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Abstract
Consider spatial data consisting of a set of binary fea-

tures taking values over a collection of spatial extents (grid
cells). We propose a method that simultaneously finds spa-
tial correlation and feature co-occurrence patterns, with-
out any parameters. In particular, we employ the Minimum
Description Length (MDL) principle coupled with a natu-
ral way of compressing regions. This defines what “good”
means: a feature co-occurrence pattern is good, if it helps
us better compress the set of locations for these features.
Conversely, a spatial correlation is good, if it helps us bet-
ter compress the set of features in the corresponding region.
Our approach is scalable for large datasets (both number
of locations and of features). We evaluate our method on
both real and synthetic datasets.

1 Introduction
In this paper we deal with the problem of finding spa-

tial correlation patterns and feature co-occurrence patterns,

simultaneously and automatically. For example, consider
environmental data where spatial locations correspond to

patches (cells in a rectangular grid) and features correspond

to species presence information. For each patch and species

pair, the observed value is either one or zero, depending on

whether the particular species was observed or not at that

patch. In this case, feature co-occurrence patterns would

correspond to species co-habitation and spatial correlation

patterns would correspond to natural habitats for species

groups. Combining the two will generate homogeneous re-

gions characterised by a set of species that live in those re-

gions. We wish to find “good” patterns of this form simul-
taneously and automatically.
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Spatial data in this form (binary features over a set of

locations) occur naturally in several settings, e.g.:

• Biodiversity data, such as the example above.

• Geographical data, e.g., presence of facilities (shops,
hospitals, houses, offices, etc) over a set of city blocks.

• Environmental data, e.g., occurrence of different phe-
nomena (storms, hurricanes, snow, drought, etc. or )

over a set of locations in satellite images.

• Historical/linguistic data, e.g., occurrence of different
words in different counties, or occurrence of various

types of historical events over a set of locations.

In all these settings, we would like to discover meaning-

ful feature co-occurrence and spatial correlation patterns.

Existing methods either discover one of the two types of

patterns in isolation, or require the user to specify certain

parameters or thresholds.

We view the problem from the perspective of succinctly

summarizing (i.e., compressing) the data, and we employ

the Minimum Description Length (MDL) principle to auto-

mate the process. We group locations and features simul-
taneously: feature co-occurrence patterns help us compress
spatial correlation patterns better, and vice versa. Further-

more, for location groups, we incorporate spatial affinity by

compressing regions in a natural way.

Section 2 presents some of the background, in the con-

text of our problem. Section 3 builds upon this background,

leading to the proposed approach described in Section 4.

Section 5 presents experiments that illustrate the results of

our approach. Section 6 surveys related work. Finally, in

Section 7 we conclude.

2 Background
In this section we introduce some background, in the

context of the problem we wish to solve. In subsequent

sections we explain how we adapt these techniques for our

purposes.

2.1 Minimum description length (MDL)
In this section we give a brief overview of a practical for-

mulation of the minimum description length (MDL) princi-

ple. For further information see, e.g., [5, 8]. Intuitively,
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the main idea behind MDL is the following: Let us as-

sume that we have a familyM of models with varying de-
grees of complexity. More complexmodelsM ∈M involve

more parameters but, given these parameters (i.e., the model
M ∈M ), we can describe the observed data more concisely.

As a simple, concrete example, consider a binary se-

quence D := [d(1),d(2), . . . ,d(n)] of n coin tosses. A sim-
ple model M(1) might consist of specifying the number h
of heads. Given this model M(1) ≡ {h/n}, we can encode
the dataset D using L(D|M(1)) := nH(h/n) bits [26], where
H(·) is the Shannon entropy function. However, in order
to be fair, we should also include the number L(M(1)) of
bits to transmit the fraction h/n, which can be done using
log� n bits for the denominator and �log(n+ 1)� bits for
the numerator h ∈ {0,1, . . . ,n}, for a total of L(M(1)) :=
log� n+ �log(n+1)� bits.

Definition 1 (Code length and description complexity)
L(D|M(1)) is code length for D, given the model M(1).
L(M(1)) is the model description complexity and
L(D,M(1)) := L(D|M(1)) + L(M(1)) is the total code
length.

