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Abstract 
Efficiently and accurately searching for similarities 

among time series and discovering interesting patterns is 
an important and non-trivial problem. In this paper, we 
introduce a new representation of time series, the 
Multiresolution Vector Quantized (MVQ) approximation, 
along with a new distance function. The novelty of MVQ 
is that it keeps both local and global information about 
the original time series in a hierarchical mechanism, 
processing the original time series at multiple 
resolutions. Moreover, the proposed representation is 
symbolic employing key subsequences and potentially 
allows the application of text-based retrieval techniques 
into the similarity analysis of time series. The proposed 
method is fast and scales linearly with the size of 
database and the dimensionality. Contrary to the vast 
majority in the literature that uses the Euclidean distance, 
MVQ uses a multi-resolution/hierarchical distance 
function. We performed experiments with real and 
synthetic data. The proposed distance function 
consistently outperforms all the major competitors 
(Euclidean, Dynamic Time Warping, Piecewise 
Aggregate Approximation) achieving up to 20% better 
precision/recall and clustering accuracy on the tested 
datasets. 

1. Introduction 
The problem of efficient retrieval of similar time series 

has received a lot of attention due to its many applications 
in different domains. Briefly, this problem can be stated 
as follows: Given a query sequence q, a database S of N 
sequences, S1,S2,…,SN, a distance measure D and a 
tolerance threshold ε, find the set of sequences R in S that 
are within distance ε from q. More precisely, find: R = {Si 
∈S  |  D(q, Si) ≤ ε }.  

To compare two given time series, a suitable measure 
of similarity should be given. Naive approaches for 
comparing time sequences generally take polynomial time 
in the length of the sequences, typically linear or 
quadratic time. These approaches are not useful for large 
time series databases. Promising techniques include those 
that are based on the reduction of dimensionality of the  
 

 
original sequences. In this case, the sequences can be 
represented as multidimensional vectors and similar 
sequences can be retrieved in sublinear time.  

There may be several different criteria to evaluate a 
method, but generally speaking, a good one should be 
fast, scalable, and accurate (according to some ground 
truth). In this paper, we introduce a new method that 
satisfies these requirements. Our method is called 
Multiresolution Vector Quantized (MVQ) approximation 
and has the following characteristics:  

1) It uses time-tested ‘vector quantization’ methods to 
discover a ‘vocabulary’ of subsequences;  

2) It takes multiple resolutions into account – this 
brings improved accuracy;  

3) It provides a new distance function utilizing text-
based techniques from Information Retrieval, to 
weigh down uninteresting matches, thus improving 
the accuracy.  

As Agrawal et al. [2] proposed, compared to the 
Euclidean distance, a more intuitive idea is that two series 
should be considered similar if they have enough non-
overlapping time-ordered pairs of subsequences that are 
similar. In this paper, instead of calculating the Euclidean 
distance, we first extract key subsequences utilizing the 
Vector Quantization (VQ) [12] technique and encode 
each time series based on the frequency of appearance of 
each key subsequence. We then calculate similarities 
between different time series in terms of key subsequence 
matches. This method can be very meaningful in many 
domains, for example, when comparing two stocks during 
a long period, we may want to find out during how many 
months the stocks have similar movements, though the 
same trend may appear in different months for different 
stocks. This application is similar to mining motifs in 
massive time series databases [22].  

While the histogram metric can record the local 
information very well, it may lose much global 
information of the time series, since it does not keep track 
of the order of appearance of different key subsequences. 
To deal with this problem, we propose to apply a 
hierarchical mechanism: the original time series are 
processed at several different resolutions, and similarity 
analysis is performed using a weighted distance function 
combining all the resolution levels. For example, when 
considering a time series representing a stock price 

  



movement, we know that subsequences of different 
length have different real meanings. If the length is 5, the 
subsequence stands for a weekly trend of the stock. 
Similarly for length 20 we have the monthly trend. 

  As we demonstrate in the experiments, MVQ 
outperforms previous state of the art methods in 
clustering and similarity searches. Intuitively, the 
excellent performance of the proposed method can be 
justified because of the following facts:  

1) it exploits prior knowledge about the data using a 
learning approach  

2) it takes multiple resolutions into account and  
3) unlike wavelets (that also take multiple resolutions 

into account) it partially ignores the ordering of the 
‘codewords’ within the time sequence due to the 
histogram model that is being used to calculate 
similarity.  

Moreover, the proposed representation is symbolic 
employing key subsequences and allows the application 
of text-based retrieval techniques into the similarity 
analysis of time series. 

2.   Background 

2.1   Related Work 

Many approaches and techniques have been proposed 
in the past decade [1, 2, 4, 9, 10, 13, 14, 16, 18, 19, 21, 
27, 31, 32] that address the problem of similarity in time 
series.  

To deal with dimensionality reduction, the solution to 
extract a signature from each sequence and to index the 
signature space was originally proposed by Faloutsos et 
al. [9,10]. To guarantee completeness (i.e., no false 
dismissals) the admissibility criterion that the distance 
function used in the signature space must underestimate 
the true distance measure (bounding lemma) was also 
proposed [10]. Obeying the admissibility criterion, many 
methods have been suggested and proved useful in 
different fields, such as the F-index introduced by 
Agrawal et al. [1] or the ST-index proposed by Faloutsos 
et al. [10]. 

Other approaches for efficient similarity searches on 
time sequences are based on piecewise constant 
approximation (PCA) or piecewise aggregate 
approximation (PAA). Yi and Faloutsos [32] and Keogh 
et al. [19,21] proposed to divide each sequence into k 
segments of equal length and to use the average value of 
each segment as a coordinate of a k-dimensional feature 
vector. The advantages of this transform are that it is very 
fast and easy to implement, the signature can be used with 
arbitrary Lp norms, and the index can be build in linear 
time. In addition, the representation can be used with a 
weighted Euclidean distance where each segment of the 
sequence has different weight. Keogh et al. [18] have also 

proposed an Adaptive Piecewise Constant Approximation 
(APCA) where the segments can be of variable length 
offering a more effective compression than PCA. In [26] 
the authors propose a piecewise vector quantized 
approximation (PVQA) of time series. In [7] a technique 
for compressing multiple streams of data in sensor 
networks that employs an approximate representation 
using a base signal extracted from historic information 
has been proposed. The algorithm constructs a 
“dictionary” of candidate base signals in the process of 
building a base signal. The use of multi-scale histograms 
and a weighted Euclidean distance for measuring the 
similarity of time series at several precision levels has 
been investigated in [6]. In addition, general 
dimensionality reduction techniques such as Singular 
Value Decomposition (SVD) have been used in time 
series data [19]. 

