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Abstract

In this paper, we present a novel method aiming at multidimensional sequence classification. We propose a

novel sequence representation, based on its fuzzy distances from optimal representative signal instances, called

statemes. We also propose a novel modified Clustering Discriminant Analysis algorithm minimizing the adopted

criterion with respect to both the data projection matrix and the class representation, leading to the optimal

discriminant sequence class representation in a low-dimensional space, respectively. Based on this representation,

simple classification algorithms, such as the nearest subclass centroid, provide high classification accuracy. A three

step iterative optimization procedure for choosing statemes, optimal discriminant sub-space and optimal sequence

class representation in the final decision space is proposed. The classification procedure is fast and accurate.

The proposed method has been tested on a wide variety of multidimensional sequence classification problems,

including handwritten character recognition, time series classification and human activity recognition, providing

very satisfactory classification results.

I. INTRODUCTION

Sequence classification is used in a wide range of applications, where real-world data can be interpreted

as time varying sequences. For example, in health informatics, ECGs are multichannel sequences that can

be classified, in order to diagnose heart deceases [1], [2]. In image analysis, an object contour can be
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Fig. 1. a) Human walk described as a sequence of human body pose images, b) handwritten characters ’I’ and ’J’.

considered as a sequence of 2D pixels that can provide shape descriptors for object classification [3]. In

a similar way, handwritten optical character recognition can be performed by considering the characters

as 2D pixel sequences denoting pen tip trajectory [4]. In human-centered video analysis, human actions

are interpreted as sequences of human body poses [5], which are high-dimensional body image masks.

Generally speaking, a multidimensional data sequence s refers to an ordered list of multidimensional

instances (sequence samples) s = [s1, s2, ..., sNs ]
T , sn ∈ RN . Sequences can be labeled by class labels. For

example, a sequence representing a Latin character belongs to one of the 26 letters (classes) {A,B, ..., Z},

appearing in the Latin alphabet. Given a sequence class label set L = {L1, ..., LM} and a sequence s,

sequence classification is defined as the task of mapping s to one of the M classes in L. The main

challenges in sequence classification addressed in this paper are described subsequently and are illustrated

with examples coming from handwritten character recognition and human action recognition.

• The dimensionality of the instance space RN may be very high. Moreover, instances may contain

redundant information. Thus, if someone wants to use all available information, the classification task

will be computationally expensive and memory consuming. However, several applications require

fast classification using a low amount of memory. For example, human body poses in Figure 1a are

represented by high-dimensional images. However, if one determines a codebook of all important

body poses, each instance could be represented by an integer, denoting the most similar pose in the

codebook, obtained by vector quantization [6].

• Inter- and intra-class variations. Sequences belonging to the same class may be quite different from

each other, while sequences belonging to different classes may be quite similar, as illustrated by the

three handwritten characters in Figure 1b.

• Varying sequence length. Sequences belonging to different classes may differ in length. This may
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Fig. 2. Handwritten characters represented as intersection points with a grid.

Fig. 3. Walking sequences starting from different human body poses.

be observed even in sequences belonging to the same class, as illustrated in Figures 2a, 2b, where

a handwritten character is represented by a sequence of 2D pixels coordinates sn = [xn, yn]
T , n =

1, ..., Ns.

• Variations in speed and sampling. Instances may either be collected using different sampling rates, as

shown in Figures 2c, 2d, or sequences describing the same event may be observed having different

evolution speed. For example, a person may walk faster than another one.

• Time lag. Periodic sequences belonging to the same class may begin from different starting instances,

as illustrated in Figure 3.

Several methods have been proposed in the literature for sequence classification and can be categorized

in three categories: distance-based, model-based and feature-based ones [7], [8], [9]. In the following, we

provide a comprehensive review of the most important sequence classification methods.

Distance-based methods define a distance function, e.g. the Euclidean distance, to measure the similarity

between two sequences. Typically, such distance functions assume that the sequences have the same

length and, therefore, are sensitive to sequence length Ns variations. In order to overcome this limitation,

sequence alignment techniques have been proposed. Dynamic Time Warping (DTW) [10], [11] aligns

two sequences before matching by stretching or shrinking them in length, in order to provide the best

match. The Longest Common Subsequence (LCSS) model [12] allows two sequences to stretch, without

rearranging the order of their instances and by allowing unmatched instances. These techniques have
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high computational complexity and are, usually, computed by dynamic programming. Given a distance

function, sequence classification is usually performed by using the K-nearest neighbor (KNN) classifier,

as it has been shown that the 1NN classifier is surprising competitive in terms of classification accuracy,

compared to other, more complex, classifiers [9]. Traditional KNN classification involves searching the

entire training set for the K most similar training sequences to the test sequence and, thus, requires a

high computational cost. In order to speed up the search procedure, two approaches have been proposed:

building fast search algorithms and/or reducing the training sequence set cardinality. The first approach

is implemented by organizing the training set in structures that allow efficient search, e.g. in hierarchical

trees [13]. In the latter one, the training set is reduced, by keeping only representative training sequences,

which are, subsequently, used by the KNN search algorithm [14].

Model-based classification methods assume that sequences belonging to a class are generated by an

underlying probabilistic model. Each class is represented by such a model, which is learned using the

training sequences. A test sequence is assigned to the class model that provides the highest likelihood.

