
A Multiresolution Symbolic Representation of Time Series

Vasileios Megalooikonomou1 Qiang Wang1 Guo Li1 Christos Faloutsos2

1Department of Computer & Information Sciences 2Department of Computer Science
 Temple University Carnegie Mellon University

 Philadelphia, PA, USA Pittsburgh, PA, USA
 {vasilis,qwang,gli}@temple.edu christos@cs.cmu.edu

Abstract
Efficiently and accurately searching for similarities

among time series and discovering interesting patterns is
an important and non-trivial problem. In this paper, we
introduce a new representation of time series, the
Multiresolution Vector Quantized (MVQ) approximation,
along with a new distance function. The novelty of MVQ
is that it keeps both local and global information about
the original time series in a hierarchical mechanism,
processing the original time series at multiple
resolutions. Moreover, the proposed representation is
symbolic employing key subsequences and potentially
allows the application of text-based retrieval techniques
into the similarity analysis of time series. The proposed
method is fast and scales linearly with the size of
database and the dimensionality. Contrary to the vast
majority in the literature that uses the Euclidean distance,
MVQ uses a multi-resolution/hierarchical distance
function. We performed experiments with real and
synthetic data. The proposed distance function
consistently outperforms all the major competitors
(Euclidean, Dynamic Time Warping, Piecewise
Aggregate Approximation) achieving up to 20% better
precision/recall and clustering accuracy on the tested
datasets.

1. Introduction
The problem of efficient retrieval of similar time series

has received a lot of attention due to its many applications
in different domains. Briefly, this problem can be stated
as follows: Given a query sequence q, a database S of N
sequences, S1,S2,…,SN, a distance measure D and a
tolerance threshold ε, find the set of sequences R in S that
are within distance ε from q. More precisely, find: R = {Si
∈S | D(q, Si) ≤ ε }.

To compare two given time series, a suitable measure
of similarity should be given. Naive approaches for
comparing time sequences generally take polynomial time
in the length of the sequences, typically linear or
quadratic time. These approaches are not useful for large
time series databases. Promising techniques include those
that are based on the reduction of dimensionality of the

original sequences. In this case, the sequences can be
represented as multidimensional vectors and similar
sequences can be retrieved in sublinear time.

There may be several different criteria to evaluate a
method, but generally speaking, a good one should be
fast, scalable, and accurate (according to some ground
truth). In this paper, we introduce a new method that
satisfies these requirements. Our method is called
Multiresolution Vector Quantized (MVQ) approximation
and has the following characteristics:

1) It uses time-tested ‘vector quantization’ methods to
discover a ‘vocabulary’ of subsequences;

2) It takes multiple resolutions into account – this
brings improved accuracy;

3) It provides a new distance function utilizing text-
based techniques from Information Retrieval, to
weigh down uninteresting matches, thus improving
the accuracy.

As Agrawal et al. [2] proposed, compared to the
Euclidean distance, a more intuitive idea is that two series
should be considered similar if they have enough non-
overlapping time-ordered pairs of subsequences that are
similar. In this paper, instead of calculating the Euclidean
distance, we first extract key subsequences utilizing the
Vector Quantization (VQ) [12] technique and encode
each time series based on the frequency of appearance of
each key subsequence. We then calculate similarities
between different time series in terms of key subsequence
matches. This method can be very meaningful in many
domains, for example, when comparing two stocks during
a long period, we may want to find out during how many
months the stocks have similar movements, though the
same trend may appear in different months for different
stocks. This application is similar to mining motifs in
massive time series databases [22].

While the histogram metric can record the local
information very well, it may lose much global
information of the time series, since it does not keep track
of the order of appearance of different key subsequences.
To deal with this problem, we propose to apply a
hierarchical mechanism: the original time series are
processed at several different resolutions, and similarity
analysis is performed using a weighted distance function
combining all the resolution levels. For example, when
considering a time series representing a stock price

movement, we know that subsequences of different
length have different real meanings. If the length is 5, the
subsequence stands for a weekly trend of the stock.
Similarly for length 20 we have the monthly trend.

 As we demonstrate in the experiments, MVQ
outperforms previous state of the art methods in
clustering and similarity searches. Intuitively, the
excellent performance of the proposed method can be
justified because of the following facts:

1) it exploits prior knowledge about the data using a
learning approach

2) it takes multiple resolutions into account and
3) unlike wavelets (that also take multiple resolutions

into account) it partially ignores the ordering of the
‘codewords’ within the time sequence due to the
histogram model that is being used to calculate
similarity.

Moreover, the proposed representation is symbolic
employing key subsequences and allows the application
of text-based retrieval techniques into the similarity
analysis of time series.

2. Background

2.1 Related Work

Many approaches and techniques have been proposed
in the past decade [1, 2, 4, 9, 10, 13, 14, 16, 18, 19, 21,
27, 31, 32] that address the problem of similarity in time
series.

To deal with dimensionality reduction, the solution to
extract a signature from each sequence and to index the
signature space was originally proposed by Faloutsos et
al. [9,10]. To guarantee completeness (i.e., no false
dismissals) the admissibility criterion that the distance
function used in the signature space must underestimate
the true distance measure (bounding lemma) was also
proposed [10]. Obeying the admissibility criterion, many
methods have been suggested and proved useful in
different fields, such as the F-index introduced by
Agrawal et al. [1] or the ST-index proposed by Faloutsos
et al. [10].

Other approaches for efficient similarity searches on
time sequences are based on piecewise constant
approximation (PCA) or piecewise aggregate
approximation (PAA). Yi and Faloutsos [32] and Keogh
et al. [19,21] proposed to divide each sequence into k
segments of equal length and to use the average value of
each segment as a coordinate of a k-dimensional feature
vector. The advantages of this transform are that it is very
fast and easy to implement, the signature can be used with
arbitrary Lp norms, and the index can be build in linear
time. In addition, the representation can be used with a
weighted Euclidean distance where each segment of the
sequence has different weight. Keogh et al. [18] have also

proposed an Adaptive Piecewise Constant Approximation
(APCA) where the segments can be of variable length
offering a more effective compression than PCA. In [26]
the authors propose a piecewise vector quantized
approximation (PVQA) of time series. In [7] a technique
for compressing multiple streams of data in sensor
networks that employs an approximate representation
using a base signal extracted from historic information
has been proposed. The algorithm constructs a
“dictionary” of candidate base signals in the process of
building a base signal. The use of multi-scale histograms
and a weighted Euclidean distance for measuring the
similarity of time series at several precision levels has
been investigated in [6]. In addition, general
dimensionality reduction techniques such as Singular
Value Decomposition (SVD) have been used in time
series data [19].