A slightly more complex model might consist of seg-

menting the sequence in two pieces of length n1 ≥ 1 and
n2 = n− n1 and describing each one independently. Let
h1 and h2 be the number of heads in each segment. Then,
to describe the model M(2) ≡ {h1/n1,h2/n2}, we need
L(M(2)) := log� n + �logn� + �log(n − n1)� + �log(n1 +
1)�+ �log(n2+ 1)� bits. Given this information, we can
describe the sequence using L(D|M(2)) := n1H(h1/n1) +
n2H(h2/n2) bits.
Now, assume that our family of models is M :=

{M(1),M(2)} and we wish to choose the “best” one for a
particular sequence D. We will examine two sequences of
length n= 16, both with 8 zeros and 8 ones, to illustrate the
intuition.

Let D1 := {0,1,0,1, · · · ,0,1}, with alternating values.

We have L(D1|M
(1)
1 ) = 16H(1/2) = 16 and L(M(1)

1 ) =

log� 16+ �log(16+ 1)� = 10+ 5 = 15. However, for M(2)
1

the best choice is n1 = 15, with L(D1|M
(2)
1 ) ≈ 15 and

L(M(2)
1 ) ≈ 19. The total code lengths are L(D1,M

(1)
1 ) ≈

16+15= 31 and L(D1,M
(2)
1 ) ≈ 15+19= 34. Thus, based

on total code length, the simpler model is better1. The more
complex model may give us a lower code length, but that

benefit is not enough to overcome the increase in descrip-

tion complexity: D1 does not exhibit a pattern that can be
exploited by a two-segment model to describe the data.
LetD2 := {0, · · · ,0,1, · · · ,1}with all similar values con-

tiguous. We have again L(D2|M
(1)
2 ) = 16 and L(M(1)

2 ) =

1The absolute codelengths are not important; the bit overhead com-
pared to the straight transmission of D tends to zero, as n grows to infinity.

0 01111 1 1 1  (depth−first order) = 9 bits

Image (4x4)

Colour: 7 x H(5/7, 1/7, 1/7) = 8.04 bits

Total: 17.04 bitsEntropy coding:

Naive coding:
16 x 3 = 48 bits

16 x H(7/16, 5/16, 4/16) = 24.74 bits

Tree

Structure:

Figure 1. Quadtree compression: Themap on
the left has 4×4= 16 cells (pixels), each hav-
ing one of three possible values. The result-
ing quadtree has 10 leaf nodes, again each
having one of three possible values.

15. But, for M(2)
2 the best choice is n1 = n2 = 8 so that

L(D2|M
(2)
2 ) = 8H(0)+ 8H(1) = 0 and L(M(2)

2 ) ≈ 24. The

total code lengths are L(D2,M
(1)
2 ) ≈ 16+ 15 = 31 and

L(D2,M
(2)
2 ) ≈ 0+ 24 = 24. Thus, based on total code

length, the two-segment model is better. Intuitively, it is

clear thatD2 exhibits a pattern that can help reduce the total
code length. This intuitive fact is precisely captured by the

total code length.

In fact, this simple example is prototypical of the group-

ings we will consider later. More generally, we could

consider a family M := {M(k) | 1 ≤ k ≤ n} of k-segment
models and apply the same principles. Furthermore,

the datasets we will consider are two-dimensional matri-

ces D := [d(i, j)], instead of one-dimensional sequences. In
Section 3.2 we address both of these issues. To complicate

matters even further, one of the dimensions of D has a spa-
tial location associated with it. Section 4 presents data de-

scription models that also incorporate this information.

In fact, choosing the appropriate family of models is non-

trivial. Roughly speaking, at one extreme we have the sin-

gleton family of “just the raw data,” which cannot describe

any patterns. At the other extreme, we have “all Turing ma-

chine programs that produce the data as output,” which can

describe the most intricate patterns, but make model selec-

tion intractable. Striking the right balance is a challenge. In

this paper, we address it for the case of spatial data.

2.2 Quadtree compression
A quadtree is a data structure that can be used to effi-

ciently index contiguous regions of variable size in a grid. It

has been used successfully in image coding and has the ben-

efit of small overhead and very efficient construction [28].

