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About the speaker

• CEID Graduate: 2009-2014

• PhD in Machine Learning/Robotics (INRIA): 2015-2018

• Post-doc in Robotics (EPFL): 2018-2020

• CEID Adjunct Lecturer: Oct 2020-now

• Metargus: Jan 2021-now
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Robotics (1)
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Robotics (1)
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Robotics (2)

1Boston Dynamics, 2020
2https://shorturl.at/oryAE

Konstantinos Chatzilygeroudis Micro-Data Reinforcement Learning for Adaptive Robots 4/55
4/55

https://shorturl.at/oryAE


Robotics - Limitations

1DARPA Robotics Challenge, 2015
Konstantinos Chatzilygeroudis Micro-Data Reinforcement Learning for Adaptive Robots 5/55

5/55



Animal Adaptation
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Trial and Error Learning
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Problem formulation

Reinforcement Learning (RL) for Robotics
We consider dynamical systems of the form:

xt+1 = F (xt, ut) + w (1)

with x ∈ RE , u ∈ RF , i.i.d. Gaussian system noise w, and unknown
transition dynamics F .

We seek to find a policy π, u = π(x|θ), which maximizes the
expected long-term reward in as little interaction time as possible
(i.e., we want a data-efficient algorithm):

J(θ) = E
[

T∑
t=1

r(xt)
∣∣∣θ]

(2)

where r(xt) is the immediate reward of being in state x at time t.

Konstantinos Chatzilygeroudis Micro-Data Reinforcement Learning for Adaptive Robots 8/55
8/55



Micro-Data Reinforcement Learning

Only a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trialsOnly a few trials
possible!possible!possible!possible!possible!possible!possible!possible!possible!possible!possible!possible!possible!possible!possible!possible!possible!
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Strategies of Micro-Data Reinforcement Learning

priors

models

dynamics policy expected return

model-based policy search Bayesian optimization

prior on dynamics prior on expected return

simulations, demonstrations, analytical models, experimenter's insights, ...
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1Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., Mouret, J.-B. “A survey on policy search algorithms
for learning robot controllers in a handful of trials”, IEEE Transactions on Robotics 2019
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Micro-Data Reinforcement Learning: No prior
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State-of-the-art: Policy Gradient Algorithms
Policy search:

θ∗ = argmax
θ

J(θ) (3)

Stochastic Policy Gradients1:

∇θJ(θ) = E
[ T −1∑

t=0

∇θ logπ(ut|xt, θ)At

]
(4)

where At = Q̂π(xt, ut).

Big variance in the gradient estimation, and thus slow convergence (or even
divergence)!

Trust Region Policy Optimization (TRPO)2 and Proximal Policy Optimization
(PPO)3 use an extra constraint to reduce the variance and provide monotonic
improvement guarantees.

1Sutton, R., et al. “Policy gradient methods for reinforcement learning with function approximation”, NIPS, 2000
2Schulman, J., et al. “Trust region policy optimization”, ICML, 2015
3Schulman, J., et al. “Proximal policy optimization algorithms”, 2017
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State-of-the-art: PPO Results

More than 80 hours of simulated training!
1Schulman, J., et al. “Proximal policy optimization algorithms”, 2017
2https://blog.openai.com/openai-baselines-ppo/
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Micro-Data Reinforcement Learning: Model-based
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Model-based policy search

Policy

System

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0
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2.0

Model

Policy Search Algorithm

Learn transition dynamics

 State xtControls ut

Output next policy to execute

1Deisenroth, M.P., Neumann, G., Peters, J. “A survey on policy search for robotics”, Foundations and Trends in
Robotics, 2013

Konstantinos Chatzilygeroudis Micro-Data Reinforcement Learning for Adaptive Robots 12/55
12/55



Gaussian Processes

1Rasmussen, CE. “Gaussian processes in machine learning”, 2004
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System

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Model

Learn transition dynamics

 State xtControls ut

Output next policy to execute

Gaussian
Processes

PILCO

Deterministic
policy evaluation

Specific policy
and reward types

Gaussian Process
Policy

State-of-the-art: PILCO1

1Deisenroth, D., et al. “Gaussian Processes for Data-Efficient Learning in Robotics and Control” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2014
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Micro-Data Reinforcement Learning: Surrogate Models
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State-of-the-art: Bayesian Optimization