For these methods in which the distance metric lower
bounds the Euclidean distance, one of the most significant
characteristics is the avoidance of false dismissals, though
there may be a lot of false alarms. However, in some
cases, the existence of too many false alarms may
decrease the efficiency of retrieval. At the same time, as
many researchers have mentioned in their work [15,29],
the Euclidean distance is not always the optimal distance
measure. For example, in some time series, different parts
have different levels of significance in their meaning.
Also, the Euclidean distance does not allow shifting in
time axis, which is not unusual in real life applications. In
order to extract high-level features out of time series,
Koudas et al. [28] formalized problems of identifying
various “representative” trends in time series data. Since
the Euclidean is not the best distance one can use (as
shown later in our paper and in papers we referenced
earlier), here, we propose a new distance function. We do
not deal with the problem of lower bounding the
Euclidean on the original vectors since this is not so
meaningful anymore.

2.2 Preliminaries

To make the presentation of the proposed work clear,
we now give descriptions of various concepts and
definitions used in the paper. We start with the definition
of a time sequence and its subsequences.

Definition 1. Time Sequence: A sequence (ordered
collection) of real values. X = x1, x2,…, xn , where n can
be very large.

Definition 2. Subsequence: Given a time sequence X
= x1, x2,…, xn, of length n, a subsequence S of X is a
sequence of length m consisting of contiguous positions
from X, i.e., S=xk,xk+1,…,xk+m-1 ; 1≤k≤n-m+1.

In similarity analysis, we need to define a metric for
the similarity, that is, a measure of the distance between
two time series. Given two time series, X = x1, x2,…, xn,
Y = y1, y2, …, yn , their distance, D, is defined, in general,

as an Lp norm, where for p=2, the distance is the
Euclidean, the most popular among the metrics. An
intuitive notion of exact and approximate similarity was
also formalized by Goldin, and Kanellakis [8].

Obviously, the simplest way of calculating the
similarity (or distance) among time series is to compute
the Euclidean distance directly, i.e., on the original series.
For a small dataset this may be feasible, however, for
large data sets efficiency is a problem, since the time
complexity is O(N*n), where n is the number of features
that need to be represented for each time series and N is
the number of time series in the dataset. In order to
compute efficiently while keeping the accuracy not
significantly affected, many techniques of dimensionality
reduction (as introduced in section 2.1) have been
suggested.

In addition to the computational complexity associated
with the Euclidean distance calculation on the original
time series, we cannot always be sure that the nearest
neighbors in Euclidean space are indeed the most similar
ones. This is because the point-based information model
(computing similarity based on every point) contains only
low-level features of the time series and it is vulnerable to
different kinds of shape transformations, such as shifting
and scaling. Under such circumstances, it would be better
if we could find some high-level features and apply a
more robust information retrieval model for time series
analysis.

Based on this idea, we introduce a new framework that
uses key subsequences to represent time series and
facilitate similarity retrieval. This framework consists of
the following main components:

 1) Codebook generation from a set of training samples;
 2) Time series encoding using the codebook;
 3) Time series feature representation and retrieval.
This framework is similar to the key block framework

suggested by Zhang et al. [33] for content-based image
retrieval. In the time sequences domain the idea was
introduced in [26]. However, in order to keep both local
and global information and improve the accuracy, we
introduce the use of multiple codebooks with different
resolutions. For each resolution, Vector Quantization [12,
24] is applied to discover the vocabulary of subsequences
in a time series database.

In VQ a codeword (or codevector) is used to represent
a number of similar vectors. More precisely, a vector
quantizer Q of dimension n and size s is a mapping: Q:
ℜn→C from a vector or a point in n-dimensional
Euclidean space, ℜn, to a finite set C={c1, c2, …,cs}, the
codebook, containing s output or reproduction points
ci∈ℜn, called codewords. Associated with every s-point
VQ is a partition of ℜn into s regions or cells Ri for
i∈J≡{1,2,…,s} where Ri={x∈ℜn: Q(x)=ci}. For a given

Figure 1. The Generalized Lloyd Algorithm (GLA).

distortion function1 d(x,ci) (such as the mean squared
error (MSE)) between an input vector x and a codeword
ci, an optimal mapping should satisfy two conditions:
(a) Nearest neighbor Condition (NNC): For a given

codebook, the optimal partition R = {Ri: i=1,2,…,s}
satisfies: });,(),(:{ jcxdcxdxR jii ∀≤=

where ci is the codeword representing partition Ri.
Given a point x in the dataset, the encoding function
for x, Encoding(x)=ci only if d(x,ci) ≤ d(x,cj) ∀j.

(b) Centroid condition (CC): For a given partition region
{Ri: i=1,…,s} the optimal reconstruction vector
(codeword) satisfies: ci=centroid(Ri) where the
centroid of a set R={xi: i=1,…|R|} is defined as:

 ∑
=

=
R

i
ix

R
Rcentroid

1

1)(

The Generalized Lloyd Algorithm (GLA) [24, 25] is
an iterative procedure that produces a “locally optimal”
codebook from a training set based on these two
conditions (that form the Lloyd iteration). This is done
during a training phase. The main structure of GLA is
given in the flowchart (see Figure 1). Starting with an
initial codebook, the GLA algorithm repeats the Lloyd
iteration until the fractional drop of the distortion
becomes less than a given threshold. This process is
guaranteed to converge since from the necessary
conditions for optimality each application of the Lloyd
iteration must reduce or leave unchanged the average
distortion [12].

To quantitatively measure the similarity between
different time series encoded with a VQ codebook, we
employ the Histogram Model (HM) that has been
successfully applied in image retrieval [33]. We present
this model in the context of time series analysis:

),(1
1),(

tqdis
tqSHM +

= (1)

where ∑
= ++

−
=

s

i qiti

qiti

ff
ff

tqdis
1 ,,

,,

1
),(.

1 The distortion is a measure of overall quality degradation due

to approximation of a vector by its closest representative from
a codebook.

In the formula, fi,t and fi,q refer to the appearance
frequency of codeword ci in time series t and q,
respectively. Although this model focuses on the
appearance of individual key subsequences in time series,
correlation between key subsequences can also be
addressed [33]. Information about some alternative
models can be found in Appendix A.