For these methods in which the distance metric lower 
bounds the Euclidean distance, one of the most significant 
characteristics is the avoidance of false dismissals, though 
there may be a lot of false alarms. However, in some 
cases, the existence of too many false alarms may 
decrease the efficiency of retrieval. At the same time, as 
many researchers have mentioned in their work [15,29], 
the Euclidean distance is not always the optimal distance 
measure. For example, in some time series, different parts 
have different levels of significance in their meaning. 
Also, the Euclidean distance does not allow shifting in 
time axis, which is not unusual in real life applications. In 
order to extract high-level features out of time series, 
Koudas et al. [28] formalized problems of identifying 
various “representative” trends in time series data. Since 
the Euclidean is not the best distance one can use (as 
shown later in our paper and in papers we referenced 
earlier), here, we propose a new distance function. We do 
not deal with the problem of lower bounding the 
Euclidean on the original vectors since this is not so 
meaningful anymore. 

2.2   Preliminaries 

To make the presentation of the proposed work clear, 
we now give descriptions of various concepts and 
definitions used in the paper. We start with the definition 
of a time sequence and its subsequences. 

Definition 1. Time Sequence: A sequence (ordered 
collection) of real values.   X = x1, x2,…, xn , where n can 
be very large. 

Definition 2. Subsequence: Given a time sequence X 
= x1, x2,…, xn, of length n, a subsequence S of X is a 
sequence of length m consisting of contiguous positions 
from X, i.e., S=xk,xk+1,…,xk+m-1 ; 1≤k≤n-m+1.  

In similarity analysis, we need to define a metric for 
the similarity, that is, a measure of the distance between 
two time series. Given two time series, X = x1, x2,…, xn,    
Y = y1, y2, …, yn , their distance, D,  is defined, in general, 

  



as an Lp norm, where for p=2, the distance is the 
Euclidean, the most popular among the metrics. An 
intuitive notion of exact and approximate similarity was 
also formalized by Goldin, and Kanellakis [8]. 

Obviously, the simplest way of calculating the 
similarity (or distance) among time series is to compute 
the Euclidean distance directly, i.e., on the original series. 
For a small dataset this may be feasible, however, for 
large data sets efficiency is a problem, since the time 
complexity is O(N*n), where n is the number of features 
that need to be represented for each time series and N is 
the number of time series in the dataset. In order to 
compute efficiently while keeping the accuracy not 
significantly affected, many techniques of dimensionality 
reduction (as introduced in section 2.1) have been 
suggested.  

In addition to the computational complexity associated 
with the Euclidean distance calculation on the original 
time series, we cannot always be sure that the nearest 
neighbors in Euclidean space are indeed the most similar 
ones. This is because the point-based information model 
(computing similarity based on every point) contains only 
low-level features of the time series and it is vulnerable to 
different kinds of shape transformations, such as shifting 
and scaling. Under such circumstances, it would be better 
if we could find some high-level features and apply a 
more robust information retrieval model for time series 
analysis. 

Based on this idea, we introduce a new framework that 
uses key subsequences to represent time series and 
facilitate similarity retrieval. This framework consists of 
the following main components: 

 1) Codebook generation from a set of training samples;  
 2)  Time series encoding using the codebook; 
 3)  Time series feature representation and retrieval. 
This framework is similar to the key block framework 

suggested by Zhang et al. [33] for content-based image 
retrieval. In the time sequences domain the idea was 
introduced in [26]. However, in order to keep both local 
and global information and improve the accuracy, we 
introduce the use of multiple codebooks with different 
resolutions. For each resolution, Vector Quantization [12, 
24] is applied to discover the vocabulary of subsequences 
in a time series database.  

In VQ a codeword (or codevector) is used to represent 
a number of similar vectors. More precisely, a vector 
quantizer Q of dimension n and size s is a mapping: Q: 
ℜn→C from a vector or a point in n-dimensional 
Euclidean space, ℜn, to a finite set C={c1, c2, …,cs}, the 
codebook, containing s output or reproduction points 
ci∈ℜn,  called codewords. Associated with every s-point 
VQ is a partition of ℜn into s regions or cells Ri for 
i∈J≡{1,2,…,s} where Ri={x∈ℜn: Q(x)=ci}. For a given  

 
Figure 1. The Generalized Lloyd Algorithm (GLA). 

distortion function1  d(x,ci) (such as the mean squared 
error (MSE)) between an input vector x and a codeword 
ci, an optimal mapping should satisfy two conditions: 
(a) Nearest neighbor Condition (NNC): For a given   

codebook, the optimal partition R = {Ri: i=1,2,…,s} 
satisfies:  });,(),(:{ jcxdcxdxR jii ∀≤=  

where ci is the codeword representing partition Ri.  
Given a point x in the dataset, the encoding function 
for x, Encoding(x)=ci only if d(x,ci) ≤ d(x,cj)  ∀j.  

(b) Centroid condition (CC): For a given partition region 
{Ri: i=1,…,s} the optimal reconstruction vector 
(codeword) satisfies: ci=centroid(Ri) where the 
centroid of a set R={xi: i=1,…|R|} is defined as: 
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The Generalized Lloyd Algorithm (GLA) [24, 25] is 
an iterative procedure that produces a “locally optimal” 
codebook from a training set based on these two 
conditions (that form the Lloyd iteration). This is done 
during a training phase. The main structure of GLA is 
given in the flowchart (see Figure 1). Starting with an 
initial codebook, the GLA algorithm repeats the Lloyd 
iteration until the fractional drop of the distortion 
becomes less than a given threshold. This process is 
guaranteed to converge since from the necessary 
conditions for optimality each application of the Lloyd 
iteration must reduce or leave unchanged the average 
distortion [12]. 

To quantitatively measure the similarity between 
different time series encoded with a VQ codebook, we 
employ the Histogram Model (HM) that has been 
successfully applied in image retrieval [33]. We present 
this model in the context of time series analysis: 
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1 The distortion is a measure of overall quality degradation due 

to approximation of a vector by its closest representative from 
a codebook. 

  



In the formula, fi,t and fi,q refer to the appearance 
frequency of codeword ci in time series t and q, 
respectively. Although this model focuses on the 
appearance of individual key subsequences in time series, 
correlation between key subsequences can also be 
addressed [33]. Information about some alternative 
models can be found in Appendix A. 

3.   Proposed Method: MVQ 
We propose a new method to represent time series 

data, the Multiresolution Vector Quantized (MVQ) 
approximation, along with a new distance function. The 
method partitions each time series into equi-length 
segments and represents each segment with the most 
similar key subsequence from a codebook. The codebook 
is generated earlier during a training phase using VQ. By 
counting the appearance frequency of each codeword in 
each time series a new representation is obtained. The 
piecewise approximation with VQ encoding is applied at 
several resolutions. Table 1 gives a brief description of 
the notation we use in the rest of the paper. In the 
following subsections, we introduce the components of 
our method. 

