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ABSTRACT

Improving the performance of classifiers using pattern mining tech-
niques has been an active topic of data mining research. In this
work we introduce the recent temporal pattern mining framework
for finding predictive patterns for monitoring and event detection
problems in complex multivariate time series data. This framework
first converts time series into time-interval sequences of temporal
abstractions. It then constructs more complex temporal patterns
backwards in time using temporal operators. We apply our frame-
work to health care data of 13,558 diabetic patients and show its
benefits by efficiently finding useful patterns for detecting and di-
agnosing adverse medical conditions that are associated with dia-
betes.

Categories and Subject Descriptors

I.2.6 [LEARNING]: General

Keywords

Temporal Pattern Mining, Temporal Abstractions, Time-interval
Patterns, Event Detection, Patient Classification.

1. INTRODUCTION
Advances in data collection and data storage technologies led to

emergence of complex temporal datasets, where the data instances
are traces of complex behaviors characterized by time series of
multiple variables. Designing algorithms capable of learning clas-
sification models from such data is one of the most challenging
topics of data mining research.

The majority of existing classification methods that work with
temporal data [12, 6, 4, 24, 8, 28] assume that each data instance
(represented by a single or multiple time series) is associated with
a single class label that affects its entire behavior. That is, they
assume that all temporal observations are equally useful for classi-
fication.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

However, the above assumption is not the best when considering
monitoring and event detection problems. In this case, the class
label denotes an event that is associated with a specific time point
(or a time interval) in the instance, not necessarily in the entire
instance. The goal is to learn a model that can accurately iden-
tify the occurrence of events in unlabeled instances (a monitoring
task). Examples of such problems are the detection of adverse med-
ical events (e.g. drug toxicity) in clinical data [10], detection of
the equipment malfunction [9], fraud detection [23], environmen-
tal monitoring [16], intrusion detection [7] and others.

Given that class labels are associated with specific time points
(or time intervals), each instance can be annotated with multiple
labels1. Consequently, the context in which the classification is
made is often local and affected by the most recent behavior of the
monitored instances.

The focus of this paper is to develop a pattern mining technique
that takes into account the local nature of decisions for monitoring
and event detection problems. We propose the Recent Temporal

Pattern (RTP) mining framework, which mines frequent tempo-
ral patterns backward in time, starting from patterns related to the
most recent observations. Applying this technique, temporal pat-
terns that extend far into the past are likely to have low support in
the data and hence would not be considered for classification. In-
corporating the concept of recency in temporal pattern mining is a
new research direction that, to the best of our knowledge, has not
been previously explored in the pattern mining literature.

We study our RTP mining approach by analyzing temporal data
encountered in Electronic Health Record (EHR) systems. In EHR
data, each record (data instance) consists of multiple time series of
clinical variables collected for a specific patient, such as laboratory
test results and medication orders. The record may also provide in-
formation about patient’s diseases and adverse medical events over
time. Our objective is to learn classification models that can accu-
rately detect adverse events and apply it to monitor future patients.

The task of temporal modeling for EHR data is challenging be-
cause the data are multivariate and the time series for clinical vari-
ables are irregularly sampled in time (measured asynchronously
at different time moments). Therefore, most existing times series
classification methods [6, 24], time series similarity measures [29,
20] and time series feature extraction methods [4, 13] cannot be
directly applied on the raw EHR data.

This paper proposes a temporal pattern mining approach that can

1In the clinical domain, a patient may be healthy at first, then de-
velop an adverse medical condition, then be cured and so on.
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handle complex data such as EHR. The key step for this approach
is defining a language that can adequately represent the temporal
dimension of the data. Our approach relies on 1) temporal abstrac-
tions [21] to convert numeric time series variables to time-interval

sequences and 2) temporal relations [3] to represent temporal in-
teractions among the variables. For example, this allows us to de-
fine complex temporal patterns (time-interval patterns) such as “the
administration of heparin precedes a decreasing trend in platelet
counts”.

After defining patterns from temporally abstracted data, we need
to design an efficient mining algorithm for finding patterns that are
useful for event detection. Mining time-interval data is a relatively
young research field that extends sequential pattern mining [2, 31,
18, 30] to the more complex case of time-interval pattern mining2.
Most existing methods mine frequent patterns in an unsupervised
way in order to find temporal association rules [22, 11, 17, 14, 26,
27, 15]. Our objective is different because we are interested in min-
ing temporal patterns that are potentially important for the event
detection task. To address this, we present an efficient algorithm
for mining RTPs (see above) from time-interval data.

We test and demonstrate the usefulness of our framework on
real-world EHR data collected for 13,558 diabetes patients. Our
task is to learn classification models that can correctly diagnose
disorders associated with diabetes, such as cardiological, renal or
neurological disorders. We first show that incorporating the tempo-
ral dimension is beneficial for this task. In addition, we show the
following advantages of our framework:

1. RTP mining focuses the search on temporal patterns that are
potentially more useful for classification.

2. The number of frequent RTPs is much smaller than the num-
ber of frequent temporal patterns. This can facilitate the pro-
cess of reviewing and validating the mined patterns by hu-
man experts.

3. Our mining algorithm is much more efficient than other tem-
poral pattern mining approaches and it can scale up much
better to large datasets.

2. PROBLEM DEFINITION
LetD = {<xi , yi>}n

i=1 be a training dataset such that xi ∈ X
is a multivariate temporal instance up to some time ti and yi ∈ Y
is a class label associated with xi at time ti. The objective is to
learn a function f : X → Y that can label unlabeled instances.
This general setting is applicable to different monitoring and event
detection problems, such as the ones described in [23, 7, 9, 16].