3. Proposed Method: MVQ
We propose a new method to represent time series

data, the Multiresolution Vector Quantized (MVQ)
approximation, along with a new distance function. The
method partitions each time series into equi-length
segments and represents each segment with the most
similar key subsequence from a codebook. The codebook
is generated earlier during a training phase using VQ. By
counting the appearance frequency of each codeword in
each time series a new representation is obtained. The
piecewise approximation with VQ encoding is applied at
several resolutions. Table 1 gives a brief description of
the notation we use in the rest of the paper. In the
following subsections, we introduce the components of
our method.

Table 1. Symbol Table
X Original time series, X= x1,x2,…,xn of length n
X′ Encoded form of the original time series X′= f1,f2,…,fs

N Number of time series in the dataset

n Length of original time series
C Codebook: a set of codewords {c1,…,ck,…, cs}
c Number of resolution levels
s Size of codebook
l Length of codeword

3.1 Codebook Generation
For a given dataset, a codebook with s codewords

C={c1,c2, …, cs} is first generated using a clustering
algorithm (such as the GLA introduced in Section 2). We
apply this algorithm to generate the codebook based on
the dataset T of time series. The dataset is preprocessed
before the generation of the codebook; each time series in
T is partitioned into a number of segments each of length
l and each segment forms a sample of the training set that
is used to generate the codebook. Each codeword in the
codebook corresponds to a key subsequence; it is an
approximation for a certain group of subsequences of
length l. All the time series in the database are then
encoded using the codebook (see Section 3.2).

The version of GLA we use, requires a partition split
mechanism to solve the initial codebook generation
problem. The algorithm starts with a codebook containing
only one codeword, the centroid of the whole training set.
In each repetition and before the application of the Lloyd

Table 2. Codewords of a 2-level codebook that are
used to represent SYNDATA in MVQ approximation.

iteration, it doubles the number of codewords (and cells)
from the previous iteration by splitting the most populous
cells. Table 2 shows some of the codewords (at two
different levels) used by MVQ to represent the Control
Chart dataset (SYNDATA) [30].

3.2 Time Series Encoding
After a codebook is generated, we can form a new

representation for each time series in the dataset. In the
process of encoding, every series is decomposed into
segments (i.e., subsequences) of length l (which is equal
to the length of each codeword). For each segment, the
closest (based on a distance metric) codeword in the
codebook is then found and the corresponding index is
used to represent this segment. After finding the
corresponding codeword index for each segment, the
appearance frequency of each codeword is counted.

The new representation of a time series is a vector
X′=f1,f2,…,fs showing the appearance frequency of every
codeword. By applying this new encoding form, we can
easily deal with time series with arbitrary large number of
points, since we can always reduce their dimensionality to
a rather small number given by the size, s, of the
codebook.

3.3 Time Series Summarization
 Besides achieving dimensionality reduction, this
encoding process also provides a very nice summarization
of the time series, which is useful in many applications.
Table 2 shows different codewords we obtain using this
method; these codewords stand for the most
representative subsequences (of a given length) for the
entire time series dataset. Instead of the whole time series,
we may be more interested in the usage of representative
key subsequences. This is very useful in the discovery of
motifs or approximately repeated subsequences in time
series [22]. In this case, we can just check the appearance
frequencies of these codewords and get an overview of
the time series. For example, in Figure 2, we show a time
series representation using a number of codewords. Two
of these codewords are being used twice revealing a
pattern that would remain undetected using previous

Figure 2. A time series (bottom) is being represented

as a sequence of representative subsequences i.e.,
codewords (top). Two codewords (#3 and #5) are

being used twice in this representation.
techniques. Results on time series summarization are
presented in Section 4.4.

3.4 Distance measure and a multiresolution
representation

Based on the frequency of appearance of key
sequences within time series, features of time series are
extracted forming a new representation of a rather small
dimensionality and similarity retrieval can be efficiently
performed. We still need a distance measure appropriate
for this new representation. We choose the Histogram
Model as the distance measure, and all the experimental
results presented in Section 4 are based on it. By applying
the histogram model, it is not difficult to identify the time
series that are similar to a given query (i.e., that have
similar frequent patterns). However, using only one
codebook (analysis at a single resolution), introduces
some problems that cannot be ignored.

First, although the local information of a time series is
kept after the encoding process, the new representation of
a time series is not recording the order among the indices
of different codewords. Some important global
information of the time series is lost in this representation.
In Figure 3, we see two different time series whose
encoded representations are the same (2, 1). This problem
in the key subsequence representation correspondingly
increases the number of false alarms reducing the
performance of the single resolution (i.e., single
codebook) method. On the other hand, in real
applications, it is not always easy to find a suitable
resolution (correspondingly, a suitable codeword length).
Moreover, an inappropriate codeword length may reduce
the efficiency.

In order to solve these potential problems occurring
due to the use of a single resolution, we introduce a
hierarchical mechanism, which involves several different
resolutions for encoding. While the encoding form of
higher resolution pays more attention to the detail of local
information, that of lower resolution represents more
global information. The piecewise approximation with
VQ encoding is applied at several resolutions. For each
resolution this is done by grouping a different number of
consecutive segments together, i.e., the length of the

Figure 3. Necessity of multiresolution representation:
different series with the same encoded representation.
segment at a given resolution is a multiple (usually
double) the length of the segment at the immediate higher
resolution representation. Thus, we call this
representation Multiresolution Vector Quantized (MVQ)
approximation.

Figure 4 shows a time series and its reconstruction
series using different resolutions. (For different resolution
levels, the sizes of codebooks are the same, 32, and the
lengths of codewords are 128, 64, 32, 16, respectively.)
By assigning reasonable weights to different resolutions,
we define a new weighted similarity measure, the
Hierarchical Histogram Model:

SHHM (q,dj)=∑ (2)
=

c

1i
jHMii)d(q,S * w

where c is the number of resolution levels.

Figure 4. Reconstruction of time series using

different resolutions

3.5 Parameters of MVQ
Here we discuss in more detail the parameters of MVQ

and how to choose their values. For the number c of
resolution levels an intuitive choice is c = log n, with the
length of a codeword at the ith level being 2i-1 (1≤ i ≤log
n). However, when the codeword is too short (e.g., of
length 1, 2), this becomes meaningless. Thus, we need to
set a minimum value of codeword length lmin and set the
number of hierarchical levels as c = log (n / lmin) +1.