Figure 1 shows a simple example. Each internal node in a

quadtree corresponds to a partitioning of a rectangular re-

gion into four quadrants. The leaf nodes of a quadtree rep-

resent rectangular groups of cells and have a value p asso-
ciated them, where p is the group ID. In the following we
briefly describe quadtree codelengths.
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Structure. The structure of a quadtree uniquely corre-
sponds to a partitioning of the grid. For example, the parti-

tioning into three regions in Figure 1 on the left corresponds

to the structure on the right. This partitioning is chosen in

a way that respects spatial correlations. The structure can

be described easily by performing a traversal of the tree

and transmitting a zero for non-leaf nodes and a one for

leaf nodes. The traversal order is not significant; we choose

depth-first order (see Figure 1).

Values. Quadtree structure conveys information about the
partition boundaries (thick grid lines in Figure 1). These

capture all correlations: in effect, we have reduced the orig-

inal set of equal-sized cells to a (smaller) set of variable-

sized, square cells (each one corresponding to a leaf node

in the quadtree). Since the correlations have already been

taken into account, we may assume that the leaf node values

are independent. Therefore, the cost to transmit the values

is equal to the total number of leaf nodes, multiplied by the

entropy of the leaf value distribution.

Lemma 1 (Quadtree codelength) Let T be a quadtree
with m′ leaf nodes, of which m′

p have value p, where 1 ≤
p ≤ k. Then, the number of internal nodes is �m′/3�− 1.
Structure information can be transmitted using one bit per
node (leaf/non-leaf) and values can be transmitted using en-
tropy coding. Therefore, the corresponding total codelength
is

L(T ) = m′H
(
m′1
m′ ,
m′2
m′ , . . . ,

m′k
m′

)
+

⌈
4m′
3

⌉
−1

This has a straightforward but important consequence:

Lemma 2 The codelength L(T ) for a quadtree T can be
computed in constant time, if we know the distribution of
leaf node values.

In other words, for a full quadtree (i.e., one where each node

has either zero or four descendants), if we know m′ and m′
p,

for 1 ≤ p ≤ k, we can compute the cost in closed form, us-
ing Lemma 1. Note that the quadtree does not have to be

perfect (i.e., all leaves do not have to be at the same level).

When a node is reassigned a different value, region consoli-

dations may occur (i.e., pruning of leaves with same value).

Updating m′ and m′
p will require time proportional to the

number of consolidations, which are typically localized. In

the worst case, the time will beO(logm) if pruning cascades
up to the root node.

3 Preliminaries
In this section we formalize the problem and prepare the

ground for introducing our approach in Section 4.

3.1 Problem definition
Assume we are given m cells on an evenly-spaced grid

(e.g., field patches in biological data) and n features (e.g.,

Symbol Definition

D Binary data matrix.

m,n Dimensions of D (rows, columns); rows
correspond to cells.

k,� Number of row and column groups.

k∗,�∗ Optimal number of groups.

QX ,QY Row and column assignments to groups.

Dp,q Submatrix for intersection of p-th row and
q-th column group.

mp,nq Dimensions of Dp,q.
|Dp,q| Number of elements |Dp,q| :=mpnq.
ρp,q Density of 1s in Dp,q.
H(·) Binary Shannon entropy function.

L(Dp,q|QX ,QY ,k,�) Codelength for Dp,q.
L(D,QX ,QY ,k,�) Total codelength for D.

Table 1. Symbols and definitions.

species). For each pair (i, j), 1 ≤ i ≤ m and 1 ≤ j ≤ n,
we are also given a binary observation (e.g., species pres-

ence/absence at each cell).

We want to group both cells and features, thus also im-

plicitly forming groups of observations (each such group

corresponding to an intersection of cell and feature groups).

The two main requirements are:

1. Spatial affinity: Groups of cells should exhibit spatial

coherence, i.e., if two cells i1 and i2 are close together,
then we wish to favour cell groupings that place them

in the same group. Furthermore, spatial affinity should

be balanced with feature affinity in a principled way.

