailed spatial computation: Performed once and used for knowledge miningat multiple levels.The computation of support counts at each level can be performed by scan-ning through the same computed spatial predicate table.{ Optimizations on computation of k-predicate sets and on multiple-level mining.These two optimization techniques are shared with the techniques for miningother (i.e., nonspatial) multiple-level association rules [13]. First, it uses the(k � 1)-predicate sets to derive the candidate k-predicate sets at each level,which is similar to the apriori algorithm developed in [1]. Second, it startsat the top-most concept level and applies a progressive deepening techniqueto examine at a lower level only the descendants of the large 1-predicates,which is similar to the technique developed in [13].5.2 Alternatives of the MethodMany variations and extensions of the method can be explored to enhance thepower and performance of spatial association rule mining. Some of these arelisted as follows.{ Integration with nonspatial attributes and predicates.The relevant set of predicates examined in our examples are mainly spatialones, such as close to, inside, etc. Such a process can be integrated with



the generalization and association of nonspatial data, which may lead to therules, such as \if a house is big and expensive, it is located in West Vancouveror Vancouver West-End (with 75% of con�dence)", etc.{ Mining spatial association rules in multiple thematic maps.In principle, the method developed here can be applied to handle the spatialdatabases with multiple thematic maps. The rule mining process will besimilar to the one presented above since the judgement of g close to(X;Y )or intersect(X;Y ) can be performed by an approximate or detailed mapoverlay. The mining algorithm itself will remain intact.{ Multiple and dynamic concept hierarchies.Our method can also handle the cases when there exist multiple concepthierarchies or when the concept hierarchies need to be adjusted dynamicallybased on data distributions. For example, towns can be classi�ed into largeor small according to an existing hierarchy, coast or in-land according totheir distance to the ocean, or southwest, southeast, etc. according to theirgeographic areas. Di�erent characteristics will be discovered based on dif-ferent hierarchies or their adjustments, which is similar to execute the samealgorithm based on di�erent knowledge-bases.6 ConclusionBased on the previous studies on spatial data mining and mining associationrules in transaction-based databases, we proposed and studied an interestingmethod in this paper for mining strong spatial association rules in large spatialdatabases. Discovery of spatial association rules may disclose interesting rela-tionships among spatial and/or nonspatial data in large spatial databases andthus it represents a new and promising direction in spatial data mining.The method developed in this paper explores e�cient mining of spatial as-sociation rules at multiple approximation and abstraction levels. It proposes�rst to perform less costly, approximate spatial computation to obtain approxi-mate spatial relationships at a high abstraction level and then re�ne the spatialcomputation only for those data or predicates, according to the approximatecomputation, whose re�ned computation may contribute to the discovery ofstrong association rules. Such a two-step spatial mining method facilitates min-ing strong spatial association rules at multiple concept levels by a top-down,progressive deepening technique.Our study is based on the assumption that a user has reasonably good knowl-edge on what s/he wants to �nd, and that there exists good knowledge (such asconcept or operation hierarchies) for nonspatial or spatial generalization. Suchassumptions, though valid in many cases, may enforce some strong restrictionsto naive users or to some complex spatial databases with poorly understoodstructures or knowledge. More studies are needed to overcome these restrictions.The method investigated in this study is currently under implementation andexperimentation as one of several spatial data mining methods being developedin the spatial data mining system prototype, GeoMiner. We plan to integrate this
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