In this work, we test our method on data from electronic health
records (EHR), hence we will use the EHR application as exam-
ple throughout the paper. For this task, every data instance xi is a
record for a specific patient up to time ti and the class label yi de-
notes whether or not this patient is diagnosed with an adverse med-
ical condition (e.g., renal failure) at ti. Figure 1 shows a graphical
illustration of an EHR instance with 3 clinical temporal variables.
The objective is to learn a classifier that can predict well the studied
medical condition and apply it to monitor future patients.

Learning the classifier directly from EHR data is very difficult
because the instances consist of multiple irregularly sampled time
series of different length. Therefore, we want to apply a space
transformation ψ : X → X ′ that maps each instance xi to a
fixed-size feature vector x′

i , while preserving the predictive tem-
poral characteristics of xi as much as possible.

2Sequential pattern mining is a special case of time-interval pattern
mining, in which all intervals are instantaneous (with zero dura-
tions).

Figure 1: An example of an EHR data instance with three temporal

variables. The black dots represent their values over time.

One approach to define ψ is to represent the data using a prede-

fined set of features and their values (a static transformation) as in
[10]. Examples of such features are “most recent platelet measure-
ment”, “most recent platelet trend”, “maximum hemoglobin mea-
surement”, etc. Our approach is different and we learn transfor-
mation ψ from the data using temporal pattern mining (a dynamic

transformation). This is done by applying the following steps:

1. Convert the numeric time series variables into time interval
sequences using temporal abstraction.

2. Mine recent temporal patterns from the time interval data.

3. Transform each instance xi into a binary indictor vector x′
i

using the patterns obtained in step 2.

After applying transformation ψ, we can use a standard machine
learning method (e.g. support vector machines, decision tree, or
logistic regression) on {<x′

i , yi>}n
i=1 to learn function f .

In the following, we explain in details each of these steps.

3. TEMPORAL ABSTRACTION PATTERNS

3.1 Temporal Abstraction
The goal of temporal abstraction [21] is to transform the nu-

meric time series variables to a high-level qualitative form. More
specifically, each clinical variable (e.g., series of white blood cell
counts) is transformed into an interval-based representation 〈v1[s1,
e1], ..., vn[sn, en]〉, where vi ∈ Σ is an abstraction that holds from
time si to time ei and Σ is the abstraction alphabet that represents
a finite set of permitted abstractions.

For the EHR data, we segment all laboratory variables based on
their values into the following abstract states: Very Low (VL), low

(L), Normal (N), High (H) and Very High (VH), i.e., Σ = {VL, L,
N, H, VH}. We use the 10th, 25th, 75th and 90th percentiles of the
lab values to define these 5 states: a value below the 10th percentile
is very low (VL), a value between the 10th and 25th percentiles is
low (L), and so on.

3.2 Multivariate State Sequences
Let a state be an abstraction for a specific variable. We denote

a state S by a pair (F, V ), where F is a temporal variable and
V ∈ Σ is an abstraction value. Let a state interval be a state that

holds during an interval. We denote a state interval E by a 4-tuple
(F, V, s, e), where F is a temporal variable, V ∈ Σ is an abstrac-
tion value, and s and e are the start time and end time (respectively)
of the state interval (E.s ≤ E.e)3. For example, assuming the time
granularity is days, (glucose,H, 5, 10) represents high glucose val-
ues from day 5 to day 10.

After abstracting all time series variables, we represent every in-
stance xi in the database D as a Multivariate State Sequence

(MSS) Zi. Let Zi.end denote the end time of the instance.

3If E.s = E.e, state interval E corresponds to a time point.
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For notational convenience, we represent an MSS Zi as a series
of state intervals that are sorted according to their start times4:

Zi = 〈 E1, E2, ..., El 〉 : Ej .s ≤ Ej+1.s : j ∈ {1, ..., l−1}

Note that we do not require Ej .e to be less than Ej+1.s because
the state intervals are obtained from different temporal variables
and their intervals may overlap.

EXAMPLE 1. Figure 2 shows an MSS Zi with two temporal

variables: creatinine (C) and glucose (G). Assuming the time gran-

ularity is days, this MSS represents 24 days of the patient’s record

(Zi.end = 24). For instance, we can see that the creatinine val-

ues are normal from day 2 until day 14, then become high from

day 15 until day 24. We represent Zi as: 〈 E1 = (G,H, 1, 5),
E2 = (C,N, 2, 14), E3 = (G,N, 6, 9), E4 = (G,H, 10, 13),
E5 =(C,H, 15, 24), E6 =(G,VH, 16, 23) 〉.

Figure 2: An MSS representing 24 days of a patient record. In this

example, there are two temporal variables (creatinine and glucose).

3.3 Temporal Relations
The temporal relation between two instantaneous events (time

points) can be easily described using three relations: before, at the

same time and after. However, when the events have time durations
(state intervals), the relations become more complex. Allen [3]
described the temporal relation between two state intervals using
13 possible relations (Figure 3). But it suffices to use the following
7 relations: before, meets, overlaps, is-finished-by, contains, starts

and equals because the other relations are simply their inverses.
Allen’s relations have been introduced in artificial intelligence for
temporal reasoning and have been used later in the fairly young
research of time interval data mining [22, 11, 17, 26, 15].

Figure 3: Allen’s temporal relations.

As we can see, most of these relations require equality of one or
two of the intervals’ end points. That is, there is only a slight differ-
ence between overlaps, is-finished-by, contains, starts and equals

relations. When the time information in the data is noisy, which is
the case for EHR data, using Allen’s relations may cause the prob-
lem of pattern fragmentation5 [14] .

4If two state intervals have the same start time, we sort them by
their end time. If they also have the same end time, we sort them
by lexical order (see [11]).
5Having many different temporal patterns that describe a very sim-
ilar situation in the data.

Therefore, we opt to use only two temporal relations: before (b)
and co-occurs (c), which we define as follows:
Given two state intervals Ei and Ej :

• Ei is before Ej , denoted as b(Ei, Ej), if Ei.e < Ej .s
(same as Allen’s before).