2. Homogeneity: The implicit groups of observations

should be as homogeneous as possible, i.e., be nearly

all-ones or all-zeros.

The problem and our proposed solution can be easily ex-

tended to a collection of categorical features (i.e., taking

more than two values, from a finite set of possible values)

per cell.

3.2 MDL and binary matrices
Let D = [d(i, j)] denote a m× n (m,n ≥ 1) binary data

matrix. A bi-grouping is a simultaneous grouping of the m
rows and n columns into k and � disjoint row and column
groups, respectively. Formally, let

QX : {1,2, . . . ,m}→ {1,2, . . . ,k}

QY : {1,2, . . . ,n}→ {1,2, . . . , �}

denote the assignments of rows to row groups and columns

to column groups, respectively. The pair {QX ,QY} is a bi-
grouping.

Based on the observation that a good compression of the

matrix implies a good, concise grouping, both k, � as well
as the assignmentsQX ,QY can be determined by optimizing
the description cost of the matrix. Let

Rp := Q
−1
X

(
p
)
, Cq := Q

−1
Y

(
q
)
, 1≤ p≤ k,1≤ q≤ �
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be the set of rows and columns assigned to row group p
and column group q, with sizes mp := |Rp| and nq := |Cq|,
respectively. Then, let

Dp,q := [d(Rp,Cq)], 1≤ p≤ k,1≤ q≤ �.

be the sub-matrix of D defined by the intersection of row
group p and column group q. The total codelength L(D) ≡
L(D,QX ,QY ,k, �) for transmitting D is expressed as

L(D) = L(D|QX ,QY ,k, �)+L(QX ,QY ,k, �).

For the first part of Eq. 3.2, elements within each Dp,q
are assumed to be drawn independently, so that

L(Dp,q|QX ,QY ,k, �) = �log(|Dp,q|+1)�+ |Dp,q|H
(
ρp,q

)

where ρp,q is the density (i.e., probability) of ones within
Dp,q and |Dp,q| = mpnq is the number of its elements. This
is analogous to the coin toss sequence models described in

Section 2.1. Finally,

L(D|QX ,QY ,k, �) := ∑kp=1∑�
q=1L(Dp,q|QX ,QY ,k, �).

For the second part of Eq. 3.2, row and column groupings

are assumed to be independent, hence

L(QX ,QY ,k, �) = L(QX ,QY |k, �)+L(k, �)

= L(QX |k)+L(k)+L(QY |�)+L(�).

Finally, a uniform prior is assigned to the number of groups,

as well as to each possible grouping given the number of

groups, i.e.,

L(k) = − logPr(k) = logm

L(QX |k) = − logPr(QX |k) = log
( m
m1 ···mk

)

and similarly for the column groups.

Using Stirling’s approximation lnn!≈ n lnn−n and the
fact that ∑imi =m, we can easily derive the bound

L(QX |k) = log
( m
m1 ···mk

)
= log m!

m1!···mk!

= logm!−∑ki=1 logmi!≈ m logm−∑ki=1mi logmi
= −m∑ki=1

mi
m log

mi
m = mH

(m1
m , . . . , mkm

)

≤ m logk.

Therefore, we have the following:

Lemma 3 The codelength for transmitting an arbitrary m-
to-k mapping QX , where mp symbols from the range are
mapped into each value p,1≤ p≤ k, is approximately

L(QX |k) = mH
(m1
m , . . . , mkm

)

3.3 Map boundaries
The set of all cells may form an arbitrary, complex shape,

rather than a square with a side that is a power of two. How-

ever, we wish to penalize only the complexity of interior cell

don’t
care

Map Map negation
Unconditional

quadtree quadtree
Conditional

5 bits (structure) 1 bit (structure)

(c)(a) (b) (d)

non−existent

Figure 2. Quadtree compression to discount
the complexity of the enclosing region’s
shape; only the complexity of cell group
shapes within the map’s boundaries matters.

group boundaries. The shape of boundaries on the edges

(e.g., coastline) of the map should not affect the cost.

For example, assume that our dataset consists of the three

black cells in Figure 2(a). If all three cells belong to the

same group and we encode this information naı̈vely, then

we get a quadtree with five nodes (Figure 2(c)). However,

the complexity of the resulting quadtree is only due to the

fact that the bottom-left is “non-existent.”