Naive Bayes classifiers [15] have been widely used due to their simplicity [16], [17]. Markov Models and

Hidden Markov Models (HMM) [18] are also used to model the transition between instances to describe

sequences. Their training procedure can be either generative or discriminative [19]. In the first case, each

class is represented by a model which describes the class properties, while in the later, the training process

takes into account the discriminant information among the classes, in order to increase the classification

performance. The aforementioned techniques assume independence between sequence instances, which

is often not realistic. Conditional Random Fields (CRF) [20] relax this independence assumption, while

increasing classification accuracy.

Feature-based classification methods represent each sequence with one or more features, which are

subsequently used for classification. n-gram based sequence representation can be achieved by applying

discretization on the sequence instances, or by performing clustering and representing each instance

with the closest cluster centroid. Another approach is to consider sequences as shapes and describe
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their properties. Shapelets [21] are defined as the subsequences capturing local sequence properties.

A sequence can be described as a collection of shapelets. Wavelet decomposition has been applied to

sequence classification, in order to capture both local and global sequence properties [22]. Specifically,

the low-order wavelet coefficients have been used to describe global sequence properties, while high-

order coefficients have been used to describe the local sequence information. After finding a convenient

sequence representation, standard classification techniques, such as Support Vector Machines (SVM),

K-nearest neighbors or Artificial Neural Networks (ANN) can be utilized for sequence classification.

In this paper, we propose a novel multidimensional sequence classification method. We take into account

the general case of multidimensional real-valued instances. The training sequence instances sn ∈ RN are

clustered in order to produce K instance prototypes, i.e., in order to determine an instance codebook. The

labeling information available for the training sequences is, subsequently, exploited to tune the instance

codebook and increase sequence class discrimination, thus determining a set of K optimal instance

representations, which are called statemes (stemming from the word state). The statemes define the so-

called stateme space RK , as follows. After statemes determination, a sequence is represented in a new way,

by a vector denoting the similarity between its instances and all chosen statemes. This is a convenient

sequence representation that can be applied to any sequence classification problem. For example, in

handwritten character or human action recognition problems, the sequence representation is in the form

of a real-valued vector denoting the similarity of the test sequence (representing one character or action,

respectively) with the corresponding statemes. Subsequently, the class label information that is available

for the training sequences, is exploited in order to determine an optimal linear transformation of the stateme

space RK to a low-dimensional feature space RD, D ≪ K, which enhances class discrimination. This is

achieved by exploiting, once again, the available labels of the training sequences, in order to determine

both the optimal linear transform matrix and the optimal sequence class representation in the stateme space,

in terms of sequence class discrimination. The final sequence classification in this space can be performed

by various methods, such as the nearest class centroid(s) [23], providing high classification accuracy. In
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this paper we perform classification based on a modified nearest subclass centroid scheme. The proposed

classification procedure has low computational cost and requires small amount of memory, since each

sequence class is represented by few low-dimensional feature vectors, since D ≪ K ≪ N . Furthermore,

by allowing multiple subclasses in each sequence class, we take into account intra-class structure variations,

which are usual in real applications. For example in handwritten character classification each person writes

in a different way that slightly varies from time to time, thus creating subclasses within each handwritten

character class.

Vector quantization based data representation has been widely used in image/video analysis [24], [25].

In such data representations, representative feature vectors are extracted from the training images/videos

to form a so-called codebook. Based on this codebook, data are represented by performing hard or soft

feature vector quantization. It should be noted that most image/video analysis methods employ standard

clustering techniques, like K-Means [6], for codebook construction. That is, the codebook is obtained in

an unsupervised manner. Supervised codebook construction is a, relatively, new task [26], [27], [28], [29],

[30], [31]. The main idea behind supervised codebook construction is the incorporation of the labeling

information, that is available for the training data, in order to construct better clusters, in terms of intrinsic

cluster structure. A probabilistic codebook learning technique is proposed in [26], [27], [28]. According

to this, class-specific codebooks are learned from an initial codebook, by adapting or merging codewords

appearing in an initial universal codebook. The information bottleneck principle, combined with kernel

density estimation, has been exploited for codebook learning in [29]. Extremely Randomized Clustering

Forests (ERC-Forests) have been propose in [30], where the given class labels are exploited in order to

control the codebook size. A codebook learning method based on minimum between-category mutual

information loss is proposed in [31]. In all the above described cases, the adoption of the corresponding

supervised codebook has led to an increase of the classification performance, compared to the unsupervised

case. However, the supervised codebook construction process is not directly related to the discrimination

of the classes involved in the classification problem. In this paper, we aim at determining the optimal
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codebook (statemes), in terms of better sequence classes discrimination. To this end, we propose a novel

codebook learning method, based on the minimization of the within-class scatter to the between-class

scatter ratio. This optimization criterion is evaluated on sequential data, by adopting the mean fuzzy

distances of a stateme based sequence representation.

Dimensionality reduction techniques have been widely used in classification schemes due to their ability

to reduce the data dimensionality and enhance class discrimination. Linear Discriminant Analysis (LDA)

[6] is, probably, the most widely adopted technique. The main idea of standard LDA is to find an optimal

reduced-dimensionality space for data projection, in which the classes are better discriminated. The adopted

criterion is the ratio of the within-class scatter to the between-class scatter in the projection space. By

minimizing this criterion, maximal class discrimination is achieved. Clustering Discriminant Analysis

(CDA) [32] is a generalization of LDA that takes into account subclass information. Standard LDA and

CDA techniques try to determine the optimal data projection matrix, by representing classes using the

corresponding mean (sub)class vectors. However, other, optimized, (sub)class vector representations can be

found that provide better class discrimination. In this paper, we relax the assumption of class representation

by the corresponding mean (sub)class vectors and we propose an iterative optimization scheme aiming at

determining both the optimal, in terms of class discrimination, representative (sub)class vectors and the

the data projection matrix for CDA based projection.