Table 1.  Symbol Table 
X Original time series,  X= x1,x2,…,xn  of  length n 
X′ Encoded form of the original time series X′= f1,f2,…,fs

N Number of time series in the dataset 

n Length of original time series 
C Codebook: a set of codewords {c1,…,ck,…, cs} 
c Number of resolution levels 
s Size of codebook 
l Length of codeword  

3.1   Codebook Generation 
For a given dataset, a codebook with s codewords 

C={c1,c2, …, cs} is first generated using a clustering 
algorithm (such as the GLA introduced in Section 2). We 
apply this algorithm to generate the codebook based on 
the dataset T of time series. The dataset is preprocessed 
before the generation of the codebook; each time series in 
T is partitioned into a number of segments each of length 
l and each segment forms a sample of the training set that 
is used to generate the codebook. Each codeword in the 
codebook corresponds to a key subsequence; it is an 
approximation for a certain group of subsequences of 
length l. All the time series in the database are then 
encoded using the codebook (see Section 3.2).  

The version of GLA we use, requires a partition split 
mechanism to solve the initial codebook generation 
problem. The algorithm starts with a codebook containing 
only one codeword, the centroid of the whole training set. 
In each repetition and before the application of the Lloyd  

Table 2.  Codewords of a 2-level codebook that are 
used to represent SYNDATA in MVQ approximation. 

 
iteration, it doubles the number of codewords (and cells) 
from the previous iteration by splitting the most populous 
cells. Table 2 shows some of the codewords (at two 
different levels) used by MVQ to represent the Control 
Chart dataset (SYNDATA) [30].  

3.2   Time Series Encoding 
After a codebook is generated, we can form a new 

representation for each time series in the dataset. In the 
process of encoding, every series is decomposed into 
segments (i.e., subsequences) of length l (which is equal 
to the length of each codeword). For each segment, the 
closest (based on a distance metric) codeword in the 
codebook is then found and the corresponding index is 
used to represent this segment. After finding the 
corresponding codeword index for each segment, the 
appearance frequency of each codeword is counted.  

The new representation of a time series is a vector 
X′=f1,f2,…,fs showing the appearance frequency of every 
codeword. By applying this new encoding form, we can 
easily deal with time series with arbitrary large number of 
points, since we can always reduce their dimensionality to 
a rather small number given by the size, s, of the 
codebook. 

3.3   Time Series Summarization  
     Besides achieving dimensionality reduction, this 
encoding process also provides a very nice summarization 
of the time series, which is useful in many applications. 
Table 2 shows different codewords we obtain using this 
method; these codewords stand for the most 
representative subsequences (of a given length) for the 
entire time series dataset. Instead of the whole time series, 
we may be more interested in the usage of representative 
key subsequences. This is very useful in the discovery of 
motifs or approximately repeated subsequences in time 
series [22]. In this case, we can just check the appearance 
frequencies of these codewords and get an overview of 
the time series. For example, in Figure 2, we show a time 
series representation using a number of codewords. Two 
of these codewords are being used twice revealing a 
pattern that would remain undetected using previous  

  



 
Figure 2. A time series (bottom) is being represented 

as a sequence of representative subsequences i.e., 
codewords (top). Two codewords (#3 and #5) are 

being used twice in this representation. 
techniques. Results on time series summarization are 
presented in Section 4.4. 

3.4   Distance measure and a multiresolution 
representation  

Based on the frequency of appearance of key 
sequences within time series, features of time series are 
extracted forming a new representation of a rather small 
dimensionality and similarity retrieval can be efficiently 
performed. We still need a distance measure appropriate 
for this new representation. We choose the Histogram 
Model as the distance measure, and all the experimental 
results presented in Section 4 are based on it. By applying 
the histogram model, it is not difficult to identify the time 
series that are similar to a given query (i.e., that have 
similar frequent patterns). However, using only one 
codebook (analysis at a single resolution), introduces 
some problems that cannot be ignored.  

First, although the local information of a time series is 
kept after the encoding process, the new representation of 
a time series is not recording the order among the indices 
of different codewords. Some important global 
information of the time series is lost in this representation. 
In Figure 3, we see two different time series whose 
encoded representations are the same (2, 1). This problem 
in the key subsequence representation correspondingly 
increases the number of false alarms reducing the 
performance of the single resolution (i.e., single 
codebook) method. On the other hand, in real 
applications, it is not always easy to find a suitable 
resolution (correspondingly, a suitable codeword length). 
Moreover, an inappropriate codeword length may reduce 
the efficiency. 

In order to solve these potential problems occurring 
due to the use of a single resolution, we introduce a 
hierarchical mechanism, which involves several different 
resolutions for encoding. While the encoding form of 
higher resolution pays more attention to the detail of local 
information, that of lower resolution represents more 
global information. The piecewise approximation with 
VQ encoding is applied at several resolutions. For each 
resolution this is done by grouping a different number of 
consecutive segments together, i.e., the length of the 

 
Figure 3. Necessity of multiresolution representation: 
different series with the same encoded representation. 
segment at a given resolution is a multiple (usually 
double) the length of the segment at the immediate higher 
resolution representation. Thus, we call this 
representation Multiresolution Vector Quantized (MVQ) 
approximation. 

Figure 4 shows a time series and its reconstruction 
series using different resolutions. (For different resolution 
levels, the sizes of codebooks are the same, 32, and the 
lengths of codewords are 128, 64, 32, 16, respectively.) 
By assigning reasonable weights to different resolutions, 
we define a new weighted similarity measure, the 
Hierarchical Histogram Model: 

SHHM (q,dj)=∑      (2) 
=

c

1i
jHMii )d(q,S * w

where c is the number of resolution levels.  

 
Figure 4.  Reconstruction of time series using 

different resolutions 

3.5   Parameters of MVQ  
Here we discuss in more detail the parameters of MVQ 

and how to choose their values. For the number c of 
resolution levels an intuitive choice is c = log n, with the 
length of a codeword at the ith level being 2i-1 (1≤ i ≤log 
n). However, when the codeword is too short (e.g., of 
length 1, 2), this becomes meaningless. Thus, we need to 
set a minimum value of codeword length lmin and set the 
number of hierarchical levels as c = log (n / lmin) +1. 

The codeword length (l) for each level is chosen as 
follows: At the first level, each time series is treated as a 
whole (l = n); at the second level, each time series is 
partitioned into two parts (l = n/2), and at the ith level, l = 
n / 2i-1. In cases where n is not a power of two we satisfy 
this constraint approximately.   