• Ei co-occurs with Ej , denoted as c(Ei, Ej), if Ei.s ≤
Ej .s ≤ Ei.e. That is, Ei starts before Ej and there is a
nonempty time period where bothEi andEj occur. Note that
this relation covers the following Allen’s relations: meets,
overlaps, is-finished-by, contains, starts and equals.

3.4 Temporal Patterns
In order to obtain temporal descriptions of the data, basic states

are combined using temporal relations to form temporal patterns
(time interval patterns). In the previous section, we defined the
relation between two states to be either before (b) or co-occurs (c).
In order to define relations between k states, we use Höppner’s
representation of temporal patterns [11].

DEFINITION 1. (Temporal Pattern) A temporal pattern is de-

fined as P = (〈S1, ..., Sk〉, R) where Si is the ith state of the

pattern and R is an upper triangular matrix that defines the tem-

poral relations between each state and all of its following states:

i ∈ {1, ..., k−1} ∧ j ∈ {i+1, ..., k} : Ri,j ∈ {b, c} specifies the

relation between Si and Sj .

The size of a temporal pattern P is the number of states it con-
tains. If P contains k states, we say that P is a k-pattern. Hence,
a single state is a 1-pattern (a singleton). We also denote the space
of all temporal patterns of arbitrary size by TP.

Figure 4 shows a graphical representation of a 4-pattern 〈S1 =
(C,H), S2 = (G,N), S3 = (B,H), S4 = (G,H)〉, where the
states are abstractions of temporal variables creatinine (C), glucose
(G) and BUN (Blood Urea Nitrogen) (B). The half matrix on the
right represents the temporal relations between every state and the
states that follow it. For example, the first state S1 co-occurs with
the third state S3: R1,3 = c.

Figure 4: A temporal pattern with states 〈(C,H), (G, N),

(B, H), (G, H)〉 and temporal relations R1,2 = c, R1,3 = c,

R1,4 = b, R2,3 = c, R2,4 = b and R3,4 = c.

DEFINITION 2. Given an MSS Z = 〈 E1, E2, ..., El 〉 and a

temporal pattern P = (〈S1, ..., Sk〉, R), we say that Z contains

P , denoted as P ∈Z , if there is an injective mapping π from the

states of P to the state intervals of Z such that:

∀i ∈ {1, ..., k} : Si.F =Eπ(i).F ∧ Si.V =Eπ(i).V

∀i ∈ {1, ..., k − 1} ∧ j ∈ {i+1, ..., k} : Ri,j

`

Eπ(i) , Eπ(j)

´

The definition says that checking whether an MSS contains a
k-pattern requires: 1) matching all k states of the pattern and 2)
checking that all k(k − 1)/2 temporal relations are satisfied. As
an example, the MSS in Figure 2 contains the temporal pattern
P = (〈 (C,N), (G,N) 〉, R1,2 = c) (normal creatinine co-occurs

with normal glucose). To improve readability, we usually write 2-

patterns of the form (〈S1, S2〉, R1,2) simply as S1 R1,2 S2. That
is, we can write P =(C,N) c (G,N).
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4. MINING RECENT TEMPORAL PATTERNS

4.1 Recent Temporal Patterns
In the event detection setting, each training temporal instance xi

(e.g. an electronic health record) is associated with class label yi

at time ti (e.g. whether or not a medical condition is detected).
Consequently, recent measurements of the variables of xi (close to
ti) are usually more predictive than distant measurements, as was
shown in [25] for clinical data. In the following, we present the
definitions of recent state intervals and recent temporal patterns.

DEFINITION 3. Given an MSS Z = 〈 E1, E2, ..., El 〉 and a

maximum gap parameter g, we say that Ej ∈ Z is a recent state

interval in Z, denoted as rg(Ej , Z), if any of the following two

conditions are satisfied:

• 6 ∃Ek ∈ Z : Ek.F = Ej .F ∧ k > j

• Z.end −Ej .e ≤ g

The first condition is satisfied if Ej is the most recent state in-
terval in its variable (Ej.F ) and the second condition is satisfied if
Ej is less than g time units away from the end of the MSS (Z.end).
Note that if g = ∞, any Ej ∈ Z is considered to be recent.

DEFINITION 4. (RTP) Given an MSS Z= 〈E1, E2, ..., El〉 and

a maximum gap parameter g, we say that temporal pattern

P = (〈S1, ..., Sk〉, R) is a Recent Temporal Pattern (RTP) in Z,

denoted as Rg(P, Z), if all the following conditions are satisfied:

1. P ∈ Z with a mapping π from the states of P to the state

intervals of Z

2. Sk matches a recent state interval in Z: rg(Eπ(k), Z)

3. ∀i ∈ {1, ..., k−1}, Si and Si+1 match state intervals not

more than g away from each other: Eπ(i+1).s−Eπ(i).e ≤ g

The definition says that in order for temporal pattern P to be an
RTP in MSSZ, 1) P should be contained inZ (Definition 2), 2) the
last state of P should map to a recent state interval in Z (Definition
3), and 3) any pair of consecutive states in P should map to state
intervals that are “close to each other”. This forces the pattern to
be close to the end of Z and to have a limited temporal extension in
the past. Note that g is a parameter that specifies the restrictiveness
of the RTP definition. If g = ∞, any pattern P ∈ Z would be
considered to be an RTP in Z. When an RTP contains k states, we
call it a k-RTP.

EXAMPLE 2. Let Zi be the MSS in Figure 2 and let the max-

imum gap parameter be g = 5 days. Temporal pattern P1 =
(C,N) b (G,VH) is an RTP inZi because P1∈Zi, (G,VH, 16, 23)
is a recent state interval in Zi, and (C,N, 2, 14) is “close to”

(G,VH, 16, 23) (16−14 ≤ g). On the other hand, P2 =(G,H) b
(G,N) is not an RTP in Zi because (G,N, 6, 9) is not a recent

state interval.