Overall, the contributions of this paper are: 1) the proposition of a novel iterative optimization procedure,

which provides both the optimal representative sequence (sub)class vectors and the optimal projection

matrix for CDA-based dimensionality reduction, 2) the proposition of a novel iterative optimization proce-

dure, in order to increase instance codebook discrimination power, based on CDA criterion minimization,

3) the proposition of a unified framework for multidimensional sequence classification involving three

optimization steps optimizing the same sequence class discrimination criterion.

The remainder of this paper is structured as follows. Section II presents the steps performed by the

proposed method. Section III presents experiments conducted on publicly available databases coming from
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a wide variety of sequence classification problems in order to assess the performance of the proposed

method. Finally, conclusions are drawn in Section V.

In terms of notation, we use superscripts to denote sequence class and sequence subclass indices and

subscripts to denote sequence number and instance number indices. For example, we use the notation sijnm

to denote the m-th instance of sequence n, belonging to subclass j of sequence class i. In cases where

the sequence class information is not necessary, we drop superscipts. That is, we use the notation snm to

denote instance m of the n-th training sequence.

II. PROPOSED METHOD

In this paper, a sequence of multidimensional instances is denoted by sn = [sn1, sn2, ..., snNn ]
T , where

snm ∈ RN is the m-th instance of sequence n, Nn is the number of instances forming sequence sn and

may vary over sequences. Let L = {L1, ..., LM} be a set of sequence classes, e.g. ’walk’, ’run’, ’jump’,

etc, in the case of human actions. Given a set S of NT training sequences S = {S1, ...,SNT
}, where

Si = {si1, ..., siN i} is a subset of N i sequences belonging to sequence class Li, we would like to devise

a sequence classification algorithm which addresses all the previously denoted challenges by finding an

optimal sequence representation in terms of statemes and dimensionality reduction during training. After

training, a test procedure can be applied to a test sequence stest in order to find its class label ltest. In the

following, we present in detail each individual step of the proposed method.

A. Statemes Determination

In the training phase, all training sequence instances snm are clustered, in order to produce K statemes,

vk, k = 1, ..., K, without taking into account the known training sequence instance labels. Several cluster-

ing algorithms can be utilized for this task. We have conducted experiments using K-Means [33], Fuzzy

C-Means [34], Self Organizing Maps [35] and Spectral Clustering [36], [37] and have experimentally

found that the choice of the clustering algorithm does not affect significantly the performance of the

proposed method. As K-Means is a fast clustering algorithm, we chose it to cluster the training instances
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by minimizing
∑K

k=1

∑NT

n=1

∑Nn

m=1 anmk ∥ snm − vk ∥2, where Nn is the number of instances forming

sequence sn. The parameter anmk is chosen as follows: anmk = 1 if instance snm is assigned to the k-th

cluster (having cardinality nk =
∑

anmk) and anmk = 0 otherwise. The K statemes vk are obtained by

calculating the arithmetic mean of the instances assigned to each of these K clusters:

vk =
1

nk

NT∑
n=1

Nn∑
m=1

anmksnm. (1)

The optimal number of statemes is determined by performing multiple fold (typically 10-fold) cross-

validation procedure. The training set is divided in ten subsets and, in each fold of the cross-validation

procedure, the algorithm is trained using nine subsets and tested using the remaining one. An experiment

consists of ten folds, one for each test subset.

In the following section, we propose a stateme-based sequence representation. Specifically, we propose

a non-linear mapping of a sequence to a feature space determined by the statemes, called stateme space.

In order to enhance the sequence class discrimination in the statemes space, we propose an iterative

procedure in order to determine the optimal, in terms of classification accuracy, stateme choice. This

procedure is described in Subsection II-C.

B. Sequence Representation

After stateme calculation, each sequence sn is mapped to the so-called sequence vector qn ∈ RK , which

denotes the similarity of the instances forming the sequence snm to all statemes vk, k = 1, ..., K, based

on the fuzzy distances between the instances snm an the dynemes vk:

dnmk = (∥ snm − vk ∥2))−
2

r−1 . (2)

r is the fuzzification parameter (r > 1), which is also determined by applying the cross-validation proce-

dure. We have experimentally found that the value r = 1.1 provides a satisfactory sequence representation.

Fuzzy distances allow smooth distance representation between sequence instances and statemes. Fuzzy

distances dnmk are used to form the so-called stateme distance vector dnm = [dnm1, dnm2, ..., dnmK ]
T ∈ RK ,
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Stateme distance vectors dnm are normalized to produce the instance membership vectors unm ∈ RK ,

which are the instances snm representation in the stateme space unm = dnm

∥dnm∥ . Sequence vector qn are

determined as the mean membership vector qn = 1
Nn

∑Nn

m=1 unm.

By using a simple arithmetic mean for sequence representation, we avoid taking into account any

instance order, (i.e. temporal) information in the sequence representation, hence efficiently handling, e.g.

variations in sequence length. Finally, the training sequence vectors qn are normalized to have zero mean

and unit standard deviation, producing the normalized sequence vectors xn, which represent sequences sn

in the stateme space. Since our final purpose is to obtain the optimal, in terms of classification accuracy,

sequence representation, we are interested to enhance the discriminant ability of xn. In order to achieve

that, we can a) optimize the choice of statemes vk and b) map xn to a more discriminant sequence

representation zn in a reduced-dimensionality space RD, D ≪ K. In this paper we follow both these

directions, as described in the subsequent sections.