The codeword length (l) for each level is chosen as
follows: At the first level, each time series is treated as a
whole (l = n); at the second level, each time series is
partitioned into two parts (l = n/2), and at the ith level, l =
n / 2i-1. In cases where n is not a power of two we satisfy
this constraint approximately.

The size of the codebook at each resolution level is
data dependent, since the more subsequences used during
the training process and the higher their variability, the

larger the size of the codebook needed. In fact, the higher
the number of partitions and the number of codewords the
better the approximation but also the more computation
and space is needed. So, there is a tradeoff between
efficiency and accuracy of approximation. In practice (as
also shown in our experiments (see Section 4)), use of a
rather small codebook can achieve very good results. In
addition to the number of codewords, the Lloyd algorithm
uses a threshold to stop the iterations when the fractional
drop of the distortion between consecutive iterations
reaches a certain point. A common value for this
threshold is 0.01.

Our experiments show that a multiresolution
representation achieves much higher accuracy than a
single resolution one. The price for this improvement is
slightly more computation, since we have to calculate the
similarity at each resolution level before we can finally
compute SHHM. In our experiments we studied the
behavior of the multiresolution approach with different
weights assigned to each resolution level. Lacking any
information or any prior knowledge about the domain
(i.e., the most realistic case) the straightforward solution
is to use equal weights for all resolutions. This choice
provides the best results in almost all of the experiments
we performed. The proposed method also provides the
ability to include prior domain knowledge in the selection
of the weights.

4. Experiments
In time series similarity analysis, best matches

retrieval and clustering are two of the most common and
important applications. We performed experiments to
evaluate the effectiveness and efficiency of our method in
these two applications. We address the following issues:
(a) how accurate the method is, (b) how it compares to
alternatives, (c) how fast and scalable it is. We start with
a description of the datasets we used in our experiments.

4.1 Datasets
In the experiments presented in this section, one

synthetic and two real datasets are involved. We used the
Control Chart synthetic dataset (SYNDATA) which is
downloadable from the UCI KDD archive [30]. This
dataset contains 600 examples of control charts (each has
60 points) synthetically generated by the process in
Alcock and Manolopoulos [3]. The time series belong to
six different classes of control charts: Normal, Cyclic,
Increasing trend, Decreasing trend, Upward shift, and
Downward shift, with each class having 100 time series.

The first real dataset, CAMMOUSE, is a
spatiotemporal dataset of 5 words obtained using the
Camera Mouse Program [5]. The 2D time series obtained
represent the X and Y position of a human tracking
feature (e.g., tip of finger). In conjunction with a
“spelling program” the user can “write” various words

and the transitions of the tracking feature or word image’s
profiles are being recorded. We used 3 recordings of 5
words. The 5 words were: “Athens”, “Berlin”, “Boston”,
“London”, and “Paris”. For simplicity, only the x-values
are considered. The average length of sequences in this
dataset is 1100 points. The shortest one is 834 points and
the longest one is 1719 points. Since the length of
sequences varies for different instances, we stretched all
sequences to a same length of 1600 points.

The second real dataset, RTT, consists of RTT (packet
round trip time) measurements from UCR to CMU with
sending rate of 50 msec for a day (Feb 10, 2002, starting
at 8:20pm). The total number of RTT values is 1,728,000.
The dataset was partitioned into 24 time series of length
72,000, each standing for an hour of RTT measurements.
These measurements vary between 70 and 150. For
clustering experiments we separated the time series into
the following three classes based on the ratio of time
where the RTT value is greater than 100: (a) heavy traffic
hours: ratio > 0.5 (6 series), (b) medium traffic hours: 0.5
> ratio > 0.1 (7 series) and (c) light traffic hours: ratio <
0.1 (11 series).

In order to avoid the effects of scaling and shifting in
the analysis, before we actually perform any experiment,
we preprocess the datasets with zero-mean normalization.
That is, each time series X is normalized as:

X = (X - X) / σ(X)
where X is the mean value of X and σ(X) is its standard
deviation. For the RTT dataset we take logarithms before
we apply the normalization.

4.2 Best Match Searching

4.2.1 Experiment design
The best match searching is defined as follows: given

a query sequence, find the best k matches in the database
(i.e., having the lowest dissimilarity with the query) or
find all the time series whose dissimilarity with the query
is below some predefined threshold. In order to evaluate
the performance of different approaches in best match
searching, we need an evaluation metric.

Definition 3. For a given query, the set of time series
which are actually within the same class as the query
(given our prior knowledge) is taken as the standard set
(std_set(q)), and the results found by different approaches
(knn(q)) are compared with this set. The matching
accuracy is defined as:

100%
k

 |std_set(q) knn(q)| Accuracy ×
∩

= (3)

In the definition above, knn(q), is the k nearest
neighbors for the query found by a certain method. In our
experiments, every time series in the dataset is treated as a
query, and the best k matches (k nearest neighbors) are
sought within the whole dataset. The average accuracy of
a certain method is then calculated based on the matching

Table 3. Experiment parameters for SYNDATA
 MVQ Parameters

Level l s
1 60 6
2 30 16
3 20 16
4 10 32
5 5 32

results taking each time series as a query. The actual
value of k we use depends on the number of time series
within the same class. In our experiments, the value of k
can vary, but for the purpose of demonstration, we just
show the results when k is set to the number of time series
within the same class.

4.2.2 Experiments on SYNDATA
In this section, we show the results of the experiments

performed on the SYNDATA dataset. The experimental
parameters for different resolution levels are given in
Table 3. With the increase of resolution, the codeword
length decreases and the size of codebook increases
(since there are more training samples available for that
resolution).

The experimental results on SYNDATA are shown in
Table 4. The first element in the weight vector represents
the weight assigned to the first level, the second element
the weight assigned to the second level, and so on (e.g.,
with a weight vector [1 0 0 0 0], only the first level is
involved in distance calculations). Accuracy is defined
based on Eq. (3). The experimental results clearly
demonstrate the effect of using a multiresolution
approach: the combination of multiple resolutions
dramatically improves the matching accuracy over the
single resolution approach.

Table 4. Matching accuracy on SYNDATA
Method Weight Vector Accuracy

[1 0 0 0 0] 0.55
[0 1 0 0 0] 0.70
[0 0 1 0 0] 0.65
[0 0 0 1 0] 0.48

Single level

VQ

[0 0 0 0 1] 0.46
MVQ [1 1 1 1 1] 0.83

Euclidean 0.51
To show the effectiveness of the proposed

representation and distance metric, we applied the plain
Euclidean distance (naïve method) on the same dataset,
which directly computes the Euclidean distance to
measure the similarity between time series. From Table 4
we can conclude that for this dataset, the Naïve method
does worse than most of the single level VQ
approximations, while MVQ provides a much better
matching accuracy.