DEFINITION 5. (Suffix) Given temporal patterns P = (〈S1, ...,
Sk1

〉, R) and P ′ = (〈S′

1, ..., S
′

k2
〉, R′) with k1 ≤ k2, we say that

P is a suffix subpattern of P ′, denoted as Suffix(P, P ′), if:

∀i ∈ {1, ..., k1} ∧ j ∈ {i+1, ..., k1} :

Si = S′

i+k2−k1 ∧ Ri,j = R′

i+k2−k1,j+k2−k1

If P is a suffix subpattern of P ′, we say that P ′ is a backward-

extension superpattern of P .

PROPOSITION 1. Given an MSS Z and temporal patterns P
and P ′, Rg(P ′, Z) ∧ Suffix(P, P ′) ⇒ Rg(P,Z)

The proof directly follows from Definition 4.

EXAMPLE 3. Assume thatP =(〈S1, S2, S3〉, R1,2, R1,3, R2,3)
is an RTP inZ. Proposition 1 says that its suffix subpattern (〈S2, S3〉,
R2,3) must also be an RTP in Z. However, this does not imply that

(〈S1, S2〉, R1,2) must be an RTP (the second condition of Defini-

tion 4 may be violated) nor that (〈S1, S3〉, R1,3) must be an RTP

(the third condition of Definition 4 may be violated).

DEFINITION 6. (Frequent RTP) Given a dataset D of MSS, a

maximum gap parameter g and a minimum support threshold σ, we

define the support of an RTPP as RTP-supg(P, D)= | {Zi : Zi ∈
D ∧ Rg(P,Zi)} |. We say that P is a frequent RTP in D given σ
if RTP-supg(P,D) ≥ σ.

Note that Proposition 1 implies the following property of RTP-

sup, which we will use in our algorithm for mining frequent RTPs.

∀P, P ′∈TP, Suffix(P, P ′) ⇒ RTP-supg(P,D) ≥ RTP-supg(P ′, D)

4.2 The Mining Algorithm
In this section, we present the algorithm for mining frequent

RTPs. We chose to utilize the class information and mine frequent

RTPs from each class label separately using local minimum sup-

ports as opposed to mining frequent RTPs from the entire data us-
ing a single global minimum support. The approach is reasonable
when pattern mining is applied in the supervised setting because 1)
for unbalanced data, mining frequent patterns using a global mini-
mum support threshold may result in missing many important pat-
terns in the rare classes and 2) mining patterns that are frequent
in one of the classes (hence potentially predictive for that class) is
more efficient than mining patterns that are globally frequent.

The algorithm takes as input Dy : the MSS from class y, g:
the maximum gap parameter and σy: the local minimum support
threshold for class y. It outputs all temporal patterns that satisfy:

{P ∈ TP : RTP-supg(P,Dy) ≥ σy}

The mining algorithm performs a level-wise search. It first scans
the database to find all frequent 1-RTPs (recent states). Then it ex-
tends the patterns backward in time to find more complex temporal
patterns. For each level k, the algorithm performs the following
two phases to obtain the frequent (k+1)-RTPs:

1. The candidate generation phase: Generate candidate (k+1)-

patterns by extending frequent k-RTPs backward in time.

2. The counting phase: Obtain the frequent (k+1)-RTPs by
removing the candidates with RTP-sup less than σy.

This process repeats until no more frequent RTPs can be found.
In the following, we describe in details the candidate generation

algorithm. Then we proposed techniques to improve the efficiency
of candidate generation and counting.

4.2.1 Backward Candidate Generation

We generate a candidate (k+1)-pattern by appending a new state
(1-pattern) to the beginning of a frequent k-RTP. Let us assume
that we are backward extending pattern P =(〈S1, ..., Sk〉, R) with
state Snew to generate candidates of the form (〈S′

1, ..., S
′

k+1〉 , R
′).

First of all, we set S′

1 = Snew, S′

i+1 = Si for i ∈ {1, ..., k} and
R′

i+1,j+1 =Ri,j for i ∈ {1, ..., k − 1} ∧ j ∈ {i + 1, ..., k}. This
way, we know that every candidate P ′ of this form is a backward-

extension superpattern of P : Suffix(P, P ′).
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In order to fully define a candidate, we still need to specify the
temporal relations between the new stateS′

1 and statesS′

2, ..., S
′

k+1,
i.e., we should define R′

1,i for i ∈ {2, ..., k + 1}. Since we have
two possible temporal relations (before and co-occurs), there are
2k possible ways to specify the missing relations, resulting in 2k

different candidates. Let L denote all possible states and let Fk de-
note all frequent k-RTPs, generating the (k+1)-candidates naively

in this fashion results in 2k × |L| × |Fk| different candidates.
This large number of candidates makes the mining algorithm

computationally very expensive and limits its scalability. Below,
we describe the concept of incoherent patterns and introduce a
method that generates fewer candidates without missing any real
pattern from the mining results.

4.2.2 Improving the Efficiency of Candidate Gener-
ation

DEFINITION 7. A temporal pattern P is incoherent if there

does not exist any valid MSS that contains P .

Clearly, we do not have to generate and count incoherent can-
didates because we know that they will have zero support in the
data. We introduce the following two lemmas to avoid generat-
ing incoherent candidates when specifying the relations R′

1,i : i ∈
{2, ..., k+1} in candidates of the form P ′ = (〈S′

1, ..., S
′

k+1〉, R
′).

LEMMA 1. P ′ = (〈S′

1, ..., S
′

k+1〉, R
′) is incoherent if ∃i ∈

{2, ..., k+1} : R′

1,i = c and S′

1.F = S′

i.F .