If we know the shape of the entire map a priori, we
can encode the same information using 1 bit, as shown in

Figure 2(d). In essence, both transmitter and receiver agree

upon a set of “existing” cell locations (or, equivalently, a

prior quadtree corresponding to the map description). This
information should not be accounted for in the total code-

length, as it is fixed for a given dataset. Given this infor-

mation, all cells groups in the transmitted quadtree (e.g.,

group of both light and dark gray in Figure 2(d)) should

be intersected with the set of existing cells (e.g., black in
Figure 2(a)) to get the actual cells belonging to each group

(e.g., only dark gray in Figure 2(d)).

Since the “non-existent” locations are known to both par-

ties, we do not need to take them into account for the leaf

value codelength, which is still m′H(m′
1/m

′, . . . ,m′
k/m

′)
(see Lemma 1), where m′

p is the number of quadtree leaves

having value p (1≤ p≤ k) andm′ = ∑kp=1m′
p. However, for

the tree-structure codelength we need to include the num-
ber m′

0 of nodes corresponding to non-existent locations
(e.g., white in Figure 2(c)). Thus, the structure codelength

is �4(m′ +m′
0)/3�−1.

4 Spatial bi-grouping
In the previous sections we have gradually introduced

the necessary concepts that lead up to our final goal: com-

ing up with a simple but powerful description for binary

data, which also incorporates spatial information and which

allows us to automatically group both cells as well as fea-

tures, without any user-specified parameters.

In order to exploit dependencies due to spatial affinity,

we can pursue two alternatives:
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1. Relax the assumption that the values within each Dp,q
are independent, thus modifying L(D|QX ,QY ,k, �).
This amounts to saying that, given cells i1 and i2 be-
long to the same group, then it is more likely that fea-

ture j will be present in both cells if they are neigh-
bouring.

2. Assign a non-uniform prior to the space of possi-

ble groupings, thus modifying L(QX ,QY ,k, �). This
amounts to saying that two cells i1 and i2 are more
likely to belong to the same group, if they are neigh-
bouring.

We choose the latter, since our goal is to find cell groups that

exhibit spatial coherence. In the former alternative, spatial

affinity does not decide how we form the groups; it only
comes into play after the groupings have been decided. The

second alternative fortunately leads to efficient algorithms.

Each time we consider changing the group of a cell, we

have to examine how this change affects the total cost. As

we shall see, this test can be performed very quickly.

In particular, we choose to modify the term L(QX |k). Let
us assume that the dataset has m= 16 cells, forming a 4×4
square (see Figure 1), and that cells are placed into k = 3
groups (light gray, dark gray and black in the figure). In-

stead of transmittingQX as an arbitrarym-to-kmapping (see
Section 3.2), we can transmit the image of m = 16 pixels
(cells), each one having one of k= 3 values. The length (in
bits) of the quadtree for this image is precisely our choice

of L(QX |k) (compare Lemmas 1 and 3).
By using the quadtree codelength, we essentially penal-

ize cell group region complexity. The number of groups is

factored into the cost indirectly, since more groups typically

imply higher region complexity.

4.1 Intuition
For concreteness, let us consider the case of patch loca-

tions and species presence features. The intuitive interpre-

tation of cell and feature groups is the following:

• Row (i.e., cell) groups correspond to “neighbour-
hoods” or “habitats.” Clearly, a habitat should exhibit

a “reasonable” degree of spatial coherence.

• Column (i.e., species) groups correspond to “families.”
For example, a group consisting of “gull and pelican”

may correspond to “seabirds,” while a group with “ea-

gle and falcon” would correspond to “mountain birds.”