The size of the codebook at each resolution level is 
data dependent, since the more subsequences used during 
the training process and the higher their variability, the 

  



larger the size of the codebook needed. In fact, the higher 
the number of partitions and the number of codewords the 
better the approximation but also the more computation 
and space is needed. So, there is a tradeoff between 
efficiency and accuracy of approximation. In practice (as 
also shown in our experiments (see Section 4)), use of a 
rather small codebook can achieve very good results. In 
addition to the number of codewords, the Lloyd algorithm 
uses a threshold to stop the iterations when the fractional 
drop of the distortion between consecutive iterations 
reaches a certain point. A common value for this 
threshold is 0.01. 

Our experiments show that a multiresolution 
representation achieves much higher accuracy than a 
single resolution one. The price for this improvement is 
slightly more computation, since we have to calculate the 
similarity at each resolution level before we can finally 
compute SHHM. In our experiments we studied the 
behavior of the multiresolution approach with different 
weights assigned to each resolution level. Lacking any 
information or any prior knowledge about the domain 
(i.e., the most realistic case) the straightforward solution 
is to use equal weights for all resolutions. This choice 
provides the best results in almost all of the experiments 
we performed. The proposed method also provides the 
ability to include prior domain knowledge in the selection 
of the weights. 

4.   Experiments  
In time series similarity analysis, best matches 

retrieval and clustering are two of the most common and 
important applications. We performed experiments to 
evaluate the effectiveness and efficiency of our method in 
these two applications. We address the following issues: 
(a) how accurate the method is, (b) how it compares to 
alternatives, (c) how fast and scalable it is. We start with 
a description of the datasets we used in our experiments. 

4.1   Datasets 
In the experiments presented in this section, one 

synthetic and two real datasets are involved. We used the 
Control Chart synthetic dataset (SYNDATA) which is 
downloadable from the UCI KDD archive [30]. This 
dataset contains 600 examples of control charts (each has 
60 points) synthetically generated by the process in 
Alcock and Manolopoulos [3]. The time series belong to 
six different classes of control charts: Normal, Cyclic, 
Increasing trend, Decreasing trend, Upward shift, and 
Downward shift, with each class having 100 time series. 

The first real dataset, CAMMOUSE, is a 
spatiotemporal dataset of 5 words obtained using the 
Camera Mouse Program [5]. The 2D time series obtained 
represent the X and Y position of a human tracking 
feature (e.g., tip of finger). In conjunction with a 
“spelling program” the user can “write” various words 

and the transitions of the tracking feature or word image’s 
profiles are being recorded. We used 3 recordings of 5 
words. The 5 words were: “Athens”, “Berlin”, “Boston”, 
“London”, and “Paris”. For simplicity, only the x-values 
are considered. The average length of sequences in this 
dataset is 1100 points. The shortest one is 834 points and 
the longest one is 1719 points. Since the length of 
sequences varies for different instances, we stretched all 
sequences to a same length of 1600 points. 

The second real dataset, RTT, consists of RTT (packet 
round trip time) measurements from UCR to CMU with 
sending rate of 50 msec for a day (Feb 10, 2002, starting 
at 8:20pm). The total number of RTT values is 1,728,000. 
The dataset was partitioned into 24 time series of length 
72,000, each standing for an hour of RTT measurements. 
These measurements vary between 70 and 150. For 
clustering experiments we separated the time series into 
the following three classes based on the ratio of time 
where the RTT value is greater than 100: (a) heavy traffic 
hours: ratio > 0.5 (6 series), (b) medium traffic hours: 0.5 
> ratio > 0.1 (7 series) and (c) light traffic hours: ratio < 
0.1 ( 11 series). 

In order to avoid the effects of scaling and shifting in 
the analysis, before we actually perform any experiment, 
we preprocess the datasets with zero-mean normalization. 
That is, each time series X is normalized as:  

X = ( X - X ) / σ(X) 
where X  is the mean value of X and σ(X) is its standard 
deviation. For the RTT dataset we take logarithms before 
we apply the normalization. 

4.2   Best Match Searching 

4.2.1 Experiment design  
The best match searching is defined as follows: given 

a query sequence, find the best k matches in the database 
(i.e., having the lowest dissimilarity with the query) or 
find all the time series whose dissimilarity with the query 
is below some predefined threshold. In order to evaluate 
the performance of different approaches in best match 
searching, we need an evaluation metric. 

Definition 3. For a given query, the set of time series 
which are actually within the same class as the query 
(given our prior knowledge) is taken as the standard set 
(std_set(q)), and the results found by different approaches 
(knn(q)) are compared with this set. The matching 
accuracy is defined as: 

100%  
k 

 |std_set(q) knn(q)| Accuracy ×
∩

=    (3) 

In the definition above, knn(q), is the k nearest 
neighbors for the query found by a certain method. In our 
experiments, every time series in the dataset is treated as a 
query, and the best k matches (k nearest neighbors) are 
sought within the whole dataset. The average accuracy of 
a certain method is then calculated based on the matching  

  



Table 3. Experiment parameters for SYNDATA 
 MVQ Parameters 

Level l s 
1 60 6 
2 30 16 
3 20 16 
4 10 32 
5 5 32 

results taking each time series as a query. The actual 
value of k we use depends on the number of time series 
within the same class. In our experiments, the value of k 
can vary, but for the purpose of demonstration, we just 
show the results when k is set to the number of time series 
within the same class. 

4.2.2 Experiments on SYNDATA 
In this section, we show the results of the experiments 

performed on the SYNDATA dataset. The experimental 
parameters for different resolution levels are given in 
Table 3. With the increase of resolution, the codeword 
length decreases and the size of codebook increases 
(since there are more training samples available for that 
resolution). 

The experimental results on SYNDATA are shown in 
Table 4. The first element in the weight vector represents 
the weight assigned to the first level, the second element 
the weight assigned to the second level, and so on (e.g., 
with a weight vector [1 0 0 0 0], only the first level is 
involved in distance calculations). Accuracy is defined 
based on Eq. (3). The experimental results clearly 
demonstrate the effect of using a multiresolution 
approach: the combination of multiple resolutions 
dramatically improves the matching accuracy over the 
single resolution approach.  

Table 4. Matching accuracy on SYNDATA 
Method Weight Vector Accuracy 

[1 0 0 0 0] 0.55 
[0 1 0 0 0] 0.70 
[0 0 1 0 0] 0.65 
[0 0 0 1 0] 0.48 

 
Single level 

VQ 

[0 0 0 0 1] 0.46 
MVQ [1 1 1 1 1] 0.83 

Euclidean  0.51 
To show the effectiveness of the proposed 

representation and distance metric, we applied the plain 
Euclidean distance (naïve method) on the same dataset, 
which directly computes the Euclidean distance to 
measure the similarity between time series. From Table 4 
we can conclude that for this dataset, the Naïve method 
does worse than most of the single level VQ 
approximations, while MVQ provides a much better 
matching accuracy.  