1Brochu, E., Cora, V.M., De Freitas, N. “A tutorial on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforcement learning”, 2010
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State-of-the-art: Learning for Damage Recovery
Intelligent Trial and Error Algorithm (IT&E)1

1Cully, A. et al. “Robots that can adapt like animals”, in Nature, vol. 521, no. 7553, pp. 503–507, 2015
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State-of-the-art: Quadratic Programming-based Control
But we can have analytical models:

M(q)q̈ + Cg(q, q̇) = Sτ + JT (q)W
J(q)q̈ + J̇(q, q̇)q̇ = ẍ (5)

And solve an optimization:

min
X

− 1
2X T GX + gT X

s.t.
[
M(q) −S −J(q)T

]
X + Cg(q, q̇) = 0

(6)

where

X =
[
q̈ τ W

]T
(7)
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State-of-the-art: QP-based Control (2)

1LARSEN Inria: https://www.youtube.com/watch?v=-An7Ju3ge0I&ab_channel=LarsenInria
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State-of-the-art: Limitations

Learning Methods Traditional Methods
Pure episodic approach:
• The robot starts in the same

initial state at each episode;
• Learning process separated from

operation.
Scaling issues with complex
robots:
• Exponentially more data are

needed as the dimensionality of
state/action space increases;

• Data-efficient approaches do
not take advantage of
multi-core architectures.

Require a lot of tuning:
• Hard to find hyper-parameters;
• Different parameters for each

task.
Accurate models required:
• Model-based methods (e.g.,

QP-control) do not work with
in accurate models;

• Difficult to incorporate learning.
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Reset-free Trial and Error Learning
for Robot Damage Recovery

Pure episodic

1Chatzilygeroudis, K., Vassiliades, V. and Mouret, J. B. “Reset-free
Trial-and-Error Learning for Robot Damage Recovery”, RAS, 2018.
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Reset-free Trial and Error Learning for Robot Damage
Recovery (RTE)

Simulation
(undamaged robot)

A

Action Repertoire

Damaged robotB

MAP-Elites MCTS & GPs
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Learning and correcting the repertoire
MAP-Elites1 uses a simulated intact robot and requires:
• A parameterized policy, πθ

• An action descriptor, a, that describes the task space
• A performance measure, performance(θ)
It provides:
• A diverse set of locally (with respect to a) optimized policies, A
• A mapping between the task space, (or the set of actions A), and

the policy space Θ; i.e., A → Θ
• A mapping between actions and relative outcomes, M : A → O;

We use Gaussian Processes with a non-zero mean function to correct
the repertoire:

p(f(a)|D1:t, a) ∼ N (µ(a), σ2(a))
µ(a) = M(a) + kkkT K−1(D1:t − M(a1:t))
σ2(a) = k(a, a) − kkkT K−1kkk (8)

1Mouret, J.-B., and Clune, J. “Illuminating search spaces by mapping elites.”, 2015.
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Planning with MCTS
Monte Carlo Tree Search:
• is a planning algorithm that is:

◦ best-first, sample-based, and
◦ anytime

• finds optimal decisions
◦ by taking random samples, and
◦ building a search tree according to their

results
• treats as a black-box the model of the

environment (handles uncertainty)
• has successfully solved RL problems

with:
◦ stochastic transitions,
◦ continuous state spaces, and
◦ high branching factors

Simulation
result

Default Policy

A B

C D

1
https://github.com/resibots/mcts
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RTE Overview

Simulator

performance(θ) MAP-Elites

Simulation
(undamaged robot)

A

Action Repertoire

Gaussian
Processes

Monte Carlo
Tree Search

Damaged robotB
Execute action

on the damaged robot

B3

Robot

Target

B2 - detail

B2B1

action_descriptor(θ)

best
action
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Results: Mobile robot
A velocity-controlled differential drive robot has to learn to
navigate again after one of the motors only achieves half of the
desired velocity.