The patterns we find essentially summarise species and cells

into families and habitats. The summaries are chosen so that

the original data are compressed in the best way. Given the

simultaneous summaries, we wish to make the intersection

of families and habitats as uniform as possible: a particu-

lar family should either be mostly present or mostly absent

from a particular habitat. This criterion jointly decides the

21 (struct.) + 16 x H(1/2, 1/2) = 37 bits [above]Two clusters:

Two clusters: 16 bits / Single cluster: 37 bits

Block codelength:

Single cluster:

Quadtree length:

1 bit [root node only]

Figure 3. In this simple example (16 cells and
2 species, i.e., 32 binary values total), if we
require groupings to obey spatial affinity, we
obtain the shortest description of the dataset
(locations and species) if we place all cells in
one group. Any further subdivision only adds
to the total description complexity (due to cell
group region shapes).

species of a family and the cells of a habitat. However, our

quad-tree model complexity favours habitats that are spa-

tially contiguous without overly complicated boundaries.

The group search algorithms are presented in

subsection 4.2. Intuitively, we alternatively re-group

cells and features, always reducing the total codelength.

Example. A simple example is shown in Figure 3. We
choose this example as an extreme case, to clarify the trade-

offs between feature and spatial affinity. Experiments based

on this boundary case are presented in section 5. Assume

we have two species, located on a square map in a checker-

board pattern (i.e., odd cells have only species A and even

cells only species B). Consider the two alternatives (we omit

the number of bits to transmit species groups, which is the

same in both cases):

• Two cell groups, in checkerboard pattern: One group
contains only the even cells and the other only the odd

cells. In this case, we need 37 bits for the quadtree

(see Figure 3). For the submatrices, we need �log(8 ·
1+ 1)�+ 8H(1) = 4 bits for each of the four blocks
(two species groups and two cell groups), for a total of

16 bits. The total codelength is 37+16= 53 bits.

• One cell group, containing all cells: In this case we
need only 1 bit for the (singleton node) quadtree and

�log(32 · 1+ 1)�+ 32H(1/2) = 37 bits total for the
submatrices. The total codelength is 37+1= 38 bits.

Therefore, our approach prefers to place all cells in one

group. The interpretation is that “both species A and B oc-

cupy the same locations, with presence in ρ1,1 = 50% of the
cells.” Indeed, if we chose to perfectly separate the species

instead, the cell group boundaries become overly complex

without any spatial affinity. Furthermore, if the number of

species was different, the tipping point in the trade-off be-

tween cell group complexity and species group “impurity”

would also change. This is intuitively desirable, since de-

scribing exceptions in larger species groups is inherently

more complex.
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Algorithm INNER:

Start with an arbitrary bi-grouping (Q0X ,Q
0
Y ) of the matrix

D into k row groups and � column groups. Subsequently, at
each iteration t perform the following steps:

1. For this step, we will hold column assignments, i.e.,

QtY , fixed. We start with Q
t+1
X := QtX and, for each row

i,1≤ i≤ n, we update Qt+1X (i) ← p, 1 ≤ p ≤ k so that
the choice maximizes the “cost gain”

(
L(D|QtX ,Q

t
Y ,k, �)+L(QtX |k)

)
−(

L(D|Qt+1X ,QtY ,k, �)+L(Qt+1X |k)
)
.

We also update the corresponding probabilities ρ t+1p,q
after each update to Qt+1X .

2. Similar to step 1, but swapping group labels of

columns instead and producing a new bi-grouping

(Qt+1X ,Qt+2Y ).

3. If there is no decrease in total cost L(D), stop. Other-
wise, set t← t+2, go to step 1, and iterate.

Figure 4. Row and column grouping, given
the number of row and column groups.

4.2 Algorithms
Finding a global optimum of the total codelength is com-

putationally very expensive. Therefore, we take the usual

course of employing a greedy local search (as in, e.g., stan-

dard k-means [13] or in [4]). At each step we make a local
move that always reduces the objective function L(D). The
search for cell and feature groups is done in two levels:

• INNER level (Figure 4): We assume that the number of
groups (for both cells and features) is given and try to
find the grouping that minimizes the total codelength.

The possible local moves at this level are: (i) swap-

ping feature vectors (i.e., group labels for rows of D),
and (ii) swapping cell vectors (i.e., group labels for

columns of D).

• OUTER level (Figure 5): Given a way to optimize for
a specific number of groups (i.e., outer level), we pro-

gressively try the following local moves: (i) increase

the number of cell groups, and (ii) increase the num-

ber of feature groups. Each of these moves employs

the inner level search.