Table 5. Experiment parameters for CAMMOUSE 
data 

 MVQ parameters 
Level l s 

1 1600 6 
2 800 8 
3 400 8 
4 200 16 
5 100 16 

4.2.3 Experiments on CAMMOUSE 
We performed similar experiments as with 

SYNDATA dataset. The experiment parameters and 
results are shown in Table 5 and 6 respectively. 

Table 6. Matching accuracy on CAMMOUSE data 
Method Weight Vector Accuracy 

[1 0 0 0 0] 0.56 
[0 1 0 0 0] 0.60 
[0 0 1 0 0] 0.44 
[0 0 0 1 0] 0.56 

 
Single level 

VQ 

[0 0 0 0 1] 0.60 
MVQ [1 1 1 1 1] 0.83 

Euclidean  0.58 
From Table 6, it is clear that for the CAMMOUSE 

dataset, the hierarchical mechanism also helps to improve 
the accuracy obtained with a single resolution level. 
Comparing with the average matching accuracy of the 
plain Euclidean method, the retrieval accuracy of MVQ is 
much better (25% higher). 

 
4.2.4 Comparison with other methods 

In order to compare the efficiency and accuracy of 
MVQ in similarity searches we considered alternative 
methods including the Discrete Fourier Transform (DFT), 
plain Euclidean, Dynamic Time Warping (DTW) and 
Symbolic Aggregate approXimation (SAX) [23]. For 
evaluation and comparison, every time series in the 
dataset is taken as a query, and the precision and recall 
pairs corresponding to the top 1,2,3,…,k retrieved time 
series are calculated. Then the average value of precision 
and recall is computed for the whole dataset. The actual 
value for k is different for different methods.  

For DFT, SAX and MVQ, some parameters need to 
be set up for the experiments. For DFT, we take the first 
16 non-zero coefficients; for SAX the number of 
segments is set to 15 (SYNDATA) or 16 (CAMMOUSE) 
and the codebook size is set to 16. For MVQ we take the 
same codebook sizes as in previous subsection for the 5 
resolution levels and use [1 1 1 1 1] as the weight vector. 

Figure 5 shows the precision-recall performance on 
SYNDATA and CAMMOUSE. Notice that for a fixed 
recall ratio, the fewer time series are retrieved the better, 
and subsequently the higher the precision is. For both  

  



 
(a)                                        (b) 

Figure 5.  Precision-recall for different methods 
(a) on SYNDATA  (b) on CAMMOUSE 

datasets the precision decreases quickly with Plain 
Euclidean, DFT, SAX and DTW, while the precision with 
MVQ stays at a high level. MVQ achieves the best 
performance on these datasets. When the time series are 
short (as in the case of SYNDATA) MVQ’s need for 
more space due to the multiple codebooks is noticeable. 
However, MVQ is the best distance function and provides 
the best accuracy. An interesting observation is that in 
most cases, even with only one layer, our distance 
measure can provide comparable or even better results 
than the other methods. Later in the experiments, we 
restrict the space requirements of MVQ so that they are 
comparable to those of the other methods.  

 
Figure 6. Processing time and scalability 

Besides accuracy, other considerations for a good 
method should include speed and scalability. Figure 6 
shows the processing time of different methods on 
datasets with various sizes. The experimental settings for 
different methods are the same as before. DFT shows the 
best processing efficiency with the shortest time, but 
considering the poor accuracy result shown in Figure5, it 
should not be taken as a good candidate.  

In comparison to the other methods we considered 
here, although the encoding of the query consumes some 
time, MVQ outperforms them all in speed when the 
database size is not too small. Notice that the time 
reported here for MVQ does not include the 
preprocessing needed during the training phase to obtain 
the codebook (s) for a dataset. A brief discussion about 
the preprocessing cost can be found in Appendix B. 

4.3   Clustering experiments  

4.3.1 Experiment design.  
   For time series clustering, we conducted experiments 

Table 7. Clustering accuracy of MVQ on SYNDATA 
Method Weight Vector Accuracy 

[1 0 0 0 0] 0.69 
[0 1 0 0 0] 0.71 
[0 0 1 0 0] 0.63 
[0 0 0 1 0] 0.51 

 
Single level 

VQ 

[0 0 0 0 1] 0.49 
MVQ [1 1 1 1 1] 0.82 
DFT 0.67 
SAX 0.65 
DTW 0.80 

Euclidean 

 

0.55 
on both synthetic and real datasets. The PAM 
(Partitioning Around Medoids) clustering algorithm was 
used to cluster the original time-series in every dataset. 
However, different approaches applied for distance 
calculation resulted in different distance matrices for the 
time series, and subsequently in different clustering 
results. 

In order to evaluate the clustering accuracy and 
quality of our approach, a cluster similarity metric was 
used. Given two clusterings, G=G1,G2, …,Gk  (the true 
clusters), and A=A1,A2,…,Ak (clustering result by a certain 
method), the clustering accuracy is evaluated with the 
cluster similarity defined as: 

k
AGSim
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This metric was introduced in [11] to evaluate 
clustering results and was also used in [17]. The metric 
value ranges between 0 and 1, and it takes the maximal, 
i.e. 1, when the clustering result is perfect. For each 
dataset, we used the same experiment parameters as in 
Section 4.1. Considering the stochastic nature of the PAM 
algorithm, given a set of parameters, each experiment was 
repeated 10 times, and the average result is reported here. 
For the purpose of comparison, clustering results with 
other methods are also provided. 

4.3.2 Experiments on SYNDATA dataset.  
Taking the same parameters as shown in Table 3, 

clustering experiments were performed on the 
SYNDATA dataset. The experimental results are listed in 
Table 7. Clustering performance of other methods is also 
reported. 

It is clear that for this dataset, we cannot achieve 
satisfying performance using the Euclidean Distance as 
the distance metric, while the suggested method is very 
promising. The performance achieved by several single 
resolution levels of the VQ approximation is better than 
that of the Naïve method (Euclidean on the original time 
series) and comparable or better to that of the other  

  



Table 8. Clustering accuracy of MVQ on 
CAMMOUSE 

Method Weight Vector Accuracy 
[1 0 0 0 0] 0.61 
[0 1 0 0 0] 0.60 
[0 0 1 0 0] 0.59 
[0 0 0 1 0] 0.63 

 
Single level 

VQ 

[0 0 0 0 1] 0.62 
MVQ [1 1 1 1 1] 0.79 
DFT 0.62 
SAX 0.58 
DTW 0.69 

Euclidean 

 

0.61 
methods. By combining different resolution levels, the 
clustering result is further improved. 