Two state intervals from the same temporal variable cannot co-
occur because temporal abstraction segments each variable into
non-overlapping state intervals.

LEMMA 2. P ′ = (〈S′

1, ..., S
′

k+1〉, R
′) is incoherent if ∃i ∈

{2, ..., k+1} : R′

1,i = c ∧ ∃j ∈ {2, ..., i−1} : R′

1,j = b.

PROOF. Let us assume that there exists an MSSZ = 〈E1, ..., El〉
where P ′ ∈ Z. Let π be the mapping from the states of P ′ to the
state intervals of Z. The definition of temporal patterns and the
fact that state intervals in Z are ordered by their start values im-
plies that the matching state intervals 〈Eπ(1), ..., Eπ(k+1)〉 are also
ordered by their start times: Eπ(1).s ≤ ... ≤ Eπ(k+1).s. Hence,
Eπ(j).s ≤ Eπ(i).s since j < i. We also know that Eπ(1).e <
Eπ(j).s because R′

1,j = b. Therefore, Eπ(1).e < Eπ(i).s. How-
ever, since R′

1,i = c, then Eπ(1).e ≥ Eπ(i).s, which is a contra-
diction. Therefore, there is no MSS that contains P ′.

EXAMPLE 4. Assume we want to extend P = (〈S1 = (C,H),
S2 = (G,N), S3 = (B,H), S4 = (G,H)〉, R) in Figure 4 with

state Snew = (G,H) to generate candidates of the form (〈S′

1 =
(G,H), S′

2 =(C,H), S′

3 =(G,N), S′

4 =(B,H), S′

5 =(G,H)〉,
R′). The relation between S′

1 and S′

2 is allowed to be either before

or co-occurs: R′

1,2 =b or R′

1,2 =c. However, according to Lemma

1, R′

1,3 6= c because both S′

1 and S′

3 belong to the same temporal

variable (G), which in turn implies that R′

1,4 6= c and R′

1,5 6= c
according to Lemma 2. By removing incoherent patterns, we reduce

the number of candidates that result from adding (G,H) to 4-RTP

P from 24 =16 to only 2.

THEOREM 1. There are at most k+1 coherent candidates that

result from backward extending a single k-RTP with a new state.

PROOF. We know that every candidate P ′ =(〈S′

1, ..., S
′

k+1〉, R
′)

corresponds to a specific assignment of R′

1,i ∈ {b, c} for i ∈
{2, ...k+1}. When we assign the temporal relations, once a re-
lation becomes before, all the following relations have to be before

as well according to Lemma 2. We can see that the relations can be

co-occurs in the beginning of the pattern, but once we see a before

relation at point q ∈ {2, ..., k+1} in the pattern, all subsequent
relations (i>q) should be before as well:

R′

1,i = c : i ∈ {2, ..., q−1}; R′

1,i = b : i ∈ {q, ..., k+1}

Therefore, the total number of coherent candidates cannot be
more than k+1, which is the total number of different combina-
tions of consecutive co-occurs relations followed by consecutive
before relations.

In some cases, the number of coherent candidates is less than
k + 1. Assume that there are some states in P ′ that belong to the
same variable as state S′

1. Let S′

j be the first such state (j ≤ k+1).
According to Lemma 1, R′

1,j 6= c. In this case, the number of
coherent candidates is j−1 < k+1.

Algorithm 1 illustrates how to extend a k-RTPP with a new state
Snew to generate coherent candidates (without violating Lemmas
1 and 2).

ALGORITHM 1: Extend backward a k-RTP P with a state Snew .

Input: A k-RTP: P = (〈S1, ..., Sk〉, R); a new state: Snew

Output: Coherent candidates: C

1 S′

1 = Snew ; S′

i+1 = Si : i ∈ {1, ..., k};

2 R′

i+1,j+1 = Ri,j : i ∈ {1, ..., k − 1}, j ∈ {i + 1, ..., k};

3 R′

1,i = b : i ∈ {2, ..., k + 1}; P ′ = (〈S′

1, ..., S′

k+1〉, R
′);

4 C = {P ′};
5 for i=2 to k+1 do
6 if (S′

1.F = S′

i.F ) then
7 break;
8 else
9 R′

1,i = c; P ′ = (〈S′

1, ..., S′

k+1〉, R
′);

10 C = C ∪ {P ′};

11 end

12 end
13 return C

COROLLARY 1. Let L denote all possible states and let Fk de-

note all frequent k-RTPs. The number of coherent (k+1)-candidates

is always less or equal to (k + 1) × |L| × |Fk|.

4.2.3 Improving the Efficiency of Counting

Even after eliminating incoherent patterns, the mining algorithm
is still computationally expensive because for every candidate, we
need to scan the entire database in the counting phase to deter-
mine its RTP-sup. The question we try to answer in this section
is whether we can omit portions of the database that are guaran-
teed not to contain the candidate we want to count. The proposed
solution is inspired by [32] that introduced the vertical format for
itemset mining and later applied it for sequential pattern mining
[31].