C. Stateme Optimization

In this section, we present an iterative optimization procedure aiming to determine the optimal statemes

vk, in terms of sequence class discrimination. Since xn are functions of vk, the optimal sequence

representation in the stateme space can be obtained by minimizing Fisher [6] sequence class discrimination

criterion with respect to vk:

J1 =
trace(Sw)

trace(Sb)
, (3)

where Sw, Sb denote the within-class and between-class scatter matrices, respectively. Fisher criterion

is typically used for unimodal classes. When multimodality exists, i.e., each class consists of several

subclasses, CDA performs better. Let us assume that the sequence class i consists of ci subclasses, each

containing N ij training normalized sequence vectors and represented by the corresponding mean vector

µij . Let us denote by xij
n the n-th training normalized sequence vector belonging to the j-th subclass of
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sequence class i. In CDA, Sw and Sb are defined as follows:

Sw =
M∑
i=1

ci∑
j=1

N ij∑
n=1

(xij
n − µij)(xij

n − µij)T (4)

Sb =
M∑
i=1

∑
l ̸=i

ci∑
j=1

cl∑
h=1

(µij − µlh)(µij − µlh)T (5)

The minimization of J1, can be done by a gradient descent procedure:

vk(t) = vk(t− 1)− α
∂J1(t− 1)

∂vk(t− 1)
, (6)

where t denotes the iteration of the update procedure and α is an update rate parameter. In our experiments

we used the value α = 0.5.

∂J
∂vk

takes the form:

∂J1

∂vk

=
2

trace(Sb)
(xij

n − µij)− 2trace(Sw)

N ijtrace(Sb)2

∑
l ̸=i

cl∑
h=1

(µij − µlh)

× ek

× 1

q̃k

(
1− 1

NT

)
− qijnk − q̄k

q̃3k(NT − 1)

(qijnk − q̄k)−
1

NT

M∑
l=1

cl∑
h=1

N lh∑
m=1

(qlhmk − q̄k)


× 1

N ij
n

N ij
n∑

m=1

 1[∑K
l=1(d

ij
nml)

2
]1/2 − (dijnmk)

2[∑K
l=1(d

ij
nml)

2
]3/2


× −g(vk − sm)

∥vk − sijnm∥g+2
2

(7)

where N ij
n is the number of instances forming sijn , ek ∈ RK (ei = 0 for i ̸= k and ei = 1 for

i = k), q̄k = 1
NT

∑M
i=1

∑ci
j=1

∑N ij

n=1 q
ij
nk is the k-th element of the mean training sequence vector, q̃k =

1
NT−1

∑M
i=1

∑ci
j=1

∑N ij

n=1(q
ij
nk − q̄k) is the corresponding standard deviation and g = 2

r−1
.

In the training phase, we initialize vk by clustering all the instances forming the training sequences,

as described in section II-A. Based on these statemes vk(0), the training sequences are mapped to the

statemes space to obtain xij
n (0). In this space, normalized sequence vectors xij

n (0) belonging to each

sequence class are clustered, in order to obtain the sequence class centers µij(0). Scatter matrices Sw(0),

Sb(0) are calculated by using (4), (5) for xij
n (0) and µij(0). The criterion value J1(0) is, subsequently,

calculated via (3).



12

The iterative procedure is performed multiple times, by introducing the training sequences in a random

order. At iteration t, vk(t) are calculated using (6). Based on vk(t), new xij
n (t) are calculated, which are

assigned to subclasses based on their distances from the subclasses centers µij(t−1), using the Euclidean

distance. New subclass centers µij(t) are, subsequently, calculated as the mean subclass vectors in the

stateme space. Scatter matrices Sw(t) and Sb(t) are, finally, computed using (4), (5), resulting to a new

criterion value J1(t). This procedure is performed until the criterion J1(t+ 1)−J1(t) < ϵ1, where ϵ1 is

a small positive value, or for a fixed number of iterations.

D. CDA Projection

After finding the optimal sequence representation in the stateme space, the labeling information available

in the training phase can be exploited, in order to determine an optimal discriminant space, where

the projected sequence vectors belonging to different classes are better separated. We employ CDA

to this end looking for a linear transform Ψopt, which maps the normalized sequence vectors xij
n to

discriminant sequence vectors zijn ∈ RD by applying zijn = ΨT
optx

ij
n . The dimensionality of the final

sequence representation is at most D = C − 1, where C is the total number of subclasses forming the

sequence classes: C =
∑M

i=1 ci. Ψopt is determined by minimizing the criterion, Ψopt = argmin
Ψ

{J2}:

J2 =
trace{ΨTSwΨ}
trace{ΨTSbΨ}

, (8)

where Sw, Sb are given by (4) and (5), respectively. The optimization problem in (8) is equivalent to

the optimization problem Swv = λSbv, λ ̸= 0, which can be solved by performing eigenanalysis to the

matrix S−1
b Sw. The optimal projection matrix Ψ is formed by the eigenvectors corresponding to the D

largest eigenvalues, since the remaining eigenvalues are equal to zero.