Table 5. Experiment parameters for CAMMOUSE
data

 MVQ parameters
Level l s

1 1600 6
2 800 8
3 400 8
4 200 16
5 100 16

4.2.3 Experiments on CAMMOUSE
We performed similar experiments as with

SYNDATA dataset. The experiment parameters and
results are shown in Table 5 and 6 respectively.

Table 6. Matching accuracy on CAMMOUSE data
Method Weight Vector Accuracy

[1 0 0 0 0] 0.56
[0 1 0 0 0] 0.60
[0 0 1 0 0] 0.44
[0 0 0 1 0] 0.56

Single level

VQ

[0 0 0 0 1] 0.60
MVQ [1 1 1 1 1] 0.83

Euclidean 0.58
From Table 6, it is clear that for the CAMMOUSE

dataset, the hierarchical mechanism also helps to improve
the accuracy obtained with a single resolution level.
Comparing with the average matching accuracy of the
plain Euclidean method, the retrieval accuracy of MVQ is
much better (25% higher).

4.2.4 Comparison with other methods

In order to compare the efficiency and accuracy of
MVQ in similarity searches we considered alternative
methods including the Discrete Fourier Transform (DFT),
plain Euclidean, Dynamic Time Warping (DTW) and
Symbolic Aggregate approXimation (SAX) [23]. For
evaluation and comparison, every time series in the
dataset is taken as a query, and the precision and recall
pairs corresponding to the top 1,2,3,…,k retrieved time
series are calculated. Then the average value of precision
and recall is computed for the whole dataset. The actual
value for k is different for different methods.

For DFT, SAX and MVQ, some parameters need to
be set up for the experiments. For DFT, we take the first
16 non-zero coefficients; for SAX the number of
segments is set to 15 (SYNDATA) or 16 (CAMMOUSE)
and the codebook size is set to 16. For MVQ we take the
same codebook sizes as in previous subsection for the 5
resolution levels and use [1 1 1 1 1] as the weight vector.

Figure 5 shows the precision-recall performance on
SYNDATA and CAMMOUSE. Notice that for a fixed
recall ratio, the fewer time series are retrieved the better,
and subsequently the higher the precision is. For both

(a) (b)

Figure 5. Precision-recall for different methods
(a) on SYNDATA (b) on CAMMOUSE

datasets the precision decreases quickly with Plain
Euclidean, DFT, SAX and DTW, while the precision with
MVQ stays at a high level. MVQ achieves the best
performance on these datasets. When the time series are
short (as in the case of SYNDATA) MVQ’s need for
more space due to the multiple codebooks is noticeable.
However, MVQ is the best distance function and provides
the best accuracy. An interesting observation is that in
most cases, even with only one layer, our distance
measure can provide comparable or even better results
than the other methods. Later in the experiments, we
restrict the space requirements of MVQ so that they are
comparable to those of the other methods.

Figure 6. Processing time and scalability

Besides accuracy, other considerations for a good
method should include speed and scalability. Figure 6
shows the processing time of different methods on
datasets with various sizes. The experimental settings for
different methods are the same as before. DFT shows the
best processing efficiency with the shortest time, but
considering the poor accuracy result shown in Figure5, it
should not be taken as a good candidate.

In comparison to the other methods we considered
here, although the encoding of the query consumes some
time, MVQ outperforms them all in speed when the
database size is not too small. Notice that the time
reported here for MVQ does not include the
preprocessing needed during the training phase to obtain
the codebook (s) for a dataset. A brief discussion about
the preprocessing cost can be found in Appendix B.

4.3 Clustering experiments

4.3.1 Experiment design.
 For time series clustering, we conducted experiments

Table 7. Clustering accuracy of MVQ on SYNDATA
Method Weight Vector Accuracy

[1 0 0 0 0] 0.69
[0 1 0 0 0] 0.71
[0 0 1 0 0] 0.63
[0 0 0 1 0] 0.51

Single level

VQ

[0 0 0 0 1] 0.49
MVQ [1 1 1 1 1] 0.82
DFT 0.67
SAX 0.65
DTW 0.80

Euclidean

0.55
on both synthetic and real datasets. The PAM
(Partitioning Around Medoids) clustering algorithm was
used to cluster the original time-series in every dataset.
However, different approaches applied for distance
calculation resulted in different distance matrices for the
time series, and subsequently in different clustering
results.

In order to evaluate the clustering accuracy and
quality of our approach, a cluster similarity metric was
used. Given two clusterings, G=G1,G2, …,Gk (the true
clusters), and A=A1,A2,…,Ak (clustering result by a certain
method), the clustering accuracy is evaluated with the
cluster similarity defined as:

k
AGSim

i ji∑=
),(max

A)Sim(G, j (4)

 where

|A| |G|
|AG|2

)A,Sim(G
ji

ji
ji +

∩
=

.

This metric was introduced in [11] to evaluate
clustering results and was also used in [17]. The metric
value ranges between 0 and 1, and it takes the maximal,
i.e. 1, when the clustering result is perfect. For each
dataset, we used the same experiment parameters as in
Section 4.1. Considering the stochastic nature of the PAM
algorithm, given a set of parameters, each experiment was
repeated 10 times, and the average result is reported here.
For the purpose of comparison, clustering results with
other methods are also provided.

4.3.2 Experiments on SYNDATA dataset.
Taking the same parameters as shown in Table 3,

clustering experiments were performed on the
SYNDATA dataset. The experimental results are listed in
Table 7. Clustering performance of other methods is also
reported.

It is clear that for this dataset, we cannot achieve
satisfying performance using the Euclidean Distance as
the distance metric, while the suggested method is very
promising. The performance achieved by several single
resolution levels of the VQ approximation is better than
that of the Naïve method (Euclidean on the original time
series) and comparable or better to that of the other

Table 8. Clustering accuracy of MVQ on
CAMMOUSE

Method Weight Vector Accuracy
[1 0 0 0 0] 0.61
[0 1 0 0 0] 0.60
[0 0 1 0 0] 0.59
[0 0 0 1 0] 0.63

Single level

VQ

[0 0 0 0 1] 0.62
MVQ [1 1 1 1 1] 0.79
DFT 0.62
SAX 0.58
DTW 0.69

Euclidean

0.61
methods. By combining different resolution levels, the
clustering result is further improved.