Action Repertoire - Mobile RobotMobile RobotA B

Performance - Mobile Robot 
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1Hester, T., Stone, P. “TEXPLORE: real-time sample-efficient reinforcement learning for robots”, Machine

learning, 2013
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Simulated hexapod robot
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Results - Simulated hexapod robot

Action Repertoires - Hexapod Robot

Action Repertoire #1 Action Repertoire #2
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Results - Simulated hexapod robot (2)

MAP-Elites
repertoire #1
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repertoire #2
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Results: Simulated hexapod robot (3)

Hexapod Robot Distances
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Video - Physical hexapod robot
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Black-Box Data-efficient Policy Search for Robotics

1Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., and
Mouret, J. B. “Black-Box Data-efficient Policy Search for Robotics”, IROS, 2017.
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Model-based policy search - Reminder

Policy

System

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Model

Policy Search Algorithm

Learn transition dynamics

 State xtControls ut

Output next policy to execute

1Deisenroth, M.P., Neumann, G., Peters, J. “A survey on policy search for robotics”, Foundations and Trends in
Robotics, 2013
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Black-box Data-efficient RObot Policy Search
(Black-DROPS)

Key Idea #1 Implicit Policy Evaluation; treat each rollout as a
noisy measurement of the expected long-term reward :

G(θ) = J(θ) + N(θ) (9)

E
[
G(θ)

]
= E

[
J(θ) + N(θ)

]
= E

[
J(θ)

]
+ E

[
N(θ)

]
= J(θ) + E

[
N(θ)

]
(since E

[
E[x]

]
= E[x]) (10)

Key Idea #2 Use a black-box optimizer that:
• Is suited for noisy optimization;
• Can take advantage of multi-core computers.
We use a modified version of IPOP-CMA-ES1 that fulfills the
above properties.

1Hansen, N., Ostermeier, A. “Completely derandomized self-adaptation in evolution strategies”, Evolutionary
Computation, 2001
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Results - Noiseless Cartpole Simulation
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Results - Cartpole Simulation (Scaling)
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Results - Noisy Cartpole Simulation
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Video - Physical Robot Experiments
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But model-based policy search does not scale!!
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Using Parameterized Black-Box Priors to Scale Up
Model-Based Policy Search for Robotics

1Chatzilygeroudis, K., and Mouret, J.-B. “Using Parameterized Black-Box
Priors to Scale Up Model-Based Policy Search for Robotics”, ICRA, 2018.
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Priors to the rescue!

We can use dynamic simulators as priors for the dynamics
model.

1Cutler, M., and How, J. P. “Efficient reinforcement learning for robots using
informative simulated priors.” ICRA, 2015.

2Saveriano, M., Yin, Y., Falco, P., and Lee, D. “Data-Efficient Control Policy
Search using Residual Dynamics Learning.”, IROS, 2017.
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Model Identification

When equations are available, identifying the parameters from
data would be the classic approach, but:

• Assumes the actual system can be fully captured by the available
equations;

• Proper excitation of the system required for non-trivial cases.

Model

Identification

Collect data

Select excitation actions
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Gaussian Processes with Parameterized Black-Box Priors

• Let’s re-write the equation of our dynamic system:

xt+1 = M(xt, ut, φM ) + f(xt, ut, φK)︸ ︷︷ ︸
F (xt,ut)

+w (11)

• Each φM corresponds to a different parameterization of the mean
model M .

• We use GPs to model F and M(xt, ut, φM ) is the mean function
of the GPs; f(xt, ut, φK) captures what cannot be captured by
the mean function.

• Now we can jointly optimize for φM and φK through Maximum
Likelihood Estimation (MLE).