The standard CDA algorithm described above provides an optimal discriminant space assuming that

each subclass is represented by the corresponding mean vector µij . However, other ’center’ vectors µ̃ij

can be found to represent the subclasses by an optimization procedure, minimizing J2, which is a function

of µ̃ij according to (4), (5), (8). That is, subclass representation by different ’center’ vectors µ̃ij results



13

in the derivation of different ’scatter’ matrices S̃b and S̃w, by using µ̃ij instead of µij in (4), (5). They

in turn, result in the determination of a different projection matrix Ψ̃opt, thus determining a different

projection subspace.

In order to determine the optimal µ̃ij , we perform an iterative procedure based on the steepest descend

approach. This procedure starts by using the solution given by the standard CDA algorithm, i.e., µ̃ij(0) =

µij and S̃w(0) = Sw, S̃b(0) = Sb. By calculating ∂J2

∂µ̃ij we obtain:

∂J2

∂µ̃ij =
Ψ̃Ψ̃T

[
2

N ij

∑Nij

n=1

(
µ̃ij − xij

n

)]
trace(Ψ̃T S̃bΨ̃)

−
trace(Ψ̃T S̃wΨ̃)

[
Ψ̃Ψ̃T

(
2
C

∑
l ̸=i

∑cl
h=1

(
µ̃ij − µ̃lh

))]
trace(Ψ̃T S̃bΨ̃)2

, (9)

µ̃ij(t) = µ̃ij(t− 1)− β
∂J2(t− 1)

∂µ̃ij(t− 1)
. (10)

where β is an update rate parameter. In our experiments we used the value β = 0.1.

After calculating µ̃ij(t), the scatter matrices S̃w(t) and S̃b(t) given in equations (4) and (5), respectively,

are calculated and a new optimal projection matrix Ψ̃opt(t) is determined. The normalized sequence vectors

xij
n are mapped to the space specified by Ψ̃opt(t) and the criterion value J2(t + 1) is calculated. This

procedure is performed until J2(t + 1) − J2t < ϵ2, where ϵ2 is a small positive value, or for a fixed

number of iterations.

E. Optimal sequence class representation in the decision space

After determining Ψ̃opt, normalized sequence vectors xij
n are mapped to the discriminant sequence

vectors z̃ijn , by applying z̃ijn = Ψ̃T
optx

ij
n . In this space, sequence classification can be performed by using

several classification methods, such as Support Vector Machines (SVMs), Artificial Neural Networks

(ANNs), Nearest Neighbors (K-NN), Nearest subclass centroid, etc. In this paper, we employ Nearest

subclass centroid for sequence classification. That is, each sequence class i is represented by ci vectors,

mij ∈ RD, i = 1, ...,M, j = 1, ..., ci. Given mij , a test discriminant sequence vector z̃test, can be classified

to the sequence class of the closest subclass vector mij , by using the Euclidean distance:

ltest = argmin
i
∥mij − z̃test∥2, i = 1, ...,M, j = 1, ..., ci. (11)



14

Fig. 4. a) Class representation using the mean class vectors mij and b) Class representation using z̃test resulting to higher classification

accuracy.

Usually, mij are determined to be the mean subclass discriminant sequence vectors, i.e., mij = 1
N ij

∑N ij

n=1 x
ij
n .

In our case, we employ the optimal subclass representation in the statemes space µ̃ij determined in section

II-D for mij calculation mij = Ψ̃T
optµ̃

ij .

However, this may not be the optimal choice for class representation. Consider the simple example

illustrated in Figure 4, where we present two classes, each consisting of one subclass. We assume that

classification is performed using the nearest class centroid and the Euclidean distance. By representing

each class with the corresponding mean class vector mij , shown in Figure 4a, z̃test will falsely be assigned

to class 2, whereas by representing subclasses with vectors m̃ij , shown in Figure 4b, z̃test will be correctly

classified to class 1.

Motivated by this observation, we would like to determine the optimal m̃ij in terms of class discrim-

ination. This can be done by minimizing the CDA criterion, measuring class compactness, with respect

to m̃ij:

J3 =
trace(Ŝw)

trace(Ŝb)
. (12)

Ŝw and Ŝb are the within-class and between-class scatter matrices in the decision space, defined as:

Ŝw =
M∑
i=1

ci∑
j=1

N ij∑
n=1

(z̃ijn − m̃ij)(z̃ijn − m̃ij)T (13)

Ŝb =
M∑
i=1

∑
l ̸=i

ci∑
j=1

cl∑
h=1

(m̃ij − m̃lh)(m̃ij − m̃lh)T (14)
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By calculating ∂J3

∂m̃ij we obtain:

∂J3

∂m̃ij
=

2
∑N ij

n=1 (m̃
ij − zijn )

trace(Ŝb)
−

2trace(Ŝw)
∑

l ̸=i

∑cl
h=1

(
m̃ij − m̃lh

)
trace(Ŝb)2

, (15)

m̃ij(t) = m̃ij(t− 1)− γ
∂J3(t− 1)

∂m̃ij(t− 1)
. (16)

γ is an update rate parameter. In our experiments we used the value γ = 0.1.

m̃ij are initialized to the vectors mij , i.e., m̃ij(0) = mij . After calculating m̃ij(t), the scatter matrices

Ŝw(t) and Ŝb(t), (13), (14), respectively, are calculated resulting to a new criterion value J3(t). This

procedure is performed until J3(t + 1) − J3(t) < ϵ3, where ϵ3 is a small positive value, or for a fixed

number of iterations.