For completeness we compared a multiresolution
implementation of SAX to MVQ. We used 5 resolution
levels with the number of segments as 2, 3, 6, 30 and 60
respectively. The accuracies of SAX with different
resolutions vary between 0.54 and 0.65. However, when
we tried to combine the distance measurement in all
resolution levels, the accuracy was 0.64. Since SAX
encodes already the order of segments in the original time
series, the use of multiresolution levels does not improve
the accuracy of the representation and its performance.

4.3.3 Experiments on CAMMOUSE dataset.
The experimental parameters for the CAMMOUSE

dataset are the same as in Table 5. Table 8 displays the
results for MVQ with different weight vectors and results
of the other methods. Again, the performance of plain
Euclidean Distance is poor, while MVQ provides much
better clustering results. Its performance is also superior
to the other methods we tested. Observe again that even
with only one layer, our distance measure can provide
comparative or even better results than the others (in this
case MVQ has similar space requirements as the other
methods).

4.3.4 Experiments on the RTT dataset.
For MVQ we used 5 different layers 1-5 with 3, 8, 8,

16, and 16 codewords respectively. This is a total of 51
codewords. We used the same number of parameters for
DFT and SAX. Table 9 compares the clustering accuracy
of MVQ with that of the other methods.

An important observation here is that we do not need
to take all layers into consideration to get the best
performance. The reason is that when the different
resolution levels cannot present uniformly rich
information, the involvement of less informative levels
will reduce the overall accuracy. Furthermore, the study
at different single resolution levels can help us identify
the importance of different layers in discriminating
among classes.

Table 9. Clustering results on RTT (with same space
requirements for MVQ as for the other methods)

Method Weight Vector Accuracy
[10000] 0.55
[01000] 0.52
[00100] 0.57
[00010] 0.80

Single level

VQ

[00001] 0.79
[00011] 0.81 MVQ
[11111] 0.60

DFT 0.54
SAX 0.54
DTW 0.62

Euclidean

0.50

4.4 Summarizing time series

Here, we present results from applying MVQ to
summarize time series. We consider the SYNDATA
dataset. To help in evaluating the summarization
capabilities of the proposed approach, in Figure 7, we
present a few typical time series that we manually
extracted from each of the six classes.

Figure 7. Representative time series extracted

manually from the SYNDATA dataset.
 Table 10 shows how the codewords of the first

codebook are used to represent each class at the first level
(of resolution). The actual codewords are displayed in
Figure 8. The first number in each cell of Table 10 shows
how usage of a codeword (row) is distributed across
classes (we show percentages). These numbers add up to
100 for each row (codeword). The second number in each
cell shows the usage (in percentages) of all codewords for
a certain class (column). They add up to 100 for each
column. One can make the following observations about
the representation of classes at this level (more coarse
approximation). For all time series in class 1 (normal)
only the 2nd codeword is used and only class 2 (cyclic)
time series use the same codeword (rarely though). The
2nd codeword is indeed very representative of the time
series in class 1. Time series in class 2 make equal use of
codewords 1, 5, and 6 while they rarely use codeword 2.
Since class 2 is the cyclic one this makes a lot of sense.
One could have a concise representation by just looking

Table 10. The codewords (c:1-6) used to represent
each one of the 6 classes of SYNDATA at level 1.

c class1 class2 class3 class4 class5 class6
1 0, 0 100,31 0, 0 0, 0 0, 0 0, 0
2 96,100 4, 4 0, 0 0, 0 0, 0 0, 0
3 0, 0 0, 0 0, 0 50,100 0, 0 50,100

4 0, 0 0, 0 50,100 0, 0 50,100 0, 0
5 0, 0 100,40 0, 0 0, 0 0, 0 0, 0
6 0, 0 100,25 0, 0 0, 0 0, 0 0, 0

at the codewords and the frequency of their use in
different classes. Classes 3 (increasing trend) and 5
(upward shift) make equal use of the 4th codeword
although no other classes use this codeword. They both
have an increasing trend so this summarizes them very
well. Similarly for classes 4 (decreasing trend) and 6
(downward shift) the 3rd codeword is used and no other
class is using this codeword. At this first level we cannot
discriminate between classes 3 and 5 and classes 4 and 6.

Figure 8. The codewords used to represent time

series of the SYNDATA dataset at the first level.
The second level though provides more details into

the summarization enabling the discrimination between
classes 3 and 5 and classes 4 and 6. Table 11 shows how
the codewords of the second codebook are used to
represent each class at the second level. The actual
codewords are displayed in Figure 9. Please note that

Figure 9. The codewords used to represent time series

of the SYNDATA dataset at the second level.
codeword numbers correspond to different codewords
(not the same codewords as for level 1). Time series in
class 5 make heavy use of codeword 12 that indeed
represents the upward shift. This is not the case for class
3 which instead uses heavily codewords 1 and 9.
Similarly, class 6 makes heavy use of codeword 15 that
indeed represents the downward shift. Class 4 uses the
codeword 15 very rarely. The tables for the other levels
are not shown here due to space limitations. They are also

Table 11. The codewords (c:1-16) used to represent
each one of the 6 classes of SYNDATA at level 2.
c class1 class2 class3 class4 class5 class6

1 2, 1 0, 0 94, 19 0, 0 2, 1 2, 1
2 90, 51 10, 6 0, 0 0, 0 0, 0 0, 0
3 1, 1 0, 0 0, 0 3, 1 56, 21 40, 15
4 0, 0 0, 0 96, 48 0, 0 3, 1 1, 1
5 0, 0 0, 0 37, 5 0, 0 63, 9 0, 0
6 11, 5 89, 39 0, 0 0, 0 0, 0 0, 0
7 0, 0 0, 0 0, 0 100, 45 0, 0 0, 0
8 0, 0 0, 0 1, 1 3, 2 46, 28 5, 29
9 0, 0 0, 0 98, 26 0, 0 2, 1 0, 0

10 78, 39 22, 11 0, 0 0, 0 0, 0 0, 0
11 0, 0 0, 0 0, 0 12, 3 25, 7 63, 19
12 0, 0 0, 0 7, 1 0, 0 93, 21 0, 0
13 0, 0 0, 0 0, 0 0, 0 100, 11 0, 0
14 4, 2 96, 44 0, 0 0, 0 0, 0 0, 0
15 0, 0 0, 0 0, 0 3, 1 0, 0 97, 15
16 1, 1 0, 0 0, 0 70, 48 0, 0 29, 20

not very useful for summarization of this particular
dataset since most of the useful summarization
information is extracted from the first two levels. These
results demonstrate the ability of MVQ to provide a
summarization of time series datasets. This is possible
due to the symbolic and multiresolution nature of the
representation.