For completeness we compared a multiresolution 
implementation of SAX to MVQ. We used 5 resolution 
levels with the number of segments as 2, 3, 6, 30 and 60 
respectively. The accuracies of SAX with different 
resolutions vary between 0.54 and 0.65. However, when 
we tried to combine the distance measurement in all 
resolution levels, the accuracy was 0.64. Since SAX 
encodes already the order of segments in the original time 
series, the use of multiresolution levels does not improve 
the accuracy of the representation and its performance.  

4.3.3 Experiments on CAMMOUSE dataset. 
The experimental parameters for the CAMMOUSE 

dataset are the same as in Table 5. Table 8 displays the 
results for MVQ with different weight vectors and results 
of the other methods. Again, the performance of plain 
Euclidean Distance is poor, while MVQ provides much 
better clustering results. Its performance is also superior 
to the other methods we tested. Observe again that even 
with only one layer, our distance measure can provide 
comparative or even better results than the others (in this 
case MVQ has similar space requirements as the other 
methods).  

4.3.4 Experiments on the RTT dataset. 
For MVQ we used 5 different layers 1-5 with 3, 8, 8, 

16, and 16 codewords respectively. This is a total of 51 
codewords. We used the same number of parameters for 
DFT and SAX. Table 9 compares the clustering accuracy 
of MVQ with that of the other methods.  

An important observation here is that we do not need 
to take all layers into consideration to get the best 
performance. The reason is that when the different 
resolution levels cannot present uniformly rich 
information, the involvement of less informative levels 
will reduce the overall accuracy. Furthermore, the study 
at different single resolution levels can help us identify 
the importance of different layers in discriminating 
among classes. 

Table 9. Clustering results on RTT (with same space 
requirements for MVQ as for the other methods) 

Method Weight Vector Accuracy 
[10000] 0.55 
[01000] 0.52 
[00100] 0.57 
[00010] 0.80 

 
Single level 

VQ 

[00001] 0.79 
[00011] 0.81 MVQ 
[11111] 0.60 

DFT 0.54 
SAX 0.54 
DTW 0.62 

Euclidean 

 

0.50 

4.4   Summarizing time series  

Here, we present results from applying MVQ to 
summarize time series.  We consider the SYNDATA 
dataset. To help in evaluating the summarization 
capabilities of the proposed approach, in Figure 7, we 
present a few typical time series that we manually 
extracted from each of the six classes.  

 
Figure 7. Representative time series extracted 

manually from the SYNDATA dataset. 
 Table 10 shows how the codewords of the first 

codebook are used to represent each class at the first level  
(of resolution). The actual codewords are displayed in 
Figure 8. The first number in each cell of Table 10 shows 
how usage of a codeword (row) is distributed across 
classes (we show percentages). These numbers add up to 
100 for each row (codeword). The second number in each 
cell shows the usage (in percentages) of all codewords for 
a certain class (column). They add up to 100 for each 
column. One can make the following observations about 
the representation of classes at this level (more coarse 
approximation). For all time series in class 1 (normal) 
only the 2nd codeword is used and only class 2 (cyclic) 
time series use the same codeword (rarely though). The 
2nd codeword is indeed very representative of the time 
series in class 1. Time series in class 2 make equal use of 
codewords 1, 5, and 6 while they rarely use codeword 2. 
Since class 2 is the cyclic one this makes a lot of sense. 
One could have a concise representation by just looking  

  



Table 10. The codewords (c:1-6) used to represent 
each one of the 6 classes of SYNDATA at level 1.  

c class1 class2 class3 class4 class5 class6 
1 0,  0 100,31 0,    0 0,    0 0,    0 0,    0 
2 96,100 4,     4 0,    0 0,    0 0,    0 0,    0 
3 0,   0 0,     0 0,    0 50,100 0,    0 50,100 

4 0,   0 0,     0 50,100 0,    0 50,100 0,    0 
5 0,   0 100,40 0,   0 0,    0 0,    0 0,    0 
6 0,   0 100,25 0,   0 0,    0 0,    0 0,    0 

at the codewords and the frequency of their use in 
different classes. Classes 3 (increasing trend) and 5 
(upward shift) make equal use of the 4th codeword 
although no other classes use this codeword. They both 
have an increasing trend so this summarizes them very 
well. Similarly for classes 4 (decreasing trend) and 6 
(downward shift) the 3rd codeword is used and no other 
class is using this codeword. At this first level we cannot 
discriminate between classes 3 and 5 and classes 4 and 6.  

 
Figure 8. The codewords used to represent time 

series of the SYNDATA dataset at the first level. 
The second level though provides more details into 

the summarization enabling the discrimination between 
classes 3 and 5 and classes 4 and 6. Table 11 shows how 
the codewords of the second codebook are used to 
represent each class at the second level. The actual 
codewords are displayed in Figure 9. Please note that  

 
Figure 9. The codewords used to represent time series 

of the SYNDATA dataset at the second level. 
codeword numbers correspond to different codewords  
(not the same codewords as for level 1). Time series in 
class 5 make heavy use of codeword 12 that indeed 
represents the upward shift. This is not the case for class 
3 which instead uses heavily codewords 1 and 9. 
Similarly, class 6 makes heavy use of codeword 15 that 
indeed represents the downward shift. Class 4 uses the 
codeword 15 very rarely. The tables for the other levels 
are not shown here due to space limitations. They are also  

Table 11. The codewords (c:1-16) used to represent 
each one of the 6 classes of SYNDATA at level 2. 
c class1 class2 class3 class4 class5 class6 

1 2,    1 0,    0 94, 19 0,    0 2,    1 2,    1 
2 90, 51 10,  6 0,    0 0,    0 0,    0 0,    0 
3 1,    1 0,    0 0,    0 3,    1 56, 21 40, 15 
4 0,    0 0,    0 96, 48 0,    0 3,    1 1,    1 
5 0,    0 0,    0 37,  5 0,    0 63,  9 0,    0 
6 11,  5 89, 39 0,    0 0,    0 0,    0 0,    0 
7 0,    0 0,    0 0,    0 100, 45 0,    0 0,    0 
8 0,    0 0,    0 1,    1 3,    2 46, 28 5,  29 
9 0,    0 0,    0 98, 26 0,    0 2,    1 0,    0 

10 78, 39 22, 11 0,    0 0,    0 0,    0 0,    0 
11 0,    0 0,    0 0,    0 12,  3 25,  7 63, 19 
12 0,    0 0,    0 7,    1  0,    0 93, 21 0,    0 
13 0,    0 0,    0 0,    0 0,    0 100, 11 0,    0 
14 4,    2 96, 44 0,    0 0,    0 0,    0 0,    0 
15 0,    0 0,    0 0,    0 3,    1 0,    0 97, 15 
16 1,    1 0,    0 0,    0 70, 48 0,    0 29, 20 

not very useful for summarization of this particular 
dataset since most of the useful summarization 
information is extracted from the first two levels. These 
results demonstrate the ability of MVQ to provide a 
summarization of time series datasets. This is possible 
due to the symbolic and multiresolution nature of the 
representation. 