The above described procedure can be performed to any classification task following the nearest subclass

classification approach. However, we should note that, in our case, it is equivalent with the optimization

procedure described in section II-D, for fixed projection matrix Ψ̃opt. That is, after determining the optimal

discriminant subspace, obtained by the corresponding projection matrix Ψ̃opt, we further modify the

subclasses centers in the decision space for better sequence class discrimination.

F. Sequence Classification

In order to classify a novel (test) sequence stest, it is mapped to the stateme space, as described in

section II-C. The test normalized sequence vector xtest is, subsequently, projected to the discriminant

subspace determined by Ψ̃opt to obtain the discriminant sequence vector z̃test = Ψ̃T
optxtest. Finally, z̃test

is assigned to the sequence class label corresponding to the nearest subclass centroid m̃ij , by using the

Euclidean distance, i.e.:

ltest = argmin
i
∥m̃ij − z̃test∥2, i = 1, ...,M, j = 1, ..., ci. (17)

III. EXPERIMENTAL RESULTS

In this section, we present experiments conducted in order to evaluate the proposed method. We

have used publicly available databases coming from a wide range of applications, in order to assess
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its effectiveness in different sequence classification problems. The used databases come from handwritten

character recognition, time series classification and human action recognition.

In all our experiments, sequences sn, consisting of instances snm ∈ RN , were mapped to sequences s̃n

having instances taking values in [0, 1], i.e., s̃nml =
snml−min

l
(snml)

max
l

(snml)−min
l

(snml)
, l = 1, ..., N . By using s̃n instead

of sn, we address issues related to sequence displacements and scaling that may appear in the original

sequence representation.

A. Experiments on Handwritten Character Recognition

We have used a publicly available handwritten character recognition database [38], [39] consisting of

2858 character samples, divided in 20 classes. Data were captured using a WACOM tablet. They have

three dimensions: pen tip coordinates [x, y]T and pen tip force f . The sampling frequency was equal to

200Hz. The data have been numerically differentiated and smoothed using a Gaussian filter with a sigma

value equal to 2. Sample sequences are illustrated in Figure 5a.

For the first set of experiments, we assume that each character is a sequence of 2D contour pixel

coordinates [x, y]T forming the character. As was expected, the number of contour points of each character

in the database may vary. Multiple experiments have been performed, for different numbers of statemes

and subclasses per class. In order to compare the performance of the proposed method with that of

other methods proposed in the literature, we used the first twenty characters per class for testing and the

remaining ones for training. A classification accuracy equal to 90% was obtained when using 25 statemes

and two subclasses per class. Another set of experiments has been performed by representing each character

as a sequence of 3-dimensional vectors [x, y, f ]T . This resulted in better character representation and an

increase in classification accuracy. Figure 5 illustrates the classification rates obtained for the second set

of experiments. As can be seen, by using 5 statemes and one subclass per class a sequence classification

accuracy equal to 65% has been obtained. The corresponding classification accuracy for the cases of two

and three subclasses per class are equal to 70% and 75%, respectively. This is reasonable, as the data

multimodality is better addressed by using a higher number of subclasses. By increasing the number
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Fig. 5. a) Sample sequences from the handwritten character recognition database and b) character recognition using different number of

statemes and subclasses per class.

of statemes, sequence representation in the statemes space becomes more discriminant, resulting to an

increase of the classification accuracy. The obtained classification accuracies indicate that 10 statemes are

sufficient for good character representation, providing classification accuracies equal to 91%, 86% and 81%

for one, two and three subclasses per class, respectively. The best classification accuracy, equal to 98.25%

has been obtained by using 30 statemes and two subclasses per class. Overall, the number of statemes

and the number of subclasses forming each sequence class play a significant role in the performance

of the proposed method. When using few statemes, the sequence representation in the stateme space

is inaccurate. In this case, the use of multiple subclasses per sequence class will probably increase the

performance of the proposed method. By using a high number of statemes, sequences are described in

more detail and, thus, the final sequence representation is more discriminant. In such cases, the use of

many subclasses per sequence class does not help. However, too many statemes result in an overcomplete

representation that does not increase the discriminant power any further. In Table Ib we compare the

performance of our method with that of other methods proposed in the literature, in this handwritten

character database. As can be seen, the proposed approach outperforms existing sequence classification

methods in this experimental setting, providing very satisfactory classification accuracy.

B. Experiments in Time Series Classification

The UCR time series database [42] includes 6 two-class and 14 multi-class sequence classification

problems for a wide variety of applications. These include biomedical data classification, electromagnetic
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TABLE I

COMPARISON RESULTS IN THE HANDWRITTEN CHARACTER RECOGNITION DATABASE.

Method Accuracy

Jaakkoda and Haussler [40] 89.26%

Perina et.al. [4] 92.91%

Tsuda et.al. [41] 93.67%

Proposed method 98.25%

measurements, synthetic data, etc. For each data set, a training and a test set are provided in the database.

Data forming each data set are sequences of real-valued instances. Information about the data sets can

be found in Table II. Classification results for several algorithms, including K nearest neighbors (KNN),

Multi-Layer Perceptron (MLP) and Support Vector Machines (SVM) are already available for this database.