If k and � were known in advance, then one could use only
INNER to find the best grouping. These moves guide the

search towards a local minimum. In practice, this strategy

is very effective. We can also perform a small number of

restarts from different points in the search space (e.g., by

randomly permuting rows and columns of D) and keep the
best result, in terms of total codelength L(D).
For each row (i.e., cell) swap, we need to evaluate the

change in quadtree codelength, which takes O(logm) time

Algorithm OUTER:

Start with k0 = �0 = 1 and at each iteration T :

1. Try to increase the number of row groups, holding the

number of column groups fixed. We choose to split the

row group p∗ with maximum per-row entropy, i.e.,

p∗ := argmax1≤p≤k∑1≤q≤� |Dp,q|H(ρp,q)/mp.

Construct an grouping QT+1′
X by moving each row i of

the group p∗ that will be split (QTX(i) = p∗, 1≤ i≤ m)
into the new row group kT+1 = kT + 1, if and only if
this decreases the per-row entropy of group p∗.

2. Apply algorithm INNER with initial bi-grouping

(QT+1′
X ,QTY ) to find new ones (QT+1

X ,QT+1
Y )..

3. If there is no decrease in total cost, stop and return

(k∗, �∗) = (kT , �T ) with corresponding bi-grouping
(QTX ,Q

T
Y ). Otherwise, set T ← T +1 and continue.

4–6. Similar to steps 1–3, but trying to increase column

groups instead.

Figure 5. Algorithm to find number of row and
column groups.

in the worst case (wherem is the number of cells). However,
in practice, the effects of a single swap in quadtree structure

tend to be local.

Complexity. Algorithm INNER is linear in the number
nnz of non-zeros in D. More precisely, the complexity is
O

(
(nnz · (k+�)+n logm) ·T

)
=O(nnz · (k+�+ logm) ·T ),

where T is the number of iterations (in practice, about 10–
15 iterations suffice). We make the reasonable assump-

tion that nnz > n+m. The n logm term corresponds to the
quad-tree update for each row swap. In algorithm OUTER,

we increase the total number k+ � of groups by one at
each iteration, so the overall complexity of the search is

O((k∗ + �∗)2nnz+(k∗ + �∗)n logm), which is is linear with
respect to the dominating term, nnz.

5 Experimental evaluation
In this section we discuss the results our method pro-

duces on a number of datasets, both synthetic (to illustrate

the intuition) and real. We implemented our algorithms in

Matlab 6.5. In order to evaluate the spatial coherence of the

cell groups, we plot the spatial extents of each group (e.g.,

see also [29]). In each case we compare against non-spatial

bi-grouping (as presented in Section 3.2). This non-spatial

approach produces cell groups of quality similar to or better

than, e.g., straight k-means (with plain Euclidean distances
on the feature bit vectors) which we also tried.

SaltPepper. This is essentially the example in
Section 4.1, with two features in a chessboard pattern.
For the experiment, the map size is 32×32 cells, so the size
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(a) Non-spatial grouping (b) Spatial grouping

Figure 6. Noisy regions.

of D is 1024× 2. The spatial approach places all cells in
the same group, whereas the non-spatial approach creates
two row and two column groups. The total codelengths are
(for a detailed explanation, see Section 4.1):

Codelength

Groups Non-spatial Spatial

1×1 2048 + 22 = 2070 2048 + 14 = 2062

2×2 0 + 61 = 61 0 + 2431 = 2431

NoisyRegions. This dataset consists of three features
(say, species) on a 32×32 grid, so the size ofD is 1024×3.
The grid is divided into three rectangles. Intuitively, each

rectangle is a habitat that contains mostly one of the three

species. However, some of the cells contain “stray species”

in the following way: at 3% of the cells chosen at random,

we placed a wrong, randomly chosen species. Figure 6

shows the groupings of each approach. The spatial ap-

proach favours more spatially coherent cell groups, even

though they may contain some of the stray species, because

that reduces the total codelength. Thus, it captures the “true

habitats” almost perfectly (except for a few cells, since the

algorithms find a local minimum of the codelength).