5. Discussion
The MVQ approach that we proposed for representing

time series data in order to make their analysis more
efficient is a natural extension of the piecewise constant
approximation schemes proposed earlier. By applying
Vector Quantization to extract high-level features of the
data and by involving a multiresolution approach we were
able to identify a “vocabulary” of subsequences of
various lengths and improve performance and efficiency
in time series similarity retrieval. We were especially
successful in domains where we could not achieve good
results using the Euclidean distance as the similarity
metric. In addition, the new representation is very useful
in summarizing time series by providing typical patterns
observed at different resolutions.

We presented the main idea of an approach to
represent time series along with a new distance function
that is better than previous distance functions and in
addition it is fast to compute. Obviously, there are a lot of
variations of this approach including use of sliding
windows, non-rigid borders for subsequences, use of
different rules for assigning weights to different
resolutions, etc. These are directions in which this work
can be extended. Another interesting problem is related to
the size of the codebook. When we generate the
codebooks for different resolutions, the size of each
codebook affects the performance of encoding. The more
codewords at a given resolution, the better the
approximation but the efficiency of the method decreases.

Future studies include looking into these tradeoffs in
more detail.

6. Conclusions
In this paper we introduced a new symbolic

representation of time series, MVQ, along with a new
distance function that is better than major competitors. By
partitioning a sequence into equal-length segments and
using vector quantization to represent each sequence by
appearance frequencies of key subsequences, MVQ
provides a more meaningful similarity metric for many
domains, besides the improvement in efficiency because
of the dimensionality reduction especially in the case of
long sequences. Moreover, using a multiresolution
approach, MVQ can record both local and global
information of time series, which further improves the
robustness in calculating similarity, requiring little more
calculation than a single resolution approach.

The experimental evaluation of the proposed method
showed that it outperforms current state-of-the-art
methods in clustering and similarity searches. This is due
to the following: (a) it exploits prior knowledge about the
data, (b) it takes multiple resolutions into account and (c)
it partially ignores the ordering of the ‘codewords’ within
the time sequence due to the histogram model that it uses.

The proposed representation is symbolic potentially
allowing the application of text-based retrieval techniques
into the similarity analysis of time series. Moreover, due
to the symbolic and multiresolution representation the
proposed approach is excellent in summarizing time
series by providing typical patterns observed at different
resolutions. The proposed transformation on time series is
very fast to process long time series, since the length of
new representation is only related to the size of the
codebook. The parameters of our method are easy to
determine. In particular, a general conclusion from our
experiments is that lacking any prior knowledge equal
weights to all resolution levels works well most of the
time. While the experimental results presented here
mainly focus on similarity analysis, clustering, and
summarization, our approach can also be easily adjusted
to other applications, such as frequent pattern retrieval
(i.e., motif discovery), association rule mining, and other
data mining applications.

Acknowledgements
The authors are grateful to the anonymous referees

and to Eamonn Keogh for providing helpful comments.
This work was supported in part by NSF under Grant No.
IIS-0237921, by NIH under Grant No. R01MH68066-
01A1 (funded by NIMH, NINDS, and NIA) and by the
Pennsylvania Department of Health.

References

[1] Agrawal, R., Faloutsos, C. and Swami, A.. “Efficient
similarity search in sequence databases”, Proceedings of the 4th
Int'l Conference on Foundations of Data Organization and
Algorithms. Chicago, IL, Oct 13-15, 1993. pp. 69-84.
[2] Agrawal, R., Lin, K. I., Sawhney, H. S. and Shim, K., “Fast
similarity search in the presence of noise, scaling, and
translation in time-series databases”, Proceedings of the 21st
Int'l Conference on Very Large Databases. Zurich, Switzerland,
Sept., 1995, pp. 490-501.
[3] Alcock R.J. and Manolopoulos Y.. "Time-Series Similarity
Queries Employing a Feature-Based Approach" Proceedings of
7th Hellenic Conference on Informatics, Ioannina, Greece, Aug.
27-29, 1999, pp.III.1-9.
[4] Baeza-Yates, R.A. & Gonnet, GH.. “A fast algorithm on
average for all-against-all sequence matching”, Proceedings of
the String Processing and Information Retrieval Symposium,
1999, pp. 16-23.
[5] Betke, M., Gips, J., and Fleming, P., "The Camera Mouse:
Visual Tracking of Body Features to Provide Computer Access
For People with Severe Disabilities." IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 10:1, March
2002, pp. 1-10.
[6] Chen, L. and Ozsu, M.T., “Multi-scale histograms for
answering queries over time series data”, Proceedings of the
20th International Conference on Data Engineering, Boston,
MA, 2004, p. 838.
[7] Deligiannakis A., Kotidis, Y., and Roussopoulos, N.,
“Compressing historical information in sensor networks”,
Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, Paris, France, June 2004,
pp. 527-538.
[8] Goldin, D.Q. and Kanellakis, P.C. “On similarity queries for
time-series data: Constraint specification and implementation”,
Proceedings of Constraint Programming, Marseilles, France,
1995.
[9] Faloutsos, C., Jagadish, H., Mendelzon, A. and Milo, T., “A
signature technique for similarity-based queries”, Proceedings
of the Int'l Conference on Compression and Complexity of
Sequences. Positano-Salerno, Italy, Jun 11-13, 1997.
[10] Faloutsos, C., Ranganathan, M. and Manolopoulos, Y.,
“Fast subsequence matching in time-series databases”,
Proceedings of the ACM SIGMOD Int'l Conference on
Management of Data. Minneapolis, MN, May 25-27, 1994, pp.
419-429.
[11] Gavrilov, M., Anguelov, D., Indyk, P. and Motwani, R.,
“Mining the stock market: Which measure is best? ”,
Proceedings of the International Conference on Data Mining
and Knowledge Discovery, 2000, pp. 487-496.
[12] Gersho, A. and Gray R. M., Vector Quantization and
Signal Compression, Kluwer Academic Publishers, 1992.
[13] Gusfield, D., Algorithms on Strings, Trees and Sequences.
Cambridge University Press, 1997.
[14] Hetland, M. L., “A survey of recent methods for efficient
retrieval of similar time sequences”, In Mark Last, Abraham
Kandel, and Horst Bunke, editors, Data Mining in Time Series
Databases, World Scientific, 2004.
[15] Höppner, F., “Discovery of temporal patterns – learning
rules about the qualitative behavior of time series”, Proceedings
of the 5th European Conference on Principles and Practice of
Knowledge Discovery in Databases, Freiburg, Germany, 2001,
pp. 192-203.