In our experiments, we represented each sequence instance as a 2D vector having the form pin =

[n, vn]
T , where n refers to the instance order in the sequence and vn refers to the observed value. This

is a commonly used time series representation [43], [44]. In order to evaluate the contribution of each

optimization step to the efficiency of the proposed method, we conducted experiments by using three

variants of the proposed algorithm. In the first one, no optimization procedure has been performed. That

is, we used the statemes calculated by clustering the training sequence instances and we performed CDA

by using the mean subclass vectors. In the second one, only the stateme optimization procedure has

been performed, while in the third one, all three optimization procedures have been performed. Multiple

experiments have been performed in order to determine the optimal parameters for all variants described

above. Figure 6 illustrates an example of the three criteria optimization procedures obtained for the ’fish’

data set, using 36 statemes and two subclasses per sequence class. In Figure 6a we present the sequence

instances forming all the training sequences in black color. Statemes calculated by clustering the training

instances are illustrated in blue color, while the optimized statemes are illustrated in red color. Figures

6b, 6c and 6d illustrate the J1, J2 and J3 values obtained during the stateme, CDA and subclass centers
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Fig. 6. a) Sequence instances forming the training sequences (black), initial (blue) and optimized (red) statemes. b) J1, c) J2, and c) J3

optimization criteria values.

optimization procedures, respectively.

The classification rates obtained by using the optimal parameters for each data set are given in Table

II. As can be seen, each optimization step contributes to the increase of the performance of the proposed

method. For all data sets, the best classification rates have been invariably obtained by employing all

three optimization procedures. In Table II, we also present classification results for other classification

algorithms applied to the same data sets. As can be seen, there is no unique best algorithm for all sequence

classification problems included in the database. MLP provides the highest classification accuracy in 4

out of the 20 data sets, while SVMs and KNN are best in 3 out of 20 data sets. The proposed method

is clearly the overall winner, since it outperforms all other methods in 9 out of 20 data sets.

C. Experiments on Human Action Recognition

In order to illustrate the effectiveness of the proposed method in multidimensional sequence classifi-

cation, we conducted experiments on the i3DPost 8-view action recognition database [45]. This database

contains 64 high-resolution (1920 × 1080 pixel) image sequences of eight persons (six males and two

females), each performing eight actions: {’walk’, ’run’, ’jump1’, ’jump2’, ’bend’, ’fall’, ’sit’, ’wave’}.

Actions were captured from eight cameras placed around a capture volume having dimensions of 4×3×2

meters. The studio background was of uniform blue color.

Human actions are represented by sequences of successive human body poses. In our experiments,

the human body poses were binary body images, like the ones illustrated in Figure 7a. This is a widely

adopted representation for human actions [46]. We used a color-based image segmentation technique, in
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TABLE II

CLASSIFICATION RATES (%) IN UCR DATA SETS

Data set Classes Length Train Test KNN NB C4 5 MLP RandForces LMT SVM Alg.#1 Alg.#2 Alg.#3

Adiac 37 176 390 391 59.34 56.78 53.2 74.94 57.8 72.12 43.99 68.54 68.54 70.59

50Words 50 270 450 455 64.4 56.26 41.76 66.37 55.16 56.92 64.62 64.18 64.4 65.49

CBF 3 128 30 900 85 89.67 67.33 85.33 83.56 77 87.67 98.33 99.67 99.78

ECG200 2 96 100 100 89 77 72 84 81 82 81 98.33 98.33 98.33

FaceAll 14 131 560 1690 68.64 69.17 55.03 82.43 60.95 75.74 71.83 77.75 83.49 83.91

FaceFour 4 350 24 88 87.5 84.09 71.59 87.5 78.41 77.27 88.64 76.14 80 80

fish 7 463 175 175 78.29 66.86 60 84 79.43 81.71 85.14 85.71 89.71 90.86

Gun Point 2 150 50 150 92 78.67 77.33 93.33 89.33 79.33 80 89.33 94.67 95.33

Lighting2 2 637 60 61 80.33 67.21 62.3 73.77 78.69 63.93 72.13 78.69 78.69 78.69

Lighting7 7 319 70 73 63.01 64.38 54.79 64.38 56.16 64.38 71.23 68.49 69.71 71.23

OSULeaf 6 427 200 242 54.55 37.19 36.78 44.63 41.74 49.17 43.8 48.38 51.56 52.07

SwedishLeaf 15 128 500 625 79.68 85.44 65.6 86.56 77.76 82.56 84.16 81.92 81.92 83.68

synthetic control 6 60 300 300 88 96 81 91.33 86 92 92.33 94.67 95.67 96.33

Trace 4 275 100 100 82 80 74 77 81 76 73 100 100 100

Two Patterns 4 128 1000 4000 90.60 45.68 65.13 89.65 72.5 83.23 82.2 92.83 93.5 94.35

wafer 2 152 1000 6147 99.4 70.83 98.2 96.28 99.32 98.09 95.96 98.8 99.38 99.46

yoga 2 246 300 3000 83.3 54.23 69.9 74.5 77.87 71.87 63.07 67.63 68.6 71.57

Beef 5 470 30 30 60 50 56.67 73.33 50 80 66.67 56.67 60 66.67

Coffee 2 286 28 28 75 67.86 57.14 96.43 75 100 96.43 100 100 100

OliveOil 4 570 30 30 76.67 76.67 73.33 86.67 86.67 83.33 86.67 73.33 76.67 80

Fig. 7. a) Human body poses consisting a walking step captured by a side viewing angle and b) human body pose captured by multiple

viewing angles.

order to segment the body images from the blue background color. These videos were manually temporally

segmented to produce smaller videos depicting one action instance each, e.g., one walk step. The binary

body images were centered at the person’s body center of mass and the maximum bounding box that

encloses the person’s body was used to produce binary videos depicting the human body poses. Human

body poses captured from all viewing angles corresponding to the same time instance were combined, in

order to produce binary images depicting the same human body pose from different viewing angles. An

example of such images is illustrated in Figure 7b.