5.   Discussion  
The MVQ approach that we proposed for representing 

time series data in order to make their analysis more 
efficient is a natural extension of the piecewise constant 
approximation schemes proposed earlier. By applying 
Vector Quantization to extract high-level features of the 
data and by involving a multiresolution approach we were 
able to identify a “vocabulary” of subsequences of 
various lengths and  improve  performance and efficiency 
in time series similarity retrieval. We were especially 
successful in domains where we could not achieve good 
results using the Euclidean distance as the similarity 
metric. In addition, the new representation is very useful 
in summarizing time series by providing typical patterns 
observed at different resolutions. 

We presented the main idea of an approach to 
represent time series along with a new distance function 
that is better than previous distance functions and in 
addition it is fast to compute. Obviously, there are a lot of 
variations of this approach including use of sliding 
windows, non-rigid borders for subsequences, use of 
different rules for assigning weights to different 
resolutions, etc. These are directions in which this work 
can be extended. Another interesting problem is related to 
the size of the codebook. When we generate the 
codebooks for different resolutions, the size of each 
codebook affects the performance of encoding. The more 
codewords at a given resolution, the better the 
approximation but the efficiency of the method decreases. 

  



Future studies include looking into these tradeoffs in 
more detail.  

6.   Conclusions  
In this paper we introduced a new symbolic 

representation of time series, MVQ, along with a new 
distance function that is better than major competitors. By 
partitioning a sequence into equal-length segments and 
using vector quantization to represent each sequence by 
appearance frequencies of key subsequences, MVQ 
provides a more meaningful similarity metric for many 
domains, besides the improvement in efficiency because 
of the dimensionality reduction especially in the case of 
long sequences. Moreover, using a multiresolution 
approach, MVQ can record both local and global 
information of time series, which further improves the 
robustness in calculating similarity, requiring little more 
calculation than a single resolution approach.  

The experimental evaluation of the proposed method 
showed that it outperforms current state-of-the-art 
methods in clustering and similarity searches. This is due 
to the following: (a) it exploits prior knowledge about the 
data, (b) it takes multiple resolutions into account and (c) 
it partially ignores the ordering of the ‘codewords’ within 
the time sequence due to the histogram model that it uses.  

The proposed representation is symbolic potentially 
allowing the application of text-based retrieval techniques 
into the similarity analysis of time series. Moreover, due 
to the symbolic and multiresolution representation the 
proposed approach is excellent in summarizing time 
series by providing typical patterns observed at different 
resolutions. The proposed transformation on time series is 
very fast to process long time series, since the length of 
new representation is only related to the size of the 
codebook. The parameters of our method are easy to 
determine. In particular, a general conclusion from our 
experiments is that lacking any prior knowledge equal 
weights to all resolution levels works well most of the 
time. While the experimental results presented here 
mainly focus on similarity analysis, clustering, and 
summarization, our approach can also be easily adjusted 
to other applications, such as frequent pattern retrieval 
(i.e., motif discovery), association rule mining, and other 
data mining applications. 

Acknowledgements 
The authors are grateful to the anonymous referees 

and to Eamonn Keogh for providing helpful comments. 
This work was supported in part by NSF under Grant No. 
IIS-0237921, by NIH under Grant No. R01MH68066-
01A1 (funded by NIMH, NINDS, and NIA) and by the 
Pennsylvania Department of Health.  

References 

[1] Agrawal, R., Faloutsos, C. and Swami, A.. “Efficient 
similarity search in sequence databases”, Proceedings of the 4th 
Int'l Conference on Foundations of Data Organization and 
Algorithms. Chicago, IL, Oct 13-15, 1993. pp. 69-84.  
[2] Agrawal, R., Lin, K. I., Sawhney, H. S. and Shim, K., “Fast 
similarity search in the presence of noise, scaling, and 
translation in time-series databases”, Proceedings of the 21st 
Int'l Conference on Very Large Databases. Zurich, Switzerland, 
Sept., 1995, pp. 490-501. 
[3] Alcock R.J.  and Manolopoulos Y.. "Time-Series Similarity 
Queries Employing a Feature-Based Approach" Proceedings of 
7th Hellenic Conference on Informatics, Ioannina, Greece, Aug. 
27-29, 1999, pp.III.1-9. 
[4] Baeza-Yates, R.A. & Gonnet, GH.. “A fast algorithm on 
average for all-against-all sequence matching”, Proceedings of 
the String Processing and Information Retrieval Symposium, 
1999, pp. 16-23. 
[5] Betke, M., Gips, J., and Fleming, P., "The Camera Mouse: 
Visual Tracking of Body Features to Provide Computer Access 
For People with Severe Disabilities." IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, 10:1, March 
2002, pp. 1-10. 
[6] Chen, L. and Ozsu, M.T., “Multi-scale histograms for 
answering queries over time series data”, Proceedings of the 
20th International Conference on Data Engineering,  Boston, 
MA, 2004, p. 838. 
[7] Deligiannakis A., Kotidis, Y., and Roussopoulos, N., 
“Compressing historical information in sensor networks”, 
Proceedings of the 2004 ACM SIGMOD International 
Conference on Management of Data, Paris, France, June 2004, 
pp. 527-538.
[8] Goldin, D.Q. and Kanellakis, P.C. “On similarity queries for 
time-series data: Constraint specification and implementation”, 
Proceedings of Constraint Programming, Marseilles, France, 
1995. 
[9] Faloutsos, C., Jagadish, H., Mendelzon, A. and Milo, T., “A 
signature technique for similarity-based queries”, Proceedings 
of the Int'l Conference on Compression and Complexity of 
Sequences. Positano-Salerno, Italy, Jun 11-13, 1997. 
[10] Faloutsos, C., Ranganathan, M. and Manolopoulos, Y., 
“Fast subsequence matching in time-series databases”, 
Proceedings of the ACM SIGMOD Int'l Conference on 
Management of Data. Minneapolis, MN, May 25-27, 1994, pp. 
419-429. 
[11] Gavrilov, M., Anguelov, D., Indyk, P. and Motwani, R., 
“Mining the stock market: Which measure is best? ”, 
Proceedings of the International Conference on Data Mining 
and Knowledge Discovery, 2000, pp. 487-496. 
[12] Gersho, A. and Gray R. M., Vector Quantization and 
Signal Compression, Kluwer Academic Publishers, 1992. 
[13] Gusfield, D., Algorithms on Strings, Trees and Sequences. 
Cambridge University Press, 1997. 
[14] Hetland, M. L., “A survey of recent methods for efficient 
retrieval of similar time sequences”, In Mark Last, Abraham 
Kandel, and Horst Bunke, editors, Data Mining in Time Series 
Databases, World Scientific, 2004. 
[15] Höppner, F., “Discovery of temporal patterns – learning  
rules about the qualitative behavior of time series”, Proceedings 
of the 5th European Conference on Principles and Practice of 
Knowledge Discovery in Databases, Freiburg, Germany, 2001, 
pp. 192-203. 