Let us associate every frequent RTP P with a list of identifiers
for all MSS that have P as an RTP (Definition 4):

P.RTP-list = 〈i1, i2, ..., in〉 : Zij
∈ Dy ∧Rg(P,Zij

)

Clearly, RTP-supg(P,Dy) = |P.RTP-list|.
Let us also associate every state S with a list of identifiers for all

MSS that contain S (Definition 2):

S.list = 〈q1, q2, ..., qm〉 : Zqj
∈ Dy ∧ S ∈ Zqj

Now, when we generate candidate P ′ by backward extending
RTP P with state S, we define the potential list (p-RTP-list) of P ′

as follows:

P ′.p-RTP-list = P.RTP-list ∩ S.list
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PROPOSITION 2. Let P ′ be a backward-extension of RTP P
with state S: P ′.RTP-list ⊆ P ′.p-RTP-list

PROOF. Assume Zi is an MSS such that Rg(P ′, Zi). By defi-
nition, i∈ P ′.RTP-list. We know that Rg(P

′, Zi) ⇒ P ′ ∈Zi ⇒
S∈Zi ⇒ i∈S.list. Also, we know that Suffix(P, P ′) (Definition
5) ⇒ Rg(P,Zi) (Proposition 1) ⇒ i ∈ P.RTP-list. Therefore,
i∈P.RTP-list ∩ S.list = P ′.p-RTP-list

Putting it all together, we compute the RTP-lists in the count-
ing phase (based on the true matches) and the p-RTP-lists in the
candidate generation phase. The key idea is that when we count
candidate P ′, we only need to check the instances in its p-RTP-list
because according to Proposition 2: i 6∈ P ′.p-RTP-list ⇒ i 6∈
P ′.RTP-list⇒ P ′ is not an RTP in Zi. This offers a lot of compu-
tational savings because the p-RTP-lists get smaller as the size of
the patterns increases, making the counting phase much faster.

Algorithm 2 outlines the candidate generation. Line 4 gener-
ates coherent candidates using Algorithm 1. Line 6 computes the
p-RTP-list for each candidate. Note that the cost of the intersec-
tion is linear because the lists are always sorted according to the
order of the instances in the database. Line 7 applies an additional

pruning to remove candidates that are guaranteed not to be frequent
according to the following implication of Proposition 2:

|P ′.p-RTP-list| < σy =⇒ |P ′.RTP-list|=RTP-supg(P,Dy)<σy

ALGORITHM 2: A high-level description of candidate generation.

Input: All frequent k-RTPs: Fk; all frequent states: L
Output: Candidate (k+1)-patterns: Cand, with their p-RTP-lists

1 Cand = Φ;
2 foreach P ∈ Fk do
3 foreach S ∈ L do
4 C = extend_backward(P , S); (Algorithm 1)
5 for q = 1 to | C | do
6 C[q].p-RTP-list = P.RTP-list ∩ S.list;
7 if ( | C[q].p-RTP-list | ≥ σy ) then
8 Cand = Cand ∪ {C[q]};
9 end

10 end

11 end

12 end
13 return Cand

4.3 Learning the Classifier
In this section, we summarize our approach for learning clas-

sification models for event detection problems. Given a training
dataset {<xi , yi>}n

i=1, where xi is a multivariate time series in-
stance up to time ti and yi is a class label at ti, apply the following
steps:

1. Convert every instance xi to an MSS Zi using temporal ab-
straction.

2. Mine the frequent RTPs from the MSS of each class label
separately and combine the class-specific RTPs to obtain the
final result Ω.

3. Convert every MSS Zi into a binary vector x′

i of size equal
to |Ω|, where x′

i,j corresponds to a specific pattern Pj ∈ Ω
and its value is 1 if Rg(Pj , Zi); and 0 otherwise.

4. Learn the classification model on the transformed binary rep-
resentation of the training data {<x′

i, yi>}n
i=1.

5. EXPERIMENTAL EVALUATION
In this section, we present our experiments on large-scale elec-

tronic health record (EHR) data collected for diabetic patients. We
test our approach on the problem of detecting various types of dis-
orders that are frequently associated with diabetes.

5.1 Dataset
The diabetes dataset consists of 13,558 records of adult diabetic

patients (both type I and type II diabetes). Each patient’s record
consists of time series of 19 different lab values, including blood
glucose, creatinine, glycosylated hemoglobin, blood urea nitrogen,
liver function tests, cholesterol, etc. In addition, we have access
to time series of ICD-9 diagnosis codes reflecting the diagnoses
made for the patient over time. Overall, the database contains 602
different ICD-9 codes. These codes were grouped by our medical
expert into nine major categories: cardiovascular disease, renal dis-
ease, peripheral vascular disease, neurological disease, metabolic
disease, inflammatory disease, ocular disease, cerebrovascular dis-
ease and hypertension. These disease categories are frequently as-
sociated with diabetes. Our objective is to learn models that are
able to accurately diagnose these diseases. More specifically, at
any point in time, we are interested in assigning a label for the
disorder the patient with the diabetes suffers from. We omit the hy-
pertension category from the analysis because it occurred in almost
all patients, making it difficult to find negative examples.

5.2 Experimental Setup
The experiments are performed separately for each of the 8 major

diagnosis categories (diseases). For each category, we divide the
data into cases (positives) and controls (negatives) as follows:

• The cases are records of patients with the target disease that
include clinical variables up to the time the disease was first

diagnosed.

• The controls are selected randomly from the remaining pa-
tients (without the target disease) and they include clinical
variables up to a randomly selected time point in the patient’s
record.

To avoid having uninformative training data, we discard instances
that contain less than 10 lab measurements or that span less than
3 months (short instances). We choose the same number of con-
trols as the number of cases for each category to make the datasets
balanced. Table 1 shows the number of cases for each diagnosis
category (the number of controls is the same).

To construct the features, we consider both the laboratory tests
and the diagnosis codes. Note that the diagnosis of one or more
disease categories may be predictive of the (first) occurrence of an-
other disease, so it is important to include them as features. Lab-
oratory tests are represented as numeric time series. We abstract
them using value abstraction (see Section 3.1). Diagnosis cate-
gories, when used as features, are represented as intervals that start
at the time of the diagnosis and extend until the end of the record.