The resulting images were rescaled to 5×40 pixels and vectorized in a column-wise manner to produce

200-dimensional vectors. Thus, we assumed that an action is a sequence sn consisting of instances snm ∈
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Fig. 8. Classification rates in human action recognition using a) one subclass and b) two subclasses per class. c) Confusion matrix

containing classification rates (%) in action recognition on the i3DPost database.

R200. Since the duration of different actions varies, the number of instances forming each action sequence

sn is not constant.

All three optimization procedures have been used in the experiments conducted on the i3DPost database.

In order to assess the ability of the proposed method to correctly classify data, where it has not been

trained on, we performed the leave-one-person-out cross-validation procedure. That is, we used the action

videos depicting seven persons to train the algorithm and the action videos depicting the eighth person

for testing. This was applied eight times, one for each test person, to complete one experiment. The mean

classification rate was computed to indicate the performance of the algorithm in one experiment. Multiple

experiments have been performed, for different numbers of statemes and subclasses per class. In order

to evaluate the contribution of the optimization procedures on the classification accuracy of the proposed

method, a second set of experiments has been performed by applying no optimization at all. Figure 8

illustrates the classification rates observed for different numbers of statemes for both sets of experiments

using one and two subclasses per class.

As can be seen in Figure 8, high classification rates have been obtained. Furthermore, it can be seen

that the method including all the optimization steps provides higher sequence classification rates for all the

presented experiments. The optimal parameters were found to be 20 statemes and one subclass per class,

providing a classification rate equal to 91.08%. The confusion matrix corresponding to these parameters

is illustrated in Figure 8c. In this Table, a row refers to the actual action class label, while a column refers
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TABLE III

COMPARISON RESULTS IN THE I3DPOST ACTION RECOGNITION DATABASE.

Holte et.al. [47] Gkalelis et.al. [48] Proposed Method

6 actions 89.58% - 90.88%

5 actions - 90% 92.41%

to the obtained classification result provided by the algorithm.

In order to compare our method with action recognition methods proposed in the literature using the

i3DPost multi-view action recognition database for evaluation, we conducted experiments using fewer

action classes. That is, we have performed the leave-one-person-out cross-validation procedure by used 6

actions (’walk’, ’run’, ’jump1’, ’jump2’, ’bend’ and ’wave’) and 5 actions (’walk’, ’run’, ’jump1’, ’jump2’

and ’bend’) in order to compare the performance of our method with the performance of the methods

presented in [47] and [48], respectively. Table III illustrates the comparison results. As can be seen, the

proposed method outperforms both these action recognition methods.

IV. DISCUSSION

Stateme-based sequence representation provides several advantages, such as sequence duration invari-

ance and application-independent sequence representation. However, there are two issues that should be

properly addressed for efficient stateme based sequence representation.

The first issue is related to the optimal number of statemes. In the experiments presented in this

paper, the optimal number of statemes has been determined by performing the N -fold cross-validation

procedure. This is a widely adopted automatic parameter tuning procedure, which has the advantage

that the optimal parameter values are determined by the training data at hand. However, it is a time

consuming procedure, since the algorithm should be trained multiple times in a trial-and-error sense. The

use of clustering techniques that are able to determine the optimal number of clusters [49], or iterative

schemes determining the optimal number of clusters based on the training, like the one proposed in [50],

could be a good alternative solution. However, such methods operate in an unsupervised manner and,
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thus, the obtained number of statemes may not be the optimal for sequence classes discrimination. The

determination of the optimal statemes number remains an open issue and could be an interesting research

direction.

The second issue is related to the stateme definition. In our experiments we assumed that statemes are

representative instances of sequential data. For example, in handwritten character recognition, we assumed

that each character is a sequence of 2D contour pixel coordinates [x, y]T . Thus, statemes were determined

to be representative 2D points. Another choice could be to perform handwritten character recognition by

using each character as one sample. This is the extreme case of using sequences formed by one instance

only. In this case, statemes would be N -dimensional vectors, where N = HW and H , W are the characters

height and width, respectively. Another important issue is the choice of the similarity measure. As has

been shown in the previously presented experiments, sequence representation based on the normalized

mean fuzzy distance from the statemes is a good choice for real-valued instances. However, there are

sequence classification problems, like protein sequence classification in genomic research, where such

similarity measures may not be appropriate. In such cases, the similarity measure employed for statemes

determination and sequence representation should contain sufficient information concerning the sequence

properties.

V. CONCLUSION

In this paper, we proposed a multidimensional sequence classification method based on a novel sequence

representation. This representation is based on the similarity of its instances from optimal instance proto-

types, called statemes. Additionally, we proposed a modified Clustering Discriminant Analysis algorithm,

determining both the optimal data projection matrix and representative class vectors, in terms of sequence

classes discrimination, for discriminant sequence representation. The motivation of the proposed modified

CDA algorithm is based on the observation that optimized subclass representative vectors, that may

differ from the subclass mean vectors, could increase class discrimination. The aforementioned procedures

provide a powerful sequence classification method dealing with challenges appearing in a wide variety of
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sequence classification problems. The method has been tested on sequence classification databases coming

from a wide range of applications, including handwritten character recognition, time series classification

and human action recognition, giving very satisfactory results.
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