  



[16] Huhtala, Y., Kärkkäinen, J. & Toivonen, H.,  “Mining for 
similarities in aligned time series using wavelets”, Data Mining 
and Knowledge Discovery: Theory, Tools, and Technology, 
SPIE Proceedings Series, Vol. 3695. Orlando, FL, Apr., 1999, 
pp. 150-160. 
[17] Kalpakis, K., Gara, D. and Puttagunta, V, “Distance 
Measures for Effective Clustering of ARIMA Time-Series”, 
Proceedings of the 2001 IEEE International Conference on Data 
Mining, San Jose, CA, Nov 29-Dec 2, 2001, pp. 273-280 
[18] Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S., 
“Locally adaptive dimensionality reduction for indexing large 
time series databases”, Proceedings of ACM SIGMOD 
Conference on Management of Data. Santa Barbara, CA, May 
21-24, 2001, pp 151-162. 
[19] Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S., 
“Dimensionality Reduction for Fast Similarity Search in Large 
Time Series Databases”, Journal of Knowledge and Information 
Systems, 2001 
[20] Keogh, E. & Folias, T., The UCR Time Series Data Mining 
Archive. http://www.cs.ucr.edu/~eamonn/TSDMA/index.html. 
Riverside CA. University of California, Computer Science & 
Engineering Department. 
[21] Keogh, E. and Pazzani, M., “A simple dimensionality 
reduction technique for fast similarity research in large time 
series databases”, Proceedings of the Fourth Pacific-Asia 
Conference on Knowledge Discovery and Data Mining, Kyoto, 
Japan, 2000. 
[22] Lin, J., Keogh, E., Patel, P. and Lonardi, S., “Finding 
motifs in time series”, The 2nd Workshop on Temporal Data 
Mining, at the 8th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, Edmonton, Alberta, 
Canada, July 23 - 26, 2002. 
[23] Lin, J., Keogh, E., Lonardi, S. and Chiu, B., “A Symbolic 
Representation of Time Series, with Implications for Streaming 
Algorithms”, Proceedings of the 8th ACM SIGMOD Workshop 
on Research Issues in Data Mining and Knowledge Discovery, 
San Diego, CA. June 13, 2003. 
[24] Linde, S., Buzo, A. and Gray, A., “An algorithm for vector 
quantizer design”, IEEE Transactions on Communications, vol. 
28, 1980, pp. 84-95. 
[25] Lloyd, S. P., “Least squares quantization in PCM”, IEEE 
Transactions on Information Theory, IT(28), 1982, pp. 127-135. 
[26] Megalooikonomou, V., Li, G., Wang, Q., "A 
Dimensionality Reduction Technique for Efficient Similarity 
Analysis of Time Series Databases", Proceedings of the 13th 
ACM CIKM International Conference on Information and 
Knowledge Management, Washington, DC, Nov. 8-13, 2004, 
pp. 160-161. 
[27] Park, S., Chu, W.W., Yoon, J. and Hsu, C., “Efficient 
search for similar subsequences of different lengths in sequence 
databases”, Proceedings of the ICDE, 2000, pp. 23-32. 
[28] Piotr Indyk, Nick Koudas, S. Muthukrishnan. “Identifying 
Representative Trends in Massive Time Series Data Sets Using 
Sketches”, Proceedings of VLDB, 2000, pp 363-372. 
[29] Rafiei, D., “On similarity-based queries for time series 
data”, Proceedings of the 15th International Conference on Data 
Engineering (ICDE), Sydney, Australia, 1999, pp. 410-417. 
[30] UCI KDD Archive. http://kdd.ics.uci.edu 
[31] Wu, Y., Agrawal, D. and El Abbadi, A., “A comparison of 
DFT and DWT based similarity search in time-series 
databases”, Proceedings of the 9th ACM CIKM Int'l Conference 

on Information and Knowledge Management. McLean, VA, 
Nov 6-11, 2000, pp. 488-495. 
[32] Yi, B-K and Faloutsos, C., “Fast Time Sequence Indexing 
for Arbitrary Lp Norms”, Proceedings of the VLDB, Cairo, 
Egypt, Sept, 2000. 
[33] Zhu, L., Rao, A. and Zhang A., “Theory of Keyblock-based 
Image Retrieval”, ACM Transactions on Information Systems, 
20(2), 2002, pp. 224-257. 

Appendix 
A.  Time series codeword representation − Other 
models of similarity 

In VQ-based image retrieval [33], two other models 
that have been proposed are the Boolean Model (BM) and 
the Vector Model (VM). The Histogram Model we 
adopted in our methodology can be considered as special 
case of VM. For completeness we present these models in 
the context of time series analysis below: 
• Boolean model (BM): computes the similarity of the 

Boolean models of the codeword representation of two 
time series using the following formula: 

00001111 **),( wnwntqSBM +=            
where n11 is the number of identical indices and n00 is 
the number of indices of the code words that do not 
exist in both of the representations, while w11 and w00 
are the weights assigned to these frequencies. 

• Vector Model (VM): computes the similarity between 
the frequency-based representations of two time series 
using the following formula:     
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In the above formula, fi,t, denotes the frequency of 
codeword i in time series t. 

B.  Preprocessing cost: Codebook generation 
In MVQ a codebook needs to be generated for each 

one of the multiresolution levels using training data 
before the encoding can be performed. Let i be the 
number of iterations in the training process where i 
depends on the predefined threshold of the fractional drop 
of the distortion. During each iteration, every training 
vector is compared to every codeword. Since the size of 
codebook is s, and totally there are N*w training vectors 
(N is the number of time series in the training set and w is 
the number of fragments at the highest resolution of a 
time series), and c the number of resolution levels, the 
time complexity of preprocessing of a single level is: 
T(training) = O(c * N * w * s * i). This time complexity is 
not so prohibitive since training is done once during 
preprocessing and as we showed earlier the size of the 
codebook needs not be large to achieve very good 
approximation using MVQ. In the case that the data is 
modified over time there is no additional overhead if the 
distributions remain the same. In the case of a decreased 
codebook quality an incremental update of the codewords 
need to be considered. 

  