5.3 Classification Performance
In this section, we test the ability of our RTP mining framework

to represent and capture temporal patterns important for the predic-
tion task. In particular, we compare the classification performance
of the following feature construction methods:

1. Last_values: The features are formed from the most recent
values of each clinical variable6.

6The features are numeric for the laboratory variables (e.g., last
creatinine value is 2.2) and binary for the disease categories
(whether or not the disease was diagnosed).
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Dx code Description # cases

CARDI Cardiovascular disease 2,743

RENAL Renal disease 3,355

PERIP Peripheral vascular disease 3,370

NEURO Neurological disease 2,193

METAB Metabolic disease 968

INFLM Inflammatory (infectious) disease 2,394

OCULR Ocular (ophthalmologic) disease 2,245

CEREB Cerebrovascular disease 2,824

Table 1: The eight major diagnosis categories (diseases) used in the

diabetes study and the number of cases for each category. The number

of controls is set to be the same as the number of cases.

2. TP: The features correspond to all frequent temporal pat-
terns.

3. TP_sparse: The features correspond to the top 50 discrimi-
native temporal patterns that are selected using a sparse linear
model. These features are obtained by adjusting the cost pa-
rameter of an L1 regularized support vector machine (SVM)
classifier until at most 50 patterns are used for classification
(features corresponding to other patterns are zeroed out).

4. RTP: The features correspond to all frequent RTPs.

5. RTP_sparse: The features correspond to the top 50 discrim-
inative RTPs that are selected using a sparse linear model
(similar to 3).

The first method is atemporal and only considers the most recent
values for defining the classification features (a static transforma-
tion). On the other hand, methods (2-5) use temporal patterns (built
using temporal abstractions and temporal relations) as their features
(a dynamic transformation). For TP (TP_sparse), the feature value
is one if the corresponding temporal pattern occurs anywhere in the
instance (Definition 2), and zero otherwise. For RTP (RTP_sparse),
the feature value is one if the corresponding temporal pattern occurs
recently in the instance (Definition 3), and zero otherwise.

For methods (2-5), we set the local minimum supports (σy) to
15% of the number of instances in the class. For the RTP mining
methods (4-5), we set the maximum gap parameter (g) to 6 months.
The reason for including methods 3 and 5 is to test the ability of TP

and RTP to represent the target disease using only a limited number
of temporal patterns (50 patterns in our case).

We judged the quality of the different feature representations in
terms of their induced classification performance. More specifi-
cally, we use the features extracted by each method to build a linear
SVM classifier and evaluate its performance using the classifica-
tion accuracy and the area under the ROC curve (AUC). We did not
compare against other time series classification methods because
most methods [24, 6, 28, 4] cannot be directly applied on multi-
variate irregularly sampled time series data.

Below, we show the classification accuracy (Table 2) and the
AUC (Table 3) for each feature representation method on each clas-
sification task (major disease). All classification results are re-
ported using averages obtained via 10-folds cross validation.

The results show that features based on temporal patterns are
beneficial for the classification task, since they outperform fea-
tures based on most recent values (see for example the NEURO,
OCLUR and CARDI datasets). The results also show that RTP and
RTP_sparse mostly outperform TP and TP_sparse. It is impor-
tant to note that although patterns generated by TP subsume the
ones generated by RTP (by definition, every frequent RTP is also
a frequent TP), the induced binary features are often different. For

Dataset Last_values TP TP_sparse RTP RTP_sparse

CARDI 67.41 71.82 71.62 71.82 71.98

RENAL 77.71 76.38 76.66 78.08 78.33

PERIP 66.82 68.55 68.38 70.01 69.91

NEURO 64.66 68.95 68.33 69.18 69.68

METAB 72.83 74.64 73.61 73.3 73.09

INFLM 64.6 66.73 66.69 67.5 67.94

OCULR 65.83 70.8 70.71 68.82 69.22

CEREB 65.21 66.64 66.7 67.93 66.98

Table 2: The classification accuracy for the different feature

representation methods (SVM is used for classification).

Dataset Last_values TP TP_sparse RTP RTP_sparse

CARDI 75.1 80.13 79.61 80.18 80.52

RENAL 85.45 84.8 84.97 86.13 86.23

PERIP 74.38 76.08 75.95 77.88 78.31

NEURO 72.25 76.43 75.81 77.34 76.98

METAB 80.64 82.67 81.66 82.52 82.97

INFLM 71.04 73.62 73.43 74.39 74.92

OCULR 72.12 78.34 78.28 76.11 76.85

CEREB 72.23 73.46 74.42 75.37 75.18

Table 3: The area under the ROC curve (AUC) for the different

feature representation methods (SVM is used for classification).

instance, a pattern that is not discriminative when considered in the
entire records may become more discriminative when considered
as a recent pattern. This can be seen clearly for the RENAL dataset,
where TP and TP_sparse perform poorly because the discrimina-
tive signal is mostly contained in the recent values.

5.4 Knowledge Discovery
Figure 5 compares the number of temporal patterns that are ex-

tracted by frequent temporal pattern mining (TP) and by frequent
RTP mining (RTP). Similar to the previous setting, we set the local
minimum supports for both methods to 15% and we set the maxi-
mum gap parameter for RTP to 6 months.

The results show that the number of temporal patterns mined by
RTP is at least an order of magnitude smaller than the number of
patterns mined by TP for all datasets. This can facilitate the process
of reviewing and validating the patterns by human experts.

Figure 5: The number of temporal patterns of TP and RTP on all

major diagnosis datasets (minimum support is 15%).

Table 4 shows some of the top predictive RTPs according to their
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precision (confidence)7. The first three RTPs (P1, P2 and P3) are
predicting renal (kidney) disease. These patterns relate the risk of
renal problems with very high values of the BUN test (P1), an in-
crease in creatinine levels from normal to high (P2), and high val-
ues of BUN co-occurring with high values of creatinine (P3). P4

shows that an increase in glucose levels from high to very high may
indicate a metabolic disease. Finally, P5 indicates that patients who
were previously diagnosed with cardiovascular disease and exhibit
an increase in glucose levels are prone to develop a cerebrovascular
disease. These patterns, extracted automatically from data without
incorporating prior clinical knowledge, are in accordance with the
medical diagnosis guidelines.