Birds. This dataset consists of presence information for
219 Finnish bird species over 3813 10Km×10Km patches
which cover Finland. The 3813× 219 binary matrix con-
tains 33.8% non-zeros (281,953 entries out of 835,047).

First, the cell groups in Figure 7(b) clearly exhibit a

higher degree of spatial affinity than those in Figure 7(a).

In fact, the grouping in Figure 7(b) captures the boreal veg-

etation zones in Finland: the light blue and green regions

correspond to the south boreal, yellow to the mid boreal

and red to the north boreal vegetation zone.

With resepct to the species groups, the method success-

fully captures statistical outliers and biases in the data. For

example, osprey is placed in a singleton group. The data
for this species was received from a special study, where a

big effort was made to seek nests. Similarly, black-throared
diver is placed in a singleton group, most likely because of
its good detectability from large distances. Rustic bunting
has highly specialized habitat requirements (mire forests)

and is also not grouped with any other species.

Non−spatial (k=23, l=18)
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Spatial (k=14, l=16)
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(a) Non-spatial grouping (b) Spatial grouping

(k= 23 cell groups, (k = 14 cell groups,
� = 18 species groups) � = 16 species groups)

Figure 7. Finnish bird habitats; our approach
produces much more spatially coherent cell
groups (see, e.g., red, purple and light blue)
and captures the boreal vegetation zones.

6 Related work
In “traditional” clustering we seek to group only the rows

of D, typically based on some notion of distance or similar-
ity. The most popular approach is k-means (see, e.g., [13]).
There are several interesting variants, which aim at im-

proving clustering quality (e.g., k-harmonic means [30] and
spherical k-means [7]) or determining k based on some cri-
terion (e.g., X-means [23] and G-means [10]). Besides

these, there are many other recent clustering algorithms

that use an altogether different approach, e.g., CURE [9],

BIRCH [31], Chameleon [16] and DENCLUE [14] (see

also [11]). The LIMBO algorithm [2] uses a related, infor-

mation theoretic approach for clustering categorical data.

The problem of finding spatially coherent groupings is

related to image segmentation; see, e.g., [29]. Other more

general models and techniques that could be adapted to this

problem are, e.g., [3, 19, 24]. However, all deal only with

spatial correlations and cannot be directly used for simulta-

neously discovering feature co-occurrences.

Prevailing graph partitioning methods are METIS [17]

and spectral partitioning [22]. Related is also the work on

conjunctive clustering [21] and community detection [25].

However, these techniques also require some user-specified

parameters and, more importantly, do not deal with spa-

tial data. Information theoretic coclustering [6] is related,

but focuses on lossy compression of contingency tables,

with distortion implicitly specified by providing the num-

ber of row and column clusters. In contrast, we employ

MDL and a lossless compression scheme for binary matri-

ces which also incorporates spatial information. The more

7

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05) 

1550-4786/05 $20.00 © 2005 IEEE 



recent work on cross-associations [4] is also parameter-free,

but it cannot handle spatial information. Finally, Keogh

et al. [18] propose parameter-free methods for classic data

mining tasks (i.e., clustering, anomaly detection, classifica-

tion) based on standard compression tools.

Frequent itemset mining brought a revolution [1] with

a lot of follow-up work [11, 12]. These techniques have

also been extended for mining spatial collocation pat-
terns [20, 27, 32, 15]. However, all these approaches re-
quire the user to specify a support and/or other parameters

(e.g., significance, confidence, etc).

7 Conclusion
We propose a method to automatically discover spatial

correlation and feature co-occurrence patterns. In particu-

lar:

• We group cells and features simultaneously: feature
co-occurrence patterns help us compress spatial corre-

lation patterns better, and vice versa.

• For cell groups (i.e., spatial correlation patterns), we
propose a practical method to incorporate and exploit

spatial affinity, in a natural and principled way.

• We employ MDL to discover the groupings and the
number of groups, directly from the data, without any

user parameters.

Our method easily extends to other natural spatial hierar-

chies, when available (e.g., city block, neighbourhood, city,

county, state, country), as well as to categorical feature val-

ues. Finally, we employ fast algorithms that are practically

linear in the number of non-zero entries.
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