• The modeling procedure can balance between non-parametric
modeling and model identification (we call it GP-MI).
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Results - Pendubot Simulation

A. Tunable & Useful B. Tunable

C. Tunable & Misleading D. Partially Tunable

m1

m2

l2

l1

θ1

θ2

Pendubot system

30 replicates
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Results - Physical Hexapod Robot Experiments

Konstantinos Chatzilygeroudis Micro-Data Reinforcement Learning for Adaptive Robots 40/55
40/55



Real Hexapod Robot Experiments

A. Reality gap B. Rear-leg removal

5 replicates

1Cully, A. et al. “Robots that can adapt like animals”, in Nature, vol. 521, no. 7553, pp. 503–507, 2015
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Sim2Real Methods

1Tobin, J. et al. “Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real
World”, IROS, 2017
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Sim2Real Methods
Main intuitions:
• Simulators give us the ground truth data;
• Simulators can be fast;
• Simulators are reproducible;
• Simulators allow easy customization.
Main steps:
Domain Randomization (DR)
• For each episode, select a

random initialization of the
world dynamics;

• Optimize the policy for a few
steps (e.g., via RL);

• Create a new episode.

Imitation Learning (IL)
• Solve/Learn the task in

simulation;
• Collect many many variations of

the solution;
• Learn the policy via supervised

learning.
DR + IL gives best results...
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Imitation Learning using a Simulator

1Konstantinos Tsinganos, CEID
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Imitation Learning using a Simulator (2)

1Konstantinos Tsinganos, CEID
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Visual/Realistic Sim2Real

1Konstantinos Tsinganos, CEID
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Combining Learning with Traditional Methods &
Exploration
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Quadratic Programming-based Control - Reminder
But we can have analytical models:

M(q)q̈ + Cg(q, q̇) = Sτ + JT (q)W
J(q)q̈ + J̇(q, q̇)q̇ = ẍ (12)

And solve an optimization:

min
X

− 1
2X T GX + gT X

s.t.
[
M(q) −S −J(q)T

]
X + Cg(q, q̇) = 0

(13)

where

X =
[
q̈ τ W

]T
(14)
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Combining QP-control with Learning
Inverse Dynamics:

Sτ = M(q)q̈ + Cg(q, q̇) − JT (q)W
τ = M(q)q̈ + Cg(q, q̇) − JT (q)W (15)

Learning Inverse Dynamics Models:

τ = fjoint(q, q̇, q̈desired) (16)
fjoint(q, q̇, q̈desired) = fanalytic + ejoint(q, q̇, q̈desired) (17)

But ejoint needs to be linear wrt X =
[
q̈desired τ W

]T
!

Let’s linearize: We are in a state (qt, q̇t, q̈t) and we take the first
two terms of the Taylor series expansion of ejoint(·, ·, ·):

flearned(qt, q̇t, q̈t+1) = fanalytic(qt, q̇t, q̈t+1) + ejoint(qt, q̇t, q̈t)

+ (q̈t+1 − q̈t)
∂ejoint(q, q̇, q̈)

∂q̈

∣∣∣q=qt
q̇=q̇t
q̈=q̈t

(18)
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Combining QP-control with Learning (2)

Algorithm Self-correcting QP

1: Design the task specifications: x∗
d(t)

2: Configure the adaptive controller and the model learning procedure
3: for n = 1 → Nepisodes do . For each episode
4: for t = 0 → T do . For each time-step
5: Get ẍ∗

r from adaptive controller
6: Compute the cost function for the QP given the ẍ∗

r

7: Get τ from the QP with the updated cost function, and the
learned model flearned(q, q̇, ẍ∗

r)
8: Apply τ to the robot and collect data
9: Update the adaptive controller

10: Inverse dynamics model learning
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Combining QP-control with Learning (3)
Before Learning
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Combining QP-control with Learning (4)
After Learning
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Combining QP-control with Learning (5)

Learning on a physical robot

Konstantinos Chatzilygeroudis Micro-Data Reinforcement Learning for Adaptive Robots 51/55
51/55



Discovering interesting behaviors using exploration

Go-Explore: a New Approach for Hard-Exploration Problems

1Ecoffet, A. et al. “First return, then explore”, Nature, 2021
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Discovering interesting behaviors using exploration

Go-Explore: a New Approach for Hard-Exploration Problems

1Ecoffet, A. et al. “First return, then explore”, Nature, 2021
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Discovering interesting behaviors using exploration (2)
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Discovering interesting behaviors using exploration (3)

1Andrea Mussati, EPFL
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Automated Sports Player Tracking and Statistics
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Thank you!
Any questions?

costashatz@upatras.gr

http://costashatz.github.io
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