RTP prec recall

P1: BUN=VH ⇒ Dx=RENAL 0.97 0.17

P2: Creat=N before Creat=H ⇒ Dx=RENAL 0.96 0.21

P3: BUN=H co-occurs Creat=H ⇒ Dx=RENAL 0.95 0.21

P4: Gluc=H before Gluc=VH ⇒ Dx=METAB 0.79 0.24

P5: Dx=CARDI co-occurs ( Gluc=N before

Gluc=H) ⇒ Dx=CEREB 0.71 0.22

Table 4: Predictive RTPs with their precision (prec) and recall. Ab-

breviations: Dx: diagnosis code (one of the 8 major categories in Ta-

ble 1); BUN: Blood Urea Nitrogen; Creat: creatinine; Gluc: blood

glucose. Abstractions: BUN=VH: > 49 mg/dl; BUN=H: > 34 mg/dl;

Creat=H: > 1.8 mg/dl; Creat=N: [0.8-1.8] mg/dl; Gluc=VH: > 243

mg/dl; Gluc=H:>191 mg/dl.

5.5 Mining Efficiency
In this section, we study the efficiency of different temporal pat-

tern mining methods. In particular, we compare the running time
of the following methods:

1. TP_Apriori: Mine frequent temporal patterns by extending
the Apriori algorithm [1, 2] to the time interval domain. This
method applies the Apriori pruning in the candidate genera-
tion phase to prune any candidate k-pattern if it contains an
infrequent (k-1)-patterns.

2. RTP_no-lists: Mine frequent RTPs backward in time as de-
scribed in this paper. However, this method does not apply
the technique we propose in Section 4.2.3 to speed up the
counting phase. This means that it scans the entire dataset
for each candidate in order to compute its RTP-sup .

3. TP_lists: Mine frequent temporal patterns by extending the
vertical format [32, 31] to the time interval domain as de-
scribed in [5]. This method applies the Apriori pruning [1]
in candidate generation and use id-lists to speed up the count-
ing.

4. RTP_lists: Our proposed method for mining frequent RTPs.

To make the comparison fair, all methods apply the techniques
we propose in Section 4.2.2 to avoid generating incoherent candi-
dates. Note that if we do not remove incoherent candidates, the
execution time for all methods greatly increases.

The experiments are conducted on a Dell PowerEdge R610 server
with an Intel Xeon 3.3GHz CPU and 96GB of RAM. Similar to the
previous settings, we set the local minimum supports to 15% and
the maximum gap parameter to 6 months (unless stated otherwise).

7Most of the highest precision RTPs are predicting the RENAL
category because it is the easiest prediction task. So to diversify
the patterns, we show the top 3 predictive RTPs for RENAL and
the top 2 predictive RTPs for other categories.

Figure 6 shows the execution time (in seconds) of the above
methods on all major diagnosis datasets. We can see that our pro-
posed RTP_lists method is much more efficient the other methods.
For instance, on the INFLM dataset, RTP_lists is around 5 times
faster than TP_lists, 10 times faster than RTP_no-lists and 30 times
faster than TP_Apriori.

Figure 6: The mining time (in seconds) of TP_Apriori, RTP_no-lists,

TP_lists and RTP_lists on all major diagnosis datasets (minimum sup-

port is 15%).

Figure 7 compares the execution time (in seconds) of the meth-
ods on the CARDI dataset for different minimum support thresh-
olds. Note that the difference in the execution time between RTP_lists

and the other methods becomes larger when the minimum support
is low (10%).

Figure 7: The mining time (in seconds) of TP_Apriori, RTP_no-lists,

TP_lists and RTP_lists on the CARDI dataset for different minimum

support values.

Finally, let us examine the effect of the maximum gap parameter
(g) on the efficiency of recent temporal pattern mining. Figure 8
shows the execution time (in seconds) of all methods on the CARDI

dataset for different values of g (the execution time of TP_Apriori

and TP_lists does not depend of g).
Clearly, the execution time of both RTP_no-lists and RTP_lists

increases with g because the search space becomes larger (more
temporal patterns become RTPs). The figure shows that when the
maximum gap is 21 months, RTP_no-lists becomes slower than
TP_Apriori. The reason is that for large values of g, applying the
Apriori pruning [1] in candidate generation becomes more efficient
(generates less candidates) than the backward extension of tem-
poral patterns (see Example 3). On the other hand, RTP_lists in-
creases much slower with g and maintains its efficiency advantage
over TP_lists for larger values of g.
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Figure 8: The mining time (in seconds) of TP_Apriori, RTP_no-list,

TP_lists and RTP_lists on the CARDI dataset for different maximum

gap values (in months). The minimum support is 15%.

6. CONCLUSION
The increasing availability of large temporal datasets prompts

the development of scalable and more efficient temporal pattern
mining techniques. Methods for mining sequential (time-point)
data were first introduced in the literature starting in the mid-1990
[2, 31, 18, 30]. Since then, these methods have been extended to
mining time interval data [22, 11, 17, 14, 26, 27, 15]. Unfortu-
nately, mining the entire set of temporal patterns (sequential pat-
terns or time-interval patterns) from large-scale datasets is inher-
ently a computationally expensive task. To alleviate this problem,
temporal constraints (e.g., restricting the total pattern duration or
restricting the permitted gap between consecutive events in a pat-
tern) have been proposed to scale up the mining [19].

In this paper, we proposed a new class of temporal constraints
for finding Recent Temporal Patterns (RTPs), which are particu-
larly important for monitoring and event detection problems. We
presented an efficient algorithm that mines time-interval patterns
backward in time, starting from patterns related to the most recent
observations. Our experimental evaluation on EHRs for diabetes
patients showed that the RTP framework is very useful to efficiently
find patterns that are important for predicting various types of dis-
orders associated with diabetes.
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