[16] Huhtala, Y., Kärkkäinen, J. & Toivonen, H., “Mining for
similarities in aligned time series using wavelets”, Data Mining
and Knowledge Discovery: Theory, Tools, and Technology,
SPIE Proceedings Series, Vol. 3695. Orlando, FL, Apr., 1999,
pp. 150-160.
[17] Kalpakis, K., Gara, D. and Puttagunta, V, “Distance
Measures for Effective Clustering of ARIMA Time-Series”,
Proceedings of the 2001 IEEE International Conference on Data
Mining, San Jose, CA, Nov 29-Dec 2, 2001, pp. 273-280
[18] Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S.,
“Locally adaptive dimensionality reduction for indexing large
time series databases”, Proceedings of ACM SIGMOD
Conference on Management of Data. Santa Barbara, CA, May
21-24, 2001, pp 151-162.
[19] Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S.,
“Dimensionality Reduction for Fast Similarity Search in Large
Time Series Databases”, Journal of Knowledge and Information
Systems, 2001
[20] Keogh, E. & Folias, T., The UCR Time Series Data Mining
Archive. http://www.cs.ucr.edu/~eamonn/TSDMA/index.html.
Riverside CA. University of California, Computer Science &
Engineering Department.
[21] Keogh, E. and Pazzani, M., “A simple dimensionality
reduction technique for fast similarity research in large time
series databases”, Proceedings of the Fourth Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Kyoto,
Japan, 2000.
[22] Lin, J., Keogh, E., Patel, P. and Lonardi, S., “Finding
motifs in time series”, The 2nd Workshop on Temporal Data
Mining, at the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Alberta,
Canada, July 23 - 26, 2002.
[23] Lin, J., Keogh, E., Lonardi, S. and Chiu, B., “A Symbolic
Representation of Time Series, with Implications for Streaming
Algorithms”, Proceedings of the 8th ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery,
San Diego, CA. June 13, 2003.
[24] Linde, S., Buzo, A. and Gray, A., “An algorithm for vector
quantizer design”, IEEE Transactions on Communications, vol.
28, 1980, pp. 84-95.
[25] Lloyd, S. P., “Least squares quantization in PCM”, IEEE
Transactions on Information Theory, IT(28), 1982, pp. 127-135.
[26] Megalooikonomou, V., Li, G., Wang, Q., "A
Dimensionality Reduction Technique for Efficient Similarity
Analysis of Time Series Databases", Proceedings of the 13th
ACM CIKM International Conference on Information and
Knowledge Management, Washington, DC, Nov. 8-13, 2004,
pp. 160-161.
[27] Park, S., Chu, W.W., Yoon, J. and Hsu, C., “Efficient
search for similar subsequences of different lengths in sequence
databases”, Proceedings of the ICDE, 2000, pp. 23-32.
[28] Piotr Indyk, Nick Koudas, S. Muthukrishnan. “Identifying
Representative Trends in Massive Time Series Data Sets Using
Sketches”, Proceedings of VLDB, 2000, pp 363-372.
[29] Rafiei, D., “On similarity-based queries for time series
data”, Proceedings of the 15th International Conference on Data
Engineering (ICDE), Sydney, Australia, 1999, pp. 410-417.
[30] UCI KDD Archive. http://kdd.ics.uci.edu
[31] Wu, Y., Agrawal, D. and El Abbadi, A., “A comparison of
DFT and DWT based similarity search in time-series
databases”, Proceedings of the 9th ACM CIKM Int'l Conference

on Information and Knowledge Management. McLean, VA,
Nov 6-11, 2000, pp. 488-495.
[32] Yi, B-K and Faloutsos, C., “Fast Time Sequence Indexing
for Arbitrary Lp Norms”, Proceedings of the VLDB, Cairo,
Egypt, Sept, 2000.
[33] Zhu, L., Rao, A. and Zhang A., “Theory of Keyblock-based
Image Retrieval”, ACM Transactions on Information Systems,
20(2), 2002, pp. 224-257.

Appendix
A. Time series codeword representation − Other
models of similarity

In VQ-based image retrieval [33], two other models
that have been proposed are the Boolean Model (BM) and
the Vector Model (VM). The Histogram Model we
adopted in our methodology can be considered as special
case of VM. For completeness we present these models in
the context of time series analysis below:
• Boolean model (BM): computes the similarity of the

Boolean models of the codeword representation of two
time series using the following formula:

00001111 **),(wnwntqSBM +=
where n11 is the number of identical indices and n00 is
the number of indices of the code words that do not
exist in both of the representations, while w11 and w00
are the weights assigned to these frequencies.

• Vector Model (VM): computes the similarity between
the frequency-based representations of two time series
using the following formula:

∑∑

∑

==

==
s

i
qi

s

i
ti

s

i
qiti

vm

ff

ff
tqS

1

2
,

1

2
,

1
,,

*

*
),(

In the above formula, fi,t, denotes the frequency of
codeword i in time series t.

B. Preprocessing cost: Codebook generation
In MVQ a codebook needs to be generated for each

one of the multiresolution levels using training data
before the encoding can be performed. Let i be the
number of iterations in the training process where i
depends on the predefined threshold of the fractional drop
of the distortion. During each iteration, every training
vector is compared to every codeword. Since the size of
codebook is s, and totally there are N*w training vectors
(N is the number of time series in the training set and w is
the number of fragments at the highest resolution of a
time series), and c the number of resolution levels, the
time complexity of preprocessing of a single level is:
T(training) = O(c * N * w * s * i). This time complexity is
not so prohibitive since training is done once during
preprocessing and as we showed earlier the size of the
codebook needs not be large to achieve very good
approximation using MVQ. In the case that the data is
modified over time there is no additional overhead if the
distributions remain the same. In the case of a decreased
codebook quality an incremental update of the codewords
need to be considered.

